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Abstract

The expected characteristics that the mobile network connectivity market
will assume with the well-established adoption of 4G technology and the im-
minent deployment of 5G technology, together with the rising global demand
for related services, will lead to a challenging scenario for mobile network op-
erators. Operators need to face the challenge by reshaping their investments
in all growing network domains and focusing in particular on providing cus-
tomers with the highest Quality of Service (QoS). These objectives, however,
must necessarily be supported by strategic plans aimed at reducing the num-
ber of churners, i.e. those customers who, dissatisfied with the service offered,
interrupt their subscription, and at recovering their consent and trust in the ser-
vice subscribed. The detection of dissatisfied users will therefore represents, for
mobile operators, the key point for the subsequent strategic planning and the
tracking of the customer’s degree of satisfaction related to the services offered.
The method that allows this monitoring will be the measurement of the Quality
of Experience (QoE) perceived by users. Due to the high cost of conducting sur-
vey campaigns and the problems associated with them, such as poor customer
cooperation, it is crucial for operators to invest in research into the relationship
between QoS and QoE. An effective solution to these problems is through the
use of Machine Learning models, which can predict QoE directly from data
rather than collecting customer feedbacks. This thesis proposes a method for
the detection of potential churners, predicting their level of satisfaction for three
classes of service: video streaming quality, network speed, network coverage. In
addition, the detection of dissatisfied customers can be easily extended to the
identification of under-performing radio cells, since for each user are used the
data of the most visited radio cell only. Assuming that users who spend most of
their time in poorly performing cells experience low quality service, the major
objective is to understand whether it is possible to identify the network services
or procedures that cause the perceived poor quality of service. The different
network aspects that most affect the user experience are: Accessibility, Retain-
ability, Mobility, Integrity and Availability of the mobile service. The proposed
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method has been validated on the entire Italian LTE network of a large Eu-
ropean mobile operator. In fact, we will collect, through customer responses
to a satisfaction survey campaign on service classes that contains when and
which cells are visited by customers, the network side measurements that the
operator stores in the Operational Support System. Afterwards we will proceed
to a composition of Key Performance Indicators (KPIs) that can significantly
describe the different network aspects mentioned above, and finally we will im-
plement the engineering of these KPIs in order to extract as much information
as possible from the customer visit days. Therefore, we will assess the impact
of the application of different Machine Learning algorithms to predict the level
of user satisfaction for the different classes of service. Finally, we will evaluate
how certain KPIs impact on the perceived quality of the different services on
the models. The results suggest that i) it is possible to predict a customer’s
satisfaction with the video streaming service by using network side data, as a
matter of fact the measures of the success rate of handover procedures between
different Radio Access Technology (RAT), the maximum number of users con-
nected to the cell and the overall traffic volume have proved to have a high value
in predicting satisfaction related to this service, in fact we reach improvements
of 34% for the F1 score, and 12. 3% for the prediction accuracy with respect
to the reference case; ii) measures about the success rate of the handover pro-
cedure between different communication frequencies in the same RAT and the
connection to the radio cell, as well as the volume of download traffic have a di-
rect impact on the quality of the network speed experience, allowing us to raise
the accuracy of the model by 17.9% with respect to the reference threshold;
(iii) time measurements of full and limited mobile service activity have a homo-
geneous impact on the perceived experience for all classes of service; (iv) the
greater the number of network performance descriptors and survey responses
which can be leveraged in the training of supervised machine learning models,
the more accurate they are in recognizing the level of satisfaction of customers.
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Sommario

Le caratteristiche che il mercato della connettività di rete mobile andrà as-
sumendo con la già consolidata diffusione della tecnologia 4G e con l’imminente
distribuzione della tecnologia 5G, contestualmente all’incremento della domanda
globale dei servizi ad essa connessi, apriranno uno scenario nuovo e ricco di sfide
che gli operatori mobile dovranno affrontare rimodulando i loro investimenti in
tutti i crescenti domini di rete ed orientandosi sempre più a fornire ai clienti
la migliore Qualità del Servizio (QoS). Tale finalità, tuttavia, dovrà necessari-
amente associarsi a strategie operative che mirino a contrarre il numero dei
churners, cioè di quei clienti che, insoddisfatti del servizio offerto, interrompono
la loro sottoscrizione, ed a recuperare il loro consenso e la loro fiducia nel servizio
sottoscritto. L’individuazione degli utenti insoddisfatti rappresenterà pertanto,
per gli operatori mobile, il punto chiave per la successiva pianificazione strate-
gica ed il monitoraggio del grado di soddisfazione dell’utente relativamente al
servizio offerto. Il metodo che permetterà questa azione di controllo sarà la mis-
urazione della Qualità dell’Esperienza (QoE) percepita dagli utenti. A causa dei
costi elevati per condurre campagne di sondaggi e dei problemi legati ad esse,
come la scarsa attitudine dei clienti a partecipare, è fondamentale per gli oper-
atori investire nella ricerca riguardo la relazione tra QoS e QoE. Una soluzione
efficace a questi problemi è l’uso di modelli di Machine Learning, in grado di
predire direttamente la QoE dai dati piuttosto che collezionare feedbacks dei
clienti. Questa tesi propone un metodo per la rilevazione di potenziali churners,
predicendo il loro livello di soddisfazione per tre classi di servizio: qualità dello
streaming video, velocità di rete, copertura di rete. Inoltre la rilevazione di cli-
enti insoddisfatti è facilmente estendibile all’identificazioni di celle radio sotto
performanti in quanto per ogni utente vengono usati i dati della sola cella radio
più visitata. Assumendo che, gli utenti che passano la loro maggior parte del
tempo in celle con prestazioni scadenti sperimentino un servizio di bassa qualità,
l’obiettivo principale è capire se è possibile identificare i servizi o le procedure
di rete che causano la scarsa qualità di servizio percepita. A tal proposito sono
oggetto di studio di questa tesi i diversi aspetti di rete che influiscono maggior-
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mente sull’esperienza utente: Accessibilità, Mantenibilità, Mobilità, Integrità e
Disponibilità del servizio mobile. Il metodo proposto è stato validato sull’intera
rete LTE Italiana di un grande operatore mobile Europeo. Raccoglieremo in-
fatti, attraverso le risposte dei clienti ad una campagna di sondaggi sulla soddis-
fazione relativa alle classi di servizio contenente, tra l’altro, quando e quali celle
vengono visitate dai clienti, le misurazioni lato rete che l’operatore immagazz-
ina nell’Operational Support System. Procederemo poi ad una composizione di
Key Performance Indicators (KPIs) che possano descrivere significativamente i
diversi aspetti di rete sopra menzionati, per infine attuare l’ingegnerizzazione
di questi KPI in modo da estrarre più informazione possibile dai giorni di visita
del cliente. Valuteremo quindi l’impatto dell’applicazione di diversi algoritmi di
Machine Learning atti a predire il livello di soddisfazione utente per le diverse
classi di servizio. Infine, valuteremo sui modelli l’impatto di determinati KPI
sulla qualità percepita per i diversi servizi. I risultati suggeriscono che i) è possi-
bile predire la soddisfazione di un cliente riguardo al servizio di video streaming
sfruttando i dati lato rete, infatti, le misure del tasso di successo delle procedure
di handover tra diversi Radio Access Technology (RAT), il massimo numero di
utenti connessi alla cella e il volume del traffico complessivo hanno dimostrato
di avere un’alta valenza nella predizione della soddisfazione relativa a questo
servizio, per questi motivi raggiungiamo migliorie del 34% per lo score F1, e del
12.3% per l’accuratezza di predizione rispetto al caso di riferimento; ii) misure
sul tasso di successo della procedura di handover tra frequenze di comunicazione
diverse nella stessa RAT e della connessione alla cella radio, oltre che il volume
di traffico in scaricamento impattano direttamente sulla qualità dell’esperienza
relativa alla velocità di rete, permettendoci di incrementare l’accuratezza del
modello del 17,9% rispetto alla soglia di riferimento ; iii) le misurazioni tem-
porali di pieno e limitato funzionamento del servizio mobile hanno un impatto
omogeneo sull’esperienza percepita per tutte le classi di servizio; iv) maggiore
è il numero dei descrittori delle prestazioni di rete e delle risposte ai sondaggi
che è possibile sfruttare per l’addestramento di modelli di Machine Learning
supervisionati, maggiore è la loro accuratezza di riconoscimento del livello di
soddisfazione.
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Chapter 1

Introduction

According to recent Cisco Annual Internet Report (2018,2023)([2]), a global
analysis that estimates digital transformation on several business segments, the
total number of mobile subscribers, i.e., users that have a mobile device and
subscribe to a cellular service, is going to increase from 5.1 Billion (66% of the
global population) in 2018 to 5.7 billion(71% of the global population) by 2023
(Figure 1.1)

Figure 1.1: Global Mobile subscriber growth (Source: Cisco Annual Internet
Report, 2018-2023).

