POLITECNICO
MILANO 1863

SCUOLA DI INGEGNERIA INDUSTRIALE

E DELLINFORMAZIONE

EXECUTIVE SUMMARY OF THE THESIS

A knowledge-driven approach for supporting data preparation

LAUREA MAGISTRALE IN COMPUTER SCIENCE AND ENGINEERING - INGEGNERIA INFORMATICA

Author: ENRICO STAIANO
Advisor: Pror. CiNziA CAPPIELLO
Co-advisor: CAMILLA SANCRICCA

Academic year: 2022-2023

1. Introduction

Nowadays, organizations increasingly rely on
collecting and analyzing large volumes of data
to support their business decisions: data-driven
management has become central. However, the
success of the analyses and decisions based on
data depends greatly on the quality of the data
itself. Working with poor quality data will lead
to flawed or unreliable results [1].

Therefore, an effective data preparation phase
aimed to improve data quality is fundamental for
the success of any analysis to be performed on
the data. Data preparation is a long and com-
plex process, involving a large variety of tech-
niques and issues, and it has been demonstrated
that can take up to 80% of the work of a data sci-
entist [4]. Moreover, depending on the available
data and on the desired analyses to perform, it
has been shown that different data preparation
pipelines may be suitable |2]. For these reasons,
it may be hard for a user, especially for a non-
expert, to navigate through the heterogeneous,
long path of data preparation [3].

This work addresses this issue by proposing
an approach that supports users, guiding them
through the preparation process and offering
suggestions tailored for their needs.

DATA PREPROCESSING DATA ANALYSIS

PIPELINE

[
[
SUGGESTIONS I
[
[
[

DATA RESULT
|

R PREFERENCE:
|
& I

HUMAN-IN-THE-LOOP |

USER

Figure 1: Architecture

2. Methodology

The methodology presented in this work aims to
guide users through data preparation and help
them select the best actions to satisfy their spe-
cific needs. This methodology considers the data
on which the users are working and the kind of
analysis they want to perform, and suggests a
data preparation pipeline suitable for conduct-
ing a reliable analysis in that context. The high-
level representation of the architecture used in
this methodology is shown in Figure 1 (this work
focuses on the Data Preprocessing section of the
schema).

The architecture relies on a Knowledge Base
(KB), which contains all the information needed
to support the data preparation process. A de-

tailed description of the KB can be found in Sec-
tion 3.

At the beginning of the process, the users load
the Dataset they want to analyze and select a
Machine Learning (ML) Application they want
to execute as goal of their analysis. Once the
dataset is loaded, its Data Profile is computed.
The Data Profile contains a set of characteristics
of the dataset (e.g., number of tuples, number
of attributes, percentage of missing values, etc.)
called Data Profile Features, which can be useful
during the preparation phase.

At this point, the actual data preparation phase
begins. The data preparation phase can be di-
vided in several segments, each of them focusing
on a different set of actions. For each Data Qual-
ity Dimension considered, there is a segment
that focuses on improving that dimension; more-
over, there is an additional segment (called "ML
Application-oriented" segment) that contains
actions specifically aimed to improve the execu-
tion of the ML Application. In each segment,
a list of possible actions are proposed, called
Data Preparation Techniques. Often, a tech-
nique can be implemented in practice in mul-
tiple ways, called Data Preparation Methods.
Some techniques (or specific methods) can be
applied only if some conditions on the Data Pro-
file Features of the dataset are verified. Before
proposing actions to the users, these conditions
are checked, and only the techniques/methods
that pass these checks are actually suggested.
Considering the ML Application-oriented seg-
ment, the techniques proposed in this segment
are specifically selected for the ML Application
chosen at the beginning by the users.
Furthermore, every time a preparation tech-
nique is selected, the architecture can give the
user an indication about the best method to
implement that technique with, considering the
user’s specific context (dataset + ML applica-
tion selected). To achieve this last objective,
the approach adopted in this work relies on the
utilization of classifiers. The details of this ap-
proach will be explained in Section 5. Because
of the described architecture functionalities, the
suggestions made to the users are customized to
their needs and goals.

