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Abstract

This Thesis work has as its main objective the implementation of an algorithm for the
reconstruction of the railway track geometry in the time domain, in all its three main
components  of  vertical,  lateral  and  roll  irregularity,  through  the  employment  of
accelerometers  on  board  of  a  in-service  train,  specifically  the  “Meneghino”  train
employed on the Milan Underground. The chosen algorithm is the U.I.O. (Unknown
Input  Observer),  a  deterministic  observer,  which  unlike  a  stochastic  one  (for
example, a Kalman Filter-type observer) has no requirement or previous knowledge
of  statistical  quantities  of  the  to-be-estimated  displacement,  so  to  make  a  direct
application of the system more practical. At first, the algorithm has been tested on
some trial  systems so  that  general  character  considerations  could be  made to  be
successively  applied on gradually more  complex models;  then,  such results  have
been applied on a linearized model of the examined vehicle,  and compared with
those  of  a  multibody simulation  provided  by  the  Politecnico  di  Milano  for  their
validation. First, the U.I.O. has been applied to estimate vertical dynamics through
the  employment  of  a  10  D.o.F.  simplified  model;  the  relations  between multiple
delayed inputs have been analyzed through Padé Approximation, and an algorithm
to  take  vehicle  variable  velocity  into  account  has  been  developed.  Then,  an
application of the algorithm for the estimation of roll and lateral irregularity of the
railtrack was tried; to this end, a 21 D.o.F. lateral model was developed, that took
into  account  friction  and  elastic  wheel-track  contact  dynamics.  After  a  thorough
model validation, estimation was conducted through the application of an upgraded
version of  the  previously  utilized frame and more advanced filtering techniques;
furthermore,  some  considerations  were  made  about  the  main  similarities  and
differences between this case and the high-speed ones mainly found in literature.

Key-words: U.I.O., Track Irregularity
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Sommario

Il  presente  lavoro  di  tesi  si  prefigge  come  obiettivo  l’implementazione  di  un
algoritmo per  la  ricostruzione dell’irregolarità  di  binario  nel  dominio  del  tempo,
nelle  tre  componenti  fondamentali  di  scostamento  verticale,  laterale  e  di  rollio,
tramite misurazioni di accelerometri a bordo di un treno in servizio, nello specifico il
modello Meneghino impiegato nella Metropolitana di Milano. L’algoritmo scelto è
l’U.I.O.  (Unknown  Input  Observer),  un  osservatore  deterministico,  che
contrariamente ad un osservatore stocastico (es., di tipo Kalman Filter) è privo della
necessità  di  conoscenza  pregressa  di  quantità  statistiche  della  deformazione  da
stimare,  in  modo  da  favorire  un’applicazione  diretta  del  sistema.  In  un  primo
momento l’algoritmo è stato testato su sistemi di prova per trarne considerazioni di
carattere  generale  da  poter  poi  applicare  in  modelli  via  via  più  complessi;  nella
seconda fase, tali risultati sono stati applicati ad un modello linearizzato del veicolo
in  esame,  e  confrontati  con  quelli  di  una  simulazione  multibody  concessa  dal
Politecnico  di  Milano  per  la  loro  validazione.  In  primo  luogo,  l’U.I.O.  è  stato
applicato alla stima della dinamica verticale attraverso un modello semplificato a 10
gradi di libertà; i legami tra multipli ingressi con ritardo sono stati analizzati tramite
l’Approssimazione di  Padé,  e  si  è  sviluppato un algoritmo che tenga conto della
velocità variabile del veicolo. Quindi, si è provato ad applicare tale algoritmo alla
stima  di  rollio  e  irregolarità  laterale  del  binario;  a  tal  scopo,  si  è  sviluppato  un
modello laterale a 21 gradi di libertà che tenesse conto delle dinamiche di attrito e
contatto elastico ruota-rotaia. Dopo un’accurata validazione del modello, la stima è
stata effettuata attraverso l’applicazione di una versione migliorata dell’infrastruttura
precedentemente  utilizzata  e  tecniche  di  filtraggio  più  avanzate;  inoltre,  alcune
considerazioni vengono fatte sulle somiglianze e le differenze fra questo caso e quelli
ad alta velocità ritrovabili per lo più in letteratura.

Parole chiave: U.I.O., Irregolarità di Binario
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Introduction

Rail vehicles are one of the main means of transportation for both people and goods.
In Italy alone, despite tire-based transport (especially for goods) still being dominant,
every  year  train  networks account  for  almost  half  a  billion  passengers  and  100
million tonnes of transported goods [1]. Needless to say, a correct and prehemptive
maintenance of the rail network is paramount to maintain its functionality; in order
to grant both safety and comfort, and also to correctly plan maintenance (instead of
having  to  periodically  stop  circulation  for  corrective  measures),  it  is  thus  of
fundamental  importance  to  provide  an  updated  monitoring  of  the  tracks
misalignment  from nominal  conditions,  both  in  terms  of  vertical  and transversal
irregularity.

All that has been said is especially true when dealing with point-to-point connections
limited to one track per direction (as it is often the case), and even more when the
trains we are dealing with are not long range inter-urban ones, but local vehicles for
which a prolonged stop could mean the paralysis of one or more sectors of a city.
One such example is the Milan Metro, which alone is responsible for the movement
of almost 1 million passengers every day (in the face of a 3 million population), and
for which even a few hours of stop would result in an immense economical and
reputational damage. To furtherly exacerbate the issue, the windows for operating
such monitoring without affecting circulation are very tight, as the 4 to 6 hours of
nighttime service stop must also account for system reactivation, effectively reducing
the available time to a couple hours maximum.

Unfortunately, underground and local trains feature many peculiar aspects which
make it almost impossible to run monitoring vehicles like has been done since long
on conventional and high-speed networks: short intervals between the trains and the
stations,  together  with  highly  variable  travel  speed and  rarely  straight  trajectory
arewhat is arguably the main drive to the necessity of finding alternative way to
monitor the track geometry. Due to a very simple application of economy of scale,
while a nationwide train network may have economical advantages in maintaining a
diagnostic fleet in service, such a limited-scale urban network (the largest in Italy, but
still just a metro service) cannot afford a constant monitoring and mainly has to rely
on externally provided services.

To  this  end,  in  this  work  one  alternative  way of  dealing  with  the  issue  will  be
analyzed, through the employment of the very in-service trains providing on-board
measurements  (mainly  virtue  of  accelerometers)  which  will  be  processed  to



reconstruct the irregularity of the track; this requires an algorithm to be done, and
among the many available options the one called Unknown Input Observer (U.I.O.)
has been chosen for this particular instance. The U.I.O. is a so-called Model-based
Algorithm which can be used to reconstruct a non-deterministic input (in this case,
the track geometry) through the employment of a linearized model of the system (the
train) on which measurements – acceleration measurations in this study case – are
carried on. After a brief introduction of the problem and how it is currently solved in
other environments (Section  1), the first part of the thesis (Section  2) will thus be
centered around the presentation of the U.I.O. algorithm and its employment on a
couple of simple study cases, so that general considerations can be deduced about
the data sets to be used for the analysis; some alternative ways of dealing with the
problem of noise-induced derivation discontinuities will also be described.

After this theoretical introduction, the U.I.O. will be applied on the actual model of
the  considered  metro  train  in  order  to  reconstruct  the  geometry  of  the  track  by
comparing  the  estimation  results  with  the  employment  of  a  multibody  model
faithfully replicating the behaviour of the real vehicle; first, in Section 3, the system
will be focused on the reconstruction of vertical displacement through the use of a 10
D.o.F.  linear system.  Padé Approximation will  be employed to take into account
multiple  delayed  inputs,  and  in  this  occasion  the  limitations  on  its  use  will  be
explored. The relative simplicity of the model will also be exploited to analyze some
further aspects, such as the reconstruction of a disturbance while the vehicle changes
velocity during travel, or while traversing a curved track section. The results will
thus be compared with the ones generated by a multibody simulation provided by
PoliMi, both in terms of time history and spectrum, to demonstrate the effectiveness
of the method.

Section 4, instead, will be centered around transversal dynamics, thus featuring more
complex physics due to the friction contact dynamics; the system to estimate roll and
lateral  irregularity  will  be  a  21  D.o.F.  with  externally  imposed  track  roll  angle,
replicating  conditions  found  in  similar  works  found  in  literature.  The  severe
limitations  and issues  associated with the operation of  such a  system at  the  low
speed of an underground train, opposed to the conditions of high-speed trains on
which the aforementioned works are centered around, will  be explored in detail,
trying  to  appropriately  upgrade  both  the  algorithm  and  the  post-processing
techniques in order to refine estimation.

Last, a resume of the advantages and limitations of the U.I.O. applied on low-speed
local trains will  be presented, in order to finally determine whether the analyzed
method is adequate for the solution of the problem, or other algorithms could be
more apt to the task.
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1 State of the Art

The importance of monitoring the geometry of railtracks is well beyond the academic
interests  of  this  thesis,  but  is  paramount  to  allow  the  correct  and  continuous
circulation of rail-based vehicles. In particular, there are no less than three aspects
which make disturbance  tracking so  essential,  that  will  be  discussed in  detail  in
section  1.1 below; in section  1.2,  instead,  an overview of  the currently employed
methods  to  operate  track  geometry  monitoring  will  be  presented,  along  with  a
description of the particular study case that will be dealt with in the rest of the work.

1.1. Reasons behind Track Monitoring
The  first  paramount  aspect  is  safety.  By  monitoring  the  profile  of  the  railtracks,
certain potentially destructive trends can be prehemptively repaired, such as heat-
related  tracks’  misalignment  from  nominal  position  during  particularly  hot
summers,  or  consumption  of  the  track  surface.  Moreover,  by  knowing  the  exact
profile of tracks it is possible to increase logistic efficiency by allowing trains to limit
speeds only when traversing particularly disturbed sections.

The second aspect is the most obvious when dealing with passengers’ transportation,
and it is of course their comfort; there are, in fact, precise norms which exactly deal
with  the  allowed  limits  for  vibrational  behaviour  of  vehicles,  in  order  not  to
negatively  affect  the  travellers’  comfort  –  or  worse,  their  health.  These  limits,
described  by  standard  ISO2631,  correlate  every  vibrational  frequency  and
acceleration amplitude with a  maximum exposure time over which human body
starts to show signs of fatigue; by increasing this acceleration thresholds by 6dB, the
actual limits  for health safety can be obtained,  while reducing them by 10dB, an
equally  important  upper  bound can  be  identified,  namely  the  “reduced  comfort
boundary” – the acceleration limit over which for a passenger becomes difficult to
perform activities like reading or writing, effectively pretty reasonable pastimes for
public  transportation  users.  Figure  1.1 reports  one  such  graph,  called  “Janeway
Comfort Criterion”, in this particular case referring to vertical acceleration; similar
diagrams can however be found in the norms for other directions of solicitation:



Figure 1.1: Iso-Fatigue Curves as defined by norm ISO2631

Alternatively, the same norm proposes some synthetic coefficients to evaluate the
degree of comfort of a given railtrack section; one example is the following formula
(1.1); which  takes  into  account vibrational  behaviour  in  all  three  directions,
adequately windowed through frequency ponderation curves in order to give higher
statistical weight to those disturbances falling within the 4-8 Hz interval, the one to
which human body is most sensible.

a=√(1.4 axw)
2+(1.4 a yw)

2+azw
2 (1.1)

The third aspect is more or less a result of both the previous ones; in order to both
increase average comfort, prevent derailments or smaller-scale incidents and regulate
circulation velocity, maintenance must obviously be done on the tracks; large-scale
periodic replacements of track sections, though, are very time-consuming and can
paralyze  the  trains’  normal  circulation  for  days  –  the  alternative  being  instead
prompt prehemptive intervention only on those sections which feature anomalies to
be addressed.
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1.2. Irregularity Measurement
There are many ways to evaluate track geometry by employing adequately equipped
monitoring vehicles.  Among the various systems, a couple can be mentioned; for
more information on the topic of railtrack diagnostics, refer to the comprehensive
overview contained in the extensive work by Esveld [2]:

 Optical  Measuring  Systems employ lasers  and mirrors  enclosed in  a  track
measuring beam; the traverse time of the laser from the source to the return of
its reflection is measured and converted into a distance, obtaining a evaluation
of the geometry. Usually, there are three such beams mounted on the vehicle,
the front and rear one used as reference and the middle one as the one actually
providing the measurement through the so called “Chord Measuring” as in
Figure 1.2;

Figure 1.2: Chord Measurement Laser System - Image from Mermec
Group (https://www.mermecgroup.com [3])

 Telescopic  Measuring  Systems  instead  employ  pneumatic  actuators  which
press a set of additional wheels into a forced contact with the rails, so that
their movement is perfectly adherent to the profile of the track, both vertically
through horizontal-axis measurement wheels (which is normally the case of
the  actual  train  wheels,  due  to  the  contact  with  the  track  being  almost
anelastic) and horizontally through vertical-axis ones (which is instead quite
different from the real case, due to friction dynamics getting overwritten).



One or more of these devices can be mounted on dedicated vehicles employed for the
railtrack  monitoring,  called  “Diagnostic  Trains”;  due  to  the  relatively  complex
technology, only a few manufacturers of such vehicles exist, and transport societies
quite often have to rely on externally provided services for monitoring duties.

In  Italy,  a  small  fleet  of  Diagnostic  Trains  is  part  of  the  RFI,  with  the  so  called
“Archimede” [4] being mostly employed for traditional lines and ETR500Y1 (Aiace)
and  ETR500Y2  (DiaManTe  –  Diagnostica  Manutenzione  Tecnologica)  being
dedicated to high-speed tracks.  No such vehicles,  though,  are currently used for
smaller-scale circulation monitoring, like urban railways or underground networks;
this work’s topic will in fact be focused on one possibility for monitoring the track
geometry of one such line, namely the Milan Underground Network run by ATM.
The  chosen  reference  vehicle  is  the  900  Series  electric  train  manufactured  by
AnsaldoBreda, also known “Meneghino” after a local way of saying “from Milan”
but also doubling as a corruption of MNG, Metropolitana di Nuova Generazione
(Next  Generation  Underground).  This  vehicle,  pictured  in  Figure  1.3,  currently
operates  on  3  out  of  5  Milan  Metro  lines  –  the  other  two  instead  relying  on
autonomous-driving convoys –  therefore  its  modelization can provide  a  valuable
insight to be employed on all of the metropolitan network.

Figure 1.3: The 900 Series Meneghino electric train (photo provided by WikipediaCommons)

Switching from inter-urban lines to urban public transport, though, and in particular
an  underground  line,  presents  some  additional  challenges  with  respect  to  the
previously discussed cases. The employment of diagnostic vehicles on a local line is
in fact  hampered by a number of  issues,  for  example the much reduced interval
between trains (in the order of some minutes opposed to tenths of minutes to hours
for  inter-urban  lines)  and  the  relative  absence  of  alternative  paths  for  normal
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circulation to keep flowing, effectively paralyizing the network. Even dedicating only
part  of  a  convoy  for  measurement  is  not  a  praticable  option,  since  the  average
underground  train  is  composed  of  just  a  few  carts  (seldom  more  than  3),  and
replacing even one of them with a purely diagnostic one (making it  unusable for
public transportation) would dramatically reduce the efficiency of the line.

