
Robust Shape Tracking of a De-
formable Linear Object Manipu-
lated by a Dual-Arm Robot

Tesi di Laurea Magistrale in
Automation and Control Engineering - Ingegneria
dell’Automazione

Author: Alessio Russo

Student ID: 10618144
Advisor: Prof. Paolo Rocco
Co-advisors: Andrea Monguzzi, Prof. Andrea Maria Zanchettin
Academic Year: 2021-2022

i

Abstract

A large number of industrial, household, and medical scenarios involve the manipulation
of deformable linear objects (DLOs) such as cables, ropes, wires, and hoses. Manipulating
deformable objects is a challenging task for robots, considering that they have an infinite
number of degrees of freedom. In order to achieve accurate, robust and efficient manipu-
lation, tracking of the DLO shape during the manipulation is crucial.
This thesis proposes a vision algorithm to track in 3D the shape of a DLO, manipulated
by a dual-arm robot in an industrial scenario, where different kinds of DLOs are scattered
on the worktable. In particular, with reference to the occlusions caused by objects with
the same color of manipulated DLO, this thesis proposes also a methodology to deal with
this type of occlusion, beyond those caused by objects with different colors.
The creation of a depth filter allows to isolate the manipulated DLO from the background,
which can dynamically change. Further to the construction of the point-cloud, the grip-
pers poses acquired from the robot are added to it. The obtained points are fitted in 3D,
solving two Lasso regression problems, in x-z and x-y planes, giving as output the tracked
shape.
The proposed method does not rely on a physical simulation or physical model of the
DLO, and uses only the acquired data by the camera and the grippers poses. The ex-
periments performed prove the robustness of the method to several DLOs, which differ
in color, length, and rigidity. In particular, during the experimental validation, they are
manipulated by a real dual-arm robot in different configurations.

Keywords: Shape Tracking, Occlusion, Deformable linear objects manipulation, Robotics.

Abstract in lingua italiana

Un gran numero di scenari industriali, casalinghi e medici coinvolgono la manipolazione
di oggetti deformabili lineari (DLOs) come cavi, corde, funi e tubi. La manipolazione dei
DLO è un compito impegnativo per i robot, considerando che questi hanno un numero
infinito di gradi di libertà. Al fine di ottenere una manipolazione accurata, robusta ed
efficiente, il monitoraggio della forma dei DLO durante la manipolazione è cruciale.
Questa tesi propone un algoritmo di visione per rilevare in 3D la forma dei DLO, ma-
nipolati da un robot a due braccia in un ambiente industriale, dove sono sparsi differenti
tipi di DLO sul tavolo da lavoro. In particolare, con riferimento alle occlusioni causate
da corpi dello stesso colore del DLO manipolato, la tesi propone anche un metodo per
gestire tale tipo di occlusioni oltre a quelle causate da un oggetto con colore diverso.
La creazione di un filtro di profondità permette di isolare il DLO manipolato dallo sfondo
che può essere soggetto a cambiamenti. Successivamente alla costruzione della point-
cloud, vengono aggiunte le posizioni dei gripper acquisite dal robot. I punti risultanti poi
sono interpolati in 3D, risolvendo due problemi di regressione lineare (Lasso) nei piani x-z
e x-y, rilevando in tal modo la forma tracciata.
Il metodo proposto non si affida a un modello fisico o a dei simulatori fisici del DLO, ma
usa solo i dati acquisiti dalla telecamera e le posizioni dei gripper. I risultati sperimentali
ottenuti mostrano la robustezza della metodologia per diversi tipi di DLO, che differiscono
per colore, lunghezza e rigidezza. In particolare, durante la validazione, i DLO sono ma-
nipolati in diverse configurazioni da un robot a due braccia.

Parole chiave: Rilevamento della forma, Occlusione, Manipolazione di oggetti deforma-
bili lineari, Robotica.

v

Contents

Abstract i

Abstract in lingua italiana iii

Contents v

1 Introduction 1
1.1 Robotic cable manipulation . 1
1.2 Thesis purpose and achievements . 2
1.3 Thesis structure . 3

2 State of the Art 5
2.1 Object tracking . 5
2.2 Deformable Objects . 8
2.3 DLO tracking . 10

2.3.1 Gaussian Mixture Model Expectation-Maximization (GMM-EM) . . 12
2.3.2 DLO tracking using physics/simulation 15
2.3.3 DLO tracking without physics simulation 21

2.4 Thesis contribution . 25

3 Setting of the problem 27
3.1 Set-up . 27

3.1.1 Class of DLOs . 30
3.2 Computer vision tools . 32

3.2.1 Image representation . 32
3.2.2 Camera calibration matrix . 34

4 DLO shape tracking algorithm 39
4.1 Pre-processing . 41
4.2 DLO segmentation . 43

4.2.1 Depth filtering . 44
4.2.2 Color mask . 47
4.2.3 Contour extraction . 49

4.3 Point-cloud creation . 52
4.3.1 Acquisition of grippers poses . 54

4.4 3D-Fitting . 55
4.4.1 Lasso Regression . 57

4.5 Occlusion problem . 61
4.6 Occlusion Limitations . 64

4.6.1 Sensitivity to the occluding object color 64
4.6.2 Occluding object dimension . 68

4.7 Sum-up . 70

5 Communication between the tracking algorithm and a dual-arm robot 71
5.1 Socket . 71
5.2 RAPID program structure . 72

5.2.1 Client-server communication . 75

6 Experimental analysis 77
6.1 Test 1: Linear shape . 79
6.2 Test 2: 2D-Sinusoidal shape . 84
6.3 Test 3: Quadratic function shape . 91
6.4 Limitation: Sensitivity to the occluding object color 102
6.5 Test 4: 3D-Sinusoidal shape . 107

7 Conclusions 109
7.1 Future Developments . 110

Bibliography 111

List of Figures 115

List of Tables 119

1

1| Introduction

1.1. Robotic cable manipulation

Deformable Linear Objects (DLOs) are elements, like wires, pipes and ropes, with one
dimension that is bigger than the other two.
The interest in robotic manipulation of deformable linear objects is growing rapidly, es-
pecially in the automotive and aerospace fields, in which numerous applications involving
DLOs can be found. These include, for example, wiring operations, wire harness manu-
facturing or switchgear assembly.
In many industrial applications, manipulation of cables, wires or tubes is needed, but
while the industrial manipulation of rigid objects has been automatized for a long time,
the handling of deformable linear objects is usually performed manually (Figure 1.1).

(a) (b) (c)

(d)

Figure 1.1: Example of operation involving DLOs computed manually. (a) Wire harness
factory. (b) Wire harness. (c) Aerospace wire harness. (d) Cable wiring.

The sequence of automated operations must be then interrupted to allow a human op-
erator to manipulate the DLO, in this way the entire process becomes time-consuming.

2 1| Introduction

For this reason, the DLO manipulation can be considered a bottleneck in industry frame-
works.
Besides finding a solution to planning the robot manipulation, a clear need to determine
a way to track the shape of the DLOs while they are manipulated has been identified.
Indeed, shape tracking can provide feedback useful for defining a closed-loop manipulation
strategy. Shape tracking is usually performed using vision sensors, which are efficient and
intuitive to use. However, there are several challenges in the case of DLO tracking with
respect to rigid object tracking. One of them is that, unlike the rigid object whose pose
can be described by six degrees of freedom, a DLO has an infinite number of degrees of
freedom in space. Moreover, the tracking based on a vision system can fail due to lower
light conditions, dust, or the presence of a complex background with many DLOs with
the same color or similar to the manipulated one.
In addition, the tracking needs to deal with the occlusion caused by objects in the envi-
ronment (including the robot arm itself) and the self-occlusion of the object, in order to
perform robustly the operation in a constrained environment. Moreover, to be useful for
the robotic manipulation of deformable objects, the tracking algorithm needs to be fast
enough to be executed in real time.

1.2. Thesis purpose and achievements

This thesis proposes the development of a tracking algorithm, which uses only the vision
data by the camera and the poses of the grippers to track online in 3D the shape of
different kinds of manipulated DLOs.
The main achievements of this thesis can be summarized in:

• A vision algorithm for tracking in 3D a DLO manipulated by a dual-arm robot,
generating online for each frame a geometric estimation of the DLO shape.

• The development of a depth filter that allows to isolate the manipulated DLO from
the workspace. Expanding the use of the proposed algorithm in the industry, where
it can be a workspace with objects that can have the same shape and color as the
tracked DLO, in addition, the workspace can change while the robot manipulates
the DLO.

• A tracking algorithm robust to occlusion, that accounts for an issue not covered in
the literature i.e. occluding objects with the same color of manipulated DLO. This
problem is firstly softened by the use of a depth filter, which ensures robustness to
those kinds of occlusions with an occluding object above the manipulated DLO. On
the other hand, if the occluding object touches the DLO, the tracking is achieved

1| Introduction 3

by making an online recovery using a sample video without occlusion.

• A potential industrial application, due to different types of DLOs tested, which
differ in color, rigidity and length.

1.3. Thesis structure

The remaining of this thesis is organized as described in the following:

• Chapter 2 introduces what object tracking is and then focuses on shape tracking
for DLOs. In particular, summarizes the relevant literature works and it highlights
the contributions of this work.

• Chapter 3 deals with the setting of the problem, describing the used set-up and
the kinds of tested DLOs, providing then some preliminary knowledge about the
computer vision tools.

• Chapter 4 describes the proposed tracking algorithm.

• Chapter 6 reports the experimental validation.

• Chapter 7 presents the conclusions of the work, as well as some future developments
of the proposed tracking algorithm.

5

2| State of the Art

Object tracking is one of the most important tasks in computer vision, with a lot of appli-
cations in a different area as robotics, video surveillance, medical area, traffic monitoring
etc. In this chapter, the current state of the art related to rigid object tracking and de-
formable linear object (DLO) tracking is discussed. Firstly a definition of object tracking
is given, then we will focus on the deformable objects classifying them. Furthermore, we
will discuss about the DLO’s tracking, explaining the GMM-EM method used in most
procedures for DLO tracking. The latter procedures will be explained by grouping them
into ones that use physics simulation and ones without physics simulation. Finally, the
contributions of this work with respect to the analyzed literature are highlighted.

2.1. Object tracking

Object tracking is a computer vision application where a program detects objects and then
tracks their movements in space or across different camera angles. A first characterization
of tracking can be made based on the input of the algorithm (both can be real-time or
not):

• image tracking;

• video tracking.

In the first case, a two-dimensional input is given through the camera, the algorithm
detects a two-dimensional planar image, which can be then used to superimpose a 3D
graphical object. Once the 3D graph is overlaid, the user can move the camera without
losing the trace of the 2D planar and graphical surface on it. This type of object tracking
is often used in the field of augmented reality (AR, Figure 2.1a).
Differently in the video tracking is given a moving object as input, where its position
changes in each frame, so the algorithm needs to be able to deal with this additional
variable. An application can be video surveillance (Figure 2.1b).

6 2| State of the Art

(a) (b)

Figure 2.1: Example of image tracking (a) and of video tracking (b).

In this thesis, we will focus our attention on video tracking. Hence Going deeply into
object tracking, it requires two steps:

• object detection, where the object is identified and the algorithm clusters the pixel
of the object;

• object classification, where the objects are classified as fruit, animal, human etc.
Based on its motion, texture, shape and/or color.

Balaji et al [1] proposed a formalization of the main technique in moving object detection,
classification and tracking (Figure 2.2).

2| State of the Art 7

Figure 2.2: Phase and technique of object detection,classification and tracking [1].

We will focus only on a few of these methods that are prominent in the DLO tracking
literature (Section 2.3).
Analyzing the object detection methods, in order to identify the moving object the frame
difference method calculates the difference between two consecutive frames, even if it is
very easy to implement, it requires a static background. In the Background subtraction
method, it is necessary to first construct a background model in order to obtain a ref-
erence, that is compared with each video sequence to determine the possible variations.
In the case of a recursive algorithm, based on each given input frame, it updates the
background model. A method used in this technique is the Gaussian mixture, further
detailed in Section 2.3.1.
Moreover, in the object classification methods, we can emphasize our attention in classifi-
cation based on color (the technique that is used in most of the methods in Sections 2.3.2

8 2| State of the Art

and 2.3.3), due to the fact that the color is easy to acquire with respect to the other
feature, but it still offers high accuracy with respect to the other methods.
The different object tracking methods are presented in Table 2.1:

Object tracking
Point based Kernel based Silhouette based

Kalman filter Simple Template Matching Contour matching
Particle filter Mean shift Shape matching

Multiple hypothesis tracking Support vector machine
Layer based tracking

Table 2.1: Object tracking methods.

Point based groups together all the techniques where the moving objects during the track-
ing are represented by their feature points. One of the problems in tracking is the wrong
detection of the object due to occlusion, a problem that can be avoided with this type of
technique. In particular, in the case of the Kalman filter, the basic steps performed are
the prediction of the state variable based on a set of observations and the updates of this
variable for the next time instant, where a weight between the noisy measurements and
the predicted variable is made by the Kalman filter, using a modeling state equation.
In the particle filter, the basic steps are the prediction and the update of the state as in
the Kalman filter. Moreover, before the update of the variable, all models of that vari-
able will be generated using the particle filter: this ensures tracking of multiple objects
differently from the Kalman filter.
The point tracking method is preferred to the Kernel tracking and the Silhouette tracking
due to the fact that these two methods do not consider or partially consider the occlusion.

2.2. Deformable Objects

Sanchez et al [2] proposed a classification of deformable objects based on their physical
properties and their shapes. Considering the physical properties of the object, they may
be divided in:

• object with no compression strength;

• object with large strain or present a large displacement.

The first are those objects which do not present any resistance when two opposite end-
points are pushed toward each other, an example are the ropes and clothes. The second

2| State of the Art 9

one are those objects with a low Young modulus, as a sponge or paper.
Considering the object’s shapes, they can be divided in:

• uniparametric objects, characterized by one dimension significantly larger than the
other two, an example is a cable where the length is much larger than its width or
height ;

• biparametric objects, characterized by one dimension smaller that the other two, as
a paper where the thickness is negligible with respect to the other dimensions;

• triparametric objects, that are the solid objects.

Figure 2.3: Classification of a deformable objects [2].

In this thesis, we will focus on the deformable linear object (DLOs), also known as de-
formable one-dimensional objects (DOOs) (Figure 2.3), and on semi-deformable linear
objects (SDLO) (Section 3.1.1).
SDLOs are a subclass of DLO which are characterized by the presence of one or more rigid
parts, usually connectors at the cable’s ends, an example of it is showed in Figure 2.4b.

10 2| State of the Art

(a) (b)

Figure 2.4: Example of a DLO (a) and of a SDLO (b).

2.3. DLO tracking

In the last ten years, the interest in the tracking of deformable objects has grown, as
we can think a large number of industrial, household, and medical scenarios involve the
manipulation performed by a robot of deformable linear objects (DLOs) such as cables,
ropes, wires, and strings. Hence it has never been more important to have information
about the shape of the manipulated DLO, in particular in presence of occlusion allowing
to perform operations in a constrained environment.
The literature dealing with DLO tracking can be divided in tracking methods that use
the physics simulation (Section 2.3.2) and in ones without it (Section 2.3.3).
But there are other innovative methods, as the one presented in [3] that proposes a
tracking of a thread in a surgical scenario. The thread has a multi-color pattern. The
object is first modeled in 3D with a non-uniform B-spline, and the tracking problem is
formulated as an energy minimization over the spline control points (Figure 2.5).

Figure 2.5: Manipulation of a thread with da Vinci instruments (left) and the 3D tracking
model (right) [3].

2| State of the Art 11

Although this method is able to track efficiently a very thin object as a thread, it has
a strong constraint on the presence of a multi-color DLO, this limit is too strict in an
industrial application where the DLOs have a uniform color.
A novel approach called “slicing method”, is proposed by Rastegarpanah et al [4]. The
point-cloud captured is firstly filtered in order to isolate the DLO, then it is recursively
sliced into several smaller node point-clouds, and finally, these resultant nodes are used in
a trajectory step, where the output is a trajectory composed of waypoints that describe
the current state of the DLO. Even though the algorithm needs only two parameters for
the configuration reducing in this way the set-up time, it presents good results only in
simulation with respect to the real-world experiment (Figure 2.6). Where a flexible pipe
with reflective markers, which position is tracked by two optiTrack cameras, in order to
produce a ground truth. Then the pipe is swung from a certain high and a depth camera
is used to reconstruct the point-cloud. One of the limits of this algorithm is that it does
not ensure robustness under occlusion.

Figure 2.6: Experimental set up of Rastegarpanah et al [4].

The key common point in most DLO tracking techniques is the use of GMM-EM (Sec-
tion 2.3.1), so before going deeply into them, we will first need to understand the GMM-
EM and its use in DLO tracking.

12 2| State of the Art

2.3.1. Gaussian Mixture Model Expectation-Maximization (GMM-

EM)

A Gaussian Mixture is a function that is composed of different Gaussians, where the
number of Gaussians corresponds to the number of clusters. Each Gaussian is featured
by the following parameters:

• the mean µ that defines its centre;

• the covariance Σ that define its width;

• the mixing probability ρ that defines how big or small the Gaussian function will
be.

Figure 2.7 shows a case where we have three Gaussian functions.