This architecture uses a Human-In-The-Loop
approach: users are constantly involved in the
entire data preparation phase at various levels.

Complete freedom is always guaranteed for the
users: they are free to reject the received sug-
gestions and can also choose independently the
data preparation pipeline to perform. Moreover,
the users are involved also at execution time:
during the execution of some techniques, the ar-
chitecture can ask the users feedback and input,
if needed. The users’ choices, which may be dif-
ferent from the actions suggested, are stored in
the KB. In this way, it is possible to create a his-
tory of users’ preferences, with the aim of under-
standing the most common choices and their dif-
ferences from the suggested actions. This data
can also be leveraged, in the future, to adjust
the suggestions and align them with users’ past
choices in similar contexts.

Note that the Knowledge Base plays a funda-
mental role in the entire process, from data pro-
filing until the end of data preparation. All
the concepts discussed and the relationships be-
tween them are stored in the KB and retrieved
when needed. During the data preparation
phase, the KB is continuously interrogated to
propose the appropriate techniques and meth-
ods for the specific context of the users.

3. Knowledge Base Conceptual
Design

The conceptual schema of the KB designed in
this work is shown in Figure 2. In this section,
the contents of the KB are listed and briefly de-
scribed.

A Data Object (do) represents a set of data
loaded by the users. A do can represent a
Dataset or a Dataset Column. A Data Profile
Feature (dpf) indicates a characteristic that a
data object can have. As evident in the con-
ceptual schema, the value that a feature takes
in the specific case of a certain data object is
not a property of the feature alone, but it is a
property of the relationship between the object
and the feature. A Data Profiling Technique
(dpft) is a technique that performs the profil-
ing of data objects and returns in output the
values of some profile features. A Data Prepa-
ration Technique (dpt) is a possible technique
that the users can apply to their data. Each
dpt has a granularity of application, that indi-
cates whether this technique must be applied on
a whole dataset, on a single column, or can be
applied in both cases. A Data Quality Di-

? Technique Granularity of
name application

DATA QUALITY
METRIC Technique
description
H) i

©ON) " oaTa PREPARATION]

? TECHNIQUE

DATA QUALITY Influence type
DIMENSION

)
MACHINE
Di
imension LEARNING
name (1N)
APPLICATION -
7

ML application ML application
or od

category
Relevance
IMPACTS
Object
name

T

DATA OBJECT
(1,N) (1N)

T‘T'E) (1N)
11 1N,
|) |)

(1.1)

ATA PREPARATION|
METHOD

I

(O.N)
oataproriLing | (N (D | pataproFie
TECHNIQUE FEATURE
& J Iz
Feature Feature

Technique ~ Technique
name description name description

Figure 2: Knowledge Base Conceptual Schema

mension (dgd) is a concept that captures a
specific data quality aspect. A dpt can affect
one or more dgd (either in positive or in neg-
ative ways). A Data Quality Metric (dgm)
expresses how a data quality dimension can be
assessed. Every dgd has one or more dgm. A
Machine Learning Application (mla) is an
application that the users can choose as their
goal analysis. Every mla is characterized by a
macrocategory, which indicates the kind of ML
application considered (e.g., clustering, classifi-
cation or regression), and by a specific method
that actually implements that application. A
mla can benefit from zero, one or more dpt. A
Data Preparation Method (dpm) indicates a
possible way in which a preparation technique
can be performed in practice. Each dpt is im-
plemented with one or more dpm.

A data preparation technique or method can de-
pend on one or more data profile features: this
means that the execution of that technique or
method can only take place if the considered fea-
ture meets a certain condition (which is stored
in the "Description" attribute of the "depends

on" relationships).