All of these make for the necessity to provide measurements directly from trains
during  their  service,  through  the  employment  of  adequately  positioned
accelerometers and an algorithm for the reconstruction, through a simplified model
of the train, of the track geometry which generated those very accelerations; again,
though, even if many works have been published on the topic of such algorithms,
mainly as a more economically affordable alternative to expensive Diagnostic Trains
– especially if outsourced (one of particular relevance by De Rosa et al. [5]), they
mostly deal with high-speed circulation, where some approximations can be done
which are no longer valid when speaking of metropolitan transportation, such as
constant velocity (due to the much closer distance of stations) or overall rectilinear
trajectory.  Hence  the  need  of  choosing  the  correct  algorithm  both  in  terms  of
practicability and robustness to varying boundary conditions regarding both velocity
and trajectory.

Among the several possible algorithms, two broad categories can be discerned:

 Signal-based algorithms do not employ a model of the system, while instead
relying  exlusively  on  the  signal  itself  which  is  variously  elaborated  to
reconstruct the disturbance that generated it;  among the simplest examples
there  is  the  double  integration  os  such  signal  employed  for  the
aforementioned inertial systems (for example discussed by Weston et al. [6] or
Real et al. [7]); although simple, this method is actually quite problematic both
in implementation and in the obtained results – integrating non-white noise
will in fact generate a drift unless a high-pass filter is employed, hindering the
analysis of long wavelengths;

 Model-based algorithms are instead usually preferred due to their flexibilty;
they  aim  at  reconstructing  a  simplified  version  of  the  vehicle  and  use
quantities measured on various points of said vehicle (most likely of parts not
directly affected by the track geometry) to reconstruct the exact behaviour of
all of its organs.

In this work the second class will be the object of our study, but another distinction
to be made is the domain in which said model is made to operate:

 Frequency-domain methods allow for the description of the analyzed section
disturbance with a limited number of synthetic parameters; one example of
their application in the track monitoring field is the analysis by S. Alfi and S.
Bruni [8]. Although simpler and arguably more precise, they feature a number
of issues, namely the impossibility of detecting a localized deformation and



the inapplicability of such systems on an online-kind of measurement gig (due
to  them  relying  on  already  having  registered  data  in  order  to  obtain  a
generalized spectrum);

 Time-domain  methods  are  the  ones  analyzed  in  this  paper,  as  they  were
deemed more interesting for several reasons; most importantly, though, for
the aforementioned usage on online applications, and also because comfort-
related considerations (which are mainly related to frequency of sollecitation)
can  still  be  made  through  post-processing  of  the  signals  (obtainment  of
spectra, PSDs, filtering, etc.).

The latter category features primarily two algorithms to evaluate an unknown input
(what is generally defined as a random “disturbance” in the correct working of a
linear system), both based upon algorithms generally used to evaluate the state of a
system and thus obtaining its random input as a sort of by-product. The first and
simplest is called Unknown Input Observer and is based on Luenberger Observer,
while the second is a modification of a Kalman Filter; although, once again, the latter
choice is the way to go to ensure almost perfect results (as demonstrated for example
by  Tsunashima et  al.  [9]),  the  comparison  is  imperfect  due  to  not  considering  a
fundamental detail: in order to work, Kalman Filter requires the previous knowledge
of certain statistical  data of  the input we’re trying to determine (in particular an
estimation of its variance), making it less than optimal when compared with a less
accurate  algorithm  which  does  not  require  additional  data  other  than  the
accelerations of the train.

For these reasons, the following work will be centered around the possibilities and
limitations  of  the  U.I.O.  algorithm  in  the  railtrack  disturbance  estimation  field,
starting with a presentation of the algorithm from a mathematical point of view, and
then with its in-field application.
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2 Unknown Input Observer 

The  U.I.O.  (acronym  standing  for  Unknown  Input  Observer)  is,  at  its  core,  a
repurposed Luenberger Observer [10] combined with a second estimator for a to-be-
determined input generically identified as a disturbance d. In the goal of this work,
such disturbance is the misalignment of a rail track in terms of vertical irregularity,
transversal  irregularity and roll  variation with respect  to  the nominal  values;  the
state  x,  instead, is  the combination of velocity and displacement of all  the bodies
employed to describe the model of a railcar, namely the carbody itself, two bogies
and four wheelsets.

2.1. U.I.O. Theoretical Outline
Given  a  generic  mechanical  system  described  in  the  canonical  state-space  form
expressed in (2.1) and (2.2), where an unknown disturbance d acts on the system (but
does  not directly influence the output dynamics, as will be furtherly stressed upon
later on):

{ẋ=A x+B u+E d
y=C x

(2.1)
(2.2)

By multiplying (2.1) by matrix C, a direct correlation (2.3) can be derived between the
derivative of output y and the aforementioned disturbance d:

C ẋ=CA x+CB u+CE d= ẏ (2.3)

From this equation, the (2.4) can be easily obtained, that is, the desired formulation of
the required observer – an estimate of disturbance  d whose error dynamics can be
controlled through an appropriate tuning of gain matrix L as will be demonstrated in
a short while. From this moment on, for simplicity, the pseudoinverse of product
matrix CE will be identified as matrix M. 

d̂=(CE )+ ( ẏ −CA x −CBu )=M ( ẏ −CA x −CBu ) (2.4)

Notice that, being the dimension of  CE equal to the number of analyzed signals by
the number of to-be estimated inputs, this matrix is in general not square – since
most likely more signals will be required to grant convergence on the estimation of a
smaller number of random inputs – hence the pseudoinverse in place of a common



inverse matrix. There is, though, a limitation on this matrix (therefore on the choice
of output matrix C, since E is determined by the system itself), a necessary condition
(2.5) for the applicability of the U.I.O. regarding its rank and that of matrix E:

rank (CE)=rank (E) (2.5)

Which de facto means that the number of observed states have to be at least equal to
that of unknown inputs to be estimated, but most likely higher in order to fulfill this
condition.

Quite  obviously,  while  in  the  (2.4) the  state x appears,  that  is  not  a  known
information; thus, the disturbance estimator must be combined  with a Luenberger
observer to generate a state estimation, obtaining the final result depicted in the (2.6):

{ ˙̂x=A x̂+B u+E d̂+L ( y−C x̂ )
d̂=(CE )+ ( ẏ −CA x̂−CB u)=M ( ẏ −CA x̂ −CB u)

(2.6)

On an algorithm point of view, the estimation procedure can be schematized through
the block diagram in Figure 2.1 below:

Figure 2.1: U.I.O. Algorithm Block Diagram

In  order  to  obtain  a  formulation  of  the  aforementioned  state  estimate  that  is
independent  from  the  measurements’  derivative,  an  auxiliary  variable  z is
introduced. Said variable z depends on both the state estimation and the output x as
per the (2.7):

z= x̂ − H y (2.7)

AC

L

CA

-

y  + ∫   x̂

EM

-

dy/dt  

  d̂

Unknown 
Input

Observer
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By defining matrix H in (2.7) as equal to the product of E and M, the dynamics of z
and output  y described in  (2.8) can be decoupled as seen in  (2.9); notation can be
furtherly simplified by introducing matrix T in place of the expression I – EMC (2.10)
and matrix F as the result of TA – LC (2.11); this last matrix will be the one defining
the dynamics of the estimator:

ż=A x̂+Bu+EM ẏ − EMCA x̂− EMCBu+L y − LC x̂− H ẏ (2.8)

ż=(A − EMCA ) x̂+(B− EMCB )u+L y − LC x̂ (2.9)

ż=(TA − LC ) x̂+TBu+L y=...
...=(TA − LC ) z+(TA − LC )H y+TBu+L y

(2.10)

ż=F z+TBu+(FH+L) y=F z+TBu+K y (2.11)

The (2.11) is the final formulation of the auxiliary variable dynamics, and it is in fact
independent from the derivative of output y.

Now, error dynamics must be introduced to demonstrate that the estimator that has
just been constructed is, in fact, accurate; defining the error vector as in  (2.12) and
(2.13), a decomposition of matrix K into two different matrices K1 and K2 can thus be
introduced (2.14), reminding the relation expressed in (2.2):

ε=x− x̂ (2.12)

ε̇=A x+Bu+Ed − ż− H ẏ (2.13)

ε̇=A x+B u+E d − F z
−TBu− K 1C x − K2 y − HCA x − HCB u− HCE d (2.14)

From this  point,  reintroducing  the  relation  expressed  in  (2.7) and  summing and
subtracting the same term (A – HCA – K1C) z as in (2.15), the (2.16) can be obtained:

ε̇=(A− HCA − K 1C ) x+(B− HCB −TB )u
+(E− HCE)d − K 2 y − F z+(A − HCA − K 1C )z
−(A − HCA − K 1C ) x̂+(A − HCA − K 1C )H y

(2.15)

ε̇=(A− HCA − K 1C )ε+( I − HC −T )Bu+( I − HC )Ed

+((A − HCA − K 1C )− F ) z+((A− HCA − K 1C )H − K2) y
(2.16)

In order for this demonstration to be completed, a pure dynamic relation between the
error  ε and  its  derivative  must  be  obtained,  with  no  other  inputs  having  any
influence  whatsoever;  through  some  of  the  already  introduced  definitions  and
relations,  (2.17) and   (2.18) can  be  obtained.  Notice  that,  from  a  theoretical
standpoint, this passage is much more relevant than what initially appears, since it



allows to demonstrate that the apparently conflicting formulations by Chen/Patton
[11] and Ding [12], despite taking opposite routes, are actually completely equivalent
given the difference in notation, allowing to effectively provide a definition for the
two matrices K1 (2.19) and K2 (2.20):

{I − HC −T=I − EMC −T=T −T=[0 ]
( I − HC )E=( I − EMC )E=E− E (CE )+CE=E− E=[0 ]
(A − HCA − K1 C )− F=(TA − K1 C )− (TA − LC )=[0 ]⇔ K 1=L

(A − HCA − K1 C )H − K 2=FH − K 2=[0 ]⇔ K2=FH

(2.17)
(2.18)
(2.19)
(2.20)

Moving  from this  assumptions,  error  dynamics  can  be  obtained,  as  expressed in
(2.21); since the relation matrix between the error and its derivative is only matrix F:

ε̇=(A−HCA−LC )ε=F ε (2.21)

As  anticipated,  through  the  placement  of  the  poles  of  matrix  F it  is  possible  to
generate an adequate gain matrix L to employ in a Luenberger observer that will be
associated with the disturbance estimation equation described in the (2.4).

One point that should be reminded, though, is that although what the name might
suggest, the original focus of U.I.O. method is not to determine the random input
itself, while rather estimating the state of the system regardless of it being subject to
said random input.  This  means that,  for  example,  although the  (2.11) allowed to
decouple the state estimate dynamics from the output derivative, the same cannot be
said for the true goal of the application, that is to estimate the disturbance. Hence, this
modus operandi implies to have perfect knowledge not only of output y, but also of its
derivative  as  seen  in  (2.4);  while  in  ideal  conditions  this  wouldn’t  really  be  a
problem,  any  field  application  features  non-neglibible  measurement  noise  which
severely hinders any attempt at derivation – i.e.,  the signal constantly changes its
trend, resulting in the output derivative being mostly driven by its noise, rather than
its  “general”  trend.  Also,  since  signals  are  subject  to  discrete  sampling,  such
derivative would also feature discontinuities – and hence singularities in the process
of reconstructing the disturbance signal.

There are a number of possible solutions to the issue:

 The first and most “obvious” solution is to use said derivative as the actual
output; to better explain, measurements of both velocity and acceleration can
be carried out simultaneously, despite only actually treating the former as the
output  y of  the  system (to  be  fed to  the  estimation  algorithm,  which will
employ a selection of rows from an identity matrix as its matrix  C – further
details  in  section  2.3.1)  while  the  latter  is  only  used as  its  derivative;  this
method is failproof on-paper, but it fails to factor in that measuring velocities
is not a trivial task; furthermore, although possible, the costs associated with
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measuring  velocities,  when  compared  to  even  an  extensive  use  of
accelerometers, would make any large-scale application unfeasible;

 The second way, which will be employed for the rest of this work, is a more
“pragmatic” variation of the previous one: as it has been remarked, problems
arise due to the possibility of incurring into discontinuities – whose derivative
results in a singuarity; the opposite operation, though, can only result (at least
for  the  interests  of  this  study)  in  inherently  continuous  functions.  Hence,
while actual measurement is necessarily an acceleration, its integral (which is,
disregarding noise for a while, an estimation of velocity) can work just as fine
as the input of the algorithm;

 The third way is little more than an hypothesis, since no supporting evidence
has  been  found  in  documentation  regarding  either  practicability  or  actual
advantages;  most importantly,  aside from a small selection of experimental
results, it could very well be argued whether the inherent complexity of this
method really outbalances the advantages it tries to bring – which is, to avoid
further  manipulation of  the  output  signal.  The  method,  tentatively  named
“Derivative Estimation Algorithm”, will be discussed in section 2.2.



2.2. Derivative Estimation Algorithm
What  follows  is  a  tentative  solution  to  the  output  derivative  issue,  not  in  itself
without criticalities; please notice that this way of proceeding won’t see application
in this work aside from the first dummy systems employed to tune and refine the
algorithm, after which more consolidated approaches will be preferred. However, it
is  deemed  interesting  to  introduce  such  procedure  in  a  perspective  of  further
development, since its perks-to-issues balance seem to be heavily dependant on the
study case,  in  particular  becoming much more  interesting the  more  complex the
system becomes (both in terms of variables number and mutual interactions), not to
mention any potential case in which output elaboration is not a viable option.

The main core of the reasoning is exceptionally simple, as it relies on inverting (2.7)
in order to obtain (2.22), that is a relation linking y (and hence its derivative) to the
auxiliary variable z and the state estimate; notice that z is not actually utilized by the
U.I.O. algorithm, as it was introduced more as a mathematical exploit in order to
analyze error dynamics, meaning it has no physical meaning whatsoever:

z=x̂−H y⇒ ẏ=H+( ˙̂x− ż)=(EM )+( ˙̂x− ż) (2.22)

This means that the following system can be obtained, a system of two differential
equations – (2.23) and (2.24) – to be combined with the aforementioned estimation of
output derivative (2.25) and the disturbance estimator (2.26), in a system that will be
reported here as a resume:

{
˙̂x=A x̂+B u
ż=(TA−LC) x̂+TBu+L y
ẏ=(EM )+( ˙̂x− ż)
d̂=(CE )+( ẏ−CA x̂−CB u)

(2.23)
(2.24)
(2.25)
(2.26)

This  theoretical  architecture,  although  somewhat  fascinating,  has  several  glaring
issues:  the  main  red  flag  is  the  pseudoinverse  of  matrix  H,  which  there  are  no
guarantees actually exists; in fact, this will quite often be the case, not allowing to
proceed in the first place.