Figure 2.7: Gaussian mixture, composed by three Gaussian functions with mean µk and
standard deviation σk (k ∈ {1, 2, 3}).

The idea is then to find the optimal values for the three parameters such that each
Gaussian fits the data points belonging to each cluster.
Given the object’s point-cloud at the time step t, Y t = {yt1, yt2, yt3..., ytM} ∈ RMxD where
D is the dimension of the data (in the considered case D = 3). We can assume that the
deformable object can be discretized by N nodes, hence at the same time step t, we obtain
X t = {xt

1, x
t
2, x

t
3..., x

t
N} ∈ RNxD, usually with N << M . Due to the fact that between

two time steps t and t+1, the change of deformable object is small, the tracking problem
can be seen as a point-set registration problem, that consists in an estimate X t+1 aligning
X t towards Y t. Hence following [5], this problem can be formulated using a GMM, where

2| State of the Art 13

X t are the centroids of the Gaussian, and Y t are the data points generated from the
Gaussian mixture. ytm represents the m-th point in the point-cloud and correspondingly
xt
n is the position of the n-th node at time t. The probability distribution of point ytm is:

p(ytm) =
N∑

n=1

1

N
N (ytm;x

n
n, σ

2I) =
N∑

n=1

1

N

1

(2πσ2)D/2
exp

(
−||ytm − xt

n||2

2σ2

)
(2.1)

Equation (2.1) assumes that the mixing probability ρ is fixed for each Gaussian equal to
1
N

and they share the same isotropic covariance σ2I. In order to consider the noise and
the outliers, we need to add an additional uniform distribution to the mixture model:

p(ytm) =
N+1∑
n=1

p(n)p(ytm|n) (2.2)

Defining with ω the weight of uniform distribution :

p(n) =

(1− ω) 1
N
, n = 1, ..., N

ω, n = N + 1

p(ytm|n) =

N (ytm;x
n
n, σ

2I), n = 1, ..., N

1
M
, n = N + 1

(2.3a)

(2.3b)

So in this way fixing the mixing probability ρ, the goal becomes to find the centroids xt
n

and the variance σ2 that maximize the log-likelihood of equation Equation (2.2):

L(xt
n, σ

2I|Y t) = log
M∏

m=1

p(ytm) =
M∑

m=1

log

(
N+1∑
n=1

p(n)p(ytm|n)

)
(2.4)

Analyzing the Equation (2.4) due to presence of a summation inside the log(·) the opti-
mization problem:

(xt
n
∗
, σ2∗) = argmax

xt
n,σ

2

L(xt
n, σ

2I|Y t) (2.5)

is not convex. For this reason, we can define a complete log-likelihood function Q:

Q(xt
n.σ

2) =
M∑

m=1

N+1∑
n=1

p(n|ytm) log(p(n)p(ytm|n)) (2.6)

With the definition of the Equation (2.6), we can solve the optimization problem using a
recursive algorithm: the Expectation Maximization (EM) algorithm.

14 2| State of the Art

E-step

In the E-step the posterior probabilities p(n|ytm) is calculated using the current GMM
parameters obtained from the last M-step. So using the Bayes rule we can obtain:

p(n|ytm) =
exp

(
− ||ytm−xt

n||2
2σ2

)
∑N

n=1 exp
(
− ||ytm−xt

n||2
2σ2

)
+ (2πσ2)D/2ωN

(1−ω)M

(2.7)

With the obtained value of p(n|ytm), we can pass to the M-step.

M-step

During the M-step is found an estimation of xt
n and σ2 minimizing:

Q = −
M∑

m=1

N+1∑
n=1

p(n|ytm)
||ytm − xt

n||2

2σ2
− NpD

2
log(σ2) (2.8)

where Np =
∑M

m=1

∑N
n=1 p(n|ytm). Then the E and M step are iterated until the function

Q converges (Figure 2.8).

Figure 2.8: Point set registration scheme [5]. Due to the fact that the object shape between
two time steps does not change too much, the estimation (xt−1

n , σ2) of the previous step
is used to initialize the EM at time t.

The GMM-EM method is able to track the deformable object despite noise and outliers
(Figure 2.9a), but fails in presence of occlusion (Figure 2.9b).

2| State of the Art 15

(a) (b)

Figure 2.9: Example of result obtained using the GMM-EM [5]. The blue dots composed
the point-cloud, and the red circles are the estimated node positions. (a) At time step t,
GMM is able to estimate the node state regardless of noise and outliers. (b) At time step
t + 1, occlusion happens. GMM is unable to estimate the status in the occlusion zone,
and the estimate in other areas is also severely disturbed.

The Figure 2.9 underlines the necessity of an extension of this method in order to be
robust to the occlusions.

2.3.2. DLO tracking using physics/simulation

Schulman et al [6] proposed a modified GMM-EM method (Section 2.3.1) where the nodes
X t are the point of a physical model, obtained from a simulation. In this method is added
to the Gaussian mixture model the visibility variables vn, n = 1, 2, .., N . This parameter
defines if the node xt

n is visible or not from the camera. Then is added a prior on xt
n :

p(xt
n) = e−

1
η
V0(xt

n) (2.9)

where V0(x
t
n) is the potential energy of the tracked object, which takes into account

the gravitational and bending energy computed thanks to the physical model. Adding
this prior means assuming a quasi-static scenario where the objects move slowly and
are continually at low-energy configurations. Before passing to the E-step, at each time
step the visibility variables vn are firstly calculated, considering whether or not the line
segment from the camera to the node is blocked by some modeled object. Then the
E-step is applied, calculating the posterior probability influenced by vn. The M step, is
performed by applying a virtual force on the nodes and time-stepping a generic physics
simulator. In this way, only the xt

n which are visible are updated and the ones that are

16 2| State of the Art

not visible kept their previous position. Figure 2.10 shows some examples of tracking
with this method. In spite of this method’s account for physical constraints imposed by
collision and by the material of the deformable object and it is robust to the occlusion,
the use of a physics simulator is computationally heavy. In addition, it presents some
failure when there is an occlusion of some critical part of the rope.

Figure 2.10: Example of DLO tracking using the GMM-EM with a physics simulator [6].

Nevertheless, the estimation of obstacle position using the visibility variable vn is not
always possible and it is computationally expensive. Hence, Te Tang et al [5] proposed a
method that is robust to occlusion without the use of a visibility variable: The Structured
preserved registration (SPR).

SPR

The main idea of SPR is to introduce constraints on the Gaussian centroids such that they
are registered in the area with higher likelihood but respecting the physical constraint of
the tracked DLO. Hence both global and local regularization are introduced on GMM
registration. The goal of the local regularization is to regularize the relative motions
between neighbor points, this is made considering that any point at time step t − 1 can
be characterized by the weighted sum:

xt−1
n =

∑
i∈In

Sni · xt−1
i (2.10)

where In is the set for K nearest point to xt−1
n that can be found efficiently by the K-

nearest neighbor (KNN) algorithm and Sni is the weight matrix that captures the local

2| State of the Art 17

topology between xt−1
n and the surrounding node xt−1

i . When at time t the DLO changes
its shape, the tracking points can change but the local structure is maintained so:

xt
n ≈

∑
i∈In

Sni · xt
i (2.11)

Where the optimal combination of weights Sni can be performed by solving a constrained
least square problem. There could be many sub-optimal weights due to the singularity
of the matrix when solving least squares, so it is integrated all L sub-optimal weights to
characterize the local structure. Further details can be found in [5]. Then, in order to
maintain the local topology, Elocal should be as small as possible. This means that there
is not a local change between t− 1 and t:

Elocal =
N∑

n=1

L∑
l=1

||
N∑
i=1

S
(l)
ni x

t
i|| (2.12)

Next global regularization is introduced, made following the CPD method [7], which reg-
ularizes the displacements of the entire body at neighbor time steps. Instead of modeling
each point xt

n as an independent Gaussian centroid, the frame-to-frame change is included
in a spatial xt

n = T (xt−1
n ,W t) that maps every point in the space around our object of

interest at time t− 1 to another point at time t using parameter matrix W t ∈ RNxD. At
last the Equation (2.6) is modified defining the likelihood function Q̃:

Q̃ = Q(xt
n, σ)−

τ

2
Elocal −

λ

2
Eglobal (2.13)

where τ ∈ R+ and λ ∈ R+ are trade-off weights that balance the regularization of local
and global structure. In addition, Eglobal depends on the weight matrix W (for more
detail see the appendix of [5]). Now as in 2.3.1 the EM algorithm can be performed but
estimating the parameters (W,σ2). The differences of use SPR instead of GMM can be
noticed from Figure 2.11, where SPR under occlusion still works.

18 2| State of the Art

(a) (b)

Figure 2.11: Example of result obtained using SPR in presence of occlusion[5]. The blue
dots composed the point-cloud, and the red circles are the estimated node positions. (a)
At time step t, GMM is able to estimate the node state regardless of noise and outliers.
(b) At time step t+ 1, occlusion happens. Differently from Figure 2.9b SPR is robust to
the occlusion because the topological structure is preserved from the last time step.

The DLO as an object need to satisfy a series of physical laws, such as kinematics,
dynamics and penetration constraints. In order to have a tracked object that follows
these laws, the object states are first estimated by SPR and then the estimated states
are sent to a dynamic simulation for further physical refinement. Indicating with X̃ t =

{x̃t
1, ..., x̃

t
n} ∈ RNxD the states of the virtual object, if there is a deviation between x̃t

n

(the position of node obtained from simulation) and xt
n (the position of the node obtained

from SPR), a tracking force will be generated using an impedance controller and applied
on virtual nodes. The final framework composed by SPR and dynamic simulation is
summarized in Figure 2.12 and Figure 2.13 shows the tracking result obtained with SPR
.

Figure 2.12: Scheme of the tracking method proposed by [5]

2| State of the Art 19

Figure 2.13: Tracking using SPR [5].

This method is robust when the occluded part is small or the tip of the cable is not
occluded, in the opposite case SPR would fail to estimate the correct cable state. For
this reason, Jin et al [8] proposed a point-cloud recovery inspired by the background
subtraction method in computer vision (Section 2.1). In Figure 2.14 it can be noticed
that at time step t, an occlusion happens (Figure 2.14c), so the idea is to complete the
point-cloud in frame t (Figure 2.14c) using the foreground mask that underlines the part
where the occlusion (Figure 2.14d) and the point-cloud at time t − 1 that complete the
occluded part (Figure 2.14e).

20 2| State of the Art

(a) (b) (c)

(d) (e)

Figure 2.14: (a)Background. (b) RGB and point-cloud at time t− 1. (c) RGB and point-
cloud at time t. (d) foreground mask obtained subtracting the background from frame t.
(e) recovered point-cloud [8].

The point-cloud recovery is then used to obtain the point cloud Y t for the node registration
(Figure 2.15).

Figure 2.15: Block scheme of SPR with point-cloud recovery. Ȳ t is the point-cloud before
the recovery, Y t is the point-cloud after the recovery, X̃ t−1 is the state of virtual object
obtained from the dynamic simulation and X t are the tracked points.

Although this method increases the robustness at occlusion, the use of background sub-
traction limits this method to an environment with a static background, so suppose to
have first a background free from DLOs like Figure 2.14a and then, while the DLO is

2| State of the Art 21

manipulated and tracked, the background changes adding, for example, another DLO,
this recovery will fail. SPR [5] suffers from incorrect registration of branched DLO, in
case a single branch is occluded. That’s why Wnuk et al [9] proposed CAMP, a modified
SPR where is introduced a branch-wise probability in the GMM. The result of CAMP
implementation is shown in Figure 2.16.

(a) (b)

Figure 2.16: (a) SPR has difficulty to track the occluded branch, while (b) CAMP suc-
cessfully tracks the occluded branch [9].

SPR [5] and all its extensions and modifications ([9] and [8]) are based on a combination of
probability-based registration and dynamics-based simulation that provides an estimate
with strong robustness to sensing noise, outliers and occlusion as well as satisfying physical
constraints. The cons as in [6] is the use of the physics simulation that is computationally
heavy.

2.3.3. DLO tracking without physics simulation

There are other methods that do not consider the use of a physics simulation. Jin et al
[10] proposed to use first a Neural network (U-net [11]) to isolate the DLO: the interesting
fact is that the U-net is trained using a single video of the DLO manipulation, and for
each frame a DLO segmentation mask is generated automatically with the color filter.
Then the registration step is applied using CPD [7], without adding a local regularization
as SPR (Section 2.3.2) but simply connecting the registered nodes and re-sampling along
the connected path to obtain equally distributed nodes. This limits the efficiency of this
method only without heavy occlusion. Instead, Waltersson et al [12] proposed to first
isolate the DLO from an RGB image using a color mask, then use the mask information
and the depth image to obtain the point-cloud. The point-cloud is then used to perform
the point registration for tracking, differently from SPR presented in the previous section

22 2| State of the Art

(Section 2.3.2) a simulator is not used. To deal with this lack that gives stable real-time
tracking, the local regularization is kept constant from the initial estimation. Then for
each call of SPR algorithm, the previous estimation is used as an initial guess (Figure 2.17).

Figure 2.17: Scheme of tracking method proposed in [12].

On the other hand Jin et al [13] extended the SPR with RWLS (robust weighted least
squares), which is used to calculate the local deformation model of the DLO under uncer-
tainties. Physical simulation or physical model can be difficult to obtain in unstructured
environments, for this Berenson et al [14] proposed a method that does not rely on these
two things. The method is called CDCPD, as SPR is based on the GMM-EM and on
local and global regularization. But differently from SPR is not considered that all Gaus-
sian distributions have the same mixing factor ρ = 1

N
, because it means that for each

Gaussian distribution is equally possible to generate a point of the point-cloud. It is easy
to understand that this assumption fails especially in case of occlusions, hence as [6] it is
considered a visibility variable v(n) that penalizes the nodes below the visible point-cloud
and the points farther away from the object. So the Equation (2.3a) becomes:

p(n) =

(1− ω)v(n), n = 1, ..., N

ω, n = N + 1
(2.14)

And the posterior probability in E-step (Equation (2.7)) becomes:

p(n|ytm) =
v(n)exp

(
− ||ytm−xt

n||2
2σ2

)
∑N

n=1 v(n)exp
(
− ||ytm−xt

n||2
2σ2

)
+ (2πσ2)D/2ωN

(1−ω)M

(2.15)

Then the Elocal presented in SPR mitigates the topology consistency problem, but it
does not take into account that the DLOs for the features presented in Section 2.2 are
less deformable when being stretched than being compressed. In order to consider this
limitation, a constrained optimization method is introduced to post-process the output
of the GMM-EM, so that it allows the compression while keeping the distance between

2| State of the Art 23

points below a threshold. A very powerful innovation is the tracking failure recovery
step, where firstly an energy function is constructed (Jfree) that indicates the percentage
of points that are in free space (the space between the ray emitted by the camera and
the visible point) and how far they are from the non-free space, and this is useful to
detect if a tracking failure happened and only apply the recovery when needed. Then a
shape descriptor is used to find the most relevant previous state of the object after several
occlusions.
After one year Wang et al [15] proposed an extension of the previous method: CDCPD2. It
introduced a tracking method similar to Kalman filter method (Section 2.1). In particular,
another term called EPred =

∑N
n=1 ||xGMM

n − xPred
n ||2 is added in Equation (2.13), where

xGMM
n is n-th tracked point obtained using the GMM method, while xPred

n is a prediction
of the n-th tracked point using a model of deformation of the object. The idea is to make
a prediction with the motion model, and then use it to update the tracking result along
with what is observed at the next frame (for further details about the implementation
and type of motion model see [15]). This addition is able to avoid the shrinking problem.
It happens when the tracked object has shrunk due to loose of the point due to occlusion,
e.g. Figure 2.18a where a DLO is trailed and the end of the rope is occluded by a box.
In addition, it is more robust with to respect the self-intersection and interaction with an
obstacle, as we can see from Figure 2.18 .

(a)

(b)

Figure 2.18: (a) CDCPD demonstrates the difficulty to track the DLO when its end is
occluded (left image) and when it interacts with the cylinder (right image). (b) While
CDCPD2 demonstrates to have no problem in tracking the DLO in both cases. [9]

The CDCPD2 is the most efficient of the explained method, due to the fact it is able
to track deformable objects in more realistic scenarios, where occlusion and clutter are
available. In addition thanks to tracking failure recovery it is able to track the DLO

24 2| State of the Art

also in case of several occlusions, and all this without any physics simulation. Although
the optimal results in the state of the art and the available code on GitHub 1, this
implementation was not complete.
Since the aim of this thesis was to implement a robust method for tracking DLO, giving
a contribution to the current state of the art, it was decided to implement a different
tracking method, easier to implement.
Kangchen et al [16] proposed a data-driven method to robustly estimate the state of DLO
from a single frame, also in case of occlusion, without the use of physics simulation and
robot configuration. Figure 2.19 summarizes this method, a point-cloud, which can be
fragmented due to occlusion, is given as input to a Neural network, PointNet++ encoder,
that extract the point-cloud features. These features are given to two branches: End-
to-End Regression, which focuses on global geometry information, and Point-to-Point
Voting, which focuses on local geometry information. Then their estimations are fused to
combine the advantages of the two branches, in this step is used CPD ([7]), without using
the E-step (for further detail see [16]). Although this method ensures accurate tracking of
the DLO in case of occlusion and not, the used model does not use temporal information,
so the predicted shape might not be continuous across the adjacent frames.

