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Abstract

Nowadays, the most used public-key cryptosystems are based on the hardness of factoring
very large numbers or on the intractability of the discrete logarithm problem. We already
know that in the future, when it will be possible to build large quantum computers, these
problems will be solvable easily thanks to the Shor’s algorithm.
Therefore, there is a need to study alternative cryptosystems based on different hard
mathematical problems that will be resistant in the era of the quantum computers. One
of this alternative is code-based cryptography on which the McEliece and Niederreiter
cryptosystems are based on. The functioning of these cryptosystems is founded on the
hardness of the syndrome decoding problem, or equivalently, the decoding of a random
linear code.
In this work we are going to analyze and implement the algorithms with the best complex-
ities in the current state of the art that are called Information Set Decoding algorithms:
they try to break the code-based cryptosystems solving the syndrome decoding problem.
After analyzing subroutines that will be used in the implementation of the ISD algo-
rithms, evaluating different procedures to understand the most efficient one, we are going
to study how the Information Set Decoding algorithms work with their complexities and
then, we will present the results obtained by a concrete evaluation of them to understand
their behaviours in practice.

Keywords: information set decoding, post-quantum cryptography, McEliece cryptosys-
tem, code-based cryptosystems, asymmetric cryptosystems





Abstract in lingua italiana

Attualmente, i crittosistemi a chiave pubblica maggiormente utilizzati, sono basati sulla
difficoltà di fattorizzare numeri molto grandi oppure sull’intrattabilità del problema del
logaritmo discreto. Sappiamo già che nel futuro, quando saranno disponibili computer
quantistici sufficientemente potenti, sarà possibile risolvere questi problemi facilmente
grazie al noto algoritmo di Shor.
Dunque, c’è bisogno di studiare crittosistemi alternativi, basati su diversi problemi matem-
atici difficili, che saranno resistenti nell’era dei computer quantistici. Una di queste alter-
native è la crittografia basata su codici lineari che è alla base dei crittosistemi di McEliece
e di Niederreiter. Il funzionamento di questi crittosistemi è fondato sulla difficoltà di risol-
vere il problema di decodifica di una sindrome, o equivalentemente, la decodifica casuale
di un codice lineare.
In questo lavoro andremo ad analizzare e ad implementare gli algoritmi con la miglior
complessità attualmente conosciuti nello stato dell’arte chiamati algoritmi di Information
Set Decoding: essi cercano di rompere i crittosistemi basati su codici lineari risolvendo
il problema di decodifica di una sindrome. Dopo aver analizzato diversi sottoprogrammi
che saranno utili nell’implementazione degli algoritmi ISD, valutando diverse procedure
per capire la più efficiente da utilizzare, andremo a studiare come funzionano i vari algo-
ritmi Information Set Decoding con le relative complessità, e infine, saranno presentati i
risultati ottenuti da una concreta valutazione di questi algoritmi per capire il loro com-
portamento nella pratica.

Parole chiave: information set decoding, crittografia post-quantum , crittosistema di
McEliece, crittosistemi basati su codici lineari, crittosistemi asimmetrici





v

Contents

Abstract i

Abstract in lingua italiana iii

Contents v

Introduction 1

1 Preliminaries 5
1.1 Coding theory basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Code-based cryptosystems . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.1 McEliece cryptosystem . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.2 Niederreiter cryptosystem . . . . . . . . . . . . . . . . . . . . . . . 9

2 Useful algorithms used in the ISD 11
2.1 Reduced Row Echelon Form . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Standard RREF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.2 RREF with reusing existing pivots optimization . . . . . . . . . . . 14
2.1.3 Partial Reduced Row Echelon Form . . . . . . . . . . . . . . . . . . 16
2.1.4 Optimized Partial RREF . . . . . . . . . . . . . . . . . . . . . . . . 17
2.1.5 Method of four russians for inversion . . . . . . . . . . . . . . . . . 22

2.2 Binary Search variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2.1 Binary Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2.2 Boundless Binary Search . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2.3 Doubletapped Binary Search . . . . . . . . . . . . . . . . . . . . . . 27
2.2.4 Monobound Binary Search . . . . . . . . . . . . . . . . . . . . . . . 27
2.2.5 Tripletapped Binary Search . . . . . . . . . . . . . . . . . . . . . . 29
2.2.6 Monobound Quaternary Search . . . . . . . . . . . . . . . . . . . . 29
2.2.7 Monobound Interpolated Binary Search . . . . . . . . . . . . . . . . 31
2.2.8 Adaptive Binary Search . . . . . . . . . . . . . . . . . . . . . . . . 32



vi | Contents

2.2.9 Boundless Binary Range Search . . . . . . . . . . . . . . . . . . . . 32
2.3 NextComb and NextColSum algorithms . . . . . . . . . . . . . . . . . . . . 34

2.3.1 NextComb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.3.2 NextColSum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.4 Sorting algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.4.1 Quicksort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.4.2 Djbsort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3 Information Set Decoding algorithms 43
3.1 Basic of Information Set Decoding algorithm . . . . . . . . . . . . . . . . . 43

3.1.1 Basic structure of an ISD algorithm . . . . . . . . . . . . . . . . . . 44
3.1.2 Complexity analysis of the basic structure of an ISD algorithm . . . 47

3.2 Analysis of Information Set Decoding algorithms . . . . . . . . . . . . . . . 49
3.2.1 Prange . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.2.2 Lee-Brickell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.2.3 Leon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.2.4 Stern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.2.5 Ball-Collision Decoding . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.2.6 Finiasz-Sendrier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.2.7 May-Meurer-Thomae . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.2.8 Becker-Joux-May-Meurer . . . . . . . . . . . . . . . . . . . . . . . . 74
3.2.9 Both-May . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.2.10 Esser-Bellini . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.3 Implementation techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
3.3.1 Representation of the bit matrices and vectors . . . . . . . . . . . . 89
3.3.2 Advanced Vector Extensions 2 instructions . . . . . . . . . . . . . . 91
3.3.3 Hamming Weight computation . . . . . . . . . . . . . . . . . . . . . 91
3.3.4 Multithreading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
3.3.5 Hashtables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4 Experimental Evaluation 95
4.1 RREF analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.2 Binary range search variants analysis . . . . . . . . . . . . . . . . . . . . . 97
4.3 Sorting algorithms analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.4 Estimators to find the optimal ISD parameters . . . . . . . . . . . . . . . . 100
4.5 Information Set Decoding algorithms testing . . . . . . . . . . . . . . . . . 102

4.5.1 Syndrome tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.5.2 McEliece Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113



5 Conclusions and future developments 123

Bibliography 125

A Appendix A 129

List of Figures 133

List of Tables 135

List of Algorithms 137

List of Symbols 139





1

Introduction

In every day of our life we use cryptography for securing our communications over the
internet thanks to the public key cryptosystems.
These cryptosystems are called even asymmetric cryposystems since pairs of keys are
used: each pair consists of a public key which can be known to everyone and a private
key (the secret) known only to the owner.
If Bob wants to communicate secretly with Alice he must send an encrypted message to
her using the Alice’s public key for encrypting it: now only the owner of the private key
can decrypt the message for reading its content and since the private key is the secret
hold only by Alice, only her can read the message.
This scenario is possible thanks to the mathematical procedures called one way functions:
they are easy to compute having a special parameter (the private key in the previous
example) but hard to compute without the knowledge of the secret parameter (very hard
to decrpyt the message without the knowledge of the private key).
Nowadays the one way function used in the cryptosystems are the hardness of factoring
very large numbers or the intractability of the discrete logarithm problem.
In the future, when it will be possible to build large quantum computers, we already
know that many algorithms considered hard will be solved very efficiently. For example,
the Shor’s algorithm [27] finds the prime factors of an integer in polynomial time with a
quantum computer: this means that the RSA cryptosystem based on integer factoriza-
tion can no longer be used in the post-quantum era and this will be a problem for our
communications.
Knowing that, many researches began to find alternatives for the current hardness math-
ematical problems that are the building blocks of our actual public key algorithms and
one of these alternative is code-based cryptography.
The McEliece cryptosystem [21] is the first public key cryptosystem based on coding the-
ory: it was presented in 1978 and it has never gain popularity since the research starts to
find post-quantum cryposystems.
It has begun to be interesting to study because it is immune against attacks using Shor’s
algorithm and so there is a possibility that it can be used in post-quantum cryptography.
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The McEliece cryptosystem is based on the hardness of decoding a random linear code
which is known to be NP-hard and can be used as a public key scheme: a variant of it
exists with the same security level called Niederreiter cryptosystem. Niederreiter cryp-
tosystem is based on the hardness of the syndrome decoding problem, the dual problem
of the decoding random linear code, and it can be used as a public key scheme and even
as a digital signature scheme.
We need to understand better if the McEliece cryptosystem or its variant, the Niederreiter
cryptosystem , can be valid public asymmetric encryption algorithms in the future era of
quantum computers.
To do that, it is important to apply cryptanalysis techniques for analyzing these systems
and discovering possible flaws. So, cryptanalysis can be used for trying to break the
cryptosystems with techniques faster than bruteforce and discover the contents of the
encrypted messages even if the private key is unknown.
In the current state of the art the algorithms with the best complexities for decoding a
random linear code or for solving the syndrome decoding problem are called Information
Set Decoding (ISD) algorithms. They all have exponential running time in the code length
n of the form T (n) = 2τn where τ is a constant used as a metric for comparing different
information set decoding algorithms.
The main goal of this thesis is a concrete evaluation of the complexity of the ISD al-
gorithms used to break code-based cryposystems: all the ISD algorithms known in the
current state of the art has been implemented for studying their behaviours and to help
the design of the secure parameters for the code-based cryptosystems with the intent of
making unfeasible these attacks against these schemes with proper parameters.
In a nutshell, all the ISD implemented solve the syndrome decoding problem for breaking
the Niederreiter cryptosystem that as we will see, is equivalent to the decoding random lin-
ear code. In the syndrome decoding problem we have a parity-check matrix H ∈ F(n−k)×n

q ,
a syndrome vector s ∈ Fn−kq and an integer w called weight. The duty of an information
set decoding algorithm is to recover an error vector e ∈ Fnq with Hamming weight ≤ w

such that HeT = s.
The study and the implementation of the algorithms starts from the first ISD designed
by Prange [24] up to the variant of Both-May described by Esser and Bellini in [13].
This thesis is organized as follows. The first chapter is dedicated to the background
knowledge of coding theory and code-based cryptosystems necessary to understand the
information set decoding algorithms. The second chapter contains helper routines study-
ing their optimizations and variants that will be used in many ISDs later, like the reduced
row echelon form algorithm (RREF), binary range searches, sorting algorithms and algo-
rithm to produce sequentially all the possible combinations of a range of numbers. The
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third chapter explains the working principles and the complexities of all the ISD algo-
rithms that have been implemented: Prange, Lee-Brickell, Leon, Stern, Ball-Collision
Decoding, Finiasz-Sendrier, May-Meurer-Thomae, Becker-Joux-May-Meurer, Both-May
and Esser-Bellini and some implementation choices. The fourth chapter is dedicated to
the experimental evaluation where different procedures described in the second chapter
are tested to understand the efficient variant to use inside the ISD algorithms. Then,
the testing results relative to the ISD techniques are presented. For each ISD two fam-
ily of tests are used: the Syndrome Decoding tests and the Mc-Eliece tests. Both of
these tests ask to solve the syndrome decoding problem and they can be found on the
webpage dedicated https://decodingchallenge.org/ [4] . The last section summarizes the
conclusions.
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1| Preliminaries

In this chapter we are going to present the basic of coding theory for understanding the
code-based cryptosystems. We will see the process of encoding and decoding with the
error correcting capability of a linear code. Then, the McEliece and the Niederreiter
cryptosystems, based on the linear codes theory will be described.

1.1. Coding theory basics

One of the application of coding theory is the error detection and correction over unreli-
abile communication channels. Communication channels introduce noise in the messages
sent over them, so a procedure to remove the noise must be taken into account. Claude
Shannon in [26] tells us that for any communication channels it is possible to communicate
discrete data nearly error free up to a maximum rate (the channel capacity).
For solving the problem of noisy channels an error correcting code can be used. The
sender encodes the original message adding redundancy information to it, then, the en-
coded message called codeword goes through the noisy channel and arrives to the receiver
perturbated by a certain error e that depends on the current noise of the channel. At the
end, the receiver recovers the original message removing the perturbation error thanks to
the decoding phase. The scenario described here can be seen in Figure 1.1:

m
Encoder

c +

e

c+ e
Decoder

m

Figure 1.1: Error correcting code over a noisy channel

There are many types of different codes but we will focus our attention on binary linear
codes. We are going to explain formally what is a linear code for understanding how the
encoding and the decoding phases are carried out.

Definition 1.1.1 (Linear code). A linear code of length n and dimension k is a linear
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subspace C with dimension k of the vector space Fnq , where Fq is the finite field with q

elements. If q = 2 the code is called binary code.

The vectors c ∈ C are called codewords and the size of a binary linear code is the number
of codewords in it and it is equal to 2k.

Definition 1.1.2 (Generator matrix). A generator matrix G ∈ Fk×nq is a matrix whose
rows form a basis for a linear code, this means that the matrix G has maximum rank
equal to k.

The encoding phase consists in multiplying a vector message m ∈ Fkq with a matrix
G ∈ Fk×nq for obtaining a codeword c ∈ Fnq . If the matrix G is a generator matrix it has
rank k and so there is a one to one correspondence between the message space and the
code space. The generator matrix is not unique, a code can have many generator matrices
but they all have rank equal to k.

Definition 1.1.3 (Dual code). Given a linear code [n, k] called C we define as the dual
code : C⊥ = {x ∈ Fnq | x · c = 0, ∀c ∈ C} where x · c =

∑n
i=1 xici .

The dual code C⊥ is a linear code with parameters [n, n− k].

Definition 1.1.4 (Parity-check matrix). A parity-check matrix H ∈ F(n−k)×n
q of a linear

code C is a generator matrix of the dual code C⊥. This means that c ∈ C if and only if
HcT = 0.

From this we can derive that a generator matrix for the dual code is a parity-check matrix
for the original code and vice versa. The parity-check matrix plays an important role in
the decoding phase and we can derive it from the generator matrix. For example, if
we have the generator matrix G in standard form G = [Ik A], where Ik ∈ Fk×kq is the
identity matrix of size k, we can compute the parity check matrix as H = [−AT In−k].

Definition 1.1.5 (Syndrome). A syndrome of a vector x ∈ Fnq is s ∈ Fn−kq with s = HxT

where H is a parity-check matrix.

Having two vectors x, y ∈ Fnq the Hamming distance between x and y is defined as
dh(x, y) = |{i | xi 6= yi}| while the Hamming weight of a vector x is HW(x) = {i | xi 6= 0}.

Definition 1.1.6 (Minimum distance of a linear code). The minimum distance of a linear
code C is:

d(C) = min{dh(c1, c2) | c1, c2 ∈ C ∧ c1 6= c2}

.

A linear code of length n, dimension k, and distance d is called an [n, k, d] code.
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The minimum distance of a linear code is a fundamental parameter: higher the minimum
distance higher is the number of errors that the code can correct. It is relevant to note
that a code C has d(C) = d if and only if every set of (d− 1) columns of the parity check
matrix H are linearly indipendent. For example if d(C) = 2, H has two columns that are
linearly dependent. In the binary case this means that two columns of H are equals.
The singleton bound tells us that given a [n, k] code the following relation holds d(C) ≤
n− k + 1 since any n− k + 1 columns of H are linearly dependent because H has n− k
rows and n columns.
The next bound is an important one and tell us the condition of existance of a [n, k, d]

code setting a limit on the parameters.

Definition 1.1.7 (Gilbert-Varshamov bound).∑d−2
i=0 (q − 1)i

(
n−1
i

)
< qn−k =⇒ Exists an [n, k, d] code.

The capability of a code for detecting an error and correcting an error is different. As
we said before the sender sends the encoded message, a codeword c ∈ C. During the
transimission, due to the noise, there can be different error patterns e ∈ Fnq and so, the
receivers receives y = c+ e ∈ Fnq .

Definition 1.1.8 (Detectable errors). Let C be an [n, k] code with minimum distance
d: any error pattern of size at most d − 1 can be detected. Moreover, the number of
detectable errors are qn − qk.

If HW(e) ≤ d− 1 we can conclude that y = c + e /∈ C so we are able to detect an error if
the initial condition is verified.
For correcting an error the situation is different. The minimum distance decoding after
receiving y = c+ e looks for x ∈ C such that dh(y, x) is minimized.

Theorem 1.1. Let C be an [n, k] code with minimum distance d then:

C can correct t errors ⇐⇒ t ≤ bd−1
2
c.

From this theorem we can see how the minimum distance plays a very important role
since it determines the correcting error capabilities of a code.
Let us now focus on the decoding phase: we receive a vector composed by the encoded
message with the generator matrix and the error pattern of the channel y = GmT + e and
we want to retrieve the message m that minimizes dh(y,GmT ). The bruteforce way to do
it is enumerating all the codewords of C, compute all the Hamming distances between y
and the codewords and return the codeword that minimizes the Hamming distance, but
this would cost O(nqk).
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If the receiver knows the code that has been used and an efficient decoding algorithm, he
can directly retrieve the codeword. On the other hand, instead of retrieving the codeword
directly, we can retrieve the error using the parity-check matrix and the syndrome defini-
tion previously introduced: if y is the received vector we know that HyT = H(c + e)T =

HcT + HeT = HeT . Therefore, having the syndrome s = HeT we are interested in re-
trieving an error e. This problem will be fundamental with the Niederreiter code-based
cryptosystem that we will see on the next section.

1.2. Code-based cryptosystems

In this section we introduce the two cryptosystems based on coding theory, the McEliece
and the Niederreiter ones.

1.2.1. McEliece cryptosystem

The McEliece cryptosystem is an asymmetric encryption algorithm developed by Robert
McEliece in 1978 [21] based on the hardness of decoding a random linear code. It has
the advantage of having very fast encryption and decryption methods and it gained pop-
ularity later since it is a candidate as a post-quantum cryptosystem. One of the main
disadvantage is the large size of the matrices used as public and private keys.
Suppose Bob wants to communicate with Alice, the working principle is the following:
Alice chooses a linear code C from a family of codes having an efficient decoding algo-
rithms capable of correcting w errors and being indistinguishable from random codes. The
original algorithm uses binary Goppa codes family and it is still the best option so far.
After have chosen the linear code, Alice has the generator matrix G that will be one part
of the private key and only her knows it. Then, she selects a random k × k non-singular
binary matrix S, a random n× n permutation matrix P and computes the k × n matrix
G̃ = SGP . The matrix S and P are known only by Alice while the matrix G̃ is known to
everyone who wants to communicate with her.

The public key of Alice is 〈G̃, w〉. The private key of Alice is 〈S, P,G〉

Let’s see how the encryption works: Bob wants to send a message m to Alice whose public
key is 〈G̃, w〉.
First, Bob encodes the message m as a binary string of length k. Then, he computes
c′ = G̃mT and he generates a random n-bit vector e containing exactly w errors. Finally
he computes the ciphertext as c = c′ + e.
Alice needs to decrypt the ciphertext c just received: she computes the inverse of the
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matrix P , P−1, and uses this inverse for computing ĉ = cP−1 = SGmT + eP−1.
Now with the efficient decoding algorithm of the code known only by Alice she decodes ĉ
obtaining m̂ = SmT . Since S is invertible she can recover the original message m.
This scheme works thanks to the hardness of decoding random linear code: the original
code with generator matrix G is hidden by the code generated with the matrix G̃ obtained
perturbating randomly G with the matrices S and P .

Definition 1.2.1 (Decoding random linear code). Let G̃ ∈ Fk×nq be a random-looking
generator matrix and c = G̃mT + e the ciphertext with e ∈ Fnq and HW(e) = w. The
decoding random linear code problem asks to recover the original message m.

1.2.2. Niederreiter cryptosystem

The Niederreiter cryptosystem was designed by Harald Niederreiter in 1986 [23] and it is
a variant of the previously described McEliece cryptosystem based on the hardness of the
syndrome decoding problem. The encryption of Niederreiter is ten time faster than the
one of McEliece and a great advantage is the possibility to construct a digital signature
scheme unlike in the McEliece scheme.
The first design used generalized Reed-Solomon codes but it was proven to be broke by
Sidel’nikov and Shestakov in [28]. Replacing the Reed-Solomon codes with the Goppa
codes yields a cryptosystem that is currently unbroken. As before, we describe the key
generation, the encryption and the decryption assuming Alice and Bob want to exchange
messages.
First, Alice chooses a binary [n, k] linear Goppa code capable of correcting w errors and
with an efficient syndrome decoding algorithm. Alice computes the parity-check matrix
H of the code from G, chooses a random (n− k)× (n− k) non-singular binary matrix S
and a random n× n permutation matrix P holding all of these matrices secret. She now
computes H̃ = SHP that will be known to everyone who wants to communicate with
her.

The public key of Alice is 〈H̃, w〉. The private key of Alice is 〈S, P,H〉

Since now the public key is a parity-check matrix we can see that Niederreiter scheme
reduces the key size compared to the McEliece one.
The encryption works as follows: Bob knowing the public key of Alice 〈H̃, w〉 wants to
send a message m with weight ≤ w. He computes the ciphertext as the syndrome of m:
c = H̃mT ∈ Fn−kq .
Alice, after receiving c from Bob, computes S−1c = HPmT . Then, she applies the efficient
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syndrome decoding algorithm for the code she chose, known only by her, to recover PmT .
Now she can retrieve the message m by multiplying the inverse of the matrix P .
Here the original code C is hidden by Ĉ using the parity-check matrix instead of the
generator matrix as done in McEliece. Without knowing the private key the problem of
finding the original message is known to be NP-hard and is formulated in the following
definition.

Definition 1.2.2 (Syndrome decoding problem). Let H̃ ∈ F(n−k)×n
q be a parity check

matrix, s = H̃eT ∈ Fn−kq and w an integer. The Syndrome decoding problem asks to find
an error e ∈ Fnq with HW(e) ≤ w such that H̃eT = s.

To try to break these cryptosystems to understand their robustness, we need to analyze
attacks against them that solves the decoding random linear code or the syndrome de-
coding problem. These problems are equivalent since one is the dual of the other and
viceversa: solving one of these solves the other too. Knowing this, from know on we con-
sider only the syndrome decoding problem for analyzing and breaking these cryptosystem
because the parity check matrix is smaller than the generator matrix and so the compu-
tational effort for working with the H will be less. The only case in which the generator
matrix G and the parity-check matrix H have the same dimension is when the code rate
R = k

n
= 0.5: in all the other case H is smaller than G since R > 0.5.

The attacks taken in consideration are the ones with the best complexities for solving the
syndrome decoding problem and they are called Information Set Decoding (ISD) algo-
rithms. After analyzing useful subroutines that will be used in the implementation of the
ISDs, in chapter 3 we are going to explain the working principles of the ISD algorithms
analyzing all the known ISD from the state of the art in the syndrome decoding problem
perspective with the goal of breaking these cryptosystems.
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ISD

In this chapter we are going to explain and analyze different algorithms used as subrou-
tines in the implementation of the Information Set Decoding techniques considering many
variants and optimizations. In the first section we will study the reduced row echeleon
form since, as we will see, the first step of every ISD is to compute the reduced row
echelon form of a binary matrix H: this means bringing the matrix H in systematic form
Hrref having a square identity sub-matrix on the left resulting in Hrref = [Ir V ]. Some
authors specify the square identity matrix on the right part but in this thesis we adopt the
convention of the identity on the left following the convention reported on the decoding
challenge site [4] used for the generation of the test cases.
Next, we will analyze many variants of binary searches algorithms for using them subse-
quently in the ISD in the form of binary range searches. In the third section we will see
an algorithm for generating all the possible combinations of p integers from 1 to k and
an algorithm for optimizing the columns sum of a matrix. Finally, a small section on the
sorting algorithms taken into consideration.

2.1. Reduced Row Echelon Form

Having a binary parity-check matrix H ∈ F(n−k)×n
2 of a binary linear code C we are

interested in computing its systematic form Hrref = [Ir V ] where Ir ∈ Fr×r2 and V ∈
Fr×k2 . From now on, we denote r = n− k: r represents the number of rows of the parity-
check matrix H. We will analyze the standard RREF algorithm with no optimization,
the RREF algorithm with the reusing pivots optimization, the standard partial RREF
algorithm, the partial RREF with reusing existing pivots and adaptive information sets
optimizations and last, the four russians matrix inversion algorithm for computing the
systematic form of a matrix based on the work by Gregory V. Bard in [6].
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2.1.1. Standard RREF

To obtain Hrref from the parity-check matrix H there are two main steps:

• First, we randomly permute the columns of the matrix H saving the permuted
matrix in Hp. The permutations are held by an array χ of size n: initially this array
contains the column’s indices of H from 0 to n− 1 and then it is shuffled randomly
for producing a random permutation to apply to the matrix H.

• Then, we try to transform the left r × r part of the permuted matrix Hp in a full
identity matrix of size r× r. We do that applying row operations on the matrix Hp

and we save all the operations done in a matrix U of size r× r initially equal to an
identity matrix. If we end this step obtaining Hp = [Ir V ], we have successfully
found a correct systematic form and the matrix U contains the transformations ap-
plied during the algorithm, otherwise, we need to pick another random permutation
and retry to compute a correct RREF until we find one.

For describing the algorithms we use the following notation: having a matrixH we indicate
as H(i,j) the element of the matrix in the i-th row and in the j-th column. H(i,:) represents
the full i-th row of the matrix while H(:,j) the full j-th column.
After we have been permuted the matrix H obtaining Hp, the row transformations for
obtaining an identity matrix on the left works as follows.
We indicate with j the index traversing the columns of the matrix Hp while with z the
index traversing the rows. The index j goes from 0, the first column, to r − 1, the last
column of the identity matrix that will be place on the left of Hp, while z goes from 0,
the first row, to r − 1, the last row.

1. We want that all the elements in the diagonal of the left sub-matrix of Hp are equal
to one : ∀0 ≤ j < r : Hp(j,j) = 1 (the pivot). So, we check this diagonal elements and
if we encounter one element Hp(j,j) = 0 we search a row z > j such that Hp(z,j) = 1:
if we can find one of this row we can swap the rows z and j for placing the pivot
in the right position, otherwise we need to try another premutation since all the
column elements are equal to zero.

2. After obtaining Hp(j,j) = 1, we need to set to zero all the elements in the column
j except this one for having a column of the identity matrix: this is simply done
saving on all the rows z such that Hp(z,j) = 1 the result obtained by xoring the row
z with the row j containing the pivot.

In the next page we can see the pseudocode of the standard RREF algorithm just de-
scribed.
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Algorithm 2.1.1: Reduced Row Echelon Form
Input: H ∈ Zr×n2 : binary parity-check matrix

Output: Hp ∈ Zr×n2 : binary parity check matrix storing the current permutation of the matrix H,
at the end of a successful RREF is in systematic form Hp = [Ir V ]

U ∈ Zr×r2 : matrix saving the elementary row operations, initially is an identity matrix
V ∈ Zr×k2 : right part of Hp at the end of the RREF
χ: array of size n storing the indices of the matrix H that represents the current
permutation of H columns
rref_error: boolean variable representing if the computation of the RREF was
successful or not with the current permutation

1 clear_matrix(U)

2 clear_matrix(Hp)

3 set_identity_matrix(U)

4 for i← 0 to n do
5 χi ← i

6 shuffle(χ)

7 for i← 0 to r do
8 for j ← 0 to n do
9 if H(i,χj) = 1 then

10 Hp(i,j) ← 1

11 for j ← 0 to r do
12 if Hp(j,j) = 0 then
13 for z ← j + 1 to r do
14 if Hp(z,j) = 1 then
15 swap_rows(Hp, j, z)

16 swap_rows(U, j, z)

17 if Hp(j,j) = 0 then
18 return true;
19 for z ← 0 to r do
20 if z 6= j then
21 if Hp(z,j) = 1 then
22 Hp(z,:) ← Hp(j,:) ⊕Hp(z,:)

23 U(z,:) ← U(j,:) ⊕ U(z,:)

24 for i← 0 to r do
25 for j ← r to n do
26 V(i,j) ← Hp(i,j)

27 return false;
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The computational complexity of the standard RREF Algorithm 2.1.1 is:

CRREF (n, r) = O
(

1

2

r−1∑
i=0

(r − i)(n+ r) +
1

2
r(r − 1)(n+ r) + r(n− r)

)

This cost is derived doing the following reasoning: the algorithm starts checking if the
current row has the pivot in the right position and if it is not, we have to search in the
rows below it if there is a 1 in the wanted position. For the first row we need to search in
the r− 1 rows below it, for the second row in the r− 2 rows below it and so on until the
last row. The probability of swapping a row is 1

2
since the value of the pivot can be 0 or

1. We need to swap also the rows of the matrix U : therefore, we have a swapping cost for
placing the pivot in the right place of O(1

2

∑r−1
i=0 (r− i)(n+ r)) (H has n columns while U

has r columns). Then, we have to set to zero all the elements in the column with the new
pivot: the r − 1 elements in the same column of the pivot have a probability equal to 1

2

to be equal to 1. Every row with these elements needs to be xored with the row holding
the pivot and the same xor operation needs to be done on the matrix U . Having r rows,
we obtain a cost of O(1

2
r(r − 1)(n + r)) that takes into account the xoring of the rows

during the RREF. The last term is for saving the right part of the systematic form inside
the matrix V .