With the most crippling issue out of the way, there still are some imperfections to be
taken into account; assuming H doesn’t have a null determinant (or to have been able
to  ignore  the  problem),  a  second differential  equation  has  still  been  introduced,
resulting in a second dynamic (generally at a much higher frequency) superimposed
over  the  original  correct  result  (then  again,  easily  disposable  of  through  the
employment of a low-pass filter, most likely a device in any case featured by the
system). The same considerations will be explored in more detail in Section 2.3.1.
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The final problem is mainly related to the requirement of using a  previous state in
order  to  determine  the  subsequent  value  of  the  derivative  of  output  y.  This  is
unavoidable, as if such delay wasn’t introduced, we would incur in an “algebraic
loop”, a numerical issue which is the request by the system of an input which is itself
part of the output of said system requiring it: in layman’s terms, it means that the
system is asking for a value (in this case the state estimation derivative – (2.23)) that
it cannot obtain, since in order to do that the same system – in particular the (2.24) –
should  work to begin with. Hence the memory block featured in the upper part of
Figure  2.2,  which  has  the  undesirable  consequence  of  making  the  system  time-
discrete and, most importantly, its results heavily dependent on the solver step-size:

Figure 2.2: Derivative Estimation Algorithm Block Diagram (above) and corresponding U.I.O.
Algorithm (below) - notice the red memory block in the upper part
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2.3. 2 D.o.F. Trial System
In  order  to  verify  the  functionality  and  potential  of  the  U.I.O.  algorithm,  it  was
decided to implement it on the simplest possible trial system: an harmonic oscillator
composed by a 2 and subsequently 3 bodies of equal mass connected by springs and
dampers, thus featuring respectively 2 and 3 degrees of freedom. Disturbance, for
simplicity, is rendered as an unknown force applied to mass 1, specifically the result
of  multiple  sinusoidal  actions with mutually unrelated amplitude,  frequency and
phase.

This simple system is pictured in Figure 2.3 below, and its data are listed in Table 2.1:

Table 2.1: 2 / 3 D.o.F. Trial System Data

Parameter Value

Mass 1000 kg
Damping 80 Ns/m
Stiffness 1100 N/m

Figure 2.3: 2 D.o.F. Linear Oscillator

On the  topic  of  data,  it  must  be  reminded that  this  section assume as  valid  the
premise of complete and perfect knowledge of the system, since the same model will
be used to obtain an output to be processed; in turn, the result will be compared with
the input it received. In a real application, the first part of the sequence is not a work
of  synthesis,  but  rather  the  result  of  measurements  from an  existing  mechanical
system  from  which  is  our  job  to  derive  a  comprehensive  (if  reasonably
approximated) modelization; furthermore, an additional measurement-related noise
could be featured in the data fed to the algorithm. In simpler terms, in a real case
only measurement data to be fed to an algorithm will be available, either generated
real-time by the vehicle or previously recorded and stored to be separately analyzed.
The algorithm’ parameters will be built upon the (linear) synthetic model employed
to describe the (generally not linear) physical system behaviour; since no “real value”
will be available to be compared with our estimations, particular attention will be
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k1 k2 k3

r1 r2 r3
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devoted to the selection of  said parameters,  as a relatively minor variation could
translate in large scale errors in the disturbance estimation, but there would be no
way to actually notice.

To run the 2 D.o.F. trial system, a number of choices can be made on three different
options:

 Type  of  Output:  as  output  of  the  mechanical  system  and  input  of  the
disturbance  estimation  algorithm  either  acceleration  or  its  integral  can  be
employed as reference; the other theoretical option described at 2.1, that is to
directly  use  velocity  as  a  secondary  output  and  not  as  a  result  of  post-
processing,  won’t  be  addressed,  both  for  physical  unfeasibility  and  an
overlapping of results with the integrated acceleration method (at least as long
as  the  signal  is  not  affected  by  noise);  from  this  moment  on,  the  two
considered  options  will  be  referred  to  as  “Acceleration”  and  “Velocity
Model”, respectively;

 Derivation Method: a sub-choice of previous parameter, since in the velocity
case  the  derivative  of  the  output  is  the  original  acceleration  measurement
itself.  In  the  case  of  acceleration,  though,  the  possibility  of  employing  the
Derivative Estimation Algorithm will  be explored, instead of relying on its
“true” derivative – which could be used, but only as long as the measurement
doesn’t feature noise-induced discontinuities;

 Number of Considered Outputs: being this a 2 D.o.F. system, the choice of
how many state variables to employ as input for the algorithm is limited to
either 1 or 2; that being said, despite the former choice might suggest that
either of the two masses’ motion is valid as observed state, it’ll be shown in
depth that this is not the case, as both methods require one precise choice of
input (the only difference being exclusivity in the case of acceleration, not so
in the case of velocity);

Many  combinations  of  these  three  options  will  be  analysed  in  order  to  infer
considerations of general validity to be applied to more complex systems, both in
terms of input type, system geometry and number of D.o.F.; it should be remarked,
though, that since these choices are not entirely independent one with the other, the
actual number of possible configurations is very limited.

2.3.1. Acceleration Model
If  acceleration is used as an output, the choice of state variables to be considered is
obligated, both in number and in identity. Since we are interested in acceleration,
which is  not a part of state formulation (velocity + displacement) we need to use a
selection of rows of matrix A and E as our matrix C and the other one relating y with
d – from now on it will be referred to as G. The problem is easily noticed, though; a
direct relation between disturbance d (to be determined) and output y is not featured



in the original premise of the U.I.O. (2.2), as it would result in an output equation in
the form of (2.27) below (notice the appearance of said matrix G in the (2.28)):

{ẋ=A x+B u+E d
y=C x+G d

(2.27)
(2.28)

In the specfic case that has been discussed until now, the matrices A and E have the
form depicted in the (2.29), thus if the entire selection of acceleration was employed
for the estimation, the matrices C and G would result as in the (2.30):
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m
];G=[+ 1

m
0 ] (2.30)

As it is now clear, utilizing the first acceleration (the one of the mass directly affected
by the input force) determines the appearance of a non-null term in matrix G.

Notice that this is something that  could theoretically be dealt with: output equation
can be transformed, or in other terms the reference systems could be changed (for
example measuring  different degrees of freedom, like the relative distance between
the masses) in order to neglect the matrix  G. This operator is called “Null-Space”,
and in mathematical terms it equates to multiply all terms of output equation (2.28)
by a transformation matrix NS (as per (2.31)) so that the product between said matrix
and the problem matrix  G is equal to a null matrix (hence the name “Null Space”,
meaning to project the system on an axis set where d has no direct relation with y):

y=C x+G d⇒N S y=N S C x+N S G d
being N S≠[0] : N S G=[0 ] (2.31)

Problem is, for such a system the null-space method does nothing but reaffirm what
has been previously stated: the corresponding null-space to any G matrix of the form
[a 0], being a any non-null value, would be a matrix of the form [0; b], again proving
that the indirect input is, once again, the one required to determine the disturbance.
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Regarding gains, one possible choice is to proceed with a pole-placement, but before
doing that the fixed poles (related to the system itself, and hence not modifiable) and
the modifiable ones (related to the actual choice of gain matrix L, and thus the only
one  that  can  be  influenced  and  whose  desired  position  we  can  employ  for  its
determination) must be separated. This can be done through the transformation of
the system itself into its “Observability Staircase Form” (through a transformation
matrix  X),  allowing us  to  graphically separate its  unobservable (fixed poles)  and
observable part, as seen in (2.32) and (2.33):

TA⇒ XTA=[TAnot obs W
[0] TAobs

] (2.32)

TAnot obs=[λ 1 not obs 0 ... 0
0 λ 2 not obs ... 0
⋮ ⋮ ⋱ ⋮
0 0 ... λ N not obs

] (2.33)

For the poles to be arbitrarily placed, it was decided to use real negative numbers, so
to ensure maximum stability (and prevent undesirable dynamic effects) and most
importantly  to  more  easily  monitor  the  placement  algorithm  correct  functioning
(through comparison of the actual obtained poles of matrix F and the aforementioned
poles employed in placement).

Thus  we  obtain  that  for  a  2  D.o.F.  the  only  input  that  can  be  employed  is  the
acceleration  of  undisturbed  mass  (mass  2),  leaving  just  the  choice  of  derivative
algorithm to be made:

 When utilizing the “true” derivative, highly accurate results can be observed
(Figure 2.4 and  Figure 2.5); then again, this result is relatively uninteresting,
since it reduces to invert a known system (which, as already explained, is in
itself an idealization) with little-to-no actual elaboration.



Figure 2.4: Acceleration Model - 2 D.o.F. State Estimation

Figure 2.5: Acceleration Model - 2 D.o.F. Force Estimation
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 If  Derivative Estimation is employed,  an interesting effect can be observed
which was previously mentioned: as per (2.24) and (2.25), yet another equation
has been introduced into the system, over which we have very limited control;
a differential equation results, quite obviously, in a dynamics law, hence an
higher frequency harmonic superimposed on the correct estimation (Figure
2.6) can be observed;

Figure 2.6: Acceleration Model - 2 D.o.F. Force Estimation through Derivative
Estimation (0,005s timestep)

The properties of said harmonic seem to be directly connected to the solver
step-size which can be now considered as an additional tuning parameter to
improve estimation: in particular, a lower step-size results in not one, but two
beneficial effects. First, an higher frequency in said overlaying dynamics: if the
end result  dynamic behaviour is  expected to fall  within a certain range of
frequency, it will also be possible to tune the timestep in order to leave this
additional harmonic outside of that range, and thus what cutoff frequency a
low-pass  filter  should work  with  in  order  to  delete  it  along  with  natural-
source  noise.  Second,  one  of  the  main  issues  with  Derivative  Estimation
appears  to  be  a  tendency  to  overshoot  and  hence  overestimate  actual
disturbance; it can be observed that decreasing step-size has a very positive
relation with reduction of said overshoot (Figure 2.7 and Figure 2.8).



Figure 2.7: Comparison of Overshoot and interferencing dynamics between a 0,003s
(above) and a 0,001s (below) timestep

Figure 2.8: Comparison of the Power Spectral Density of actual and estimated force
between a 0,003s (above) and a 0,001s (below) timestep
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2.3.2. Velocity Model
On the opposite side, if velocity is utilized as input of the estimation algorithm, we
are obligated to choose as target exactly the one mass our disturbance is applied to;
were we not to oblige to this condition, the fundamental condition of U.I.O. ((2.5),
which will be reported here as a reminder) would not be fulfilled:

rank (CE)=rank (E) (2.5)

In this case matrix C is a selection of rows from an identity matrix with size equal to
matrix  A; as depicted in the (2.34), the previously mentioned matrix  G is now null,
due to having considered the lower half of the system (2.29) instead of the upper one:

C=[1 0 0 0
0 1 0 0]; G=[00] (2.34)

As per the definition of an identity matrix, this means that all values on the same row
are equal to zero, except for the value in the column corresponding to its row – i.e.,
Cab ≠  0 if  and  only  if  a  =  b.  This  means,  though,  that  if  only  rows  relative  to
undisturbed motions are selected, those will be rows for which the only non-null
term is in a different position than in the column matrix  E:  this results in a null
matrix product CE, which doesn’t allow to proceed with the algorithm as the inverse
– specifically the pseudoinverse – of a null matrix (matrix M) does not exist.

Unlike  acceleration  case,  though,  it  is  not  forbidden  to  use  additional  outputs,
although  in  this  specific  case  the  employment  of  additional  outputs  does  not
significally contribute to the accuracy of the result. However, using only one input (at
least in such a simple case) occasionally results in the impossibility to proceed with
the Pole Placement, due to the MatLabTM Algorithm flagging the system as “nearly
uncontrollable”, which would mean that almost infinite gains are necessary in order
to grant stability to the system: this is simply not correct, though, most likely a result
of the algorithm’s inadequacy – it was actually demonstrated that the desired poles
for the system could be obtained by manually setting the gain matrix with a mere
trial-and-error  approach,  disproving  the  uncontrollability  denounced  by  the
program. Anyway, using two inputs avoids such unpleasant problems, as it allows
for the complete controllability of the estimator dynamics, save for an unvaried pole
in the origin.

Regarding results, high compatibility can be observed between estimated and actual
disturbance (Figure 2.9 - in this case employing 2 inputs to avoid algorithm-related
problems), again a widely expected result:



Figure 2.9: Velocity Model - 2 D.o.F. Force Estimation

2.4. 3 D.o.F. Trial System
The  exact  same  procedure  was  therefore  applied  to  an  extended  version  of  the
previous  system,  this  time  composed  of  three  masses  separated  by  springs  and
dampers, again subject to a to-be-determined force F applied to mass 1, as presented
in  Figure 2.10 below. Notice that this system, although rudimentary, is starting to
resemble the target application; at its core, in fact, the train model we’ll employ in the
next  sections  can  be  reduced  to  three  bodies  (or  more  accurately,  three  series of
bodies) variously connected by springs and dampers; these results will therefore be
much more useful to also suggest which Degrees of Freedom will be actually needed
in the real field situation as well.

Figure 2.10: 3 D.o.F. Linear Oscillator
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Since it would be useless to once again list down all possible situations, a simple
resume of collected data and considerations will follow:

 Regarding  Acceleration  Model,  the  use  of  both  uninfluenced  degrees  of
freedom as outputs seems not to provide benefits whatsoever: if we decide to
stick with the “classical” derivative, it is found that, in Figure 2.11, the results
get  quite  distrbed,  superimposing  to  the  correct  values  another  harmonic,
signaling a bad correlation between the inputs;

Figure 2.11: Acceleration Model - 3 D.o.F. State Estimation through the use of both
Mass 2 and 3 Accelerations as input (0,001s timestep)

Were we to still try and apply the Derivative Estimation Algorithm, we would
be stuck immediately,  since the procedure seems unable to  provide useful
results with multiple outputs (resulting in a not-pseudoinvertible matrix  H).
This marks the last instance this experimental algorithm will be employed in
this paper, leaving space for further examination.

 If instead only one acceleration is used (the one from mass 2, the closest to the
affected one), an adequate estimation of the correct trajectory can be observed
for  both  the  classical  derivative  and  the  estimated  one,  again  the  latter
featuring  the  issue  of  being  heavily  influenced  by  step  size  –  an  optimal
compromise between processing time and precision being around 0,0001 s.



 If  integrated  velocities  are  employed,  instead,  the  highly  accurate  results
pictured in Figure 2.12 (this time without any problem regarding single-input
pole placement) can be obtained, except that the less inputs are analyzed, the
more  the  measure  seems  to  start  diverging  from the  correct  value  as  the
simulation time goes on – hence the choice to employ both the velocities of
Mass 1 and 2 as inputs:

Figure 2.12: Velocity Model - 3 D.o.F. State Estimation

The reason for this behaviour might be that the more rows are considered
within matrix C, the less poles of A are left uncontrollable: for comparison, for
single output model there is only 1 modifiable pole, while for both 2 and 3
outputs we have 5 (the maximum number, as the origin pole is by default
fixed).  This  doesn’t  only  mean  that  the  immediately  adjacent  Degrees  of
Freedom (so to speak, in terms of moving masses) have a beneficial effect on
driving the estimator, but also that the further we go from the disturbance we
are to measure, the less it seems to make a difference on the overall result. In
our  study  case,  this  translates  into  a  relative  uselessness  of  the  carbody
acceleration values for the analysis of an input entering the system from the
wheelset side, which is already a notable reduction of possible input sets to be
tested.
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2.5. General Considerations
All these consideration made on both the 2 and the 3 D.o.F. systems give a fairly
good first impression of the optimal setup for the first true application on a real case:
firstly, the use of direct acceleration is not a real option, as it is already too unreliable
of a model on simple systems such as the ones presented before; it should be noted,
anyway,  that  the  Derivative  Estimation  seems to  provide  fairly  good results  for
single  output  systems  (despite  clearly  not  being  the  most  optimal  path).  Second
point: the most optimal output set to be analyzed in order to reconstruct a random
input force has been determined: the one mass on which such force is applied is
required  in  both  2  and  3  D.o.F.  cases,  while  the  immediately  adjacent  one  only
contributes to a certain degree to the general accuracy of the estimation.

