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Sommario

Questa tesi si occupa della creazione di un algoritmo per rilevare se un dispo-

sitivo presenta anomalie o guasti. L’algoritmo riceve in ingresso la misura

di corrente assorbita dal dispositivo e l’uscita è lo stato del dispositivo stes-

so. Esso è ottenuto tramite tecniche di machine learning, in particolare si

utilizzano support vector machines e reti neurali feedforward. L’algoritmo

si ottiene dopo una fase di training in cui vengono elaborati i dati raccolti

sia da dispositivi guasti che integri. Le features sono estratte dalle misure

di corrente, sia nel dominio del tempo che in quello della frequenza, e sono

proposte anche features che riguardano la correlazione tra misure di corrente

e tensione.

Il procedimento descritto è applicato a due casi di studio. Il primo riguarda

due diversi modelli di motoriduttori in corrente continua a magneti perma-

nenti e consiste nell’identificazione dei motoriduttori rumorosi. I risultati,

ottenuti sia attraverso support vector machines che reti neurali, mostrano

che l’algoritmo è in grado di identificare i motoriduttori particolarmente ru-

morosi, utilizzando solo features nel dominio del tempo.

Il secondo caso di studio riguarda due lavastoviglie. L’obiettivo è quello di

identificare i componenti attivi, in particolare se le pale sono in movimento

e, nel caso, quale sta ruotando. L’algoritmo proposto a tal fine è ottenuto

applicando multi-class support vector machines tramite error-correcting out-

put codes. Per una lavastoviglie l’obiettivo è raggiunto, mentre per l’altra

l’algoritmo non è in grado di identificare quale pala si stia muovendo, ma

può rilevare solo se ve n’è una attiva.

I





Abstract

This thesis deals with the creation of an algorithm to detect anomalies or

faults in a device. The algorithm input is current measurement and the out-

put is the status of the device. The algorithm is obtained through machine

learning techniques, in particular, support vector machines and feedforward

neural networks are applied. The algorithm is obtained after a training

phase in which data, collected from both faulty and healthy devices, are

processed. Features are extracted from current measurement both in time

and frequency domain. Also features that deal with the correlation between

current and voltage measurements are proposed.

The discussed procedure is applied to two case studies. The first one con-

sists in the identification of noisy DC permanent-magnets gearmotors of two

different models. Results, obtained both through support vector machines

and neural networks, show that the algorithm is able to detect particularly

noisy gearmotors, by using only time domain features.

The second case study is about two dishwashers. The objective is to iden-

tify active components, in particular, if spry arms are moving and, in case,

which one. The proposed algorithm for this task is obtained applying multi-

class support vector machines through error-correcting output codes. The

objective is achieved for one dishwasher while, for the other, the algorithm

is not able to identify which spry arm is moving but can only detect if one

of them is active.
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Chapter 1

Introduction

1.1 Motivations and goals

The continuous increase in automation in many fields, like manufacturing

processes and automotive, involves an increase in electrical devices used as

actuators. Due to this trend, not only more sophisticated control systems

have been developed, but also diagnosis and monitoring techniques. Faults

can occur in any part of a production process or in any component of a more

complex device. Their investigation in early stages is particularly useful in

order to intervene before the occurrence of more severe faults, which would

lead to production delay, economic losses, and sometimes safety issues. The

objective of constant monitoring is to allow the stakeholders to carry out

well-timed interventions, focused on the diagnosed faults.

To diagnose a fault, an algorithm is needed that receives a measured quantity

as input, and outputs the status of the considered device. Machine learning

techniques, applied directly to the measured signal, are particularly suitable

for this task, when physical considerations do not suffice. Machine learning

techniques use data samples and past experience to define an algorithm and

optimize its parameters in order to maximise fault diagnosis. The advantage

is that a mathematical model of the considered device is not needed. On the

contrary, a greater amount of data have to be collected for the optimization

task. For instance, current measurements of many motors, both healthy

and faulty, have to be processed in order to train a reliable classifier whose
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output is the motor status. Afterwards, this classifier is used to predict

motor conditions from new current measurements.

The objective of this work is to provide a complete process that allows

one to define an algorithm for diagnosis purpose through machine learning

techniques. In particular, algorithm input is current measurement while its

output is the status of the considered device. This process has been tested on

two case studies: identification of noisy DC permanent-magnets gearmotors,

and identification of dishwashers active components, which can be the first

step for the diagnosis of faulty components.

1.2 State of the art

1.2.1 Gearmotors

This paragraph is focused on gearmotors and their main components: gear-

box and motor. In particular, fault types and quantities used to detect them

are presented. At the end, algorithms used to detect faults both in motors

and in gearboxes are discussed.

Many studies have been conducted on gearboxes to detect mechanical faults.

With reference to figure 1.1, the most common faults are [2]:

- cracked and/or worn gear tooth;

- eccentric gear;

- pitting bearing;

- misalignments between gears, rotor and shaft, and between shafts in

couplings;

- unbalance element.

Among these, bearing faults are particularly studied since their distribution

varies from 40% to 90% from large to small machines [3].

For fault diagnosis, vibration analysis has been studied and it has become

a well-established tool for mechanical fault diagnosis, which also allows one

to identify the type of fault and its severity [2].

On the other hand, vibration analysis has some drawbacks [4, 5]:
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Figure 1.1: Gearmotor model: 1. Motor, 2. Rotor shaft, 3. Coupling, 4. Gear, 5.

Gear, 6. Bearings, 7. Mechanical loading system, 8. Driven shaft, 9. Cable, 10.

Power supply [1]

- sensitivity to sensor position and external noise;

- technical difficulties of access to the machine, in some cases;

- high cost of accurate sensors.

Therefore, Motor Current Signature Analysis (MCSA) has been introduced

to detect gearbox faults by extracting information from motor current mea-

surements. Current is acquired through non-invasive sensors which are often

already present for safety reasons or control purpose [3].

Many researchers have focused on MCSA and, in particular, on the case

of gearbox connected to induction motor, since they are widely used in

industries. This type of diagnosis is usually performed by measuring the

stator current at constant speed and load [6], but in the last years, also

non-stationary conditions have been studied. This is particularly useful for

online monitoring of electrical machines operating at transient speed and

load, but it is a difficult task since faults themselves cause load and speed

fluctuations. In [7], fault detection through MCSA under transient speed
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and no load condition is achieved, whereas in [8], MCSA applied to a scraper

conveyor gear under time-varying load and low speed condition has given

good results. Finally, in [9], MCSA and vibration analysis have been com-

bined while studying transient load condition.

For what concerns MCSA to detect faults in gearboxes driven by other types

of motors, fewer experiments have been carried out. An example is present

in [10], in which a hidden Markov model is used in order to predict gear

faults in an automotive starter DC motor.

MCSA is widely applied also in electrical machines fault detection where the

most common faults are [5, 11–13]:

- static rotor eccentricity, which occurs when the centre of rotation does

not coincide with the centre of geometry;

- dynamic rotor eccentricity (also known as bent shaft), which happens

when the centre of rotation does not coincide with the centre of mass;

- opening, shortening or abnormal connection of stator windings;

- opening, shortening or abnormal connection of rotor windings;

- broken rotor bar or cracked rotor end-rings in induction motors with

squirrel-cage rotor;

- short circuit of commutator bars or their disconnection from coils in

brushed DC motors;

- wearing of brushes or insufficient brushes pressure in brushed DC mo-

tors;

- demagnetization of permanent magnets, where present;

- misalignments between rotor and shaft;

- bearing fault.

These last two faults are common to studies on gearboxes and on motors.

Also in this case, induction motors are the most studied: for instance, in [14],

broken rotor bar, rotor end-rings, and static eccentricity faults are consid-

ered, while in [15], stator inter-turn short circuit, cracked rotor bar, and
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bearings faults are taken into account. Whereas, a shunt DC motor with

rotor eccentricity fault has been considered in [16] and a DC motor is stud-

ied in [17] to diagnose bearing faults, misalignment between rotor and shaft,

and rotor inter-turn short circuit. In [13], a review of different faults and

diagnosis methods is provided for permanent magnet synchronous motors.

Brushless DC motors with eccentricity faults and permanent-magnet brush-

less DC motors with stator inter-turn short circuit are considered in [12]

and [18], respectively. Finally, permanent-magnet DC motors with faults in

rotor windings, commutator bars, and brushes are diagnosed in [5].

In addition to current, other measured quantities have been proposed for

electrical machines diagnosis purpose: acoustic signal [19], temperature [20],

and vibrations [21, 22], which are particularly studied. Nevertheless, the

analysis of these quantities has the same drawbacks of the ones seen for

vibration analysis of gearboxes.

Most of the algorithms used to detect faults both in motors and in gearboxes

are based only on signal analysis and do not need to estimate the dynamic

model of the motor. Model-based techniques exhibit higher performance,

especially in case of continuously varying load and speed, but have higher

complexity and usually need also speed measurements in addition to current

and voltage ones [5, 23].

One of the first step of any signal-based technique consists in extracting

features, which are values derived from measured data that will become the

input of the machine learning algorithm. Features can be computed in time

domain, frequency domain, or can be obtained through convolutional neural

networks [6, 17]. For what concerns learning algorithms, some of the ones

used are:

- statistical tests [22];

- Bayes minimum error classifier [16,19];

- k-nearest neighbour classifier [19];

- k-means clustering [24];

- Support Vector Machines (SVMs) [17,25];
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- decision tree [25];

- random forest [25];

- AdaBoost [25];

- Neural Networks (NNs) [15,17,26].

Among these, Bayes minimum error classifier, SVMs, and NNs are the most

used. Regarding NNs, different types have been applied: simple feedforward

NNs [15], probabilistic NNs [26], and recurrent NNs [17].

Gearmotors noise prediction is much less studied and model-based tech-

niques are adopted. A simulation procedure is presented to predict acoustic

noise in a permanent-magnet synchronous motor in [27], and in an axial

flux motor in [28]. In [29], noise is predicted through field reconstruction

method in a permanent-magnet synchronous motor. Finally, in [30], two

different approaches are compared but in both cases model parameters of

the considered induction motor have to be computed.