In relation to mobile subscriber, Mobile devices are projected to grow from
4.9 billion in 2018 to 6.7 billion in 2023. A consequence of the growth in
the number of mobile subscribers is the explosion of mobile applications and an
increased scope of mobile connectivity. In particular, many popular applications
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in recent years require high bandwidth, such as video streaming, cloud storage,
etc. As a consequence Mobile broadband speed is predicted to triple by 2023:
as the report estimates, the average network connection speed grows from 13.2
Mbps in 2018 to 53.9 Mbps in 2023. The massive estimated growth in the
average speed of connection in the mobile network has resulted in the need to
optimize bandwidth management, as can also be seen in the utilization growth of
4G among broadband cellular network technologies. (Figure 1.2) As the report
([2]) states, global 4G connections will be 46% of total mobile connection by
2023, with growing from 3.7 million in 2018 up to 6 million by 2023, as shown
in Figure 1.2.

Figure 1.2: Global Mobile Connections growth (Source: Cisco Annual Internet
Report, 2018-2023).

Transition from 3G and previous mobile connection technologies to 4G and
now 5G deployment follow a global trend which shows a forecast of 60% mobile
device with 4G+ connection capability by 2023. Aware of these projections, mo-
bile network operators have to constantly invest in all the growing network do-
mains, especially in 4G and 5G network technologies and architectures. MNOs
also constantly monitor and optimize their access networks to ensure the high-
est quality of service aimed at attracting new customers and limit the number
of churners, i.e., dissatisfied users who interrupt their contract for subscrib-
ing to another operator. In addition to monitor the satisfaction level of their
customers (QoE), i.e, to receive a feedback on experienced QoS, MNOs con-
tinuously survey their customers. There are several tools to gather the users’
satisfaction level. Some operators use standard tools such as the Net Promoter
Score (NPS) survey, which collects the likelihood that the user recommends
the operator to friends or coworkers on a scale from 0 to 10. Other operators
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instead, in addition to this generic score, often ask the user to answer specific
questions related to a specific mobile network service (video quality, network
data speed, voice quality, network coverage, etc.) that allow to identify possible
problems in the network related to the service item. Based on these surveys
responses, operators have much information about which service should be op-
timized and possibly which one should start: for example, the operator can
then invest in improving Radio Access Technology or in increasing the avail-
able bandwidth. However, collecting feedback from users through surveys is a
complex task. On the one hand, relying on users feedbacks is risky as users,
in general, have poor cooperative attitudes and also feedback can be influenced
by several user subjective factors and also by other elements such as customer
age, sex, level of education, etc. On the other hand, MNOs have typically low
visibility of network performance observed by end devices. In the QoE domain,
several significant researches have focused on QoE modelling, exploring the rela-
tionship between QoE and mobile network performance. Most studies generally
focus on specific applications ([3, 4, 5, 6]) or a specific service item, e.g. video
quality, and frequently monitor the network through measurement platforms
such as Netradar ([7, 4]). However, mobile operators have several ways to cap-
ture objective measurements from their customers: they can capture both radio
access network data and Packet Deep Inspection (DPI) measurements. They
can also collect data through specific mobile applications under the user’s prior
consent ([1]). As an example, in ([8]) authors deployed an automatic churn
prediction and retention system, which, leveraging a giant volume of data from
the Business Support System(BSS) and Operational Support System(OSS), can
detect with high accuracy future churners. However, only a few studies explore
the relationship between subjective and objective factors impacting on users
satisfaction. Understand this relationship is fundamental to allow operators to
detect which part of the network (objective side) causes dissatisfaction (subjec-
tive side) among customers and may address the problem by investing in root
causes. In this thesis work, we explore the possibility to predict the customer
satisfaction related to three different service item: video quality, data speed and
network coverage. Predicting satisfaction with the video streaming service is
paramount as it constitutes the majority of mobile traffic, particularly in recent
years. Besides, due to the rise of HD/4K streaming and high-bandwidth ap-
plications, it has become more and more necessary in recent years to maintain
a high level of network speed. Furthermore, network coverage is an essential
service for users since no network service can clearly be provided without ra-
dio coverage. Satisfaction with these three network services has a significant
impact on the user’s decision to subscribe with a better mobile network oper-
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ator. Differently from other related studies in the domain which analyze the
network on the users’ side, in this work, using empirical network-side data (i.e.
collected from the operator’s OSS), we place the end-user and the specific ser-
vice as close as possible to their real daily use, providing a more representative
evaluation. This is done through the introduction of several key concepts that
relate the QoS, i.e. the quality of network service expressed in KPIs, to the
QoE, i.e. the quality of the experience perceived by the end-user. We based
our study on country-wide dataset obtained from one of the biggest European
MNO, containing both ground truth satisfaction dataset (i.e. perceived QoE)
and network-side measurement(i.e. quality of service KPI). We describe and
study the features extracted from those datasets, and we report the prediction
results obtained using these features to train different machine learning mod-
els. Finally, investigating the relevance of the features for the different service
items, we outline those that reflect a relationship between the performance on
the network side, i.e. the objective one, and the quality of the user experience,
i.e. the subjective one.

1.1 Thesis Outline

The remainder of this thesis is structured as follows:

In Chapter 2, the most relevant related works about 4G mobile network
performance indicators, assessment of user satisfaction through different tem-
poral analysis and techniques are described.

In Chapter 3, the used LTE network measurement dataset and the cate-
gories concepts which compose it as well as their impact on the customers’ QoE
are explained. Also, a study of survey responses and the procedures we used to
engineer the features and to compose the final dataset is illustrated.

In Chapter 4, machine learning techniques are employed to perform data
analysis on the dataset, also examining the information that each feature brings
to the prediction task when the binarization threshold changes.

In Chapter 5, the core machine learning techniques and the built prediction
pipeline is described in detail. In addition, the main machine learning metrics
are presented, and the driving factors in the choice of these are explained. To
conclude the chapter, a comprehensive comparison of the ML models perfor-
mance for each service item is illustrated and argued.
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1.1 Thesis Outline

Finally, in Chapter 6, we conclude discussing the obtained results and
proposing some possible future work to extend the thesis.
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Chapter 2

State of the art

This chapter overviews the literature investigated for this thesis work.
Section 2.1 presents the works related to the identification of network KPIs
reflecting customers QoE in 4G wireless systems, while Section 2.2 reports on
research works about the assessment of users satisfaction in mobile networks.

2.1 4G Network Performance Indicators

In order to guarantee the quality of service, Mobile Network Operators
(MNOs) continuously monitor their infrastructure through network counters
placed at base stations premises, i.e. at the access of the network. Such coun-
ters provide the operator with raw measurements that are finally aggregated to
compose specific Key Performance Indicators (KPIs) that summarise network
performance. The latest standards from European Telecommunications Insti-
tute (ETSI) [9][10] recognize six different KPIs categories to describe the per-
formance of Evolved UMTS Terrestrial Radio Access Networks (E-UTRANs),
as those that mostly impact on end-users network experience [10]. Also, the
standard describes in detail the network services over which the KPIs have to
be measured. The list of KPIs categories and corresponding services are:

• Accessibility and Retainability, referring to E-UTRAN Radio Access
Bearer (E-RAB) service,

• Integrity, referring to IP packets delivery,

• Mobility KPIs referring to the capability of Evolved Node-Bs (eNBs) to
successfully prepare and execute handovers,

• Availability KPIs referring to Evolved Node-Bs (eNBs) capability to
provide the service (i.e. the E-UTRAN Radio Access Bearer between the
EU and the Core Network) in their area,
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• Energy Efficiency, referring to the ratio between the performance indi-
cator (typically the Data Volume in Uplink or Downlink) and the energy
consumption during the same time frame.