Figure 2.19: Scheme of the proposed method for occlusion-robustly estimating the 3-D
states of DLOs[12].

1[15] code on GitHub: https://github.com/UM-ARM-Lab/cdcpd

https://github.com/UM-ARM-Lab/cdcpd
https://github.com/UM-ARM-Lab/cdcpd

2| State of the Art 25

2.4. Thesis contribution

The tracking solution proposed above (Sections 2.3.2 and 2.3.3) limits its use in an indus-
trial scenario where the DLO is manipulated from the working table at a certain height,
and other objects or DLOs also with the same color could be in the workspace. Moreover,
[8] considers an occlusion recovery only in case of a static background, but the background
can change during the manipulation. For example when the manipulated DLO is long
enough such that the extremes of it touch the working table and will move during the
operation. So in this scenario, the use of background subtraction would fail.
For this reason, this thesis tries to deal with these limitations by proposing to track differ-
ent classes of DLOs and SDLOs (Section 3.1.1) in 3D, without using probabilistic methods
or physics simulation, but using only vision algorithms. This algorithm is able to:

• deal with the limitation of the vision system as the impossibility to detect with good
accuracy the position and the shape of an object in presence of dust, occlusions,
particular light conditions or when similar shaped and colored objects are placed
close one to each other in the working area;

• track performing a geometric estimation of the object, that will be reported in the
reference system of robot in order to give complete information on the tracked object
shape. In addition, it will be used in future work to implement a visual servoing
algorithm;

• track robustly the DLO also in presence of dynamically changing background or
other objects and/or DLOs in the working environment (that can have also the
same shape and color of tracked DLO). This is possible using the depth information
from the camera, in order to isolate only the manipulated DLO of interest, which
does not have any limit on the length;

• track in case of occlusion, which can be a dynamic or static one, made by the dual-
arm robot that manipulates the DLO or by the object in the scene. Differently from
the presented literature, the occluding object can be also of the same color. This is
possible thanks to the implementation of the position of the robot grippers in the
geometric estimation of the object and thanks to the construction of a depth filter.
Thanks to it the limit presented in SPR ([5]) on occlusion of the tip of the rope is
mitigated.

27

3| Setting of the problem

This Chapter deals with the setting of the considered problem, detailing the set-up ex-
ploited and the kinds of DLOs used. Some useful notions are also recalled.
In particular, we will first detail the exploited set-up and then explain how a digitized
image is represented and what color models are used for it. In addition, an introduction
on camera calibration will be given, and we will derive how to obtain a representation of
a point in the robot base frame, from its representation in the camera frame.

3.1. Set-up

The hardware set-up is composed by a robot, a camera in eye-to-hand configuration and
a computer (Figure 3.1a). The computer controls and exchanges information with the
robot using an Ethernet connection (further details in Chapter 5), moreover the computer
receives visual information by the camera and are connected with USB (Figure 3.1b).

(a) (b)

Figure 3.1: Hardware set up (a) and how it is connected (b).

The robot is an ABB IRB14000, also called YuMi, it is a dual-arm robot with 7 degrees of
freedom for each arm. Thanks to this feature, it is capable to manipulate the DLO with

28 3| Setting of the problem

high precision and repeatability. Each flange is equipped with an electric parallel gripper
on which custom 3D printed fingertips are mounted (Figure 3.2).

Figure 3.2: Gripper.

The camera is an Intel realsense D435i (see Table 3.1 for the tech specs), it is an RGB-D
so has both an RGB sensor and depth sensors (further details on RGB and depth in
Section 3.2.1). It is a stereo depth camera, which means that it has two sensors, spaced
a small distance apart, and takes the two images from these two sensors and compares
them. Since the distance between the sensors is known, these comparisons give depth
information. To improve the accuracy of depth data it has also an infrared projector
(Figure 3.3).
The eye-to-hand configuration is obtained by combining three rods of different lengths
as shown in Figure 3.4. This configuration grants a fixed field of view as the robot
moves, moreover, also the geometric relationship between the camera and the workspace
is fixed, allowing an offline calibration. The cons of this configuration is that as the robot
moves through the workspace, it can occlude the camera’s field of view, for this reason in
Chapter 4 we will propose a methodology dealing with this problem.

Minimum depth distance (Min-Z) at max resolution: ∼28 cm
Depth Accuracy: <2% at 2 m
Specs Output resolution: Up to 1280 × 720

Frame rate: Up to 90 fps

RGB Frame resolution: 1920 × 1080
Specs Frame rate: 30 fps

Sensor resolution: 2 MP

Table 3.1: Camera specifications.

3| Setting of the problem 29

Figure 3.3: Camera Intel Realsense D435i.

Figure 3.4: Eye-to-hand configuration with with the measures of the rods. The first rod
is in black, the second one is in red, and the third one is in green.

30 3| Setting of the problem

3.1.1. Class of DLOs

To simulate an industrial scenario, the robot manipulates the DLO at a certain high
from the working table, where there are positioned different kinds of DLO as shown in
Figure 3.5.

Figure 3.5: Manipulated DLO with the presence of DLOs in the background.

All the DLOs used during the manipulation or in the background can be seen in Figure 3.6
and they are described in Table 3.2. Considering that the DLOs are made of composite
materials and we don’t have any datasheet on their Young modulus, the submitted rigidity
values are qualitative. They were defined as follows:

• low rigidity ≃ 1e6Pa;

• medium rigidity ≃ 1e7Pa;

• high rigidity > 1e7Pa.

3| Setting of the problem 31

Figure 3.6: Class of DLOs.

32 3| Setting of the problem

Diameter Length Peculiarity Rigidity

DLO1 1.2 cm 1.55 m black branched SDLO low

DLO2 0.7 cm 1.95 m black power cord middle

DLO3 0.8 cm 2.36 m white power cord middle

DLO4 0.8 cm 0.78 m hose for compressed air, translucent high

DLO5 0.6 cm 0.61 m hose for compressed air, translucent high

DLO6 0.4 cm 0.85 m hose for compressed air, translucent high

DLO7 0.6 cm 1.53 m white Ethernet cable high

DLO8 0.75 cm 0.72 m hose of a motorbike braking system, metallic highest

Table 3.2: Specification of used DLOs.

3.2. Computer vision tools

Computer vision is a subfield of computer science that enables the extraction of meaningful
information from digital images, videos, and other visual inputs.

3.2.1. Image representation

When an image is digitized, it is composed of a series of pixels represented in the “image
plane” having the origin in the top left corner of the image (Figure 3.7).

Figure 3.7: Digitized image in the “image plane”.

3| Setting of the problem 33

The image dimension is described by the following tuple: (height, width, number of
channels), where the number of channels depends on the type of color model used. In
the case of grayscale, the number of channels is 1 and the image is represented by a 2D
matrix, where each pixel assumes a value ranging from 0 to 255 that describes its color
in a scale from white to black.
If colors are also taken into account, then the number of channels is 3, so the image is
represented by a 3D matrix. The most used color model is the RGB, where each pixel
defines in terms of a number ranging from 0 to 255 the amount of red, green, and blue to
express its color. Alternative color models that will be used in this thesis (see Chapter 4)
are the BGR and the HSV. The first one is like the RGB, but changes only the order of
definition of the color. The HSV is a cylindrical color model that specifies each pixel color
in terms of hue, saturation, and value (Figure 3.8). The hue represents the color, the
saturation represents the amount of color used and the value represents the brightness.
The hue range is [0,179], the saturation range is [0,255] and the value range is [0,255].

Figure 3.8: HSV color model [17].

Our camera is an RGB-D one, so it gives as output not only the color image but also the
depth image, also called the depth map. It is an image where each pixel contains only
information about the related distance of the scene objects from the camera viewpoint,
for this reason, it has one channel. A depth map has different color representations that
associate the distance to color, the one that will be used in this thesis is the jet.
(Figure 3.9) shows an example, the jet colormap goes from blue to red based on the
distance from the camera and the black parts are the “holes”.

34 3| Setting of the problem

(a) (b)

Figure 3.9: (a) RGB image. (b) Depth image in jet colormap.

The Holes are common in stereo depth camera and represent depth data unavailable or
that did not meet the confidence metric, and instead of providing a wrong value, the
camera provides a value of zero at that point. They commonly result from:

• Occlusions, the left and the right images do not see the same object due to shad-
owing;

• lack of texture, stereo matching relies on matching texture in the left and right
images, so for texture-less surfaces like a flat white wall, the depth estimate can be
challenging;

• multiple matches, this happens when there are multiple equally good matches, such
as when looking at a very uniform periodic structure;

• no signal, this happens if the images are under-exposed or over-exposed.

However, there are strategies to deal with them that will be presented in Section 4.1.

3.2.2. Camera calibration matrix

The camera needs to be calibrated before use. There are two types of calibration:

• internal calibration: determination of intrinsic parameters of the camera;

• external calibration: determination of the extrinsic parameters of the camera like
the position and the orientation of the camera with respect to a chosen frame (e.g.
the base frame of the robot).

3| Setting of the problem 35

Since the intrinsic parameters were already available, in the following the external cali-
bration is detailed. Let us introduce the homogeneous transformation matrix :

Aj
i =

[
Rj

i tji
03×1 1

]

Aj
i is a 4×4 matrix that relates the position and orientation of a point in the frame i with

the position and orientation in the frame j. Rj
i is a 3× 3 matrix is the rotation matrix of

the frame i with respect to the frame j. tji is a 3× 1 vector that defines the translation of
the frame i with respect to the frame j. 03×1 is a row vector composed of 3 zeros.

Figure 3.10: Aruco marker frame (yellow), robot base frame (black), translation vectors
(red).

Considering Figure 3.10, with tx = 0, 205 m and tz = −0, 005 m, we can define the
homogeneous transformation matrix of the marker frame with respect to the robot base
frame:

Ab
m =

1 0 0 0, 205

0 1 0 0

0 0 1 −0, 005

0 0 0 1

36 3| Setting of the problem

Figure 3.11: Marker frame (yellow), robot base frame (black), camera frame (pink), and
homogeneous transformation matrices (red).

Since we are interested in expressing the tracked point in the coordinates of the base
frame of robot and vice versa, the matrix Ab

c (the homogeneous transformation matrix
of the robot base frame with respect to the camera frame) has to be computed. So by
making reference to Figure 3.11, it follows:

Ab
c = Am

b A
m
c (3.1)

where Am
c is the homogeneous transformation matrix of the camera frame with respect to

the marker frame, which can be easily computed by detecting the marker with the camera
(see Section 4.1 for details). It follows that, from eq. (3.1), given a point pc in the camera

3| Setting of the problem 37

frame, it’s possible to obtain its coordinate expressed in the robot base frame pb, by:

pb = Ab
c · pc (3.2)

39

4| DLO shape tracking algorithm

This chapter describes the proposed tracking algorithm, developed with the aim of track-
ing different types of DLOs (described in Section 3.1.1) after they are grasped at their
ends and raised at a certain high from the working table. As described in Chapter 3,
there are different kinds of DLOs on the working table.
The implementation was carried out using Python as the main programming language.
The main-third party libraries used are:

• pyrealsense21 to interface with the Intel Realsense camera;

• Numpy [18] to convert the frames and the data as an array and to manage them;

• Open3D [19] for point-cloud creation and manipulation;

• Scikit-learn [20] for evaluation of the fitting error and for construction of the fitting
problem;

• OpenCV [21] for the calibration of the camera and for the vision operation on the
frames, as the color mask.

Figure 4.1 shows the overall flow chart of the proposed tracking strategy. In this chapter
we will go deep into the implementation of these blocks, in the following order:

• In Section 4.1 we will describe the pre-processing step;

• in Section 4.2 we will focus on the segmentation of the DLO, a fundamental step
for the point-cloud creation;

• Section 4.3 will explain the point-cloud creation and its manipulation in order to
obtain only a few but important points;

• In Section 4.4 we will concentrate our attention on how to perform the fitting, in
order to obtain a function describing the shape of the tracked DLO.

Afterward, we will focus on the occlusion problem.
1https://intelrealsense.github.io/librealsense/python_docs/_generated/pyrealsense2.

html

https://intelrealsense.github.io/librealsense/python_docs/_generated/pyrealsense2.html
https://numpy.org/doc/stable/reference/index.html
http://www.open3d.org/docs/release/index.html
https://scikit-learn.org/stable/index.html
https://docs.opencv.org/4.x/index.html
https://intelrealsense.github.io/librealsense/python_docs/_generated/pyrealsense2.html
https://intelrealsense.github.io/librealsense/python_docs/_generated/pyrealsense2.html

40 4| DLO shape tracking algorithm

Figure 4.1: High-level flow chart of proposed tracking strategy. The red points represent
the tracked shape of the DLO.

4| DLO shape tracking algorithm 41

4.1. Pre-processing

In this phase, the initial settings for the tracking algorithm are defined.
Firstly we need to calibrate the camera in order to obtain the matrix (Ab

c)
−1. This matrix

is obtained thanks to cv2.aruco library that takes as input a frame from the camera, it
allows to detect the aruco marker (Figure 4.2) and to obtain Rc

m and tcm, respectively the
rotation matrix and translation vector of the marker frame with respect to the camera
frame. Obtaining them, the matrix Ac

m, the homogeneous transformation matrix of the
aruco marker frame with respect to the camera frame, can be constructed. Moreover,
knowing that Am

c = (Ac
m)

−1 and following eq. (3.1), we can obtain Ab
c. This will be useful

in Section 4.3.1. The pros of having a camera in eye-to-hand configuration is the fact that
this step can be done offline or only for the first use of the algorithm.

Figure 4.2: Detected aruco. The red line is the x-axis, the green line is the y-axis and the
blue line is the z-axis.

Then we need to connect as a client through socket with the YuMi robot (further details
in Section 5.1). Furthermore, the next step is the configuration of the camera.
Figure 4.3 shows an RGB frame and depth frame during a DLO manipulation. Focusing
our attention on Figure 4.3b, the DLOs in the background “disappear” because they are
at the same depth as the working table. In particular, we can notice the holes on the
DLO circled in red, these holes need to be filled.

42 4| DLO shape tracking algorithm

(a) (b)

Figure 4.3: (a) Color frame. (b) Depth frame in jet colormap with holes circled in red.

The holes problem can be mitigated using the hole_filling_filter function implemented
in the pyrealsense2 library. This function takes as input a number in the range from 0
to 2, that corresponds to different filling logics:

• 0 is the ‘fill from left’, use the value from the left neighbour pixel to fill the hole
(Figure 4.4a);

• 1 is the ‘farest from around’, use the biggest (farthest away) value among the valid
five upper left and down pixel values (Figure 4.4b);

• 2 is the ’nearest from around’, use the smallest among the valid five upper left and
down pixel values (Figure 4.4c).

(a)

(b) (c)

Figure 4.4: Type of hole filling. (a) ‘Fill from left’. (b) ‘Farest from around’. (c) ‘Nearest
from around’.

4| DLO shape tracking algorithm 43

In the considered case, the ‘farest from around’ method does not resolve the problem of
the holes. Then the ‘nearest from around’ method takes as a reference more pixels around
the hole, so it gives the same depth of the DLO also to the background. Differently, the
‘fill from left’ method, fills the hole with the best possible depth value taking only the left
neighbour pixel. For this reason, the fill from left method is selected in our pipeline.
The other necessary camera preprocessing are:

• create and configure the pipeline to stream the color and depth information from
the camera;

• align the depth stream to color stream, in order to have a one-to-one association
between the pixels in the color frame and in pixels in the depth frame, necessary in
the point-cloud creation;

• acquire the camera intrinsic parameters useful in Section 4.3;

• acquire the depth sensor scale useful in Section 4.2.1. The depth sensor scale is a
constant number, which depends on the sensor, that maps the units of the depth
image into meters:

depth image in meters = depth sensor scale× depth image units

4.2. DLO segmentation

After the pre-processing step, we can enter in the description of the DLO segmentation
algorithm. The acquisition of the color and the depth frame of Figure 4.1 can be split
into different sub-steps:

• acquire the frame using the function pipeline.wait_for_frames that wait until a
new set of frames becomes available. If a frame is available by the time your pro-
cessing finishes, it will return immediately, if not, it will block and free up the CPU
until the next frame is available. In this way, the acquisition is less computationally
heavy;

• apply the hole filling on these frames;

• apply the alignment of hole filled depth frame to the color frame;

• acquire the depth and the color frame and convert them in arrays using
numpy.asanyarray;

• convert the color image from RGB to BGR, the color model used in the OpenCV

44 4| DLO shape tracking algorithm

library.

Figure 4.5 shows the result after the acquisition of the color and the depth frame.

(a) (b)

Figure 4.5: Results after the acquisition of color frame and depth frame. (a) Color image
after the BGR conversion. (b) Depth image after the hole filling.

4.2.1. Depth filtering

A challenge of the proposed algorithm is to track the DLO with other DLOs or objects,
even those of the same color as the tracked DLO, in the background. Consider our
assumption that the DLO is manipulated at a certain height from the working table,
hence the idea is to isolate the DLO from what is above and below it. This isolation is
made by implementing a depth filter whose steps and logic are shown in Figure 4.6.

4| DLO shape tracking algorithm 45

Figure 4.6: Depth filter flow chart, in orange the logic of the main used function:
numpy.where.