1.2.2 Dishwashers

No studies focused on dishwashers current analysis have been found in litera-

ture. Few researches, instead, uses power measurements in order to evaluate

a specific component employed during drying phase [31,32], but further ex-

amples of this type of analysis on dishwashers components cannot be found,

even though it is probably carried out inside companies.

On the contrary, Non-Intrusive Load Monitoring (NILM) is implemented for

all appliances, including dishwashers [33,34]. NILM techniques try to iden-

tify which electrical devices are being used inside a building by measuring

the total current and voltage absorptions. These quantities are often used

to compute active and reactive power, in order to identify the most probable

combination of active devices inside the building. In addition to power, also

RMS current, power factor, and voltage-current trajectory are used. Each

device is often modelled through a finite state machine: devices, like lights,

that can be only on or off, correspond to machines with two states. Instead,

a dishwasher can be modelled with more states depending on which com-

ponents (pump, heating resistance) are active. For each state of the finite
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states machine, the power absorption, for instance, is computed and it is

subsequently used to disaggregate power contributions of different devices

(figure 1.2).

This last step is achieved through different learning algorithms, among which

the most applied are:

- neural networks [35];

- support vector machines [36];

- k-nearest neighbour [37].

Figure 1.2: Power consumption signal of a dishwasher and the aggregate consump-

tion profile of more devices [38]

1.3 Contributions of this thesis

In this thesis, MCSA is applied to DC permanent-magnets gearmotors in

order to identify noisy devices through machine learning algorithms, and a

similar procedure is used to identify dishwashers phases, which correspond

to different active components.

The main contributions of this thesis are:

- an experimental campaign to collect voltage and current data from

gearmotors and dishwashers, and acceleration and acoustic noise mea-

surements from gearmotors only (chapter 2);
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- the preprocessing of current measurements, in some cases, in combi-

nation with voltage ones, in order to be employed in the training and

validation process (chapter 3);

- application of the learning algorithms, in particular support vector

machines and feedforward neural networks, in order to identify noisy

gearmotors and dishwashers phases. The basics of the employed algo-

rithms are reviewed as well (chapter 4). Moreover, other algorithms

have been tested, such as Hotelling’s T 2 distance, but they have been

eventually discarded since their accuracy was not satisfactory;

- detailed discussion on all carried out tests and results analysis with

assessments of the different approaches (chapter 5).
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Chapter 2

Experimental campaign

2.1 Gearmotors

Objectives of gearmotors analysis are to determine if a device is noisy, con-

sidering current measurements, and, possibly, to compute an indicator that

gives an idea of the level of noise of a motor compared to the others.

Two models of gearmotors, shown in figure 2.1, have been tested, in par-

ticular, model 2 has an additional output shaft. They are both composed

of a fixed-axis gearbox and a DC brushed permanent-magnet motor, which

operates at nominal voltage of 24 V. Eight motors of the first model and

fifteen of the second one have been provided by a medium-sized company

located near Milano.

(a) Model 1 (b) Model 2

Figure 2.1: DC gearmotors
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Model 1 Model 2

Nominal voltage Vn 24 V 24 V

Average current at Vn 0.3 A 0.3 A

Speed at Vn 290 RPM 310 RPM

Table 2.1: Gearmotors specifications

During tests, gearmotors are suspended through a twine fixed to a beam, as

shown in figure 2.2, and are powered at nominal voltage. They are suspended

in order to possibly reproduce the dynamic behaviour of the unconstrained

object.

For each motor, three tests have been conducted, in which current, voltage,

and acceleration are acquired simultaneously for 2 minutes with sampling

frequency of 25600 Hz. Therefore, about 212 million of samples have been

collected for each measured quantity. The outputs of current and voltage

transducers and of the accelerometer are converted through a multichannel

analog-to-digital converter that includes anti-aliasing filter, and it is finally

stored on a computer, in a Matlab file, through LabVIEW. Two power sup-

plies are used: one for the motor and the other for the current and voltage

transducers, which requires ±15 V.

Figure 2.2: Model 2 gearmotor

suspended for testing

Figure 2.3: Noise acquisition

through a sound level meter
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Acceleration has been acquired for validation purpose: indeed, in a previous

work on similar DC permanent-magnets gearmotors, it has been shown that

acceleration measurements allow one to identify noisy gearmotors.

Acoustic noise is acquired through a sound level meter. It has been po-

sitioned at about 1 meter from the gearmotor and at the same height, as

shown in figure 2.3, and only the average value of produced noise is stored.

Each model 1 gearmotor produces the same level of noise every time is pow-

ered but this is not valid for model 2 gearmotors. In particular, three of the

latter exhibit a particularly noisy behaviour only sometimes: noise average

Motor Noise (dB)

1 52.5

2 52.5

3 55.5

4 55.5

5 59.0

6 60.5

7 61.0

8 67.0

(a) Model 1 gearmotors

Motor Noise (dB)

1 56.5

2 59.0

3 60.0

4 60.2

5 60.5

6 60.5

7 61.0

8 61.3

9 61.5

10 62.4

11 63.0

12 63.2

13 63.5

14 63.5

15 64.5

16 (12) 76.3

17 (9) 77.0

18 (7) 78.2

(b) Model 2 gearmotors. Last three rows con-

tain measurements of motors 12, 9, and 7, re-

spectively, when they show a noisy behaviour

Table 2.2: Gearmotors acoustic measurements
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is about 62 dB in one case and about 77 dB in the other. This cannot be

related to any change in the experimental setup, which remained the same

during the experimental campaign. On the other hand, this difference in

noise level is related to a difference in current measurements. Therefore,

in the following analysis, each of these three motors have been treated as

if they were two different motors, one noisy and one non-noisy. Table 2.2

shows acoustic noise measurements for both gearmotor models.

2.2 Dishwashers

The objective of dishwashers analysis is to detect which components are ac-

tive, through current measurements. In particular, to monitor when either

the upper spray arm or the lower one is moving. In this analysis, the heating

resistance is not considered, since short cycles, which use only cold water,

are taken into account.

Two dishwashers, shown in figure 2.4, are studied. Brand 1 dishwasher has

three spray arms: the upper and the middle ones move simultaneously and

they alternate with the lower one. On the contrary, brand 2 dishwasher has

only two spray arms that alternate.

Current and voltage are acquired through the same devices used for gear-

(a) Brand 1 (b) Brand 2

Figure 2.4: Dishwashers
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motors with sampling frequency of 5000 Hz. Seven measurements have been

acquired from brand 1 dishwasher and eight from brand 2. The considered

washing cycles last about 15 minutes, therefore, about two hours of data

are collected for each dishwasher, which correspond with about 40 million

of samples for each device.

In order to validate the analysis, a camera and a torch are used to film the

inside of the dishwashers. In this way, it is possible to know when spray

arms activate.

Figure 2.5: Experimental setup to measure dishwashers current and voltage
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Chapter 3

Data preprocessing, training,

and validation

The overall process of designing a diagnostic algorithm with machine learn-

ing techniques can be divided into different steps:

- experimental campaign for data acquisition;

- outliers removal;

- feature extraction;

- dataset partitioning;

- standardization;

- training of a predictive algorithm through a machine learning tech-

niques;

- validation of the entire procedure.

The first step, the experimental campaign, has been described in the previ-

ous chapter and strongly depends on the application. All the other steps are

described in next paragraphs, and some learning algorithms for the training

phase are further analysed in chapter 4.
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3.1 Outliers removal

Outliers are data that markedly deviate from the others and are not rep-

resentative of the considered quantity, measurement errors fall under this

statement. There are many definitions of outliers [39], and their removal

can also be unnecessary. An outlier, for instance, is a value whose distance

from the dataset mean is greater than three times dataset standard devia-

tion. For slowly varying quantities, it is possible to use the same definition

but to compute mean and standard deviation on a moving window, instead

of the entire dataset.

In the considered test cases, this step has been omitted, since it is possible to

observe through visual inspection that no outliers are present in most of the

measurements. Only few motor current measurements make an exception,

and one of them is shown in figure 3.1. Also in this case, no outliers removal

is applied since they affect only few sequences of the entire dataset.
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Figure 3.1: Gearmotor current measurement with outliers

On the other hand, some motor current measurements show an initial tran-

sient whose maximum duration is about 1 minute, as shown in figure 3.2.

Therefore, it has been decided to consider only the second minute of all

motor measurements, i. e. when current has reached a steady-state.
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Figure 3.2: Gearmotor current measurement with slow transient

3.2 Feature extraction

Features are values informative of the dataset, obtained by some process-

ing of the raw data. They can be computed directly from the dataset, in

time domain, or from its spectral analysis, in frequency domain. They can

also represent the relationship between two measured signals, like current

and voltage. Finally, there exist automatic techniques to extract features

through convolutional neural networks, which is not discussed [17]. The

next sections describe the features that have been considered in this work.

3.2.1 Time domain features

Before computing features in time domain, the dataset is divided into n

sequences, and each of them is used to compute all chosen features. At the

end, results are rearranged in a features matrix with n rows and m columns,

where m is the number of selected features.