All of this might seem trivial and/or uninteresting – since these systems are only that
good of a simplification of the railcar one – but is in fact the core of the algorithm
itself: which of the infinite combinations of possible system outputs are required in
order to extract a valid estimation? The above considerations actually provide a fairly
accurate answer to an otherwise impervious task. It could be argued, in fact, that
what  was  done  until  now  is  a  force estimation,  while  the  required  result  is  a
displacement one which is indeed a very different problem; through an admittedly
very rough reasoning, though, it can be shown that this difference is actually much
less  marked than expected –  and that  our  choice  of  these particular  pair  of  trial
systems was much less simplistic or detached from the real application than it could
initially seem.

In the vertical case, since contact between the railtrack and the wheelset is supposed
to happen in a perfectly rigid, anelastic way, displacement of said wheelset coincides
with the vertical geometry of the track, and is thus the desired estimation target. This
means that while that is  not a force, it actually behaves as such with respect to the
immediately  adjacent  mass  –  i.e.,  the  bogies;  this  makes  the  system much  more
similar to the 2 D.o.F. case analyzed in the Section 2.3, just as pictured in Figure 2.13:



Figure 2.13: Conversion of a Displacement-subjected 3 D.o.F.
system to a Force-subjected 2 D.o.F. one

As it can be easily observed, imposing a displacement on mass 1 is effectively the
same as applying a force to mass 2, since the two are connected through a spring-
damper  parallel;  this  reduces  the  system to  a  2  D.o.F.  one,  and  will  result  in  a
significant reduction in the matrices size.

In the lateral case, things are not that simple, and the 3 D.o.F. pictured in Figure 2.14
system  becomes  much  more  correct  to  describe  what’s  happening:  lateral
displacement and yaw rotation are in fact not geometrically imposed, but instead the
result of contact forces that act on those D.o.F.; this means that the system will, albeit
indirectly, try to actually estimate a force value, but this time applied on the wheelset
instead of directly to the bogies.

Figure 2.14: 3 D.o.F. Linear Oscillator

On the algorithm side of things, this means that the “mass 1” – the wheelset – will be
required to estimate such forces, thus decoupling vertical and horizontal evaluation
of  the  railcar  system.  It  is  also  noteworthy  to  anticipate,  though,  that  wheelset
accelerations won’t be sufficient to determine the full set of unknown inputs; while
yaw rotation and lateral displacement are, once again, the result of contact forces, roll
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rotation will be approximated as an externally imposed variable not different from
vertical  displacement,  de facto once again redirecting to the reasoning exposed at
previous point  and making the “immediately  adjacent body” measurement  –  the
bogie – required for the estimation. The approximation keeping into account both
constrained motion and contact force is represented by Figure 2.15:

Figure 2.15: Linear Oscillator-like representation of the lateral train system; on the first
mass (wheelset) act both a force and a fixed displacement.

Having said all of that, it’s time for the first true application, this time much more
closely  representing  the  object  of  our  studies  both  in  shape  and  in  operating
conditions: a 10 D.o.F. model accounting for the vertical and rotational motion of the
frontward bogie, the backward bogie and the cart itself, with the vertical motion of
the four axles as the determined motion – the aforementioned “Vertical Model”. But
since  this  case  differs  from  the  previous  ones  also  regarding  the  nature  of  the
disturbance itself (again, being not a force, but rather a motion which is translated
into  a  force  through  the  elongation  of  the  primary  suspension  spring-damper
couple),  some  further  adjustments  will  be  made  on  the  system  and  the  matrix
representing it.
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3 Vertical Irregularity Estimation

As a first application of  the U.I.O. method to estimate track irregularities,  in this
chapter the vertical irregularity will be analyzed. For this problem, it is possible to
fully decouple the lateral and roll dynamics of the vehicle, therefore a much simpler
10 Degrees of Freedom model to be used (namely the vertical displacement of the
wheelsets,  the  bogies  and the  carbody and pitch  rotation  of  the  latter  two).  The
aforementioned model is pictured in the Figure 3.1 below:

Figure 3.1: 10 D.o.F. Vertical Train Model Scheme
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3.1. Model Data
In the following pages the data relative to the Meneghino Model employed on the
Milan Underground System will be presented, as well as the Jacobian matrices (Table
3.3 to  Table  3.7)  obtained from the  elaboration of  such data  with  regards  to  the
vertical dynamics.

Table 3.1: 10 D.o.F. Vertical Train Model Data

Parameter Symbol Value

Carbody Mass mC 17817 kg
Carbody Pitch Inertia JCβ 435000 kg/m2

Bogie Mass mB 2100 kg
Bogie Pitch Inertia JBβ 2600 kg/m2

Wheelset Mass mW 1050 kg
Primary Vertical Damping rIv 44000 Ns/m
Primary Vertical Stiffness kIv 2000000 N/m

Primary Longitudinal Damping rIh 340000 Ns/m
Primary Longitudinal Stiffness kIh 16600000 N/m
Secondary Vertical Damping rIIv 37500 Ns/m
Secondary Vertical Stiffness kIIv 1020200 N/m

Secondary Longitudinal Stiffness kIIh 250000 N/m

Table 3.2: 10 D.o.F. Vertical Train Geometrical Data

Parameter Symbol Value

Gauge S 0,75 m
Carbody Baricentre Height hC 1,59 m

Bogie Baricentre Height hB 0,46 m
Wheel Radius rw 0,41 m

Primary Susp. Longitudinal Distance bI 1,075 m
Secondary Susp. Longitudinal Distance bII 5,55 m

Secondary Springs/Dampers Longitudinal Dist. dII 0,32 m
Primary Susp. - Bogie Vertical Distance hI 0,05 m

Secondary Susp. - Bogie Vertical Distance hII 0,24 m
Secondary Susp. - Carbody Vertical Distance hIIC 0,89 m

Secondary Outer Damper Longitudinal Distance xext bII + dII

Secondary Inner Damper Longitudinal Distance xint bII – dII
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Table 3.3: Jacobian of Primary Vertical Springs and Dampers

xC βC xB1 βB1 xB2 βB2 xW1 xW2 xW3 xW4
kIv1 0 0 -1 -bI 0 0 +1 0 0 0
kIv2 0 0 -1 +bI 0 0 0 +1 0 0
kIv3 0 0 0 0 -1 -bI 0 0 +1 0
kIv4 0 0 0 0 -1 +bI 0 0 0 +1

Table 3.4: Jacobian of Primary Longitudinal Springs and Dampers

xC βC xB1 βB1 xB2 βB2 xW1 xW2 xW3 xW4
kIh1 0 0 0 -hI 0 0 0 0 0 0
kIh2 0 0 0 0 0 +hI 0 0 0 0
kIh3 0 0 0 -hI 0 0 0 0 0 0
kIh4 0 0 0 0 0 +hI 0 0 0 0

Table 3.5: Jacobian of Secondary Vertical Dampers

xC βC xB1 βB1 xB2 βB2 xW1 xW2 xW3 xW4
rIIvFR -1 -xext +1 +dII 0 0 0 0 0 0
rIIvFL -1 -xint +1 -dII 0 0 0 0 0 0
rIIvRR -1 +xint 0 0 +1 +dII 0 0 0 0
rIIvRL -1 +xext 0 0 +1 -dII 0 0 0 0

Table 3.6: Jacobian of Secondary Vertical Springs

xC βC xB1 βB1 xB2 βB2 xW1 xW2 xW3 xW4
kIIvF -1 -bII +1 0 0 0 0 0 0 0
kIIvR -1 +bII 0 0 +1 0 0 0 0 0

Table 3.7: Jacobian of Secondary Longitudinal Springs

xC βC xB1 βB1 xB2 βB2 xW1 xW2 xW3 xW4
kIIhF 0 +hIIC 0 +hII 0 0 0 0 0 0
kIIhR 0 -hIIC 0 0 0 -hII 0 0 0 0

It must be taken into account that, since roll motion is being knowingly ignored in
such model, we are de facto considering the average vertical alignment of the track; in
order to obtain a separate full reconstruction of the vertical profile of the rails, we’d
need to integrate the results with an estimation of the difference between the two
tracks’  vertical  geometry,  which  directly  translates  into  the  roll  motion  of  the
wheelsets (a problem that will be addressed in Section 4).



3.2. State-Space Model Construction
Since elastic  interaction between wheels  and tracks can be neglected,  the vertical
motion of a single wheel exactly corresponds to the vertical alignment of the rail it
rolls upon; in the same way, the average vertical alignment of the tracks will be the
same as the vertical motion of the wheelset centre. Said movement is also one of the
freedom degrees – albeit an externally determined one – thus the system must be
decomposed as in (3.1) and (3.2) into two different sections in order to obtain (3.3),
the classical state-space formulation:

[M FF M FC

M CF MCC
]{ẍF

ẍC
}+[RFF RFC

RCF RCC
]{ẋF

ẋC
}+...

...+[K FF K FC

K CF K CC
]{xF

xC
}=0̄

(3.1)

M FF ẍF+RFF ẋF+K FF xF=...
...=−M FC ẍC−RFC ẋC−K FC xC

(3.2)

{ẍF

ẋF
}=[−M FF

−1 RFF −M FF
−1 K FF

I [0] ]{ẋF

xF
}

+[−M FF
−1 RFC −M FF

−1 K FC

[0] [0] ]{ẋC

xC
}

(3.3)

For  simplicity,  the  terms  will  be  expressed  in  a  more  synthetic  form as  per  the
definitions at (3.4), so that the complete system can be written as in the (3.5):

{ẋ F

x F
}=x

[−M FF
−1 RFF −M FF

−1 K FF

I [0] ]=A

[−M FF
−1 RFC −M FF

−1 K FC

[0 ] [0] ]=E

xC=d

(3.4)

ẋ=A x+E{ḋd} (3.5)

The system building is not yet complete, though. The 12 th order state vector accounts
for all required motions of bogies and carbody both in displacement and velocity, but
so  does  the  disturbance  vector  itself,  since  it  affects  the  system in  both  position
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(through the primary spring) and velocity (through the primary damper); this would
mean  the  need  to  estimate  two  different  disturbances,  one  for  the  actual
displacement and one for its derivative, without applying the knowledge of their
mutual relation, resulting in an underconstrained system. In order to take said piece
of information into account, the input matrix E must be divided into two submatrices
E1 and E2, referring respectively to the disturbance and its derivative (3.6):

E{dḋ}d=[E1 E2 ]{dḋ}=E1 d+E2 ḋ (3.6)

This allows us to employ an extended state as in the (3.7), converting the system into
a 16th grade one; through the definitions in the (3.8), the (3.9) can be obtained:

{ẋḋ}=[ A E1

[0 ] [0 ]]{xd}+[E2

I ]ḋ (3.7)

{ẋḋ}=xextended ;[ A E1

[0] [0]]=A extended ;[E2

I ]=Eextended ; ḋ=~d (3.8)

ẋextended=A extended xextended+Eextended
~
d (3.9)

It should be noted, though, that due to this particular formulation of the problem, the
result of the algorithm (and as long as a simulated system will be employed, the
input of the linear model) won’t be the irregularity itself, but its derivative. As long
as noise is absent, this won’t have any consequence; when noise is featured, even in a
simulated environment, though, it could happen that the disturbance derivative does
not feature a null average value, resulting in a linear trend superimposed over its
integral (the displacement itself). This will be addressed through a highpass filter,
with a cutoff frequency such that relevant information will be left untouched.

Next step towards a complete modelization is taking into account that the desired
result  is  not the motion of  all  four wheelsets,  but just  one – from now on,  we’ll
consider the frontmost one – the other three being simply the first one delayed of a
value τ (as per the functions (3.10) to (3.13)) dependant on the mutual inputs distance
δ and the velocity v of the train itself, through the transfer function (3.14):

{d1(t )=d (t )
d2(t )=d (t−τ 2)
d3(t )=d (t−τ 3)
d4(t )=d (t−τ 4)

(3.10)
(3.11)
(3.12)
(3.13)

τ k=
δ k

v
;G(s)=e−sτ ; (3.14)



Problem is, this formulation is not a linear one, and hence cannot be directly inserted
into the model; in order to do that, an approximation known as Padé Approximation
must be separately discussed.

3.2.1. Padé Approximation
In  order  to  discuss  the  approximation  as  an  independent  instrument,  the
hypothetical  (3.15) system, subject to 2 equal inputs, one featuring a τ time delay
with respect to the other, will be taken into account.

ẋ=A x+E d=A x+[E1 E2]{d1

d2
} (3.15)

Since the algorithm of the U.I.O. is directly dependant on the employed model, the
latter  shall  be  modified  accordingly  by  reducing  the  variables  constituting  the
disturbance vector to just one, and implementing the relationship with the others
inside the state matrix.

One way of dealing with the issue could actually accepting more separate values
employing them as a way to cancel out measurement noise, through averaging of the
results (adequately translated of the correct delay value); nonetheless, an alternative
method to deal with the issue does exist, that allows to obtain one single estimate
through an aptly modified series of matrices,  thus bypassing the need for output
postprocessing (something this entire method tries to avoid).

This method is known as Padé Approximation and is a way to modelize a series of 2
or more consecutive delayed signals by approximating the exponential formulation
of the delay with a linear one, compatible with the state-space structure; the simplest
way to sum up the procedure is to simply apply a Taylor Expansion to the delay
formulation as in (3.16);

e−sτ≃1−τ s
1 !

+
(τ s)2

2 !
−
(τ s)3

3 !
+...≃

P(s)
Q(s)

(3.16)

Then, the (3.17) and the (3.18) can be used to obtain a polynomial equation in Laplace
variable  s; the order of such equation only depends on the choice of parameters  m
and n – in this  case,  since a quadratic formulation is  desired, it  has been chosen
m=n=2, resulting in the (3.19):

P (s)=an(τ s)n+an−1(τ s)n−1+...+a0=∑
k=0

n

ak (τ s)k (3.17)

Q(s)=bm(τ s)m+bm−1(τ s)m−1+...+b0=∑
k=0

m

bk(τ s)k (3.18)
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e−sτ≃
12−6τ s+(τ s)2

12+6τ s+(τ s)2 (3.19)

This  can  be  employed  to  create  the  (3.20),  which  is  another  dynamic  subsystem
which takes into account the separate dynamics of the delayed input as a function of
the previous one. The obtained transfer function can then be converted into the (3.21)
matrix form and thus conjugated with the original state equation in the same way as
the disturbance derivative extended state to obtain the (3.22):

{ẋP=AP xP+BP d1

d2=C P x P+DP d1
(3.20)

A P=[ 0 1
−12

τ 2

−6
τ ]; BP=[01];C P=[0 −12

τ ]; DP=1 (3.21)

{ ẋ
ẋP
}=[ A [0]

[0 ] AP]{ x
xP
}+[E1

BP
]d1+[ E2

[0]](CP xP+E2 DP d1)

{ ẋ
ẋP
}=[ A E2CP

[0] AP
]{ x

x P
}+[E1+E2 DP

BP
]d1

(3.22)

3.2.2. Complete State-Space Model with delayed inputs
In the study case that is being dealt with, the inputs are one “original” input and a
series of 3 equal ones with progressively increasing time delays. This results in the
(3.23) matrix formulation:

{ ẋ
ẋP 2

ẋP3

ẋP 4
}=[ A E2 CP2 E3C P3 E4 CP 4

[0 ] AP2 [0] [0 ]
[0 ] [0 ] AP 3 [0 ]
[0 ] [0 ] [0] A P4

]{ x
xP2

xP3

xP 4
}+...

