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1. Introduction
Neurological disorders, like stroke, result more
present in the actual society due to the aging
of global populations, sedentary and the cur-
rent lifestyle. Furthermore, thanks to the im-
provement of medical care, more people affected
by these conditions can survive, thus innovative
techniques in order to promote the motor recov-
ery of the functionality of the affected limbs, are
essential. [1] Withing this frame, one innovative
technology which aims to promote motor recov-
ery of people affected by these types of disorders
is rehabilitation robotics, regarded as the appli-
cation of robotics devices in motor rehabilita-
tion therapies. Rehabilitation robotics does not
want to replace the figure of therapist, however
being a valid support of the therapy. Indeed, ex-
oskeletons show important advantages in the re-
habilitation process like high dosage and the re-
peatability of exercise in safe conditions and the
customization of the training. The key aspect
of the rehabilitation process is to exploit the ac-
tive participation of the patient, indeed, accord-
ing to literature, the probability of the motor
recovery of the subject with an active participa-
tion results much higher. [7] Finally linking the
advantages of the exoskeleton and the so-called

“intention detection strategies” it is possible to
provide the awareness and the dignity of execut-
ing daily life activities to impaired people.

1.1. Intention detection strategies
Intention detection strategies are methods or ap-
proaches used to recognize the volitional move-
ments or intentions of an individual. It serves as
the bridge between human intention and tech-
nological response. According to the literature,
different types of intention detection strategies
can be performed: [4]

- Bio-Signal-Based IDS: Detection of signals like
EEG and EMG for direct device control, appli-
cable in mind-controlled prosthetics and brain-
computer interfaces. However, EMG signals
have limitations, such as sensitivity to electrode
placement and muscle fatigue.

- Vision-Based IDS: Camera systems with ar-
tificial vision detect body movements, used in
gesture recognition and motion tracking, in-
cluding video games. Eye-tracking techniques,
like video-oculography and electrooculography,
aid motion planning, benefiting those with lim-
ited upper limb functionality due to neurological
deficits.
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- Inertial Sensor-Based IDS: Inertial sensors,
found in wearables like smartwatches and smart-
phones, use gyroscopes and accelerometers to
monitor body orientation and acceleration.
Widely applied in rehabilitation for motion mon-
itoring, they are easy to wear but may be sensi-
tive to electronic interference, and require cali-
bration.

- Voice-Based IDS: This IDS uses vocal sounds
and voice commands, ideal for hands-free control
for individuals with speech abilities. The num-
ber of distinguishable states is practically lim-
ited by computational power and software capa-
bilities, with potential accuracy issues in noisy
environments.

- Upper Limb Movement IDS: This approach de-
tects intentional movement through joint rota-
tion, facilitating natural interaction between in-
dividuals and technology for those with limited
upper limb function. However, it’s more practi-
cal for users with some residual upper-limb func-
tion and may not be suitable for severe impair-
ments or full paralysis.

1.2. Related works
The idea of this study was to exploit a kinematic
and torque-based ID for upper limb reaching
frontal rehabilitation exercises using machine
learning models. The workflow begins with a
literature review to identify the most accurate
models and their latency in recognizing reach-
ing tasks. Three studies are presented:
First study: [5]
-Objective: Evaluate real-time classification ac-
curacy for upper-limb robotic prosthesis reach-
ing tasks with ten healthy subjects.
-Methods: Used inertial sensors and a camera-
based vision system, testing various object posi-
tions and orientations.
-Results: KNN and Random Forest were the
best classifiers, with KNN achieving nearly 90%
accuracy.
Second study: [6]
-Objective: Classify upper extremity exercises
using IMU-based kinematic data.
-Methods: Involved fifty healthy participants
performing various arm exercises (bicep curl,
frontal arm raise ecc..) with IMUs capturing
joint angles.

-Results: KNN and Random Forest were the
most accurate classifiers, approximately 92% for
upper limb exercises.
Third study: [8]
-Objective: Evaluate machine learning models
for real-time human activity recognition using
raw IMU data.
-Methods: Tested activities like standing, run-
ning, and walking with two healthy participants
wearing IMUs on their chest, thigh, and tibia.
-Results: SVM with radial kernel achieved the
best accuracy (97%) for recognizing human ac-
tivities, with an average latency of approxi-
mately 107.1 ms.
In conclusion, across these studies, KNN and
Random Forest showed the best accuracies for
reaching task of upper limb exercises. Addition-
ally, the study on real-time activity recognition
highlighted the importance of low latency, with
SVM showing promising results in timely feed-
back applications.