Given a sequence x containing N samples xi, a list of some of the most used

features is presented.
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(a) Mean (b) RMS

(c) Standard deviation (d) Skewness

(e) Kurtosis (f) Minimum

(g) Maximum (h) Range

(i) Crest factor (j) Interquartile range

Figure 3.3: Time domain features for model 1 gearmotors, using the first measure-

ments of current as raw data. Data from 1 to 300 refer to motor 1; 301-600: motor

2; 601-900: motor 3; 901-1200: motor 4; 1201-1500: motor 5; 1501-1800: motor 6;

1801-2100: motor 7; 2101-2400: motor 8.
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Mean value: µ =
1

N

N∑
i=1

xi

Root mean square: RMS =

√√√√ 1

N

N∑
i=1

x2i

Standard deviation: σ =

√√√√ 1

N

N−1∑
i=1

(
x2i − µ

)
Skewness: s =

1
N

∑N
i=1 (xi − µ)3√

1
N

∑N
i=1 (xi − µ)2

Kurtosis: k =
1
N

∑N
i=1(xi − µ)4(

1
N

∑N
i=1 (xi − µ)2

)2
Minimum: min = min

∀xi∈x
xi

Maximum: max = max
∀xi∈x

xi

Range: range = max−min

Crest factor: C =
max

RMS

Interquartile range: IQR = Q3 −Q1

Where Q1 is the first quartile, which is the 25th percentile of the distribution

of x, and Q3 is the third quartile, which is the 75th percentile.

Gearmotors features

In figure 3.3, all listed features have been computed for model 1 motors.

For each motor of both types, the second minute of current measurement

has been divided into 300 sequences. Therefore, each of them lasts 0.2 s

and contains 5120 samples. This value has been chosen after some trials: a

higher one would give no benefit, while a lower one would increase the effect

of noise.

In figure 3.3, it is also possible to notice that mean, minimum, and crest

factor show an ascending or descending trend that corresponds to noise level.

Dishwashers features

In dishwashers analysis, it is not convenient to extract features directly from

the current signal since it is alternating (figure 3.4).
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(a) Brand 1 dishwasher

(b) Brand 2 dishwasher

Figure 3.4: Dishwashers current and voltage measurements when bottom spry arm

is moving

For this reason, the RMS current is computed on a moving window and IRMS

is used both to automatically separate dishwashers phases and to compute

features. Given a window of length w and a vector of current measurement
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I of length L, IRMS is computed as

IRMS(t) =

√√√√ 1

w

t+w−1∑
i=t

I2i for 1 < t < L− w + 1

It has been chosen w equal to the number of samples in one period of the

current. Since the current frequency is f = 50 Hz, w can be obtained as

w =
fsample
f

=
5000

50
= 100

Then, features are computed on sequences of IRMS . The length of these

sequences is the same of the gearmotors ones: a sequence consists of 5120

samples of IRMS .

3.2.2 Frequency domain features

Features in frequency domain are computed after a transform has been ap-

plied.

The most common is discrete Fourier transform, which can be computed

through a fast Fourier transform algorithm. Like for features in time do-

main, it is possible to divide the signal into sequences, but it is worth to

consider that the interval between two samples in frequency domain is equal

to the inverse of the duration of the sequence. Once the spectrum of the

signal is obtained, it is possible to consider specific frequency bands.

In some applications, it is possible to compute the frequencies of interest

considering the geometry of tested device, like in [40] where faults in gears

are studied. In that case, knowing the number of teeth of each gear and

the number of poles of the induction motor connected to the gearbox, the

frequency of each gear has been computed. This one depends on the funda-

mental frequency of the stator current that can be estimated. In this way it

is possible to detect faults in specific gear motor assemblies.

For other applications instead, the entire spectrum is divided into frequency

bands and, on each of them, a feature is computed. In this way, the number

of columns of the features matrix is equal to the number of frequency bands

considered. It is possible to compute the same features presented for time

domain or to use different ones like the peak-to-mean ratio

kpm =
max

µ
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In gearmotors case study, different features and bandwidths have been tested

but no one showed good results, differently from features in time domain. In

particular, tested features have been maximum value, mean, and their ratio.

They have been computed on different bandwidths and also on a bandwidth,

which allows one to have one peak for each band (figure 3.5).
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Figure 3.5: Current spectrum of a model 1 motor at steady state obtained through

fast Fourier transform.

In addition to discrete Fourier transform, other transforms can be used, like

wavelet transforms. Among them discrete wavelet transforms are widely

used. In this case, convolutions are applied between the signal and wavelet

functions ψ(t). Different wavelet functions have been proposed and scaling

factors, a and b, are introduced in order to decompose the signal into more

functions with different frequency bands and resolutions [8].

[Wψf ] (a, b) =

∫ ∞
−∞

f(t) |a|−1/2 ψ
(
t− b
a

)
dt

Therefore, wavelet transform preserves information also in time domain and

allows one to study frequency domain with a higher resolution, for specific

frequency bands [41].
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3.2.3 Voltage-current features

If both current and voltage measurements are available, then it is possible

to compute the delay between the two signals, and use it as a feature [42].

To obtain the delay, cross-correlation between current I and voltage V is

computed as

RV Iτ =
N−τ∑
i=1

ViIi+τ 0 < τ < T

(a) Brand 1 dishwasher

(b) Brand 2 dishwasher

Figure 3.6: Delay between dishwashers current and voltage
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where N is the length of vectors I and V , and T is the period of the signals.

The delay D is the value of τ that corresponds to the maximum value of

cross-correlation. To have it in seconds, it has to be multiplied for the

sampling frequency:

D = fsamp · arg max
τ

RV Iτ

This feature has been computed for dishwashers analysis, dividing current

and voltage measurements into sequences of length 5120 samples as for time

domain features. Figure 3.4 shows that there is a small difference in phase

shift between the two dishwashers and this is coherent with the computed

delay (figure 3.6). Anyway, this feature is not used to identify dishwashers

phases since there is no change in phase shift when a spry arm activates.

In [43], many features are proposed, which can be extracted from the voltage-

current trajectory. They are asymmetry, looping direction, area, curvature

of mean line, self-intersection, slope of middle segment, area of left and right

segments and peak of middle segment. These features have been tested on

brand 1 dishwashers, since for brand 2 time domain features were enough

to achieve the phase identification task. However, also these features are

(a) Upper spry arm is active (b) Upper spry arm is active (zoom)

(c) Lower spry arm is active (d) Lower spry arm is active (zoom)

Figure 3.7: Brand 1 dishwasher voltage-current trajectories
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not used in the following analysis, since there is no correlation between

changes in the voltage-current plot and the activation of a dishwasher spry

arm (figure 3.7).

In the appendix (figure 6.4), voltage-current trajectories are reported for

model 1 gearmotors. They are not used in feature extraction process, since

through visual inspection, they do not seem to carry any new information.

3.3 Dataset partitioning

After features have been extracted, dataset have to be partitioned into sets

in order to derive the diagnostic algorithm and to test it. The most com-

mon choice consists in dividing it into two sets: training set and validation

set. Sometimes also a third one, test set, is added. The objective of the

partitioning is presented.

- Training set is used by learning algorithm in order to fit parameters

for the desired task.

- Validation set is introduced to test the validity of the entire learn-

ing procedure and to tune specific parameters called hyperparameters,

which will be discussed afterwards. In particular, some metrics can be

computed both on the training and on the validation set in order to

assess the algorithm.

- Test set is used only if the validation step succeeds in order to evaluate

the procedure through an unbiased test, which simulates a real use

of the algorithm with a new dataset. Test set is introduced only if

the entire dataset is sufficiently large, and usually it has the same

dimension of the validation set.

This partitioning is achieved by dividing the features matrix into two or

three matrices by extracting specific rows, which can be chosen randomly

or with other criteria.

It is worth to notice that, in this analysis, data collected from one motor

are used either for training or for validation. Otherwise, if a measurement

is split into training and validation sets, metrics computed on the training
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set are always equal to the ones computed on the validation set. The same

has been done for dishwashers where each measurement is used either for

validation or training.

In gearmotors analysis, different choices of dataset partitioning have been

tested and they are discussed afterwards, while, for dishwashers, cross-

validation is used: it is possible to repeat the dataset-partitioning step more

times and, every time, to do again the remaining steps and evaluate the

overall procedure. In particular, if leave-one-out cross-validation is adopted,

one measurement is used for validation and all the others for training, and

this is repeated for all available measurements. This method has been used

for dishwashers analysis, where each measurement contains samples from all

the possible dishwasher phases. In this way, dataset partitioning does not

influence results. This usually allows one to have a relatively large training

set and to be able to detect overfitting even if the dataset is small.

3.4 Standardization

Standardization allows one to obtain a dataset with zero mean and uni-

tary standard deviation. Considering a features matrix X, each element xij

becomes:

x
(new)
ij =

x
(old)
ij − µj
σj

Standardization is applied to all datasets, while mean µj and standard devi-

ation σj are computed considering only the training set, column by column.

Standardization is particularly useful if there is a wide difference among

ranges of different features. There are two reasons for this: it avoids that a

feature unnecessarily gains more importance than the others in the learning

phase and, depending on the optimization technique, it can speed up the

training phase.

3.5 Training

During training, a predictive algorithm is defined and its parameters are

computed. The algorithm receives a features vector as input, while the
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output depends on the considered task and learning algorithm.

- In a classification (or clustering) problem, the output is the class to

which the input sample belongs, if a classification algorithm is used.

Otherwise, if a regression algorithm is applied, the output is a vector

containing probabilities of the sample belonging to each class. It is also

possible to consider two or more classes, defining a binary classification

problem or a multi-class one, respectively.

- In a regression problem, the output is a continuous quantity and a

regression algorithm has to be used.

Many learning algorithms have been proposed in literature. They can also be

classified into unsupervised learning algorithms and supervised ones, where

only in the latter, data have to be previously labelled with the expected out-

put. In addition, the difference between classification and clustering is that

the first one uses a supervised algorithm while the second an unsupervised

one.

In this thesis, the only unsupervised learning algorithm taken into consid-

eration is k-means clustering, while supervised ones are support vector ma-

chines and feedforward neural networks. Also a statistical test, Hotelling’s

T 2 distance, is used.

Some machine learning algorithms are explained in detail in chapter 4.

3.6 Validation

After the algorithm has been trained, data from both training and validation

sets are passed to the algorithm.

In supervised learning algorithms, by comparing the obtained output with

the expected one, it is possible to evaluate the procedure. Some metrics are

introduced in order to achieve this task by looking at one or few values.