2.1.2. RREF with reusing existing pivots optimization

As we will see in the next chapter, the ISD algorithm after computing a correct systematic
form can fail to find a target error, so, they need to compute a different systematic form
that could be a useful one. Instead of calling repeatedly the previous algorithm to find each
time a new RREF with a new permutation starting from the original matrix H, we can
exploit the fact that after the first successfull call of the previous algorithm, the returned
matrix is in systematic form, and if we want to compute a different form, we can use this
matrix as a starting point for optimizing the process. Therefore this time, we assume to
have in input a matrix H already in systematic form, H = [Ir V ]. As before, initially,
we permute randomly the matrix H obtaining a permuted matrix Hp = [X T ] using the
array χ. Here in the left sub-matrix X we can have columns of the previously identity
matrix: probabilistically X will contain about r2

n
columns of Ir because the probability

of a single column of Hp to be part of the previous Ir is r
n
(Ir has only r columns while

H has a total of n columns). The advantage here is that we can just swap the rows for
placing the pivots in the right position saving the cycles of the previous algorithm for the
index that respects this constraint. We can ignore in average r2

n
columns of Hp during

the computation of the RREF and this can speed up the algorithm a lot.
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Let’s see an example for understanding how it works before seeing the pseudocode of the
algorithm. Consider an input matrix H with r = 3 and n = 6 already in systematic form:1 0 0 1 1 0

0 1 0 0 1 1

0 0 1 1 1 1


Now we permute the original matrix with a random χ obtaining Hp:0 1 0 0 1 1

0 0 1 1 0 1

1 1 0 1 0 1


We can notice that the first column and the third column contain only one 1 and so we
can just swap the rows for placing the pivots in the correct place. We save the index of
the columns that are already correct in an array called pivots. We place the pivot of the
first row in the correct position swapping the first and the third rows resulting in:1 1 0 1 0 1

0 0 1 1 0 1

0 1 0 0 1 1


And finally we swap the second and the third rows:1 1 0 1 0 1

0 1 0 1 1 1

0 0 1 0 0 1


Now we apply the same transformations of the standard RREF for obtaining a new
systematic form taking into account that pivots = [0, 2]. Knowing that, we only need
to transform the second column and not three columns as before for having an identity
matrix on the left.
The computational complexity of the RREF with reusing existing pivots described in the
Algorithm 2.1.2 is:

CRREF (n, r) = O
(
r+

r2

n
(n+r)+

1

2

r−1∑
i= r2

n

(r− i)(n+r)+
1

2
(r− r

2

n
)(r−1)(n+r)+r(n−r)

)

First, we have to initialize the pivots array doing a check for every row of the matrix
resulting in a cost equal to r. Then, with the already discussed probability equal to r2

n
,
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we swap the rows for placing the pivots in the correct positions based on the indices
saved in the array, swapping either the rows in the matrix U resulting in a cost equal to
r2

n
(n+ r). The other terms are derived following the same reasoning used in the standard

RREF except that here, we avoid doing any operations for the columns indexed in the
array pivots.

2.1.3. Partial Reduced Row Echelon Form

Some ISD algorithms will need to work not with a full systematic form as the one returned
by the previosuly described algorithms, but with a partial systematic form. These algo-
rithms, starting from the Finiasz-Sendrier one, introduce a new parameter 0 ≤ ` < r − 1

for computing the so called partial systematic form. Having in input a binary parity-check
matrix H ∈ F(n−k)×n

2 we want to compute its partial systematic form Hprref ∈ F(n−k)×n
2

structured like in the following figure:

r − ` k + `

`

r − ` V
0 0

I(r−`)×(r−`)

Figure 2.1: Partial systematic form of H

As we can see we need only an identity matrix of size (r− `)× (r− `) with a null matrix
on the bottom of size `× (r − `). It follows the same steps done in the standard RREF,
the only thing that changes is that we consider the index of the column j not anymore
traversing from column 0 to the r − 1-th column but from the 0 to the (r − ` − 1)-th
column.
The computational complexity of the partial RREF described in the Algorithm 2.1.3 is:

CP−RREF (n, r, `) = O
(

1

2

r−`−1∑
i=0

(r − i)(n+ r) +
1

2
(r − `)(r − 1)(n+ r) + r(n− r − `)

)

This is derived using the same reasoning applied to the standard RREF complexity cost:
the only thing that changes is that the columns of the identity matrix are r − ` and not
r like in the RREF algorithm.
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2.1.4. Optimized Partial RREF

The optimized partial RREF algorithm takes into account two optimizations: the already
discussed resuing existing pivots and the adaptive information set optimization.
The reusing existing pivots procedure is exactly the same as the one explained before in
the case of the full systematic form, we need only to change the range traversed by the
columns index j.
The adaptive information set optimization is explained in the following. At the end of the
partial RREF we check if the identity matrix has size (r− `)× (r− `): if it is not the case
we need to restart the algorithm with a new columns permutation loosing all the work
done. This seems inefficient, in fact we can adapt our choice of the r−` columns swapping
those columns that introduce the linear dependency between the r − ` columns with the
k + ` columns placed on the right. If we do this we need to update the permuatation
array χ accordingly. Let’s see an example for understanding the method with parameters
n = 5, k = 2 and ` = 1. Consider the matrix Hp at the end of the partial RREF with the
following permutation array χ = [3, 4, 1, 0, 2]:1 1 0 1 1

0 0 1 0 1

0 0 1 1 1


We can see that the second column is not correct since we expect an identity matrix with
dimension 2 × 2 on the upper-left (r − ` = 2). The standard RREF starts again taking
another permutation but thanks to the adaptive information set we can find a column on
the right with a 1 in the second row. From the example we can take the third column
and swapping it with the second updating the permutation array χ = [3, 1, 4, 0, 2]:1 0 1 1 1

0 1 0 0 1

0 1 0 1 1


Now we are able to compute the partial RREF saving in the third row the xor between
the second row and itself obtaining the desired form:1 0 1 1 1

0 1 0 0 1

0 0 0 1 0
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The computational complexity of the partial RREF optimized described in the Algorithm
2.1.4 is:

CP−RREF (n, r, `) = O
(

(r−`)+r
2

n
(n+r)+

1

2

r−`−1∑
i= r2

n

(r−i)(n+r)+
1

2
(r−`−r

2

n
)(r−1)(n+r)+r(n−r−`)

)

The same reasoning of the RREF with reusing pivots has been followed, the only thing
that changes is the size of the identity matrix to produce that is (r− `)× (r− `) instead
of r × r. The adaptive information set optimization doesn’t change the cost complexity
since it decreases the number of iterations for finding the identity matrix compared to the
standard partial RREF.
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Algorithm 2.1.2: RedRowEchelonForm: Reusing Existing Pivot
Input: H ∈ Zr×n2 : binary parity-check matrix already in red row echelon form
Output: Hp ∈ Zr×n2 : binary parity check matrix storing the current permutation of the matrix H,

at the end of the RREF is in systematic form Hp = [Ir V ]

U ∈ Zr×r2 : matrix representing elementary row operations, originally is an identity matrix
V ∈ Zr×k2 : right part of Hp at the end of the RREF
χ: an array of size n storing the indices of the matrix H that represents the current
permutation of H columns
rref_error: boolean variable representing if the computation of the RREF was succesful
or not

Data: pivots: an array of size r containing the indices of the columns with only one 1 among the
first r columns of Hp

1 clear_matrix(U)

2 clear_matrix(Hp)

3 set_identity_matrix(U)

4 for i← 0 to n do
5 χi ← i

6 shuffle(χ)

7 for i← 0 to r do
8 for j ← 0 to n do
9 if H(i,χj)

= 1 then

10 Hp(i,j) ← 1

11 for i← 0 to r do
12 if χi < r then
13 pivots← pivots ∪ i
14 for z ← 0 to size(pivots) do
15 j ← pivotsz

16 for i← 0 to r do
17 if H(i,j) = 1 then
18 swap_rows(Hp, i, j)
19 swap_rows(U, i, j)

20 m← 0

21 m_swap← 0

22 for j ← 0 to r do
23 if j 6= pivotsm then
24 if Hp(j,j) 6= 1 then
25 m_swap← m

26 for z ← j + 1 to r do
27 if z 6= pivotsm_swap then
28 if Hp(z,j) = 1 then
29 swap_rows(Hp, j, z)
30 swap_rows(U, j, z)
31 break
32 else
33 m_swap← m_swap + 1

34 if Hp(j,j) = 0 then
35 return true;

36 for z ← 0 to r do
37 if (z 6= j) ∧ (Hp(z,j) = 1) then
38 Hp(z,:) ← Hp(j,:) ⊕Hp(z,:)
39 U(z,:) ← U(j,:) ⊕ U(z,:)

40 else
41 m← m + 1

42 for i← 0 to r do
43 for j ← r to n do
44 V(i,j) ← Hp(i,j)

45 return false;
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Algorithm 2.1.3: Partial Reduced Row Echelon Form
Input: H ∈ Zr×n2 : binary parity check matrix
Output: Hp ∈ Zr×n2 : binary parity check matrix, at the end of the RREF is in partial systematic

form Hp = [Ir−` V ] where V is an r× (k+ `) binary matrix and Ir−` is composed in the
upper part by an (r − `)× (r − `) binary identity matrix and in the lower part by a
`× (r − `) matrix of zeroes
U ∈ Zr×r2 : an r× r binary matrix representing elementary row operations, originally is an
identity matrix
χ: an array of size n storing the indices of the matrix H that represents the current
permutation of H columns
rref_error: boolean variable representing if the computation of the RREF was succesful
or not

1 clear_matrix(U)

2 clear_matrix(Hp)

3 set_identity_matrix(U)

4 for i← 0 to n do
5 χi ← i

6 shuffle(χ)

7 for i← 0 to r do
8 for j ← 0 to n do
9 if H(i,χj) = 1 then

10 Hp(i,j) ← 1

11 for j ← 0 to r − ` do
12 if Hp(j,j) = 0 then
13 for z ← j + 1 to r do
14 if Hp(z,j) = 1 then
15 swap_rows(Hp, j, z)

16 swap_rows(U, j, z)

17 if Hp(j,j) = 0 then
18 return true;
19 for z ← 0 to r do
20 if z 6= j then
21 if Hp(z,j) = 1 then
22 Hp(z,:) ← Hp(j,:) ⊕Hp(z,:)

23 U(z,:) ← U(j,:) ⊕ U(z,:)

24 for i← 0 to r do
25 for j ← r to n do
26 V(i,j) ← Hp(i,j)

27 return false;
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Algorithm 2.1.4: PartialRedRowEchelonForm: Optimized
Input: H ∈ Zr×n2 : binary parity check matrix already in partial red row echelon form

Output: Hp ∈ Zr×n2 : binary parity check matrix, at the end of the RREF is in partial systematic form Hp = [Ir−` V ] where V is an
r × (k + `) binary matrix and Ir−` is composed in the upper part by an (r − `)× (r − `) binary identity matrix and in the
lower part by a `× (r − `) matrix of zeroes
U ∈ Zr×r2 : an r × r binary matrix representing elementary row operations, originally is an identity matrix
χ: an array of size n storing the indices of the matrix H that represents the current permutation of H columns
rref_error: boolean variable representing if the computation of the RREF was succesful or not

Data: pivots: an array of maximum size r − ` containing the indices of the columns with only one 1 among the first r − ` columns of
Hp

1 clear_matrix(U)

2 clear_matrix(Hp)

3 set_identity_matrix(U)

4 for i← 0 to n do
5 χi ← i

6 shuffle(χ)

7 for i← 0 to n do
8 Hp(:,i) = H(:,χi)

9 for i← 0 to r − ` do
10 if χi < r − ` then
11 pivots← pivots ∪ i
12 for z ← 0 to size(pivots) do
13 j ← pivotsz

14 for i← 0 to r do
15 if H(i,j) = 1 then
16 swap_rows(Hp, i, j)
17 swap_rows(U, i, j)

18 m← 0

19 m_swap← 0

20 for j ← 0 to r − ` do
21 if j 6= pivotsm then
22 if Hp(j,j) 6= 1 then
23 found← false

24 m_swap← m

25 for z ← j to r do
26 skip_pivot← false

27 for i← m_swap to size(pivots) do
28 if pivotsi > z then
29 break
30 if z = pivotsi then
31 skip_pivot← true

32 m_swap← i

33 break
34 if !skip_pivot then
35 if Hp(z,j) = 1 then
36 swap_rows(Hp(j,:), Hp(z,:))

37 swap_rows(U(j,:), U(z,:))

38 found← True

39 break
40 else
41 m_swap← m_swap + 1

42 if !found then
43 for z ← r − ` to n do
44 if H(j,z) = 1 then
45 swap_columns(Hp(:,j), Hp(:,z))

46 swap_positions(αj , αz)

47 break
48 if z = n then
49 return true;

50 for z ← 0 to r do
51 if (z 6= j) ∧ (Hp(z,j) = 1) then
52 Hp(z,:) ← Hp(j,:) ⊕Hp(z,:)
53 U(z,:) ← U(j,:) ⊕ U(z,:)

54 else
55 m← m + 1

56 for i← 0 to r do
57 for j ← r − ` to n do
58 V(i,j) ← Hp(i,j)

59 return false;
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The explicit time complexities, derived from the formulas seen for each RREF method,
and the space complexities of the RREF algorithms just described are reported in the
following tables.

Table 2.1: Time complexities of the RREF procedures

Time complexity of one iteration: CRREF

Standard
RREF

3nr2

4
+ nr

4
− n

2
+ 3r3

4
− 3r2

4
− r

2

RREF reusing
pivots

− r5

4n2 − 3r4

4n
+ 3r3

4n
+ 3nr2

4
+ nr

4
− n

2
+ r3

4
+ r

2

Partial RREF
− `2n

4
− `2r

4
− lnr

2
− ln

4
− lr2

2
−

lr
4

+ 3nr2

4
+ nr

4
− n

2
+ 3r3

4
− 3r2

4
− r

2

Partial RREF
optimized

− `4r
4n2 − `4

4n
+ `3r2

2n
− `3

2
− 3`2r3

2n2 − `2r2

n

+3`2r
4n
− `2n

4
+ `2r

4
+ 3`2

4
+ `r4

n2 + 3`r3

2n
− 3`r2

2n

− `nr
2
− `n

4
− 7`r

4
− `− r5

4n2
3r4

4n
+ 3r3

4n
+ 3nr2

4

+nr
4
− n

2
+ r3

4
+ r

2

Table 2.2: Space complexities of the RREF procedures

Space complexity: SRREF

Standard
RREF

O(r2 + rn+ n)

RREF reusing
pivots

O(r2 + rn+ n+ r)

Partial RREF O(r2 + rn+ n)

Partial RREF
optimized

O(r2 + rn+ n+ r)

2.1.5. Method of four russians for inversion

The previously described procedures for computing a systematic form of a matrix have
been implemented in this thesis, but a method based on the method of four russians for
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computing the systematic form is available publicly in the M4RI library [2]. In the testing
section the procedure based on M4RI used for producing the results is inside the M4RI
light project available in the implementation of Dumer’s algorithm by Valentin Vasseur
in [30]: as Vasseur said "This is a lighter version of the M4RI library. In order to save a
few CPU cycles, it has been simplified and stripped of many functions and tests that are
not required for our usage. The echelonize function has been modified to allow a partial
gaussian elimination".
The computation of the systematic form using the M4RI method is based on the work by
Gregory V. Bard in [6]. In this work Bard presents the Four Russians inversion algorithm
and it can be used for computing the gaussian elimination and even the reduced row
echelon form. The method described by G.Bard in his paper for computing an unit upper
triangular form is explained in the following and as we will see, with a small modification,
we can compute even the RREF following the same guide lines.
Having an r × n matrix H in input, in the M4RI algorithm q columns are processed at
once, producing a q× q identity matrix in the correct spot (hi,i . . . h(i+q−1),(i+q−1)) with all
zeroes below it, leaving the region above the submatrix untouched.

1. Let hi be the first column to be processed in a given iteration. Then, a gaussian
elimination is performed on the first 3q rows after including the i-th row to produce
an identity matrix in hi,i . . . h(i+q−1),(i+q−1) and zeroes in h(i+q),i . . . h(i+3q−1),(i+q−1)

2. Build a table consisting of the 2q binary strings of length q in a Gray Code. A
Gray code is an ordering of the binary numeral system such that two successive
values differ in only one bit: having a binary value we can produce its consecutive
doing only one bit change. For example, the value 1 in Gray Code is 001, the value
2 is 011, the value 3 is 010 and the value 4 is 110: as we can see two successive
values differ only by one bit. Thus with only 2q vector additions, all possible linear
combinations of the q rows have been precomputed since only one vector addition
is needed for calculating each line of this table.

3. Then, it is possible to process the remaining rows from i+ 3q until the last row r by
using the table built at the previous step. As an example, suppose the j-th row has
entries hj,i . . . hj,(i+q−1) in the columns being processed before. Now we select the
row of the table associated with this q-bit string, and adding it to row j will force
the q columns to zero, and then adjust the remaining columns from i + q to n in
the appropriate way, as if Gaussian Elimination had been performed. The process
is repetead min(r,n)

q
times. Each iteration resolves q columns instead of one but the

running time is not q times faster because there is a trade off on the value of q and
the cost of building the table on the second step.
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Thus, the choice of the parameter q must be optimized taking into account the size of the
table to build. For computing the RREF of a matrix we need to run the third step on
rows 0 . . . i− 1 as well as on rows i+ 3q . . . r. This procedure can be used for computing
even the partial RREF algorithm.
On Algorithm 2.1.5 it’s reported the procedure for computing the reduced row echelon
form with the M4RI method. Its analysis can be found even in [3].

Algorithm 2.1.5: Method of the Four Russians Inversion (M4RI)
Input: H ∈ Zr×n2 : binary parity check matrix with r rows and n columns

q: number of columns that are processed at once, it needs to be optimized

Data: j, c: indices traversing respectively the rows and the columns of H
T : table containing 2q binary vectors of length q

Output: H ∈ Zr×n2 : binary parity check matrix in reduced row echelon form

1 j ← 0

2 c← 0

3 while c < n do
4 if c+ q > n then
5 q ← n− c
6 q̂ ← GaussSubMatrix(H, j, c, q, r)

7 if q̂ > 0 then
8 T ←MakeTable(H, j, c, q̂)

9 AddRowsFromTable(H, 0, j, c, q̂, T )

10 AddRowsFromTable(H, j + q̂, r, c, q̂, T )

11 j ← j + q̂

12 c← c+ q̂

13 if q 6= q̂ then
14 c← c+ 1

The GaussSubMatrix routine performs a gaussian elimination on a q× n submatrix of
H starting at position (j, c) and searches for pivot rows up to r. If a matrix of full rank
q is not found, it returns the rank q̂ found so far. The MakeTable builds the table T
discussed before holding all the 2q linear combinations of the q rows starting from (j, c).
Finally, the AddRowsFromTable procedure adds the appropriate linear combination
in T onto a row i in order to clear q columns.
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2.2. Binary Search variants

Another fundamental algorithm that will be used in the ISD implementation is the binary
search one. Generally speaking, having a sorted array we want to find the position of the
array where a target value resides. It is possible that the target value is not present in
the array, in this case we return a non valid index. In the ISD algorithms we will have a
sorted list that, most of the time, will contain duplicates. So, having a target value we
would like to find the range in the sorted list such that the target value is equal to the
values indexed by this range in the list: this means finding the extreme left index and
the extreme right index such that all the indices between the left and the right (included
them) have the same value of the target. For simplicity, in this section we are going to
analyze the binary searches that given a target value returns only one index: the extreme
right index if in the array there are multiples values equal to the target. It is easy to
generalize the binary search in a binary range search: when we find a position where the
target resides in the array, we start a search considering this position as the upper bound
for finding the extreme left index and another one considering this position as the lower
bound for finding the extreme right index. In the last subsection of this part an example
of binary range search using the boundless binary search is reported.
Many searches have been analyzed for understanding the most efficient one to use in the
implementation. All the variants of the binary search explained in this section are taken
by the work "A collection of improved binary search algorithms" [25].

2.2.1. Binary Search

The binary search algorithm is the standard one: having a sorted array A we want to
find the index where the target value key is placed in A. We start comparing the target
with the middle element of the array and if they are not equal, the half in which the
target cannot lie is deleted and the search continues on the remaining half. We repeat
this procedure in which the half becomes smaller and smaller until the target value is
found or concluding that it is not present in the array. In the worst case the running time
of the binary search is logarithmic, O(log n), where n is the size of the input array, since
it makes O(log n) comparisons in the worst case. The worst case is when the element is
not present in the array or it is in the last remained position to analyze, where the last
position is reached when all the possible halves of the array has been considered that are
log(n). In Algorithm 2.2.1 we can see the pseudocode of the standard binary search.

https://github.com/scandum/binary_search
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Algorithm 2.2.1: Standard Binary Search
Input: A: sorted array

n: size of the array A
key: target value to find in A

Data: bot: bottom index of the current half
top: top index of the current half
mid: middle index of the current half

Output: the index where key is present in A, return −1 if it is not present.

1 if n = 0 then
2 return −1

3 bot← 0

4 top← n− 1

5 while bot < top do
6 mid← top− top−bot

2

7 if key < A[mid] then
8 top← mid− 1

9 else
10 bot← mid

11 if key = A[top] then
12 return top

13 return −1

2.2.2. Boundless Binary Search

The boundless binary search uses only two indices, bot and mid: the mid index starts
from outside the array (the position after the last valid element) and at each iteration is
halved. Inside the cycle if the target value is greater or equal than the value at position
bot+ mid

2
the new bottom is set to bot+ mid

2
eliminating the part before it since the element

cannot be there and the mid is incremented by one. Otherwise the bot index remains at
the current position and the mid one is halved: this is done to eliminate the part after
bot+ mid

2
since the target is less than the element in that index and so it is useless. This

search performs better than the standard binary one since the loop contains 1 key check,
1 integer check, and (on average) 1.5 integer assignments.
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Algorithm 2.2.2: Boundless Binary Search
Input: A: sorted array

n: size of the array A
key: target value to find in A

Data: bot: index starting at the bottom of A
mid: index starting outside A

Output: the index where key is present in A, return −1 if it is not present.

1 if n = 0 then
2 return −1

3 bot← 0

4 mid← n

5 while mid > 1 do
6 if key ≥ A[bot+mid

2
] then

7 bot← bot+ mid
2

8 mid← mid+ 1

9 mid← mid
2

10 if key = A[bot] then
11 return bot

12 return −1

2.2.3. Doubletapped Binary Search

The doubletapped binary search uses the same reasoning of the previous searches high-
lighting that when they are left with 2 elements, they take exactly 2 key checks to finish
the procedure. The doubletapped binary search performs two equality checks at the end,
so, when there are only two elements left, it can finish with 1 key check or 2: this in aver-
age results in performing less key checks than the previous algorithms. The doubletapped
binary search is described in Algorithm 2.2.3.

2.2.4. Monobound Binary Search

The monobound binary search is exactly the same as the boundless binary search but
uses an extra variable to simplify some calculations and performs slightly more keychecks
as we can see in Algorithm 2.2.4.
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Algorithm 2.2.3: Doubletapped Binary Search
Input: A: sorted array

n: size of the array A
key: target value to find in A

Data: bot: index starting at the bottom of A
mid: index starting outside A

Output: the index where key is present in A, return −1 if it is not present.

1 if n = 0 then
2 return −1
3 bot← 0
4 mid← n
5 while mid > 2 do
6 if key ≥ A[bot+mid

2
] then

7 bot← bot+ mid
2

8 mid← mid+ 1

9 mid← mid
2

10 while mid > 0 do
11 mid← mid− 1
12 if key = A[bot+mid] then
13 return bot+mid

14 return −1

Algorithm 2.2.4: Monobound Binary Search
Input: A: sorted array

n: size of the array A
key: target value to find in A

Data: bot: index starting at the bottom of A
top: index starting outside A
mid index containing the half of top

Output: the index where key is present in A, return −1 if it is not present.

1 if n = 0 then
2 return −1
3 bot← 0
4 top← n
5 while top > 1 do
6 mid← top

2

7 if key ≥ A[bot+mid] then
8 bot← bot+mid
9 top← top−mid

10 if key = A[bot] then
11 return bot
12 return −1
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2.2.5. Tripletapped Binary Search

The Tripletapped binary search follows the same line of reasoning of the double tapped but
this time improving the monobound binary search and not the boundless binary search.
When we arrive at the end of a binary search and there are 3 elements left to analyze it
takes 2.5 checks to finish, however, the monobound binary search takes 3 checks. So, the
tripletapped variant performs 3 equality checks at the end resulting in slighly fewer key
check in average.

Algorithm 2.2.5: Tripletapped Binary Search
Input: A: sorted array

n: size of the array A
key: target value to find in A

Data: bot: index starting at the bottom of A
top: index starting outside A
mid index containing the half of top

Output: the index where key is present in A, return −1 if it is not present.

1 if n = 0 then
2 return −1

3 bot← 0

4 top← n

5 while top > 3 do
6 mid← top

2

7 if key ≥ A[bot+mid] then
8 bot← bot+mid

9 top← top−mid
10 while top > 0 do
11 top← top− 1

12 if key = A[bot+top] then
13 return bot+ top

14 return −1

2.2.6. Monobound Quaternary Search

The Monobound quaternary search performs more key checks than the monobound binary
search but in some cases when the input array is very large can run faster. If the size of
the array is greater than a certain value, the algorithm computes the mid index as the
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quarter of the top index instead of its half. This is done for trying to be faster on the
searching of the target value eliminating each time a bigger portion of the array where we
know the target cannot lie. Probabilistically, this makes sense if we are working with a
very large array. The author chooses to consider an array to be large if its size is greater
than 216: if this happens we can eliminate quarters of the array instead of halves until the
top index is greater than 216. If top becomes smaller than 216 the same procedure seen
in the tripletapped binary search is used for finding the target value in the range of the
array that has been left. The procedure is reported in Algorithm 2.2.6.

Algorithm 2.2.6: Monobound Quaternary Search
Input: A: sorted array

n: size of the array A
key: target value to find in A

Data: bot: index starting at the bottom of A
top: index starting outside A
mid index containing the half or the quarter of top depending on the iteration
and on the size of A

Output: the index where key is present in A, return −1 if it is not present.

1 if n = 0 then
2 return −1
3 bot← 0
4 top← n
5 while top ≥ 65536 do
6 mid← top

4

7 top← top−mid ∗ 3
8 if key < A[bot+mid×2] then
9 if key ≥ A[bot+mid] then

10 bot← bot+mid

11 else
12 bot← bot+mid× 2
13 if key ≥ A[bot+mid] then
14 bot← bot+mid

15 while top > 3 do
16 mid← top

2

17 if key ≥ A[bot+mid] then
18 bot← bot+mid
19 top← top−mid
20 while top > 0 do
21 top← top− 1
22 if key = A[bot+top] then
23 return bot+ top

24 return −1
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2.2.7. Monobound Interpolated Binary Search

In the Monobound interpolated binary search, for calculating the remaining search space
in the array in which the target value might be, the target value is used as in all the
previously described algorithm but even the minimum and the maximum value present
in the array. Instead of comparing the target value with the value in the half of the
array as done in the standard binary search, we take in consideration the actual values
present in it for computing the estimated position via a linear interpolation. The target is
compared against it for eliminating the left part or the right part of the estimated position
depending on the output of the key check. If we know the distribution of the elements
inside the array we can tune the interpolation resulting in a very efficient search. In the
Algorithm 2.2.7 the interpolation is done assuming an uniform distribution between the
elements of the array: when the distribution is uneven the performance will drop, but not
significantly.