Figure 2.1: 4G/LTE Key performances indicators

Given the above KPIs categories, authors in literature ([11, 12]) widely
investigated which KPI can better capture end-user Quality of Experience. In
[11], authors focus their work on analyzing accessibility and retainability KPIs
for 4G Network in Kosovo. Measuring KPIs through terminals installed by
different manufacturers and monitoring 4G network traffic for three months
in 2017, they were able to observe a correlation between the growing demand
for the 4G service and the performance offered. Specifically, the increase in
demand for the network service (from 80 million requests per day to 120 million,
with traffic volumes doubling) was reflected in the degradation of 4G network
performance, causing a growing number of failed access requests from 0.31% (at
the beginning of the observation period) to 0.5% (at the end of the observation
period). In [12] the authors verify the feasibility of extracting Key Quality
Indicators (KQI) from a real LTE network and propose a KQI-driven anomaly
detection and diagnosis framework. Exploiting a group of 19 KPIs, the authors
generate a Fault Cause Codebook, which can be adopted by an operator to find
the fault cause type. Their analysis shows that the degradation of QoE due
to a drop in radio access network KPIs accounts for 80% of overall user QoE
and other reasons are typically due to core network failures or service provider
issues.

8
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2.2 User satisfaction assessment

Monitoring cellular network customers satisfaction has become a primary
task for MNOs, who need to limit the number of churners. In order to mon-
itor users QoE, MNOs continuously survey their customers. However, MNOs
have typically low visibility of network performance observed by end devices.
Improving the visibility of network performance is a daunting challenge be-
cause it requires several non-network factors. To achieve this goal in [3], the
authors collected extensive, continuous, and large-scale measurements (over a
17-month time span) from various devices and networks. They studied net-
work performances in three major US cities through device-based measurement
applications, turning out that there are significant differences in mobile net-
work performance among different operators, access technologies, geographical
regions and over time.

Due to the difficulty of collecting users feedbacks, many authors during the
last decade investigated and evaluated the feasibility of predicting short-term
([4, 5]) and long-term ([7, 6, 1]) customers’ QoE concerning different network
services and mobile applications. Moreover, temporal effects such as recency
of experiences affect directly the evaluation. As the authors of [13] state, the
peak-end phenomena suggests that an evaluation depends on the peak experi-
ence (negative experience with the highest magnitude) and the end experience
(last experience of the episode). Therefore, the absence of the adaptation effect
and the capture of the end experience could potentially have had a positive
impact on prediction performance. On the one hand, short-term QoE con-
cerns individual and time-limited sessions in which users are instructed to use
a service (e.g. watching a video content on YouTube) under controlled network
environments and then are asked about the quality of their experience. On
the other hand, long-term QoE refers to the experience of users in the cellular
network for periods spanning over several weeks or months, which is typically
composed of many, uncontrolled network events.

2.2.1 Short-term customers QoE prediction

A reliable approach for assessing the performance of networks and services
is conducting controlled laboratory experiments, since they rely on the full con-
trol of the evaluation process. However, laboratory experiments miss several
important QoE influencing factors such as the specific user context or many
user subjective factors, limiting the overall view of the services offered by the
network. In [5], authors combine subjective controlled lab tests and passive
end-device measurements with QoE user feedback on five different applications
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collected through a field trial. They show that downlink bandwidth fluctuations
are crucial in determining the QoE of a service, especially for high-interactive
ones. Furthermore, they also state that end-user involvement in the determi-
nation process of QoE in mobile devices is essential to achieve reliable QoE
ground truths.

In comparison to lab-based experiments, field trial experiments place the
end-user and the analyzed aspects of the network as close as possible to their
real and everyday scenario, providing more representative evaluations.

In [4] Authors, using a rich QoE dataset taken from field trials in opera-
tional cellular networks and applications built to monitor network passively,
benchmarking satisfaction prediction performance of different machine learning
models.
They studied network performance during specific applications (YouTube, Face-
book and Google Maps), and the user reported QoE (Mean Opinion Score and
Acceptability) related to a single application.

Out of all the models employed, the best was the one based on decision
trees, which predicted the overall experience and acceptability of the service
with 91% and 98% accuracy.

2.2.2 Long-term customers QoE prediction

Only a few studies have exploited both measurement applications and QoE
surveys to find effective predictors of perceived end-user QoE.

Finley, et al. [7] By Aalto Finley University combined network, non-network
data and surveys collected through Netradar platform to study significant pre-
dictors of user satisfaction. This client-server based platform provides a suite
of mobile applications for various mobile platforms that allows to perform mea-
surements on demand and to take other information of the device, such as
location, MNO and in-use mobile platform for the specific user-initiated mea-
surement (Active Measurements).

The authors implemented a custom pop-up survey to collect QoE data from
users with five statements, which are classified into the following classes (Class:
’cited original statement’):

• Device QoE: ’I am satisfied with the performance of my mobile device in
general.’

• Coverage QoE: ’My mobile connection (current operator) is available
when I need it.’

• Speed QoE: ’I am satisfied with the speed of my mobile connection.’

10
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• Video QoE: ’My mobile connection is good enough for watching online
videos.’

• Recommendation: ’I would recommend my current operator (current op-
erator) to my friends.’

They used a five-point Likert scale to quantify user satisfaction. Further-
more, analyzing the responses to the polls, they found the largest correlation
(0.78) between Speed and Video QoE and also a very high correlation (0.74)
between Speed QoE and Recommendation.
After dichotomization of responses (1,2) for unsatisfaction and (3,4,5) for satis-
faction and data preprocessing they built a series of ordinal logistic regression
models to determine which features are good predictors for Coverage and Speed
QoE.

As a result, they found minimum download goodput, number of frequently
measured locations, network operator, and device type as good predictors for
general user satisfaction.

In [6], the authors studied the performance of the mobile network during
the use of specific applications and in specific contexts of use, asking the user to
report QoE degradation during their use. They found that even though many
users had similar network conditions, the context of use strongly influences the
QoE.

In [1] the authors, leveraging user-side networks measurements taken from
passive monitoring application, trained many ML algorithms to predict network
coverage and video streaming user satisfaction. Explaining the difficulties in
the long-term cellular user satisfaction prediction, they propose several action
plans to improve the results of the prediction. Since the survey response is
also influenced by non-network factors, they state that it is possible to improve
the prediction results by including in the model commercial features (e.g. data
plan type, fee, etc.) as well as subjective user factors such as age, gender
or customer type. A further improvement can also be obtained by increasing
data availability provided by operators. They were limited by lack of responses
(overall 15% responses for coverage and 5% for video satisfaction).

As pointed out by the authors, including the commercial data from the
Business Supporting System (BSS), the prediction performances are improved,
as the authors of [8] demonstrated.

Regarding the monitoring of QoE in cellular networks, a variety of tools are
used to measure network performance ([14],[15],[7]). Although most of these
focus on monitoring the application-specific QoE factors (such as video stalls,
downlink bandwidth, round trip time), rather than the whole set of network
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descriptors that could affect the user experience on a broader class of services.
In [8], authors deployed an automatic churn prediction and retention system

for prepaid customers using 9 Month of measurements by one of the biggest
mobile operator in China. They exploited for the first time a giant volume of
data taken from both operator’s BSS and OSS (Operating Supporting System),
proving that bigger data quantity can be more valuable assets for improving
predictive performances of customers churn. Authors assessed the performances
of their churn prediction system through the 3V’s perspective, i.e. Volume,
Variety and Velocity: results further demonstrate that Variety (i.e. the diversity
and quantity of features used in the training phase) plays a more significant role
in churn prediction with respect to Volume and Velocity. As a matter of fact,
their system reached 0.96 precision for the top 50000 predicted churners in the
list, overcoming previous researches and achieving a big business value.
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Chapter 3

Datasets

This chapter describes the methods and procedures used for data collection
and preprocessing (i.e., data retrieval, data cleaning, data integration, data se-
lection).
This work leverages two datasets referring to the LTE network of one of the
major European mobile operator which is currently active in a mid-sized Eu-
ropean city. The two datasets consist respectively of country-wide and cross-
vendor network data measured at the access of the network through counters
installed at base stations premises and of visiting users related information,
where users sensible details (e.g. MSISDN) have been properly anonymized by
the operator. On the one hand, the former dataset collects raw data measuring
different network performance of 75, 5k different cells (e.g., cell average DL/UL
throughput, average PRB utilization, average number of visitors, etc.) refer-
ring to six months from November 2019 to April 2020. On the other hand, the
latter dataset contains the ground-truth satisfaction feedbacks of 10k users, col-
lected by the MNO through a surveying campaign in a four months period from
August to November 2019. Moreover, this dataset contains other users-level in-
formation, about i) which network cells each user has visited on 60 days before
the response to the survey and ii) for how long (i.e., cell visit times). In the
following sections, we provide a detailed description of the two datasets. Sec-
tion 3.1 presents procedure used in automation of data retrieval process while
sections 3.2 and 3.3 describe the generic content of the two datasets. Finally,
section 3.4 provides a description of the methods used to join the raw datasets
in a final dataset which will be then used in the experiments.