The ternary relationship Impacts is needed to
store knowledge about the impact that each data
quality dimension has with a certain ML appli-
cation and Data Object. The "Relevance" prop-
erty indicates the importance of that dimen-
sion in that context. The ternary relationship
Best Method, instead, is used to store knowl-
edge about which preparation method is best
for implementing a certain technique in a given
context. In particular, in this work, experiments
were conducted to generate knowledge regarding
the best Imputation methods to use in differ-
ent contexts (details in Section 5). Lastly, the
relationship User Choice allows to record what
methods were actually selected by the users.
This knowledge is useful to build the history of
the choices made by past users in various con-
texts.

4. Knowledge Base Implemen-
tation

This section describes how the KB presented in
Section 3 was implemented. To implement the
KB it was decided to use a graph database, in
particular, Neo4j. To store data, Neo4j uses
nodes and edges (called relationships). Nodes
can be tagged with labels, the "types" of the
nodes. Relationships are connections between
two nodes and have a direction and a type. Both
nodes and relationships can have properties (at-
tributes).

To follow, a few examples of how the knowledge
is stored in the database are reported. In Figure
3, some of the main concepts of the KB are dis-
played. It is possible to see a data preparation
technique (in blue), a method that implements
it (in red), and the dimensions affected (in pur-
ple). Note that each dimension has a metric (in
orange). Both techniques and methods can de-
pend on data profile features (in yellow). The
nodes and relationships have all the attributes,
not shown here for brevity, present in the con-
ceptual schema.

The ternary relationships are stored in the graph
database using intermediate nodes. An example
of how knowledge about the best methods to
use in different contexts is stored can be found
in Figure 4. This example indicates that the
method "Mean Imputation" is the best impu-
tation method to use in the context of dataset

eeeeeeeeeee

Figure 3: Imputation technique, dimensions and
profile features

A W
; [BEST |
Mean Imputation s s]
\ 4)
/ mm e

Figure 4: Best data preparation method

"cancer" and application "Classification - Logis-
tic Regression". Similar implementations were
used for the relationships "Impacts" and "User
Choice".

5. Classifiers Design and Imple-
mentation

One of the goals of this work was to exploit the
KB to suggest to the users the best methods
for their specific analysis context. Considering
a single preparation technique, the problem can
be more precisely specified in this way: the user
selects a data object and a ML application, and
the objective is to return the best method with
which to implement the technique in that con-
text. This problem was moved to multi-class
classification, where the target variable is the
best method to use in the given situation.

In particular, the classifiers implemented in this
work are focused on the data quality dimension
of Completeness, specifically on the missing val-
ues imputation technique. The classifiers are
given as input the data profile features of the
data object and the selected ML application and
return the best imputation method to fill in the
missing values of that data object. Since a data
object can either be an entire dataset or a single
column, two separate classifiers have been devel-
oped: one for the entire dataset case, predicting
the best method to impute all the missing val-

ues in the dataset, and one for the single column
case, predicting the best method to impute the
missing values of that specific column.

For building the classifiers, the first part of
the work focused on generating the knowledge
needed for training and testing. The following
is a brief description of the knowledge genera-
tion process for the entire dataset case. First,
a clean, complete dataset is considered, and its
profile features are extracted and stored. Then
there is an error injection phase, during which
the dataset is injected with missing values in
random positions. This injection is repeated
many times, each time with a different percent-
age of missing values, to create multiple incom-
plete datasets. At this point, the missing values
of these datasets are imputed several times, each
time with a different imputation method. Af-
ter an imputation method has been applied, the
imputed dataset obtained is given in input to a
ML algorithm, which is trained and tested (us-
ing cross-validation) on that dataset. The ML
algorithm’s performance serves as an indicator
of the effectiveness of the imputation method:
in this way it is possible to establish what is the
best imputation method to use with a certain
dataset and ML algorithm. The initial dataset’s
profile features, the percentage of missing values
injected, the ML algorithm, and the obtained
best imputation method are stored as a unit of
knowledge. This procedure is repeated with dif-
ferent ML algorithms and clean datasets. A sim-
ilar process is used to generate the knowledge
for the single-column case, but in this case the
missing values are injected only in the consid-
ered column, and at the beginning a feature se-
lection algorithm is applied on the clean dataset
to keep only its most significant columns. To
make the knowledge generation processes more
robust, each experiment was repeated in paral-
lel 8 times, injecting the missing values in dif-
ferent positions. The generated knowledge was
first stored in the KB (in the "Best Method"
section) and then gathered in two datasets, one
for each classifier to be trained and tested.