...+[E1+E2 DP 2+E3 DP3+E4 DP4

BP

BP

BP
]d1

(3.23)

It must be reminded, though, that this is but an approximation and the application
limits of an approximation are not infinite. In fact, since the formulation of matrices
AP and  CP depends on the value of time delay  τ, it is relatively obvious that this
method grants the best results if such delay is limited.



Since the vehicle taken into consideration in this work is a generally low-speed urban
public  transport  (considering a velocity  interval  of  10-100 km/h),  its  low velocity
results in a higher time delay for the same space interval; furthermore, the spatial
distance between the two wheelsets sharing the same bogie is almost an order of
magnitude lower than the one separating the bogies themselves.  This means that
applying the Padé Approximation could result in heavily compromised results, thus
it could be decided to limit its application to the rear axle of each bogie, maintaining
two separate outputs for the two front ones, to be averaged in a second phase.

If this last choice is selected, the (3.24) system requires two separate inputs to obtain
all the required accelerations, and in turn will result in two estimations differing in
the initial delay between the signals:

{ ẋ
ẋP 2

ẋP 4
}=[ A E2 CP E4 CP

[0] AP [0]
[0] [0] AP

]{ x
xP2

xP 4
}+...

...+[E1+E2 DP E3+E4 DP

BP [0]
[0] BP

]{d1

d3
}

(3.24)

3.3. Model Validation
Once  its  general  structure  has  been  defined,  some tests  have  been  conducted  to
evaluate  if  the  simplified  system is  an  adequate  approximation  of  the  real  train
behaviour. To this end, the accelerations resulting from the actual misalignment of
the track (Figure 3.2) being fed to the 10 D.o.F. model were compared with those
obtained by a more accurate multibody model provided by PoliMi; this model takes
into  account  non-linear  effects,  and  any  potential  coupling  between  vertical  and
lateral dynamics (which were instead ignored in the linear model). Both simulation
outputs were obtained for the velocity profile reported in Figure 3.3.

Figure 3.2: Track Irregularity
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Figure 3.3: Velocity Profile

As  seen  in  Figure  3.4,  though,  the  employment  of  this  approximation  seems  to
provide uncorrect results for the rear bogie:

Figure 3.4: Comparison of Bogie virtual vertical acceleration with the one obtained
through a single-input linear system (variable speed 50-70km/h simulation)

It can be observed, though, that while the rear bogie (the one featuring the larger
distance and thus the harsher delay approximation) features conflicting results, the
front one is, by comparison, much closer to the actual values; this means that the



aforementioned hypothesis of Padé Approximation not being adequate to modelize
the comparatively huge distance between the front and the rear wheels (in particular
at the fairly low velocity at which the measurations were made) was correct all along,
but  also  that  the  same  Approximation  performs  exceptionally  well  for  limited
intervals like the one between the first and second axle. Hence, the second option of
limited employment of the Approximation for the two axles of the same bogie can be
chosen (Figure 3.5) with little to no negative effect on results:

Figure 3.5: Comparison of Bogie virtual vertical acceleration with the one obtained
through a double-input linear system (variable speed 50-70km/h simulation)

3.4. Gain Matrix Calculation
Now that the system has been validated, next step is to elaborate the optimal poles’
positioning of observer matrix F, and thus the correct gain matrix L. First, though, it
must be decided which acceleration to actually use for the estimation.

From the multibody simulation mimicking the real train any set of “measurement
data”  can  be  freely  extracted,  mirroring  the  infinite  choices  of  positioning  of
accelerometers;  as  foreshadowed  in  2.4,  though,  there’s  already  a  very  good
approximation on what to look for. Since the results we are interested in are relative
to an externally imposed displacement on a mass 1 connected with a mass 2 through
a  certain  geometry  of  springs  and  dampers,  that  is  almost  equivalent  to  the
application of the force generated by such displacement (by elastic and dampening
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effect)  on  said  mass  2,  and  hence  makes  it  clear  which  body  is  required  to  be
monitored, that is the mass 2 or, as it is called in a railcar, the bogies. Moreover, had
we decided  to  employ  the  measurement  of  the  wheelsets for  the  estimation,  two
flagrant problems would have arised:

 Physical installation of vertical accelerometers on a fast-rotating structure such
as  a  train  axle  is  not  an  easy  task;  in  particular,  it  would  make  almost
impossible to run the system without a low-pass filtering of some sort, due to
the intrinsic vibrational behaviour of the wheelset (which could as well affect
the  measurement  due  to  partial  overlapping  with  the  relevant  frequency
range);

 On a logical  point  of  view,  if  measuring acceleration on the wheelset  was
required,  then neither  the bogie measuration nor the entirety of  the U.I.O.
would  be  needed,  since  due  to  supposed  anelasticity  in  the  wheel-track
contact  it  would equate to  measuring the double derivative of  the vertical
geometry itself, hence reducing the whole issue of “estimating” to a double
integration and potentially a filter.

Notice that  both points  will  be subverted in the second half  of  this  study,  when
lateral dynamics will be discussed. It is quite relevant to notice, however, that the
second case features much more complex modelization issues and hence – while the
first one will remain an issue (although overlapping becomes less of a problem due
to  different  frequency  spectrums  between  vertical  and  lateral  irregularity)  –  the
second problem will be rendered null due to the contradiction of its premise (i.e.,
horizontal displacement is NOT anelastically imposed by the track).

Back to pole placement, the same procedure exposed in Section 2 and based on the
staircase form will be employed. In this particular case, it can be observed that out of
all the poles of matrix TA, there is none which is truly “non-observable”, but some of
them can be defined as  almost unobservable,  just  like trying to excite  a vibration
mode of a system by acting in the very proximity of one of that mode’s nodes. In
order  to  discern  observable  poles  from these  aforementioned  quasi-unobservable
ones (since there is no real null submatrix to be used as a reference) it was arbitrarily
decided  to  set  10-5 as  the  threshold  value  for  any  entry  to  be  considered  null,
resulting in 5 out of 22 being of the latter category and being left untouched by the
placement. As per the remaining 17, it can be observed by their position that trying
once again to bring them down to the real axis would be an unsustainable task in
terms of gain matrix; in order to generalize the procedure, it was decided to simply
double  the  negative  real  part  of  each observable  pole  and then subtract  another
tentative value equal to double the module of its imaginary part as pictured in Figure
3.6, so that even purely imaginary poles achieve an adequate damping ratio:



Figure 3.6: Example of Pole Placement for V = 50km/h. Notice the one non-zero non-
observable pole at around -45.

In the perspective of allowing speed to actually change during the analysis (instead
of arbitrarily fixing it at the start and maintaining it constant for the entire duration
of  the  simulation),  it  shouldn’t  go  unnoticed  that  introducing  the  Padé
Approximation made the system (in particular state matrix A) dependant on velocity.
This means that if  the entire U.I.O. procedure is repeated from the start once the
velocity  is  fixed,  the  gain matrix  L obtained through the pole-placement  on said
matrix  A will be, in turn, dependant on speed; the interesting question is: can the
same matrix L, calculated for a certain velocity, be employed for a different value of
speed without losing in general accuracy?

The importance of this hypothesis is  paramount and cannot be overstated: if  this
wasn’t  the  case,  in  order  to  apply  the  U.I.O.  estimator  in  a  variable  velocity
environment, the system would require to not only update the system matrices used
in the U.I.O. model while the speed changes (which is necessary, but ultimately not
overly heaving on computational power), but it should also constantly recalculate the
optimal gain matrix, an operation which would needlessly slow down the algorithm;
most importantly, the actual updating cannot physically be continuous, and it would
ultimately  depend  on  the  precision  with  whom  speed  is  measured  –  i.e.  what
actually  counts as  a  “different  velocity”? A 1 km/h delta  or  a  0,001 km/h one? -
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making the following consideration natural: if in any case velocity trend must be
discretized in a series of intervals, however small, it would be much more practical to
reduce them in number by creating a series of intervals – for example, 10 km/h ones –
for  which  an  adequate  gain  matrix  has  been  predetermined  and can  be  directly
applied with no need for recalculation. Even better, if this number of intervals could
be reduced to  one (i.e. the same gain matrix  L being employed at  any speed in the
considered  interval),  potential  problems  related  to  maintaining  continuity  in  the
estimation would be bypassed. As easily predictable, this last condition won’t be the
case, but some degree of elasticity in velocity between observer and real system can
be found and exploited.

In order to verify this last criterion, the analysis of how the eigenvalues of the control
matrix  F are modified when considering a system matrix  A at a different velocity
than the one employed to calculate  L;  Figure 3.7,  Figure 3.8 and  Figure 3.9 are a
collection of results for different fixed L matrices:

Figure 3.7: Pole Placement for a fixed V = 40km/h within a -5 to +3km/h interval



Figure 3.8: Pole Placement for a fixed V = 70km/h within a -5 to +3km/h interval

Figure 3.9: Pole Placement for a fixed V = 90km/h within a -5 to +3km/h interval

It can hence be deduced that, for every speed considered for the matrix L, stability
can be granted for the observer for any real speed which is lower than the former
down to 5 km/h (i.e., a gain matrix obtained for 40 km/h can be applied for a vehicle
moving from 35 to 40 km/h with no potential instability) with a eigenvalues’ real part
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positivity tolerance of 0,001 (within numerical uncertainty). It should also be noticed,
though, that the particular speeds for which the opposite direction (real speed higher
than observer one) is not admissible feature seem to suggest that for lower speeds
our approach results in an overly precautional scheduling.

Once this data have been extracted, it means that only L matrices for fixed intervals
of 5 km/h need to be calculated and can then be utilized for all the velocity interval
from that particular value down to 5 km/h lower, as pictured in the block diagram in
Figure 3.10; in order to apply this knowledge, the time history of the velocity (in this
case,  the graph in  Figure 3.3) must be registered and approximated to the higher
multiple of 5 km/h, thus programming the scheduling for the gain matrices which
have been previously calculated and can be stored as known data.

Figure 3.10: Gain Scheduling for the selection of matrix L 

3.5. Results
Now that the observer has been set up entirely, it was tested on the study case; a to-
be-determined vertical disturbance has thus been applied on a vertical multibody
system which for the interests of this study will be virtually the same as the real
vehicle, since it approximates it in a much more detailed fashion than the simplified
linear model applied here.

The results will be separated between the straight track case (which will feature the
very same irregularity as described in Figure 3.2) and one example of curved track
(namely a 135m radius turn) featuring a different irregularity profile.

3.5.1. Straight Track Case
The first obtained results are relative to the simplest straight track case, and as it can
be seen in  Figure  3.11 in  the  next  page they  can  be  described as  generally  very
accurate:



Figure 3.11: 10 D.o.F. Model - U.I.O. results for a straight track at variable velocity
(time history)

Although the  results  relative  to  the  straight  track  can  be  seen  as  almost  perfect
through a qualitative evaluation, this preliminary examination is best confirmed by
the employment of some more rational criteria such as the actual error in estimation
pictured in  the graph in  Figure 3.12 (absolute value),  which never exceeds 1mm
(average absolute value: 0,2406mm for the front,  0,2533mm for the rear) and to a
more accurate analysis is mostly to be imputed to a slight x-axis misalignment of the
estimation and the real value – whose reason must in turn be researched into the
numerical error due to timestep discretization. In order to verify this, it is possible to
switch to a frequency domain analysis and observe even more coherent outputs.

In  fact,  as  can be  observed  when analyzing  the  PSD of  both  real  and estimated
disturbance  pictured  in  Figure  3.13 for  both  front  and  rear  bogie,  the  real  only
difference (and arguably a very marginal one) is relative to the lowest frequencies,
but  those  data  can  be  easily  explained (and  potentially  discarded,  since  the  real
values PSD confirms that there is no relevant input at such high wavelength) as the
effect of the previously discussed highpass filter required to neglect non-white noise
integration drifting.
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Figure 3.12: 10 D.o.F. Model – Estimation Error

Figure 3.13: 10 D.o.F. Model – Straight Track estimation PSD



3.5.2. 135m Radius Turn Case
Mostly the exact same considerations can be made when dealing with a curved track;
the following graphs (Figure 3.14 to Figure 3.17) refer to a 135m radius curve (among
the tightest ones the considered vehicle can go through while still providing relevant
data for the disturbance estimation – i.e., at a high enough speed to solicit sufficient
accelerations):

Figure 3.14: 10 D.o.F. Model –  U.I.O. results for a 135m radius - Curved Track at
variable velocity (time history)

As it can be easily observed, the results are less precise (especially at the start of the
analysis – but that is mostly related to some differences in the multibody simulation
way of dealing with delayed inputs) but still highly promising. Regarding average
error, the value is arguably quite higher than the straight case (0,3547mm in the front,
0,5488mm in the rear)  but  again,  the 65% difference in favour of  the front bogie
estimation not only clarifies the merely simulative nature of this displacement, but
confirms that the front bogie can indeed provide a perfectly serviceable estimation;
furthermore, if the actual error trend in  Figure 3.15 is analyzed, it can be observed
that the difference between real and is actually well below the 1mm threshold save
for a couple phases, respectively the starting one and another one around 250m –
where a quite abrupt speed change is taking place.
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Figure 3.15: 10 D.o.F. Model – Estimation Error (135m radius curve)

The PSD graph of Figure 3.16, in the same way, confirms the suspected behaviours:
the only sensitive difference between real and estimated power values is featured at
low frequencies, which validates the perceived nature of the error in the time history
– a very high wavelenght superimposing over the estimated disturbance, causing a
sort of “translation” of certain tracts of such time history towards slightly higher
values (i.e. the starting phase of the rear bogie time history being almost perfect in
shape, except for a circa 2mm upwards shift) – a detail highlighted in  Figure 3.17;
this issue could be easily addressed with the employment of a better low-pass filter,
but it has been decided to not change the one used in the previous case to highlight
the differences and the possibilities of the method.

In conclusion, it can be argued that, given the correct parameters to model the train
behaviour, the U.I.O. can provide an accurate estimation of vertical geometry of the
track through this simplified 10 D.o.F. model, if anything through the employment of
the front bogie measurements, and in any case further refinement of results (through
filtering of  output  and potentially  accelerational  inputs,  too)  can greatly  improve
consistency.