For binary classification with a so called positive class and a negative one,

it is possible to compute the number of:

- true positives (TP): samples correctly predicted as belonging to the

positive class;
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- true negatives (TN): samples correctly predicted as belonging to the

negative class;

- false positives (FP): samples actually belonging to the negative class

but misclassified;

- false negatives (FN): samples actually belonging to the positive class

but misclassified.

Predicted

Positive Negative

E
x
p

ec
te

d

Positive TP FN

Negative FP TN

Table 3.1: Confusion matrix

Afterwards, metrics can be computed, and the objective is to maximise one

of them.

- Accuracy: used if both classes have the same importance, and therefore

FP and FN have the same weight.

accuracy =
TP + TN

TP + TN + FP + FN

- Precision: used if FP are more undesirable with respect to FN.

precision =
TP

TP + FP

- Recall or sensitivity: complementary to precision.

recall =
TP

TP + FN

- Fβ score: precision and recall are combined. If Fβ < 1 then precision

is weighted more than recall, if Fβ > 1 then the opposite occurs.

Fβ =
(
1 + β2

)
· precision · recall
β2 · precision+ recall
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On the other hand, these metrics cannot be used for regression algorithms

but others can be computed. Given a dataset with n samples, the output of

the algorithm, ŷi, is computed for each sample i. ŷi is compared with the

expected output yi, through some metrics and the object is to minimize one

of them.

Mean squared error: MSE =
1

n

n∑
i=1

(yi − ŷi)2

Root mean squared error: RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2

Mean absolute error: MAE =
1

n

n∑
i=1

|yi − ŷi|

Finally, for unsupervised learning methods other metrics can be introduced

that are not presented here. They usually take into account the distances

among samples belonging to the same class and the ones among data from

different classes. One of them is the mean of silhouette coefficients [44].

All these metrics have to be computed both for the training and the vali-

dation set. By comparing these two values with the expected one, different

strategies can be adopted in order to improve the algorithm. For instance,

if the chosen metric is accuracy, the following situations can occur:

- training accuracy is higher or about equal to the expected one but

validation accuracy is much lower. Therefore, there is an overfitting

problem that can be solved by decreasing the algorithm complexity or

enlarging the training set;

- training and validation accuracy are about equal but they are lower

than the expected one. Underfitting problem occurs, and can be solved

by increasing the algorithm complexity;

- training accuracy is lower than the expected one and it is higher than

validation. In this case, more data should be collected;

- training, validation, and expected accuracy are about equal, then the

objective of the analysis has been reached and, if a test set is available,

its accuracy can be computed:
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� if test accuracy is comparable with the other values of accuracy,

then the algorithm is complete;

� otherwise, if test accuracy is much lower, then overfitting occurs

and the validation set should be enlarged. This happens because

the validation set is used to tune some values, called hyperpa-

rameters, which determine algorithm complexity.

An analogous process can be followed for other metrics and tasks.
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Chapter 4

Machine learning algorithms

As shown in paragraph 3.5, machine learning algorithms can be chosen de-

pending on:

- availability of algorithm expected outputs;

- desired outputs form;

- task complexity.

In this chapter only Support Vector Machines (SVMs) and Neural Net-

works (NNs) are discussed, even though other algorithms like k-means and

Hotelling T 2 distance have been used. K-means is an unsupervised learning

algorithm [45] that has been useful at the beginning to have a better under-

standing of available data and possible clusterings. Instead, Hotelling T 2

distance is a multivariate statistical test [46], but results obtained through

this algorithm are worse than through SVMs and NNs and therefore it is

not reported in this chapter.

4.1 Support vector machines

SVMs have been introduced in order to solve binary classification problems,

but a similar algorithm, which will be presented in 4.2, has been proposed in

order to solve multi-class problems. There exist also a clustering version [47]

and a regression one [48] that will not be treated.
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4.1.1 Algorithm

SVMs classify data by finding the best hyperplane that separates samples

belonging to one class from those belonging to the other. The hyperplane is

chosen in order to maximise the margin between the two classes, as shown

in figure 4.1. The algorithm is initially presented for binary classification

with linearly separable data and then it is extended to non-linearly separable

ones.

Figure 4.1: Support vector machine with linearly separable data [49]

For each sample i in the dataset, xi ∈ Rm is its features vector and yi = ±1

is the label corresponding to its expected class. Considering parameters

w ∈ Rm and b ∈ R, where w is a column vector, the separating hyperplane

is defined as

xw − b = 0

The equations of the two parallel hyperplanes defining the margin are

P1 : xw − b = 1

P2 : xw − b = −1
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The following constraints are added in order to have all data, belonging

to the positive class, on or above P1 and the remaining data on or below

P2. Data positioned exactly on one of these hyperplanes are called vector

machines.

xiw − b ≥ 1 if yi = 1

xiw − b ≤ −1 if yi = −1

can be rewritten as

yi(xiw − b) ≥ 1 ∀i (4.1)

The object of the problem is to maximise the margin, and therefore to

maximise the distance between the two hyperplanes P1 and P2. This can

be computed as the distance d between a point x0 belonging to P1 and the

hyperplane P2:

d =
|x0w − b+ 1|
||w||

By substituting x0w − b = 1, it is possible to obtain

d =
2

||w||

Therefore, the distance is maximised when ||w|| is minimised and the en-

tire problem can be rewritten as a quadratic optimization problem with

constraints obtained in 4.1 and objective function

min
w,b

1

2
wTw

This problem is extended to the case of non-linearly separable data by adding

slack variables ξi in order to soften the constraints in 4.1, as shown in figure

4.2.

min
w,b,ξ

1

2
wTw + C

∑
i

ξi

subject to yi(xiw − b) ≥ 1− ξi ∀i (4.2)

ξi ≥ 0 ∀i

C is a parameter and, by decreasing it, the weight given to misclassification

is reduced. In the following analysis, C is not tuned and it is set equal to 1.
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Figure 4.2: Support vector machine with slack variables ξi [49]

4.2 is a quadratic optimization problem that can be solved in the dual space

introducing Lagrange multipliers αi, as shown in [50]. The problem becomes

max
α

∑
i

αi −
1

2

∑
i

∑
j

αiαjyiyjxix
T
j (4.3)

subject to
∑
i

yiαi = 0 ∀i

0 ≤ αi ≤ C ∀i

Another solution, for non-linearly separable data, is obtained by observing

that data can be divided by a geometrical object different from a hyper-

plane. Therefore, it is possible to map data into a different (usually higher-

dimensional) space through a non-linear function, as shown in figure 4.3,

and then compute the hyperplane that separates data, which brings back to

the previous formulation of the problem.

In practice, instead of computing data coordinates in the new space, the

kernel trick is adopted: considering a function ϕ(xi) that maps xi into an
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Figure 4.3: Mapping of 2D non-linearly separable data into 3D space through a

radial basis function, making them linearly separable [51]

higher dimensional space, and given a kernel function k() which satisfies

k (xi, xj) = ϕ(xi) · ϕ(xj)

it is possible to substitute the scalar product ϕ(xi)·ϕ(xj) without computing

ϕ(xi). Therefore, equation 4.3 becomes

max
α

∑
i

αi −
1

2

∑
i

∑
j

αiαjyiyjk (xi, xj) (4.4)

The most common kernel functions are:

Polynomial of degree d: k (xi, xj) = (xi · xj + 1)d

Radial basis function: k (xi, xj) = e−γ||xi−xj ||
2

Hyperbolic tangent: k (xi, xj) = tanh(p1xi · xj + p2)

for some p1 > 0 and p2 < 0

Not all values for p1 and p2 are allowed and it has been shown that hyper-

bolic tangent usually does not perform better than radial basis functions [52],

therefore hyperbolic tangent is not used as kernel function in this analysis.

In general these two solutions for the problem of non-linearly separable data

are combined: data are mapped to a new space through kernel functions

and a slack variable is introduced while solving the optimization problem.
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It is worth to notice that both solutions introduce parameters that deter-

mines the algorithm complexity. These parameters are called hyperparam-

eters and include the value C, the kernel choice, and its parameters like the

polynomial degree d. They are tuned by comparing metrics computed on

the training set and on the validation one.

4.1.2 Experimental application

SVMs have been applied to classify gearmotors into noisy and non-noisy

ones. Tests have been conducted for different features choices, training sets,

and kernels.

As shown in figure 3.3, it is convenient to choose mean, minimum, and crest

factor as features, at least for linear kernel. Therefore, for each motor a

features matrix with 300 rows, one for each sample, and 3 columns is com-

puted. Since no threshold has been given in order to define the two classes, a

first test is presented in which only the most noisy motor and the less noisy

one have been included in the training set, while all the others belong to

the validation set. Having no threshold, no expected classification is present

and therefore no metrics can be computed in this specific case. Results are

Motor Noise (dB) Predicted class
Scores

Average Minimum Maximum

1 52.5 1 1.08 1.00 1.17

2 52.5 1 1.04 0.52 2.00

3 55.5 -1 -0.38 -0.53 -0.13

4 55.5 1 0.12 -0.03 0.27

5 59.0 -1 -0.46 -0.59 -0.31

6 60.5 -1 -0.57 -0.70 -0.45

7 61.0 -1 -0.67 -0.87 -0.50

8 67.0 -1 -1.25 -1.70 -1.00

Table 4.1: SVM results for the first measurement of model 1 gearmotors, where

the positive class corresponds to non-noisy motors and the negative class to noisy

ones. Features, computed in time domain, are: mean value, minimum, and crest

factor. Training set: motor 1 (non-noisy), motor 8 (noisy). Kernel is linear.
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Motor Noise (dB) Predicted class
Scores

Average Minimum Maximum

1 56.5 1 1.16 1.00 1.33

2 59.0 1 0.35 0.16 0.71

3 60.0 1 1.15 0.86 1.41

4 60.2 1 0.77 0.60 0.95

5 60.5 1 0.94 0.77 1.64

6 60.5 1 0.81 0.65 0.93

7 61.0 1 1.26 0.86 1.66

8 61.3 1 0.71 0.49 1.42

9 61.5 1 1.37 1.10 1.65

10 62.4 1 0.86 0.68 1.14

11 63.0 1 1.03 0.46 1.77

12 63.2 1 1.64 1.40 2.01

13 63.5 1 0.96 0.67 1.43

14 63.5 1 0.66 0.44 0.95

15 64.5 1 0.20 0.08 0.50

16 76.3 -1 -0.51 -0.84 -0.08

17 77.0 -1 -0.42 -0.67 -0.06

18 78.2 -1 -1.40 -1.74 -1.00

Table 4.2: SVM results for the first measurement of model 2 gearmotors, where

the positive class corresponds to non-noisy motors and the negative class to noisy

ones. Features, computed in time domain, are: mean value, minimum, and crest

factor. Training set: motor 1 (non-noisy), motor 18 (noisy). Kernel is linear.

shown in tables 4.1 and 4.2. Predicted class is the mode of class prediction

for all samples from the same motor. In order to have a better understand-

ing of the results, score value has been introduced, whose absolute value is

the distance between each sample and the separating hyperplane. Score is

positive if the sample is located in the space corresponding to the positive

class and vice versa.