Algorithm 2.2.7: Monobound Interpolated Binary Search
Input: A: sorted array

n: size of the array A
key: target value to find in A

Data: bot: index starting with the interpolated value
top: index starting outside A
mid: index containing the half top
min: integer containing the minimum value present in A
max: integer containing the maximum value present in A

Output: the index where key is present in A, return −1 if it is not present.

1 if n = 0 ∨ key < A[0] then
2 return −1
3 bot← n− 1
4 if key ≥ A[bot] then
5 return (A[bot] = key ? bot : −1)

6 min← A[0]

7 max← A[bot]

8 top← 64
9 if key ≥ A[bot] then

10 while 1 do
11 if bot + top ≥ n then
12 top← n− bot
13 bot← bot + top
14 if key < A[bot] then
15 bot← bot− top
16 break
17 top← top× 2

18 else
19 while 1 do
20 if bot < top then
21 top← bot
22 bot← 0
23 break
24 bot← bot− top
25 if key ≥ A[bot] then
26 break
27 top← top× 2

28 while top > 3 do
29 mid← top

2
30 if key ≥ A[bot+mid] then
31 bot← bot +mid
32 top← top−mid
33 while top > 0 do
34 top← top− 1
35 if key = A[bot+top] then
36 return bot + top

37 return −1
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2.2.8. Adaptive Binary Search

The Adaptive binary search is optimized if we need to do repeated binary searches on the
same array. When it observes a pattern it switches from a binary search to a monobound
search. This works well on uneven distribution unlike the interpolated one. Since this
procedure adapts on multiple runs some variables must be shared upon all the runs.

Algorithm 2.2.8: Adaptive Binary Search
Input: A: sorted array

n: size of the array A
key: target value to find in A

Data: bot: index starting with the interpolated value
top: index starting outside A
mid: index containing the half top
balance: shared variable upon multiple runs, on its value depends the choice of the search
i: shared index upon the multiples runs

Output: the index where key is present in A, return −1 if it is not present.

1 if balance ≥ 32 ∨ n ≤ 64 then
2 bot← 0

3 top← n

4 goto monobound

5 bot← i

6 top← 32

7 if key ≥ A[bot] then
8 while 1 do
9 if bot + top ≥ n then

10 top← n− bot
11 bot← bot + top

12 if key < A[bot] then
13 bot← bot− top
14 break

15 top← top× 2

16 else
17 while 1 do
18 if bot < top then
19 top← bot

20 bot← 0

21 break

22 bot← bot− top
23 if key ≥ A[bot] then
24 break
25 top← top× 2

26 monobound :

27 while top > 3 do
28 mid← top

2
29 if key ≥ A[bot+mid] then
30 bot← bot +mid

31 top← top−mid
32 balance← (i > bot) ? i− bot : bot− i
33 i← bot

34 while top > 0 do
35 top← top− 1

36 if key = A[bot+top] then
37 return bot + top

38 return −1

2.2.9. Boundless Binary Range Search

As we said in the introduction in the ISD algorithm we will use the binary range searches.
As an example here is reported the algorithm that finds the left index and the right index
in which the target values lies in a sorted array that can contains multiple times the same
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value using the boundless binary search. For all the other searches the reasoning is exactly
the same and their procedures don’t change, so for simplicity, they are not reported.

Algorithm 2.2.9: Boundless Binary Range Search
Input: A: sorted array that can contains multiple times the same elements

n: size of the array A
key: target value to find in A

Data: bot: index starting at the bottom of A
top: index starting at the top of A
mid: index starting outside A

Output: left_index: first index of A in which key is present
right_index: last index of A in which key is present

1 if n = 0 then
2 return 〈−1,−1〉
3 bot← 0

4 mid← n

5 while mid > 1 do
6 if key ≥ A[bot+mid

2
] then

7 bot← bot+ mid
2

8 mid← mid+ 1

9 mid← mid
2

10 if key = A[bot] then
11 right_index← bot

12 else
13 return 〈−1,−1〉
14 top← n− 1

15 mid← n

16 while mid > 1 do
17 if key ≤ A[top−mid

2
] then

18 top← top− mid
2

19 mid← mid+ 1

20 mid← mid
2

21 if key = A[top] then
22 left_index← top

23 return 〈left_index, right_index〉
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2.3. NextComb and NextColSum algorithms

In this section we are going to see two important algorithms that will be used in the
implementation of the ISDs. The first algorithm, NextComb, given two integer k and p
computes all the possible combination of size p from 0 to k− 1. The other, NextColSum,
given an array in input and a matrix V , return the total sum of the columns of V indexed
by the array. For reusing additions already done in the past an optimization is discussed
for this algorithm to speed up the sums.

2.3.1. NextComb

The NextComb algorithm generates all the possible combinations of p integers from 0

to k − 1. For reaching this we use an array that we call from now on next_comb. The
next_comb has size p and contains the p integers between first and last, where usually
first = 0 and last = k − 1. An extra variable called li is needed for producing all the
combinations: li stores the leftmost index of next_comb that has been modified in the last
call of the NextComb function. The idea of the procedure is explained in the following.

1. The next_comb array is initialized with values from first to first+p where p is the
size of the next_comb and the variable li is initialized with the value p − 1 that is
the last index of the array. Therefore next_comb initially contains the first possible
combination allowed.

2. For producing the next combination we add 1 in the position indexed by li of the
next_comb until this value reaches last. li remains the same since the leftmost index
modified is the same as the previous call.

3. When the value in the li position reaches last, we need to select another position
to update on its left since we have started modifying the last value. Therefore, we
search for the rightmost index in which the value can be updated by 1 for producing
the next combination: we decrement li by 1 and check if the value saved at li can
be incremented. The situation in which this value can not be incremented happens
when it is the immediate predecessor of the value saved at li+1. If we increment it,
it will have the same value of the element at li+ 1 that has already have the max-
imum possible value for that position, resulting in an error since the combination
will have two positions with the same value. If it is not the immediate predecessor,
we can increment it by 1 and we update all the positions at its right with the values
of the integer in the previous position plus 1.
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4. Now, we can restart updating the rightmost value in the array for producing the next
combination. When we reach the situation where we can not update any integer it
means that we have generated all the possible combination of p integers from first

to last.

Let’s see an example for understanding better how it works. Let p = 3, next_comb =

[0, 3, 5], first = 0 and last = 6. Therefore initially we have:

next_comb = [0, 3, 5] li = 2

For computing the next iteration we see that the element at next_comb[li] can be updated
by 1 since it is not equal to last (the while is never entered and the line 9 of Algorithm
2.3.1 is executed) and so we obtain:

next_comb = [0, 3, 6] li = 2

Now, since next_comb[li] = last, we need to find the new rightmost index that can be
updated. We decrement li that becomes li = 1 and we check if next_comb[li] is different
from the immediate predecessor of next_comb[li+1] (this is done in the checking condition
of the while loop of 2.3.1). This is the case since next_comb[1] 6= 5 and so, we can update
this position and the position at its right (line 9-11 of Algorithm 2.3.1) obtaining the new
combination with a new value of li:

next_comb = [0, 4, 5] li = 1

Next, we restart updating the value at the position p − 1 = 2 for retrieving the next
combination. An extra check after computed the correct li index in the while loop is
done for understanding if there are no more combinations to produce: this is true when
li = 0 and in the first position of the next_comb the element is equal to the maximum
admissible in that position, that is last− p+ 1 (line 7-8 of 2.3.1).
Thanks to this algorithm, we can compute all the possible combinations in a sequential
procedure without using a recursive one.
The complexity of the NextComb procedure described in the Algorithm 2.3.1 having in
input an array next_comb of size p and k = last− first is:

CNextComb(k, p) = O
(

1 +
p

k − p+ 1

)
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Algorithm 2.3.1: NextComb
Input: next_comb: array of integer holding the current combination of size p

first, last: minimum and maximum value that can be present in the array

Output: next_comb: array holding the new combination of integers
li: integer representing the leftmost index of next_comb that has changed
last_comb: boolean that is true if the last combination is produced,
otherwise false if other combinations are available

1 li← p− 1

2 while li 6= first ∧ next_comb[li] = last− p+ 1 + li do
3 li← li− 1

4 if li = −1 then
5 li← 0

6 break

7 if next_comb[0] = last− p+ 1 + li then
8 return true // No more combination to do

9 next_comb[li] ← next_comb[li] + 1

10 for i← li+ 1 to p− 1 do
11 next_comb[i] ← next_comb[i−1] + 1

12 return false

2.3.2. NextColSum

Now that we have the next_comb array that contains all the possible combinations of p
integers from first to last, we are interested in computing the sum of the columns of a
binary matrix V indexed by the next_comb. The basic algorithm is trivial but we will
see an optimization for speeding up this sum saving a lot of additions. We start with
an initial binary vector sum that will be summed to all the columns of V indexed by
next_comb. For example if we have:

sum = 101 next_comb = [0, 1, 5] V =

1 1 0 1 0 1

0 0 1 1 0 1

0 1 0 0 1 1


we want to compute sum = sum ⊕

∑
i∈next_comb vi where vi is the i-th column of the

matrix V . We simply obtain:

sum = 101⊕ 100⊕ 101⊕ 111 = 011



2| Useful algorithms used in the ISD 37

This trivial method has a computation complexity of O(pr) where r is the size of the
binary vectors and p the size of next_comb since we need to do p+ 1 sums of vector with
size r. In the ISDs we will need to compute the columns sum indexed by next_comb

each time the next_comb computes a new combination: we can exploit the fact that
when a new combination is produced in the next_comb, some indices remain the same
and li contains the leftmost index that has changed during the last call for reusing some
additions already done. For doing this we use an array of binary vectors, this means we
need a matrix S of size (p − 1) × r since a binary vector is an array itself: this matrix
holds p− 1 binary vectors of size r representing intermediate sums between the columns
of V indexed by the next_comb. We call this matrix the partial sums matrix.
The first binary vector saved in the matrix S is the sum between the inital sum and the
column of V indexed by the first index of next_comb. The generic i-th binary vector in
position S[i] is obtained as the sum between the previous vector S[i−1] and the column of
V indexed by i in next_comb. The matrix is populated using i that goes from 0 to p− 2

since the size of S is p−1 and we start counting from 0. The first iteration for populating
the matrix S is the same as the trivial method but the big advantage comes when the
next_comb update its combination: we know that li is the leftmost index that changed
during the NextComb and therefore, we can reuse the intermediate sums saved in S for
computing the new one avoiding to restart the procedure. Let’s see an example having
the following data with the combinations between first = 0 and last = 4 produced by
next_comb of size p = 4.

V =

1 1 0 1 0

0 0 1 1 1

0 1 0 0 1


sum = 101 next_comb = [0, 1, 2, 3] li = 3

First, we initialize the partial sums matrix S holding p − 1 = 3 binary vectors with the
procedure described before. Each row of the matrix S contains a binary vector of size r,
in this example r = 3. The first binary vector is computed as the sum between the initial
sum and the first column of V since next_comb[0] = 0. The second binary vector is the
sum between the first and the second column of V since next_comb[1] = 1 and the third
follows the same reasoning obtaining:

S =

0 0 1

1 0 0

1 1 0
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For computing the wanted sum for this combination we sum the last binary vector S[p−2]

with the column of the matrix V indexed by next_comb[p−1]. This is the first iteration
and we haven’t gain any advantage but this is true only for the initialization. From now
on we will perform the sums very efficiently: suppose that a new combination is computed
obtaining next_comb = [0, 1, 2, 4]. The index li hasn’t changed since we have modified the
last position. Therefore, the partial sums in the matrix S are all still valid: this permits
us to compute the new sum with the new combination with only one step summing S[p−2]

with the column of V indexed by next_comb[li] that is the new index that changed without
redoing the sums for the other indices. Let’s see the next iteration that will change the
index li. The next call of NextComb will return next_comb = [0, 1, 3, 4] with li = 2. Since
the index in a position different that the last has changed, the binary vectors starting from
li in the matrix S need to be updated since they are invalid. In the example only the
binary vector at position S[2] is invalid while the first two are still valid and they will
save some computations for computing the final sum. The third binary vector is updated
computing the sum between S[li−1] and the column indexed by next_comb[li] obtaining
the new partial sums matrix:

S =

0 0 1

1 0 0

0 1 0


The new sum with the new combination can be calculated as before. Using extra memory
for storing S we have seen that many sums can be avoided saving a lot of time. The de-
scriptions of the initialization of the partial sums matrix S and the optimized NextColSum
procedure are reported in the following algorithms.

Algorithm 2.3.2: Init Partial Sums
Input: V : binary matrix of size r × k, vi is the i-th column of V

next_comb: array of integer holding the current combination of size p
S: partial sums matrix of size (p− 1)× r
sum: initial binary vector of size r

Output: S: partial sums matrix populated

1 S[0] ← sum⊕ vnext_comb[0]

2 j ← 1
3 while j < p− 1 do
4 S[j] ← S[j−1] ⊕ vnext_comb[j]
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Algorithm 2.3.3: NextColSum Optimized
Input: V : binary matrix of size r × k

next_comb: array of integer holding the current combination of size p
li: index holding the leftmost index changed in the last call of NextComb
function
S: partial sums matrix of size (p− 1)× r
sum: initial binary vector of size r

Output: final_sum: r size vector resulting from the sum between the initial
sum and the columns of V indexed by next_comb

1 if li 6= p− 1 then
2 if li = 0 then
3 S[0] ← sum⊕ vnext_comb[li]

4 li← li+ 1

5 while li 6= p− 1 do
6 S[li] ← S[li−1] ⊕ vnext_comb[li]

7 li← li+ 1

8 final_sum← S[p−2] ⊕ vnext_comb[li]

9 return final_sum

2.4. Sorting algorithms

In the last section of this chapter we are going to analyze two sorting algorithms that have
been taken into consideration in the implementation of the ISD algorithms: the Quicksort
algorithm designed by Charles Antony Richard Hoare in [16] and the Djbsort designed
by Daniel J. Bernstein upon the results in [10]. In the ISD algorithms, we will have
lists of pairs made by a binary vector and an array of integers. For applying the binary
range searches we first need to sort this list in ascending order based on the value of the
binary vectors. Here we present the sorting algorithms applied to an array of integers
but they can be easily generalized for working with the binary vectors: instead of having
comparison operations between scalars we need to compare binary vectors.

2.4.1. Quicksort

Having an array of integers A we want to sort it in ascending order. The Quicksort
algorithm is a a divide-and-conquer algorithm: it starts selecting a pivot element from A

and then partition the other elements into two sub-arrays depending if they are greater
or less than the pivot chosen. The sub-arrays are then sorted recursively (line 3-4 of
Algorithm 2.4.2). Different partition schemes can be used in the algorithm, the one
analyzed in this thesis is the Hoare partition. The Hoare partition scheme uses two
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indices that start at the ends of the array being partitioned. The indices are moved
toward each other until an inversion is detected: this happens when we find a pair of
elements, one greater than the pivot and one smaller, that are in the wrong order relative
to each other (this work is done in the repeat blocks inside the while in Algorithm 2.4.1).
When an inversion is found the two elements pointed by the indices are swapped (line
13 of 2.4.1). The inversion check starts again until the two indices met: when the index
that started from the bottom of the array becomes equal or greater than the index that
started on the top. In this case the algorithm stops and returns the index that started
from the top (line 12 of 2.4.1). The formal description of the Hoare partition scheme and
the Quicksort algorithm are reported in 2.4.1 and 2.4.2. In the worst case the complexity
of the Quicksort algorithm is O(n2) where n is the size of the array to be sorted. This
happens when there is a total imbalance: the partition has returned a partition long n−1

and one long 0. In the average case the algorithm behaves well with complexity:

Csort = O(n log(n))

2.4.2. Djbsort

The djbosort is a sorting algorithm designed by Daniel J. Bernstein based on the work in
[10]. The pseudocode is reported in Algorithm 2.4.3 but further detailes can be found at
https://sorting.cr.yp.to/index.html.
The functioning of this sorting algorithm is based on sorting networks. An n-input sorting
network is a sequence of instructions that correctly sorts every possible n-entry array
(A0, A1, . . . , An−1). Each instruction is a pair (i, j), specifying that the array entries
Ai and Aj are replaced by, respectively, min{Ai, Aj} and max{Ai, Aj}. Whenever we
compare Ai with Aj the subsequent comparisons for the case Ai < Aj are exactly the
same as for the case Ai > Aj , but with i and j interchanged. This fact in which the
comparison is forgotten after it is used to sort {Ai, Aj}, and that the indices (i, j) are then
independent of the input, allows a particularly cheap transformation into a constant-time
sorting algorithm: one simply has to perform each min-max computation in constant
time. The classic “odd-even merging network” introduced by Batcher [7] in 1968 is used
for the Djbsort algorithm.
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Algorithm 2.4.1: Hoare Partition Scheme
Input: A: array of integers to be partitioned

low, high: indices specifying the range in which the array needs to be
partitioned

Data: pivot: integer element picked as the first available in the array that guides the
partition procedure
i: index starting at the end bottom of the range to be partitioned
j: index starting at the end top of the range to be partitioned

Output: A: array partitioned correctly

1 pivot← A[low]

2 i← low − 1
3 j ← high+ 1
4 while 1 do
5 repeat
6 i← i+ 1
7 until A[i] < pivot
8 repeat
9 j ← j − 1

10 until A[j] > pivot
11 if i ≥ j then
12 return j
13 swap(A[i], A[j])

Algorithm 2.4.2: Quicksort
Input: A: array of integers to be sorted of size n

low, high: indices specifying the range in which the array needs to be sorted,
on the first call low = 0, high = n− 1.

Data: pivot: index returned by the partition scheme indicating that the element in
this position is in the correct one

Output: A: array between low and high sorted correctly

1 if low < high then
2 pivot← HoarePartitionScheme(A, low, high)
3 Quicksort(A, low, pivot)
4 Quicksort(A, pivot+ 1, high)
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Algorithm 2.4.3: Djbsort
Input: A: array of integers to be sorted size n

Output: A: array sorted in ascending order

1 if n < 2 then
2 return
3 top← 1
4 while top < n− top do
5 top← top+ 1
6 p← top
7 while p > 0 do
8 i← 0
9 while i < n− p do

10 if ¬(i ∧ p) then
11 minmax(A[i], A[i+p])
12 i← i+ 1

13 i← 0
14 q ← top
15 while q > p do
16 while i < n− q do
17 if ¬(i ∧ p) then
18 pi← A[i+p]

19 r ← q
20 while r > p do
21 minmax(A[index_of(A,pi)], A[i+r])
22 A[i+p] ← pi
23 r ← r >> 1

24 i← i+ 1

25 q ← q >> 1

26 p← p >> 1
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algorithms

In Chapter 1 we have seen that the security of the code-based cryptosystems is based
on the hardness of solving the Syndrome Decoding Problem or Decoding Random Linear
Code: they are equivalent and we will analyze the Syndrome Decoding problem with-
out loss of generality. In this chapter we will study the best known attacks for solving
these problems called Information Set Decoding algorithms to understand their working
principles and their complexities. All the ISD known in the state of the art have been im-
plemented and analyzed: Prange[24], Lee-Brickell[19], Leon[20], Stern[29], Ball-Collision
Decoding[9], Finiasz-Sendrier[15], May-Meurer-Thomae[1], Becker-Joux-May-Meurer[8],
Both-May[12] and the Esser-Bellini[13].

3.1. Basic of Information Set Decoding algorithm

Since we consider the Syndrome Decoding problem, the goal of each ISD algorithm is
finding a target error e ∈ Fn2 having a binary parity-check matrix H ∈ Fr×n2 and a
syndrome s ∈ Fr2, such that HeT = s in less time than an exhaustive search. First, we
define two important theorems and then, we define formally what is an information set
for explaining after the basic structure of an ISD.

Theorem 3.1. Let C(n, k, d) be a binary linear code having H ∈ Fr×n2 as a binary parity
check matrix and let be s ∈ Fr2 and e ∈ Fn2 a syndrome vector and an error vector,
respectively, such that HeT = s. There exists a unique binary vector error e satisfying
HW(e) = w as long as w ≤ bd−1

2
c holds.

Proof. Let’s assume ∃e1 : HeT1 = s∧ HW(e1) = w ≤ bd−1
2
c ∧ e1 6= e. Then we can write

HeT1 = s = HyT = HcT +HeT obtaining HcT = H(e1 − e)T . So e1 − e is a codeword
but it has weight ≤ bd−1

2
c+ bd−1

2
c ≤ d− 1 and this is a contradiction since it is less than

the minimum distance d.
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When we solve a syndrome decoding problem having the parity check matrix H of a
code C with minimum distance d > 2w, this theorem guarantees that the target error
found corresponds to the one that was used to encrypt the message. In the case in which
d ≤ 2w the adversary cannot know if the output of the resolved syndrome decoding
problem corresponds to the error vector that was actually used in encryption since there
are many error vectors with the same weight satisfying the equation.
The next theorem will help us in formalizing the equivalence between two problems.

Theorem 3.2. Let be HeT = s a syndrome decoding problem where H ∈ Fr×n2 is a
parity check matrix, s ∈ Fr2 a syndrome vector and e ∈ Fn2 the target error. For any
non-singular matrix U ∈ Fr×r2 and any permutation matrix P ∈ Fn×n2 the two following
syndrome decoding problems are equivalent to solve:

HeT = s ⇐⇒ ĤêT = ŝ

where:
Ĥ = UHP, ŝ = UsT , ê = eP

Proof. The proof is simple, it is enough to substitute the values:

ĤêT = UHPP TeT = UHeT = UsT = ŝ ⇐⇒ HeT = s

3.1.1. Basic structure of an ISD algorithm

Definition 3.1.1. Given a binary linear code C with a parity check matrix H ∈ Fr×n2 we
define IS as an information set with size k if and only if rank HIS∗ = |IS∗| = n − k = r

where IS∗ = {0, . . . , n− 1} \ IS.

All ISDs share a common structure: they choose an information set IS with size k of H
that divides the error e into two parts, eS∗ and eS, where eS∗ are the bits in e indexed by
the information set IS∗ while eS are the ones indexed by IS. Then, all the ISD try to guess
in the eS part a certain weight p with different methods depending on the ISD chosen
and they try to reconstruct the original error starting from this assumption. Thanks to
the Theorem 3.1 we know that the target error is the correct one.
The phase for choosing the information set can be done with the RREF methods described
in the Section 2.1 where a binary parity check matrix H is transformed in systematic form
obtaining Ĥ = [Ir V ]. From this form we can see that the information set is the part of
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the V matrix since on the left an identity matrix of size r is present having that the rank
of Ir is equal to r. We can use this transformation for solving the syndrome decoding
problem since the problem with the original H and the problem with the systematic form
of H, Ĥ, are equivalent as we have proved in Theorem 3.2. We can see in Figure 3.1 the
matrix Ĥ with the permuted syndrome, the transformed error and how the error vector
is splitted considering the information set after a successfull call to the RREF.

I V

êT

ŝ=

r k

r

k

r

r

êS∗

êS

Figure 3.1: Situation with the transformed matrix and vectors after calling the RREF

The last k columns of the matrix V are indexed by the information set IS as also the
last k bits of the permuted error ê. To find the permuted target error we can guess that
the last k bits of it, the ones indexed by IS, have a certain weight p and then checking if
the part indexed by IS∗ has weight w − p. The guessing part and the consecutive check
on the first part of the permuted error depends on which ISD we are using. Therefore, an
ISD algorithm is divided in two main step: the computation of a correct systematic form
(we call the RREF function until a correct form is found) and the search error part that
works with the results returned by the RREF.
From now on, we are going to use the following conventions to indicate sub-parts of
matrices and vectors.

Definition 3.1.2. Let x ∈ Fn2 a binary vector indexed from 1 to n and a and b two
integers respecting 1 ≤ a ≤ b ≤ n. We indicate as x[a:b] the sub-vector of x holding the
bits between a and b.
x[:b] takes the bits between the very first of x and the one indexed by b while x[a:] between
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a and the very last bit of x.

The same reasoning applied for matrices.
Using this notation we have that êS∗ = ê[1:r], êS = ê[r+1:n], I = Ĥ[1:r][1:r] and V =

Ĥ[1:r][r+1:n]. The general reasoning of the guessing part works as follows. After the RREF
we can observe that:

ĤêT = [I V ] · [êS∗ êS]T = ŝ⇔ êTS∗ + V êTS = ŝ (3.1)

resulting in:
êTS∗ = ŝ− V êTS

We can follow a bruteforce technique for guessing p positions set to 1 in êS: the guess is
correct if and only if HW(êS∗) = w − HW(êS) = w − p.
When a right guess is found we obtain the permuted error as the concatenation between
êS∗ and êS: now the target error of the original problem is computed applying the inverse
permutation to the permuted error found e = êP−1. Otherwise, if we have tried all
the possible guesses without find a correct error, we need to choose another information
set calling another time the RREF procedure and restart the guessing procedure. In
Algorithm 3.1.1 there is a formalization of the basic structure of an ISD just discussed.

Algorithm 3.1.1: Basic Structure of an ISD algorithm
Input: s ∈ Zr2: syndrome vector

H ∈ Zr×n2 :binary parity check matrix
w: the weight of the error vector to be recovered

Output: e ∈ Zn2 : error vector to be recovered such that HeT = s, with wt(e) = w

Data: χ: an array of size n containing the indices of the columns of H after being permuted in the
RREF
[Ir V ]: matrix H in systematic form after applying the RREF
U ∈ Zr×r2 : matrix representing elementary row operations in the RREF, at first is an
identity matrix
ŝ ∈ Zr2: permuted syndrome obtained multiplying the matrix U with s

1 repeat
2 repeat
3 〈[Ir V ], U, χ, rref_error〉 ← find_rref(H)

4 until rref_error = true

5 ŝ← product_bit_matrix_vector(U, s)

6 ê← search_error(V, ŝ)

7 until hamming_weight(ê) = w

8 e← error_reconstruction(ê, χ)

9 return e
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An interesting thing to notice is that for permuting the matrix H has been used an array
containing its indices and not the matrix P previously described. This is the same method
we have seen in Section 2.1 discussing the RREF procedures. At the end of the ISD the
original error is retrieved applying the permutation saved in the array χ to the permuted
error ê.

3.1.2. Complexity analysis of the basic structure of an ISD al-
gorithm

All the ISD algorithms try to retrieve the error vector repeating a certain number of times
an attempt whose average value depends on the success probability of the single attempt
itself. Therefore, the complexity of each ISD algorithm can be expressed as the product
between the complexity of each attempt, that we denote from now on as citer, and the
average number of attempts. The average number of attempts can be computed as the
reciprocal of the success probability of each attempt that we denote as Prsucc. Hence,
having the binary code properties [n, k] and the value of the target error’s weight w to be
found, we can write the complexity of each ISD algorithm as:

CISD(n, r, w) =
citer
Prsucc

(3.2)

If the conditions of the Theorem 3.1 are not satisfied the complexity of each ISD changes
since there are many error vectors with the same weight satysfing the syndrome decoding
problem’s equation. In the work [5] at pages 5-6 we can find the actual reasoning in this
situation ending having the following complexity for doing a message recovery attack:

WFMRA = αCISD(n, k, w) (3.3)

where:

α =
NPrsucc

1− (1− Prsucc)N
≥ 1 (3.4)

During this thesis the complexities of the ISD algorithms are studied assuming that the
Theorem 3.1 always holds.
Now let’s study the complexity of the Algorithm 3.1.1.