46 4| DLO shape tracking algorithm

Knowing the height in meters at which the DLO is manipulated, it’s possible to obtain
an upper and lower limit:

upper_clipping_distance =
upper limit in meters

depth sensor scale

lower_clipping_distance =
lower limit in meters

depth sensor scale

with the depth sensor scale acquired during the pre-processing. Note that the heights
interval where the DLO is manipulated can be obtained considering the grippers positions.
Subsequently, we need to create a blank image corresponding to a numpy array with the
same dimension and data type of the color image. And then fill each element of this
array with value (0, 124, 255), that correspond to the orange color in BGR. It was chosen
this color because is different from the DLO considered in this thesis (Section 3.1.1) or in
general from the DLO used in an industrial scenario.
The depth filter returns a new color image based on the depth one. Nevertheless, the
depth image has only 1 channel, so is necessary to create a 3 channel depth image using
numpy.dstack.
The main function is numpy.where (evidenced in orange in Figure 4.6) that compares
each pixel of the 3 channel depth image with the upper_clipping_distance and the
lower_clipping_distance, if this value is between these two limits, it will be assigned
to this pixel the color image pixel, otherwise it will be assigned the blank image one.
Iterating this logic, it will be created a new image called bg_removed with all in orange
except the DLO (Figure 2.3).

Figure 4.7: DLO1 (defined in Section 3.1.1) after the depth filtering.

The depth filter ensures that the tracking algorithm is completely unaffected by the back-
ground, which can also dynamically change. The application of the hole filling before the

4| DLO shape tracking algorithm 47

depth filtering guarantees that the DLO is not divided into different pieces by the filter.
In addition, Figure 4.8 gives demonstrate that the nearest from around hole filling does
not isolate only the DLO3 (defined in Section 3.1.1) but also the background.

(a) Fill from left. (b) Nearest from around.

Figure 4.8: Comparison of the hole filling methods after the depth filtering.

4.2.2. Color mask

Once the DLO is partially isolated by the depth filter, is possible to apply a color mask.
The color mask searches in each frame the pixels with a certain specified color, putting
in white all the pixels with this feature and in black the ones without it. It is easy to
understand the importance of applying before the depth filter and then the color mask,
without the depth filter in this step the color mask would segment all objects of the same
color of the manipulated DLO. The color mask gives as output a 1 channel image, that
allows the segmentation of the DLO in each frame (Figure 4.9).

Figure 4.9: Result of the color mask applied to Figure 4.7.

A key phase that makes easiest the color masking is the conversion from the BGR model
to the HSV model. The HSV has the advantage of separating the luma, or the image

48 4| DLO shape tracking algorithm

intensity, from the chroma, or color information. This means that in the case of an image
with a shadow, if we remain in RGB or BGR model the segmentation would fail because
the part with the shadow has very different features than the part without it, it would
be segmented only the part with the shadow or without it. Instead in the HSV color
space, the two parts have a similar hue component, due to the fact it represents the color
without brightness, while the shadow influences the other two components. Consequently,
the HSV model ensures a more uniform segmentation of the DLO.
Afterward, the conversion is necessary to define a lower and an upper threshold based
on the color of the DLO in terms of hue, saturation, and value. Using then the function
cv2.inrange all the pixels between these limits are put in white, the others are put in
black. The result shown in Figure 4.10a, is a mask image that colors in black anything
that is not very close to DLO color.

(a) (b)

Figure 4.10: (a) Result of cv2.inrange function. (b) Result after the dilation transforma-
tion.

As can be noticed from Figure 4.10a, this operation creates black holes in the object, which
can be resolved by applying the closing morphological transformation. This operation is
composed of two subsequent transformations:

• firstly a dilation, where defining a kernel of a certain size, slides through the image.
A pixel is considered white if at least one pixel under the kernel is white, otherwise
is black. So after this operation, the holes are filled but the DLO became thicker
(Figure 4.10b);

• Then is applied an erosion, a pixel is considered white only if all the pixels under the
kernel are white, otherwise it is black. So after this operation, the DLO returned
the original thickness but with the holes filled (Figure 4.9).

Even though the Figure 4.10b seems very close to the result obtained after the erosion
step (Figure 4.9), the erosion ensures the construction of the point-cloud (further details

4| DLO shape tracking algorithm 49

on the construction in Section 4.3) with a lower number of outliers (Figure 4.11).

(a) (b)

Figure 4.11: (a) Point-cloud applying only the dilation, with the outliers in red rectangles.
(b) Point-cloud applying the closing morphological transformation, with the outliers in
red rectangles.

4.2.3. Contour extraction

Figure 4.12: Contour extraction flowchart.

50 4| DLO shape tracking algorithm

Once obtained the output of the color mask, we can apply a contour extraction algorithm
on it. The algorithm is schematized in Figure 4.12. It starts finding all the contours in the
1 channel image (Figure 4.9) using the function cv2.f indcontours, specifying none as an
approximation method, this means that it will save all points along the boundaries, having
the same color and intensity. It then records all the discovered contours’ perimeters in
a list, which it will use to identify the longest one that is certain to correspond with the
DLO (Figure 4.13a) due to previous phases. After are found all the perimeters that are
bigger or equal 1

5
of the longest perimeter. Finally, all the pixels in the found perimeters

are colored in white and the image is transformed in grayscale (Figure 4.13b), in this way
the proposed online algorithm becomes more computationally efficient.

(a) (b)

Figure 4.13: (a) The biggest found perimeter colored in red on the color frame. (b) The
output of the contour extraction algorithm.

The contour extraction step ensures the segmentation only of the DLO between the two
grippers, extending the use of this tracking methodology to different kinds of DLOs with-
out any limit on their lengths. Figure 4.14a, shows the DLO1 manipulated to follow a
sinusoidal shape (Section 6.2), the part of it after the right gripper has the same depth
value as the part between the grippers. For this reason, the depth filter isolate also the
part after the right gripper (in green in Figure 4.14b). Therefore, if we only use the color
mask, it would segment both parts (Figure 4.14c) and this will affect the final tracked
shape. Instead, the contour extraction (Figure 4.14d) ensures the segmentation only of
DLO between the gripper since the part after the right gripper has a perimeter too small
with respect to the perimeter of the DLO between the gripper.

4| DLO shape tracking algorithm 51

(a) (b)

(c) (d)

Figure 4.14: Difference between the use or not of the contour extraction step. (a) Color
frame. (b) Output of the depth filter, in the green rectangle the DLO part after the right
gripper. (c) The output of the color mask, in the red rectangle the DLO part after the
right gripper. (d) The output of the contour extraction step.

In addition, it ensures the construction of the point-cloud (further details in Section 4.3)
with a lower number of outliers, due to the fact they are filtered by the perimeter threshold.
This can be noticed from Figure 4.15, where a hand occludes the DLO. In Figure 4.15b
the outliers generated by the hand are circled in red, while applying the contour extrac-
tion step (Figure 4.15c) these outliers are deleted. In addition, it adds robustness to the
occlusions, due to the fact that during the occlusion the DLO becomes piece-wise, and
with the contour-extraction step we have a more faithful reconstruction of the DLO.

52 4| DLO shape tracking algorithm

(a) (b)

(c)

Figure 4.15: Difference between the use or not of the contour extraction step in case of
occlusion. (a) Color frame. (b) Point-cloud obtained by skipping the contour extraction
step. (c) Point-cloud obtained with the contour extraction step.

4.3. Point-cloud creation

A point-cloud is a representation of the object in space, where each point position has its
set of Cartesian coordinates (Xs, Ys, Zs). So we need to pass from a point in the image
plane pi = (yi, xi) to its corresponding point in the space ps = (Xs, Ys, Zs) described by
the geometric coordinates in meters.
After the execution of the previous phase, the pixels of the DLO are in white (Fig-
ure 4.13b), so the pixel coordinates can be extracted from it. Knowing that our color
frame and depth frame are aligned, for each pixel the Z coordinate shall be calculated,
using the aligned depth frame information.
Finally, the function pyrealsense2.rs2_deproject_pixel_to_point for each extracted
pixel is used, which takes as input the intrinsic parameter of the camera (calculated
previously in the pre-processing step), the pixel coordinates in the image plane and the
calculated Z, and gives as output the point in the geometric coordinates, constructing a
P × 3 matrix that contains all the coordinates of the points.
The Open3D library was used to visualize the point-cloud, it constructs the point-cloud
object associating to it the founded points and coloring them in green. As shown in Fig-
ure 4.16a, it is necessary to apply a rotation of the point-cloud reference frame in order to
have a coherent visualization of the point-cloud with the camera frames (Figure 4.16b).

4| DLO shape tracking algorithm 53

This is possible by applying the 4×4 homogeneous transformation matrix:

A =

1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 1

which correspond to a rotation of −π respect to the x axis.

(a) (b)

Figure 4.16: (a) Point-cloud without transformation. (b) Point-cloud after the application
of the transformation.

Then a downsample of the point-cloud is necessary, in order to make the fitting (Sec-
tion 4.4) computationally efficient. This is done using the Open3D function
voxel_down_sample which has only one parameter to specify the voxel size. The points
are contained in voxels, then each occupied voxel generates only one point by averaging all
points inside. The result obtained with a voxel size equal to 0.01 is shown in Figure 4.17a,
which are also highlighted in red all the outliers. The outlier can be removed using the
functions statistical_outlier_removal that removes points that are further away from
their neighbor compared to the average for the point-cloud. The inputs parameter are:

• the number of neighbors that are taken into account in order to calculate the average
distance for a given point;

• the standard ratio, defines a threshold based on the standard deviation of the average
distance across the point-cloud. The lower this number the more aggressive the filter
will be.

Subsequently is applied the select_by_index function that outputs only the selected point
in the previous step. Figure 4.17b showed the result with the number of neighbors equal
to 30 and the standard ratio equal to 0.1.

54 4| DLO shape tracking algorithm

(a) (b)

Figure 4.17: (a) Application of the voxel down sampling, in red are highlighted the outliers.
(b) Result after the outlier removal.

4.3.1. Acquisition of grippers poses

The application of the voxel downsample and of statistical outlier removal, with the
chosen value for the parameter, ensures the right balance between the number of points
and meaningful points in the point-cloud for all the DLO considered. However, there
can be cases where these points are not enough for good tracking, due to: occlusion, the
presence of a particular light condition, or a particular characteristic of the DLO.
One of the ways to resolve these problems is to acquire during the tracking the grippers
poses. For this reason, in the color mask phase (Figure 4.9) we have decided to isolate the
gripper pixels as well, in order to have more points at the end of the DLO. In addition,
the DLO during the manipulation can be occluded from the robot arm (Figure 4.5a). For
this reason, we acquire from the robot the points where it grips the DLO (further details
will be given in Chapter 5). This way during the tracking, we have two points (one for
each gripper), that are not influenced by the previous problems. These points are in the
robot base frame, for this reason following they are firstly multiplied by (Ab

c)
−1 (eq. (3.2))

in order to be reported in the camera frame and then are added to the filtered point-cloud
of the previous sub-section (Figure 4.18b). Figure 4.18a shows the acquired gripper point
in red after that they are reported in the image plane.

4| DLO shape tracking algorithm 55

(a)

(b)

Figure 4.18: (a) Color frame with the acquired grippers points in red. (b) Filtered point-
cloud with grippers points in red.

4.4. 3D-Fitting

After the previous phase, we obtained a point-cloud that represents the DLO in space.
The idea is to use these points to construct a geometric estimation of the DLO shape, by
applying a 3D-fitting. The 3D-fitting is applied by choosing the x-axis as fixed and then
fits the other two sets of coordinates with respect to the x-axis. In this way, the fitting
problem becomes more simple and computationally efficient. Figure 4.19 shows the result
of the 3D-fitting, as can be seen, while in the color frame (Figure 4.5a) the DLO seems
without any changing on the z-axis, in the 3D plane there are some changes of the order of
the cm that are highlighted, consequently these changes are also acquired by our tracking
algorithm.

56 4| DLO shape tracking algorithm

Figure 4.19: 3D-fitting plot. In green, the points acquired after the downsampling, the
outlier removal and the acquisition of gripper pose. In red, the tracked shape of the DLO
as a result of the 3D-fitting.

In addition, the proposed methodology can also track shape with a higher variation on the
z-axis as it showed in Figure 4.21. Where the DLO8 is manipulated to follow a quadratic
function shape (further details on the shapes considered in the Chapter 6) in a plane
parallel to the working table, due to the high rigidity of this DLO it is deformed upward
(Figure 4.20).

(a) (b)

Figure 4.20: DLO8 quadratic function shape. (a) Tracked points (in red) plotted on the
color frame. (b) Point-cloud (in green) with the tracked shape (in red).

4| DLO shape tracking algorithm 57

Figure 4.21: 3D-fitting plot of DLO9 in a parabola shape. In green the points acquired
after the downsampling, the outlier removal and the acquisition of gripper pose. In red
the tracked shape of the DLO as a result of the 3D-fitting.

4.4.1. Lasso Regression

The fitting problem is formalized as a linear regression problem with a regularization, in
order to prevent overfitting.
Given the points described by (X, Y) in the 2D geometric plane, with X = [X1, X2...XP]

T

and Y = [Y1, Y2...YP]
T , the fitting problem is formalized as the unconstrained optimization

problem:

min
c

1

2P
||Y − V c||22 + r (4.1)

where P is the number of points, r is the regularization term, c is the vector of the
polynomial coefficient, c = [c0, c1, c2...cP]

T , and V is the Vandermonde matrix:

V =

1 X1 X2

1 ... XP−1
1

1 X2 X2
2 ... XP−1

2
...

...
...

1 XP X2
P ... XP−1

P

58 4| DLO shape tracking algorithm

In machine learning, the most common regularization are :

• L1-regularization, where r = α||c||1, with α a positive constant and ||c||1 the l1 −
norm of the coefficient vector;

• L2-regularization, r = α||c||22, with α a constant and ||c||22 the squared l2 − norm of
the coefficient vector.

Differently from L2-regularization, L1 offers a built-in features selection, so this means
that shrinks to zero the less important coefficient. For this reason, we decided to apply
a Lasso regression (linear regression with L1-regularization), with the maximum degree
of the Vandermorde matrix equal to four. We decided to stop up to the 4th order degree
polynomial because was experimentally tested which is sufficient to describe the shape
that a DLO can assume. This means that, for each acquired frame, it was decided what
is the best polynomial, from grade zero to four, that describes the DLO shape.
As we explain at the beginning of this section, the 3D fitting is applied by choosing the
x-axis as fixed one, and then we fit the other two coordinates with respect to the x-axis.
Accordingly, the 3D fitting problem is decomposed into two 2D Lasso regression problems
one in the x-y plane and another for the x-z plane:

min
cy

1

2P
||Y − V cy||22 + α||cy||1

min
cz

1

2P
||Z − V cz||22 + α||cz||1

(4.2)

formalized following Equation (4.1), with Z = [Z1, Z2...ZP]
T the vector of z coordinates

of the point-cloud points. Solving the Lasso problems (Equation (4.2)), we can construct
two polynomials one for the x-y plane and another for the x-z plane:

Px−y = cy4X
4 + cy3X

3 + cy2X
2 + cy1X + cy0

Px−z = cz4X
4 + cz3X

3 + cz2X
2 + cz1X + cz0

(4.3)

which will describe the final tracked shape in 3D.
The custom optimization function opt, which is summarized in Figure 4.22, was defined
for this purpose.

4| DLO shape tracking algorithm 59

Figure 4.22: Flowchart of the opt function.

First, as explained by the chart in Figure 4.22, the points from the point-cloud are ac-
quired, and each coordinate is saved in the vectors: X = [X1, X2...XP]

T , Y = [Y1, Y2...YP]
T ,

Z = [Z1, Z2...ZP]
T . Then is created the Vandermonde matrix with a maximum degree

equal to 4, using the class sklearn.preprocessing.PolynomialFeatures and fill it with
the X vector:

V =

1 X1 X2

1 X3
1 X4

1

1 X2 X2
2 X3

2 X4
2

...
...

...
1 XP X2

P X3
P X4

P

The Lasso regression problems can be written according to eq. (4.2). So we can cre-
ate our Lasso model, instantiating an object of class sklearn.linear_model.Lasso with
parameters:

• alpha, that is the constant that multplies the l1 norm. So it defines the importance of
the regularization term. It is defined equal to 1e−7, which was proved experimentally
that gives the right equilibrium between the least-squares penalty and the l1 penalty;

• fit_intercept, whether to calculate the intercept for this model. It is set to False
in order to have also the zero-order term in the polynomial;

60 4| DLO shape tracking algorithm

• max_iteration, the maximum number of iterations for the coordinate descent algo-
rithm, that is used to fit the model. It was set equal to 1e6, such that the objective
function converges with default tolerance 1e−4.