From results of SVM on model 1 gearmotors, it is possible to see that motors

are generally well classified and scores average gives knowledge on motors
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noise level.

On the contrary, scores average for model 2 motors does not give much in-

formation on noise level. Through this SVM, it is possible to identify motors

with the particularly noisy behaviour discussed in chapter 2.

4.2 Multi-class SVMs through error-correcting out-

put codes

In order to extend SVMs to a multi-class problem, it is possible to reduce this

one to multiple binary classification problems. This can be achieved through

directed acyclic graphs where each node corresponds to a binary SVM [53],

as shown in figure 4.4. Otherwise, it is possible to use an Error-Correcting

Output Codes (ECOC) algorithm, which is discussed in this chapter. Fi-

nally, another option is to define a direct method for training multi-class

predictors without introducing multiple binary classification problems: this

strategy requires a generalized definition of margin [54].

Figure 4.4: (a) The decision graph for finding the best class out of four classes.

(b) SVM corresponding to the root node of the graph [53]

4.2.1 Algorithm

In order to use an ECOC algorithm, it is necessary to define a coding de-

sign matrix M , which determines the classes that the SVMs train on. For
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instance, if the number of classes is K = 3, it is possible to define

M =


1 1 0

−1 0 1

0 −1 −1



Figure 4.5: Three classes SVM

obtained through ECOC and one

vs one coding design matrix [55]

where each row k represents a class and

each column l a SVM, in which the class

labelled with 1 is the positive class, label -1

means negative class, and all the others are

labelled with 0 and are not considered for

that SVM. This coding design is called one

vs one, since each class is trained against

one class at a time and, therefore, columns

of M contain only one positive and one neg-

ative class. In this way, M ∈ RK×L with

L = 1
2K(K − 1).

After all SVMs have been trained, it is

possible to assign a new sample to a class

through the following steps. First, for each SVM l, the score sl is computed.

Then, a loss function is defined as

g(mkl, sl) =
1

2
max{0, 1−mklsl}

where mkl is an element of M . The loss function is

- g(mkl, sl) = 0.5 if mkl = 0;

- g(mkl, sl) > 0.5 if mkl and sl have opposite sign: mk,l = 1 but the

class predicted by SVM is negative, and vice versa;

- 0 < g(mkl, sl) < 0.5 if mkl and sl have the same sign.

Finally, the predicted class k̂ of the overall problem is computed as

k̂ = arg min
k

L∑
l=1

|mkl|g(mkl, sl)
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4.2.2 Experimental application

ECOC has been used to classify dishwashers phases. Three classes have

been defined:

- class 1: no spry arm is active;

- class 2: the middle and, if present, the upper spry arms are active;

- class 3: only the lower spry arm is active.

The metric used to evaluate the algorithm is recall. At the beginning, all

discussed features in time domain have been used, but recall remarkably

increases when only mean value is used. Therefore, the following results are

obtained using only the mean value as feature.

As discussed in chapter 3.3, leave-one-out cross-validation is adopted for

dishwasher analysis. Results are presented in table 4.3 for brand 1, and in

table 4.4 for brand 2.

It is possible to notice that the algorithm works well for brand 2 dishwasher

measurements but not for the brand 1 ones.

Validation set
Training recall Validation recall

Class 1 Class 2 Class 3 Class 1 Class 2 Class 3

Measure 1 1 0.66 0.79 0.99 0.94 0.91

Measure 2 1 0.77 0.85 0.99 1 0.01

Measure 3 1 0.68 0.81 1 0.97 0.63

Measure 4 1 0.72 0.74 1 1 0.87

Measure 5 1 0.71 0.78 1 0.54 1

Measure 6 1 0.73 0.8 1 0.01 1

Measure 7 1 0.73 0.78 1 0.32 1

Average 1 0.71 0.79 1 0.68 0.77

Table 4.3: ECOC results for brand 1 dishwasher with leave-one-out cross-

validation. Each row corresponds to a test with a different validation set. All

measurements, but the one used for validation, belong to the training set. Only the

mean value is used as feature. Kernels are linear.
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Validation set
Training recall Validation recall

Class 1 Class 2 Class 3 Class 1 Class 2 Class 3

Measure 1 0.95 1 1 0.97 1 1

Measure 2 0.95 1 1 0.94 1 1

Measure 3 0.95 1 1 0.92 1 1

Measure 4 0.95 1 1 0.96 1 1

Measure 5 0.95 1 1 0.94 1 1

Measure 6 0.95 1 1 0.93 1 1

Measure 7 0.94 1 1 0.99 1 1

Measure 8 0.95 1 1 0.92 1 1

Average 0.95 1 1 0.95 1 1

Table 4.4: ECOC results for brand 2 dishwasher with leave-one-out cross-

validation. Each row corresponds to a test with a different validation set. All

measurements, but the one used for validation, belong to the training set. Only the

mean value is used as feature. Kernels are linear.

4.3 Neural networks

NNs are widely used in many applications and, among the others, they

are particularly adopted in image recognition field. Many types of NNs

algorithms have been proposed, and in this chapter only feedforward NNs

are discussed.

4.3.1 Algorithm

NNs are modelled through directed weighted graphs. In the case of feed-

forward NNs, graphs are acyclic: information moves in only one direction

from input nodes to output ones (figure 4.6). In addition, hidden layers are

present between the inputs and the output layer. All outputs of a layer are

inputs for the next layer only.

Considering the layer l, which can be either a hidden layer or the output

one, its input is called x[l−1], the output is x[l], and it contains n[l] nodes.

Then, x[l] is defined as

x[l] = g[l]
(
z[l]
)

= g[l]
(
W [l]x[l−1] + b[l]

)
(4.5)
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Figure 4.6: Feedforward NN with n inputs, one hidden layer, and one output

node [56]

where, for layer l,

- g[l] : Rn[l] → Rn[l]
is the activation function;

- W [l] ∈ Rn[l]×n[l−1]
is the weight matrix;

- b[l] ∈ Rn[l]
is the bias vector.

The input x[0] of the first layer is one row of the features matrix X, therefore

n[0] is equal to the number of features, which is the number of columns of

X.

Some activation functions for hidden layers are:

hyperbolic tangent: g(z) = tanh(z)

rectified Linear Unit (ReLU): g(z) = max{0, z}

In this analysis, only ReLU is used since it is more efficient. There exist other

activation functions obtained as evolutions of ReLU that can be chosen by

considering training and validation metrics [57].

For what concerns activation functions for the output layer, they have to

be chosen depending on the considered problem. ReLU can be used also for
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Figure 4.7: Activation functions: (a) sigmoid, (b) hyperbolic tangent, (c) ReLU [58]

the output layer, and other examples of activation functions are:

sigmoid function: g(z) =
1

1 + e−z

linear function: g(z) = z

softmax function: g(z) =
ez∑K
k=1 e

zk
where zk is an element of z ∈ RK

Sigmoid function is used for binary classification. Linear function and ReLU

are chosen for regression problems, where the latter constraints the output

to be positive. Finally, softmax function is used in multi-class problems, to

output the probabilities of a sample belonging to each of the K classes.

It is worth to notice that the output of this last layer is used to compute

the cost function, as explained afterwards, but it is not always equal to the

predicted output ŷ of the algorithm. Indeed, in binary classification, for

instance, it is necessary to introduce a threshold to have ŷ = {0, 1}:

ŷ =

{
0 if x[L] < 0.5

1 if x[L] > 0.5

where x[L] is the output of the last layer with sigmoid activation function.

Analogously, for multi-class problems, it is possible to have ŷ corresponding

to the label of the most probable class.

In order to compute weight matrices W [l] and bias vectors b[l], it is necessary

to define a cost function to be minimized. Given the expected output y, the

most used cost functions are:

- binary cross entropy for binary classification problems

C(y, x[L]) = −y log x[L] − (1− y) log
(

1− x[L]
)
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which, for instance, tends to infinite if y = 1 and x[L] tends to 0.

- mean squared error for regression problems

C(y, x[L]) =
(
y − x[L]

)2
- categorical cross entropy for multi-class problems

C(y, x[L]) = −
K∑
k=1

yk log x
[L]
k

where yk is an element of the vector y with all zeros entries except a

unitary one corresponding to the expected class.

Once a cost function has been chosen, the objective is to find W [l] and b[l]

that minimize it. To do so, ∂C
∂W [l] and ∂C

∂b[l]
have to be computed.