Theorem 3.3. Given the basic structure of the ISD Algorithm 3.1.1 with H ∈ Zr×n2

binary parity check matrix, s ∈ Zr2 the syndrome vector and w the target weight, the
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computational complexity of this algorithm can be computed as:

CISD(n, r, w) =
1

Prsucc
citer =

1

Prsucc
(CIS(n, r) + CSEARCH(n, r, w))

where

CIS(n, r) =
1

Prrref
CRREF (n, r) + r2 =

1∏r
i=1(1− 2−i)

CRREF (n, r) + r2

Proof. A single iteration cost is composed by two parts: the computation of the RREF
and the searching of the error. The computation of a correct systematic form ends when
there is a full identity matrix on the left or equivalently when we find an information
set. The complexity of this part is indicated as CIS(n, r): since some calls to the RREF
procedure can fail to produce a suitable systematic form, we need to consider the success
probabilty of finding a correct form, and this is taken into account by the first addend.
In a r × r binary matrix the first row has a probability of 1

2r
of being linearly dependent

from itself (i.e. row equal to zero); the second row has a probability of 2
2r

of being linearly
dependent(i.e. zero or equal to the first). Generalizing this procedure we obtain that the
r-th row has a probability of 2r−1

2r
of being linearly dependent from the previous ones. We

want an identity matrix with full rank so all the rows need to be linearly independent from
each other and this is happens with probability Prrref =

∏r
i=1(1− 2i−1

2r
) =

∏r
i=1(1− 1

2i
).

This probability is multiplied by the cost CRREF (n, r) that depends on the procedure we
want to use for computing the RREF; these complexities can be seen in the Table 2.1.
The second addend considers the transformation of the syndrome vector using the matrix
U : a matrix vector multiplication took place and since s has size r the total cost of it
is r2. Prsucc is obtained as the number of permuted error vectors with the error-affected
positions in line with the hypotheses made by the ISD in analysis, divided by the number
of all the possible error vectors, while Csearch depends on the ISD we choose to use.

For clarity we introduce these definitions that will be used in all the ISD descriptions.

Definition 3.1.3. We define FIND_RREF as the general algorithm for computing the
full systematic form of a matrix H and it can be the standard RREF algorithm 2.1.1, the
RREF with reusing pivots optimization 2.1.2 or the M4RI method explained in Section
2.4. The computational complexity of this algorithm is denoted as CIS(n, r) and is the
one descripted in Theorem 3.3.

Definition 3.1.4. We define FIND_PARTIAL_RREF as the general algorithm for
computing the partial systematic form of a matrix H having in input the extra parameter
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` and it can be the standard partial RREF algorithm 2.1.3, the partial RREF optimized
2.1.4 or the M4RI method explained in Section 2.4. The computational complexity of this
algorithm is:

CIS−P (n, r, `) =
1

Prp−rref
CP−RREF (n, r, `) + r2 =

1∏r−`
i=1(1− 2−i)

CP−RREF (n, r, `) + r2

where CP−RREF (n, r, `) is reported in Table 2.1 and depends on the method we use.

3.2. Analysis of Information Set Decoding algorithms

In this section we are going to study in details all the ISD algorithm variants in their syn-
drome decoding formulation reporting the actual computational and space complexities.

3.2.1. Prange

Prange’s algorithm [24] was the first variant of ISD designed. Prange is based on the idea
of guessing a set k of error-free positions in the target vector ê to be found. After it has
found a correct RREF computed from the binary parity check matrix in input obtaining
Ĥ, ŝ and the permutation array χ, it guesses that the second part of ê long k bits has
weight equal to 0. This means that the part of the error indexed by the information set
is composed by only zeroes and all the weight of the error is in the first part. In Figure
3.2 we can see the weight distribution for the Prange algorithm.

I V

êT

ŝ=

r k

r

k

r

r

w

0

Figure 3.2: Weight distribution in Prange algorithm
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From Equation 3.1 we can derive:

êTS∗ = ŝ− V êTS = ŝ− V 0T ⇔ êTS∗ = ŝ (3.5)

Therefore, Prange simply checks if the permuted syndrome ŝ obtained at the end of
the RREF has weight equal to w for building the target error. Until the weight of ŝ is
not equal to w, new permutations are picked and new computations of RREF are done.
When we find the desired weight on the syndrome we can reconstruct the permuted error
as ê = [ŝ 01×k].
In Algorithm 3.2.1 we can see the detailed description of the Prange algorithm.

Theorem 3.4. Given an instance of the syndrome decoding problem with H ∈ Zr×n2 ,
s ∈ Zr2 and the target weight w, the time complexity of Prange algorithm 3.2.1 for finding
a target error e ∈ Zn2 such that HeT = s and HW(e) = w is:

CISD(n, r, w) =
1

Prsucc
citer =

(
n
w

)(
r
w

)CIS(n, r) + n

While the spatial complexity is:

SISD(n, r, w) = SRREF(n, r) + r

Proof. The term that dominates the complexity of Prange’s algorithm is the one relative
to the computation of the RREF CIS(n, r) that is exactly the same complexity we saw in
3.3. The success probability Prsucc in the case of Prange is the division between all the
permuted error vectors admissible by the ISD that are

(
r
w

)
(since we want all the weight

w in the first r part of the permuted error) and all the possible error vectors that are
(
n
w

)
(all the vectors long n with weight w). The last term is the cost of building the permuted
error and it is n since its length is equal to n.
Even the spatial complexity depends only on the computation of the RREF, no extra
memory is used for searching the error, therefore we have the parity check matrix in
systematic form with size r×n, the matrix U with size r× r, the permutation array with
size n included in the term SRREF(n, r) referring to the complexity in Table 2.2 and then
the permuted syndrome of size r reported as the last term.
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Algorithm 3.2.1: Prange algorithm
Input: s ∈ Zr2: syndrome vector

H ∈ Zr×n2 :binary parity check matrix
w: the weight of the error vector to be recovered

Output: e ∈ Zn2 : error vector to be recovered such that HeT = s, with wt(e) = w

Data: χ: an array of size n containing the indices of the columns of H after being permuted in the
RREF
[Ir V ]: matrix H in systematic form after applying the RREF
U ∈ Zr×r2 : matrix representing elementary row operations in the RREF, at first is an
identity matrix
ŝ ∈ Zr2: permuted syndrome obtained multiplying the matrix U with s

1 repeat
2 repeat
3 〈[Ir V ], U, χ, rref_error〉 ← find_rref(H)

4 until rref_error = true

5 ŝ← product_bit_matrix_vector(U, s)

6 until hamming_weight(ŝ) = w

7 ê← [ŝ 01×k]

8 e← error_reconstruction(ê, χ)

9 return e

3.2.2. Lee-Brickell

The Lee-Brickell algorithm [19] starts with the same computation of Prange retrieving the
systematic form of the parity check matrix H, but then improve the Prange’s guessing
allowing p positions set to 1 in the second part of the permuted error long k. From
Equation 3.1 we can see that êTS∗ +V êTS = ŝ where êTS is the second part of the permuted
errors long k bits with weight p, from which follows that êTS∗ = ŝ+V êTS must have weight
equal to w − p. In Figure 3.3 we can visualize the situation just described.
Now, since we need to guess p error-affected positions in êTS , we have to consider all the
possible combinations of k size vectors with weight equal to p. Each time we try a new
combination of êTS with HW(êTS) = p we need to control if HW(ŝ + V êTS) = w − p: we try
all the possible combinations until the last equality holds. If all the combinations has
been tested and no target error is found a new permutation is picked for computing a new
RREF and the guessing part is restarted.
In practice, for considering all the possible combinations

(
k
p

)
, we use the next_comb array

described in Section 2.3. Each time we call the NextComb algorithm 2.3.1 the next_comb
array will contain a new combination. When a new combination is produced we have to
compute the vector resulting from ŝ + V êTS for checking its weight. For doing this we
exploit the procedure described in Section 2.3. using the NextColSumOptimized algorithm
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2.3.3. We use the matrix of partial sums S and we initialize it with the Algorithm 2.3.2
using as the initial sum the permuted syndrome ŝ. Then, we are able to compute the
different terms ŝ+V êTS efficiently each time the combination in next_comb array changes
thanks to the NextColSum optimized Algorithm 2.3.3.
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Figure 3.3: Weight distribution in Lee-brickell algorithm

Looking at the Algorithm 3.2.2 we can see that after producing a correct Ĥ and ŝ we
initialize our next_comb array, that we will call α, and our partial sums matrix S. Then
we span all the possible combinations

(
k
p

)
: at each iteration α holds the index of the p

error-affected positions of êTS and the vector σ = ŝ + V êTS is computed. If σ has the
desired weight a target error is found and it is reconstructed setting the first part of the
permuted error êTS∗ equal to σ and the second part êTS with the bits indexed by α set to
1 and all the others set to 0. We now have a permuted error with the desired weight and
we can return the original error applying the permutation.

Theorem 3.5. Given an instance of the syndrome decoding problem with H ∈ Zr×n2 ,
s ∈ Zr2 and the target weight w, the time complexity of Lee-Brickell algorithm 3.2.2 for
finding a target error e ∈ Zn2 such that HeT = s and HW(e) = w is:

CISD(n, r, w, p) =
1

Prsucc
citer =

=

(
n
w

)(
k
p

)(
r

w−p

)(CIS(n, r) +

(
k

p

)
(CNextComb(k, p) + CNextColSum(k, p, r))

)
+ p
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While the spatial complexity is:

SISD(n, r, w, p) = SRREF(n, r) +O ((p− 1)r + p+ r)

Algorithm 3.2.2: Lee-Brickell algorithm
Input: s ∈ Zr2: syndrome vector

H ∈ Zr×n2 : binary parity check matrix
w: the weight of the error vector to be recovered

Output: e ∈ Zn2 : error vector to be recovered such that HeT = s, with wt(e) = w

Data: χ: an array of size n containing the indices of the columns of H after being permuted in the
RREF
p: the weight of the last k bits of ê, 0 ≤ p ≤ w
[Ir V ]: matrix H in systematic form after applying the RREF
U ∈ Zr×r2 : matrix representing elementary row operations in the RREF, at first is an
identity matrix
ŝ ∈ Zr2: permuted syndrome obtained multiplying the matrix U with s
α: an array of size p containing indices in {0, . . . , k − 1} holding the possible combinations(
k
p

)
S ∈ Zp−1×r2 : partial sums matrix that contains p− 1 vectors obtained by the sum between ŝ
and the columns of the matrix V
σ ∈ Zr2: vector containing the sum between ŝ and the columns of V indexed by the α array.

1 repeat
2 repeat
3 〈[Ir V ], U, χ, rref_error〉 ← find_rref(H)

4 until rref_error = true

5 ŝ← product_bit_matrix_vector(U, s)

6 α← init_combination_array(p, 0)

7 init_partial_sums(S, V, ŝ, α)

8 for j ← 0 to
(
k
p

)
do

9 σ ← next_col_sum_optimized(S, V, ŝ, α)

10 if hamming_weight(σ) = w − p then
11 ê← [σ 01×k]

12 foreach i ∈ α do
13 êi+r ← 1

14 e← error_reconstruction(ê, χ)

15 return e

16 next_comb(α, 0, k − 1)

17 until HW(e) = w

Proof. The success probability in the Lee-Brickell algorithm is the division between the
admissibile errors satisfying the hypothesis of the ISD that are

(
k
p

)(
r

w−p

)
(since the first

r part of the error needs to have weight w − p while the remaining k part p) and all the
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possible error vectors with weight w
(
n
w

)
. An iteration spans all the combinations

(
k
p

)
and

for each of them the NextColSum and the NextComb procedures are invoked. The last
term is for composing the k part of the error setting p bits resulting in a p term.
The spatial complexity accounts for H, U and χ in the term refering to the RREF as seen
in Prange 3.4. The others accounts for the matrix of the partial sums S of size (p−1)×r,
the next_comb array α with size p and the vector σ of size r.

3.2.3. Leon

The Leon algorithm [20] improves the Lee-Brickell algorithm assuming that the contribu-
tion to the value of the first ` bits of the syndrome ŝ, ŝup, comes only from columns in V:
this means that there is a run long ` bits of zeroes in the first part of êS∗ . The situation
is showed in Figure 3.4.
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Figure 3.4: Weight distribution in Leon algorithm

Leon algorithm lowers down the success probability of an iteration since it discards all the
possible target errors that do not have a starting run of ` zeroes. Nevertheless, we can
perform a preliminary check computing the sum between the columns of the sub-matrix
Vup indexed by the next_comb array α (holding the p positions of the second part of
the error) and the first part of the permuted syndrome composed by ` bits, ŝup. If the
resulting vector has weight 0 we can proceed to check if the remained part has weight
w − p, otherwise, we try another combination and retest only the ` part. So, initially,
instead of working with columns long r we can work with columns long `: we perform
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more iterations than before but one iteration is more faster thanks to the preliminary
check that work with smaller dimensions. The choice of the parameter ` needs to be
optimized following this trade-off. Formally, from the Equation 3.1, we derive:

VupêS + ŝup = êS∗[1:`] = 01×` VdownêS + ŝdown = êS∗[`+1:r]

Hence, we can do the folllowing preliminary check:

VupêS = ŝup ⇔ HW(VupêS + ŝup) = 0 (3.6)

If the test is not passed we pick another combination otherwise we can compute:

êS∗[`+1:r] = VdownêS + ŝdown

checking if it has weight equal to w − p.

Theorem 3.6. Given an instance of the syndrome decoding problem with H ∈ Zr×n2 ,
s ∈ Zr2 and the target weight w, the time complexity of Leon algorithm 3.2.3 for finding a
target error e ∈ Zn2 such that HeT = s and HW(e) = w is:

CISD(n, r, w, p, `) =
1

Prsucc
citer =

=

(
n
w

)(
k
p

)(
r−`
w−p

)(CIS(n, r) +

(
k

p

)
(CNextComb(k, p) + CNextColSum(k, p, `) +

(
k
p

)
2`
p(r − `)

)
+ p

While the spatial complexity is:

SISD(n, r, w, p, `) = SRREF(n, r) +O ((p− 1)`+ p+ `+ (r − `))

Proof. The success probability in the Leon algorithm is the division between the admis-
sibile errors satisfying the hypothesis of the ISD that are

(
k
p

)(
r−`
w−p

)
(since the first part

of the error needs to have the first ` bits set to 0 and the remained r − ` with weight
w − p) and all the possible error vectors with weight w

(
n
w

)
. An iteration spans all the

combinations
(
k
p

)
and for each of them the NextColSum and the NextComb procedures

are invoked. If we find a vector obtained by NextColSum with weight 0 we need to sum
p + 1 vectors of size r − ` obtaining the complexity p(r − `). These sums are done with

probability of (kp)
2`

since all the possible vectors ŝup are 2` and only
(
k
p

)
attempts hitting

the correct one are made. The last p term is for reconstructing the error from α. In the
spatial complexity the terms different from the one used for the RREF accounts for the
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Algorithm 3.2.3: Leon algorithm
Input: s ∈ Zr2: syndrome vector

H ∈ Zr×n2 : binary parity check matrix
w: the weight of the error vector to be recovered

Output: e ∈ Zn2 : error vector to be recovered such that HeT = s, with wt(e) = w
Data: χ: an array of size n containing the indices of the columns of H after being permuted in the

RREF
p: the weight of the last k bits of ê, 0 ≤ p ≤ w
`: length of the run of zeroes at the starting bits of the error ê
U ∈ Zr×r2 : matrix representing elementary row operations in the RREF, at first is an
identity matrix

ŝ ∈ Zr2: permuted syndrome equal to the syndrome of e through [Ir V ], ŝ =
[
ŝup
ŝdown

]
, with

ŝup = ŝ[1:`] and ŝdown = ŝ[`+1:r]

V ∈ Zr×k2 : matrix V =

[
Vup
Vdown

]
with Vup = V[1:`][:] and Vdown = V[`+1:r][:], where vup i and

vdown i are the columns of matrix Vup and Vdown indexed by i
α: an array of size p containing indices in {0, . . . , k − 1} used to compute the sum over the
columns of V
Sup ∈ Zp−1×`2 : partial sums up matrix that contains p− 1 vectors obtained by the sum
between ŝup and the columns of the matrix Vup
σup ∈ Z`2: vector containing the sum between ŝup and the columns of Vup indexed by the α
array
σdown ∈ Zr−`2 : vector containing the sum between ŝdown and the columns of Vdown indexed
by the α array

1 repeat
2 repeat
3 〈[Ir V ], U, χ, rref_error〉 ← find_rref(H)
4 until rref_error = true
5 ŝ← product_bit_matrix_vector(U, s)
6 α← init_combination_array(p, 0)
7 init_partial_sums(Sup, Vup, ŝup, α)
8 for j ← 0 to

(
k
p

)
do

9 σup ← next_col_sum_optimized(Sup, Vup, ŝup, α)
10 if hamming_weight(σup) = 0 then
11 foreach i ∈ α do
12 σdown ← σdown ⊕ vdown i

13 σdown ← σdown ⊕ ŝdown
14 if hamming_weight(σdown) = w − p then
15 ê← [01×` σdown 01×k]
16 foreach i ∈ α do
17 êi+r ← 1
18 e← error_reconstruction(ê, χ)
19 return e
20 next_comb(α, 0, k − 1)

21 until HW(e) = w
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matrix of the partial sums S of size (p − 1) × `, the next_comb array α with size p, the
vector σup of size ` and the vector σdown of size r − `.

3.2.4. Stern

Stern’s algorithm [29] improves Leon’s ISD by employing a meet-in-the-middle strategy
for finding which set of size p, containing ` bit portions of columns of V , adds up to the
first ` bits of the syndrome, ŝup. The part of the permuted error with weight p, êS, is
splitted into two binary vectors with weight p

2
:

ê1 = êS[1: k
2

] HW(ê1) = dp
2
e ê2 = êS[ k

2
+1:k] HW(ê2) = bp

2
c (3.7)

In this case we will use two next_comb arrays: α1 of size dp
2
e holds the error-affected

positions of ê1 and α2 of size bp
2
c holds the error-affected positions of ê2. Starting from

the Equation 3.6 of Leon we can write:

Vupê
T
S = ŝup ⇔ ŝup = Vup1ê

T
1 + Vup2ê

T
2 =

∑
i∈α1

vup i +
∑
j∈α2

vup j (3.8)

where vup i is the i-th column of Vup. From this, we can precompute the value of ŝup +∑
i∈α1

vup i for all the possible
(
k/2
p/2

)
choices of α1 and store them into a list or into an hash

table θ, saving for each resulting vector the corresponding indices of α1 used for computing
it. Then, we enumerate all the possible combinations

(
k/2
p/2

)
of α2 computing for each one

of these the vector σup2 =
∑

j∈α2
vup j and checking if this vector is present in θ. If σup2

is inside θ we have found a candidate pair (α1, α2) for which ŝup =
∑

i∈α1∪α2
vup i holds

and so, we can proceed to check if ŝdown =
∑

i∈α1∪α2
vdown i.

This strategy reduces the cost of computing an iteration quadratically at the price
of increasing the number of iterations. Moreover, here we need a significant amount of
memory to store the

(
k/2
p/2

)
precomputed values. The data structures taken in consideration

in the implementation of the algorithm are two: a list of pairs made by a binary vector
long ` and an array of indices long dp

2
e and an hashtable holding a binary vector long `,

an array of indices long dp
2
e and the pointer to the next element of the hash table having

the same hash code. If the list is used, when we have to find if a certain target vector
is present in the list, we can apply a binary range search based on the methods seen in
Section 2.2. Before doing the search the list must be sorted with one of the algorithms
seen in Section 2.4.

Definition 3.2.1. We define as find_collision the procedure that given the list θ,
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ŝdown

=

r bk
2
c dk

2
e

r

dk
2
e

bk
2
c

r-`

`

r

` `

r-`

`

r-`

0

w − p

p

Figure 3.5: Weight distribution in Stern algorithm

composed of pairs made by a binary vector σup1 long ` and an array of indices α1, and
a target vector σup2 to find in θ, returns the left index and the right index such that all
the binary vectors saved in the list between the left and the right index are equal to σup2.
If the target vector is not present, −1 for both the indices is returned. The complexity
of this procedure considering n the size of the list θ is CFindColl(n) = O(2log(n)) since we
need to apply two times the binary searches, one time for finding the right index and the
other for the left.

Definition 3.2.2. We define sort as the procedure that given the list θ, composed of
pairs made by a binary vector σup1 long ` and an array of indices α1, sorts the list based
on the value of the binary vector σup1 in ascending order. This can be done using the
Quicksort or the Djbsort seen in Section 2.4.

We can see in Algorithm 3.2.4 the procedure of the Stern ISD using the list as data
structure. Otherwise, if the hash table is used, the sorting and the binary range searches
are not necessary. For finding a target vector inside the hashtable it has been used a
lookup procedure that returns the index of the hash table in which the target vector has
been found. The chaining technique has been implemented for managing duplicates and
collisions, therefore, when an index is returned from the lookup we span all the chained
list starting at this index. If multiple vectors that are equal are inserted in the hash
table, with different array of indices, we can find them at the same index of the hashtable
following the chaining list. It may happen that different vectors could be placed in the
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same index of the hash table: in this case while we are scanning the chained list we can
find invalid elements, the ones with the binary vector different from the target. So, we
need to manage these collisions checking always if the current element in analysis has
the correct binary vector. In Algorithm 3.2.5 the procedure of the Stern ISD using the
hashtable as data structure is reported. At line 19 we can see the check just described for
handling the collisions.

Theorem 3.7. Given an instance of the syndrome decoding problem with H ∈ Zr×n2 ,
s ∈ Zr2 and the target weight w, the computational complexity of Stern algorithm 3.2.4 for
finding a target error e ∈ Zn2 such that HeT = s and HW(e) = w is:

CISD(n, r, w, p, `) =
1

Prsucc

citer =

(
n
w

)(
k/2
p/2

)2( r−`
w−p

)(CIS(n, r)+

(
k/2

p/2

)(
2CNextComb(

k

2
,
p

2
) + 2CNextColSum(

k

2
,
p

2
, `)+

CFindColl(

(
k/2

p/2

)
) +

(
k/2
p/2

)
2`

p(r − `)
))

+ Csort(

(
k/2

p/2

)
, `) + p

While the spatial complexity is:

SISD(n, r, w, p, `) = SRREF(r, n) +O
((

k/2

p/2

)
(
p

2
log2 (

k

2
) + `)

)

Proof. The success probability in the Stern algorithm is the division between the admis-
sibile errors satisfying the hypothesis of the ISD that are

(
k/2
p/2

)2( r−`
w−p

)
and all the possible

error vectors with weight w
(
n
w

)
. An iteration spans two times all the combinations

(
k/2
p/2

)
and for each of them the NextColSum and the NextComb procedures are invoked: the
first time we build the list θ and the second time we compute the target vectors for finding
collisions. In one iteration we call the find collision procedure

(
k/2
p/2

)
times, one for each

target vector computed from α2. When we find a collision we need to sum p+1 vectors of

size r− ` obtaining the complexity p(r− `). These sums are done with probability of (k/2p/2)
2`

since all the possible vectors ŝup are 2` and only
(
k/2
p/2

)
attempts hitting the correct one are

made. The sorting algorithm for ordering the list θ is called only once during an iteration
and the last p term is for reconstructing the error from α. In the spatial complexity we
have reported only the significant terms. The first is the one relative to the computation
of the RREF. Then, we have to store a list θ made by

(
k/2
p/2

)
elements. Each element takes

` bits for storing the binary vector and p
2

log2 (k
2
) bits for storing the array of indices. In

conclusion, the space required by the list is
(
k/2
p/2

)
(p

2
log2 (k

2
) + `) bits.
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Algorithm 3.2.4: Stern algorithm using lists for finding collisions
Input: s ∈ Zr2: syndrome vector

H ∈ Zr×n2 : binary parity check matrix
w: the weight of the error vector to be recovered

Output: e ∈ Zn2 : error vector to be recovered such that HeT = s, with wt(e) = w
Data: χ: an array of size n holding the indices of the columns of H being permuted in the RREF

p: the weight of the last k bits of ê, 0 ≤ p ≤ w
`: length of the run of zeroes at the starting bits of the error ê
U ∈ Zr×r2 : matrix representing elementary row operations done in the RREF

ŝ ∈ Zr2: permuted syndrome equal to the syndrome of e through [Ir V ],ŝ =
[
ŝup
ŝdown

]
, with

ŝup = ŝ[1:`] and ŝdown = ŝ[`+1:r]

V ∈ Zr×k2 : matrix V =

[
Vup
Vdown

]
with Vup = V[1:`][:] and Vdown = V[`+1:r][:], where vup i and

vdown i are the columns of matrix Vup and Vdown indexed by i
α1, α2: arrays of sizes respectively dp2e and b

p
2c containing indices in {0, . . . , bk2 c − 1} and in

{bk2 c, . . . , k − 1}
Sup1 ∈ Zd

p
2 e−1×`

2 , Sup2 ∈ Zb
p
2 c−1×`

2 : partial sums matrices containing vectors obtained as the
sum between ŝup and the columns of the matrix Vup indexed by α1 and α2

σup1,σup2 ∈ Z`2
σdown ∈ Zr−`2 : vector containing the sum between ŝdown and the columns of Vdown indexed
by α1 ∪ α2

θ: list containing pairs made by indices taken from α1 and by σup1 vector,it has size equal
to
(
k/2
p/2

)
and initially it is empty

1 repeat
2 repeat
3 〈[Ir V ], U, χ, rref_error〉 ← find_rref(H)
4 until rref_error = true
5 ŝ← product_bit_matrix_vector(U, s)
6 α1 ← init_combination_array(dp2e, 0)
7 init_partial_sums(Sup1, Vup, ŝup, α1)

8 for j ← 0 to
(
k/2
p/2

)
do

9 σup1 ← next_col_sum_optimized(Sup1, Vup, ŝup, α1)
10 θ ← θ ∪ 〈α1,σup1〉
11 next_comb(α1, 0, bk2 c − 1)

12 sort(θ)
13 α2 ← init_combination_array(bp2c, b

k
2 c)

14 init_partial_sums(Sup2, Vup,01×`, α2)

15 for j ← 0 to
(
k/2
p/2

)
do

16 σup2 ← next_col_sum_optimized(Sup2, Vup,01×`, α2)
17 〈left, right〉 ← find_collision(σup2, θ)
18 if left 6= −1 ∧ right 6= −1 then
19 foreach 〈α1,σup1〉 in θ[left:right] do
20 σdown ← σdown ⊕ ŝdown
21 foreach i in α1 ∪ α2 do
22 σdown ← σdown ⊕ vdown i

23 if hamming_weight(σdown) = w − p then
24 ê← [01×` σdown 01×k]
25 foreach i ∈ α1 ∪ α2 do
26 êi+r ← 1
27 e← error_reconstruction(ê, χ)
28 return e
29 next_comb(α2, bk2 c, k − 1)

30 until HW(e) = w
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Algorithm 3.2.5: Stern algorithm using hash table for finding collisions
Input: s ∈ Zr2: syndrome vector

H ∈ Zr×n2 :binary parity check matrix
w: the weight of the error vector to be recovered

Output: e ∈ Zn2 : error vector to be recovered such that HeT = s, with wt(e) = w
Data: χ: an array of size n holding the indices of the columns of H being permuted in the RREF

p: the weight of the last k bits of ê, 0 ≤ p ≤ w
`: length of the run of zeroes at the starting bits of the error ê
U ∈ Zr×r2 : matrix representing elementary row operations done in the RREF

ŝ ∈ Zr2: permuted syndrome equal to the syndrome of e through [Ir V ],ŝ =
[
ŝup
ŝdown

]
, with

ŝup = ŝ[1:`] and ŝdown = ŝ[`+1:r]

V ∈ Zr×k2 : matrix V =

[
Vup
Vdown

]
with Vup = V[1:`][:] and Vdown = V[`+1:r][:], where vup i and

vdown i are the columns of matrix Vup and Vdown indexed by i
α1, α2: arrays of sizes respectively dp2e and b

p
2c containing indices in {0, . . . , bk2 c − 1} and in

{bk2 c, . . . , k − 1}
Sup1 ∈ Zd

p
2 e−1×`

2 , Sup2 ∈ Zb
p
2 c−1×`

2 : partial sums matrices containing vectors obtained as the
sum between ŝup and the columns of the matrix Vup indexed by α1 and α2

σup1,σup2 ∈ Z`2
σdown ∈ Zr−`2 : vector containing the sum between ŝdown and the columns of Vdown indexed
by α1 ∪ α2

θ: hash table containing pairs made by indices taken from α1 and σup1 vector, initially is
empty.