Then the created Lasso model is fitted with respect to the X-Y and X-Z vectors, solv-
ing the optimization problem of Equation (4.2). As a result, the coefficient vectors are
acquired and are saved in two different 5 × 1 vector, cz = [cz0, cz1, cz2, cz3, cz4]

T and
cy = [cy0, cy1, cy2, cy3, cy4]

T .
Obtained the coefficients, it is defined a new 1× 100 column vector:
Xnew = [Xnew1, Xnew2...Xnew100]

T , with 100 element that goes from the minimum to the
maximum of X, and finally are defined the tracked points in the 100× 3 matrix
pp = (Xnew, Ynew, Znew). Where:

Px−y = Ynew = cy4X
4
new + cy3X

3
new + cy2X

2
new + cy1Xnew + cy0

Px−z = Znew = cz4X
4
new + cz3X

3
new + cz2X

2
new + cz1Xnew + cz0

obtained applying Equation (4.3). The result is shown in Figure 4.19, where the red
points are the tracked points, then they can be plotted on the point-cloud (Figure 4.23).

Figure 4.23: Tracked points (in red) plotted on the point-cloud (green).

These points can be reported in the robot base frame in order to give complete information
on the tracked DLO shape or to be used in future works to apply a visual servoing control.
Following eq. (3.2):

pbp = Ab
c · pp (4.4)

Finally reporting these points in the image plane using the function
pyrealsense2.rs2_project_point_to_pixel, which takes as input the intrinsic parameter
of the camera and the point in the 3D geometric plane, and it gives as output the corre-
sponding point in the image plane. Hence the tracked point can be plotted on the color
frame (Figure 4.24).

4| DLO shape tracking algorithm 61

Figure 4.24: Tracked points (in red) plotted on the color frame.

4.5. Occlusion problem

While the dual-arm robot manipulates the DLO, it can occlude the end of the DLO with
one of the two arms, as can be noticed in the Figure 4.5a, where the left arm does it.
In addition, this thesis focuses the attention on tracking in an industrial scenario, so in
this case can happen occlusion in all the parts of the DLO caused by different types of
objects, e.g. an operator that touches the DLO during the manipulation (Figure 4.15a).
The concept of occlusion can be defined as general as the loss of a considerable part of
DLO pixels, and this can happen not only in case of occlusion by an object, but also
in case of holes in the depth generated by shadows, a particular color of the DLO, like
for the DLO2, DLO5, DLO6 (see Figure 3.6) that being very thin, can give problem in
acquiring the depth information (Figures 4.25a and 4.25b).

62 4| DLO shape tracking algorithm

(a) (b)

(c)

Figure 4.25: (a) DLO2 color frame. (b) DLO2 depth frame, with holes. (c) Depth frame
after the application of the hole_filling_filter with fill from left logic.

In all these cases the application of the hole_filling_filter is useless, due to the fact
the holes are very large so we cannot take depth information from the neighbor pixels
(Figure 4.25c).
But the proposed method described in the previous section is robust to all these types
of occlusion. Since the DLO segmentation phase (Section 4.2) ensures complete isolation
and extraction of the DLO pixels. As soon as the DLO pixels are reported in the 3D, the
gripper points are also added to these points, ensuring more robustness in the tracked
shape by the Lasso regression (Section 4.4.1). Figure 4.26, shows an example: the left arm
occluded the left end of the DLO, but thanks to the acquisition of the grippers poses, the
occluded part can be estimated. In addition, it shows an example of the tracking result in
case of a hand occludes the DLO1 touching it. Note that the depth filter (Figure 4.26c)
isolate also the hand since the hand touches the DLO, but the hand has different color
with respect to the DLO, so the color mask (Section 4.2.2) will segment only the DLO
ensuring the tracking of the shape.

4| DLO shape tracking algorithm 63

(a) (b)

(c)

Figure 4.26: (a) DLO1 color frame with a hand occlusion, in red the tracked points. (b)
DLO1 point-cloud (in green) with a hand occlusion, in red the tracked points. (c) Depth
filter output isolates the DLO and the hand.

Then in case of holes problem, like the one previously saw in Figure 4.25, the proposed
method ensures a good geometric estimation of the DLO (Figure 4.27).

(a) (b)

Figure 4.27: (a) DLO2 color frame with tracked points (in red). (b) DLO2 point-cloud
(in green) with tracked points (in red).

64 4| DLO shape tracking algorithm

4.6. Occlusion Limitations

4.6.1. Sensitivity to the occluding object color

One of the limitations of the presented methodology, as in ones presented in the literature
(Chapter 2), is the use of a color mask in order to segment the DLO. So this means
that, in the case of an occluding object with different color with respect to the DLO, the
tracking algorithm gives a good estimation of the DLO shape (Figure 4.26). Differently,
if the occluding object has the same color as the manipulated DLO then the tracking
algorithm generates a wrong DLO shape estimation (Figures 4.28d and 4.28e). Note that
the methods proposed in the literature consider only occluding objects with different colors
with respect to respect the tracked one. In the proposed methodology this limitation is
mitigated, thanks to the application of the depth filter (Section 4.2.1) before the color
mask. Indeed if the occlusion happens above the manipulated DLO of approximately 4
cm, the depth filter will cut off the occluding object (Figure 4.28c), ensuring good tracking
results (Figures 4.28a and 4.28b).
Meanwhile, if the black object is on the DLO1 touching it, the depth filter isolate also
the black object (Figure 4.28f), consequently the color mask and the contour extraction
acquires also the black object pixels, so they are considered in the fitting causing a wrong
estimation of the DLO’s shape (Figures 4.28d and 4.28e).

4| DLO shape tracking algorithm 65

(a) (b)

(c)

(d) (e)

(f)

Figure 4.28: DLO1 tracking results in case of black occluding object. (a) DLO1 color
frame with tracked points (in red) with black object 4 cm above the DLO. (b) DLO1
point-cloud (in green) with tracked points (in red), in case of black object 4 cm above
the DLO. (c) Depth filter output in case of black object 4 cm above the DLO. (d) DLO1
color frame with tracked points (in red) in case of black object on the DLO touching it.
(e) DLO1 point-cloud (in green) with tracked points (in red) in case of black object on
the DLO touching it. (f) Depth filter output in case of black object n the DLO touching
it.

66 4| DLO shape tracking algorithm

We have this limit on the upper threshold of the depth filter because the DLOs have
infinite degrees of freedom, so they can also deform upward during the manipulation. This
deformation depends on the rigidity of the DLO (Table 3.2), but the proposed algorithm
tracks the DLOs without the use of rigidity information. So choosing an upper threshold
that is too strict can delete important parts of the DLO.
This thesis is developed to ensure tracking of a manipulated DLO in an industrial scenario.
So thinking of an industry where the robot needs to manipulate the DLO repeating the
same operation, is reasonable to assume that there is a sample video of the manipulation
without any occlusion, in order to demonstrate the manipulation and the final desired
shape. The mentioned problem can be completely solved using this sample video.
As previously explained, taking as an example the Figure 4.28, the main problem is that
the Lasso regression considers also the points of the object causing the occlusion. The
solution is to delete all the occluding object points before constructing the point-cloud.
The idea is to run in parallel to the online acquired video from the camera, also the sample
video. Applying on both videos all the pre-processing (Section 4.1) and segmentation
(Section 4.2) steps.

4| DLO shape tracking algorithm 67

Figure 4.29 shows respectively the color frame and the result of the contour extraction
step, the last step before the construction of the point-cloud, of the sample video with-
out occlusion (Figures 4.29a and 4.29b) and online video with occlusion (Figures 4.29c
and 4.29d). Applying an AND between the two gray images, using the function
cv2.bitwise_and, all the white pixels that are not present in both images are deleted
(Figure 4.29e).

(a) (b)

(c) (d)

(e)

Figure 4.29: (a) Color frame of the sample video without the black occluding object. (b)
Result of the contour extraction on the sample video without the black occluding object.
(c) Color frame of the online video with a black occluding object. (d) Result of the contour
extraction on the online video with a black occluding object. (e) AND between (b) and
(d), filter out the object points.

68 4| DLO shape tracking algorithm

Figure 4.30 shows the tracking result during a dynamic occlusion, once the object points
are filtered out by the AND operation, the tracking methodology is able to estimate
DLO1, differently from Figures 4.28d and 4.28e.

(a)

(b)

Figure 4.30: DLO1 tracking result in case of black occluded object on it. (a) DLO1 color
frame with tracked points (in red). (b) DLO1 point-cloud (in green) with tracked points
(in red).

Despite this method is based on the application of the DLO segmentation step two times,
one for the online video and one for the sample video, there is no worsening of the
computational time for each cycle of the entire algorithm (Figure 4.1) as it will be seen
in Section 6.4.

4.6.2. Occluding object dimension

Another limitation is that the occluding object cannot be too big, or too close to the
camera, because in this case, the free parts of the DLO are fewer. Those free portions
may also not give points, due to holes or big shadows that create a different color that
is out of the HSV threshold (Section 4.2.2). Hence the only points that are given to the
Lasso regression are the gripper one, so it will approximate the shape with a polynomial

4| DLO shape tracking algorithm 69

of order zero or one (Figure 4.31), based on the desired shape, and then the algorithm
will stop. This limitation weighs more on the thin DLO, like DLO2, where there is just
the holes issue which causes a lower number of points as we discussed at the beginning of
this section.

(a)

(b)

Figure 4.31: DLO3 approximation with a straigh line due to lower number of points. (a)
DLO3 color frame with tracked points (in red). (b) DLO3 point-cloud (in green) with
tracked points (in red).

70 4| DLO shape tracking algorithm

4.7. Sum-up

Figure 4.32 sums up the steps described in this Chapter, applying the proposed algorithm
to track the DLO1 in a sinusoidal function shape. Note that as explained in Section 4.2.3
thanks to the contour extraction phase, the part of the DLO after the right gripper is
filtered out, ensuring the tracking of the final shape.

Figure 4.32: (a) Acquisition of the color and depth frame. (b) Application of the hole
filling filter. (c) Depth filtering, in the green rectangle the DLO part after the right
gripper. (d) Color mask, in the red rectangle the DLO part after the right gripper. (e)
Contour extraction, which filters out the DLO part after the right gripper. (f) Point-cloud
construction. (g) Point-cloud down-sampling and outliers removal. (h) Acquisition and
addition of the grippers poses (red points) to the point-cloud. (i) 3D-fitting, in red the
tracked shape. (l) DLO tracked shape (in red) on the Colour frame.

71

5| Communication between the
tracking algorithm and a
dual-arm robot

While in Chapter 4 the attention was focused on the Computer vision algorithm, in this
Chapter we will focus on the communication between the tracking algorithm and a dual-
arm robot, which robot is programmed in RAPID.
As presented in Section 3.1, the computer receives visual information by the camera and
is connected with USB, moreover the computer controls and exchange information with
the robot using an Ethernet connection (Figure 3.1). In particular, the computer and the
robot communicate via socket. For this reason, in this chapter will be first explained the
main principle of socket communication. Then the program in RAPID will be introduced,
detailing then the chosen program structure. Finally, the communication between the
computer and the robot is described.

5.1. Socket

A socket is an endpoint that allows a two-way communication link between remote hosts
or between local processes. In our case, the two remote hosts are:

• the robot, that is the server;

• the computer, that is the client.

The fact that is a two-way communication link means that the server and the client can
both receive and sent packets, so information, on the network using the socket. The
server socket is programmed in RAPID (further details in Section 5.2) which supports
the stream type socket, meaning that is based on TCP (Transmission Control Protocol).
This protocol has the main characteristic of being reliable, implying that in the event of
lost packets in the network, this will be detected and the packet retransmitted.
The socket is identified by an IP address and a port number, which is opened by the

72 5| Communication between the tracking algorithm and a dual-arm robot

server and closed at the end by it. The communication between the server (the robot)
and the computer (the client) is schematized in Figure 5.1.

Figure 5.1: Server-client communication.

The server first creates the socket, binds the specified server IP address and port number
to the socket and then listens, so waiting that a client requests the connection. Once the
request for the connection by the client is accepted, the server and the client can exchange
information.
In general, the computer vision algorithm sends an integer number that corresponds to
applying a command to the robot, while the robot sends information about its gripper
position. The server (the robot) is programmed in RAPID, while Python is used on the
client to develop the Computer vision algorithm.

5.2. RAPID program structure

RAPID is a high-level programming language used to control ABB robots. A RAPID
application is called a task, a task is composed of a set of modules. The module can
contain:

• different data;

5| Communication between the tracking algorithm and a dual-arm robot 73

• a function, that returns a value;

• a procedure, that does not return any value, e.g used to specify motion instruction;

• a trap, used to deal with interrupt. When an interrupt occurs, the normal program
execution is suspended, e.g. due to an error, and are executed the instruction in the
trap routine.

Figure 5.2: Right arm task.

Figure 5.2 shows an example of task. In fact, since YuMi is a dual-arm robot, can be
defined a task for each arm. Each task contains:

• A main module, in which we defined the movement of the arm using a procedure
and the data useful for it;

• A data module, in which we defined useful data, e.g. the points to which the arm
needs to pass.

RAPID allows multitasking, which means running two or more tasks in parallel. For this
reason, a task for each robot arm was created, in order to manipulate synchronously the
DLO. Then to those 2 foreground tasks, a background task is added (Figure 5.3).

74 5| Communication between the tracking algorithm and a dual-arm robot

Figure 5.3: Chosen Multitasking RAPID configuration.

In the main modulus of the foreground tasks, the movement of the two arms is defined by
procedures, using the MoveJ RAPID instruction, in case of movement not along a straight
line (Sections 6.2, 6.3 and 6.5), otherwise the MoveL instruction is used (Section 6.1).
These two functions in addition to the velocity of the TCP (Tool Center Point), in mm/s,
and to the zone data, take as input the point to which the arm needs to pass and the
considered TCP. These two data are saved in the data modules.
The considered TCP (tool_grip) coincides with the points where the fingertips grip the
DLO (tool_grip). This point is calculated by translating downward of 130 mm tool0,
that is the predefined TCP which is centered in the flange (Figure 5.4).

Figure 5.4: tool0 and tool_grip.

5| Communication between the tracking algorithm and a dual-arm robot 75

The background task is used to handle the robot movement and the socket communication
while the two foreground tasks run in parallel. In particular, the background contains
the procedures to create the listening socket, accept the connection of the client and then
send the data (left column of Figure 5.1).

5.2.1. Client-server communication

The client socket is created and the server connects at beginning of the pre-processing
step (Section 4.1). As we saw the camera need some step to be ready for the online
tracking algorithm, so while the camera does these steps the server wait, until a command
record = 3, is received.
While the robot manipulates the DLO, in the background task the socket continues to
wait for a command from the client. Each time the client finishes the downsampling and
the outlier removal of the point-cloud, it acquires the gripper position (Section 4.3.1),
sending the command = 0. This command read by the background task corresponds to
acquiring the right and left grippers positions. This information is acquired using the
RAPID instruction CRobT , which takes as input the task of the arm and the reference
TCP, and gives the position and orientation of the TCP in the space. But the positions
given by this instruction are not the real one, since the robot is not calibrated with
absolute accuracy, so the measures of the tool0 are not right, and this influences also the
defined tool_grip. Note that even if the fingertips (Figure 3.2) are designed in order to
center the DLO when are closed, the point where the DLO is gripped can vary due to:

• the diameter of the DLO;

• the friction between the 3D printed fingertips and the DLO;

• wear of the fingertips.

For this reason, are added to the position given by CRobT the offset shown in Table 5.1.

Xoffset Yoffset Zoffset

Right
arm

-20 mm -20 mm +10 mm

Left
arm

-10 mm +25 mm

Table 5.1: tool_gripper offset

76 5| Communication between the tracking algorithm and a dual-arm robot

The offsets are found experimentally with a trial-and-error method. For the Xoffset and
Yoffset checking the points with these offset in the image plane and plotting them on the
acquired video from the camera (Figure 5.5). Then for the Zoffset was checked the sent
Z position with respect to the one measured on the robot.

(a)

(b)

Figure 5.5: Gripper points with and without the offsets. (a) Received gripper points (in
red) from the server without the offsets. (b) Received gripper points (in red) from the
server with the offsets.

After that the offsets are added, they are firstly multiplied by 1000 in order to not lose
important digit of the measurement, and then they are saved in two 1× 3 vectors:

gripperR = [Xr, Yr, Zr]

gripperL = [Xl, Yl, Zl]

Then they are packed and sent to the client, which does the inverse action, unpacking
them it and dividing for 1000, then are used just described in Section 4.3.1.

77

6| Experimental analysis

A series of experimental tests were performed to validate the proposed tracking method-
ology in an industrial scenario, where the DLO is manipulated at a certain high from the
working table. In particular, different kinds of DLOs are scattered on the working table.
Note that several DLOs of the same color as the manipulated one are present in the scene
to test the robustness.
This chapter analyzes the performed tests, which consist of the manipulation of the DLOs
presented in Section 3.1.1 in different shapes, from the less complex one, as the linear
shape, to the more complex one, as the sinusoidal shape. The considered DLOs differ
one from the other in stiffness, color, length, and diameter. The proposed methodology
does not have any information about the stiffness of the different DLOs. For this reason,
for each DLO in the different shapes the depth threshold values must be specified (Sec-
tion 4.2.1), which was estimated by the gripper position and the possible deformation of
DLO. For each experiment and for each DLO, was analyzed the averaged mean squared
error (AMSE) in the x-y and x-z planes:

AMSEx−y =
1

nframes

nframes−1∑
j=1

P−1∑
i=1

(Yi − Y _truei)
2

AMSEx−z =
1

nframes

nframes−1∑
j=1

P−1∑
i=1

(Zi − Z_truei)
2

with
Y _true = cy4X

4 + cy3X
3 + cy2X

2 + cy1X + cy0

Z_true = cz4X
4 + cz3X

3 + cz2X
2 + cz1X + cz0

where X, Y, and Z are the acquired points coordinates from point-cloud. P is the number
of points, cy and cz are the results of the Lasso regression (Equation (4.2)). In addition,
the proposed methodology is an online fitting algorithm, so for each manipulation also
the mean computational time for each tracked frame was considered.