1.3. Aim of the works
The goal of the study was to develop and vali-
date an effective kinematic and torque-based in-
tention detection strategy for upper limb reha-
bilitation using a robot-assisted exoskeleton for
mild impairment patient. Three distinct tasks,
starting from a resting position, were identified
through the IDS to initiate specific upper limb
movements during rehabilitation therapy. Ten
healthy subjects wore the exoskeleton, and data
collected from integrated sensors were analysed
to develop and test the best machine learning
model, minimizing the latency, including KNN,
Random Forest, Gradient Boosting, Extremely
Randomized Trees, Extreme Gradient Boost-
ing, and Long Short-Term Memory. The cho-
sen model was implemented in the robotic plat-
form AGREE and evaluated in real-time with
four healthy subjects. The study contributes to
the literature by comparing results with existing
state-of-the-art techniques.

2. Material and methods
2.1. Experimental setup
The "AGREE" (Arm exoskeleton and Grip as-
sistance for REhabilitation and indipEndent liv-
ing) is an advanced powered exoskeleton de-
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signed to assist patients with neurological con-
ditions during seated rehabilitative exercises.
These exercises include activities like hand-to-
mouth movements, lateral elevation, and arm
reaching. One notable feature of the AGREE
device is its adaptability to work with both the
right and left upper limbs, making it a versatile
tool for rehabilitation for a wide range of pa-
tients with different needs and conditions. The
primary goal of the AGREE exoskeleton is to
provide advanced support for patients during re-
habilitation exercises, ultimately helping them
enhance their mobility and achieve greater inde-
pendence in their daily activities. The AGREE
device boasts four degrees of freedom, which in-
clude three actuated joints at the shoulder and
one actuated joint at the elbow, with an addi-
tional passive joint for the forearm. The me-
chanical design is centered around four active
joints: [3]
• J1: shoulder horizontal abduction/adduction.
• J2: shoulder flexion/extension.
• J3: intra/extra humeral rotation abduction.
• J4: elbow flexion/extension.
Notably, the shoulder’s flexion/extension joint
features a passive anti-gravity system that uti-
lizes springs to counteract gravitational forces
acting on the arm. The exoskeleton’s design
closely mirrors the natural human joint struc-
ture and provides support for the user’s arm at
two interface points: one on the upper arm and
the other on the forearm. It also has a sampling
frequency of 1000 Hz. Angular position, rota-
tional velocity, and output torque are gathered
for each joint of the exoskeleton. Incremental en-
coders, specifically MILE encoders from Maxon
Motor in Switzerland, record position and ve-
locity. Torsional load cells, specifically TRT
load cells from Transducer Techniques in the
United States, acquire output torque at the ac-
tuator’s output shaft. Subtracting the gravita-
tional torque caused by the robot’s weight from
the joint load cell torque provides a measure of
the human-robot interaction effort. This design
ensures that the exoskeleton can adapt compli-
antly to forces generated by the user and those
applied by the therapist. Furthermore, mechan-
ical end-stops have been incorporated into each
joint to prevent the arm from moving beyond
its natural range of motion, emphasizing safety
during rehabilitation exercises.

2.2. Experimental protocol
Thirteen healthy subjects (age: 24 ±
0.94, 8 male, 5 female, right hand) were in-
volved in the testing protocol. Nine subjects
were used for data collection, while four were in-
volved in the real-time evaluation with AGREE.
The protocol was performed with the explicit
consent of the participants and it was approved
by the Ethical Committee of Politecnico di
Milano. Each subject wore the exoskeleton on
their right side, with the rotational axes of the
anatomical joints aligned with the robot’s ones.
The protocol consisted of performing 3 reaching
tasks towards three different target positions:
contralateral to the right limb, frontal and
ipsilateral. Each movement was composed
as follows: the subject started from the rest
position, where the arm was placed in front
of the body to maintain the elbow joint at
almost 90° of flexion, reached the target point
and returned to the rest position to rest for
at least 3s. Each movement were repeated 15
times for each target position. The movements
were executed with the exoskeleton with null
arm weight compensation and in transparent
mode, therefore the subject did not have to
follow a predefined trajectory but could choose
the height and speed for the completion of
the task. The dataset created contained all
the information concerning the kinematics and
torques of each AGREE joint. The workflow
that was followed began with a processing of
the data in Matlab with the aim of extracting
windows corresponding to the start of the
movement and the rest position for all executed
movements. Joint J3 was keeping locked during
data acquisition phase thus it was not consid-
ered during the data processing. Subsequently,
this data was imported into Python to allow
the training of machine learning models in the
classification of the direction of the performed
movement. Once the best model was found, it
was tested in real-time on AGREE. Finally, the
results obtained were compared with the state
of the art.