1 repeat
2 repeat
3 〈[Ir V ], U, χ, rref_error〉 ← find_rref(H)
4 until rref_error = true
5 ŝ← product_bit_matrix_vector(U, s)
6 α1 ← init_combination_array(dp2e, 0)
7 init_partial_sums(Sup1, Vup, ŝup, α1)

8 for j ← 0 to
(
k/2
p/2

)
do

9 σup1 ← next_col_sum_optimized(Sup1, Vup, ŝup, α1)
10 hash_table_insert(θ, α1,σup1)

11 next_comb(α1, 0, bk2 c − 1)

12 α2 ← init_combination_array(bp2c, b
k
2 c)

13 init_partial_sums(Sup2, Vup,01×`, α2)

14 for j ← 0 to
(
k/2
p/2

)
do

15 σup2 ← next_col_sum_optimized(Sup2, Vup,01×`, α2)
16 index← hash_table_lookup(θ,σup2)
17 if index 6= −1 then
18 foreach 〈α1,σup1〉 in θindex do
19 if σup1 = σup2 then
20 σdown ← σdown ⊕ ŝdown
21 foreach i in α1 ∪ α2 do
22 σdown ← σdown ⊕ vdown i

23 if hamming_weight(σdown) = w − p then
24 ê← [01×` σdown 01×k]
25 foreach i ∈ α1 ∪ α2 do
26 êi+r ← 1
27 e← error_reconstruction(ê, χ)
28 return e
29 next_comb(α2, bk2 c, k − 1)

30 until HW(e) = w
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Figure 3.6: Weight distribution in Ball-Collision Decoding algorithm

3.2.5. Ball-Collision Decoding

The Ball-Collision Decoding [9] algorithm is a generalitazion of the Stern algorithm pre-
sented in [9]. The authors notice that is unlikely to have the ` starting part of the
permuted error with weight equal to 0, therefore, they decide to allow even in that posi-
tion, a weight z. Like in the Stern’s algorithm we split the p weight binary error vector
in two parts with weights p

2
and apply a meet-in-the-middle strategy. Moreover, in the

Ball-Collision Decoding algorithm, we also divide the z part of the error into two binary
vectors with weights z

2
. The p part of the error satisfies the already seen relation 3.7 in

Stern but here, we need to consider even the z part having:

êz1 = êS∗[1: `
2

] HW(êz1) = dz
2
e êz2 = êS∗[ `

2
+1:`] HW(êz2) = bz

2
c

We have the same α1 and α2 arrays of the Stern algorithm that work on the p part but
here we need also other two arrays that work on the z part of the error. We call β1 and
β2 the next_comb arrays of sizes respectively d z

2
e and b z

2
c containing the indices of êz1

and êz2 . Formally, the algorithm exploits the following equation:

Vupê
T
S + ŝup = êTS∗[1:`]

ŝup + Vup1ê
T
1 + Vup2ê

T
2 = [êz1 êz2 ]T

ŝup + Vup1ê
T
1 + [êz1 01×`/2]T = Vup2ê

T
2 + [01×`/2 êz2 ]T
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From the latter we can precompute the following value:

σup1 = ŝup + Vup1ê
T
1 + [êz1 01×`/2]T

for all the possible
(
k/2
p/2

)
choices of α1 and all the possible

(
l/2
z/2

)
choices of β1 and store

the resulting vector σup1 together with the corresponding indices of α1 and β1 in a list θ.
Then enumerating all the possible

(
k/2
p/2

)
choices of α2 and all the possible

(
l/2
z/2

)
choices of

β2 we compute:
σup2 = Vup2ê

T
2 + [01×`/2 êz2 ]T

and we try to find this vector in the saved list θ. If a collision is found we have found
a candidate quadruple (α1, β1, α2, β2) for which we can control if HW(Vdownê

T
S + ŝdown) =

w − p− z, otherwise we try other combinations. Here the data structure is composed by
triples holding a binary vector σup1 long `, an array of indices of size dp

2
e and an array of

indices of size d z
2
e. For simplicity we present the algorithm with the list as data structure

but it has implemented even with the hash table: the procedure described in 3.2.6 can
be transformed in an algorithm using the hash table like we have done in the Stern. The
sorting function is not present and the find collision routine is substituted by the lookup
on the hash table with the check on the collisions: the rest is exactly the same.

Theorem 3.8. Given an instance of the syndrome decoding problem with H ∈ Zr×n2 ,
s ∈ Zr2 and the target weight w, the time complexity of Ball-Collision Decoding algorithm
3.2.6 for finding a target error e ∈ Zn2 such that HeT = s and HW(e) = w is:

CISD(n, r, w, p, `, z) =
1

Prsucc

citer =

(
n
w

)(
k/2
p/2

)2(`/2
z/2

)2( r−`
w−p−z

)(CIS(n, r)+

(
k/2

p/2

)(
2CNextComb(

k

2
,
p

2
) + 2CNextColSum(

k

2
,
p

2
, `)+(

l/2

z/2

)(
2CNextComb(

`

2
,
z

2
) + z + CFindColl(

(
k/2

p/2

)(
`/2

z/2

)
)+(

k/2
p/2

)(
`/2
z/2

)
2`

p(r − `)
)))

+ Csort(

(
k/2

p/2

)(
`/2

z/2

)
, `) + p+ z

While the spatial complexity is:

SISD(n, r, w, p, `, z) = SRREF(r, n) +O
((

k/2

p/2

)(
`/2

z/2

)
(
p

2
log2 (

k

2
) +

z

2
log2 (

`

2
) + `)

)
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Algorithm 3.2.6: Ball-Collision algorithm using lists for finding collisions
Input: s ∈ Zr2: syndrome vector

H ∈ Zr×n2 : binary parity check matrix
w: the weight of the error vector to be recovered

Output: e ∈ Zn2 : error vector to be recovered such that HeT = s, with wt(e) = w

Data: χ: an array of size n containing the indices of the columns of H after being permuted in the RREF
p: the weight of the last k bits of ê, 0 ≤ p ≤ w
`: length of the run of the starting bits of the error ê
z: the weight of ` run of bits
U ∈ Zr×r2 : matrix representing elementary row operations in the RREF, at first is an identity matrix

ŝ ∈ Zr2: permuted syndrome equal to the syndrome of e through [Ir V ], ŝ =

[
ŝup

ŝdown

]
, with ŝup = ŝ[1:`] and

ŝdown = ŝ[`+1:r]

V ∈ Zr×k2 : matrix V =

[
Vup

Vdown

]
with Vup = V[1:`][:] and Vdown = V[`+1:r][:], where vup i and vdown i are the columns of

matrix Vup and Vdown indexed by i
α1, α2: arrays of sizes respectively d p2 e and b

p
2
c containing indices in {0, . . . , b k

2
c − 1} and in {b k

2
c, . . . ,k - 1}

β1, β2: arrays of sizes respectively d z2 e and b
z
2
c containing indices in {0, . . . , b `

2
c − 1} and in {b `

2
c, . . . , `− 1}

Sup1 ∈ Z
d p
2
e−1×`

2 , Sup2 ∈ Z
b p
2
c−1×`

2 : partial sums matrices containing vectors obtained as the sum between ŝup and the
columns of the matrix Vup indexed by α1 and α2

σup1,σup2 ∈ Z`2
σdown ∈ Zr−`2 : vector containing the sum between ŝdown and the columns of Vdown indexed by α1 ∪ α2

θ: list containing triples made by indices taken from α1, indices taken from β1 and σup1 vector, initially is empty.

1 repeat
2 repeat
3 〈[Ir V ], U, χ, rref_error〉 ← find_rref(H)

4 until rref_error = true

5 ŝ← product_bit_matrix_vector(U, s)

6 α1 ← init_combination_array(d p
2
e, 0)

7 init_partial_sums(Sup1, Vup, ŝup, α1)

8 for j ← 0 to
(
k/2
p/2

)
do

9 σup1 ← next_col_sum_optimized(Sup1, Vup, ŝup, α1)

10 β1 ← init_combination_array(d z
2
e, 0)

11 for h← 0 to
(
l/2
z/2

)
do

12 foreach index in β1 do
13 flip_bit(σup1, index)

14 θ ← θ ∪ 〈α1, β1,σup1〉
15 next_comb(β1, 0, b `2 c − 1)

16 next_comb(α1, 0, b k2 c − 1)

17 sort(θ)

18 α2 ← init_combination_array(b p
2
c, b k

2
c)

19 init_partial_sums(Sup2, Vup, 01×`, α2)

20 for j ← 0 to
(
k/2
p/2

)
do

21 σup2 ← next_col_sum_optimized(Sup2, Vup, 01×`, α2)

22 β2 ← init_combination_array(b z
2
c, b `

2
c)

23 for h← 0 to
(
`/2
z/2

)
do

24 foreach index in β2 do
25 flip_bit(σup2, index)

26 〈left, right〉 ← find_collision(σup2, θ)

27 if left 6= −1 ∧ right 6= −1 then
28 foreach 〈α1, β1,σup1〉 in θ[left:right] do
29 σdown ← ŝdown
30 foreach i in α1 ∪ α2 do
31 σdown ← σdown ⊕ vdown i
32 if hamming_weight(σdown) = w − p− z then
33 ê← [01×` σdown 01×k]

34 foreach i ∈ β1 ∪ β2 do
35 êi ← 1

36 foreach i ∈ α1 ∪ α2 do
37 êi+r ← 1

38 e← error_reconstruction(ê, χ)

39 return e
40 next_comb(β2, b `2 c, `− 1)

41 next_comb(α2, b k2 c, k − 1)

42 until HW(e) = w

Proof. The success probability in the BCD algorithm is the division between the admis-
sibile errors satisfying the hypothesis of the ISD that are

(
k/2
p/2

)2(`/2
z/2

)2( r−`
w−p

)
and all the
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possible error vectors with weight w
(
n
w

)
. The loop at lines 8-16 builds the list θ spanning

all the possible combinations
(
k/2
p/2

)
: for each combination all

(
`/2
z/2

)
possible ones are con-

sidered. Hence, for one combination in
(
k/2
p/2

)
we call the NextComb and the NextColSum

and then we call
(
`/2
z/2

)
times the NextComb and we flip z/2 bits on the vector. Then,

for computing the vectors for finding collisions in θ, we have the same passages already
described: one call to NextComb and NextColSum,

(
`/2
z/2

)
calls to NextComb and z/2 bit

flip that adds to the previous one resulting in the z linear term we can see in the formula.
In one iteration we call the find collision procedure

(
k/2
p/2

)(
`/2
z/2

)
times, one for each target

vector computed from α2 and β2. When we find a collision we need to sum p+ 1 vectors
of size r − ` obtaining the complexity p(r − `). These sums are done with probability of
(k/2p/2)(

`/2
z/2)

2`
since all the possible vectors ŝup are 2` and only

(
k/2
p/2

)(
`/2
z/2

)
attempts hitting the

correct one are made. The sorting algorithm for ordering the list θ is called only once dur-
ing an iteration and the last p term is for reconstructing the error from α while the z term
from β. In the spatial complexity we report only the significant terms. The first is the one
relative to the computation of the RREF. Then we have to store a list θ made by

(
k/2
p/2

)(
`/2
z/2

)
elements. Each element takes ` bits for storing the binary vector, p

2
log2 (k

2
) bits for storing

the array of indices of size p/2 and z
2

log2 ( `
2
) bits for storing the array of indices of size

z/2. In conclusion, the space required by the list is
(
k/2
p/2

)(
`/2
z/2

)
(p

2
log2 (k

2
) + z

2
log2 ( `

2
) + `)

bits.

3.2.6. Finiasz-Sendrier

The Finiasz-Sendrier algorithm [15] improves the Stern’s algorithm removing the ` window
of zeroes in the permuted error and moving this ` region in the part of the error where we
need to guess p error bits. Since the p positions to be guessed are picked among the last
k + ` position of the error vector and not among the last k as in the previous ISDs, we
need to have only an identity matrix of size (r− `)× (r− `) on the upper leftmost portion

of Ĥ obtaining Ĥ =

[
Ir−` Vup

0(r−`)×` Vdown

]
. The first part of the algorithm is dedicated not to

produce a full systematic form but a partial systematic form: this matrix can be computed
with the standard partial RREF seen in Section 2.1.3, the partial RREF optimized seen
in Section 2.1.4 or the M4RI method seen in Section 2.1.5. After obtaining the partial
systematic form with V of size r×(k+`) we split the p weight binary error vector into two
vectors of weight p

2
applying the same meet-in-the-middle strategy seen before. Formally

we start from these relations where we indicate êS = ê[r−`+1:n]:

ê1 = êS[1: k+`
2

] HW(ê1) = dp
2
e ê2 = êS[ k+`

2
+1:k] HW(ê2) = bp

2
c
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Figure 3.7: Weight distribution in Finiasz-Sendrier algorithm

and we can derive:

Vdownê
T
S = ŝdown ⇔ ŝdown = Vdown1ê

T
1 + Vdown2ê

T
2 =

∑
i∈α1

vdown i +
∑
j∈α2

vdown j

(3.9)

where α1 and α2 are the next_comb arrays of sizes respectively dp
2
e and bp

2
c holding the

error-affected positions in ê1 and ê2. For all the possible combinations
(

(k+`)/2
p/2

)
in α1 we

compute:
σdown1 = ŝdown + Vdown1ê

T
1

saving in the list θ the binary vector σdown1 with the corresponding indices of α1. Then
for all the possible combinations

(
(k+`)/2
p/2

)
in α2 we compute:

σdown2 = Vdown2ê
T
2

trying to find collisions in θ. If we find a collision we can control if HW(σup = ŝup+Vupê
T
S) =

w−p. If this holds we can reconstruct the target error otherwise we try other combinations.
As before, the ISD is analyzed using a list as collision structure but the algorithm has
been implemented even with the hash table and it can be derived with the same reasoning
followed in the Ball-Collision Decoding algorithm.

Theorem 3.9. Given an instance of the syndrome decoding problem with H ∈ Zr×n2 ,
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Algorithm 3.2.7: Finiasz-Sendrier algorithm using lists for finding collisions
Input: s ∈ Zr2: syndrome vector

H ∈ Zr×n2 : binary parity check matrix
w: the weight of the error vector to be recovered
`: algorithmic parameter such as 0 ≤ ` ≤ r − w + p

Output: e ∈ Zn2 : error vector to be recovered such that HeT = s, with wt(e) = w
Data: χ: an array of size n containing the indices of the columns of H after being permuted in the

RREF
p: the weight of the last k + ` bits of ê, 0 ≤ p ≤ w
U ∈ Zr×r2 : matrix representing elementary row operations in the RREF, at first is an
identity matrix

ŝ ∈ Zr2: permuted syndrome equal to the syndrome of e through [Ir V ], ŝ =
[
ŝup
ŝdown

]
, with

ŝup = ŝ[1:r−`] and ŝdown = ŝ[r−`+1:r]

V ∈ Zr×(k+`)2 : matrix V =

[
Vup
Vdown

]
with Vup = V[1:r−`][:] and Vdown = V[r−`+1:r][:], where

vup i and vdown i are the columns of matrix Vup and Vdown indexed by i
α1, α2: arrays of sizes respectively dp2e and b

p
2c containing indices in {0, . . . , bk+`2 c − 1} and

in {bk+`2 c, . . . , k + `− 1}
Sdown1 ∈ Zd

p
2 e−1×`

2 , Sdown2 ∈ Zb
p
2 c−1×`

2 : partial sums matrices containing vectors obtained as
the sum between ŝdown and the columns of the matrix Vdown indexed by α1 and α2

σdown1,σdown2 ∈ Z`2
σup ∈ Zr−`2 : vector containing the sum between ŝup and the columns of Vup indexed by
α1 ∪ α2

θ: list containing pairs made by indices taken from α1 and σdown1 vector, initially is empty.

1 repeat
2 repeat
3 〈[Ir V ], U, χ, rref_error〉 ← find_partial_rref(H)
4 until rref_error = true
5 ŝ← product_bit_matrix_vector(U, s)
6 α1 ← init_combination_array(dp2e, 0)
7 init_partial_sums(Sdown1, Vdown, ŝdown, α1)

8 for j ← 0 to
(
(k+`)/2
p/2

)
do

9 σdown1 ← next_col_sum_optimized(Sdown1, Vdown, ŝdown, α1)
10 θ ← θ ∪ 〈α1,σdown1〉
11 next_comb(α1, 0, bk+`2 c − 1)

12 sort(θ)
13 α2 ← init_combination_array(bp2c, b

k+`
2 c)

14 init_partial_sums(Sdown2, Vdown,01×`, α2)

15 for j ← 0 to
(
(k+`)/2
p/2

)
do

16 σdown2 ← next_col_sum_optimized(Sdown2, Vdown,01×`, α2)
17 〈left, right〉 ← find_collision(σdown2, θ)
18 if left 6= −1 ∧ right 6= −1 then
19 foreach 〈α1,σdown1〉 in θ[left:right] do
20 σup ← σup ⊕ ŝup
21 foreach i in α1 ∪ α2 do
22 σup ← σup ⊕ vup i
23 if hamming_weight(σup) = w − p then
24 ê← [σup 01×(k+`)]
25 foreach i ∈ α1 ∪ α2 do
26 êi+r−` ← 1
27 e← error_reconstruction(ê, χ)
28 return e
29 next_comb(α2, bk+`2 c, k + `− 1)

30 until HW(e) = w
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s ∈ Zr2 and the target weight w, the time complexity of Finiasz-Sendrier algorithm 3.2.7
for finding a target error e ∈ Zn2 such that HeT = s and HW(e) = w is:

CISD(n, r, w, p, `) =
1

Prsucc

citer =

(
n
w

)(
(k+`)/2
p/2

)2( r−`
w−p

)(CIS−P(n, r, `)+

(
(k + `)/2

p/2

)(
2CNextComb(

(k + `)

2
,
p

2
) + 2CNextColSum(

(k + `)

2
,
p

2
, `)+

CFindColl(

(
(k + `)/2

p/2

)
) +

(
(k+`)/2
p/2

)
2`

p(r − `)
))

+ Csort(

(
(k + `)/2

p/2

)
, `) + p

While the spatial complexity is:

SISD(n, r, w, p, `) = SRREF(r, n) +O
((

(k + `)/2

p/2

)
(
p

2
log2 (

k + `

2
) + `)

)

Proof. The success probability in the Finiasz-Sendrier algorithm is the division between
the admissibile errors satisfying the hypothesis of the ISD that are

(
(k+`)/2
p/2

)2( r−`
w−p

)
and

all the possible error vectors with weight w
(
n
w

)
. The loop at lines 8-11 builds the list θ

spanning all the possible combinations
(

(k+`)/2
p/2

)
: for each of these we call the NextComb

and the NextColSum. Then, we consider again all the possible combinations
(

(k+`)/2
p/2

)
for

computing the vectors for finding collisions in θ: we have one call to NextComb, one call
to NextColSum and then we call the find collision procedure. When we find a collision
we need to sum p+ 1 vectors of size r− ` obtaining the complexity p(r− `). These sums

are done with probability of ((k+`)/2
p/2 )
2`

since all the possible vectors ŝdown are 2` and only(
(k+`)/2
p/2

)
attempts hitting the correct one are made. The sorting algorithm for ordering

the list θ is called only once during an iteration and the last p term is for reconstructing
the error from α. In the spatial complexity the first term is the one relative to the
computation of the RREF. Then, we have to store a list θ made by

(
(k+`)/2
p/2

)
elements.

Each element takes ` bits for storing the binary vector and p
2

log2 (k+`
2

) bits for storing the
array of indices. In conclusion, the space required by the list is

(
(k+`)/2
p/2

)
(p

2
log2 (k+`

2
) + `)

bits.

3.2.7. May-Meurer-Thomae

The May-Meurer-Thomae (MMT) algorithm [1] improves the Finiasz-Sendrier’s algorithm
changing the way in which the p positions of the vector are chosen. Instead of splitting
them equally as p

2
in the lefmost k+`

2
columns and p

2
in the rightmost k+`

2
ones, the algo-

rithm picks two disjoint sets α, β ⊂ {0, . . . , k+ `− 1}. The MMT algorithm considers the
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ŝup
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Figure 3.8: Weight distribution in May-Meurer-Thomae algorithm

Vdown obtained after the partial RREF logically splitted row-wise into two sub-matrices:

Vdown2 having `1 rows and Vdown1 having `2 rows, Vdown =

[
Vdown2

Vdown1

]
. After the call to the

partial RREF the MMT works in the situation showed in Figure 3.8.
The sets α and β have size respectively equal to p11 = dp

2
e and p12 = bp

2
c and their union

composes the p indices of the vector êS = ê[r−`+1:n] set to 1. These sets are in turn ob-
tained as the disjoint union of a pair of subsets of size p

4
. To be precise: α = α1∪α2 where

α1 and α2 have size respectively equal to p21 = dp11

2
e and p22 = bp11

2
c while β = β1 ∪ β2

where β1 and β2 have size respectively equal to p23 = dp12

2
e and p24 = bp12

2
c.

The disjoint unions are realized picking the indices of α1, β1 in {0, . . . , k+`
2
− 1} and the

indices of α2, β2 in {k+`
2
, . . . , k + `− 1}. Formally we have:

Vdownê
T
S = ŝdown ⇔ ŝdown =

∑
i∈α

vdown i +
∑
j∈β

vdown j[
ŝdown2

ŝdown1

]
=

[
adown2

ŝdown1

]
+

[
bdown2

01×`2

]
,

[
adown2

ŝdown1

]
=
∑
j∈β

[
vdown2 j

vdown1 j

]
,

[
bdown2

01×`2

]
=
∑
i∈α

[
vdown2 i

vdown1 i

]

and exploiting the same reasoning of Stern we can derive:[
adown2

ŝdown1

]
+
∑
j∈β1

[
vdown2 j

vdown1 j

]
=
∑
j∈β2

[
vdown2 j

vdown1 j

]
,

[
bdown2

01×`2

]
+
∑
i∈α1

[
vdown2 i

vdown1 i

]
=
∑
i∈α2

[
vdown2 i

vdown1 i

]
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Figure 3.9: Lists of MMT algorithm

The elements of the first final list (at layer 1) holding candidate values for α, that we call
from now θ, respect the following equation: 01×`2 +

∑
i∈α1

vdown1 i =
∑

i∈α2
vdown1 i (θ in

Figure 3.9). While the elements of the second final list respect: ŝdown1+
∑

j∈β1
vdown1 i =∑

j∈β2
vdown1 i. Only the first final list θ needs to be materialized since all the vectors

of the second final list can be computed on the fly reducing the memory used by the
algorithm. For building the list θ we have to merge the two upper lists at layer 2. We will
call ψ1 the first materialized list at layer 2 holding pairs made by an array of indices α1 long
p21 and a binary vector long `1 resulting from

∑
i∈α1

vdown2 i. Then, for each combination
of α2 we compute on the fly the vectors resulting from

∑
i∈α2

vdown2 i: for each of these
vectors we try to find collisions with the vectors saved in the list ψ1. When we find a
collision we save α = α1∪α2 in the list θ at layer 1 together with the vector

∑
i∈α vdown1 i.

The same reasoning applies for the right part of the Figure 3.9: we materialize a list ψ2

holding pairs made by an array of indices β1 and binary vectors ŝdown2 +
∑

j∈β1
vdown2 i

long `1 for all the possible combinations. Then, we compute on the fly the vectors for
finding collisions in ψ2 as done before. When a collision is found, we have a candidate
pair (β1, β2) and we compute on the fly σdown1 = ŝdown1 +

∑
j∈β vdown1 i. Now, without

saving the result, we immediately try to find a collision in the list θ: if a collision is found,
and α and β are disjoint, we can check if HW(ŝup +

∑
i∈α∪β vup i) = w − p. In Figure 3.9

the highlighted red lists are the materialized ones, while the others are not stored in the
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implementation of the algorithm.

Algorithm 3.2.8: May-Meurer-Thomae algorithm
Input: s ∈ Zr2: syndrome vector

H ∈ Zr×n2 : binary parity check matrix
w: the weight of the error vector to be recovered
` : algorithmic parameter such as 0 ≤ ` ≤ r − w + p

Output: e ∈ Zn2 : error vector to be recovered such that HeT = s, with wt(e) = w

Data: χ: an array of size n containing the indices of the columns of H after being permuted in the
RREF
p: the weight of the last k + ` bits of ê, 4 ≤ p ≤ w.
p11 = dp2e, p12 = bp2c, p21 = dp112 e, p22 = bp112 c, p23 = dp122 e, p24 = bp122 c
`1, `2: parameters such that `1 + `2 = `

U ∈ Zr×r2 : matrix representing elementary row operations in the RREF, at first is an
identity matrix

ŝ ∈ Zr2: permuted syndrome, ŝ =

 ŝup

ŝdown2

ŝdown1

, with ŝup = ŝ[1:r−`], ŝdown2 = ŝ[r−`+1:r−`2]

and ŝdown1 = ŝ[r−`2+1:r]

V ∈ Zr×(k+`)2 : matrix V =

 Vup

Vdown2

Vdown1

 with Vup = V[1:r−`][:], Vdown2 = V[r−`+1:r−`2][:] and

Vdown1 = V[r−`2+1:r][:], where vup i,vdown2 i and vdown1 i are the columns of matrix Vup,
Vdown2 and Vdown1 indexed by i
α1, α2: arrays of sizes respectively p21 and p22 containing indices in {0, . . . , bk+`2 c − 1} and
in {bk+`2 c, . . . , k + `− 1}
β1, β2: arrays of sizes respectively p23 and p24 containing indices in {0, . . . , bk+`2 c − 1} and in
{bk+`2 c, . . . , k + `− 1}
Sα1
∈ Zp21−1×`2 , Sα2

∈ Zp22−1×`2 : partial sums matrices containing vectors obtained as the
sum of the columns of the matrix Vdown2 indexed by α1 and α2

Sβ1
∈ Zp23−1×`2 , Sβ2

∈ Zp24−1×`2 : partial sums matrices containing vectors obtained as the
sum of the columns of the matrix Vdown2 indexed by β1 and β2
σdown2 ∈ Z`12
σdown1 ∈ Z`22
σup ∈ Zr−`2 :
ψ1: first materialized list at layer 2 containing pairs made by indices in {0, . . . , k+`2 − 1}
taken from α1 and σdown2 vector of size `1. The length of the list is

(
(k+`)/2
p/2

)
ψ2: second materialized list at layer 2 list containing pairs made by indices in
{0, . . . , k+`2 − 1} taken from β1 and σdown2 vector of size `1. The length of the list is(
(k+`)/2
p/2

)
θ: list at layer 1 containing pairs made by indices in {0, . . . , k+ `−1} taken from α = α1∪α2

and σdown1 vector of size `2. The length of the list is kept at most at
(
(k+`)/2
p/2

)
/
(
p
p/2

)
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1 repeat
2 repeat
3 〈[Ir V ], U, χ, rref_error〉 ← find_partial_rref(H)
4 until rref_error = true
5 ŝ← product_bit_matrix_vector(U, s)
6 α1 ← init_combination_array(p21, 0)
7 init_partial_sums(Sα1

, Vdown2, 01×`1 , α1)

8 ψ1 ← ∅
9 for j ← 0 to

(
(k+`)/2
p21

)
do

10 σdown2 ← next_col_sum_optimized(Sα1
, Vdown2, 01×`1 , α1)

11 ψ1 ← ψ1 ∪ 〈α1,σdown2〉
12 next_comb(α1, 0, b k+`2

c − 1)

13 sort(ψ1)

14 α2 ← init_combination_array(p22, b k+`2
c)

15 init_partial_sums(Sα2
, Vdown2, 01×`1 , α2)

16 θ ← ∅
17 for j ← 0 to

(
(k+`)/2
p22

)
do

18 σdown2 ← next_col_sum_optimized(Sα2
, Vdown2, 01×`1 , α2)

19 〈left2, right2〉 ← find_collision(σdown2, ψ1)
20 if left2 6= −1 ∧ right2 6= −1 then
21 foreach 〈α1〉 in ψ1[left2:right2] do
22 α← α1 ∪ α2
23 foreach i in α do
24 σdown1 ← σdown1 ⊕ vdown1 i
25 θ ← θ ∪ 〈α,σdown1〉
26 next_comb(α2, b k+`2

c, k + `− 1)

27 sort(θ)
28 β1 ← init_combination_array(p23, 0)
29 init_partial_sums(Sβ1 , Vdown2, 01×`1 , β1)

30 ψ2 ← ∅
31 for j ← 0 to

(
(k+`)/2
p23

)
do

32 σdown2 ← next_col_sum_optimized(Sβ1 , Vdown2, 01×`1 , β1)

33 ψ2 ← ψ2 ∪ 〈β1,σdown2〉
34 next_comb(β1, 0, b k+`2

c − 1)

35 sort(ψ2)

36 β2 ← init_combination_array(p24, b k+`2
c)