At this point, many kinds of classification al-
gorithms were tried for both the entire dataset
and the single-column case. To check their per-
formance, k-fold cross-validation was applied.
However, the results obtained were not satis-
factory with any classification algorithm tried.

After analyzing the situation, it was observed
that in the vast majority of cases, the scores
of the three best imputation methods for a cer-
tain context are very close to each other: the
difference in performance among the top three
methods is often minimal. Therefore, predicting
any of the top three methods would still give a
very good suggestion for the users. For these
reasons, it was decided to extend the generated
knowledge to contain all three best imputation
methods. After enriching the knowledge, further
experiments with the classifiers were conducted,
considering a prediction correct if the imputa-
tion method predicted belonged to the top three
methods. As expected, a relevant boost in per-
formance was obtained.

Since in the knowledge generation process vary-
ing percentages of missing values were injected
in the same clean data object, in the obtained
knowledge there were similar rows referred to the
same data object and ML algorithm, but with
different percentages of missing values. This
raised concerns that presenting nearly identical
rows to the classifier might confuse it. There-
fore, it was decided to aggregate each group of
these similar rows into a single row. In the case
of the original knowledge (containing only the
best method, not the top three), the aggregated
best method was calculated as the mode of the
best methods of the initial rows. For the en-
riched knowledge the aggregation process was
more complex: each row had its ranking of the
top three methods, the goal was to aggregate
those rows in a single row with a unique ranking.
To solve this rank aggregation problem, it was
used an approach inspired by Borda’s method.
This aggregation led to a further improvement
in the classifiers’ performance.

After testing several different classifiers, coupled
with the corresponding hyperparameter tuning,
the highest performance achieved was an accu-
racy of 77.78 for the entire dataset case and
67.96 for the single-column case. For the entire
dataset case, the classifier reporting the high-
est performance is a KNN model with a number
of neighbors k = 4. For the single-column case,
the best classifier is a Logistic Regression model,
with Lasso regularization.

6. Tool Implementation

To demonstrate a practical application of the
concepts discussed in the previous sections, dur-
ing this work an already existing data prepara-
tion tool was extended and enriched with new
functionalities. The tool is implemented with
Flask: a framework in Python designed for web
application development. The following is a
brief general overview of the tool, with particu-
lar emphasis on the functionalities added in this
work.

Firstly, the users can load the dataset to be pre-
pared and select a ML application as their ob-
jective analysis. The dataset undergoes a data
profiling phase, during which it is explored and
its data profile is extracted. The tool shows the
users the dataset’s characteristics and the qual-
ity problems it may have. Subsequently, in the
data preparation phase, the users can build their
preparation pipeline by choosing the actions to
perform from a list of possible preparation tech-
niques and methods. The contributions to this
tool added during this work are focused on the
preparation phase. Specifically, the objective
was to integrate the previously described KB
and classifier into the tool. The first step was to
connect the tool’s Flask environment with the
Neo4j database in which the KB is stored, to di-
rectly query the KB from the Python code.

In the preparation phase, the list of available
data preparation actions is divided into seg-
ments, similarly to what was described before
in Section 2: there is a segment for each of the
quality dimension considered (completeness, ac-
curacy, uniqueness), and a last segment dedi-
cated to the selected ML application. Within
each segment, there are several actions available
for users to select. Each action is characterized
by a preparation technique and a method that
implements that technique.