Figure 3.16: 10 D.o.F. Model – 135m radius curve estimation PSD

Figure 3.17: Upwards shift detail in the rear bogie time history - 135m radius curve

On the negative sides, it must be recognized that the system struggles more the more
distant it gets from a straigh track, which is something not entirely unexpected, being
the  model  a  linearized  one  taking  the  straight  configuration  as  the  standard
geometry.

In order to furtherly confirm these qualitatively deduced considerations, a couple
indices were created to derive a general valutation of consistency for both the time
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and the  frequency  domain.  For  the  time  domain,  it  was  decided  to  employ  the
normalized squared error defined as in the (3.25); for the frequency domain, it was
instead utilized the same definition but using the difference of spectral intensity as
the error (3.26):

α=
∑
t=0

T

( xirr (t )−xestimated (t ))
2

∑
t=0

T

xirr
2 (t )

(3.25)

β=
∑
f=0

f NYQ

(|FFT irr (f )|−|FFT estimated ( f )|)
2

∑
f=0

f NYQ

|FFT irr( f )|
2

(3.26)

The actual  values  obtained in  both  cases  for  these  indices,  reported in  Table  3.8
below, seem to perfectly confirm the previously described deductions:

Table 3.8: Values of indices for the straight and curved negotiation

Index
Value

(Straight Track)
Value

(135m Rad. Turn)

αFRONT 0,043 0,106
αREAR 0,050 0,308
βFRONT 4,9x10-4 9,6x10-3

βREAR 6,4x10-3 0,237

This data confirm that the estimation is much more effective when operated along a
straight track (especially if evaluated in the frequency domain), and that the front
wheel estimation is the one that should be considered as the most reliable output, but
also that the main reason for time history discrepancies has to be found in slight time
misalignments between the estimated and the real value (in turn mostly dependent
from the  algorithm timestep)  –  exception made for  the  initial  shift  for  the  135m
radius turn.
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4 Lateral Irregularity Estimation

The second application for the U.I.O. is the reconstruction of transversal irregularity;
in this case, lateral dynamics are coupled with roll motion, therefore the estimation of
the two must be conducted simultaneously. To this end, an adequate model must be
built to represent lateral dynamics; the selected version is a 21 D.o.F. model (pictured
in  Figure  4.1)  with  lateral  displacement,  yaw  and  roll  of  carbody,  bogies  and
wheelsets as independent variables.

To deal  with lateral  dynamics,  however,  is  a  much more intricate  issue than the
vertical irregularity one, mostly due to the higher complexity of the contact dynamics
which this time must factor in aspects such as friction and elastic normal contact.
These  relations  between track  geometry  and the  behaviour  of  the  model  will  be
explored in Section 4.2.

Figure 4.1: 21 D.o.F. Lateral Train Model Scheme
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4.1. Model Data
Just as in the vertical case, the relevant data referring to the lateral model (Table 4.1
and  Table 4.2) will be featured in the next pages, as well as the Jacobian matrices
(Table  4.3 to  Table  4.10)  obtained by  their  manipulation;  notice  that  in  order  to
simplify notation,  only the relevant (i.e.  non-null)  matrix blocks will  be featured,
meaning that primary suspensions’ Jacobians won’t feature the terms relative to the
carbody  (since  they  would  just  be  zeros  due  to  primary  suspensions  not  being
affected by the motion of the carbody), while in the secondary suspensions’ ones the
wheelset  terms  will  be  neglected.  This  means  the  primary  Jacobians  must  be
preceded by 3 columns of zeros, while secondary Jacobians must be followed by 12
columns of zeros:

Table 4.1: 21 D.o.F. Lateral Train Model Data

Parameter Symbol Value

Carbody Mass mC 17817 kg
Carbody Yaw Inertia JCσ 427000 kg/m2

Carbody Roll Inertia JCρ 52200 kg/m2

Bogie Mass mB 2100 kg
Bogie Yaw Inertia JBβ 3750 kg/m2

Bogie Roll Inertia JBρ 1200 kg/m2

Wheelset Mass mW 1050 kg
Wheelset Yaw Inertia JWβ 540 kg/m2

Wheelset Roll Inertia JWρ 540 kg/m2

Primary Vertical Damping rIv 44000 Ns/m
Primary Vertical Stiffness kIv 2000000 N/m

Primary Longitudinal Damping rIh 340000 Ns/m
Primary Longitudinal Stiffness kIh 16600000 N/m
Primary Transversal Damping rIt 200000 Ns/m
Primary Transversal Stiffness kIt 8360000 N/m
Secondary Vertical Damping rIIv 37500 Ns/m
Secondary Vertical Stiffness kIIv 1020200 N/m

Secondary Longitudinal Stiffness kIIh 250000 N/m
Secondary Transversal Damping rIIt 20000 Ns/m
Secondary Transversal Stiffness kIIt 250000 N/m



55

Table 4.2: 21 D.o.F. Lateral Train Geometrical Data

Parameter Symbol Value

Gauge S 0,75 m
Carbody Baricentre Height hC 1,59 m

Bogie Baricentre Height hB 0,46 m
Wheel Radius rw 0,41 m

Primary Susp. Longitudinal Distance bI 1,075 m
Secondary Susp. Longitudinal Distance bII 5,55 m

Primary Suspension Lateral Distance wI 0,95 m
Secondary Longitudinal/Vertical Springs

Lateral Distance
sI 0,95 m

Secondary Vertical Dampers Lateral Distance sII 1,17 m
Secondary Transversal Dampers Longitudinal Dist. eII 0,35 m

Primary Susp. - Bogie Vertical Distance hI 0,05 m
Secondary Susp. - Bogie Vertical Distance hII 0,24 m

Secondary Susp. - Carbody Vertical Distance hIIC 0,89 m
Secondary Transversal Damper - Bogie

Vertical Distance
hIIT 0,355 m

Secondary Transversal Damper - Carbody
Vertical Distance

hIICT 0,775 m

Secondary Transversal Outer Damper
Longitudinal Distance

xext bII + eII

Secondary Transversal Inner Damper
Longitudinal Distance

xint bII – eII

Table 4.3: Jacobian of Primary Vertical Springs and Dampers (Bogies + Wheelsets)

yB1 σB1 ρB1 yB2 σB2 ρB2 yW1 σCW1 ρW1
kIv1 0 0 -wI 0 0 0 0 0 +wI

kIv2 0 0 -wI 0 0 0 0 0 0
kIv3 0 0 0 0 0 -wI 0 0 0
kIv4 0 0 0 0 0 -wI 0 0 0

yW2 σCW2 ρW2 yW3 σCW3 ρW3 yW4 σCW4 ρW4
kIv1 0 0 0 0 0 0 0 0 0
kIv2 0 0 +wI 0 0 0 0 0 0
kIv3 0 0 0 0 0 +wI 0 0 0
kIv4 0 0 0 0 0 0 0 0 +wI



Table 4.4: Jacobian of Primary Longitudinal Springs and Dampers (Bogies + Wheelsets)

yB1 σB1 ρB1 yB2 σB2 ρB2 yW1 σCW1 ρW1
kIh1 0 -wI 0 0 0 0 0 +wI 0
kIh2 0 -wI 0 0 0 0 0 0 0
kIh3 0 0 0 0 -wI 0 0 0 0
kIh4 0 0 0 0 -wI 0 0 0 0

yW2 σCW2 ρW2 yW3 σCW3 ρW3 yW4 σCW4 ρW4
kIh1 0 0 0 0 0 0 0 0 0
kIh2 0 +wI 0 0 0 0 0 0 0
kIh3 0 0 0 0 +wI 0 0 0 0
kIh4 0 0 0 0 0 0 0 +wI 0

Table 4.5: Jacobian of Primary Transversal Springs and Dampers (Bogies + Wheelsets)

yB1 σB1 ρB1 yB2 σB2 ρB2 yW1 σCW1 ρW1
kIt1 -1 +bI +hI 0 0 0 +1 0 0
kIt2 -1 -bI +hI 0 0 0 0 0 0
kIt3 0 0 0 -1 +bI +hI 0 0 0
kIt4 0 0 0 -1 -bI +hI 0 0 0

yW2 σCW2 ρW2 yW3 σCW3 ρW3 yW4 σCW4 ρW4
kIt1 0 0 0 0 0 0 0 0 0
kIt2 +1 0 0 0 0 0 0 0 0
kIt3 0 0 0 +1 0 0 0 0 0
kIt4 0 0 0 0 0 0 +1 0 0

Table 4.6: Jacobian of Secondary Vertical Dampers (Carbody + Bogies)

yC σC ρC yB1 σB1 ρB1 yB2 σB2 ρB2
rIIvFR 0 0 -sII 0 0 +sII 0 0 0
rIIvFL 0 0 +sII 0 0 -sII 0 0 0
rIIvRR 0 0 -sII 0 0 0 0 0 +sII

rIIvRL 0 0 +sII 0 0 0 0 0 -sII

Table 4.7: Jacobian of Secondary Vertical Springs (Carbody + Bogies)

yC σC ρC yB1 σB1 ρB1 yB2 σB2 ρB2
kIIvF 0 0 -sI 0 0 +sI 0 0 0
kIIvR 0 0 -sI 0 0 0 0 0 +sI
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Table 4.8: Jacobian of Secondary Longitudinal Springs (Carbody + Bogies)

yC σC ρC yB1 σB1 ρB1 yB2 σB2 ρB2
kIIhF 0 -sI 0 0 +sI 0 0 0 0
kIIhR 0 -sI 0 0 0 0 0 +sI 0

Table 4.9: Jacobian of Secondary Transversal Dampers (Carbody + Bogies)

yC σC ρC yB1 σB1 ρB1 yB2 σB2 ρB2
rIItFR -1 +xext +hIICT +1 -eII +hIIT 0 0 0
rIItFL +1 -xint -hIICT -1 -eII -hIIT 0 0 0
rIItRR -1 -xint +hIICT 0 0 0 +1 -eII +hIIT

rIItRL +1 +xext -hIICT 0 0 0 -1 -eII -hIIT

Table 4.10: Jacobian of Secondary Transversal Springs (Carbody + Bogies)

yC σC ρC yB1 σB1 ρB1 yB2 σB2 ρB2
kIItF -1 +bII +hIIC +1 0 +hII 0 0 0
kIItR -1 -bII +hIIC 0 0 0 +1 -1 +hII

Notice that  the vertical  and lateral  model are de facto not coherent one with the
other,  since  in  the  vertical  one  the  secondary  dampers  featured  a  longitudinal
distance from the middle plane between the wheelsets of the same bogie; considering
both  dampers  on  the  same  middle  plane  –  thus  nullifying  the  aforementioned
distance – was in fact a deliberate choice so to decouple vertical and lateral model. In
the real case, such dampers are disposed along a rectangle, but only on two opposing
angles, as pictured in the  Figure 4.2 below, creating a mutual relation between the
bogie roll and pitch:

Figure 4.2: Vertical Secondary Suspension
Disposition Scheme
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4.2. Wheel-Rail Contact Dynamics
In order to describe the lateral and yaw rotation of the vehicle, the acting forces and
torques must be derived, in particular the lateral forces acting on the wheelset due to
frictional  contact  with the rails,  and the longitudinal  forces  (also originated from
friction) which generate a yaw rotation due to the interaction between the wheel
profile and the track geometry.

To obtain these forces, and to make it possible to describe them in a linear fashion
(which is compatible with the U.I.O. superstructure), it is necessary to relate them
(through a series of linearized coefficients as in (4.2)) with the so-called “creepages”,
which are the values of transversal (T) and longitudinal (L) speeds of both wheels
normalized by the value of the vehicle advancement speed, as described in the (4.1)
(for a more comprehensive discussion on the creepages theory, refer to the work on
the topic by G. Diana and F. Cheli [13]):

ε L left=
V L left

V
;ε L right=

V Lright

V
;εT left=

V T left

V
;ε T right=

V T right

V
; (4.1)

{FL=f L Lε L+f LT ε T

FT=f T Lε L+f T T ε T
(4.2)

(notice: the correlation coefficients are negative numbers, since friction force is as
expected opposite to the direction of relative motion)

The problem is thus divided in two subsections; the former, that is, extracting the
coefficients  featured in  (4.1)  required to  linearly  correlate  these  creepages  ε with
forces, will be dealt later on by employing some externally supplied resources; the
latter,  instead, will be dealt immediately – how to determine the velocities of the
contact points between wheels and tracks in a constantly changing contact situation?

While the problem is relatively simple when the vehicle is travelling in a straight
track, it gets much harder to solve in a closed form when this is not the case, even
more  so  when  trying  to  convert  it  to  a  linearized  formulation;  hence,  some
fundamental  simplifications  will  be  required  right  from  the  start.  The  first  and
foremost one is to simplify the contact kinematics:

 Speed will be calculated for a fixed point in on the middle plane of the wheel
(and not the actual contact point, which changes during motion);

 Roll  rotation  will  be  considered  as  geometrically  constrained  by  the  track
plane  angle,  redirecting  this  section  of  the  problem  to  the  longitudinal
dynamics case; this  approximation, admissible due to the relatively low value
of relative wheelset-track roll, allows to bypass the otherwise tremendously
complex geometric relation between roll and lateral displacement;
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 Third and last one, the contact between the wheel profile and the track will be
simplified, reducing the latter to a geometrical line with no dimension except
length; thus the contact point won’t move relatively to the track (except for its
lateral  alignment  yT,  which  is  exactly  what  the  algorithm  will  try  to
determine).

Starting with the kinematics, the system will be based upon a reference frame placed
in the middle plane of the track itself and parallel to the track – and hence to the
advancing speed of the vehicle; as it can be seen in  Figure 4.3, in such a reference
system,  the  lateral  displacement  of  the  centre  of  mass  of  the  wheelset  will  be
identified as  y and will  be orthogonal to the vehicle speed. The other considered
velocity is yaw rotation, which does not only include the wheelset own rotation with
respect to the bogies (σ), but also that of the system itself, identified as ϑ, which takes
into account the fact that the vehicle is following a curving track:

Figure 4.3: Reference frame and conventions of the contact point
velocities

Since  creepages  relate  both  components  of  the  relative  wheel-track  speed  with
contact forces, the contact point velocity must be decomposed into a longitudinal and
transversal components,  along perpendicular directions which together define the
tangency plane of the wheel on the rail.