2.3. Data Processing
Once the data were loaded into Matlab, the ve-
locities of the joints of the exoskeleton were anal-
ysed. By applying a threshold of 0.05 rad/s, all
points where the velocities of these joints were
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simultaneously zero were identified. In this pro-
cess, a vector was generated containing a series
of indices indicating the moments when the sub-
ject remained motionless. These included the
’rest positions’, detected during longer intervals,
and the moments when the subject reached the
target point, during shorter intervals. After an
initial selection, in which only the last value of
each interval was extracted by identifying time
jumps in the vector, several points were identi-
fied that generated sub-intervals. This occurred
because the subject, in the two positions men-
tioned, could not remain completely still, gener-
ating velocities greater than 0.05 rad/s. So an
algorithm was used, based on a ’for’ loop, which
had the following logic:

IF (x+ 1)− x ≤ T AND x ̸= 0

THEN x = 0
(1)

Where x + 1 and x are two consecutive indices
and T indicates the threshold, different for each
subject and that in time had values around 2 sec-
onds. The choice of threshold was determined
through a graphical analysis of the differences
between the points, choosing an intermediate
value to distinguish the differences to be elim-
inated from those to be maintained. Through
this approach, all indices representing the last
point of each interval were identified. In the
context of this study, it was not relevant to dis-
tinguish between the outgoing and return in the
individual repetitions, so the indices that iden-
tified the attainment of the target point were
eliminated. These steps made it possible to iden-
tify the instants at which the subject began each
individual repetition for each direction of the
reaching task.
From these points, different size of time windows
has been created: 10ms, 20ms, 30ms, 50ms,
100ms, 150ms, 200ms and 300ms. The flow
followed for their creation was as follows: for
each repetition, the point identifying the instant
at which the subject began the movement was
taken, and from that point a window was ex-
tracted, containing a quantity of values allowing
the identification of the beginning of the move-
ment by the automatic classifiers and therefore
each point in the window has been associated
with the same class. Furthermore, to allow the
models to recognize the rest position, the same
window was extracted to the left of the instant at

which the movement began to contain all points
at which the velocities of the joints were zero
and in this case each value was associated with
the ’REST’ class. Figure 1 shows the starting
instant of movement in red and around the win-
dows described above. A dataset was generated
for each window created and for each subject. It
contained the nine most relevant columns for de-
scribing the movement of the exoskeleton joints:
the position, speed and torque for each joint con-
sidered and a column, the label, describing the
class to which it belongs.

Figure 1: In the figure, the red vertical lines
identify the points determined as the beginning
of the movement, while the black ones represent
the windowing considered for each repetition.

2.4. Model training
Once the datasets were loaded into Python, the
subjects were divided as follows: eight were
used as training sets, one as a test set and four
to evaluate real-time performance. The mod-
els considered to classify the direction of move-
ment performed by the subjects are: the K-
Nearest Neighbors (KNN) model, the Random
Forest (RF) model, Gradient Boosting (GB),
Extremely Randomized Trees (Extra Trees), Ex-
treme Gradient Boosting (Xgboost) and Long
Short-Term Memory (LSTM). A grid search was
used to identify optimal parameters for each
model and accuracy and confusion matrix were
used as evaluation metrics. The models that
were tested were chosen from those most fre-
quently used in the literature, like [2, 8–10].

2.5. Online testing
Once the results of the models listed above
were compared, the best one was integrated on
AGREE to perform the real-time evaluation. it
is important to note that the model performs
a pointwise recognition. This means that for
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Figure 2: The figure shows the best result for each model with the respective window selected. The model
circled in red, Gradient Boosting, was chosen for real-time evaluation and subsequent comparison in
the literature.

each set of velocity, torque and position values
of each joint it will make a prediction. To make
the result more robust, logic was used such that
the model had to perform a series of consecu-
tive predictions of the same class to effectively
classify the direction of movement made by the
subject. In order to choose the number of con-
secutive predictions to be performed, different
quantities of samples were tested using one sub-
ject: 5, 10, 20, 30, 40 and 50. They were eval-
uated according to the resulting accuracy. The
result showed that the accuracy remained the
same for the number of samples ranging from 5
to 30 and decreased in 40 and 50. With the same
results, 5 was chosen as the number of samples
used to predict the class as the speed of direc-
tion recognition is a key point in real-time ap-
plications. Thus, in addition to evaluating the
performance of the movement direction recogni-
tion and REST phase by accuracy and confusion
matrix, latency was also evaluated, calculated as
the time in which the model identifies the task
and communicates it to the exoskeleton.