37 init_partial_sums(Sβ2 , Vdown2, 01×`1 , β2)

38 for j ← 0 to
(
(k+`)/2
p24

)
do

39 σdown2 ← next_col_sum_optimized(Sβ2 , Vdown2, ŝdown2, β2)

40 〈left2, right2〉 ← find_collision(σdown2, ψ2)
41 if left2 6= −1 ∧ right2 6= −1 then
42 foreach 〈β1〉 in ψ2[left2:right2] do
43 σdown1 ← ŝdown1
44 foreach i in β1 ∪ β2 do
45 σdown1 ← σdown1 ⊕ vdown1 i
46 〈left1, right1〉 ← find_collision(σdown1, θ)
47 if left1 6= −1 ∧ right1 6= −1 then
48 foreach 〈α〉 in θ[left1:right1] do
49 if α ∩ (β1 ∪ β2) = ∅ then
50 σup ← ŝup
51 foreach i in α do
52 σup ← σup ⊕ vup i

53 foreach i in β1 ∪ β2 do
54 σup ← σup ⊕ vup i

55 if hamming_weight(σup) = w − p then
56 ê← [σup 01×k+`]

57 foreach i ∈ α do
58 êi+r−` ← 1

59 foreach i ∈ β1 ∪ β2 do
60 êi+r−` ← 1

61 e← error_reconstruction(ê, χ)
62 return e
63 next_comb(β2, b k+`2

c, k + `− 1)

64 until HW(e) = w
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Theorem 3.10. Given an instance of the syndrome decoding problem with H ∈ Zr×n2 ,
s ∈ Zr2 and the target weight w, the time complexity of May-Meurer-Thomae algorithm
3.2.8 for finding a target error e ∈ Zn2 such that HeT = s and HW(e) = w is:

CISD(n, r, w, p, `1, `2) =
1

Prsucc

citer =

(
n
w

)(
k+`
p

)(
r−`
w−p

)(CIS−P(n, r, `)+(
k+`

2
p
4

)(
4CNextComb((k + `)/2, p/4) + 4CNextColSum((k + `)/2, p/4, `1)+

2CFindColl(

(
k+`

2
p
4

)
) + 2

(
(k+`)/2
p/4

)(
p
p/2

) 1

2`1
p

2
`2+(

(k+`)/2
p/4

)(
p
p/2

) 1

2`1

(p
2
`2 + CFindColl(

(
k+`

2
p
2

)
) +

(
(k+`)/2
p/2

)(
p
p/2

)
2`2

p(r − `)
)))

+

2Csort(

(
k+`

2
p
4

)
, `1) + Csort(

(
k+`

2
p
2

)
, `2) + p

While the spatial complexity is:

SISD(n, r, w, p, `1, `2) = SRREF(r, n)+

O
((

(k + `)/2

p/4

)
(
p

4
log2 (

k + `

2
) + `1) +

(
(k + `)/2

p/2

)
(
p

2
log2 (k + `) + `2)

)

Proof. The success probability in the May-Meurer-Thomae algorithm is the division be-
tween the admissibile errors satisfying the hypothesis of the ISD that are

(
k+`
p

)(
r−`
w−p

)
and

all the possible error vectors with weight w
(
n
w

)
. Then we span four times all the possible(

(k+`)/2
p/4

)
combinations for building the two materialized lists at layer 2 and for computing

on the fly the vectors of the other two lists. Therefore, we have four calls to NextComb
and NextColSum. Then, for building the materialized list at layer 1, we call the find
collision procedure and when collisions are found we need to sum p

2
vectors of size `2 that

are the vectors we will save in the list at layer 1. These sums are done with probability

of ((k+`)/2
p/4 )

( p
p/2)

1
2`1

since all the possible vectors are 2`1 and only ((k+`)/2
p/4 )

( p
p/2)

attempts hitting the

correct one are made since only
(
p
p/2

)
representations of the solution exists. The find

collision procedure is called another time to compute the vectors on the fly of the other
list at layer 1. Then, with the same probability already discussed, we need to do (p+1)/2

sums between vectors of size `2 and we call the find collision procedure to find collisions
in the list at layer 1. If a collision is found we finally sums p + 1 vectors of size r − `

for checking the weight. These final sums are done with probability of ((k+`)/2
p/2 )( p

p/2)
2`2

since
all the possible vectors are 2`2 and only

(
(k+`)/2
p/2

)(
p
p/2

)
attempts hitting the correct one
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are made. Since we have three lists to sort for applying later the find collision algorithm
we have three calls to the sorting procedure. The last p term is for reconstructing the
error from α ∪ β. In the spatial complexity we report only the significant terms. The
first is the one relative to the computation of the RREF. Then, we have to store two lists
made by

(
(k+`)/2
p/4

)
elements. Each element takes `1 bits for storing the binary vector and

p
4

log2 (k+`
2

) bits for storing the array of indices. The last term is the space for the list at
layer 1.

3.2.8. Becker-Joux-May-Meurer
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Figure 3.10: Weight distribution in BJMM algorithm

The Becker-Joux-May-Meurer algorithm [8] improves the May-Meurer-Thomae algorithm
adding one layer for building the lists recursively and changing how the elements of the
lists are generated. The BJMM algorithm considers that it is possible to represent the
error with weight p, êS, as the sum of two error vectors ê1 and ê2 with weight equal to
p
2
+∆ under the assumption that the extra ∆ ones cancel out during the addition. Allowing

this extra weights raises the number of valid pairs ê1, ê2 to represent êS by a factor equal
to
(
k+`−p

∆

)
. This improvement is employed to reduce the size of the lists of values which

need to be computed to find êS with a meet-in-the-middle strategy checking Vdownê
T
1 +

Vdownê
T
2 = ŝdown. The existing pairs (ê1, ê2) for constructing êS are R =

(
p
p/2

)(
k+`−p

∆

)
and

only a 1
R fraction of the

(
k+`

p/2+∆

)2
possible pairs can be exhaustively searched with the

expectation of finding a solution (assuming an uniform distribution over all the possible
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ones). For enumerating only a 1
R fraction of the pairs the BJMM, as the MMT algorithm,

performs partial checks on a smaller bits than ` discarding the invalid pairs. The partial
checks seen in MMT work only with two layers while the BJMM works in three layers
considering the extra weights. Formally, for constructing êS, we search for two binary
vectors ê1

(1) and ê2
(1) with weights repectively equal to p11 = dp

2
e+∆1 and p12 = bp

2
c+∆1.

In turn ê1
(1) and ê2

(1) are generated by the pairs ê1
(2), ê2

(2) and ê3
(2), ê4

(2) with weights
respectively equal to p21 = dp11

2
e+∆2, p22 = bp11

2
c+∆2, p23 = dp12

2
e+∆2, p24 = bp12

2
c+∆2.

Finally ê1
(2), ê2

(2), ê3
(2), ê4

(2) are generated by the pairs ê2i
(3),ê2i+1

(3), i ∈ {1, 2, 3, 4} with
weights p31 = dp21

2
e, p32 = bp21

2
c, p33 = dp22

2
e, p34 = bp22

2
c, p35 = dp23

2
e, p36 = bp23

2
c, p37 =

dp24

2
e, p38 = bp24

2
c. At layer 3 no extra weights are used for generating the errors at layer

2.
For adopting this approach no overlapping positions for the ones should be present between
any pairs of errors at layer 3: this is solved choosing the positions of the ones of ê2i

(3)

from a set that is disjoint from the set where we pick the ones of ê2i+1
(3). After the

partial RREF we have the situation showed in Figure 3.10 where we have to choose two
parameters, `1 and `2 such that `1 > `2. The last thing we need to consider is that all the
values Vdown1 ê

(1)
i , Vdown2 ê

(2)
i are matched against should be unrelated, so that the sampling

of pairs during the merge of two lists is picking the items indipendently from another list
merger on the same level. This allows the list merger at a lower level to consider the
elements from above to be picked at random. Formally we need to modify the matching
equations, considering x1, x2 and x3 random bit vectors long `2:

Vdown1ê1
(1) = Vdown1ê2

(1) + ŝdown1 → no change

Vdown2ê1
(2) = Vdown2ê2

(2) + ŝdown2 → Vdown2ê1
(2) = Vdown2ê2

(2) + ŝdown2 + x1

Vdown2ê3
(2) = Vdown2ê4

(2) + 01×(`1−`2) → Vdown2ê3
(2) = Vdown2ê4

(2) + x1

Vdown3ê1
(3) = Vdown1ê2

(3) + ŝdown3 → Vdown3ê1
(3) = Vdown3ê2

(3) + ŝdown3 + x1 + x2

Vdown3ê3
(3) = Vdown3ê4

(3) + 01×`2 → Vdown3ê3
(3) = Vdown3ê4

(3) + x2

Vdown3ê5
(3) = Vdown1ê6

(3) + 01×`2 → Vdown3ê5
(3) = Vdown3ê6

(3) + x1 + x3

Vdown3ê7
(3) = Vdown3ê8

(3) + 01×`2 → Vdown3ê7
(3) = Vdown3ê8

(3) + x3

As the previous algorithm we will use arrays of indices α and β instead of using the
vectors êi(j) directly. Initially, for building the lists at layer 3, we need to extract random
sets with random indices and span all the possible combinations: since here the indices
are random and the combinations to be generated are not sequential, we can’t use the
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previous techniques of NextComb and NextColSum, but we need to recursively compute
all the combinations of the indices inside the current set. At Figure 3.11 we can see how
the lists in the BJMM algorithm are organized and at Algorithm 3.2.9 its functioning is
reported.

layer 3
θ1 θ2 θ3 θ4

`2

p3 = p2

2

layer 2
`1-`2

φ1 φ2

p2 = p1

2
+ ∆2

layer 1
`2

η
p1 = p

2
+ ∆1

Compute σup = ŝup +
∑

i∈α∪β vup i p

Figure 3.11: Lists of BJMM algorithm

Theorem 3.11. Given an instance of the syndrome decoding problem with H ∈ Zr×n2 ,
s ∈ Zr2 and the target weight w, the time complexity of Becker-Joux-May-Meurer algorithm
3.2.9 for finding a target error e ∈ Zn2 such that HeT = s and HW(e) = w is:

CISD(n, r, w, p, `1, `2,∆1,∆2) =
1

Prsucc

citer

where the success probability is equal to the one of the MMT multiplied by the factor
quantifying the fact that it is possible, picking two disjoint sets over the subsets of pi
positions from the error vector are selected, may result in a set which does not contain
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Algorithm 3.2.9: Becker-Joux-May-Meurer algorithm
Input: s ∈ Zr2: syndrome vector

H ∈ Zr×n2 : binary parity check matrix
w: the weight of the error vector to be recovered
` : algorithmic parameter such as 0 ≤ ` ≤ r − w + p

Output: e ∈ Zn2 : error vector to be recovered such that HeT = s, with wt(e) = w
Data: χ: an array of size n containing the indices of the columns of H after being

permuted in the RREF
U ∈ Zr×r2 : matrix representing elementary row operations done in the RREF
p: the weight of the last k + ` bits of ê, 0 ≤ p ≤ w.
∆1,∆2: extra weights that will cancel out during the additions.
p11 = dp

2
e+ ∆1, p12 = bp

2
c+ ∆1

p21 = dp11

2
e+ ∆2, p22 = bp11

2
c+ ∆2, p23 = dp12

2
e+ ∆2, p24 = bp12

2
c+ ∆2

p31 = dp21

2
e, p32 = bp21

2
c, p33 = dp22

2
e, p34 = bp22

2
c, p35 = dp23

2
e, p36 = bp23

2
c, p37 =

dp24

2
e, p38 = bp24

2
c

`1, `2: parameters respecting 0 ≤ `2 < `1 ≤ `

ŝ ∈ Zr2: permuted syndrome, ŝ =


ŝup
ŝdown3

ŝdown2

ŝdown1

, with ŝup = ŝ[1:r−`],

ŝdown3 = ŝ[r−`+1:r−`1], ŝdown2 = ŝ[r−`1+1:r−`2] and ŝdown1 = ŝ[r−`2+1:r]

V ∈ Zr×(k+`)
2 : matrix V =


Vup

Vdown3

Vdown2

Vdown1

 with Vup = V[1:r−`][:],

Vdown3 = V[r−`+1:r−`1][:], Vdown2 = V[r−`1+1:r−`2][:] and Vdown1 = V[r−`2+1:r][:],
where vup i,vdown3 i,vdown2 i and vdown1 i are the columns of matrix Vup,
Vdown3,Vdown2 and Vdown1 indexed by i
α: array of size p3j where j = 1, 3, 5, 7 containing dk+`

2
e random indices in

{0, . . . , k + `− 1}
β: array of size p3z where z = 2, 4, 6, 8 containing bk+`

2
c random indices in

{0, . . . , k + `− 1}
θ: array of four lists holding the materialized lists at layer 3 , they contain
pairs made by an array of indices long p3j taken by α and a vector sum with
length `2 where j = 1, 3, 5, 7 depends on the iteration of the main loop
θ_sizes: array of four integer holding the size for each list inside the array θ
θaux: auxiliary list at layer 3, it contains pairs made by an array of indices
long p3j taken by β and a vector sum with length `2 where j = 2, 4, 6, 8
depends on the iteration of the main loop
θaux_size: integer holding the size of the auxiliary list
φ: array of two lists holding the materialized lists at layer 2 , they contain
pairs made by an array of indices with maximum length p2j and a vector sum
with length `1 − `2 where j = 0, 2 depends on the iteration of the main loop
φ_sizes: array of two integer holding the size for each list inside the array φ
η: list holding the materialized list at layer 1 , it contains pairs of an array of
indices with maximum length p11 and a vector sum with length `− `1

η_size: integer holding the size of the array η
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1 repeat
2 repeat
3 〈[Ir V ], U, χ, rref_error〉 ← find_partial_rref(H)
4 until rref_error = true
5 ŝ← product_bit_matrix_vector(U, s)
6 x1,x2 ← generate_random_bit_string(`2)
7 for i← 0 to 3 do
8 switch i do
9 case 0 do

10 α_size← p31
11 β_size← p32
12 case 1 do
13 α_size← p33
14 β_size← p34
15 case 2 do
16 α_size← p35
17 β_size← p36
18 case 3 do
19 α_size← p37
20 β_size← p38
21 if i = 1 ∨ i = 3 then
22 if φ_sizesi/2 > 0 then
23 sort(φi/2)

24 else
25 break
26 if i = 2 then
27 if η_size > 0 then
28 sort(η)
29 else
30 break
31 α← random_extract(k + `)
32 β ← {0, . . . , k + `− 1} \ α
33 θ_sizesi ← 0
34 foreach comb in AllComb(α) do
35 if i = 0 then
36 σdown3 ← ŝdown3 ⊕ x1 ⊕ x2
37 if i = 1 ∨ i = 3 then
38 σdown3 ← x2
39 if i = 2 then
40 σdown3 ← x1 ⊕ x2
41 σdown3 ← σdown3 ⊕

∑
z∈comb vdown3 z

42 θ_sizesi ← θ_sizesi + 1
43 θi ← θi ∪ 〈comb,σdown3〉
44 sort(θi)
45 foreach comb in AllComb(β) do
46 σ2 ←

∑
z∈comb vdown3 z

47 θaux ← θaux ∪ 〈comb,σ2〉
48 θaux_size← θaux_size + 1

49 foreach 〈β(3),σ2〉 in θaux do
50 〈left3, right3〉 ← find_collision(σdown3, θi)
51 if left3 6= −1 ∧ right3 6= −1 then
52 foreach 〈α(3),σ(3)〉 in θi[left3:right3] do
53 δ(2) ← α(3) ∪ β(3)

54 if i = 0 then
55 φ0 ← φ0 ∪ 〈δ(2),

∑
z∈δ(2)

vdown2 z ⊕ ŝdown2〉
56 φ_sizes0 ← φ_sizes0 + 1

57 if i = 2 then
58 φ1 ← φ1 ∪ 〈δ(2),

∑
z∈δ(2)

vdown2 z〉
59 φ_sizes1 ← φ_sizes1 + 1

60 else
61 〈left2, right2〉 ← find_collision(

∑
z∈δ(2)

vdown2 z, φi/2)

62 if left2 6= −1 ∧ right2 6= −1 then
63 foreach 〈α(2),σ(2)〉 in φi/2[left2:right2] do
64 δ(1) ← (α(2) ∪ δ(2)) \ (α(2) ∩ δ(2))
65 if Size(δ(1)) = (i = 1 ? p11 : p12) then
66 if i = 1 then
67 η ← η ∪ 〈δ(1),

∑
z∈δ(1)

vdown1 z ⊕ ŝdown1〉
68 else
69 〈left1, right1〉 ← find_collision(

∑
z∈δ(1)

vdown1 z, η)

70 if left1 6= −1 ∧ right1 6= −1 then
71 foreach 〈α(1),σ(1)〉 in η[left1:right1] do
72 δ(0) ← (α(1) ∪ δ(1)) \ (α(1) ∩ δ(1))
73 if size(δ(0)) = p then
74 if hamming_weight(

∑
z∈δ(0)

vup z ⊕ ŝup) = w − p then
75 ê← [

∑
z∈δ(0)

vup z ⊕ ŝup 01×k+`]

76 foreach z in δ(0) do
77 êz+r−` ← 1

78 e← error_reconstruction(ê, χ)
79 return e

80 until HW(e) = w
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enough positions. Such a factor is
(((k+`)/2

p3
)

2

(k+`
p2

)

)4

. The cost of an iteration is the following:

(
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+
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2`
(p(r − `))

)
+

4Csort(

(
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p3

)
, `2) + 2Csort(

(
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, `1) + Csort(
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While the spatial complexity is:

SISD(n, r, w, p, `1, `2,∆1,∆2) =

SRREF(r, n) +O
((

(k + `)/2

p3

)
(p3 log2 (

k + `

2
) + `2) +

(
(k+`)/2
p3

)
2`2

(p2 log2 (
k + `

2
) + `1 − `2)+

(
k+`
p1

)(((k+`)/2
p3

)
2

(k+`
p1

)

)2

2`2
(p1 log2 (

k + `

2
) + `2)

)

Proof. The first row of the complexity accounts for the computation of the RREF plus
the creation of the lists at layer 3. k + ` refers to the computation of the disjoint sets of
indices and the next terms are for computing the combinations and the vectors of length
`2 taking into account that we need to build 4 materialzied lists and then 4 times to find
collisions there. The second row accounts for the building of the lists at layer 2 with
vectors of size `1 − `2 with the same reasoning applied for the previous ISD complexities.
The third row accounts for the building of the final list at layer 1 and the last considers
the p+ 1 sums of vectors long r− ` done at the end of the ISD for checking if the weight
of the first part of the error is equal to w − p. Last, we need to account the sorting
for the the four lists at layer 3, the two lists at layer 2 and the one at layer 1 to apply
the find collision procedure. The spatial complexity reports the memory needed for the
computation of the RREF, the four lists at layer 3, the two lists at layer 2 and the final
list at layer 1.
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3.2.9. Both-May
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Figure 3.12: Weight distribution in Both-May algorithm

The Both-May algorithm [12] takes the idea of the BJMM algorithm but goes back com-
puting a full systematic form and apply a nearest neighbor search technique for the con-
struction of the lists. In the Both-May algorithm, the part of the permuted error in
which we need to guess p error-affected positions is long k and not k + ` like the last
three algorithms we have seen. This decreases the search space significantly. Moreover,
it introduces a less restrictive weight distribution on a solution (êS∗ , êS) ∈ Fr2 × Fk2, since
usually p << w and we only need small weight p on the last k coordinates instead of the
last k + ` coordinates. This in turn means that we need less iterations to find a correct
permutation that fulfills the wanted weight distribution. On the downside the routine
that merges the lists is more costly than the previously seen therefore an iteration costs
more but we do less iterations.
The find collision procedure used until now is replaced by the nearest neighbor search
for merging the lists at the various layers. This procedure is used for solving the ap-
proximate matching problem in contrast to find the exact matching between vectors as
done until now with the find collision method. Our goal is to construct (ê

(1)
1 , ê

(1)
2 ) such

that HW(ê
(1)
1 + ê

(1)
2 ) = p and the corresponding vectors V ê(1)

1 ,V ê(1)
2 + ŝ approximately

match on all r but w − p coordinates. This immediately yields a solution (êS∗ , êS) with
êS∗ = V êS + ŝ and HW(ŝ) = w−p. Let’s suppose we have a list L1, containing pairs made
by a binary vector x ∈ Fr2 and an array of indices holding the p error-affected positions
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as before, and a target binary vector y ∈ Fr2. We are not interested anymore in finding
an exact matching retrieving the range in the list such that the target vector y is equal
to each vector indexed by the range, but we want to find the indices in the list such that
, given a target weight wi, satisfy HW(x + y) = wi, where x is the vector saved in the
list at the current index in analysis. Following this reasoning while we are constructing
the k part of the error with weight p, using the same method as before with the array of
indices, we can do some pre-checks even on the weight of the r-long part of the permuted
error. In Algorithm 3.2.10 we can see the description of the nearest neighbor search just
described. Since we need to scan all the list the complexity is linear with respect to its
size: CNN−search(L, r) = O(size(L)(2r)). As reported in the analysis inside the paper
of the algorithm [12], even if the nearest neighbor search is more costly since we need a
linear scan of all the list, it has been showed that the benefits outweigh this disadvantage,
especially when the weight of our solution is large enough.
Algorithm 3.2.10: Nearest Neighbor Search algorithm
Input: L: list holding pairs made by a binary vector x long r and an array of

integers α
y: binary target error to find in L
w: target weight of the NN-search

Output: ρ: array containing the indices of L such that HW(x+ y) = w

1 ρ← ∅
2 foreach 〈x, α〉 in L do
3 if HW(x⊕ y) = w then
4 ρ← ρ ∪ index(η, 〈x, α〉)
5 return ρ

We study the algorithm with depth-2 (2 layers as in the MMT) but it can be generalized
up to m layers. Let’s see how the algorithm works. From Figure 3.12 we can notice
that the algorithm splits the r part of the error that has weight equal to w − p into two
parts long r1 and r2 with weights respectively w1 and w2: doing this thanks to the nearest
neighbor search we carry on through the layers not only the errors with the correct weight
pi on the k part of the permuted error but even the ones with a correct weight wi in the
ri part of the error, where i depends on which layer we are. The p part of the error is
computed as before splitting it into two errors with weights p1 = p

2
+ ∆1. In turn, the two

errors are produced from the four errors at layer 2 with weights p2 = p1

2
. The lists at layer

2 hold the array of indices long p2 corresponding to the error-affected positions of the k
part of the permuted vector and a binary vector σ2 long r1 obtained as the sum of the
columns of V1 indexed by the previous array. After we build the first list at layer 1 holding
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layer 2
r1

θ1 θ2

p2 = p1

2

HW(ê[1:r1]) = w1

2
HW(ê[1:r1]) = w1

2
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η

p1 = p
2
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HW(ê[r1+1:r2]) = w2 p

Figure 3.13: Lists of Both-May algorithm

ê
(2)
1 (lines 20-23 in Algorithm 3.2.11) , we solve the approximate matching problem using

the vectors ê(2)
2 (computed at lines 24-29 in 3.2.11) applying the nearest neighbor search.

If the sum of the vectors of the two different lists has weight equal to w1

2
, the union of the

array of indices with length p1 is saved in the first list at layer 1, together with a binary
vector σ1 long r2 obtained summing the columns of V2 indexed by the union array (lines
34-40 in 3.2.11). In this situation the list at layer 1 holds the indices of p1 positions of
the k part of the error such that the first r1 part has weight w1

2
. After doing the same

steps just described for building the remained lists (the right part of the Figure 3.13),
even the second list at layer 1 will contain vectors such that the r1 part has weight w1

2
:

next they will be merged using the nearest neighbor resulting on a weight w1

2
+ w1

2
= w1

as expected in the r1 part (checking that the positions of the merged indices are disjoint).
When we merge these two lists (line 44 in 3.2.11) the nearest neigbor search is applied
again checking if the r2 part of the permuted error has weight equal to w2 = w−p−w1: if
this is the case, and the final array of indices has size equal to p, we have found a correct
set for reconstructing the error. The situation just described can be seen in Figure 3.13
to understand how the lists are made.