All the actions available are loaded from the
KB. For the segments dedicated at improving
a quality dimension, the actions are obtained
through the following querying process: for the
considered dimension, all the techniques that af-
fect that dimension positively (i.e., the influence
type is "Improvement") are extracted from the
KB along with the methods implementing each
technique. Regarding instead the segment dedi-
cated at improving the execution of the ML ap-
plication, the procedure is slightly different. The

actions in this segment are customized for the
ML application selected; in this way, the sug-
gestions are personalized for that particular sce-
nario. The querying process is the following:
for the selected ML application, all the tech-
niques that benefit that specific application are
retrieved, along with the methods implement-
ing the techniques. Retrieving the preparation
actions from the KB, rather than hard-coding
them in the system, provides flexibility and scal-
ability: the KB operates as a dynamic repository
of actions that can be constantly expanded and
updated.

Another contribution made in this work is a
functionality that retrieves and presents to the
user information about a selected preparation
action. Firstly, the user requests information
about an action (composed as mentioned by a
technique and a method). When the request
is received, the tool executes a series of queries
to the KB, retrieving all the information about
the chosen action. The results of the queries
are then assembled together and presented in
a user-friendly textual response. The extracted
information is the following: (i) the dimensions
affected by the technique (specifying the type of
its influence), (ii) which ML applications benefit
from the technique, (iii) the data profile features
on which the technique and method depend on,
along with the corresponding description of the
dependencies. The objective of this functional-
ity is to make users more aware of the actions
they can choose and to clarify when and why it
is appropriate to use them.

Besides the KB, the developed classifier (entire
dataset case) was also integrated into the tool.
The classifier was trained on all the knowledge
available, was saved (already trained) as a file,
and then was imported into the tool. After the
users load a new dataset, its data profile fea-
tures are extracted and saved together with the
selected ML Application. This data is then pro-
vided as input to the trained classifier, which
predicts the best imputation method to be ap-
plied to the dataset. Once the best method is
predicted, it is displayed to the users during the
preparation phase, and it is automatically in-
cluded in the data preparation pipeline. The
integration of the classifier provides users with
a suggestion tailored to their specific data and
selected application.

7. Conclusions

This work presented a methodology aimed to
guide users through the data preparation pro-
cess, suggesting actions appropriate for their
data and analysis objectives. The foundation of
this methodology is a Knowledge Base, initially
conceptually designed and then implemented
and populated using a graph database. Through
experiments, valuable knowledge about the best
imputation methods for various contexts was
generated and stored in the KB. The method-
ology uses classifiers to provide tailored recom-
mendations for users’ specific situations. In par-
ticular, the generated knowledge was leveraged
for implementing two classifiers predicting the
best imputation methods to fill in missing val-
ues of datasets or single columns. The developed
Knowledge Base and classifiers serve as useful re-
sources to support users through the data prepa-
ration process, pointing them toward the best
choices but always ensuring complete freedom.

References

[1] Carlo Batini and Monica Scannapieco. Data
and Information Quality - Dimensions,
Principles and Techniques. Data-Centric
Systems and Applications. Springer, 2016.

[2] Laure Berti-Equille. Learn2clean: Opti-
mizing the sequence of tasks for web data
preparation. In Ling Liu, Ryen W. White,
Amin Mantrach, Fabrizio Silvestri, Julian J.
McAuley, Ricardo Baeza-Yates, and Leila
Zia, editors, The World Wide Web Confer-
ence, WWW 2019, San Francisco, CA, USA,
May 13-17, 2019, pages 2580-2586. ACM,
2019.

[3] Joseph M. Hellerstein, Jeffrey Heer, and
Sean Kandel. Self-service data preparation:
Research to practice. IEEE Data Eng. Bull.,
41(2):23-34, 2018.

[4] Shrey Shrivastava, Dhaval Patel, Anu-
radha Bhamidipaty, Wesley M. Gifford,
Stuart A. Siegel, Venkata Sitaramagirid-
harganesh Ganapavarapu, and Jayant R.
Kalagnanam. Dqa: Scalable, automated and
interactive data quality advisor. In 2019
IEEE International Conference on Big Data
(Big Data), pages 2913-2922, 2019.

	Introduction
	Methodology
	Knowledge Base Conceptual Design
	Knowledge Base Implementation
	Classifiers Design and Implementation
	Tool Implementation
	Conclusions