3. Results and Discussion
3.1. Model results
The KNN presented a very low overall accuracy
on all windows, train accuracy of less than 60%,
and furthermore, overfitting increased with in-
creasing window size. The one inherent in the
50ms window was chosen as the best result, with
a test accuracy of 53%. The RF model showed a
better overall accuracy, above 70% on both test
and train, suffering less from overfitting than the
previous model. The best result corresponds to

the 50ms window with an accuracy on the test
of 78%. The GB performs even better than the
two previous models with no overfitting for all
windows tested. The best results correspond
to the 50ms, 100ms and 150ms windows. The
50ms window was chosen, with a test accuracy
of 85%, because having less data allows faster
model training. The Extra Trees, on the other
hand, performed worse in terms of accuracy than
the RF and GB with a test accuracy of no more
than 70%. The 100ms window was chosen as the
best result with an accuracy on the test of 69%.
The Xgboost model showed good but worse per-
formance than the normal GB presented above.
The 50ms window was chosen as the best re-
sult with an accuracy on the test of almost 76%.
Finally, the LSTM model presented a very low
performance of 50% on the small windows, from
10ms to 30ms, and showed a very important
presence of overfitting for the large windows,
200ms and 300ms. Therefore, the 100ms win-
dow was chosen as the best result with a test
accuracy of almost 77%. The best results of the
previously listed models were compared, and the
best performing model is the GB with the 50ms
window as shown in the Figure 2. The confusion
matrix of the best performing model is shown in
Figure 3.

3.2. Real-time evaluation
The GB model, which emerged as the best in
the previous comparison, was integrated into
AGREE for testing in real-time evaluation on 4
of the 13 subjects involved in the study. The re-
sults are displayed through the confusion matrix
reported in Figure 4. It shows that the model
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Figure 3: Confusion Matrix of Gradient Boosting,
the best-performing model among those tested in
the study.

Figure 4: Confusion Matrix of Gradient Boosting
tested in real-time evaluation in AGREE.

performs very well in classifying the REST po-
sition and contralateral direction. Regarding
the frontal and ipsilateral directions, it can be
observed that the performance is sub-optimal,
which can be attributed to the lack of stan-
dardization in the positioning of the table dur-
ing data acquisition, resulting in variations in
the target point location. Although it remained
in the frontal position, the exact location dif-
fered with each instance and as the classifica-
tion of the direction is dependent on the move-
ment of the shoulder, the latter may have been
very similar in the two directions and worsened
the performance of the model. On average, the
time required for this process was 5.2ms. Thus,
the overall accuracy associated with a latency
of 5.2ms milliseconds was 84%, similar to that
found in training.

4. Conclusions
The study aimed to assess the use of kinematics
and torques parameters for recognizing frontal
reaching movements through a robotic platform
AGREE. Various machine learning models were
tested, with the best result achieved using gradi-
ent boosting, which yielded an accuracy of 85%.
However, the recognition of frontal movements
had lower precision (approximately 42%) com-
pared to other movements, likely due to vari-
ations in table positions and the execution of
movements by healthy subjects. In a real-time

evaluation four subjects were tested, the model
achieved a final accuracy of 84% with a latency
of 5,2 ms, similar compared to the offline evalu-
ation. These results deviate from the literature,
which typically uses EMG and IMU sensors,
while this study solely relied on built-in exoskele-
ton sensors: infact from paragraph 1.2 the best
accuracy achieved from literature is 92% while
in this study was 84%. Regarding the latency, in
this study an important result has been achieved
with a final latency of 5,2 ms which is certainly
lower than the one found in the literature (107,1
ms). In summary, the top-performing model in
this study demonstrated a slightly lower accu-
racy compared to existing literature but excelled
in rapidly recognizing intended movements, at-
tributed to differences in data sources (kinemat-
ics vs. EMG, IMU, and built-in sensors) and
a focus on low latency. For future develop-
ment, enhancements could involve augmenting
the dataset with more healthy subjects, aim-
ing for greater heterogeneity to improve accu-
racy. Standardizing the table position for ac-
quiring new subjects is proposed to enhance the
accuracy of frontal movements, which exhibited
lower performance among the three tasks. Ad-
ditionally, evaluating the model on the AGREE
robotic platform for the other two movement
categories, hand-to-mouth and lateral elevation,
is suggested.
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