For simplicity, the equation 4.5 is rewritten as

x
[l]
i = g[l]

(
z
[l]
i

)
= g[l]

∑
j

w
[l]
ijx

[l−1]
j + b

[l]
i

 (4.6)

Considering the equation 4.6, and one of the cost functions already defined,

it is possible to compute the derivative of the cost function with respect to

w
[l]
ij ∀i, j, l as

∂C

∂w
[l]
ij

=
∂C

∂x
[l]
i

∂x
[l]
i

∂z
[l]
i

∂z
[l]
i

∂w
[l]
ij

(4.7)

Introducing the quantity δ
[l]
i

δ
[l]
i =

∂C

∂x
[l]
i

∂x
[l]
i

∂z
[l]
i

(4.8)

the equation 4.7 can be rewritten as

∂C

∂w
[l]
ij

= δ
[l]
i x

[l−1]
j (4.9)

since
∂z

[l]
i

∂w
[l]
ij

= x
[l−1]
j
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Analogously, the derivative of the cost function with respect to b
[l]
i is

∂C

∂b
[l]
i

= δ
[l]
i (4.10)

since
∂z

[l]
i

∂b
[l]
i

= 1

Then, it is necessary to compute δ
[l]
i . For the last layer, it can be obtained

directly from 4.8. For the previous layer, it is

δ
[L−1]
i =

n[L]∑
j=1

∂C

∂x
[L]
j

∂x
[L]
j

∂z
[L]
j

∂z
[L]
j

∂x
[L−1]
i

∂x
[L−1]
i

∂z
[L−1]
i

since C = C
(
y, x

[L]
1 , x

[L]
2 , ..., x

[L]

n[L]

)
where y is known and fixed.

By iterating, δ
[l]
i is computed with respect to the following layer as

δ
[l]
i =

n[l+1]∑
j=1

∂C

∂x
[l+1]
j

∂x
[l+1]
j

∂z
[l+1]
j

∂z
[l+1]
j

∂x
[l]
i

∂x
[l]
i

∂z
[l]
i

This equation can be rewritten as

δ
[l]
i =

∑
j

δ
[l+1]
j w

[l+1]
ji

∂x
[l]
i

∂z
[l]
i

(4.11)

by considering equation 4.8 and

∂z
[l+1]
j

∂x
[l]
i

= w
[l+1]
ji

Summing up, the overall procedure to compute ∂C
∂W [l] and ∂C

∂b[l]
is:

- consider a row x[0] of the features matrix and its expected value y;

- apply 4.5 for each layer from 1 to L and, at each step, store the values

x[l] and z[l];

- considering the expected value y, and x[L], compute ∂C
∂x[L] ;

- compute δ[l] for each layer from L to 1, by applying 4.11 ∀i.
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- compute ∂C
∂W [l] and ∂C

∂b[l]
by applying 4.9 and 4.10 ∀l, i, j.

The first part of this process, until x[L] is computed, is called forward prop-

agation, while the last part is referred to as backpropagation, since ∂C
∂W [l]

and ∂C
∂b[l]

are computed until layer 1.

1
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i

▪

▪

▪

n[0]

Input layer

x1

xi

xm

▪

▪

▪

▪

▪

▪

1

▪

▪

▪

j

▪

▪

▪

n[1]
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wji
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wkj
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ොy y
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wji
(new) wkj

(new)

Output layer

Figure 4.8: NN backpropagation [59]

Then, one possibility is to update W [l] and b[l] through gradient descent:

W [l](new) = W [l](old) − η ∂C

∂W [l]

b[l](new) = b[l](old) − η ∂C
∂b[l]

where η is the learning rate.

In this analysis, instead, adaptive moment estimation (Adam) [60] is applied,

which is one of the most used optimization algorithms in NNs.

All data in the training set are used more times in order to compute weights

and bias: every epoch all data are passed once to the NN.

To complete the procedure, it is necessary to initialize W [l] and b[l], and to

define a stopping criterion for the algorithm. W [l] are randomly initialized,
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while b[l] are zero vectors for all layers.

The simplest stopping criterion limits the number of epochs. Another one,

which can be add to the previous criterion, consists in computing the mean

of the cost function evaluated on the entire validation set. If it does not

decrease for a certain number of epoch, then the algorithm stops. Otherwise,

instead of the cost function, it is possible to compute one of the metrics

proposed in chapter 3.6.

It is important to have a stopping criterion, since an overtrained NN is

subject to overfitting, as shown in figure 4.9. There exist also other methods

to avoid overtraining, which are not discussed here, like L2 regularization

and dropout regularization [61].

(a) Training set: motors 1, 4, 8 (non-noisy),

and 9, 13, 18 (noisy)

(b) Training set: motors 1, 6, 12 (non-

noisy), and 13, 15, 18 (noisy)

Figure 4.9: Accuracy of training set and both training and validation set, computed

at the end of each epoch. It has been obtained through NNs for model 2 gearmotors

with different training set

In NNs, overfitting is prevented by avoiding overtraining and also by upper

binding the values of hyperparameters. These ones are the number of layers,

and number of nodes for each layer.

4.3.2 Experimental application

Feedforward NNs have been applied to gearmotors classification problem.

All time domain features presented in chapter 3.2.1 have been computed.

Thresholds that divide motors into noisy and non-noisy ones have been

defined. In particular, more NNs have been trained, which correspond to
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different expected classifications.

For the training set of model 2 motors, three noisy motors and three non-

noisy ones have been used: for each class, the most noisy motor, the less

noisy, and one in the middle have been chosen for training. All the other

motors belong to the validation set.

Two stopping criteria have been used:

- number of epochs equal to 100, or

- training accuracy greater than 0.99.

For the stopping criterion, accuracy is computed on training set and not on

the validation set in order to use the less possible the validation set, since

no test set is available. Figure 4.9 shows that the one proposed is a good

stopping criterion.

After some trials, it has been chosen a NN with only one layer having 6

nodes: indeed, deeper NNs were subject to overfitting. Activation functions

for the hidden layer are ReLU, and sigmoid for the output one. The cost

function is binary cross entropy. 4.5 and 4.6.
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Motor Noise (dB) Expected class Predicted class Accuracy

1 56.5 1 1 1

2 59.0 1 -1 0.48

3 60.0 1 -1 0.09

4 60.2 1 1 1

5 60.5 1 1 0.99

6 60.5 1 1 0.97

7 61.0 1 1 1

8 61.3 1 1 0.99

9 61.5 -1 -1 0.97

10 62.4 -1 -1 1

11 63.0 -1 1 0.02

12 63.2 -1 -1 1

13 63.5 -1 -1 1

14 63.5 -1 1 0.44

15 64.5 -1 -1 0.9

16 76.3 -1 -1 1

17 77.0 -1 -1 1

18 78.2 -1 -1 1

Training accuracy Validation accuracy

0.99 0.74

Table 4.5: NN results for model 2 motors with training set composed of motors 1,

4, 8 (non-noisy), and 9, 13, 18 (noisy)
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Motor Noise (dB) Expected class Predicted class Accuracy

1 56.5 1 1 1

2 59.0 1 -1 0

3 60.0 1 -1 0.01

4 60.2 1 -1 0

5 60.5 1 1 1

6 60.5 1 -1 0

7 61.0 1 1 0.92

8 61.3 1 1 1

9 61.5 1 1 1

10 62.4 1 1 1

11 63.0 -1 -1 1

12 63.2 -1 1 0

13 63.5 -1 -1 0.85

14 63.5 -1 -1 1

15 64.5 -1 -1 1

16 76.3 -1 -1 1

17 77.0 -1 -1 1

18 78.2 -1 -1 1

Training accuracy Validation accuracy

1 0.57

Table 4.6: NN results for model 2 motors with training set composed of motors 1,

5, 10 (non-noisy), and 11, 14, 18 (noisy)
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Chapter 5

Experimental results

5.1 Identification of noisy gearmotors

Gearmotors current, voltage and acceleration are acquired three times for

2 minutes with sampling frequency of 25600 Hz (figures 6.1, 6.2, 6.3). Also

acoustic noise is measured for each motor and its average value is stored, as

shown in table 2.2.

Some procedures to remove outliers have been tested but at the and they

have not been applied. On the contrary, to have current measurements at

steady state, only the second minute, of each of the three measurements, is

considered.

Ten features in time domain are computed on sequences of 5120 samples

(0.2 seconds). They are mean value, RMS, standard deviation, skewness,

kurtosis, minimum, maximum, range, crest factor, and interquartile range.

Therefore, features matrix has 10 columns and 900 rows for each of the 26

motors.

The spectrum of the current is computed through fast Fourier transform,

and, in particular, three metrics are considered to extract information, which

are mean value, maximum, and their ratio. The geometry of gearboxes is

unknown, which does not allow one to focus the analysis on specific frequen-

cies. Therefore features are initially computed on bandwidths of 50 Hz or its

multiples until 400 Hz, then on bandwidths that allow one to have one peak

for each frequency band: peaks distance is about 146 Hz for both gearmotor
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models, therefore the first band is between 0 and 73 Hz while the others are

between 73 + 146k and 73 + 146(k + 1) Hz.

Some tests are conducted through discrete wavelet transforms, but wavelet

coefficients do not improve noisy motors identification.

Finally, voltage-current trajectories are plotted in order to find some metrics

to be used as features, but it is possible to notice through visual inspection

that they do not bring new information (figure 6.4).

When SVMs or NNs are applied, all features are standardized considering

mean and standard deviation of the training set. Also with k-means, the

dataset is standardized but mean and standard deviation are computed on

the overall dataset, since the algorithm is unsupervised and therefore no

training set is defined. If Hotelling’s T 2 distance is used, it is not necessary

to standardize the dataset.

Some of the results obtained with k-means are reported in table 6.1. This

algorithm is not used as a strategy in order to obtain a good classification

of gearmotor, but only to have a better understanding of computed fea-

tures and how gearmotors tend to be clustered into sets without considering

acoustic noise measurements.

The first algorithm used for classification is Hotelling’s T 2 distance. For

this test, it is necessary to define a training set, composed by samples from

non-noisy motors, and a significance level α. Then, it is possible to compute

T 2 distances and a threshold T 2
α: a value of T 2 higher than T 2

α corresponds

to noisy motors while a lower one corresponds to non-noisy motors. Many

tests are conducted through Hotelling’s T 2 distance with different training

sets, features, and windows for features computation. Tested features are

in time and frequency domain, obtained both through Fourier and wavelets

transforms. Figure 6.5 shows one of these tests but it is possible to see that

it fails in classifying motors.