Datasets

Figure 3.1: KPI Analyzer GUI screenshot

3.1 Data Retrieval

The first contribution provided by this thesis work is the automation of the
data retrieval process, previously approached through manual, laborious and
time-consuming operations. The data retrieval process was in fact performed
through the use of a Graphical User Interface (GUI) proprietary software of the
operator, shown in Figure 3.1, which allows to perform some pre-set SQL queries
on the OSS server allowing to choose the time granularity, the start and end date
of observation and the cell or set of cells (clusters). However, several limitations
were present, such as the limited number of cells in a cluster, the complexity in
composing new custom SQL queries, and the inability to automate the process
for multiple base station vendors. Therefore we decided to automate this process
by programming a Python algorithm that takes in input the different custom
SQL queries, the start and end date of desired observation period and the
subset of cells from which retrieve the data, filters the cells for specific vendor,
executes the queries on the dedicated server for each vendor by saving the data
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in about 60 comma-separated values files (csv) of 250MB, and finally merges
the different files providing in output a single csv file for each vendor. This
process is repeated for each desired month of observation, producing a large file
size (14-18 GB/Month) for each vendor. Finally this raw data will be uploaded
to a local SQL server for further data aggregation and merging operations, as
described in Section 3.4.

Figure 3.2: LTE Architecture

3.2 LTE Network Measurement Dataset

The first dataset was collected from the Operations Support System (OSS)
of the operator according to a preliminary study of the most relevant E-UTRAN
KPIs that explain end-user QoE in a 4G network. ([11],[12]) Considering the
reference architecture depicted in Figure 3.2, Network performance has been
measured countrywide and cross-vendor though base station counters that refer
to the following network aspects:

1. Accessibility

2. Retainability

3. Mobility

4. Integrity

5. Availability

6. Traffic

In the following, a description of each KPI category is provided.
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3.2.1 Accessibility KPI

Accessibility KPIs provide the network operator with information about
whether the services requested by the user can be accessed. Moreover, if a
user often cannot access the provided service, he might change his wireless
subscription provider due to dissatisfaction. Hence, have good accessibility is
fundamental from a QoE and business point of view. The service provided
by E-UTRAN is defined as E-RAB, whereas RRC, E-RAB and Call setup are
the fundamental procedures for accessibility KPIs. We collected counters for
the following accessibility KPIs: RRC Setup Success Rate, RRC Connection
Reestablishment Success Rate, E-RAB Setup Success Rate, Call Setup Success
Rate.

3.2.2 Retainability KPI

Retainability KPIs provide the capacity of the system to handle request
during user use of services and perform its intended function, avoiding inter-
ruptions of service. Besides if an end-user is interrupted often during use of the
provided service, he might perceive poor QoS. Hence, have a good Retainability
is fundamental from a QoE and business point of view. The service provided
by E-UTRAN for this KPI is defined as E-RAB. I collected counters for the
Service Drop Rate Retainability KPI.

3.2.3 Mobility KPI

Mobility is an essential function that provides a continuous service to users
who move across the area covered by the mobile network. Mobility KPIs are
about handovers (Hos), i.e. the transfer of an active EU connection from one cell
to another. Measurements include both intraE-UTRAN and interRAT Hos, i.e.
intraE-UTRAN refer to a connection relocation between different E-NB in the
same mobile network. In contrast, InterRAT refers to a connection transfer be-
tween different Access Technologies (e.g. LTE to CDMA, etc.). Measurements
are performed at cell and cluster level. All Hos in LTE are hard, i.e. the con-
nection between the EU and the RAN is temporarily broken during HOs. We
collected counters for the following Mobility KPIs: Intra-Frequency Handover
Out Success Rate, Inter-Frequency Handover Out Success Rate, Handover In
Success Rate, Inter-RAT Handover Out Success Rate (LTE to CDMA), Inter-
RAT Handover Out Success Rate (LTE to WCDMA), Inter-RAT Handover Out
Success Rate (LTE to GSM)
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3.2.4 Integrity KPI

Service integrity is defined from ITU-T [16] as the degree to which a service
is provided without excessive impairments, once obtained. Integrity in Mobile
Radio Networks refers to the level of acceptability of service quality provided
to the user. The service provided by E-UTRAN for this KPI is defined as the
delivery of IP packets. We collected counters for the following Integrity KPIs:
Cell Downlink Average Throughput, Cell Uplink Average Throughput

3.2.5 Availability KPI

Availability KPIs measure the percentage of time that the wireless service
is available, in LTE networks refer to the percentage of time in which eNB
can provide services between UE and Core Network. We collected counters for
Radio Network Unavailability Rate KPI.

3.2.6 Traffic KPI

Traffic KPIs provide a measure of traffic volumes and correlated factors such
as number of active user on LTE RAN. We collected counters for the following
Traffic KPIs: Downlink Traffic Volume, Uplink Traffic Volume, Average User
Number, Maximum User Number.
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3.3 User Satisfaction Dataset

The second dataset collects the responses of the operator’s mobile sub-
scribers to directed surveys which ask the users feedback regarding the quality
of their experience in the network. In particular, the considered surveys are
comprised of two sections:

• Recommendation: this section asks users to indicate the likelihood of
recommending the network operator to a friend or colleague on a scale
from 0 to 10 (similarly to Net Promoter Score (NPS) surveys).

• Service Specific: this section asks customers to rate on a scale from 0 to
10 their satisfaction or Quality of Experience (QoE) relative to specific
network services. This work considers three different services, namely
Network Coverage, Video Quality and Data Speed: each user is randomly
asked to provide feedback about one of such services.

Considering that the customers were required to answer at least to the previous
question (whereas the latter could be optionally answered), out of 10k answering
customers at the end of the surveying campaign only 17% answered the more
specific question for one of the considered services. Therefore we have 1.8k cus-
tomer responses for satisfaction regarding data speed and network coverage and
1.7k customer responses for satisfaction about video quality. Figure 3.3 plots
the distribution of users responses for both Recommendation and each Service
Specific item. As one can see, distributions are highly skewed towards high
grades, with the largest number of users answering with positive feedback. It is
reasonable ([7, 1]) to divide users satisfaction labels in 2 classes, with respect to
a predefined satisfaction threshold T : users whose grade is less or equal than T

are considered as Unsatisfied, while the opposite happens for those whose vote
is strictly greater than T . We will detail the choice of threshold T in Section
4.2. To conclude, we remark that in this work, we will perform the prediction
of the service-specific survey responses solely, regardless of users responses to
the recommendation section. This is because service-specific questions can bet-
ter capture the quality of customers experience, which might be different for
different type of services.
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Figure 3.3: Satisfaction grades distributions.

3.4 Final Dataset Building and Feature Engineering

This section shows the activities done to create the final features that will
be used to predict the QoE of mobile customers. We extracted all the necessary
counters from provider databases through SQL queries to take only visited cells
data, using a time granularity of one hour to have the most detailed information
possible about the network performances. Given the datasets described above,
as a first step, we joined the two datasets through a table join in SQL, these
have the entries presented in Tables 3.1 and 3.2.

Analyzing the visit times of all users per cell in Fig. 3.4 using the three
counters of the times spent, it is quite clear that on average all users spend
more than 50% of their total time in the most visited cell, which we are going
to call home cell.
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Figure 3.4: Average relative time spent in the 20 most visited cells for each
user.

Therefore we only used the home cell of each user to join the tables, keeping
all the measurements of the user’s visit days in order to have a more detailed
insight into customer-perceived network quality, and hereby creating 18 Fea-
tures.