78 6| Experimental analysis

The specifications of the computer used are:

Component Value

CPU Intel i7-12650H

GPU NVIDIA GeForce RTX 3060

RAM 16 GB

OS Windows 11

Table 6.1, shows the HSV upper and lower threshold used for the color mask (Section 4.2.2)
in each experiment.

Lower Threshold Upper Threshold

Hue Saturation Value Hue Saturation Value

DLO1 0 0 0 179 255 53

DLO2 106 0 0 179 255 135

DLO3 138 14 150 179 255 255

DLO4 138 14 125 179 255 255

DLO5 138 0 125 179 255 255

DLO6 138 0 125 179 255 255

DLO7 138 14 125 179 255 255

DLO8 0 16 34 20 84 255

Table 6.1: HSV values for each DLO presented in Section 3.1.1

The user-defined parameters in the vision algorithm are:

Parameter Value

kernel size 10× 10

voxel size 0.01
number of neighbors 30
standard ratio 0.1
α 1e−7

max_iteration 1e6

fit_intercept False

6| Experimental analysis 79

The configuration of the camera is shown in Figure 6.1

Figure 6.1: Camera configuration.

6.1. Test 1: Linear shape

The first tested shape is the easiest one, the linear shape. The robot moves linearly the
DLO from an initial to a final point, with a velocity of 20 mms/s. This test was repeated
with three kinds of DLO that differ one from the other in color, rigidity, and diameter.
In this kind of shape, there is not a high deformation of the DLOs along the z-axis, for
this reason, the same depth threshold value for the three DLOs is used (Table 6.2).

Depth thresholds

upper limit in meters lower limit in meters

DLO1 0.49 0.40

DLO7 0.49 0.40

DLO4 0.49 0.40

Table 6.2: Values of the depth filter thresholds, in case of linear shape.

80 6| Experimental analysis

Consider DLO1: it has a low rigidity but a higher diameter. Figures 6.2a to 6.2c shows
the obtained result without occlusion. While Figures 6.2d to 6.2f show the results in case
of hand occlusion. In both cases, the DLO is correctly tracked thanks also to the high
diameter of the DLO, which gives a bigger number of points in the point-cloud. Note
that, due to lower rigidity there are some changes of shape along the z-axis, highlighted
in the 3D plot (Figures 6.2c and 6.2f).

(a) (b) (c)

(d) (e) (f)

Figure 6.2: DLO1 linear manipulation without and with occlusion. (a) DLO1 color frame
with tracked shape (in red). (b) DLO1 point-cloud (in green) with tracked shape (in red).
(c) DLO1 3D-fitting plot. (d) DLO1 color frame with tracked shape (in red) in case of a
hand occlusion. (e) DLO1 point-cloud (in green) with tracked shape (in red) in case of a
hand occlusion. (f) DLO1 3D-fitting plot, with a hand occlusion highlighted in purple.

6| Experimental analysis 81

Consider now the tests involving DLO7. Figure 6.3 shows the result in case of occlusion
with a black box and without it. Differently from DLO1, DLO7 is thinner, so there are
fewer points in the extracted point-cloud, but it is still tracked.

(a) (b) (c)

(d) (e) (f)

Figure 6.3: DLO7 linear manipulation without and with occlusion. (a) DLO7 color frame
with tracked shape (in red). (b) DLO7 point-cloud (in green) with tracked shape (in
red). (c) DLO7 3D-fitting plot. (d) DLO7 color frame with tracked shape (in red) in
case of occlusion. (e) DLO7 point-cloud (in green) with tracked shape (in red) in case of
occlusion. (f) DLO7 3D-fitting plot, with occlusion highlighted in purple.

The last DLO considered for this test is the DLO4, the worst-case scenario for this shape.
This DLO is a hose for compressed air, characterized by high rigidity and it is translucent.
These two features influence the tracking of this DLO because it does not assume a
completely linear shape due to high rigidity, as can be noticed by Figure 6.4c. In addition,
forcing it to follow this shape creates a high number of depth holes, due to its particular
material, which gives as result a lower number of DLO points in the point-cloud (green
points in Figure 6.4b). Even with all these issues given by the particular type of DLO, it
is correctly tracked without occlusion (Figures 6.4a to 6.4c) and with an occlusion made
by a black box (Figures 6.4d to 6.4f). In this worst-case scenario, the acquisition of the
grippers poses compensates for the low number of points, allowing tracking of the correct
shape.

82 6| Experimental analysis

(a) (b) (c)

(d) (e) (f)

Figure 6.4: DLO4 linear manipulation without and with occlusion. (a) DLO4 color frame
with tracked shape (in red). (b) DLO4 point-cloud (in green) with tracked shape (in
red). (c) DLO4 3D-fitting plot. (d) DLO4 3D-fitting plot, with occlusion highlighted in
purple. (e) DLO4 color frame with tracked shape (in red) in case of occlusion. (f) DLO4
point-cloud (in green) with tracked shape (in red) in case of occlusion.

Table 6.3 shows the mean computational time for each tracked frame. In general, it
can be noticed that, in the case of occlusion, the time is smaller. This happens because
the number of points to fit is lower due to occlusion, so the Lasso regression problem is
faster. The association between the lower time and the number of points can be seen also
comparing the time results for the 3 DLOs, from the DLO1 where there is a bigger number
of points in the point-cloud to the DLO4 where the number of points in the point-cloud
is lower.

Mean computational time for each tracked frame

without occlusion with occlusion

DLO1 0.139 s 0.134 s

DLO7 0.093 s 0.091 s

DLO4 0.053 s 0.052 s

Table 6.3: Mean computational time for each tracked frame with occlusion and without
it (linear shape).

6| Experimental analysis 83

Meanwhile, in Table 6.4 the averaged MSE tracked error is shown. In general, the error
is of the same order of magnitude for the three DLOs, since the shape remains the same
(straight line) during all the robotic manipulation. However, note that the DLO4 error in
the x-z plane (highlighted in red in Table 6.4) is 10 times bigger with to respect the other
DLO errors in the x-z plane. This error is generated because is not considered only the
error in the last frame showed in Figures 6.4d to 6.4f where the shape is correctly tracked,
but it is also considered the error in the previous frames that can be big due to loss of
depth information and the occlusion which generate a lower number of points. Figure 6.5,
showed one of the initial frames where there is a big error in the x-z plane.

(a) (b)

Figure 6.5: DLO4 point-cloud with big error in x-z plane during the linear shape

AMSEx−y AMSEx−z

without occlusions with occlusions without occlusions with occlusions

DLO1 0.252 cm2 0.429 cm2 0.1 cm2 0.104 cm2

DLO7 0.0552 cm2 0.0416 cm2 0.141 cm2 0.109 cm2

DLO4 0.280 cm2 0.14 cm2 3.5 cm2 2.3 cm2

Table 6.4: Averaged MSE for each tracked frame (linear shape).

84 6| Experimental analysis

6.2. Test 2: 2D-Sinusoidal shape

Another tested shape is the sinusoidal shape. The robot moves, with a velocity of 80
mms/s, changing the joint configuration in order to reach the final sinusoidal shape. In
this case, all the DLO of Table 3.2 are tested, except the one with too high rigidity due
to the impossibility to have this shape with these kinds of DLO. Differently from the
previous shape, is necessary to assign different depth thresholds to the DLO1, since it is
the less rigid one and it tends to deform downward during the manipulation (Table 6.5).

Depth thresholds

upper limit in meters lower limit in meters

DLO1 0.47 0.43

DLO2 0.49 0.42

DLO3 0.49 0.42

DLO7 0.49 0.42

Table 6.5: Values of the depth filter thresholds, in case of sinusoidal shape.

Firstly, the DLO1 was tested (Figure 6.6). Even if in the acquired frame there is also a
cable part after the right gripper (Figure 6.6a), the tracking algorithm estimates correctly
its shape. As explained in Section 4.2.3 the pixel of this part are not extracted to construct
the point-cloud, thanks to the contour extraction phase (Figure 4.14). Figure 6.6d shows a
test where the DLO is occluded by a hand that holds it and slides along it. It is interesting
to notice that between Figure 6.24c and Figure 6.6f, we measure different variations along
the z-axis. We rigorously define each variation along the z-axis as Z̃ = Zmax−Zmin, where
Zmax and Zmin are the maximum and minimum tracked Z values, respectively. Indeed,
in Figure 6.24c, Z̃ = 1.6 cm, while in Figure 6.6f, Z̃ = 2 cm. This difference is caused,
inevitably, by the operator’s hand interacting with the DLO1.

6| Experimental analysis 85

(a) (b) (c)

(d) (e) (f)

Figure 6.6: DLO1 sinusoidal manipulation without and with occlusion. (a) DLO1 color
frame with tracked shape (in red). (b) DLO1 point-cloud (in green) with tracked shape
(in red). (c) DLO1 3D-fitting plot. (d) DLO1 color frame with tracked shape (in red) in
case of a hand occlusion. (e) DLO1 point-cloud (in green) with tracked shape (in red) in
case of a hand occlusion. (f) DLO1 3D-fitting plot, with occlusion highlighted in purple.

Figure 6.7 shows the sinusoidal shape tested on the DLO2, that is thinner and more rigid
with respect to DLO1. The influence of these two properties can be noticed especially
in the case of occlusion. In fact, like in the previous experiment, a hand holds the DLO,
which is pushed down while the hands slide on it. Unlike the DLO1, there are a lower
number of points in the point-cloud, due to the fact it is thinner. Note that Z̃ = 3 cm in
the case without human occlusion (Figure 6.7f), while the interaction of the human hand
generates a variation along the Z-axis Z̃ = 2.3 cm (Figure 6.7e). However, this does not
influence the tracking of the DLO with and without occlusion.

86 6| Experimental analysis

(a) (b) (c)

(d) (e) (f)

Figure 6.7: DLO2 sinusoidal manipulation without and with occlusion. (a) DLO2 color
frame with tracked shape (in red). (b) DLO2 point-cloud (in green) with tracked shape
(in red). (c) DLO2 3D-fitting plot. (d) DLO2 color frame with tracked shape (in red) in
case of a hand occlusion. (e) DLO2 point-cloud (in green) with tracked shape (in red) in
case of a hand occlusion. (f) DLO2 3D-fitting plot, with occlusion highlighted in purple.

Figure 6.8 shows the sinusoidal shape tracked on the DLO3, that is a power cord as the
DLO2. Figures 6.8a and 6.8b, highlights the tracked shape in the 2D plane: it is possible
to note that the shape is very similar to the DLO2. However, in Figure 6.8c it can be
noticed that Z̃ = 1 cm, so 1

3
respect to the one measured for DLO2. This is due to

the different flexibility of the two DLOs. While the interaction with the black occluding
object generated a Z̃ = 1.7 cm. Note that the proposed tracking algorithm can capture
this difference in the tracking without any information on these features.

6| Experimental analysis 87

(a) (b) (c)

(d) (e) (f)

Figure 6.8: DLO3 sinusoidal manipulation without and with occlusion. (a) DLO3 color
frame with tracked shape (in red). (b) DLO3 point-cloud (in green) with tracked shape
(in red). (c) DLO3 3D-fitting plot. (d) DLO3 color frame with tracked shape (in red) in
case of occlusion. (e) DLO3 point-cloud (in green) with tracked shape (in red) in case of
occlusion, the right connector is highlighted in the black rectangle. (f) DLO3 3D-fitting
plot, with occlusion, highlighted in purple.

From Figure 6.8d it can be noticed that in the color frame, the right connector of the
DLO appears, and this part is also reported in the point-cloud (Figure 6.8e in the black
rectangle). This happens because, differently from DLO1 where the contour extraction
deletes the part over the left gripper (Figure 4.14), in this case, the maximum perimeter
is lower, thus the connector is bigger of 1

5
of the maximum perimeter, hence it is extracted

by the contour extraction step (Section 4.2.3). Nevertheless, the connector is deleted by
the downsampling and the outlier removal applied on the point-cloud (Figure 6.9), for
this reason, the connector points are not considered in the fitting, ensuring in this way a
good tracking result.

88 6| Experimental analysis

Figure 6.9: Output of downsampling and outliers removal on the DLO3 point-cloud in
sinusoidal shape.

The last DLO tested is the DLO7 (Figure 6.10). Also if it is thinner with respect to
the previous DLOs, it generates enough points to be correctly tracked. Differently from
the previous DLOs, it has higher rigidity, which causes a slightly upward deformation.
As the DLO2, it generates a variation along the z-axis Z̃ = 3 cm in the case without
occlusion (Figure 6.10c). Although, the DLO2 (Figure 6.7c) has Z̃ = 3 cm, due to a
Zmax = 4.7 cm, caused by the middle part of the DLO which is deformed downward
due to its lower rigidity. On the other hand, the DLO3 has this Z̃, due to its lower
Zmin = 4.3cm, caused by its slightly upward deformation.

6| Experimental analysis 89

(a) (b) (c)

(d) (e) (f)

Figure 6.10: DLO7 sinusoidal manipulation without and with occlusion. (a) DLO7 color
frame with tracked shape (in red). (b) DLO7 point-cloud (in green) with tracked shape
(in red). (c) DLO7 3D-fitting plot. (d) DLO7 color frame with tracked shape (in red) in
case of occlusion. (e) DLO7 point-cloud (in green) with tracked shape (in red) in case of
occlusion. (f) DLO7 3D-fitting plot, with occlusion highlighted in purple.

As we just noticed in the linear shape, if the number of acquired points is lower, then
the entire algorithm in tracking the acquired frame is faster. Hence in (Table 6.6), the
occlusion case has a lower time respect to the case without it. Moreover note that for
the DLO1 the time with respect to the linear shape is decreased by 35 ms for the case
without occlusion, and is decreased by 31 ms for the case with occlusion.

90 6| Experimental analysis

Mean computational time for each tracked frame

without occlusion with occlusion

DLO1 0.104 s 0.103 s

DLO2 0.080 s 0.079 s

DLO3 0.099 s 0.096 s

DLO7 0.093 s 0.091 s

Table 6.6: Mean computational time for each tracked frame with occlusion and without
it (sinusoidal shape).

Considering then the AMSE (Table 6.7), can be noticed in general for all the DLO tested,
except for the DLO1, a bigger value of the error in the x-z plane respect the x-y plane.
This is caused firstly by the Z̃ which is bigger respect the one in the linear shape. Secondly,
this is due to the lower number of points acquired. The bigger error is in fact the one
generated by the DLO3 (highlighted in red in Table 6.7) which is the one with a lower
number of points in the extracted point-cloud (Figure 6.8b). In addition, we can remember
that the acquired grippers poses, are not precise, especially for the z position, due to the
robot not being calibrated with absolute accuracy. Also, this generates the increase of the
AMSEx−z, since the tracked shape tries to fit a point that is not the real one. Although
these errors, the tracking results for the sinusoidal shape are satisfactory.

AMSEx−y AMSEx−z

without occlusions with occlusions without occlusions with occlusions

DLO1 0.389 cm2 0.427 cm2 0.054 cm2 0.077 cm2

DLO2 0.096 cm2 0.6 cm2 2.3 cm2 1.47 cm2

DLO3 0.150 cm2 0.133 cm2 3.16 cm2 1.58 cm2

DLO7 0.152 cm2 0.105 cm2 1.38 cm2 1.96 cm2

Table 6.7: Averaged MSE for each tracked frame (sinusoidal shape).

6| Experimental analysis 91

6.3. Test 3: Quadratic function shape

As for the sinusoidal shape, the robot moves with a velocity of 20 mm/s while changing
its joint configuration in order to reach the final shape. But differently from the last two
presented shapes, this can be tested for all the DLOs of Table 3.2, from the less rigid to
the more rigid one. However, since the DLOs are characterized by different stiffness, it is
necessary to define a depth threshold that considers for each DLO a possible deformation
downward or upward (Table 6.8). In fact, the more rigid DLOs have a lower limit less
strict (since during manipulation they can deform upwards), while the less rigid DLOs
have an upper limit less strict (because is more probable that they deform downward
during the manipulation).

Depth thresholds

upper limit in meters lower limit in meters

DLO1 0.49 0.42

DLO2 0.49 0.42

DLO3 0.49 0.4

DLO4 0.45 0.38

DLO5 0.45 0.38

DLO6 0.45 0.38

DLO7 0.49 0.38

DLO8 0.43 0.35

Table 6.8: Values of the depth filter thresholds, in case of quadratic function shape.

The first tested DLO is the DLO1. Figure 6.11 shows the result, due to the higher diameter
with this DLO there is not any problem linked to the number of acquired points. But
as it can be noticed due to the lower rigidity of this DLO, it will deform downward with
Z̃ = 2.5 cm (Figure 6.11c). While Figures 6.11d to 6.11f shows that the tracking result is
robust also to a hand occlusion.