The first thing to determine is the longitudinal velocity of the contact points; due to
the Angle of Attack, this value is not only a function of advancement speed itself, but
the lateral speed as well due to the aforementioned Angle of Attack. The other term
is due to yaw rotation (again including the system own rotation  ϑ as well), which
determines a longitudinal contribution through the gauge (identified as S in Figure
4.3). All of these terms must be added to the angular velocity Ω of the wheelset itself,



which must be multiplied by the (potentially different in curves) rolling radii of the
two wheels into account, obtaining (4.3):

{V L left=V cosσ − ẏ sinσ −S(σ̇ +ϑ̇ )−ΩRleft

V L right=V cosσ − ẏ sinσ +S(σ̇ +ϑ̇ )−ΩR right

(4.3)

The same can be done for lateral velocity as well, still using Figure 4.3 as a reference:
in this case, the main term is related to the lateral displacement  y of the wheelset,
projected on its  axis’  direction (identified as  K and not  T  for  reasons which will
become clear in a while); vehicular speed as well provides a contribution, although
minimal due to Angle of Attack being likely very low. Another contribution which
must not be ignored, though, (Figure 4.4) is rolling rotation, since the point we’re
considering is not at the centre of the wheel, but on the wheel external surface:

Figure 4.4: Roll contribution to wheel contact point lateral velocity

The final result of all these contributions can be summed up in the (4.4):

{V K left=V sinσ + ẏ cosσ −R left ρ̇
V K right=V sinσ + ẏ cosσ −Rright ρ̇

(4.4)

In order to determine these radii, though, not only the wheel and rail profiles must
be  known,  but  also  the  equilibrium  value  of  relative  lateral  displacement  (as
formulated in (4.6)) around which the rolling radius can be simplified as a linearly
incremental value as per the (4.5):
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R left /right=Rleft /righteq+
∂ΔR left /right

∂ y rel

y rel (4.5)

y rel= y− yT−Rleft /right eq− yeq (4.6)

Going back to lateral kinematics, the value found with the (4.4) is along direction K
(that is, along the wheelset axis). The final objective of this analysis, though, is to
determine a velocity (and thus a force) along the wheel-rail tangency plane (direction
T in  Figure 4.4), which is inclined of an angle γ with respect to the  yz plane of the
reference system (z being the advancement direction). This means that only one of
the  components  of  the  value  found  for  “lateral  velocity”  determines  a  relative
displacement  and  hence  a  friction  effect,  the  other  being  a  normal  one  which
determines  an  elastic  compression  term.  The  transversal  component  has  a  value
obtained from (4.7) and (4.8):

{V T left=V K left cosγ left

V T right=V K right cosγ right
(4.7)

V T left /right= ẏ cosσ cosγ left /right+V sinσ cosγ left / right−...
−ρ̇ R left /right eq cosγ left /right−...

−
∂ΔR left /right

∂ y rel

( y− yT−Rleft / righteq ρ− yeq) ρ̇ cosγ left /right

(4.8)

Once all the non-linear equations have been obtained, they can be linearized around
a  series  of  steady-state  values,  such  as  the  Angle  of  Attack,  which  need  to  be
externally  determined  as  a  function  of  speed  and  the  track  geometry  (i.e.  its
curvature radius); some of the values, though, are fixed – for example, both ρ and its
derivative are null at the equilibrium (since the train is considered to be parallel to
the track plane in steady-state regime), as well as the lateral displacement y (due to
the train not moving on that direction while in a stationary condition).  The static
values of both longitudinal and transversal velocity can be obtained as in (4.9). Most
importantly, though, the linear coefficients relating velocities to state variables can be
derived, allowing to proceed with the linearization of velocities as in the (4.10):

{V L left /right eq=V cosσ eq∓ϑ̇ S−ΩRleft /right eq

V T left / righteq=V sinσ eq cosγ left /right eq
(4.9)

V L /T≃V L /T+
∂V L/T

∂Δ y |eq

( y− yeq)+
∂V L /T

∂Δσ |
eq
(σ −σ eq)+.. . (4.10)



Said coefficients are expressed in the equations (4.11) to (4.19) (notice that equations
are untouched if switching from the left to the right side, except for equation (4.14)
whose  sign is  inverted when changing sides  –  thus  both have been reported for
clarity):

∂V L

∂ y |eq

=−Ω∂ΔR
∂ y rel

|
eq

(4.11)

∂V L

∂ ẏ |eq

=−sinσ eq   (4.12)

∂V L

∂σ |
eq
=−V sinσ eq

(4.13)

∂V L left

∂σ̇ |
eq
=−S   

∂V L right

∂σ̇ |
eq
=+S (4.14)

∂V L

∂ ρ |
eq
=+Ω∂ΔR

∂ y rel
|
eq

Req (4.15)

∂V L

∂ yT
|
eq

=+Ω∂ΔR
∂ y rel

|eq
(4.16)

∂V T

∂ ẏ |
eq

=+
cosσ eq

cosγ eq

(4.17)

∂V T

∂σ |
eq
=+V

cosσ eq

cosγ eq

(4.18)

∂V T

∂ ρ̇ |
eq
=−

Req

cosγ eq

(4.19)

Switching from velocities to forces, another action that must be taken into account is
the elastic effect due to normal contact and deformation; this acts as an additional
spring of which the elastic coefficient is  obtained through the linearization of the
(4.20) to obtain (4.21).

Fn=CHδ
1,5≃Fneq+

∂Fn

∂δ |
eq
(δ−δ eq)=Fneq+K H (δ−δ eq) (4.20)

K H=1,5C Hδ
0,5 (4.21)
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In  these  formulae,  δ refers  to  the  contact  spring compression;  since  this  fictional
spring acts  in  the  normal  direction to the wheel-rail  tangency plane,  the relative
wheel-rail displacement must be projected along said normal direction in order to
obtain the aforementioned value δ.

In  turn,  when  dealing  with  lateral  forces,  all  resulting  actions  on  the  wheel-rail
tangency surface (direction K) must be projected along the wheelset axial direction
(T), so that they are coherent with the reference system used to evaluate the degrees
of freedom. Thus, both friction forces (Figure 4.5), and elastic ones (Figure 4.6) must
be projected again along direction K:

Figure 4.5: Projection of tangential contact forces along transversal
direction

Figure 4.6: Railtrack-Wheel Elastic Contact Dynamics



All of this allows to express a linearized form of transversal and longitudinal force,
following the general formulae (4.22) and (4.23) (notice that, being direction K and T
not  required anymore,  from now on transversal  force  will  be  identified  as  FT to
ensure a more intuitive notation):

F L≃F Leq+
∂F L

∂ε L
|eq
(ε L−ε Leq)+

∂ FL

∂ε T
|eq
(ε T−ε T eq)=...

...=F Leq+f L LΔε L+ f LT Δε T

(4.22)

FT≃FT eq+
∂ FT

∂ε L
|eq
(ε L−ε Leq)+

∂ FT

∂ε T
|eq
(ε T−ε T eq)=...

...=FT eq+f T LΔε L+ f T T Δε T

(4.23)

Being the creepages ε in turn linearized functions of the degrees of freedom (as per
the (4.10), it is possible to derive a linearized function of said degrees of freedom to
express the transversal and longitudinal force, and thus the yaw torque.

After  some calculations  which  won’t  be  reported  here  for  brevity,  the  following
coefficients  (4.24)  to  (4.37)  relating the  state  variables  with  lateral  force  and yaw
torque can be obtained:

∂FT

∂Δ y
=−f T L

Ω
V

sinσ eq

∂ΔR left

∂ y rel
|
eq

cosγ lefteq−K left sin2γ left eq−...

−f T L
Ω
V

sinσ eq

∂ΔR right

∂ yrel
|
eq

cosγ right eq−K right sin2γ right eq

(4.24)

∂FT

∂ ẏ
=−f T L

1
V

sinσ eq (cosγ left eq+cosγ right eq)+...

+ f T T
1
V

cosσ eq (cos2γ lefteq+cos2γ righteq)
(4.25)

∂FT

∂Δσ =−f T Lsinσ eq (cosγ left eq+cosγ righteq )+...

+ f T T 1 cosσ eq(cos2γ left eq+cos2γ right eq)
(4.26)

∂FT

∂σ̇ =−f T L
S
V

(cosγ left eq−cosγ righteq) (4.27)
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∂FT

∂ρ =+ f T L
Ω
V

∂ΔRleft

∂ yrel
|
eq

Rleft eq cosγ left eq+...

+f T L
Ω
V

∂ΔR right

∂ y rel
|
eq

Rright eq cosγ righteq

(4.28)

∂FT

∂ ρ̇ =−f T T
1
V
(Rleft eq cos2γ lefteq+Rright eq cos2γ righteq) (4.29)

∂FT

∂ yT

=+ f T L
Ω
V

sinσ eq

∂Δ Rleft

∂ yrel
|
eq

cosγ left eq+K left sin2γ left eq−...

+ f T L
Ω
V

sinσ eq

∂ΔRright

∂ yrel
|
eq

cosγ right eq+K right sin2γ righteq

(4.30)

∂Mσ

∂Δ y
=+ f L L

Ω
V

S( ∂Δ Rleft
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4.2.1. Straight Track Simplification
In  this  study case,  a  straight  track will  be  considered;  this  greatly  simplifies  the
previously discussed coefficients and nullifies a number of them, due to 3 conditions
being simultaneously fulfilled:



 First,  creepages being very low, so-called Kalker Theory holds true,  which
means that cross-coefficients fLT and fTL are null; furthermore, Angle of Attack
is equal to 0 as well;

 Second, no difference is present anymore between the two sides of the vehicle
(it being symmetric and in a perfectly symmetric contact condition with the
two rails);  this  allows  for  example  to  employ a  direct  correlation between
advancement speed V and rotation velocity Ω;

 Third and arguably most important, condition is unvaried between one axle
and the next one, an hypothesis which wouldn’t be valid any longer if trying
to solve the much more complex problem of curved track.

The aforementioned simplifications reduce the displacement-force coefficients to the
following (4.38) to (4.46):
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∂ ẏ
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∂FT
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∂FT
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4.3. State-Space Model Construction
The coefficients that have been defined in the (4.38) to (4.46) relate either one of the
state variables or the externally constrained parameter  yT with either  FT or  Mσ; this
means that they must be inserted on the right side of the equilibrium equation (4.47),
but can be easily moved to the left side through some operations, resulting in the
(4.48).  The  following  equations  (4.49)  to  (4.51)  are  simplified  by  taking  into
consideration only one wheelset as part of the system (thus comprising only the three
variables y, σ, and ρ), omitting any other body composing the model:

M ẍ+R ẋ+K x=∂ F
∂ ẋ

ẋ+∂F
∂ x

x+ ∂F
∂ yT

yT (4.47)

M ẍ+(R−∂ F
∂ ẋ ) ẋ+(K−∂F

∂ x )x= ∂ F
∂ yT

yT (4.48)
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∂ρ
∂Mσ

∂ y
∂Mσ
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∂M σ
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∂F
∂ yT

=[
∂FT

∂ yT

∂Mσ

∂ yT

0
] (4.51)

(Notice  that  removing  cross-correlations  between  transversal  and  longitudinal
contact dynamics results in a number of Force-D.o.F. relations being null. This means
some of the terms of the matrices (4.49), (4.50) and (4.51) get nullified as well)

This formulation, however, does not take into account the fact that also  ρ, despite
being  formally  part  of  the  state,  is  externally  constrained  due  to  the  previously
exposed  approximation;  this  means  that  it  must  be  treated  just  like  the  vertical
displacement of the wheels in the longitudinal case in Section  3, thus dividing the



state into a “free” (F) and “externally constrained” (C) subvector, and obtaining four
submatrices per matrix as in the (4.52) and (4.53). Notice that due to the presence of
an additional  external  action caused by the  track irregularity  yT,  the  formulation
changes slightly with respect to the longitudinal case; it is only thanks to the non-
existant relation between yT and ρ that it is possible to ignore the hypothetical lower
component of the external actions matrix:

[M FF M FC

M CF MCC
]{ẍF

ẍC
}+[RFF RFC

RCF RCC
]{ẋF

ẋC
}+...

...+[K FF KFC

KCF KCC
]{xF

xC
}=[ ∂ F

∂ yT

[0 ] ] yT

(4.52)

M FF ẍF+RFF ẋF+K FF xF=...

...−M FC ẍC−RFC ẋC−K FC xC+
∂F
∂ yT

yT
(4.53)

Once  the  matrix  has  been  divided  into  its  free  and  externally  constrained
components,  the  same  modifications  made  for  the  longitudinal  case  must  be
repeated. First of all, the relation between the roll rotation ρ and its derivative must
be  taken  into  account  (just  like  was  previously  done  in  Section  3.2 for  the
longitudinal  kinematics)  by  extending  the  state  from  a  17+17  to  a  17+17+4=38
variables vector as represented below in (4.54) and (4.55):

x={yCBσ CBρ CB yB 1σ B1 ρ B1 yB 2σ B2 ρ B2

yW 1σ W 1 yW 2σ W 2 yW 3σ W 3 yW 4σ W 4}
T

ρ= {ρW 1ρW 2 ρW 3 ρW 4 }
T

(4.54)

ẋextended={ẍ
ẋ
ρ̇}=A extended{ẋ

x
ρ}+Eextended{ ρ̇yT} (4.55)
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The resulting extended state and input matrices are the following (4.56) and (4.57):

Aextended=[−M FF
−1 RFF −M FF

−1 K FF −M FF
−1 K FC

I [0] [0]
[0 ] [0] [0] ] (4.56)

Eextended=[−M FF
−1 RFC M FF

−1 ∂F
∂ yT

[0 ] [0]
I [0]

] (4.57)

The second aspect to be taken care of is the Padé Approximation, in order to take
equal delayed inputs into account. From the experiences relative to the vertical case,
the full-delayed system (i.e. featuring only 1 input and all of the following being only
the result of said approximation) will not be tried, while instead the double input
formulation will be immediately employed; with respect to the vertical case,  though,
in this case the inputs to be duplicated are not single variables, but are represented
by a vector of length 2 comprising both the derivative of roll rotation ρ and the rail
lateral irregularity yT. In the matrix E (4.58), the two inputs are alternated to keep the
pair referring to the same wheelset in the same 2-columns submatrix. This means the
formulation  of  Padé  Approximation  (4.59),  despite  remaining  unvaried  on  the
theoretical side, gets somewhat more cluttered in practice:

E=[Eρ 1 E yT 1 Eρ 2 E yT 2 Eρ 3 E yT 3 Eρ 4 E yT 4 ] (4.58)

{
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xP ρ 4

xP yT 4

}
+[
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+Eρ 2 DP
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+Eρ 4 DP
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+E yT 4 DP
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[0] BP [0] [0]
[0] [0] BP [0]
[0] [0] [0] BP

]{ρ 1

yT 1
ρ 3

yT 3
}

(4.59)



4.4. Model Validation
Just  as  in  the  vertical  model,  it  was  decided  to  approach  the  problem  in  a
conservative way; thus, the simplified model was first validated by comparing the
accelerations it generates with the ones derived from the PoliMi multibody model.
Although results are promising (pictured in Figure 4.7 are the accelerations relative
to the front bogie), the bogies’ roll suffers from an overdamping of high frequency
inputs, as made evident in the spectral comparison at Figure 4.8; said figure, though,
also highlights that lateral and especially yaw acceleration do not suffer from the
same inaccuracy:

Figure 4.7: Comparison of Lateral, Yaw and Roll Acceleration of the front bogie
between multibody and simplified models 
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Figure 4.8: Power Spectral Density of Lateral, Yaw and Roll Acceleration of the front
bogie

This is a problem connected with the way the multiple delayed inputs are being dealt
with. If the Bode Diagrams at Figure 4.9 are analyzed, in fact, it can be noticed that
Padé Approximation, since it estimates delays through a number of zeroes and poles
equal to its order (that is, the size of matrices AP and the like employed to express it
in linear form), can in no case correctly estimate phase delays up to 180° times this
number. That being said, in this particular case (in which delay τ is equal to 2,15m /
70km/h,  that  is  around  0,11s)  this  means  that  after  around  3Hz  2nd order
approximation  starts  diverging  from  the  real  delay  phase  diagram  due  to  its
asymptotic nature; this results in any input signal over that threshold being heavily
distorted.