Hence for sake of dataset consistency, i.e. to have only one entry per user
and to extract the most extensive information, we computed the Minimum,
Maximum and Average value on all cell visits per user and for each i− th KPI
fi as:

fmin
n =

d
min
i=d−n

fi (3.1)

fmax
n =

d
max
i=d−n

fi (3.2)

fmean
n =

∑d
i=d−n fi

m
(3.3)

where n is the assumed user memory, d is the response date and m is number of
samples in observation period (24 samples per day). Computing these triplets
for each KPI results in a total number of 13 x 3 = 39 features per user. Moreover,
for the same reason as above and since we suppose that a customer’s overall
satisfaction strongly depends on the fraction of time he spends in full, limited
and no service as well as network performances experienced, we also calculate
for each user the Cumulative Full Service Time Ratio, Fn as:

Fn =

∑d
i=d−n fi∑d

i=d−n fi + li + ni

(3.4)
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Similarly, we compute the Cumulative Limited Service Time Ratio (Ln and the
Cumulative No Service Time Ratio (Zn) by adjusting the numerator in (3.4).
Since being in a linear relation, the sum of the three value is equal to 1, and
then we consider only 2 of them in the same model. Adding these features,
along with full, limited and no service times, we obtain a total of 39 + 5 = 44
features.

Dataset Column Description

LTE Network
Measurement

Dataset

Data Date and Hour of measurements
CELL ID Unique Cell Identifier
RRC Setup SR RRC Connection Estalishment Success Rate
RRC Connection
Reestablishment SR

RRC Reconnection Estalishment Success Rate

Intra Frequency HO out SR Intra Frequency Handover out Success Rate
Inter Frequency HO out SR Inter Frequency Handover out Success Rate
HO In SR Handover In Success Rate
Inter RAT HO out SR
E2W(LTE to WCDMA)

Inter Radio Access Technology Handovers
Success Rate

Inter RAT HO out SR
E2G(LTE to GSM)
DownLink Volume

Downlink and Uplink Volumes
UpLink Volume
Max DownLink Throughput

Maximum Downlink and Uplink Throughput
Max UpLink Throughput
Average User Number Average number of connected users
Maximum User Number Maximum number of connected users
Cell Location Name Cell Location Name
Cell Longitude

Exact Cells Geographical position
Cell Latitude

Table 3.1: Columns and description of LTE Network measurement dataset
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Dataset Column Description

User
Satisfaction

Dataset

MSISDN
Mobile Station International Subscriber
Directory Number

Response Date
Date on which the user Responded to the
survey

Response
Recommendation

Reported Likelihood of Recommending
the network operator

Response QoE Network
Data Speed

Reported Quality of Experience
Regarding Network Data speed

Response QoE Network
Video Quality

Reported Quality of Experience
Regarding Video Quality provided

Response QoE Network
Coverage

Reported Quality of Experience
Regarding Network Coverage

Visit Date Date of customers visit on Cell ID
CELL ID Unique Cell Identifier
Full Service Time Time spent with Full Service on Visit Date
Limited Service Time Time spent with Limited Service on Visit Date
No Service Time Time spent with No Service on Visit Date

Table 3.2: Columns and description of User satisfaction dataset



Chapter 4

Data Analysis

This chapter outlines the datasets analysis tasks conducted in this work.
In particular, the engineered features are studied in this chapter through some
preliminary analyses aimed at understanding the informative power they will
provide to the QoE prediction. The reminder of the chapter is as follows:
Section 4.1 provides with a descriptive analysis of the considered features, while
Section 4.2 describes the process of satisfaction response binary discretization.

4.1 Data Transformation

In this work, we considered a supervised learning approach, i.e. the predic-
tion algorithms are trained to estimate the (known) desired output (i.e., users
satisfaction label) which corresponds to each training sample, exploiting the fea-
tures included in the model (i.e., access network KPIs and users cell visit time).
During the learning phase, the algorithms search for (and learn) patterns in the
training data that correlate with the desired output. If the learning complete
successfully, given the availability of new and never observed input samples,
the prediction algorithm can output the corresponding satisfaction class. This
mainly depends on the model that is adopted to perform prediction, i.e. to the
set of selected input features. Regardless of the meaning of the features, it is
crucial to check their statistical distributions, as the majority of ML methods
assume that input features are distributed like a Gaussian random variable.
Let us define σk as the skewness of the distribution of the k − th feature fk,
i.e., the direction and relative magnitude of the distribution’s deviation from
the Gaussian distribution. In particular, σk = 0 if fk is distributed as a Gaus-
sian random variable. However, considering that most of the selected features
were not distributed as a Gaussian (i.e. σk ̸= 1 for most of the features), we
implemented a log-like transformation in order to obtain the desired statistical
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characterization as it follows:

f tr
k =

− log(1− fk), if σk > 1

log(fk), if σk < −1
(4.1)

For the sake of clarity, we underline that f tr
k = fk if σk ∈ [−1, 1]. As an exam-

ple, we show in Figures 4.1 and 4.2 the distribution of Minimum RRC Setup
Success Rate (σ > 1) and Minimum Downlink Volume (σ < −1) respectively,
before (left) and after (right) the log-like transformation. As it can be seen,
in both the cases raw distributions are not Gaussian, as most users either ex-
perience very high RRC setup success rates or very low minimum downloaded
volumes. However, after the transformation, both the distributions look more
like Gaussian bells.

Figure 4.1: Minimum RRC Setup Success Rate distribution and transformed
distribution

Figure 4.2: Minimum Downlink Volume distribution and transformed distribu-
tion

4.2 Satisfaction Threshold

Many machine learning algorithms are intrinsically developed for binary
decision-making problems, and generally the majority perform better for bi-
nary prediction. For this reason, we choose to consider a binary problem where
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each user can either be satisfied or dissatisfied according to a satisfaction thresh-
old T , whose tuning is described in this Section. Considering that for a given
satisfaction item each user expresses a vote between 0 and 10, on the one hand
setting T to a value lower than 6 would consider as satisfied all those users
reporting a grade equal to 6, which is too far from the maximum grade (10).
On the other hand, assuming T = 9 we would include in the class of satisfied
users all those reporting whether a 9 or a 10 only, which is a too strict ap-
proach. Therefore, for each of the three specific service items, we let T take
values in the range [6, 7, 8], and we analyzed the information that a prediction
algorithm can extract from the considered features conditioned to the couple
of considered satisfaction classes. Figures 4.3, 4.4, 4.5, 4.6, 4.7 and 4.8 show
the class-conditional Cumulative Distribution Functions (CDFs) for each value
of the threshold T and for all service items of two different features taken as
example, namely minimum Inter frequency Handover out Success Rate and No
service time ratio. In general, for a given feature, the wider the separation
between the blue and red curves the more the information associated to that
feature is conditioned to the observations class label. In other words, the obser-
vation of a feature’s class-conditional CDFs is crucial for a preliminary features
selection process, as when the gap between the conditioned curves is little then
we expect that a classifier will extract little or no useful information from such
feature to perform prediction.

As an example, referring to Figures 4.3 and 4.4, we observe that users
satisfied about the network coverage (blue curves) have experienced (in their
home cell) a lower minimum handover out rate of success and shorter No Service
periods than dissatisfied users about the same service item.

Figures 4.5 and 4.6 shows that users satisfied about the video streaming
quality (blue curves) have experienced (in their home cell) a lower minimum
handover out rate of success and shorter No Service periods than dissatisfied
users about the same service item, disregarding the satisfaction threshold. As
a matter of fact, in Fig. 4.5 considering T = 6 it can be seen that almost
40% of satisfied users had a minimum handover out success rate greater than
98% (corresponding to SRtr = 2, while this is true for only 15% of unsatisfied
users. Similarly, in Fig. 4.6 for T = 6 we can see that about only 2% of
satisfied users had a No time service ratio greater than 0.7%(corresponding
to NSTRtr = 5, while it is true for 5% of unsatisfied ones. Although such
differences are minimal, when used in combination, they are very informative
for the classifiers, enhancing their prediction performance.

As can be seen by observing the class-conditional CDFs, when the threshold
T changes, different features have a wider separation. This is why we decided
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to analyze the QoE prediction cases for T = 6 and T = 8, also observing that
for T = 7 there are no significant variations from the case T = 6. Moreover,
for each service item, there is a T which on average maximizes the amount of
information that can be extracted from the features.

Usually, the T threshold value is fixed a priori, but in this work, we wanted to
take into account the two values that respectively maximize the QoE prediction
performance of the different service items.