The second algorithm adopted for classification is SVMs. Tests have been

conducted on model 1 motors with many combinations of kernels, dataset

partitioning, and features choices, both in time and frequency domain. In

particular, considered kernels are:

- linear function;
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- radial basis function;

- polynomial with degree between 2 and 5.

Some of the tests on kernels are reported in table 6.2 for model 2 gearmotors.

Best results, for model 1 gearmotors, are obtained with linear kernel and

three features (mean value, minimum, and crest factor), and they are shown

in table 6.3. To make a comparison, this table also shows results obtained

through acceleration measurements with features selected in a previous work

on similar gearmotors. Table 6.4 shows results for model 2 gearmotors for

acceleration measurements, current measurements with three features, and

current measurements with ten features. It is possible to notice that, if

acceleration measurements are considered, SVMs average scores provide a

good metric in order to evaluate noise level for both gearmotor models. The

same stands also for model 1 current measurements but, on the contrary,

model 2 current measurements allow one only to recognize particularly noisy

gearmotors.

Table 6.5 shows accuracy for model 2 gearmotors with different expected

classifications with a comparison between results obtained through current

and acceleration measurements. Results obtained through SVMs with ac-

celeration measurements are usually better, but anyway comparable, with

the ones found with current measurements. In both cases accuracy is not

particularly high probably also because there are not significant differences

in acoustic noise among motors from different classes.

The other learning algorithm considered is NNs. All ten features in time

domain are used, and different NNs are tested on model 1 motors but over-

fitting occurs also for small NNs. It has been decided to use a NN with one

hidden layer with six nodes having ReLU activation function. The output

node activation function is sigmoid, and the cost function is binary cross

entropy.

Different stopping criteria have been tested: initially, both validation and

test sets were present, and the first one was used to compute the accuracy.

If both training and validation accuracy were over a predetermined thresh-

old, then the training stopped. Problems encountered are that, depending

on dataset partitioning, sometimes the stopping criterion is never reached,
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while other times it is reached almost immediately but test accuracy is very

low or zero. Therefore, it has been decided to define only training and val-

idation sets, in order to have larger datasets, and stopping criteria are the

maximum number of epochs, set to 100, and training accuracy higher than

0.99 (figure 4.9).

NNs results shown in tables 6.6 and 6.7 are obtained in the same way of

SVMs ones, by defining different expected classifications and moving the

threshold that divides noisy motors from non-noisy ones. These results are

slightly better than the ones obtained through SVMs. Instead, table 6.8

shows results for larger training sets in which 9 of the 18 model 2 motors

belong to the training set. In this case, enlarging the training set does not

allow one to have better performance with respect to the case of a training

set composed of 6 motors.

Finally, tests are conducted in order to solve the regression problem in which

the expected output is the acoustic noise of each motor. In this case, there

is not the problem of defining a threshold that divides motors into noisy and

non-noisy ones. For these tests, a NN similar to the one adopted for the

classification problem, has been used. The only differences are the activation

function of the last node of the NN that is a linear function and the cost

function which is the mean squared error. Figures 6.6 and 6.7 show results

for the case in which half of the motors belongs to the training set. Results

are shown for each epoch and the only stopping criterion is the maximum

number of epochs, which is set to 150. A second stopping criterion has not

been defined yet but it is possible to see that results deeply depends on the

number of epochs.

In general, current measurements allow one to identify particularly noisy

gearmotors both through SVMs and NNs, but they are not enough in order

to identify small differences in acoustic noise level.

5.2 Identification of dishwashers phases

In order to identify dishwashers phases, current and voltage are acquired for

cold washes lasting about 15 minutes, with sampling frequency of 5 kHz.

Figure 5.1 shows that phases identification can be a simple or a complex
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(a) Brand 1 dishwasher

(b) Brand 2 dishwasher

Figure 5.1: Dishwashers current measurements

task depending on dishwashers model.

Current measurements are split and labelled depending on the phase. RMS

current is computed with moving window of 0.02 seconds in order to compute

all presented time domain features. Also delay between current and voltage

has been tested as feature with no results (figure 3.6). Voltage-current tra-

jectories are plot in order to evaluate if features can be extracted from them,
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but figure 3.7 shows that they do not bring useful information. Therefore,

only time domain features are used, which are computed on sequences of

5120 samples (about 1 second) of the RMS current. Afterwards dataset

is repetitively split through leave-one-out cross-validation into training and

validation sets and, each time, features are standardized considering mean

and standard deviation of the training set. In this way, each time, about 35

million samples or raw data are used for training and 5 million for valida-

tion.

Then, 3-classes SVM is computed through ECOC with one vs one coding

design matrix. Like for gearmotors, different kernels and features choices

have been tested, but best results are obtained, for both dishwashers, using

only the mean value as feature. This leads to an almost perfect classifica-

tion for brand 2 dishwasher (table 4.3), but does not allow one to distinguish

between the two phases with active spry arms for brand 1 dishwasher (ta-

ble 4.4). Therefore, online monitoring of the brand 2 dishwasher, is easily

achieved, while this does not stand for brand 1 dishwasher.
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Chapter 6

Conclusions

The objective of this thesis was to provide a procedure to define, through

machine learning techniques, an algorithm that outputs the status of a de-

vice, given current measurements and, in case, voltage ones. The targeted

devices were DC permanent-magnets gearmotors and dishwashers. In the

first case, the algorithm was able to detect particularly noisy gearmotors,

while performance decreases if motors with an intermediate level of noise

were considered. All motors were nominally the same, therefore, faults were

probably due to dispersion in production process. This type of analysis was

not present in the state of the art, where specific faults were considered.

Instead, for dishwashers, results depend on the considered device, and there

have been found no similar studies in literature that allow one to make a

comparison.

Some aspects of this thesis can be further investigated. It is possible to

better analyse gearmotors regression problem. In this case, it would be

particularly convenient to have a larger sample of motors whose noise mea-

surements are well distributed in a high range.

On the other hand, dishwashers analysis opens different directions for further

developments. It is possible to repeat the analysis for washing cycles with

hot water in order to understand if phases, which can be easily identified

for brand 2 dishwasher, are still recognizable when the heating resistance is

active. Another possibility is to repeat tests on cold washing cycles in order

to identify a fault. This one can be a blocked spry arm or the water inlet
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valve completely or partially closed.

Moreover, it is possible to make a different type of analysis, a non-intrusive

load monitoring, in which the two dishwashers work simultaneously. Then

it would be interesting to identify the contributions of each dishwashers and

possibly its washing phase from the aggregate current and voltage measure-

ments.

57



Appendix - additional figures

and tables pertaining to the

gearmotor data

Motor
Noise

(dB)

First set of features Second set of features

Class 1 (%) Class 2 (%) Class 1 (%) Class 2 (%)

1 52.5 100 0 100 0

2 52.5 98 2 96 4

3 55.5 0 100 0 100

4 55.5 79 21 34 66

5 59 0 100 0 100

6 60.5 0 100 0 100

7 61 0 100 0 100

8 67 0 100 0 100

(a) Model 1 gearmotors

58



Motor
Noise

(dB)

First set Second set Third set

Class 1 Class 2 Class 1 Class 2 Class 1 Class 2

1 56.5 0 100 0 100 0 100

2 59 0 100 0 100 0 100

3 60 0 100 0 100 0 100

4 60.2 0 100 0 100 0 100

5 60.5 1 99 1 99 2 98

6 60.5 0 100 0 100 0 100

7 61 0 100 0 100 0 100

8 61.3 0 100 0 100 0 100

9 61.5 0 100 0 100 0 100

10 62.4 0 100 0 100 98 2

11 63 0 100 0 100 0 100

12 63.2 0 100 0 100 50 50

13 63.5 0 100 0 100 0 100

14 63.5 0 100 0 100 0 100

15 64.5 0 100 0 100 0 100

16 76.3 100 0 100 0 100 0

17 77 100 0 100 0 100 0

18 78.2 100 0 100 0 100 0

(b) Model 2 gearmotors
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Motor
Noise

(dB)

First set Third set

Class 1 Class 2 Class 1 Class 2

1 56.5 100 0 100 0

2 59 13 87 100 0

3 60 100 0 100 0

4 60.2 83 17 100 0

5 60.5 32 68 99 1

6 60.5 100 0 100 0

7 61 99 1 100 0

8 61.3 13 87 99 1

9 61.5 100 0 100 0

10 62.4 21 79 0 100

11 63 94 6 100 0

12 63.2 100 0 11 90

13 63.5 68 32 100 0

14 63.5 0 100 99 1

15 64.5 0 100 100 0

(c) Model 2 gearmotors excluding the three most noisy motors

Table 6.1: K-means clustering with two classes for all gearmotors current mea-

surements. Features are computed in time domain. First set of features: mean

value, RMS, standard deviation, skewness, kurtosis, minimum, maximum, range,

crest factor, and interquartile range. Second set of features: mean value, minimum,

crest factor. A third set of features with the ones in the first set but not in the

second one. In table (a) the test with the third set of features is not reported, since

results are completely different for each iteration of k-means: they strongly depend

on the initial position of centroids, which is random. The same happens with the

second set of features in table (c).
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(a) Motor 1 (noise: 56.5 dB)
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(b) Motor 15 (noise: 64.5 dB)
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(c) Motor 18 (noise: 78.2 dB)

Figure 6.1: Model 2 gearmotor current measurements
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(a) Motor 1 (noise: 56.5 dB)
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(b) Motor 15 (noise: 64.5 dB)
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(c) Motor 18 (noise: 78.2 dB)

Figure 6.2: Model 2 gearmotor voltage measurements

62



0 20 40 60 80 100 120

Time [s]