However,  the  same  Figure  4.9 highlights  that  by  increasing  the  order  of  Padé
Approximation it is possible to much more effectively estimate the delay trend even
at  higher  frequencies.  As  it  is  quite  evident  from  Figure  4.10 and  Figure  4.11,
switching to a 3rd order approximation allows for the linear system to much more
accurately approximate the behaviour of the multibody one, in particular fixing the
aforementioned issues with the bogies’ roll at higher frequencies.



Figure 4.9: Padé Approximation Validity depending on its order – notice that at 6Hz
the second order Approximation is not accurate anymore

Figure 4.10: Comparison of Lateral, Yaw and Roll Acceleration of the front bogie
between multibody and simplified models (3rd order Padé Approximation)
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Figure 4.11: Power Spectral Density of Lateral, Yaw and Roll Acceleration of the front
bogie (3rd order Padé Approximation)

It should be reminded that the matrix  DP,  which was equal to  1 for the 2nd order
approximation  (and  assumes  the  same  value  for  all  even  values  of  said  order)
becomes instead equal to  -1 for all odd numbers of the order (thus its apparently
unnecessary explicitation in the (4.59)).

Notice,  though,  that  increasing  the  order  of  Padé  Approximation  also  means  to
furtherly  extend the  state  vector  and thus enlarge  the  state  matrix,  an  operation
which is not without its own consequences (as will be furtherly discussed upon in
Section 4.5.2).



4.5. Results
The particular case for which the estimation will  be performed is a straight track
section traversed at a constant speed of 70km/h. In order to proceed, it was decided
to  employ  all  possible  measurements,  thus  all  17  acceleration  values  from  the
carbody, the bogies and the wheelsets (for the latter, obviously only lateral and yaw,
the  unconstrained  degrees  of  freedom).  As  per  the  considerations  made  when
presenting the results, only the front bogie results will be pictured.

4.5.1. 2nd Order Padé Approximation
Despite the moderately conflicting results regarding the accelerations’ comparison
discussed in the previous section, the use of 2nd order Padé Approximation was tried
first for the estimation, due to the general trend of accelerations being quite accurate,
at least at low frequency. As per the gain matrix, it was decided for the time being to
keep using the same pole placement as in Section 3.4, that is, doubling the negative
real part of observable poles and then furtherly subtracting their imaginary one.

As  expected,  the  results  pictured  in  Figure  4.12 are  not  particularly  accurate;
nonetheless, it can be qualitatively appreciated that the general trend is indeed being
estimated, if almost constantly with excessively high values.

Figure 4.12: 21 D.o.F. Model - U.I.O. results (17 Accelerations)
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Furthermore,  while  the  lateral  irregularity  estimation  is  plagued  by  severe
inaccuracies, the roll angle is already being estimated in quite satisfactory way; this is
not entirely unexpected, being the latter a much easier quantity to be reconstructed
due  to  it  having  a  relation  with  the  system  much  more  akin  to  the  vertical
displacement  in  Section  3,  unlike  the  lateral  motion  for  which  the  somewhat
approximated contact dynamics have been introduced.

The  main  reason  for  inaccuracy  is  the  inadequacy  of  the  2nd order  Padé
Approximation  used  in  the  linearized  model  to  correctly  describe  the  system
behaviour  at  higher  frequencies,  as  amply  demonstrated  by  comparing  its
accelerations  with  those  of  the  multibody  model  in  the  previous  section.  In
particular,  since the linearized system predicts lower high-frequency accelerations
for  the  given  disturbances  (see  the  previous  section),  it  associates  much  higher
irregularities  with  the  actual  values  of  acceleration;  this  is  made  evident  by  the
comparison of Power Spectral Density at Figure 4.13:

Figure 4.13: 21 D.o.F. Model – Estimation Power Spectral Density

In  order  to  try  and  solve  these  issues,  the  natural  next  step  is  to  try  the  same
procedure using a third-order approximation instead of a quadratic one.



4.5.2. 3rd Order Padé Approximation
Changing  the  order  of  the  Padé  Approximation,  however,  is  not  without
consequences. Due to the increase in size of the state matrix (mainly because of the
enlarged Padé Approximation matrices), and most importantly due to having added
several  almost  empty  rows,  the  system  becomes  almost  unobservable,  therefore
using the same set of measurements as before does not allow for the calculation of an
adequate  L matrix,  which  turns  out  to  be  mostly  composed  of  abnormally  high
values. By switching to control for an analogy, that’s exactly the same as trying to
control  a  vibrational  mode  through  the  application  of  a  force  which  is  almost
uncorrelated with that mode – which should then be almost infinite to provide any
effect.

This issue seems almost entirely uncorrelated with the criterion employed to move
the  poles  to  desired  locations;  even trying  to  simply displace  the  unstable  poles
towards  the  negative  real  part  of  the  Gaussian  Plane  results  in  an  unsuitable  L
matrix, hindering any possibility of estimation.

As  exposed  in  Section  2.1,  precisely  with  the  (2.6),  it  can  be  deduced  that  by
uncautiously increasing the gains, the estimator becomes all but driven entirely by
measurements, instead of combining them with the actual model; even worse, the
gain actually multiplies the difference between said measurements and the estimated
values of the measured quantities, effectively creating a system which only amplifies
whatever inaccuracy we are feeding it with. Problem is, what is being employed is
just  a  simplified  linear  model  of  the  real  vehicle,  thus  it  is  inevitable  for  some
inaccuracies to be featured, them being related to non-linear effects, measurement
noise  or  other  causes.  Therefore,  the  quantity  which  gets  amplified  by  the
aforementioned overly high gain matrix, however small, will never be equal to zero,
resulting in a divergent estimation.

Although the  U.I.O.  is  unable  to  provide  an  estimation  for  this  particular  set  of
measurement, there is an alternative way to proceed, although unorthodox. All 17
available measurements have been already used, so there are no more accelerations
to be added to increase robustness; however, nothing prevents to extend the set of
employed measurements for the estimation to the second half of the original state
vector,  thus  taking  also  some  velocities  into  account.  This  might  seem
counterintuitive  given  the  premise  of  the  study,  it  being  the  reconstruction  of
irregularity through accelerometers’  measurations,  but just  as  was done since the
beginning to exploit the “derivative” requirement, the “velocity measurements” can
once again be obtained as just the integration of the corresponding acceleration ones.
In particular, all 8 accelerations relative to the four wheelsets (thus both lateral and
yaw ones) were processed in this way to bring the total number of inputs to 25. A
quick schematization of the solution is proposed in the Figure 4.14 in the next page:
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Figure 4.14: U.I.O. structure taking as inputs Acceleration and Velocity

Problem is,  this means that the velocity measurements will  have to be integrated
twice (one from acceleration to velocity, and another one to convert this “derivative
of  the input” into the input  itself);  hence,  any discrepancy between the expected
value and the actual one (it being measurement noise or the linear model inaccuracy)
would result in a very noticeable drift.

In order to solve this issue and obtain the result we are looking for, our filtering
capabilities  must  be  drastically increased;  the  simple  double  zero high-pass filter
employed in Section 3.5 will not be good enough anymore, but instead a fourth-order
Butterworth  Filter  will  be  used,  with  a  cutoff  frequency  much  less  inclusive  of
potential deceleration and instead quite close to actual operation – corresponding to
the traversing of a 25m-wavelength irregularity at a speed of 40km/h (by comparison,
cutoff frequency in the vertical case was defined at the same wavelength but for a
10km/h speed). Furthermore, due to the increased size of matrix L, the pole placement
was phased out in favour of a more robust Riccati-based positioning system using
weighted identity matrices (weight=1 for Q, 0,0001 for R) as tentative variances.

The results pictured in Figure 4.15 are highly promising; it is noticeable, once again,
that  track  roll  has  been  accurately  estimated  (an  expected  outcome  given  the
difference  in  complexity  between  the  two  parallel  systems)  while  rail  lateral
alignment suffers from a general  overestimation which,  by looking at the PSD in
Figure 4.16, seems to be an issue plaguing all frequency range, thus a more refined
and less “brutal” filtering could furtherly improve it.

Acceleration   UIO∫

  Velocity

∫

∫   ytrack

  ρtrack∫



Figure 4.15: 21 D.o.F. Model - U.I.O. results (17 Accelerations + 8 Wheelset Velocities)

Figure 4.16:  21 D.o.F. Model – Estimation Power Spectral Density  
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That  being said,  even the less  precise lateral  geometry estimation is  qualitatively
correct  in shape,  although overestimated;  the main difference between estimation
and reference, as per the error trend in Figure 4.17, is clearly happening at T = 20s;

Figure 4.17:  21 D.o.F. Model – Estimation Error

This, however, is widely to be expected; if the provided wheelset accelerations are
analyzed, in particular the lateral accelerations of the rear bogie (Figure 4.18), it can
be  distinctively  observed  that  a  rather  pronounced  spike  is  featured  exactly  at
around 20s, determining these issues.

Figure 4.18: 21 D.o.F. Model – 3rd Wheelset Lateral Acceleration



It can however still be noticed that average error (represented by the dotted red line
in the Figure 4.17 in the previous page) is well below the 1mm threshold, therefore
providing a fairly valuable first-guess result. As per the roll angle, average error is
almost  neglectable,  it  being  around  0,1mrad  in  value  (against  actual  roll  values
spanning in the -5 to +5mrad range).

In order to have a second confirmation of the validity of this  procedure, another
simulation was run at a lower speed, this time 40km/h. In this case, too, the results
(Figure 4.19 to Figure 4.21) seem to be highly accurate for the roll and moderately so
–  if  not  generally  overestimated  –  when  looking  at  the  lateral  irregularity.  The
filtering speed this time has been reduced to 30km/h to accommodate for the lowered
vehicle velocity.

Figure 4.19: 21 D.o.F. Model - U.I.O. results (40km/h simulation)

It can immediately be noticed that in this case no spikes are featured along all the
simulation time, and that the average error is fundamentally unchanged from the
previously  discussed  70km/h  case  (less  than  1mm  for  lateral  alignment,  around
0,2mrad for roll angle).
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Figure 4.20: 21 D.o.F. Model - Estimation Power Spectral Density (40km/h simulation)

Figure 4.21: 21 D.o.F. Model – Estimation Error (40km/h simulation)



The  values  reported  in  Table  4.11 below  describe  the  general  validity  of  the
approximation through the same coefficients used for Section 3.5, this time calculated
for both the lateral alignment and the roll estimation in both the simulations:

Table 4.11: Values of indices for the 70km/h and 40km/h case

Index
Value

(70km/h)
Value

(40km/h)

αLATERAL 0,726 0,827
αROLL 0,012 0,028
βLATERAL 0,562 0,631
βROLL 3,3x10-3 9,1x10-3

All of this allows to conclude that the system is able to very accurately estimate roll
track  angle,  while  suffering  from  a  tendency  to  overestimate  track  irregularity
particularly  when  encountering  sudden  change  in  accelerational  values  (i.e.
discontinuities  or  anyhow  extremely  localized  peaks).  Since  the  problem  seems
generalized to all the relevant frequency spectrum, this could be linked to the use of
the same filtering technique for both roll and  ytrack. Moreover, it can be said with a
certain degree of safety that the higher the speed, the better the results (since the
indices  values  in  the  table  above  are  constantly  higher  for  the  lower  speed
simulation);  then again, this is not unexpected due to Padé Approximation being
more adequate to model delays when said delay has a lower value.
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5 Conclusion and future developments

The present thesis work aimed at demonstrate whether it is possible to employ the
Unknown  Input  Observer  algorithm  to  reconstruct  the  geometry  of  a  railtrack
through measurement of accelerations on a rail vehicle during its normal operation,
specifically the 900 Series Meneghino model currently serving on 3 out of 5 lines of
the Milan Metro. First, the vertical alignment estimation was performed through a
U.I.O. based on a 10 D.o.F. linearized system; Padé Approximation was thus used to
take multiple delayed inputs into account, but only between front and rear wheelsets
of the same bogie due to its intrinsic accuracy limitations and the vehicle low speed.
A 5km/h threshold-based gain selection algorithm was employed to take variable
velocity into account,  so to replicate the real operational conditions. A multibody
model provided by PoliMi was used to generate virtual measurements, and the input
it was fed with was thus compared with the U.I.O. estimated values. Results were
deemed  more  than  acceptable  both  in  straight  sections  and  turns,  although  the
former noticeably more so.

Next, the estimation of lateral and roll irregularities was considered. A U.I.O. based
on a 21 D.o.F. linear model was used for this task, taking into account the friction
contact  dynamics  through  the  application  of  the  creepages  theory;  Padé
Approximation was once again employed, but its order had to be increased from 2 to
3 to take higher frequency disturbances into account. This, however, resulted in a
nearly  unobservable  system,  making  it  impossible  for  the  system  to  generate  a
valuable gain matrix and making it necessary to increase the set of measurements to
25,  thus  including  the  8  unconstrained  wheelset  velocities.  Through  adequate
filtering,  this  made  it  possible  to  proceed  with  a  remarkably  accurate  roll  angle
estimation and a rather promising first estimation of lateral irregularity, although the
latter suffering from overestimation along a wide frequency range.

In general, it can be said that the U.I.O. works at its best when dealing with simple
enough systems, as testified by both vertical dynamics and roll track angle. However,
if  the  more  strict  conditions  on  its  application are  relaxed (i.e.,  through external
methods  for  the  gain  matrix  calculation  and  the  employment  of  more  advanced
filtering techniques), even more complex structures can be dealt with; it is also true,
though, that other methods such as the one based on Kalman Filter does not require
particular modifications to adapt to the system complexity. One possible further step
in this analysis would be, in fact, to repeat the same procedures with said Kalman



Observer and compare the results; nonetheless, it is already possible to make some
consideration.

On one hand, it is unquestionable that Kalman does provide generally more accurate
results, and countless works on the same topic seem to confirm this. That being said,
though,  until  the  very  end  the  main  point  of  U.I.O.  -  that  is,  its  deterministic
behaviour,  thus  not  requiring  prior  knowledge  of  the  to-be-estimated  quantities’
statistical behaviour – has been preserved. It is also true, on the opposite, that further
refinement of the variance values used to calculate the extended  L matrix through
stochastic  methods  could have a beneficial  effect  on the estimation;  however,  this
aspect has not been explored in this work, both to avoid excessive complications and
to keep the aforementioned premise true.

There  are  further  developments  that  could  be  built  upon  this  experiences.  In
particular, some of the considerations which were made for the simpler vertical case
could be extended for the lateral case: the variable velocity L selection algorithm was
not analyzed for the lateral case due to the straight condition not featuring significant
distinction from the previously done vertical case (i.e. velocity effect being mostly
relegated  to  the  Padé  Approximation  effect).  However,  if  a  curved  track  was
analyzed  instead  (thus  requiring  a  more  extended  set  of  steady-state  conditions
around which to linearize), matrices A and E would depend on velocity also through
the  contact  dynamics  themselves,  making  the  application  of  speed-based  gain
scheduling a rather difficult but definitely interesting potential development.
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