Figure 4.3: Network Coverage relative minimum Inter frequency Handover out
Success Rate Class-conditional CDF at threshold T = (a)6,(b)7,(c)8
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Figure 4.4: Network Coverage relative No Service Time Ratio Class-conditional
CDF at threshold T = (a)6,(b)7,(c)8

Figure 4.5: Video Quality relative minimum Inter frequency Handover out Suc-
cess Rate Class-conditional CDF at threshold T = (a)6,(b)7,(c)8



Figure 4.6: Video Quality relative No Service Time Ratio Class-conditional
CDF at threshold T = (a)6,(b)7,(c)8

Figure 4.7: Data Speed relative minimum Inter frequency Handover out Success
Rate Class-conditional CDF at threshold T = (a)6,(b)7,(c)8



Figure 4.8: Data Speed relative No Service Time Ratio Class-conditional CDF
at threshold T = (a)6,(b)7,(c)8





Chapter 5

Prediction and results

In this chapter, we describe the techniques used to perform prediction of
cellular users satisfaction regarding the considered service items and we show
the obtained results. First, in section 5.1 we explain in detail the construction
of the prediction pipeline adopted in this work. Secondly, in section 5.1.1 the
techniques used to perform features selection are shown. Then, section 5.2 ex-
plains the driving factors considered to choose the most suitable performance
metric for the different use cases while, in Section 5.3 we show the prediction
results and compare the performance of several machine learning models. Fi-
nally, in the Section 5.4 we made a comparison between this thesis work and a
previous similar research, showing our contribution.

5.1 Prediction Pipeline

In this section, the methodology and techniques used for building a pre-
dictive model of customer satisfaction related to a specific service is presented.
As discussed in Chapter 4, it is possible to discriminate the subsets of features
that are most informative about users satisfaction concerning the different spe-
cific network services. The selected features are used in this work as input to
feed the following supervised machine learning models: i)Regularized Logistic
Regressor (RLR), ii) Gaussian Naive Bayes (GNB), iii) Linear Discriminant
Analysis(LDA), iv) Support Vector Classifier(SVC), v) Decision Trees (DT),
vi) Random Forest (RF), vii) eXtreme Gradient Boosting (XGB). All classi-
fiers except GNB and LDA need different hyper-parameters whose tuning is
not trivial and need optimization. For instance, Regularized Linear Regres-
sion and Support Vector Classifier require the inverse regularization factor C
(Equation 5.1) to reduce the generalization error at fixed training errors.

C =
1

α
(5.1)
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In other words, the regularization is used to let a classifier better generalize on
unseen data, preventing the algorithm from overfitting the training samples. In
this thesis, we choose a Lasso (also called L2) regularization that also works
as a features selector, penalizing features that increase the generalization error.
Similarly, tree-based models (DT, RF) require to setup hyper-parameters such
as trees’ maximum depth and splitting criteria. In order to tune each classifier’s
hyper-parameters, we perform a Grid Search over predefined hyper-parameters
values using a k-Fold cross-validation strategy with k = 10 as shown in Figure
5.1. Each filtered dataset is first divided into 10 folds with splitting ratios 90%
(Training Set) and 10% (Test Set). Secondly, focusing on the Training set and
using a further 10-Fold cross-validation, we split it into a sub-training set (80%
of the overall dataset) and a Validation Set (10% of the overall dataset), to
tune algorithms’ hyper-parameters. In particular, a grid search is performed
within the inner cross-validation loop to select for each classifier the best hyper-
parameters (i.e., those maximizing the classifier performances on validation
set). Table 5.1 shows the hyper-parameters values that are finally used to train
the prediction models in the outer cross-validation loop. Then, each classifier’s
prediction performance are evaluated on the corresponding test set for each fold
and finally results are averaged among all the folds. In the following Section
we detail the algorithm that is used within the inner cross-validation loop to
perform the features selection process.

5.1.1 Feature Selection

Feature selection is a core process of machine learning and aims at selecting
those features that best contribute to the prediction process. The main rea-
son for performing features selection is to exclude irrelevant features from the
prediction pipeline, as they would decrease the performance of the prediction
model. A further reason for excluding irrelevant features from the model is
to to avoid the curse of dimensionality, to shorten the computation times and
improve the model generalization capability. In this work is used a backward,
wrapper-type feature elimination technique, called Recursive Feature Elimina-
tion (RFE). Wrapper-type selection algorithms use a predictive model to select
feature subsets, in contrast to filter-based feature selections that give a score to
each feature and select those features with the highest (or lowest) score. In par-
ticular, RFE works by searching for the subset of the features set that maximizes
the performance on the validation set, removing features until the best subset
is recognized. First, the considered classifier is trained on the sub-training set.
Secondly, the features are ranked by importance and less important features are
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5.1 Prediction Pipeline

Model Description Tuned Value
Regularized

Logistic Regression
Regularization factor (C = {0.1:10:1e3}) 1

Support Vector
Classificator

Regularization factor (C = {0.1:10:1e3}) 1

Decision Tree
Splitting criterion ({’gini’,’entropy’}) gini
Splitting strategy ({’best’,’random’}) best

Random Forest Number of estimators ({100:200:1000}) 100

eXtreme Gradient
Boosting

Maximum depth of tree ({3,4,5}) 4
Minimum loss reduction

required to make a further
partition ({0.5,1,1.5,2,5})

0.5

Minimum sum of instance
weight in a child ({1,5,10})

1

Subsample ratio of the
training instances. ({0.6,0.8,1})

0.8

Subsample ratio of
columns when constructing

each tree ({0.6,0.8,1})
0.8

Table 5.1: Video Quality relative tuned hyper parameters

discarded. Finally, the model is re-fitted on the sub-training set. This process
is repeated until the optimal number of features is reached. The number of
desired features is a hyper-parameter of the RFE algorithm, whose setup is not
trivial. Therefore, through an exhaustive search, a specific subset of features
has been selected for each service item and each relative threshold, as shown in
Table 5.2. In the following Section, we introduce the metrics used to evaluate
the performance of the considered classifiers.
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Figure 5.1: Data flow and operations in the pipeline. The raw dataset is divided
into train set and test set, the train set is used to identify the optimal model
(hyper parameter tuning and RFE) and to train it, finally the test set is used
to evaluate the prediction performance.
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5.1 Prediction Pipeline

Service Item Video Speed Coverage
Threshold 6 8 6 8 6 8
Feature
Average DownLink Volume Yes Yes Yes Yes Yes No
Average HO In SR Yes Yes Yes No Yes Yes
Average Inter Frequency HO out SR No Yes Yes Yes Yes Yes
Average Inter RAT HO out SR E2G(LTE to GSM) Yes Yes No No No Yes
Average Intra Frequency HO out SR No Yes Yes Yes Yes Yes
Average RRC Connection Reestablishment SR No Yes No No No Yes
Average RRC Setup SR No No Yes No Yes Yes
Average UpLink Volume Yes Yes Yes Yes Yes Yes
Average of Max DownLink Throughput Yes Yes Yes Yes Yes Yes
Average of Max UpLink Throughput Yes Yes Yes Yes Yes Yes
Average of Maximum User Number Yes Yes Yes Yes Yes Yes
Full Service Time No Yes No No Yes Yes
Limited Service Time Yes Yes Yes Yes Yes Yes
Limited Service Time Ratio Yes Yes Yes Yes Yes Yes
Maximum DownLink Volume Yes Yes Yes Yes Yes Yes
Maximum HO In SR Yes Yes Yes No Yes Yes
Maximum Inter Frequency HO out SR No Yes Yes Yes No Yes
Maximum Inter RAT HO out SR E2G(LTE to GSM) Yes Yes Yes No No No
Maximum Intra Frequency HO out SR No Yes No Yes No Yes
Maximum RRC Connection Reestablishment SR No Yes No Yes No Yes
Maximum RRC Setup SR No Yes Yes Yes No Yes
Maximum UpLink Volume No Yes Yes Yes Yes Yes
Maximum of Max DownLink Throughput Yes Yes Yes Yes Yes Yes
Maximum of Max UpLink Throughput Yes Yes Yes Yes Yes Yes
Maximum of Maximum User Number No Yes Yes Yes Yes Yes
Minimum DownLink Volume No Yes Yes Yes Yes No
Minimum HO In SR No Yes Yes No Yes Yes
Minimum Inter Frequency HO out SR No Yes Yes Yes No Yes
Minimum Inter RAT HO out SR E2G(LTE to GSM) Yes Yes No No No Yes
Minimum Intra Frequency HO out SR No Yes Yes Yes Yes Yes
Minimum RRC Connection Reestablishment SR No Yes No Yes No Yes
Minimum RRC Setup SR No Yes No No Yes No
Minimum UpLink Volume Yes Yes Yes Yes Yes Yes
Minimum of Max DownLink Throughput No Yes Yes Yes Yes Yes
Minimum of Max UpLink Throughput No Yes Yes Yes Yes Yes
Minimum of Maximum User Number Yes Yes Yes Yes Yes Yes
No Service Time Yes Yes Yes Yes Yes Yes
No Service Time Ratio Yes Yes Yes Yes Yes Yes