-6

-4

-2

0

2

4

6

A
c
c
e
le

ra
ti

o
n

 [
m

/s
2
]

(a) Motor 1 (noise: 56.5 dB)
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(b) Motor 15 (noise: 64.5 dB)
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(c) Motor 18 (noise: 78.2 dB). Acceleration exceeds measurement range,

which is ±5 m/s2

Figure 6.3: Model 2 gearmotor acceleration measurements
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(a) Motor 1 (noise: 52.5 dB) (b) Motor 2 (noise: 52.5 dB)

(c) Motor 3 (noise: 55.5 dB) (d) Motor 4 (noise: 55.5 dB)

(e) Motor 5 (noise: 59.0 dB) (f) Motor 6 (noise: 60.5 dB)

(g) Motor 7 (noise: 61.0 dB) (h) Motor 8 (noise: 67.0 dB)

Figure 6.4: Voltage-current trajectories of model 1 gearmotors, first measurement,

second minute
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(b) Training set: motor 2

Figure 6.5: Results of Hotelling’s T 2 distance for all current measurements of model

1 gearmotors with significance level α = 0.01. Time domain features: mean value,

minimum, crest factor. Only one value of T 2 every 10 is plotted to make the figure

more readable.
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Motor
Noise

(dB)

Expected

class

Test 1 Test 2 Test 3

Pred

class

Avg

score

Pred

class

Avg

score

Pred

class

Avg

score

1 56.5 1 1 1.9 1 1.3 1 1.8

2 59 1 1 3.2 -1 -0.5 1 7.3

3 60 1 1 3.2 -1 -0.3 1 3.8

4 60.2 1 1 5.9 -1 -0.4 1 12.9

5 60.5 1 -1 -0.5 -1 -0.2 1 0.2

6 60.5 1 1 8.0 -1 -0.5 1 31.8

7 61 1 1 2.4 1 1.3 1 2.0

8 61.3 -1 -1 -2.7 -1 -1.1 -1 -4.9

9 61.5 -1 1 1.4 1 0.8 1 1.5

10 62.4 -1 -1 -5.6 -1 -0.5 -1 -45.2

11 63 -1 1 2.5 1 0.0 1 2.9

12 63.2 -1 1 1.0 -1 -0.2 1 3.9

13 63.5 -1 -1 -0.4 -1 -0.4 1 0.4

14 63.5 -1 -1 -0.6 -1 -0.4 1 0.1

15 64.5 -1 -1 -3.0 -1 -1.1 -1 -2.6

16 76.3 -1 -1 -17.3 -1 -0.5 -1 -224.3

17 77 -1 -1 -13.7 -1 -0.5 -1 -64.3

18 78.2 -1 -1 -15.9 -1 -0.5 -1 -132.7

Table 6.2: SVMs with different kernels for all model 2 gearmotors current mea-

surements. Features, computed in time domain, are: mean value, RMS, standard

deviation, skewness, kurtosis, minimum, maximum, range, crest factor, and in-

terquartile range. Training set: motors 1, 7 (non-noisy) and 8, 15 (noisy). Test 1:

linear kernel; test 2: radial basis function kernel; test 3: cubic function kernel.
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Motor
Noise

(dB)

Acceleration Current

Pred class Avg score Pred class Avg score

1 52.5 1 1.3 1 1.4

2 52.5 1 1.3 1 1.2

3 55.5 1 1.0 -1 -0.3

4 55.5 1 0.9 1 0.2

5 59 1 0.9 -1 -0.5

6 60.5 1 1.1 -1 -0.5

7 61 1 0.9 -1 -0.7

8 67 -1 -1.4 -1 -1.4

Table 6.3: SVMs for all model 1 gearmotors with linear kernel. Acceleration vs

current measurements. Features, computed in time domain, are: standard devia-

tion, skewness, and kurtosis for acceleration, and mean value, minimum, and crest

factor for current. Training set: motors 1 (non-noisy) and 8 (noisy). Therefore, no

expected classification is defined.
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Motor
Noise

(dB)

Expected

class

Acceleration Current (test1) Current (test2)

Pred

class

Avg

score

Pred

class

Avg

score

Pred

class

Avg

score

1 56.5 1 1 4.4 1 2.6 1 1.9

2 59 1 1 3.0 1 10.1 1 3.2

3 60 1 1 2.8 1 12.2 1 3.2

4 60.2 1 1 3.5 1 11.6 1 5.9

5 60.5 1 -1 -3.9 -1 -4.0 -1 -0.5

6 60.5 1 1 2.1 1 23.4 1 8.0

7 61 1 1 1.9 1 6.5 1 2.4

8 61.3 -1 -1 -2.0 -1 -3.8 -1 -2.7

9 61.5 -1 -1 -0.9 1 4.8 1 1.4

10 62.4 -1 -1 -2.0 -1 -6.6 -1 -5.6

11 63 -1 -1 -0.4 1 5.8 1 2.5

12 63.2 -1 1 1.2 1 2.4 1 1.0

13 63.5 -1 -1 -3.9 1 3.2 -1 -0.4

14 63.5 -1 -1 -6.3 -1 -0.7 -1 -0.6

15 64.5 -1 -1 -4.6 -1 -4.8 -1 -3.0

16 76.3 -1 -1 -24.8 -1 -37.7 -1 -17.3

17 77 -1 -1 -37.5 -1 -27.9 -1 -13.7

18 78.2 -1 -1 -49.7 -1 -9.2 -1 -15.9

Training accuracy 1 1 1

Validation accuracy 0.86 0.64 0.71

Table 6.4: SVMs for all model 2 gearmotors with linear kernel. Acceleration vs

current measurements. Features, computed in time domain, are: standard devi-

ation, skewness, and kurtosis for acceleration; mean value, minimum, and crest

factor for current (test 1); mean value, RMS, standard deviation, skewness, kur-

tosis, minimum, maximum, range, crest factor, and interquartile range for current

(test 2). Training set: motors 1, 7 (non-noisy) and 8, 15 (noisy).
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Number of expected

non-noisy motors

Acceleration Current (test 1) Current (test 2)

Tr Val Tr Val Tr Val

6 1 0.92 0.83 0.42 1 0.42

7 1 0.83 1 0.58 1 0.67

8 1 0.83 1 0.67 1 0.58

9 0.83 0.75 1 0.5 1 0.5

10 1 0.67 1 0.5 1 0.25

11 1 0.5 1 0.83 1 0.83

12 1 0.58 1 0.83 1 0.67

Average 0.98 0.73 0.98 0.62 1 0.56

Table 6.5: SVMs training and validation accuracy for model 2 gearmotors and dif-

ferent expected classifications. Features, computed in time domain, are: standard

deviation, skewness, and kurtosis for acceleration; mean value, minimum, and crest

factor for current (test 1); mean value, RMS, standard deviation, skewness, kur-

tosis, minimum, maximum, range, crest factor, and interquartile range for current

(test 2). Three noisy motors and three non-noisy ones are used for training set: for

each class, the most noisy motor, the less noisy, and one in the middle are chosen.

Number of expected

non-noisy motors
Training accuracy Validation accuracy

3 1 0.39

4 1 0.64

5 1 0.99

Table 6.6: NNs accuracy for model 1 gearmotors and different expected classifi-

cations. Features are all the presented ones computed in time domain. Two noisy

motors and two non-noisy ones are used for training set: for each class, the most

noisy motor and the less noisy one are chosen.
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Number of expected

non-noisy motors
Training accuracy Validation accuracy

6 1 0.62

7 1 0.66

8 0.99 0.74

9 1 0.87

10 1 0.57

11 1 0.88

12 1 0.91

Average 1 0.75

Table 6.7: NNs accuracy for model 2 gearmotors and different expected classifica-

tions. Features are all the presented ones computed in time domain. Three noisy

motors and three non-noisy ones are used for training set: for each class, the most

noisy motor, the less noisy, and one in the middle are chosen.
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Motor
Noise

(dB)

Expected

class

Test 1

predicted class

Test 1

predicted class

1 56.5 1 1 1

2 59 1 -1 1

3 60 1 1 1

4 60.2 1 -1 1

5 60.5 1 1 -1

6 60.5 1 1 1

7 61 1 1 1

8 61.3 1 1 1

9 61.5 1 1 1

10 62.4 -1 -1 -1

11 63 -1 -1 1

12 63.2 -1 1 -1

13 63.5 -1 -1 -1

14 63.5 -1 -1 -1

15 64.5 -1 -1 -1

16 76.3 -1 -1 -1

17 77 -1 -1 -1

18 78.2 -1 -1 -1

Training accuracy 1 1

Validation accuracy 0.68 0.75

Table 6.8: NNs results for model 2 gearmotors classification with 9 motors belong-

ing to the training set and the other 9 to the validation set. test 1: odd motors

belong to the training set; test 2: even motors belong to the training set. Features

are all the presented ones computed in time domain. Training and validation ac-

curacy are computed considering all samples predictions.
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(a) Training set (one curve for each motor)

(b) Validation set (one curve for each motor)

(c) Mean of the cost function of the training

set and of the entire dataset

Figure 6.6: NNs results for model 2 gearmotors regression problem with 9 motors

(odd motors) belonging to the training set and the other 9 (even motors) to the

validation set. Features are all the presented ones computed in time domain. Re-

sults are evaluated at the end of each epoch: the features matrix corresponding to

one motor is passed to the NN and the mean of its outputs is the predicted noise

for that motor. 72



(a) Training set (one curve for each motor)

(b) Validation set (one curve for each motor)

(c) Mean of the cost function of the training

set and of the entire dataset

Figure 6.7: NNs results for model 2 gearmotors regression problem with 9 motors

(even motors) belonging to the training set and the other 9 (odd motors) to the

validation set. Features are all the presented ones computed in time domain. Re-

sults are evaluated at the end of each epoch: the features matrix corresponding to

one motor is passed to the NN and the mean of its outputs is the predicted noise

for that motor. 73
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