Theorem 3.12. Given an instance of the syndrome decoding problem with H ∈ Zr×n2 ,
s ∈ Zr2 and the target weight w, the time complexity of Both-May algorithm 3.2.11 for
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Algorithm 3.2.11: Both-May algorithm
Input: s ∈ Zr2: syndrome vector

H ∈ Zr×n2 : binary parity check matrix
w: the weight of the error vector to be recovered

Output: e ∈ Zn2 : error vector to be recovered such that HeT = s, with wt(e) = w
Data: χ: an array of size n containing the indices of the columns of H after being permuted in the RREF

U ∈ Zr×r2 : matrix representing elementary row operations in the RREF, at first is an identity matrix
p: the weight of the last k bits of ê, 0 ≤ p ≤ w.
∆1: extra weight that will cancel out during the additions.
p11 = d p

2
e + ∆1, p12 = b p

2
c + ∆1

p21 = d p11
2
e, p22 = b p11

2
c, p23 = d p12

2
e, p24 = b p12

2
c

r1, r2: parameters that split the first part of ê respecting r1 + r2 = r
w1, w2: respectively the weights of the r1 part and the r2 part of the error. They are chosen such that w1 + w2 = w − p

ŝ ∈ Zr2: permuted syndrome, ŝ =

[
ŝ1
ŝ2

]
, with ŝ1 = ŝ[1:r1], ŝ2 = ŝ[r1+1:r]

V ∈ Zr×k2 : matrix V =

[
V1
V2

]
with V1 = V[1:r1][:], V2 = V[r1+1:r][:] where v1 i,v2 i are the columns of matrix V1 and V2

indexed by i
α: array of size p2j where j = 1, 3 containing d k

2
e random indices in {0, . . . , k − 1}

β: array of size p2z where z = 2, 4 containing b k
2
c random number indices in {0, . . . , k − 1}

θ: array of two lists holding the materialized lists at layer 2 , they contain pairs made by an array of indices long p2j taken by α
and a vector sum with length r1 where j = 1, 3 depends on the iteration of the main loop
θ_sizes: array of two integer holding the size for each list inside the array θ
θaux: auxiliary list at layer 2, it contains pairs made by an array of indices long p2j taken by β and a vector sum with length
r1 where j = 2, 4 depends on the iteration of the main loop
θaux_size: integer holding the size of the auxiliary list θaux
η: list holding the materialized list at layer 1 , it’s composed by pairs of an array of indices with maximum length p11 and a
vector sum with length r2. η_size is integer holding the size of the array η
ρ(2), ρ(1): arrays containing colliding indices returned by the nearest neighbor search at layer 2 and at layer 1

1 repeat
2 repeat
3 〈[Ir V ], U, χ, rref_error〉 ← find_partial_rref(H)
4 until rref_error = true
5 ŝ← product_bit_matrix_vector(U, s)
6 η_size← 0
7 for i← 0 to 1 do
8 switch i do
9 case 0 do

10 α_size← p21
11 β_size← p22
12 case 1 do
13 α_size← p23
14 β_size← p24
15 if η_size = 0 then
16 break
17 α← random_extract(k)
18 β ← {0, . . . , k − 1} \ α
19 θ_sizesi ← 0
20 foreach comb in AllComb(α) do
21 σ2 ← σ2 ⊕

∑
z∈comb v1 z

22 θi ← θi ∪ 〈comb,σ2〉
23 θ_sizesi ← θ_sizesi + 1

24 foreach comb in AllComb(β) do
25 if i = 1 then
26 σ2 ← ŝ1
27 σ2 ← σ2 ⊕

∑
z∈comb v1 z

28 θaux ← θaux ∪ 〈comb,σ2〉
29 θaux_size← θaux_size + 1

30 foreach 〈β(2),σ2〉 in θaux do
31 ρ(2) ← nearest_neighbor_search(σ2, θi)

32 if ρ(2) 6= ∅ then
33 foreach 〈α(2),µ2〉 in θ

i[ρ(2)]
do

34 δ(1) ← α(2) ∪ β(2)

35 if i = 0 then
36 σ1 ← ŝ2

37 foreach ind in δ(1) do
38 σ1 ← σ1 ⊕ v2 ind

39 η ← η ∪ 〈δ(1),σ1〉
40 η_size← η_size + 1

41 else
42 foreach ind in δ(1) do
43 σ1 ← σ1 ⊕ v2 ind

44 ρ(1) ← nearest_neighbor_search(σ1, η)

45 if ρ(1) 6= ∅ then
46 foreach 〈α(1),µ1〉 in η

[ρ(1)]
do

47 δ(0) ← (α(1) ∪ δ(1)) \ (α(1) ∩ δ(1))
48 if size(δ(0)) = p then
49 foreach ind in α(1) do
50 υ ← υ ⊕ v1 ind
51 υ ← υ ⊕ σ2 ⊕ µ2
52 if hamming_weight(υ) = w1 then
53 ê← [υ µ1 ⊕ σ1 01×k]

54 foreach k in δ(0) do
55 êk+r ← 1

56 e← error_reconstruction(ê, χ)
57 return e

58 until HW(e) = w
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finding a target error e ∈ Zn2 such that HeT = s and HW(e) = w is:

CISD(n, r, w, p, r1, r2,∆1) =
1

Prsucc

citer =

(
n
w

)(
k/2
p/2

)2(r1
w1

)(
r2
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)(CIS(n, r)+

2k +

(
k
2
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)(
4 + 4p2r1 + 2CNN−Search(
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2
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)
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)
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)
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(
k/2
p2
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)(
p
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r2
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)
2r2

(p+ p1r1)
)))

+ p

While the space complexity:

SISD(n, r, w, p, r1, r2,∆1) = SRREF(r, n)+O
((

k/2

p2

)
(p2 log2 (

k

2
)+r1)+

(
k/2
p2

)2( r1
w1/2

)
2r1

(
p

2
log2 k+r2)

)

Proof. The success probability in the Both-May algorithm is the division between the
admissibile errors satisfying the hypothesis of the ISD that are

(
k/2
p/2

)2(r1
w1

)(
r2
w2

)
and all the

possible error vectors with weight w
(
n
w

)
. We compute two times the random sets for

an iteration resulting in the cost 2k. Then, we span four times all the possible
(
k/2
p2

)
combinations for building the two materialized lists and the two auxiliary lists at layer
2. Therefore, we compute four times all the combinations and the sums of p2 vectors of
size r2. Then, for the two lists at layer 1, we call the nearest neighbor procedure twice
and when collisions are found we need to sum p1 vectors of size r2 that are the vectors we

will save in the list at layer 1. These sums are done with probability of
(k/2p2 )

2
( r1
w1/2

)
2r1

since

all the possible vectors are 2r1 and only
(k/2p2 )

2
( r1
w1/2

)
2r1

attempts hitting the correct one are
made. With the same probability already discussed we need to do p1 + 1 sums between
vectors of size r2 and we call the nearest neighbor search for checking if the r2 part has
weight w2. If a collision is found we finally compute the disjoint set of size p and we check
if the vector in r1 part has weight w1 doing p1 sums of vectors of size r1. The last p term
is for reconstructing the error from α ∪ β. In the spatial complexity we report only the
significant terms. The first is the one relative to the computation of the RREF. Then
we have to store two lists made by

(
k/2
p2

)
elements. Each element takes r1 bits for storing

the binary vector and p2 log2 (k
2
) bits for storing the array of indices. The last term is

the space for the list at layer 1 derived in the same manner considering that holds binary
vectors long r2.
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3.2.10. Esser-Bellini

The Esser-Bellini algorithm is a variant of the Both-May algorithm presented in [13].
The algorithm is almost equal to the Both-May algorithm, the only thing that changes is
how the approximate matching problem is solved. The weight distribution is exactly the
same and we can see it in Figure 3.12. In Both-May’s algorithm we have used the nearest
neighbor search to merge the lists present at layer 2 and at layer 1. Instead of applying the
nearest neighbor search, the Esser-Bellini’s algorithm uses the so called Indwik-Motwani
routine based on locality sensitive hashing by Indwik and Motwani in [17]. Let’s suppose
we have two lists to merge L1 and L2 holding vectors long r: as before we want to find all
the vectors (x,y) ∈ L1 × L2 such that HW(x + y) = wi. The Indwik-Motwani procedure
guesses λ coordinates I ⊂ [r] of the resulting vector z = x+ y for which it assumes that
all the bits of z indexed by I are zeroes, zI = 0. So, before checking the weight of the
resulting vector, an exact matching on λ coordinate is done between x and y. When we
find a match we can proceed checking the weight of the resulting vector. The algorithm
relies on the fact that the sum between the vectors will have small weight, therefore, for
a certain λ coordinates, is more likely that on these coordinates the two vectors have
the same values with respect to the situation where the sum has larger weight. The
probability that z with HW(z) = wi has bits equal to zero on the random choice of the λ

coordinates is Pr[zI = 0 | z ∈ Fr2∧HW(z) = wi] =
(r−λwi )
( r
wi

)
. We can see the procedure just

described in Algorithm 3.2.12.
Algorithm 3.2.12: Indwik-Motwani Search algorithm
Input: L1: list holding pairs made by a binary vector x long r and an array of

integers α
L2: list holding pairs made by a binary vector y long r and an array of
integers β
wi: target weight

Data: I: set of size λ holding the random coordinates.
Output: L: list containing all the pairs (x,y) such that HW(x+ y) = wi

1 L← ∅
2 I ← random_extract{0, . . . , r − 1}
3 foreach (x,y) in L1 × L2 do
4 if xI = yI then
5 if HW(x+ y) = wi then
6 L← L ∪ (x,y)

7 return L
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layer 2
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θ2

p2 = p1

2

ê[1:λ1] = 01×λ1 ∧ HW(ê[1:r1]) = w1

2
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2
+ ∆1
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Figure 3.14: Lists of Esser-Bellini algorithm

In the implementation of this algorithm the following trick has been adopted: since the
permutation applied in the RREF is random the binary vectors that will be considered
will be random too. Knowing this we can consider the set I of λ coordinates always on the
starting positions of the vectors. Therefore, the exact matching of the Indwik-Motwarni
will be performed always on the starting λ bits of the vectors without loss of generality. In
this way we consider lists containing triples made by a λ long binary vector, an r−λ long
binary vector and an array of indices used to construct the p part of the error as before.
We have splitted the binary vectors long r into two parts for allowing the sorting of the
lists as opposed as in Both-May where the lists couldn’t be sorted since we needed to span
all the elements of the list with the nearest neighbor search. Thanks to this splitting, we
can sort these lists based on the λ long binary vectors: this helps us when we need to
find two vectors of two lists with the same coordinates in the starting λ bits. Since the
list is sorted, we can apply the binary range search to find the collision indices respecting
the output of the Indiwk-Motwani and then we can proceed on checking the weight of
the resulting vector obtained as the sum between the r − λ vectors. Since we work with
two layers, as in Both-May, we need to apply this procedure both in layer 2 and layer
1: we will indicate as λ1 the starting number of coordinates used for Indwik-Motwani
search at layer 2 with vector long r1, while λ2 the starting number of coordinates used for
Indwik-Motwani search at layer 1 with vector long r2. We can see the lists structure in
the Figure 3.14.
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The ISD algorithm is described in Algorithm 3.2.13, the structure is very similiar to the
one of the Both-May algorithm, the only thing that changes is the splitting of the binary
vectors for allowing the sorting of the lists and the subsequent call to the find collision
algorithm.

Theorem 3.13. Given an instance of the syndrome decoding problem with H ∈ Zr×n2 ,
s ∈ Zr2 and the target weight w, the time complexity of Esser-Bellini algorithm 3.2.13 for
finding a target error e ∈ Zn2 such that HeT = s and HW(e) = w is:

CISD(n, r, w, p, r1, r2, λ1, λ2,∆1) =
1
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citer =
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While the space complexity:

SISD(n, r, w, p, r1, r2, λ1, λ2,∆1) = SRREF(r, n) +O
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(p2 log2 (

k
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Proof. The complexity is similiar to the one of the Both-May’s algorithm and most of the
reasoning can be found there. Here the thing that changes is the using of the find collision
procedure instead of the nearest neighbor search. Plus, we have a checking on the weight
after the call to the find collision: two checks with vectors long r1 and one check with
vectors long r2. For using the find collision procedure we need to sort the two lists at
layer 2 and the one lists at layer 1 producing the final terms in the time complexity. For
the space complexity we store two binary vectors in the lists instead of one: in the layer
2 one binary vector long λ1 and the other long r1 − λ1 while in layer 1 one binary vector
long λ2 and the other long r2 − λ2.
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Algorithm 3.2.13: Esser-Bellini algorithm
Input: s ∈ Zr2: syndrome vector

H ∈ Zr×n2 : binary parity check matrix
w: the weight of the error vector to be recovered

Output: e ∈ Zn2 : error vector to be recovered such that HeT = s, with wt(e) = w
Data: χ: an array of size n containing the indices of the columns of H after being permuted in the RREF

U ∈ Zr×r2 : matrix representing elementary row operations in the RREF, at first is an identity matrix
p: the weight of the last k bits of ê, 0 ≤ p ≤ w.
∆1: extra weight that will cancel out during the additions.
p11 = d p

2
e + ∆1, p12 = b p

2
c + ∆1

p21 = d p11
2
e, p22 = b p11

2
c, p23 = d p12

2
e, p24 = b p12

2
c

r1, r2: parameters that split the first part of ê respecting r1 + r2 = r
w1, w2: respectively the weights of the r1 part and the r2 part of the error. They are chosen such that w1 + w2 = w − p
λ1, λ2 : parameters used for Indwik-Motwani search, they split the vector sums in two parts

ŝ ∈ Zr2: permuted syndrome, ŝ =

[
ŝ1
ŝ2

]
, with ŝ1 = ŝ[1:r1], ŝ2 = ŝ[r1+1:r]

V ∈ Zr×k2 : matrix V =

[
V1
V2

]
with V1 = V[1:r1][:], V2 = V[r1+1:r][:] where v1 i,v2 i are the columns of matrix V1 and V2

indexed by i
α: array of size p2j where j = 1, 3 containing d k

2
e random indices in {0, . . . , k − 1}

β: array of size p2z where z = 2, 4 containing b k
2
c random number indices in {0, . . . , k − 1}

θ: array of two lists holding the materialized lists at layer 2 , they contain triples composed of an array of indices long p2j taken
by α, a vector sum with length λ1 and a vector sum with lenght r1−λ1 where j = 1, 3 depends on the iteration of the main loop
θ_sizes: array of two integer holding the size for each list inside the array θ
θaux: auxiliary list at layer 2, it contains pairs made by an array of indices long p2j taken by β and a vector sum with length
r1 where j = 2, 4 depends on the iteration of the main loop. θaux_size is an integer holding the size of the auxiliary list θaux
η: list holding the materialized list at layer 1 , it’s composed by triples of an array of indices with maximum length p11, a
vector sum with length λ2 and a vector sum with length r2 − λ2. η_size is an integer holding the size of the array η.

1 repeat
2 repeat
3 〈[Ir V ], U, χ, rref_error〉 ← find_partial_rref(H)
4 until rref_error = true
5 ŝ← product_bit_matrix_vector(U, s)
6 η_size← 0
7 for i← 0 to 1 do
8 switch i do
9 case 0 do

10 α_size← p21
11 β_size← p22
12 case 1 do
13 α_size← p23
14 β_size← p24
15 if η_size > 0 then sort(η);
16 else break
17 α← random_extract(k)
18 β ← {0, . . . , k − 1} \ α
19 θ_sizesi ← 0
20 foreach comb in AllComb(α) do
21 µ2 ← µ2 ⊕

∑
z∈comb v1 z

22 θi ← θi ∪ 〈comb,µ2[1:λ1],µ2[λ1+1:r1]〉
23 θ_sizesi ← θ_sizesi + 1

24 sort(θi)
25 foreach comb in AllComb(β) do
26 if i = 1 then σ2 ← ŝ1
27 σ2 ← σ2 ⊕

∑
z∈comb v1 z

28 θaux ← θaux ∪ 〈comb,σ2[1:λ1],σ2[λ1+1:r1]〉
29 θaux_size← θaux_size + 1

30 foreach 〈β(2),σ2[1:λ1],σ2[λ1+1:r1]〉 in θaux do
31 〈left(2), right2〉 ← find_collision(σ2[1:λ1], θi)

32 if left(2) 6= −1 ∧ right(2) 6= −1 then
33 foreach 〈α(2),µ2[1:λ1],µ2[λ1+1:r1]〉 in θ

i[left(2),right(2)]
do

34 if HW(σ2[λ1+1:r1] ⊕ µ2[λ1+1:r1]) = w1/2 then
35 δ(1) ← (α(2) ∪ β(2))
36 if i = 0 then
37 σ1 ← ŝ2

38 foreach ind in δ(1) do
39 σ1 ← σ1 ⊕ v2 ind

40 η ← η ∪ 〈δ(1),σ1[1:λ2],σ1[λ2+1:r2]〉
41 η_size← η_size + 1

42 else
43 foreach ind in δ(1) do
44 σ1 ← σ1 ⊕ v2 ind

45 〈left(1), right(1)〉 ← find_collision(σ1[1:λ2], η)

46 if left(1) 6= −1 ∧ right(1) 6= −1 then
47 foreach 〈α(1),µ1[1:λ2],µ1[λ2:r2]〉 in η

[left(1),∧right(1)]
do

48 if HW(σ1[λ2:r2] ⊕ µ1[λ2:r2]) = w2 then
49 δ(0) ← (α(1) ∪ δ(1)) \ (α(1) ∩ δ(1))
50 if size(δ(0)) = p then
51 foreach ind in α(1) do
52 υ ← υ ⊕ v1 ind
53 z ← υ[λ1+1:r1] ⊕ σ2[λ1+1:r1] ⊕ µ2[λ1+1:r1]

54 if hamming_weight(z) = w1 then
55 ê← [01×λ1 z 01×λ2 µ1[λ2+1:r2] ⊕ σ1[λ2+1:r2] 01×k]

56 foreach k in δ(0) do
57 êk+r ← 1

58 e← error_reconstruction(ê, χ)
59 return e

60 next_comb(β, b k
2
c, k − 1)

61 until HW(e) = w
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3.3. Implementation techniques

In this section we are going to discuss some techniques that have been taken in consid-
eration for implementing the ISD algorithms. The implementation of the algorithms has
been done in the C programmming language for having a low level control over the data
structures to be able to optimize the algorithms.

3.3.1. Representation of the bit matrices and vectors

As we have seen, in the ISD algorithms we need to work with binary matrices and binary
vectors, but there is no data type available for working directly with the bits. Therefore,
uint64_t, the standard type of the ISO-C99, have been used for dealing with bits: each
of these uint64_t can hold an integer up to 264 − 1 but we can use them for representing
64 bits at a time. For representing a binary vector of size n we can declare an array of
uint64_t of size equal to bn−1

64
c + 1, since each element of the array holds one unsigned

integer representing 64 bits. If the size of the vector is a multiple of 64 all the bits of the
unsigned integer will be used, otherwise if n mod 64 6= 0, 64 − (n mod 64) bits of the
last unsigned integer in the array will be extra-bits that will not be considered.
Let’s see an example using uint8_t for representing a binary vector for simplicity. Suppose
we have a binary vector x of lenght n = 12 with the following values:

1 1 0 1 0 0 0 1 1 1 0 1x

We want to represent this binary vector using an array of uint8_t: this array has to have
size equal to bn−1

8
c+ 1 = b12−1

8
c+ 1 = 2 hence we need two uint8_t for representing this

binary vector. The array will be as follows:

1 1 0 1 0 0 0 1 1 1 0 1 x x x x

A[0] A[1]

A

Figure 3.15: Array of unsigned int for representing a binary vector

From Figure 3.15 we can see that the first 8 bits of x are saved in the first element of
the array while the last 4 bits of x are saved on the first 4 bits of the second element
of A. Since the size of the binary vector is not a perfect multiple of the size of the
unsigned integer composing the array (i.e. n ≡ 12 ≡ 4 6≡ 0 mod 8), there are some bits
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on the last element of the array that are not significant. In the example we have 8 − (n

mod 8) = 8− (12 mod 8) = 4 unused bits on the last element of A, the ones represented
with an x in the figure. This example can be easily generalized with the case of uint64_t
that have been used in the implementation. It is important to initialize the non significant
bits of the last element of the array A equal to zero if we need to compute the Hamming
weight of the vector: if these unused bits are left uninitialized with random values the
resulting weight of the error will be incorrect since it counts extra bits equal to one not
belonging to the vector. Instead, if we clear these bits setting them equal to zero, they
will not be counted in the computation of the weight.
A binary matrixH of size r×n is instead represented as a bidimensional array of uint64_t.
Each row of the matrix is a binary vector of size n and so it can be represented as before.
Since now we have to store r binary vectors of size n, we use simply the same technique
having a bidimensional array M with r rows and bn−1

64
c+ 1 columns. Let’s see an example

using again the uint8_t for the sake of simplicity. Suppose we have a binary matrix H
with r = 3 rows and n = 10 columns:

H =

1 1 0 1 0 1 1 1 0 1

0 0 1 0 0 0 0 1 1 1

0 1 0 0 1 1 0 0 0 1


and we want to represent it with a bidimensional array M with 3 rows and bn−1

8
c + 1 =

b10−1
8
c+1 = 2 uint8_t for each row. In Figure 3.16 we can see the resulting bidimensional

array used for representing the binary matrix H.

1 1 0 1 0 1 1 1 0 1 x x x x x x

M [0][0] M [0][1]

M [0]

0 0 1 0 0 0 0 1 1 1 x x x x x x

M [1][0] M [1][1]

M [1]

0 1 0 0 1 1 0 0 0 1 x x x x x x

M [2][0] M [2][1]

M [2]

Figure 3.16: Bidimensional array of unsigned int for representing a binary matrix

As before, this example can be easily generalized for the case using the uint64_t. With
this technique for representing the binary vectors and matrices we are able to optimize
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as much as possible the space complexity used for storing them in the implementation of
the ISD algorithms. The usual operations as reading,clearing or setting a specific bit of
vector or a matrix has been implemented in a library with other useful instructions that
manage the bits inside the unsigned integers.

3.3.2. Advanced Vector Extensions 2 instructions

The Advanced Vector Extensions 2 (AVX2) is a set of SIMD instructions designed by
Intel that makes efficient the operations when we can work with parallel data. At [18]
we can find a list of all the available AVX instructions with a description on how to use
them. Having the matrices represented as discussed in the previous section, during the
computation of the RREF we need to swap the rows of the matrix or computing the xor
between two rows. These operations can be done with the AVX2 instructions. Since each
row is composed by a certain number x of uint64_t, for swapping two rows i and j we
have to swap the unsigned integer H[i][z] with the unsigned integer H[j][z] ∀0 ≤ z < x.
Instead of performing one swap at a time we can use the AVX2 instructions for swapping
a vector long 256 bits at a time with a single instruction. This results in doing 4 swaps
with one instruction instead of a single one. To implement this swap we need to pay
attention on the number x of uint64_t composing a row since we can swap a vector long
256 bits only if we have x greater or equal than 4 (4*64bits = 256 bits). Otherwise we
can swap a vector long 128 bits if x = 2 (2*64 = 128 bits) doubling the swaps or perform
a normal swap if x = 1. The intermediate situations can be obtained as the combinations
of these: for example if x = 7 we have 7*64 = 448 bits on each row and so for swapping
two rows we can first swap a vector long 256 bits, then a vector long 128 bits and finally
a normal swap on a vector of 64 bits. Doing this we have performed 3 operations for
swapping two rows composed by 7 uint64_t instead of 7 operations.
When we have to xor two rows and save the result in one of the two we can apply the
same reasoning doing less instructions thanks to the AVX2.
The AVX2 instructions has been used even for the computation of the Hamming weight
of a vector as explained in the next section.

3.3.3. Hamming Weight computation

For computing the Hamming weight of a binary vector two techniques has been taken
in consideration: the Brian Kernighan’s solution to count the set bits in an unsigned
integer based on the work by Peter Wegner in [33] and the procedures using the AVX2
instructions described in [22] by Wojciech Muła, Nathan Kurz and Daniel Lemire.
The Brian Kernighan’s procedure has a time complexity equal to the set bits on an
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unsigned integer instead of a time equal to all the bits of the unsigned integer as the naive
method. If an unsigned integer has only three bits equal to 1 the loop of the kernighan’s
algorithm is going to run only three times instead of checking all of its bits. In a nutshell,
the bitwise-and between the input integer x and x − 1 is computed incrementing the
weight count and assigning x = x ∧ x − 1 until x > 0. The bitwise-and operation is
done for setting to zero the rightmost bit of x and proceed to count the other bit set
to 1 at its left. We can see the generalization for computing the Hamming weight of
a binary error vector represented as an array of uint64_t in the following algorithm.
Algorithm 3.3.1: Brian Kernighan’s test for computing the Hamming weight
Input: v: array of size n made by unsigned integers representing a binary vector
Output: w: number of bits set to one in v

1 w ← 0

2 i← 0

3 while i < n do
4 x← v[i]

5 while x > 0 do
6 x = x ∧ (x− 1)

7 w ← w + 1

8 return w

The complexity of this algorithm in the worst case is O(n) when all the bits of the integer
are set but in average, if we are considering a random binary vector, we have O(n

2
) since

in a random vector the half of its bits are set to 1 in average.
The other technique is based on a vectorized approach using SIMD instructions and in the
work [22] is showed that can be twice as fast as using the dedicated instructions on Intel
processors. The technique is a vectorized version of the Harvey-Seal procedure presented
in [32] and it has been implemented using the AVX instructions.

3.3.4. Multithreading

The implementation of the ISD algorithms has been done using multiple threads for try-
ing to find a target error in the least possible time. Each ISD starts an iteration picking
a random permutation for computing a systematic form of the parity-check matrix and
then, it applies the specific technique for searching the error vector based on which ISD we
want to use. Knowing this, we can parallelize the iterations of each ISD algorithm: we can
start x threads for finding the target error. Each thread picks a permutation, compute a
systematic form and try to find an error, therefore, we carry on x parallel runs for finding
faster the target error. Each thread needs to have its own data structures separated from
the others and one important thing is that, since each thread picks random permutations,
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they need to have different initializations of the pseudo-random number generators using
different initial seeds.
The PRNG used in this implementation is the xoshiro256++ based on the work in [11] by
David Blackman and Sebastiano Vigna and more info about the implementation can be
found at https://prng.di.unimi.it. This PNRG is initialized with four unsigned integers
of 64 bits, and for each thread, we need to use different quadruples, otherwise the threads
will do the same computations resulting in no advantage in finding the error in less time
with parallelization.
The multithreaded implementation has been done with OpenMP(Open Multi-Processing):
an application programming interface that supports shared-memory multithreading pro-
gramming constisting in a set of compiler directives, library routines and environment
variables. OpenMP support is available in our compiler of choice, GCC.

3.3.5. Hashtables

As we have already discussed, in Stern, Ball-Collision Decoding and Finiasz-Sendrier
algorithms, we have used both lists and hashtables as collision structures for understanding
which structure behaves better. Both contain pairs made by a binary error vector and
an array of indices. When we need to insert in the hashtable a new pair, we have to
compute the hash function having in input the binary vector represented as an array of
unsigned integers. The hash function being used is an integer hash function called 64 bit
mixing designed by Thomas Wang at [31]. This function takes in input an integer and
return the index of the hash table where the new element needs to be placed. We need to
insert the elements based on their value of the binary vector and for producing a single
integer to pass to the hash function we compute the xor between all the unsigned integers
composing the array that represents the binary vector. This can be done without loss of
generality since the vectors taken in consideration can be considered random.
On the implementation of the ISD algorithms it is possible to choose which collision
structure to use between list and hashtable by simply defining a preprocessor directive
called "LIST" if we want to use the list or "HASH_TABLE" otherwise. In the next
chapter we will see the testing results comparison between the implementation with the
list and the implementation with the hash table as collision structure. With other define
directives we can also switch the RREF methods to use: if the "CUSTOM_RREF"
directive is defined the RREF with the reusing pivots optimizations 2.1.2 or the partial
RREF optimized 2.1.4 depending on the algorithm we want to run is used. If no directive
refering to the RREF is defined the implementation of the M4RI algorithm 2.1.5 is used.

https://prng.di.unimi.it/
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In this section we are going to compare the different RREF procedures presented in Section
2.1, the different binary range searches based on the algorithms in Section 2.2 and the
two sorting algorithms in Section 2.4 to understand which variant is the fastest for being
used in the ISD implementation. Then, we are going to see the results collected testing
the different implementation of the ISD algorithms with two different types of tests for a
concrete evaluation of them. The first family of tests is composed by instances of the the
so called "Syndrome Decoding" that we can find at [4]. In these tests the codes taken in
consideration have a rate R = 0.5 and the weight w of the target error to be found is close
to the Gilbert-Varshamov distance. In the second family of tests the "McEliece-Goppa
Syndrome Decoding" instances are used always from [4]. Here the challenges to solve are
the syndrome decoding problem for a random linear code with rate R = 0.8 and an error
weight w = (1−R)n

log(n)
corresponding on instances of the SD problem on which the security

of the McElice cryptosystem relies.
Different sizes of the codes have been used for both the cases and since the parameters
of the tests change, we need to find the optimal parameters of the ISD algorithms during
different runs. We have used two estimators for retrieving the optimal parameters of
the ISD algorithms depending on the code properties in input: the Ledatools estimator
presented in [5] by Marco Baldi, Alessandro Barenghi, Franco Chiaraluce, Gerardo Pelosi
and Paolo Santini and the Syndrome-Decoding estimator presented in [13] by Andre Esser
and Emanuele Bellini. Then, after measuring the cost of a single iteration for each ISD
algorithm, we will present the computational costs even for test cases with high parameters
multiplying the cost of the single iteration with the estimated iterations for finding a target
vector (the reverse of the success probability seen in the previous chapter).

4.1. RREF analysis

In this section we are going to compare the different procedures presented in Section 2.1
for understanding which one is the most efficient for computing a reduced row echelon
form or a partial reduced row echelon form. We have taken a set of challenges having
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different dimensions of the parity-check matrix to stress the procedures with increasing
size of H. The matrices tested have rate R = 0.5 and their sizes go from the minimum
r × n = 25× 50 to the maximum 500× 1000. For each code we call 30 times the RREF
procedure in consideration and we save the average value of the execution time and the
average value of the complexity cost measured in cpu cycles spent for computing a RREF.
We need to compute the average value of a certain number of runs since the algorithm
is probabilistic: each procedure starts with taking a random permutation and then try
to find a correct systematic form, so, certain runs can be very fast if they pick lucky
permutations, otherwise they can be very slow with other permutations (for example, the
ones that don’t permit to find a correct systematic form). Therefore, it is important to
measure the average cost of different runs.
On the first test we have compared the implementation of the standard RREF (2.1.1),
the RREF with reusing pivots optimization (2.1.2) and the M4RI algorithm (2.1.5) im-
plemented in [30] inside the m4ri_light project based on the M4RI library [2] to produce
a full systematic form. In the Figure 4.1 we can see the testing results of this test: in the
first plot the average cost complexity is reported while in the second plot we can see the
average execution time in seconds, both in function of different code properties (n, k) and
in a logarithmic scale. We can easily notice that with increasing size of the parity-check
matrix the cost of each RREF procedure increases as well. The fastest method for com-
puting a full systematic form has been resulted in the M4RI one, available publicly in the
library.
On the second test we have compared the implementation of the standard partial RREF
(2.1.3), the partial RREF optimized (2.1.4) and the M4RI algorithm (2.1.5) to produce
a partial systematic form. In the Figure 4.2 we can see the testing results reporting the
average cpu cycles and the average execution time in seconds as in the previous test. The
extra parameter `, needed to compute a partial systematic form, has been considered fixed
to the value 8 during the various tests without loss of generality. Taking different values
of ` changes the nominal values of the testing but the differences between the methods are
exactly the same. Since we are interested in understanding which one is the most efficient
we can choose the parameter we want. Comparing the different plots, we can notice that
the partial RREF is less costly than the full one for the same tests as we expect, since
the identity matrix to produce has smaller dimension. We can even see that thanks to
the optimizations introduced in Section 2.1.4 the partial RREF optimized is faster then
the standard procedure, but even here, the fastest method has resulted in the M4RI one.
From this conclusion, in the implementation of the ISD algorithms the M4RI procedure
is used for computing both the full reduced row echelon form and the partial reduced row
echelon form: all the tests reported in the following sections use this method. It is still



4| Experimental Evaluation 97

possible to use the RREF with reusing pivots and the partial RREF optimized methods
inside the implementation declaring the preprocessor directive "CUSTOM_RREF": if
this directive is omitted the M4RI procedure is used for both the full and the partial
RREF.