92 6| Experimental analysis

(a) (b) (c)

(d) (e) (f)

Figure 6.11: DLO1 quadratic function shape manipulation without and with occlusion.
(a) DLO1 color frame with tracked shape (in red). (b) DLO1 point-cloud (in green) with
tracked shape (in red). (c) DLO1 3D-fitting plot. (d) DLO1 color frame with tracked
shape (in red) in case of hand occlusion. (e) DLO1 point-cloud (in green) with tracked
shape (in red) in case of hand occlusion. (f) DLO1 3D-fitting plot with hand occlusion,
highlighted in purple.

Figure 6.12 shows the results of the tested shape applied on DLO2. Note that in Fig-
ure 6.12a, in the background, other sections of the DLO that are not between the gripper
are present. Thanks to the depth filter, these parts are filtered out and are not reported in
the point-cloud (Figure 6.12b). Therefore, both in the image plane and in the point-cloud
satisfactory results are obtained. Then in the case of occlusion, the number of points
became lower (Figure 6.12d) due to the hand that occludes and pushes the DLO, but
still, the final shape is well approximated.

6| Experimental analysis 93

(a) (b)

(c) (d)

Figure 6.12: DLO2 quadratic function shape manipulation without and with occlusion.
(a) DLO2 color frame with tracked shape (in red). (b) DLO2 point-cloud (in green) with
tracked shape (in red). (c) DLO2 color frame with tracked shape (in red) in case of hand
occlusion. (d) DLO2 point-cloud (in green) with tracked shape (in red) in case of hand
occlusion.

The DLO3, due to its different rigidity with respect to the two previous DLOs, has instead
a final shape slightly different from the others obtained previously (Figure 6.13). However,
this shape is correctly tracked by the proposed method, both in the case of occlusions and
without it.

94 6| Experimental analysis

(a) (b)

(c) (d)

Figure 6.13: DLO3 quadratic function shape manipulation without and with occlusion.
(a) DLO3 color frame with tracked shape (in red). (b) DLO3 point-cloud (in green)
with tracked shape (in red). (c) DLO3 color frame with tracked shape (in red) in case
of occlusion. (d) DLO3 point-cloud (in green) with tracked shape (in red) in case of
occlusion.

The next DLO analyzed is the DLO4, Figure 6.14 shows the results. Differently from the
linear case (Figure 6.4), the number of points grows up in case without occlusion, but
the right part is tracked without extracted points (Figure 6.14b). This is caused by the
particular translucent material, this implies that, in addition to the holes in the depth
map, the infrared rays (generated by the infrared projector of the camera (Figure 3.3)),
can pass through the DLO giving as depth value the one linked to the worktable as shown
in Figure 6.14c. The part with holes (that have depth value = 0) and the part obtained
due to the infrared projector, are filtered out by the depth filter (Section 4.2.1) that uses
the threshold values of Table 6.8. It follows that, unfortunately, the small part between
the holes and the result of the infrared projector is not extracted and reported in the
point-cloud, because it is deleted by the contour extraction phase (Section 4.2.3) due to
its smaller perimeter with respect to the other part of the DLO. However, despite of the
mentioned issues the shape is correctly tracked.
The number of points decreases in case of occlusion (Figures 6.14d and 6.14e): this

6| Experimental analysis 95

generates a slight shift to the left of the fitting points near the right gripper. Anyway also
in case of occlusion, the final shape is correctly tracked.

(a) (b)

(c)

(d) (e)

Figure 6.14: DLO4 quadratic function shape manipulation without and with occlusion.
(a) DLO4 color frame with tracked shape (in red). (b) DLO4 point-cloud (in green) with
tracked shape (in red). (c) DLO4 depth map with hole and infrared projector result
circled in red. (d) DLO4 color frame with tracked shape (in red) in case of occlusion. (e)
DLO4 point-cloud (in green) with tracked shape (in red) in case of occlusion.

96 6| Experimental analysis

Considering now the DLO5 (Figure 6.16). It is a hose for compressed air, as the previous
DLO, but with a diameter lower than 0.2 cm. As in the previous case, the right part of
the DLO is not reported in the point-cloud (Figure 6.16b) due to holes and the infrared
result (Figure 6.15).

Figure 6.15: DLO5 depth map with hole and infrared projector result highlighted in red.

From Figures 6.16c and 6.16f, it is interesting to notice that Z̃ = 6 cm, that happens
because the robot forces the DLO to assume a shape parallel to the working table, but
due to the stiffness it will deform upward. The proposed tracking algorithm is able to
track correctly both cases without occlusion and with them (Figures 6.16a and 6.16d),
highlighting also the deformation upward without requiring any information about the
DLO rigidity.

6| Experimental analysis 97

(a) (b) (c)

(d) (e) (f)

Figure 6.16: DLO5 quadratic function shape manipulation without and with occlusion.
(a) DLO5 color frame with tracked shape (in red). (b) DLO5 point-cloud (in green) with
tracked shape (in red). (c) DLO5 3D-fitting plot. (d) DLO5 color frame with tracked
shape (in red) in case of occlusion. (e) DLO5 point-cloud (in green) with tracked shape (in
red) in case of occlusion. (f) DLO5 3D-fitting plot with occlusion, highlighted in purple.

The last DLO of the family of the hose for compressed air is the DLO6, which has a
diameter that is half of the DLO4. The infrared projector gives to all the right parts
of the DLO the depth value of the working table due to small diameter of the DLO
(Figure 6.17e). But also in the case of lower diameter the tracking algorithm is able to
track the DLO in case of occlusion and without it (Figure 6.17).

98 6| Experimental analysis

(a) (b)

(c) (d)

(e)

Figure 6.17: DLO6 quadratic function shape manipulation without and with occlusion.
(a) DLO6 color frame with tracked shape (in red). (b) DLO6 point-cloud (in green)
with tracked shape (in red). (c) DLO6 color frame with tracked shape (in red) in case
of occlusion. (d) DLO6 point-cloud (in green) with tracked shape (in red) in case of
occlusion. (e) DLO6 depth map in case of occlusion, with infrared projector result in red
square.

The other tested DLO is the DLO7 (Figure 6.18). It has a rigidity that can be estimated
between the DLO3 and the hoses for compressed air, in fact, as can be noticed by Fig-
ures 6.18c and 6.18f, while it reaches the final shape, it will deform upwards of more than
5 cm due to its rigidity. But differently from the compressed air hoses, it gives more

6| Experimental analysis 99

points, that ensure the correct tracking of this DLO.

(a) (b) (c)

(d) (e) (f)

Figure 6.18: DLO7 quadratic function shape manipulation without and with occlusion.
(a) DLO7 color frame with tracked shape (in red). (b) DLO7 point-cloud (in green) with
tracked shape (in red). (c) DLO7 3D-fitting plot. (d) DLO7 color frame with tracked
shape (in red) in case of occlusion. (e) DLO7 point-cloud (in green) with tracked shape (in
red) in case of occlusion. (f) DLO7 3D-fitting plot with occlusion, highlighted in purple.

The last DLO analyzed is the DLO8 (Section 3.1.1). DLO8 is a hose of a motorbike braking
system, characterized by the highest rigidity in the tested DLOs, and by a reflective
material that makes difficult to acquire its contour by color mask.
Figure 6.19 shows the result with and without occlusion. Due to its high rigidity, forcing
it to reach a final shape parallel to the working table generates a deformation upward of
more than 10 cm (Figures 6.19c and 6.19f), more of 4 cm than the DLO5 (Figure 6.16).
Considering the tests where the DLO was occluded, it must be pointed out that the human
hand has to be covered by a glove (Figure 6.19d), otherwise it could interfere with the
HSV values of the DLO in the image. The final tracked shape is slightly more rounded in
this case respecting the case without occlusion, but anyway, the DLO shape is correctly
estimated.

100 6| Experimental analysis

(a) (b) (c)

(d) (e) (f)

Figure 6.19: DLO8 quadratic function shape manipulation without and with occlusion.
(a) DLO8 color frame with tracked shape (in red). (b) DLO8 point-cloud (in green) with
tracked shape (in red). (c) DLO8 3D-fitting plot. (d) DLO8 color frame with tracked
shape (in red) in case of occlusion. (e) DLO8 point-cloud (in green) with tracked shape (in
red) in case of occlusion. (f) DLO8 3D-fitting plot with occlusion, highlighted in purple.

Analyzing the time result shown in Table 6.9, the lower time, evidenced in green, belongs
to the tracking of the DLO2 in case of occlusion. This reconfirms what we explain for
the previous shapes, namely that lower is the number of acquired points (Figure 6.12d)
than lower is the time to fit these points by Lasso regression, which means lower time for
each tracked frame. In fact, as in the previously tested shape, the DLO1 takes the longest
mean computational time for each tracked frame, which is still only 0.12 s.

6| Experimental analysis 101

Mean computational time for each tracked frame

without occlusion with occlusion

DLO1 0.12 s 0.116 s

DLO2 0.078 s 0.061 s

DLO3 0.077 s 0.068 s

DLO4 0.091 s 0.065 s

DLO5 0.068 s 0.066 s

DLO6 0.072 s 0.068 s

DLO7 0.081 s 0.076 s

DLO8 0.085 s 0.082 s

Table 6.9: Mean computational time for each tracked frame with occlusion and without
it (quadratic function shape).

Table 6.10 shows the averaged mean squared error in the x-y and x-z plane. Firstly it can
be noticed that the errors in x-z plane for the DLO2, DLO3, DLO7 are decreased with
respect to the sinusoidal shape (Table 6.7) because there is a lower change in this plane
for this DLOs.
The biggest fitting errors are the AMSEx−z, and are generated by the DLOs with high
rigidity. This happens because this error takes into account the fitting error from the
initial shape which is a linear one, which as we have already seen in the linear case with
the DLO5 Table 6.3, generates problems with this kind of DLO. In addition, there is also
an error due to not accurate grippers’ poses. The worst error is made by the DLO5, which
is highlighted in red in Table 6.10. While the DLO7 errors are highlighted in green, since
both in the x-y and x-z planes it has the lowest fitting error.

102 6| Experimental analysis

AMSEx−y AMSEx−z

without occlusions with occlusions without occlusions with occlusions

DLO1 0.609 cm2 0.56 cm2 0.282 cm2 0.284 cm2

DLO2 0.09 cm2 0.08 cm2 1.4 cm2 0.165 cm2

DLO3 0.069 cm2 0.07 cm2 0.093 cm2 0.069 cm2

DLO4 0.12 cm2 0.11 cm2 1.8 cm2 1.3 cm2

DLO5 0.045 cm2 0.089 cm2 3.8 cm2 3.3 cm2

DLO6 0.033 cm2 0.581 cm2 0.7 cm2 0.99 cm2

DLO7 0.032 cm2 0.035 cm2 0.091 cm2 0.23 cm2

DLO8 0.045 cm2 0.15 cm2 1.5 cm2 2 cm2

Table 6.10: Averaged MSE for each tracked frame (quadratic function shape).

6.4. Limitation: Sensitivity to the occluding object

color

As just presented in Section 4.6.1 one of the limits of the proposed methodology is that
the occluding object, if it is at the same height as the DLO, cannot have the same color
as the manipulated DLO. Nonetheless, we proposed a solution to this problem, which
consists in run in parallel the online video with occlusion and a sample video without
occlusion, and making the AND between the two videos (as detailed in Section 4.6.1).
The first DLO tested is the DLO1 (Figure 6.20). As it can be noticed in Figures 6.20a
and 6.20b the black occluding object pixels are acquired by the segmentation phase (Sec-
tion 4.2) and are reported in the point-cloud, generating a wrong tracked shape. On the
other hand, using the AND between the online and the sample video, the occluding object
points are correctly filtered out.

6| Experimental analysis 103

(a) (b)

(c) (d)

Figure 6.20: DLO1 tracking results in case of a black occluding object on it. (a) DLO1
color frame with tracked shape (in red), without the AND between the online and the
sample video. (b) DLO1 point-cloud (in green) with tracked shape (in red), without using
the AND between the online and the sample video. (c) DLO1 color frame with tracked
shape (in red), using the AND between the online and the sample video. (b) DLO1 point-
cloud (in green) with tracked shape (in red), using the AND between the online and the
sample video.

This method is tested also on the DLO3, in case of an occlusion made by a white object.
Figure 6.21a shows a white object that occludes the DLO, note that not only the pixels
of the object are reported in the point-cloud but also the hand is reported (Figure 6.21b)
generating a wrong tracked shape. However applying the AND method (Figures 6.21c
and 6.21d) the tracked shape is equal to the one without and with occluding object color
different from the DLO (Figure 6.13).

104 6| Experimental analysis

(a) (b)

(c) (d)

Figure 6.21: DLO3 tracking results in case of a black occluding object on it. (a) DLO3
color frame with tracked shape (in red), without the AND between the online and the
sample video. (b) DLO3 point-cloud (in green) with tracked shape (in red), without using
the AND between the online and the sample video. (c) DLO3 color frame with tracked
shape (in red), using the AND between the online and the sample video. (b) DLO3 point-
cloud (in green) with tracked shape (in red), using the AND between the online and the
sample video.

The last tested DLO is the DLO7, the same white object of the previous test is used
as occlusion. Figures 6.22a and 6.22b show that in case the object occludes the right
part, Lasso generates a wrong fitting due to the fact, it tries to fit also the object points.
By applying the AND between the sample video and the online one with the occlusion
(Figures 6.22c and 6.22d), the object points are filtered out and ensures a good estimation
of the DLO shape also if the available points are less with respect to the case shown in
(Figure 6.18e).

6| Experimental analysis 105

(a) (b)

(c) (d)

Figure 6.22: DLO7 tracking results in case of white occluded object on it. (a) DLO7 color
frame with tracked shape (in red), without using the sample video. (b) DLO7 point-cloud
(in green) with tracked shape (in red), without using the sample video. (c) DLO7 color
frame with tracked shape (in red), with the use of the sample video. (b) DLO7 point-cloud
(in green) with tracked shape (in red), with the use of the sample video.

The proposed methodology applies the segmentation phase two times, one for the online
video and one for the sample video, hence one of the main problems could be the degra-
dation of the computational time. Table 6.11 shows that this kind of problem does not
exist. In fact, the time only increases by 0.03 s for the DLO1, 0.03 s for the DLO3, and
0.025 s for the DLO7, with respect to the case with occlusion of different color or with the
same color but at a certain height above the manipulated DLO. This happens because
the object points are filtered out before the construction of the point-cloud, meaning that
as soon as the color mask is applied, all operations are executed on gray images, so they
are computationally efficient.

106 6| Experimental analysis

Mean computational time for each tracked frame

without occlusion with occlusion with occlusion of same DLO color

DLO1 0.12 s 0.116 s 0.15 s

DLO3 0.077 s 0.068 s 0.098 s

DLO7 0.081 s 0.076 s 0.101 s

Table 6.11: Comparison of the mean computational time for each tracked frame with and
without occlusion, with use of the sample video.

Table 6.12 shows the AMSEx−y and AMSEx−z. As can be noticed, the AMSEx−y

decreases in case of occlusion of the same DLO color (highlighted in green), this is because
the removed occluding object being on the DLO decreases the number of points, which
generates a decreasing of the fitting error. While the AMSEx−z increases. As it happens
in the previously tested shape, the fitting error is influenced by the gripper’s poses which
are not accurate, so having a lower number of points and the acquired gripper positions
with lower accuracy, generate an increased error in the x-z plane.

AMSEx−y

without occlusion with occlusion with occlusion of same DLO color

DLO1 0.609 cm2 0.56 cm2 0.34 cm2

DLO3 0.069 cm2 0.07 cm2 0.032 cm2

DLO7 0.032 cm2 0.035 cm2 0.024 cm2

AMSEx−z

without occlusion with occlusion with occlusion of same DLO color

DLO1 0.282 cm2 0.284 cm2 0.3 cm2

DLO3 0.093 cm2 0.069 cm2 0.19 cm2

DLO7 0.091 cm2 0.23 cm2 0.16 cm2

Table 6.12: Comparison of AMSE for each tracked frame with and without occlusion,
with use of the sample video.

The Frangi filter [22] could help with the problem of the occluding object color. It
is optimized to detect tubular objects, so if we apply it after the color mask it will
automatically filter out all the parts that are not DLO. The cons of this method is that
its speed depends on the rescaling of the color frame, smaller is the frame, quicker is the

6| Experimental analysis 107

Frangi filter. However, in our case changing the dimension of the color frame creates a
misalignment between the color and depth frame generating a wrong point-cloud. When
Frangi is added to the general tracking algorithm in order to track the DLO1, the mean
computational time for each tracked frame was 1.57 s, more than 10 times bigger without
using it (Table 6.11). This causes the video to stutter, so this is unacceptable for an
online tracking algorithm.
In general, another technique that would eliminate this problem can be the use of a Neural
Network (NN). In this way is not necessary to use the color mask for the detection.
However, the cons is that is necessary to train the NN for each DLO used, leading to
expensive data collection and labeling in case of an industrial scenario with different
types of DLOs.

6.5. Test 4: 3D-Sinusoidal shape

Differently from the previous shapes, where the change of high is small, and the configu-
ration of the camera can remain the same. In this case, we will have a bigger chance of
high, so the camera is reconfigured (Figure 6.23).

Figure 6.23: Used camera configuration in case of bigger variation along the z-axis.

108 6| Experimental analysis

In addition is also necessary to define the new depth threshold (Table 6.13).