Table 5.2: Features selected for each Service Item and Threshold
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5.2 Model evaluation

5.2.1 Evaluation metrics

Evaluating the prediction performance of a supervised classification method
with respect to unseen data is crucial in machine learning. A nice and compre-
hensive way to show the performance of a machine learning model is through
the Confusion Matrix. As shown in Figure 5.2, considering a binary classifier,
the Confusion Matrix is characterized by 4 entries. On the one hand, the True
Positives TP and True Negatives TN represent the correct classified examples,
in detail they indicate respectively how many dissatisfied customers have been
correctly detected and how many are recognized as satisfied. On the other hand,
the False Positives FP and False Negatives FN report the cases of false classifi-
cation: FP comprises cases in which a satisfied customer has been detected as
unsatisfied, also called false alarms, while FN indicates the number of opposite
cases, i.e. those in which an unsatisfied user has been identified as satisfied.
From the knowledge of the Confusion Matrix, it is possible to compute three
important performance metrics, namely i) Area under the ROC Curve (AUC),
ii) F1 Score and iii) Accuracy, which are detailed in the following.

Figure 5.2: Confusion Matrix

AUC

AUC stands for Area Under the Curve, also referred to as AUROC, or Area
Under Receiver Operating Characteristic. The Receiver Operating Characteris-
tic curve (or ROC curve) studies the relationships between correctly recognized
instances and false alarms, analyzing the True Positive Rate (TPR, that is the
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fraction of true positives) and the False Positive Rate (FPR, that is the fraction
of false positives). TPR and FPR are calculated from the confusion matrix in
Fig. 5.2:

TPR =
TP

FN + TP
(5.2)

FPR =
FP

TN + FP
(5.3)

The ROC curve is generated by plotting the distribution function relative to
the probability of recognition (TPR) with respect to the false alarm probability
distribution function (FPR): it is a curve that allows to analyze the binary
result provided by models, in order to choose the best one.In relation to the
ROC curve, the AUC corresponds to the area underneath that curve, and we
use it to summarize. Note that, for a random guessing classifier, the AUC is
0.5.

F1 Score

The F1 score, also called the F score or F measure, is a measure of a clas-
sification accuracy. The F1 score is defined as the weighted harmonic mean of
the classification precision and recall.
This score is calculated according to:

F1 = 2 ∗ Precision ∗Recall

Precision+Recall
(5.4)

Where Precision and Recall are computed from the confusion matrix as:

Precision =
TP

TP + FP
(5.5)

Recall =
TP

TP + FN
(5.6)

Combining these 3 equations it can be seen that the F1 score gives more weight
to the true positives, making it suitable for our study (enhancing unsatisfaction
accuracy) :

F1 = 2 ∗ Precision ∗Recall

Precision+Recall
=

2 ∗ TP
2 ∗ TP + FP + FN

(5.7)

Accuracy

The Accuracy is the proportion of correct prediction among the total number
of instances examined and measures how well a classifier correctly identifies an
unknown sample.

Accuracy =
TP + TN

TP + TN + FP + FN
(5.8)
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5.2.2 Driving factors in the choice of metrics

In section 5.1 we illustrated the method used to optimize the choice of the
models hyper-parameters. In particular, for each classifier, we choose through
a grid search cross-validated process the hyper-parameters values that maxi-
mize the prediction performance on the validation set according to a selected
prediction metric. The choice of the reference prediction metric to use in this
process is not trivial and depends on the numerosity of the prediction classes.
On the one hand, we noticed that when the binarization threshold T equals
6, the satisfaction classes are strongly unbalanced, such that 25% of users are
labeled as Unsatisfied and 75% as Satisfied. On the other hand, satisfaction
classes turn to be completely balanced (i.e. 50%-50%) when T is equal to 8.
Considering that one of the major problems in machine learning relates to un-
balanced prediction classes, we need to rely on evaluation metrics that take this
issue into account. For this reason, we chose Accuracy as the reference perfor-
mance metric for balanced datasets whereas we chose F1 Score as the reference
metric when prediction classes are unbalanced. Note that AUC will be used for
both cases as a further way to evaluate the classifier’s prediction performance.

5.3 Model comparison

In this Section we evaluate the prediction performance of the introduced
classifiers. Considering that network measurements are available for the period
between November 2019 and April 2020 while ground truth satisfaction data
refer to the period between August and November 2019, the intersection of the
two data sources described in Chapter 3 outputs a dataset comprised of 253
observations. Each observation corresponds to a customer who has voted on one
of the three considered service items, which are video quality (79 users), network
data speed (87 users) and network coverage (87 users). Such three datasets
are used to train the different classifiers, whose performance with respect to
each service item is finally assessed according to the metrics defined in previous
Section. Finally, in order to understand the effective capability of each classifier
to perform correct prediction, we will compare the prediction performance with
the (baseline) performance of a dumb classifier forced to label each observation
as belonging to the majority class (i.e., to the class of the satisfied users). Table
5.3 summarises for T equal to 6 and 8 the baseline performance with respect
to the considered evaluation metrics.
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Threshold AUC F1 Score Accuracy
6 0.50 0.40 0.75
8 0.50 0.66 0.50

Table 5.3: Baseline performance per Threshold T

Threshold Model F1 ACC AUC

6

Decision Tree 0.272 0.571 0.497
Gaussian NB 0.231 0.536 0.420
LDA 0.74 0.873 0.797
Logistic Regression 0.437 0.784 0.760
Random Forest 0.197 0.721 0.667
XGBoost 0.263 0.723 0.690

8

Decision Tree 0.664 0.657 0.650
Gaussian NB 0.240 0.507 0.518
LDA 0.532 0.586 0.552
Logistic Regression 0.474 0.520 0.581
Random Forest 0.525 0.520 0.597
XGBoost 0.474 0.495 0.506

Table 5.4: Performance obtained for video streaming QoE prediction

Satisfaction with network video quality

Predicting satisfaction with the video streaming service is paramount as it
constitutes the majority of mobile traffic, particularly in recent years. According
to the feature selection process, the prediction model for this service item is
composed by 19 features when T = 6 and 38 features when T = 8, as shown
in first two columns of Table 5.2. Figures 5.3 and 5.4 show the average ROC
curves of the considered classifiers while Table 5.4 summarises the classifier’s
average performance of each model for the two binarization thresholds. As
reported in the Table, the best performance for T equal to 6 and 8 is achieved
by LDA and DT, with AUC values of 0.797 and 0.65 respectively. We also
report in Table 5.5 the performance improvement yielded by LDA and DT with
respect to the baseline performance for the three evaluation metrics. Recalling
that when T = 6 the reference metric is the F1 score whereas the Accuracy is
considered as reference metric for T = 8, we observe that LDA and DT yields
34% better F1 Score and 16% better Accuracy than the baseline respectively.