Depth thresholds

upper limit in meters lower limit in meters

DLO1 0.65 0.38

Table 6.13: Values of the depth filter thresholds, in case of 3D sinusoidal shape.

The last tested shape is the 3D sinusoidal shape, it is similar to Section 6.2 but with a
huge variation along the z-axis. Figure 6.24 shows the DLO1 result. As can be noticed
by Figures 6.24c and 6.24d, Z̃ = 20 cm, so nearly 10 times the Z̃ that we had in the
previous sinusoidal shape (Figure 6.6). The mean computational time for each tracked
frame is 0.11 s, while the AMSEx−y is 0.5 cm2, while the AMSEx−z is 0.4 cm2.

(a) (b)

(c) (d)

Figure 6.24: DLO1 3D sinusoidal shape manipulation. (a) DLO1 color frame with tracked
shape (in red). (b) DLO1 point-cloud (in green) with tracked shape (in red). (c) DLO1
3D-fitting plot. (d) DLO1 3D-fitting plot.

109

7| Conclusions

The vision based tracking of deformable linear objects (DLOs) manipulated by a dual-
arm robot presents several challenges, due to the high number of degrees of freedom of
the DLO. In addition, the tracking algorithm has limitations, linked to the impossibility
to detect with good accuracy the position and the shape of an object in presence of
occlusions, particular lighting conditions, or when similarly shaped and colored objects
are placed close to each other in the working area. Finally, an online tracking algorithm
needs to be computationally efficient in order to give an estimated tracked shape with a
minimum delay with respect to online robot manipulation.
In view of these challenges, this thesis proposes a tracking approach that differs from
the literature, being based on the visual information, given by the camera, and on the
robot grippers poses, used to define the parameters of the depth filter and to achieve
more accurate and robust tracking of the DLO shape. Moreover, this work focuses on
DLO shape tracking in industrial applications. For this reason, during the validation, the
tracking of the shape of different kinds of DLOs was analyzed. The considered DLOs
differ in color, length, and material.
In particular, thanks to the use of the depth filter the robustness during the tracking was
achieved also in presence of other DLOs on the working table, which can have also the
same shape and/or color as the manipulated DLO. Furthermore, the created filter allows
to filter out the points that are not between the grippers, thanks to the implemented
segmentation phase. In the case that the segmentation phase fails in this filtering, it
was proved that point-cloud downsampling and outlier removal eliminates these points
(Figure 6.9). This enlarges the use of the proposed tracking algorithm for different kinds
of DLOs without any limits on their length.
Moreover thanks to the acquisition of the grippers poses, the tracking algorithm is robust
to the occlusions which can be static or dynamic. In particular, the state of the art
does not consider the case of manipulated DLO and occluding objects with the same
color. This problem was considered and mitigated in this thesis. In fact, it was softened,
considering that the occluding object can be above the manipulated DLO of 4 cm. On
the other hand, if the occluding object touches the cable, the tracking is achieved using a

110 7| Conclusions

sample video without any occlusion, making an online recovery based on this video which
allows the removal of the object points.
In the experimental analysis the tracking algorithm has achieved satisfactory tracking
results maintaining a lower mean time for each tracked frame, also in the case the sample
video is used and the algorithm needs to work on the online and on the sample video
together. Without any information about the rigidity of the DLOs, the algorithm is able
to track their shape in 3D, highlighting their change also along the z-axis in the different
tested shapes.
Despite the good result, the visual algorithm evidenced some problems in the tracking
hoses for compressed air when they are in a linear shape. In fact, due to their particular
translucent material and rigidity, problems arise in the acquisition of their depth value
by the stereo camera. This, creates for some frames a wrong-tracked shape, resulting in
a higher averaged mean squared error (AMSE) in the x-z plane respecting the AMSE in
the x-y plane.

7.1. Future Developments

Despite the good results obtained and the relevance of the method in an industrial context,
some future works could improve the strategy.
The first improvement can be to run the code on a GPU, in order to have a faster tracking
algorithm.
Another improvement can be the use of the proposed online tracking strategy with an
offline planner. In fact, the planned shape can be used to have some additional information
about the deformation of the DLOs during the manipulation, this can be used to update
online the depth threshold of the depth filter, in order to ensure an adaptable threshold
for each DLO during the manipulation. Moreover, the tracking algorithm can be used to
realize visual servoing.
In addition, the vision algorithm can be improved by adding the Frangi filter, which can
add robustness against occlusion, in particular in the case of an occluding object with the
same color as the manipulated DLO. But a trade-off between the rescaling of the image
and the computational time of the algorithm must be found.
Finally an improvement can be achieved by developing an online recovery method in order
to deal with the sensitivity to the occluding object color, without using a sample video.

111

Bibliography

[1] S. R. Balaji and S. Karthikeyan. A survey on moving object tracking using image
processing. In 2017 11th International Conference on Intelligent Systems and Control
(ISCO), pages 469–474, 2017.

[2] Jose Sanchez, Juan Antonio Corrales, B. C. Bouzgarrou, and Youcef Mezouar.
Robotic manipulation and sensing of deformable objects in domestic and industrial
applications: a survey. The International Journal of Robotics Research, 37:688–716,
2018.

[3] Nicolas Padoy and Gregory Hager. Deformable tracking of textured curvilinear ob-
jects. BMVC 2012 - Electronic Proceedings of the British Machine Vision Conference
2012, 01 2012.

[4] Alireza Rastegarpanah, Rhys Howard, and Rustam Stolkin. Tracking linear de-
formable objects using slicing method. Robotica, 40(4):1188–1206, 2022.

[5] Te Tang and Masayoshi Tomizuka. Track deformable objects from point clouds with
structure preserved registration. The International Journal of Robotics Research,
41:599 – 614, 2019.

[6] John Schulman, Alex Lee, Jonathan Ho, and Pieter Abbeel. Tracking deformable
objects with point clouds. In 2013 IEEE International Conference on Robotics and
Automation, pages 1130–1137, 2013.

[7] A. Myronenko and Song. Point-set registration: Coherent point drift. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 32:2262–2275, 2010.

[8] Shiyu Jin, Changhao Wang, Xinghao Zhu, Te Tang, and Masayoshi Tomizuka.
Real-time state estimation of deformable objects with dynamical simulation. page
11879–11883., 11 2020.

[9] Markus Wnuk, Christoph Hinze, Manuel Zürn, Qizhen Pan, Armin Lechler, and
Alexander Verl. Tracking branched deformable linear objects with structure preserved
registration by branch-wise probability modification. pages 101–108, 11 2021.

112 | Bibliography

[10] Shiyu Jin, Wenzhao Lian, Changhao Wang, Masayoshi Tomizuka, and Stefan Schaal.
Robotic cable routing with spatial representation. IEEE Robotics and Automation
Letters, 7:1–1, 04 2022.

[11] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional net-
works for biomedical image segmentation, 2015.

[12] Waltersson Gabriel Arslan, Rita Laezza, and Yiannis Karayiannidis. Planning and
control for cable-routing with dual-arm robot. IEEE International Conference on
Robotics and Automation (ICRA), 04 2022.

[13] Shiyu Jin, Changhao Wang, and Masayoshi Tomizuka. Robust deformation model
approximation for robotic cable manipulation. In 2019 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 6586–6593, 2019.

[14] Cheng Chi and Dmitry Berenson. Occlusion-robust deformable object tracking with-
out physics simulation. In 2019 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 6443–6450, 2019.

[15] Yixuan Wang, Dale McConachie, and Dmitry Berenson. Tracking partially-occluded
deformable objects while enforcing geometric constraints. In 2021 IEEE International
Conference on Robotics and Automation (ICRA), pages 14199–14205, 2021.

[16] Kangchen Lv, Mingrui Yu, Yifan Pu, and Xiang Li. Learning to occlusion-robustly
estimate 3-d states of deformable linear objects from single-frame point clouds, 2022.

[17] HSV color model scheme. https://commons.wikimedia.org/wiki/File:HSV_

color_solid_cylinder.png.

[18] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers,
Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg,
Nathaniel J. Smith, Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van Kerk-
wijk, Matthew Brett, Allan Haldane, Jaime Fernández del Río, Mark Wiebe, Pearu
Peterson, Pierre Gérard-Marchant, Kevin Sheppard, Tyler Reddy, Warren Weckesser,
Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. Array programming with
NumPy. Nature, 585(7825):357–362, September 2020.

[19] Qian-Yi Zhou, Jaesik Park, and Vladlen Koltun. Open3d: A modern library for 3d
data processing, 2018. cite arxiv:1801.09847Comment: http://www.open3d.org.

[20] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,

https://commons.wikimedia.org/wiki/File:HSV_color_solid_cylinder.png
https://commons.wikimedia.org/wiki/File:HSV_color_solid_cylinder.png

7| BIBLIOGRAPHY 113

M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

[21] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software Tools, 2000.

[22] Alejandro F. Frangi, Wiro J. Niessen, Koen L. Vincken, and Max A. Viergever.
Multiscale vessel enhancement filtering. International Conference on Medical Image
Computing and Computer-Assisted Intervention, pages 130–137, 1998.

115

List of Figures

1.1 Example of operation involving DLOs computed manually. 1

2.1 Example of an image tracking and of video tracking. 6
2.2 Phase and technique of object detection,classification and tracking [1]. . . . 7
2.3 Classification of a deformable objects [2]. 9
2.4 Example of a DLO (a) and of a SDLO (b). 10
2.5 Manipulation of a thread with da Vinci instruments (left) and the 3D

tracking model (right) [3]. 10
2.6 Experimental set up of Rastegarpanah et al [4]. 11
2.7 Gaussian mixture, composed by three Gaussian functions with mean µk

and standard deviation σk (k ∈ {1, 2, 3}). 12
2.8 Point set registration scheme. 14
2.9 GMM-Example and limitation with occlusion 15
2.10 Example of DLO tracking using the GMM-EM with a physics simulator [6]. 16
2.11 SPR example . 18
2.12 Scheme of the tracking method proposed by [5] 18
2.13 Tracking using SPR [5]. 19
2.14 Point-cloud recovery [8] . 20
2.15 Block scheme of SPR with point-cloud recovery 20
2.16 Comparison between SPR and CAMP [9] 21
2.17 Scheme of tracking method proposed in [12]. 22
2.18 CDCPD vs CDCPD2 . 23
2.19 Scheme of the proposed method for occlusion-robustly estimating the 3-D

states of DLOs[12]. 24

3.1 Hardware set up and how it is connected 27
3.2 Gripper. 28
3.3 Camera Intel Realsense D435i. 29
3.4 Eye-to-hand configuration with the measures of the rods. 29
3.5 Manipulated DLO with the presence of DLOs in the background. 30

116 | List of Figures

3.6 Class of DLOs. 31
3.7 Digitized image in the “image plane”. 32
3.8 HSV color model [17]. 33
3.9 Example of RGB and depth image. 34
3.10 Aruco marker frame, robot base frame, translation vector 35
3.11 Marker frame, the robot base frame, the camera frame, and the homoge-

neous transformation matrices schematized 36

4.1 High-level flow chart of proposed tracking strategy 40
4.2 Detected aruco. 41
4.3 Color frame and depth frame with holes circled in red. 42
4.4 Type of hole filling logic. 42
4.5 Results after the acquisition of color frame and depth frame. 44
4.6 Depth filter flow chart, in orange the logic of the main used function:

numpy.where. 45
4.7 DLO1 (defined in Section 3.1.1) after the depth filtering. 46
4.8 Comparison of the hole filling methods after the depth filtering. 47
4.9 Result of the color mask applied to Figure 4.7. 47
4.10 Result of cv2.inrange function and result after the dilation transformation. 48
4.11 Point-cloud constructed with closing and dilation. 49
4.12 Contour extraction flowchart. 49
4.13 Contour plotted on the DLO and result of the contour extraction 50
4.14 Difference between the use or not of the contour extraction step. 51
4.15 Difference between the use or not of the contour extraction step in case of

occlusion. 52
4.16 Constructed point-cloud . 53
4.17 Point-cloud outlier removal . 54
4.18 Color frame and filtered point- cloud with grippers points. 55
4.19 3D-fitting plot. 56
4.20 DLO8 quadratic function shape. 56
4.21 3D-fitting plot of DLO9 in a parabola shape. 57
4.22 Flowchart of the opt function. 59
4.23 Tracked points on the point-cloud. 60
4.24 Tracked points on the color frame . 61
4.25 DLO2 color frame and depth frame . 62
4.26 DLO1 tracking with hand. 63
4.27 DLO2 tracking results in case of holes . 63

| List of Figures 117

4.28 DLO1 tracking results in case of black occluding object 4 cm above the
DLO and on the DLO. 65

4.29 Solution to the sensitivity to the occluding object color. 67
4.30 DLO1 tracking result in case of black occluded object on it. 68
4.31 DLO3 approximation with a straigh line due to lower number of points. . . 69
4.32 Methodology recap. 70

5.1 Server-client communication. 72
5.2 Right arm task. 73
5.3 Chosen Multitasking RAPID configuration. 74
5.4 tool0 and tool_grip. 74
5.5 Gripper points with and without the offsets. 76

6.1 Camera configuration. 79
6.2 DLO1 linear manipulation without and with occlusion. 80
6.3 DLO7 linear manipulation without and with occlusion. 81
6.4 DLO4 linear manipulation without and with occlusion. 82
6.5 DLO4 point-cloud with big error in x-z plane during the linear shape . . . 83
6.6 DLO1 sinusoidal manipulation without and with occlusion. 85
6.7 DLO2 sinusoidal manipulation without and with occlusion. 86
6.8 DLO3 sinusoidal manipulation without and with occlusion. 87
6.9 Output of downsampling and outliers removal on the DLO3 point-cloud in

sinusoidal shape. 88
6.10 DLO7 sinusoidal manipulation without and with occlusion. 89
6.11 DLO1 quadratic function shape manipulation without and with occlusion. 92
6.12 DLO2 quadratic function shape manipulation without and with occlusion. 93
6.13 DLO3 quadratic function shape manipulation without and with occlusion. 94
6.14 DLO4 quadratic function shape manipulation without and with occlusion. 95
6.15 DLO5 depth map with hole and infrared projector result highlighted in red. 96
6.16 DLO5 quadratic function shape manipulation without and with occlusion. 97
6.17 DLO6 quadratic function shape manipulation without and with occlusion. 98
6.18 DLO7 quadratic function shape manipulation without and with occlusion. 99
6.19 DLO8 quadratic function shape manipulation without and with occlusion. 100
6.20 DLO1 tracking results in case of black occluding object on it. 103
6.21 DLO3 tracking results in case of white occluding object on it. 104
6.22 DLO7 tracking results in case of white occluded object on it. 105
6.23 Used camera configuration in case of bigger variation along the z-axis. . . . 107
6.24 DLO1 3D sinusoidal shape manipulation. 108

119

List of Tables

2.1 Object tracking methods. 8

3.1 Camera specifications. 28
3.2 Specification of used DLOs. 32

5.1 tool_gripper offset . 75

6.1 HSV values for each DLO presented in Section 3.1.1 78
6.2 Values of the depth filter thresholds, in case of linear shape. 79
6.3 Mean computational time for each tracked frame with occlusion and with-

out it (linear shape). 82
6.4 Averaged MSE for each tracked frame (linear shape). 83
6.5 Values of the depth filter thresholds, in case of sinusoidal shape. 84
6.6 Mean computational time for each tracked frame with occlusion and with-

out it (sinusoidal shape). 90
6.7 Averaged MSE for each tracked frame (sinusoidal shape). 90
6.8 Values of the depth filter thresholds, in case of quadratic function shape. . 91
6.9 Mean computational time for each tracked frame with occlusion and with-

out it (quadratic function shape). 101
6.10 Averaged MSE for each tracked frame (quadratic function shape). 102
6.11 Comparison of the mean computational time for each tracked frame with

and without occlusion, with use of the sample video. 106
6.12 Comparison of AMSE fitting error for each tracked frame with and without

occlusion, with use of the sample video. 106
6.13 Values of the depth filter thresholds, in case of 3D sinusoidal shape. 108

	Abstract
	Abstract in lingua italiana
	Contents
	Introduction
	Robotic cable manipulation
	Thesis purpose and achievements
	Thesis structure

	State of the Art
	Object tracking
	Deformable Objects
	DLO tracking
	Gaussian Mixture Model Expectation-Maximization (GMM-EM)
	DLO tracking using physics/simulation
	DLO tracking without physics simulation

	Thesis contribution

	Setting of the problem
	Set-up
	Class of DLOs

	Computer vision tools
	Image representation
	Camera calibration matrix

	DLO shape tracking algorithm
	Pre-processing
	DLO segmentation
	Depth filtering
	Color mask
	Contour extraction

	Point-cloud creation
	Acquisition of grippers poses

	3D-Fitting
	Lasso Regression

	Occlusion problem
	Occlusion Limitations
	Sensitivity to the occluding object color
	Occluding object dimension

	Sum-up

	Communication between the tracking algorithm and a dual-arm robot
	Socket
	RAPID program structure
	Client-server communication

	Experimental analysis
	Test 1: Linear shape
	Test 2: 2D-Sinusoidal shape
	Test 3: Quadratic function shape
	Limitation: Sensitivity to the occluding object color
	Test 4: 3D-Sinusoidal shape

	Conclusions
	Future Developments

	Bibliography
	List of Figures
	List of Tables