39



Figure 5.3: ROC curve for video streaming QoE prediction, T = 6

Model Threshold F1 ACC AUC
LDA 6 +34% +12.3% +29.7%
Decision Tree 8 +0.4% +15.7% +15%

Table 5.5: Improvements from baseline obtained for video quality QoE predic-
tion



Figure 5.4: ROC curve for video streaming QoE prediction, T = 8
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Figure 5.5: ROC curve for data speed QoE prediction, T = 6

Satisfaction with network data speed

Besides network video quality, we also focus on predicting user satisfaction
related to QoE with network data speed. In this case, the RFE algorithm
selected 30 features when T = 6 and 28 features when T = 8, as shown in third
and fourth column of Table 5.2. Similarly to the case of video quality, we show
in Figures 5.5 and 5.6 the average ROC curves of the considered classifiers for
the two T while Table 5.6 summarises the average prediction performance.
For data speed service item, while classifiers perform at par and quite poorly
for T = 6, we observe in 5.6 that RLR is the best performing classifier when T

= 8, reporting an AUC value of 0.709. Moreover, as shown in Table 5.7, RLR
improves the accuracy by 18% with respect to the baseline.
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Figure 5.6: ROC curve for data speed QoE prediction, T = 8

Threshold Model F1 ACC AUC

6

Decision Tree 0.235 0.679 0.520
LDA 0.140 0.664 0.430
Logistic Regression 0.090 0.712 0.498
XGBoost 0.133 0.746 0.498

8

Decision Tree 0.467 0.474 0.472
LDA 0.594 0.621 0.694
Logistic Regression 0.691 0.679 0.709
XGBoost 0.616 0.562 0.614

Table 5.6: Performance obtained for data speed QoE prediction

Model Threshold F1 ACC AUC
Logistic Regression 8 +0.31% +17.9% +20.9%

Table 5.7: Improvements from baseline obtained for data speed QoE prediction
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Threshold Model F1 ACC AUC

6
Decision Tree 0.273 0.710 0.546
SVC 0.100 0.475 0.461

8
Decision Tree 0.522 0.514 0.512
SVC 0.298 0.432 0.584

Table 5.8: Performance obtained for coverage QoE prediction

Model Threshold F1 ACC AUC
Decision Tree 8 No impr. +1.4% +0.12%

Table 5.9: Improvements from baseline obtained for coverage QoE prediction

Satisfaction with network coverage

Finally, we focus on predicting user satisfaction related to QoE with network
coverage. For this use case, the feature selection algorithm selected 28 features
when T = 6 and 3 features 4 for T = 8, as reported in the last two columns
of Table 5.2. Similarly to the previous use cases, we plot in Figures 5.7 and
5.8 the average ROC curves of the considered classifiers while Table 5.8 shows
the corresponding average prediction performance of each model for the two
binarization thresholds. As one can observe from both the ROC curves, all
the classifiers perform likely the baseline for both the binarization thresholds,
yielding average AUC close to 0.5. While for T=6 no improvement is reported
in terms of F1 score, we observe that DT yields 1.4% better Accuracy than the
baseline when T=8, as reported in 5.9.
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Figure 5.7: ROC curve for coverage QoE prediction, T = 6



Figure 5.8: ROC curve for coverage QoE prediction, T = 8



5.4 Network-side vs. user-side based prediction models

This Thesis Previous Research

Response Model AUC
F1 Score

Benchmark
F1 Score

Improvement
Model AUC

F1 Score
Benchmark

F1 Score
Improvement

Video Quality LDA 0.79 0.40 +34% RF 0.58 0.37 +1.5%
Network Coverage DT 0.51 0.66 No impr. RLR 0.60 0.35 +3%

Table 5.10: Model comparisons with respect to [1]

5.4 Network-side vs. user-side based prediction mod-
els

In order to illustrate and explain the improvements made by our study, it
is worth to make a comparison with the counterpart of the research, i.e. the
user-side based prediction models proposed in [1]. Similarly, the authors in [1]
leveraged both user-side activity measurements and ground-truth satisfaction
feedbacks to train different Machine Learning models to predict users satisfac-
tion. Differently from this thesis work, the authors i) focused on long-term
satisfaction, i.e., the satisfaction relative to a period of time spanning several
weeks and ii) did not consider network performance measured at the access of
the cellular network (i.e. at base station side). Table 5.10 compares the result
reached in this thesis work with those reported in [1]. On the one hand, con-
sidering video quality, our model outperforms that presented in [1], improving
the AUC by 21% and the F1 Score by 32.5%. Interestingly, while in [1] best
results for video quality use case were achieved for T=6 and for RF classifier, in
this work we observe that best performance are achieved by LDA classifier. On
the other hand, regarding network coverage service item, our model does not
improve the prediction performance. This probably means that access network
data (e.g., success rates of handovers, number of connected users, volume of
network traffic, etc. referred to the home cell) turn to be more informative
to predict users satisfaction on video quality, whereas users satisfaction about
network coverage can be better inferred by user-side measurements (e.g., users
relative Full Service time, Signal to Noise Ratio (SNR), geographic location of
the users, etc.). Moreover, authors in [1] point out that predicting long-term
satisfaction is much more challenging than estimating short-term QoE. It sug-
gests that users’ memory is conditioned by adaptivity to QoS, i.e. users in
a long period adapt to network QoS, thus affecting the correct prediction of
their satisfaction. To conclude, as observed in [1] and shown in [8], including
commercial data from the Business Supporting System (BSS) to the prediction
model leads to an improvement of classification performance.
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Chapter 6

Concluding remarks

In this thesis, a methodology to find significant predictors of user satisfac-
tion in 4G cellular network is proposed. This methodology aims at identifying
the level of satisfaction of mobile customers, thus detecting potential churners,
using information related to the performance of the mobile network. Since we
forecast the customers QoE using only the measurements related to their home
cells, our methodology can also be employed to find under-performing cells, al-
lowing the operator to perform upgrades or maintenance on those cells. These
measurements were collected by the operator’s OSS leveraging previous works
on customer QoE relation with 4G network performances. In addition to the
described objective measures of the network performance (KPI), the prediction
process also leverages subjective information regarding user satisfaction (Sur-
vey responses), provided voluntarily by users that are requested by the network
operator as concerns the quality of their experience in the network through
targeted surveys.

6.1 Limitations and issues

We note the following limitations in this work. First of all, we had available
a small set of samples to train the classifiers due to practical and privacy-related
issues which limited the MNO in sharing BSS data. Therefore, we need further
experiments to test the effective generalization capabilities of the prediction
models, considering larger customers populations. Moreover, it is widely ac-
cepted in literature [8] that bigger data volumes can improve the performance
of supervised machine learning models. Secondly, due to same reasons, we could
neither investigate long-term satisfaction prediction nor analyse the relationship
between prediction performance and the length of the users activity observation
window (which in this work is fixed to 6 days). Due to such limited observa-
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tion window, it is not clear whether the prediction model recognize long-term
temporal phenomena such as users adaptation effects [13]. Additionally, the
dataset does not include commercial-related features, which typically improve
the classification performance [8].

6.2 Analysis of Results and Future Works

Despite the limitations that characterize this work, our results led to the
following conclusions:

• Our methodology of feature engineering of LTE network measurements,
described in Chapter 3, is effective in creating an informative set of fea-
tures that enhances the detection of the End Users Quality of Experience
although they describe the only network side.

• Different measures related to the specific home cell chosen have a high
informative value in predicting user satisfaction. As a matter of fact,
the measures concerning Inter-RAT handover out (LTE to GSM) and
Handover IN are selected for Video Streaming, indicating that when the
handover procedure fails the user experiences a block in the streaming and
consequent buffering, resulting in a bad quality of service and therefore
bad QoE. Similarly, the selection of features about the maximum number
of users and the traffic volume highlights that a congested or a busy cell
with many connected users is related to the poor quality of the users’
experience, causing buffering due to saturation of network resources.

• It is possible to observe how the Intra and Inter Frequency handover out,
the successful Setup and Re-connection Rate to the RRC and those related
to the Downlink Volume directly impact the Quality of the experience
related to the network speed.

• The "user-side" measures used are very effective in improving user satis-
faction prediction performance. In fact, for all models the feature selec-
tion technique select the Limited and No Service Time Ratio, suggesting
that measures "closer" to the user side provide useful information for the
satisfaction prediction process, as already highlighted in other researches
([1]).

• Machine Learning algorithms are efficient in predicting user satisfaction
regarding the various service items when features marginal distributions
and prediction performances are studied by varying their binarization
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threshold of satisfaction labels. In fact, for different service items, we
found better performance for different binarization thresholds .

Future research activities will focus on the use of larger dataset with longer ob-
servation periods (long-term prediction) to examine whether the users’ memory
has a significant impact on the evaluation using network-side data. Moreover,
future works will investigate the use of users’ n-th (n > 1) most visited cells,
such to define a model that covers a larger part of the total users connection
time. Finally, as suggested in [1], it is worth to observe that the prediction
of users satisfaction can be used to recognize network areas or elements that
mostly caused users dissatisfaction. Considering that our model predicts users
satisfaction analysing their activity in the home cells, i.e. in each user’s most vis-
ited cell, it can be used to identify under-performing or malfunctioning network
cells. The impact of individual user’s prediction errors on the under-performing
network elements detection task when predicted feedbacks are grouped on single
network elements has not yet been investigated.
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