(a) Average cpu cycles comparison (b) Average execution time comparison

Figure 4.1: Comparison between different RREF procedures

(a) Average cpu cycles comparison (b) Average execution time comparison

Figure 4.2: Comparison between different partial RREF procedures

4.2. Binary range search variants analysis

Here, we are going to test different find collision algorithms composed by the binary
range searches based on the procedures seen in Section 2.2. For understanding which
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search performs best we have tested the Stern algorithm 3.2.4 with some family of codes
changing each time the method for finding the collisions in the list. To do that it is
important to initialize the Stern algorithm, for each method to test, with the same initial
seeds for the PNRG. With the same initial seeds we are sure that each run of the Stern
algorithm will execute exactly the same operations as the other runs except for the find
collision part that is the method we want to test. So, the final results will change based
only to the binary range search variant currently used. Taking the final execution time for
finding a target error with the Stern algorithm for each variant of the binary range search,
we can conclude which is the fastest that will be used for all the other ISD algorithms. If
we take different runs with different initial seeds the permutations will be different and
the results will not be comparable in term of the binary range search algorithm since
other factors influence the execution. Four codes (n, k, w) has been considered for this
test : (230,115,30), (250,125,32), (270,135, 34) and (280,140,35) to stress the procedures
with increasing size of the list. We can see the results of the test on the following plot: it
reports the percentage speedup in the execution time for each variant of the binary range
search with respect to the one measured for the standard binary range search.

Figure 4.3: Comparison between binary range search variants: percentage speedup of the
execution time with respect to the one of the standard binary range search

Since the binary range search variants are very similar to each other, the total execution
times to compare are close too. To see better the differences between these times, in the
Figure 4.3 we have plotted the speedup gained by each variant: a positive percentage
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x% means that we have a speedup of x% compared to the execution time obtained by
the standard binary range search, while a negative percentage indicates a slowdown. The
execution time in seconds of the standard binary range search is reported on the x-axis.
The first test is not really meaningful since we have obtained execution times less than 0.5
seconds for all the variants, therefore the time differences are negligible. The last two tests
are the most significant since the execution times are big and the procedures are more
stressed. We can notice that for these two tests all the variants have better performance
than the standard binary range search since they all gain a speedup. The fastest variant
is resulted in the tripletapped binary range search since it has the maximum speedup
(minimum execution time) in the last two tests that are the most significant. The first
test in the plot has been done with the code (250,125,32), the second with (230,115,30),
the third with (270,135,34) and the last with (280,140,35): in the plot we have ordered
the results based on the values of the execution time of the standard binary search in
ascending order. The test has been done with an initial seed equal to (143,12,542,234);
taking another initial seed changes the nominal values of the times but the differences
between the methods remain the same. As already said, the most important thing is to
use the same initial seed for each search tested otherwise the time differences obtained in
the results don’t depend only upon the search, as we want, but upon other factors. On
the implementation of the ISD algorithms and in all the following tests the tripletapped
binary range search has been used as the find collision algorithm.

4.3. Sorting algorithms analysis

Here, we are going to test the Quicksort algorithm 2.4.2 and the Djbsort algorithm 2.4.3
to see which one performs better with lists made of binary vectors. The test is done
exactly with the same guidelines as the one for the binary range searches: for a family of
codes we run the Stern algorithm, one time with the Quicksort algorithm and one time
with the Djbsort algorithm, for sorting the list based on the values of the binary vectors
inside it. Even here, the initial seeds for different runs must be the same for having a
direct comparison on the sorting algorithms. The codes that have been testing are the
following: (230,115,30), (250,125,32), (270,135, 34) and (300, 150, 38) to stress the sorting
algorithms with different list size.
Since the difference between the execution times computed with the two different sorting
algorithm is very little, in the Figure 4.4 is reported the percentage speedup of the Quick-
sort algorithm compared to the execution time of the Stern algorithm with the Djbsort.
All the runs with the Djbsort are slower than the ones with the Quicksort: for this reason
in the plot we have the Djbsort time on the x-axis while on the y-axis we report the
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speedup gained by the Quicksort algorithm.

Figure 4.4: Comparison between sorting algorithms: percentage speedup of the execution
time of Quicksort with respect to the one of the Djbsort

As we can see the two sorting algorithm behaves very similar, but the Quicksort algo-
rithm performs best in each test even if the difference is very little. Therefore, on the
implementation of the ISD the Quicksort algorithm has been chosen for sorting the lists
in the ISD algorithms who use them.

4.4. Estimators to find the optimal ISD parameters

In the next section we are going to test the ISD algorithms with tests having different code
properties therefore, for each code, we need to properly tune the extra parameters used
in the various ISDs, like for example p in Lee-Brickell or ` in Leon. The two estimators
used are the Ledatools [5] and the Syndrome Decoding Estimator [13]. The estimates
of the Ledatools relative to the May-Meurer-Thomae and the Becker-Joux-May-Meurer
presented two flaws that have been corrected. In the May-Meurer-Thomae estimate the `2

parameter was set equal to ((k+`)/2
p/4 )
p/4

resulting in an error. The value has been substituted

with the correct one, log (
((k+`)/2

p/4 )
( p
p/2)

), since the correct value is taken applying the logarithm

while the denominator must be
(
p
p/2

)
because there exist only

(
p
p/2

)
representations of the

solutions as pointed out in the appendix of the work by A.Esser and E.Bellini [13]. The
estimate of the Becker-Joux-May-Meurer has been rewritten from scratch following the
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complexity pointed out in [5] correcting the term relative to the building of the list at
layer 2 where we have binary vectors long `1 − `2 and not long `2 as reported in the
paper. The Ledatools estimator returns the optimal parameters and the expected cost
of solving a syndrome decoding problem for Prange, Lee-Brickell, Leon, Stern, Finiasz-
Sendrier, May-Meurer-Thomae and Becker-Joux-May-Meurer algorithms while the Syn-
drome Decoding estimator for Prange, Stern, Ball-Collision Decoding, Finiasz-Sendrier,
May-Meurer-Thomae, Becker-Joux-May-Meurer and Both-May.
In the next plots we can see the expected cost complexity for the codes that will be used
in the next section for testing the ISD algorithms for both the estimators.

(a) Ledatools expected cost with syndrome tests (b) Ledatools expected cost with mceliece tests

(c) SD estimator expected cost with syndrome tests (d) SD estimator expected cost with mceliece tests

Figure 4.5: Expected computational cost returned by the Ledatools and the Syndrome
Decoding estimator

We can notice from these plots that the expected cost retrieved by the Ledatools esti-
mator is higher than the one returned by the Syndrome Decoding estimator because the
Ledatools uses a logarithmic memory access cost model while the Syndrome Decoding
estimator has been used with the default one. In the Appendix we can find the Table A.1
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and the Table A.2 that report the optimal parameters returned by both the estimators
for all the codes that have been tested: these optimal parameters will be used in the
next section for the concrete evaluation of the ISD algorithms. The Lee-Brickell, Leon
and Becker-Joux-May-Meurer algorithms have been tuned with the optimal parameters
returned by the Ledatools, while the Stern, Ball-Collision Decoding, Finiasz-Sendrier,
May-Meurer-Thomae and Both-May have been tuned with the Syndrome Decoding es-
timator. This choice has been done since the BJMM with the parameters returned by
the Ledatools behaves better in practice than the one with the parameters returned by
the Syndrome Decoding estimator, while Stern, Finiasz-Sendrier and MMT behave better
with the parameters returned by this latter. For the remained algorithms there is no
choice since they can be tuned only by one estimator as we can notice from the previously
cited list.

4.5. Information Set Decoding algorithms testing

In this section we are going to test the implementation of all the ISD algorithms presented
in Chapter 3. As we have already said in the introduction, we are going to use two family
of tests: the first is made of random codes with rate R = 0.5 while the second is made of
McEliece public key codes. Both tests are syndrome decoding problems where we need to
find a target error with weigth w but the properties of the code used and the target weight
of the error to be found are different. The procedure of finding a target error with an ISD
is probabilistic since initially a random permutation is chosen to compute a systematic
form, and depending on the resulted form, an error can be found or not, possibily recalling
the RREF procedure and the search error function. Therefore, for measuring the cost of
each ISD, we have executed 15 times each ISD for each code to test to extract a reasonable
metric that takes into account the randomness part of the algorithm. For tests that take
more than one minute to complete we execute them 5 times instead of 15.
The testing of the ISD algorithms has been carried out on a machine having 2 CPU sockets
with 32 cores per socket and 2 threads per core resulting in a total of 64 physical cores
allowing for a parallelization via 128 threads. The architecture of the CPU is x86_64

and the model name is AMD EPYC 7551 32-Core Processor with a clock speed equal
to 2540.295 MHz. The machine is equipped with a DDR4 RAM memory of 500GB.
The compiler that has been used is GCC 10.2.1 while CMAKE 3.18.4 has been used for
building the project. The PNRG used is xoshiro256++ version 1.0.
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4.5.1. Syndrome tests

In these tests the binary parity-check matrix H has a number of rows equal to the half of
the columns since the code rate R is equal to 0.5 and so, n = 2k. The tests in input are
taken in the "Syndrome Decoding Problem" section at [4].
We have tested each ISD algorithm with a certain number of tests varying the code
properties. The dimensions of the tests taken in consideration goes from n = 100 and
w = 14 to n = 350 and w = 44. For each ISD algorithm is reported one plot showing
the average cost complexity of the ISD measured by cpu cycles using a logarithmic scale.
This plot includes even the cost returned by the estimator that has been used for tune the
optimal parameters and the estimated cost complexity computed as the cost of a single
iteration of the ISD algorithm times the number of expected iterations to find the target
error ( 1

Prsucc
citer as we have seen in the complexity formulas of the previous chapter). The

cost of a single iteration of an ISD is measured as the average cost taken from 30 runs
of the algorithm: for each test we execute the ISD algorithm only for one iteration, not
worrying about finding the target error, but focusing on the cost of a single iteration (one
RREF computation and one call to the search error part). Then, having the cost of a
single iteration, we can estimate the total cost for finding an error vector with the desired
weight multiplying it with the expected number of iterations relative to the ISD in use.
Having this estimate we can see if the practical measured cost complexity is the one we
expect: if yes, we can derive the total complexity of the ISD algorithms even with high
dimensions tests that could be run for months before finding the target error.
As we can see in the following plots, for the tests with smaller dimensions (n ≤ 180),
the measured cost is much higher than the expected cost: this happens because the ISD
algorithms find the error in less than one second for these tests, and since we are using
128 threads, the final cost takes into account the cost of each thread resulting in an
overhead. In fact, with these small tests, the algorithm doesn’t take any advantage using
threads since the problems are easy and solvable almost instantly. For this reason, after
the results with the syndrome tests, we will see the plots reporting the cost of the ISD
algorithm for the small tests without using parallelization to have a proper comparison
with the estimated cost. On the other hand, we can see that when the tests begin to be
more complex (n > 200), the measured complexity and the expected one ( 1

Prsucc
citer) are

similar as we expected.
We can see the results taken from the evaluation of the ISD algorithms from Figure 4.6
to Figure 4.8.



104 4| Experimental Evaluation

(a) Prange avg cpu cycles to find the target error (b) Lee-Brickell avg cpu cycles to find the target error

(c) Leon avg cpu cycles to find the target error (d) Stern avg cpu cycles to find the target error

Figure 4.6: Prange, Lee-Brickell, Leon and Stern algorithms evaluation (syndrome tests)
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(a) Ball-Collision avg cpu cycles to find the target
error

(b) Finiasz-Sendrier avg cpu cycles to find the target
error

(c) May-Meurer-Thomae avg cpu cycles to find the
target error

(d) BJMM avg cpu cycles to find the target error

Figure 4.7: Ball-Collision Decoding, Finiasz-Sendrier, May-Meurer-Thomae and Becker-
Joux-May-Meurer algorithms evaluation (syndrome tests)
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(a) Both-May avg cpu cycles to find the target error(b) Esser-Bellini avg cpu cycles to find the target
error

Figure 4.8: Both-May and Esser-Bellini algorithms evaluation (syndrome tests)

The Prange algorithm execution in the Figure 4.6 is not tested after the code with n = 250

since for finding an error with this code it takes more than four minutes in average. For
the Stern, Ball-Collision Decoding and the Finiasz-Sendrier we can see from Figures 4.6
and 4.7, that both the execution with the list and the hashtable is reported for a direct
comparison. For these algorithms there are no huge differences in the usage of the list or
the hashtable, but with the last two tests, that are the complex ones, we can see that the
implementation with the list behaves better even if the difference is little.
For all the syndrome tests taken in consideration, the optimal parameter z (the weight of
the ` part of the error) of the Ball-Collision Decoding algorithm returned by the syndrome
decoding estimator [13] is always zero: this means that the optimal configuration of the
Ball-Collision coincides with the one of the Stern algorithm since having z = 0 is the
same as using the Stern. As a consequence, we have tested the Ball-Collision Decoding
algorithm with the minimum admissible weight z even if it’s not the optimal one, z = 2, to
obtain a different test with respect to the one of the Stern. For this reason the performance
obtained by the Ball-Collision is worse than the one obtained by the Stern since it hasn’t
been used the optimal parameter: the optimal result for the Ball-Collision Decoding can
be seen in the plot of the Stern algorithm.
As expected, between the cost returned by the proper estimator (the Ledatools for Leon,
Lee-Brickell and BJMM and the Syndrome Decoding estimator for the other algorithms)
and the cost measured directly testing the ISD algorithms, there is not a perfect match
but there is a multiplicative factor between the two. This happens because the estimates
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produced by both the estimators are in terms of abstract elementary operations while
the measure done in cpu cycles is made by concrete operations. The multiplicative factor
models how many elementary abstract operations the machine done for each clock cycle
and it is substantially constant for each algorithm. We have quantified this factor for
both the estimators considering the greatest code tested computing the ratio between the
cost returned by the estimator and the measured cost, or viceversa if this latter is greater
than the estimate.

(a) Ledatools (b) Syndrome Decoding estimator

Figure 4.9: Multiplicative factor between the measured cost and the estimate returned
by the estimators (syndrome tests)

For each algorithm the multiplicative factor is substantially constant between different
runs but taking different algorithms it varies since the mix of operations is different
between them: some algorithms have more calculations to do in one iteration or more
accesses to the memory than other algorithms. Because of that the ratio between the
abstract operations used in the estimators and the measured cpu cycles depends on the
mix of the instructions of the current ISD in analysis. The CPU does more than one binary
operation per clock cycle but it pays more a memory access with respect to the logarithmic
access model if a cache miss happens. In the following page two plots are reported inside
the Figure 4.10: one collects the results of all our ISD algorithms implementation for a
direct comparison between them while the second compares our Finiasz-Sendrier with the
one implemented by Vasseur [30] and our MMT and BJMM with the BJMM implemented
by Esser,May and Zweydinger done in [14]. The tests for these two implementations are
done on the same machine described before. The BJMM implemented by Esser, May and
Zweydinger works with depth 2 different with our BJMM with depth 3. The testing of
this implementation has been done using 128 outer threads to parallelize the permutations
while the tree for searching the error is not parallelized. On the first plot for the Stern,
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Ball-Collision Decoding and Finiasz-Sendrier algorithms only the results obtained using
the list as collision structure is reported for not to overpopulate the plots.

(a) Comparison between our ISD algorithms

(b) Comparison between our ISD with the Vasseur [30] and the Esser,May,Zweydinger [14] implementa-
tions

Figure 4.10: Computational cost comparison between all the ISD algorithms (syndrome
tests)
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From Figure 4.10 we can see that the fastest ISD algorithms for this kind of tests are re-
sulted to be the Finiasz-Sendrier, the May-Meurer-Thomae and the Both-May algorithms.
The Both-May has better performances compared to the ones of the Esser-Bellini: with
the syndrome tests using the nearest neighbor search implemented in Both-May is prefer-
able than splitting the vectors using the λ coordinates for the Indwik-Motwani search
used in Esser-Bellini with the current data structures used in the implementation. The
other algorithms behave as expected except the Becker-Joux-May-Meurer since the com-
putation of the disjoint arrays holding the indices for managing the extra weights has
resulted in a bottleneck with the current implementation.
On the second plot we can notice that the Finiasz-Sendrier’s implementation by Vasseur is
in line with our implementation of the same algorithm while the Becker-Joux-May-Meurer
with depth 2 implemented by Esser,May and Zweydinger for the syndrome tests behaves a
little worse than our May-Meurer-Thomae but better than our Becker-Joux-May-Meurer
with depth 3.
As we have said, for the smallest tests there is an overheading introduced by the usage of
threads. Therefore, in Figures 4.11 and 4.12 we can see the plots with the smaller tests
(from n = 100 to n = 180) without using threads to see the comparison between the
measured complexity and the expected one.

(a) Prange average cpu cycles (b) Lee-Brickell average cpu cycles (c) Leon average cpu cycles

Figure 4.11: Evaluation of the ISD algorithms without using threads to find the target
error for small tests (syndrome tests) (1)
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(a) Stern average cpu cycles (b) BCD average cpu cycles (c) Finiasz-Sendrier average cpu
cycles

(d) MMT average cpu cycles (e) BJMM average cpu cycles (f) Both-May average cpu cycles

(g) Esser-Bellini average cpu cycles

Figure 4.12: Evaluation of the ISD algorithms without using threads to find the target
error for small tests (syndrome tests) (2)

Surprisingly, the measured complexity and the estimated one are not quite the same but
the measured is less: this means that for these small tests the current implementation
finds the target error faster than the expectation. We have seen how the usage of the
threads introduce an overheading for the smallest tests since in the plots with the threads
the measured complexity was much bigger than the estimated one while without using
the threads this behaviour is not replicated.
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We have seen from Figure 4.6 to Figure 4.8 that when the tests begin to be more complex,
the estimated cost of the ISD algorithms, computed multiplying the cost of a single iter-
ation with the expected number of iterations, is in line with the cost measured concretly
testing the implementation. Therefore, we can produce the plots reporting the estimated
cost complexity for each of the ISD implemented using tests who can take from days
to several months to complete. To do so, for each test taken in consideration, we have
directly measured on the implementation the average cost of a single iteration using the
optimal parameters returned by the proper estimator, and multiply it with the expected
number of iterations to obtain the expected total cost of the ISD.
In the following figure we can see the results obtained for each ISD together with the
cost returned by the estimators, while in Figure 4.15 all the ISD algorithm’s results are
plotted in one figure to see a direct comparison between them for complex tests.

(a) Expected cost of Prange (b) Expected cost of Lee-Brickell

(c) Expected cost of Leon (d) Expected cost of Stern

Figure 4.13: Expected total cost of the ISD algorithms to find the target error with
complex tests (syndrome tests) (1)
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(a) Expected cost of BCD (b) Expected cost of Finiasz-Sendrier

(c) Expected cost of MMT (d) Expected cost of BJMM

(e) Expected cost of Both-May (f) Expected cost of Esser-Bellini

Figure 4.14: Expected total cost of the ISD algorithms to find the target error with
complex tests (syndrome tests) (2)
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Figure 4.15: Expected total cost for all the ISD algorithms with complex tests (syndrome
tests)

We can see how with the increasing size of the tests the cost for finding an error with the
ISD algorithms increases exponentially: the syndrome decoding problem, as we expected,
starts becoming intractable as the code properties used in the tests increase.

4.5.2. McEliece Tests

In these tests the code rate R is equal to 0.8 resulting in k = 0.8n, while the weight of
the target error to find is w = d n

5dlog(n)ee. The tests in input are taken in the "Syndrome
Decoding in the Goppa-McEliece Setting" section at [4] and they are intended to be
as close as possible to the problem on which relies the Classic McEliece cryptosystem
proposed for the NIST standardization process. Under these conditions, instances with
cryptographic size are assumed to be out of reach, so we have considered instances with
increasing size, as in the previous tests, to see how hard this problem is in practice. All
the guidelines followed in the "Syndrome tests" are still valid. We report one plot for
each ISD showing the measured average cost complexity together with the estimated cost
complexity and the cost returned by the proper estimator as in the previous section.
It is important to highlight that even here, in the Ball-Collision Decoding algorithm,
the optimal parameter z (the weight of the ` part of the error) is returned with a value
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equal to 0 by the Syndrome Decoding estimator [13] for the family of tests taken in
consideration. Having z = 0 implies that the Ball-Collision Decoding algorithm coincides
with the Stern one: for this reason, we have tested the Ball-Collision Decoding with the
minimum admissible z, that is equal to 2, to obtain a different test with respect to the
one of the Stern. The performances obtained by the Ball-Collision Decoding algorithm
are worse than the other algorithms since it hasn’t been used the optimal parameter:
the optimal result for the Ball-Collision Decoding can be seen in the plot of the Stern
algorithm.

(a) Prange avg cpu cycles to find the target error (b) Lee-Brickell avg cpu cycles to find the target error

(c) Leon avg cpu cycles to find the target error (d) Stern avg cpu cycles to find the target error

Figure 4.16: Prange, Lee-Brickell, Leon and Stern algorithms evaluation (mceliece tests)
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(a) Ball-Collision avg cpu cycles to find the target
error

(b) Finiasz-Sendrier avg cpu cycles to find the target
error

(c) MMT avg cpu cycles to find the target error (d) BJMM avg cpu cycles to find the target error

Figure 4.17: Ball-Collision, Finiasz-Sendrier, May-Meurer-Thomae and Becker-Joux-May-
Meurer algorithms evaluation (mceliece tests)
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(a) Both-May avg cpu cycles to find the target error(b) Esser-Bellini avg cpu cycles to find the target
error

Figure 4.18: Both-May and Esser-Bellini algorithms evaluation (mceliece tests)

Even here we have measured the multiplicative factor that models how many elementary
abstract operations the machine done for each clock cycle. For both the estimators,
considering the greatest code tested, we have computed the ratio between the cost returned
by the estimator and the measured cost, or viceversa if this latter is greater than the
estimate. We can see the results in the Figure 4.19.

(a) Ledatools (b) Syndrome Decoding estimator

Figure 4.19: Multiplicative factor between the measured cost and the estimate returned
by the estimators (mceliece tests)



4| Experimental Evaluation 117

The reasoning explained in the syndrome tests is valid even here: for each ISD the multi-
plicative factor is constant between different runs, but since some algorithms have more
calculations to do in one iteration or more accesses to the memory than others, it varies
depending on the ISD in analysis.
As before, in Figure 4.20 two plots are reported: one collects the results between all the
ISD implemented in this work to see a direct comparison among them while the other
shows the comparison between our Finiasz-Sendrier’s algorithm with the one implemented
by Vasseur and our MMT and BJMM with the BJMM at depth 2 implemented by Esser,
May and Zweydinger with the mceliece tests.
Here, the fastest ISD algorithms implemented in this thesis for this kind of tests are re-
sulted to be the Finiasz-Sendrier and the May-Meurer-Thomae algorithms as before where
the latter has the best performances with the mceliece tests. Different from before, the
Esser-Bellini algorithm has better performances compared to the ones of the Both-May.
The Becker-Joux-May-Meurer with depth 2 implemented by Esser, May and Zweydinger
for the mceliece tests behaves better than our MMT and BJMM different from the the
case in which the syndrome tests have been used.
As happened in the syndrome tests, when we consider small tests that are solvable in less
than one second, the difference between the measured cost and the expected one is higher
due to the overhead of the threads. Because of that, the plots with the small tests with-
out using threads are reported in Figure 4.21: we can notice that the estimated cost and
the measured cost without using the threads are almost identical as we expect, different
from the case where we use threads with simple tests in which the difference between the
measured cost and the estimated cost is very high.
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(a) Comparison between our ISD algorithms

(b) Comparison between our ISD with the Vasseur [30] and the Esser,May,Zweydinger [14] implementations

Figure 4.20: Computational cost comparison between all the ISD algorithms (mceliece
tests)
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(a) Prange average cpu cycles (b) Lee-Brickell average cpu cycles (c) Leon average cpu cycles

(d) Stern average cpu cycles (e) Ball-Collision avg cpu cycles (f) Finiasz-Sendrier avg cpu cycles

(g) MMT average cpu cycles (h) BJMM average cpu cycles (i) Both-May average cpu cycles

(j) Esser-Bellini average cpu cycles

Figure 4.21: Evaluation of the ISD algorithms without using threads to find the target
error for small tests (mceliece tests)
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(a) Expected cost of Prange (b) Expected cost of Lee-Brickell (c) Expected cost of Leon

(d) Expected cost of Stern (e) Expected cost of BCD (f) Expected cost of Finiasz-Sendrier

(g) Expected cost of May-Meurer-
Thomae

(h) Expected cost of Becker-Joux-
May-Meurer

(i) Expected cost of Both-May (j) Expected cost of Esser-Bellini

Figure 4.22: Expected total cost of the ISD algorithms to find the target error with
complex tests (mceliece tests)
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Last, on the previous page at Figure 4.22, we have produced the plots reporting the
estimated cost complexity for each ISD using tests who can take from days to several
months to complete. In the following we can see one plot who collects the expected cost
measured for all the ISD algorithms in case of complex tests.

Figure 4.23: Expected total cost for all the ISD algorithms with complex tests (mceliece
tests)

As before, we can see how with the increasing of the size of the tests the cost for finding
an error increases exponentially: the syndrome decoding problem, as we expected, starts
becoming intractable with greater code properties.
The NIST has proposed five security categories for the McEliece cryptosystem: a parame-
ter set matches the security level of the category one,three or five if the scheme instantiated
with this set is at least as hard to break as AES-128, AES-192 or AES-256 respectively.
In the following table we can see the parameter sets proposed for the category one,three
and five.
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Table 4.1: Parameter sets suggested by NIST for McEliece cryptosystem

Category n k w

1 3488 2720 64

3 4608 3360 96

5 6688 5024 128

5 6960 5413 119

5 8192 6528 128

We can conclude, thanks to the testing results, that the McEliece cryptosystem with the
parameter sets proposed by the NIST in Table 4.1 is considered secure from the point of
view of the Information Set Decoding algorithms. This is true because, as we can notice
from the last plot, the syndrome decoding problem just with the smallest set proposed
by the NIST will have a bigger complexity compared to the one retrieved by the best
ISD algorithm with the largest test taken in consideration. Since the complexity of the
syndrome decoding problem grows exponentially, the problems with the parameter sets
in category 3 and 5 will be more complex and intractable too.
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developments

In this thesis we focused on how to solve the syndrome decoding problem, the basis on
which the code-based cryptosystems are founded on. This problem has been solved us-
ing the best algorithms currently known in the state of the art called Information Set
Decoding algorithms. After a brief chapter in which the basic of the coding theory and
the functioning of McEliece and Niederrieter cryptosystems are explained, in the second
chapter we have analyzed different routines that have been used inside the Information
Set Decoding algorithms. We have analyzed different procedures to compute a systematic
form of a binary matrix, various binary searches to find an element inside a list efficiently,
a smart way to compute all the possible combinations using an array and two sorting
algorithms for ordering lists. Then, in the first part of the experimental evaluation chap-
ter, we have tested the different RREF methods, the binary search variants and the two
sorting algorithms to see which variant performs best and unterstand which one to use
inside the ISD algorithms implementation.
In Chapter 3, first we have studied what is an information set decoding algorithm and
then, we have presented all the ISD implemented reporting the pseudocode of each al-
gorithm with the relative computational and spatial complexity. The algorithms imple-
mented are: Prange, Lee-Brickell, Leon, Stern, Ball-Collision Decoding, Finiasz-Sendrier,
May-Meurer-Thomae, Becker-Joux-May-Meurer, Both-May and Esser-Bellini. These al-
gorithms have been tested in the second part of the experimental evaluation part in
Chapter 4: here the results of a concrete evaluation of the Information Set Decoding
algorithms has been reported to understand how they behave in practice. Two family of
codes have been taken in consideration: the first has a code rate R = 0.5 and the weight
of the target error close to the Gilbert-Varshamov distance, while the second has a code
rate R = 0.8 and corresponds to instances of the syndrome decoding problem on which
the security of the classic McEliece cryptosystem relies. As expected, with the increasing
dimensions of the code in the tests, the complexity of the ISD algorithms for finding the
target error grows exponentially. We have seen how the measured cost complexity is in
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line with the estimated one computed multiplying the measured cost of a single iteration
with the number of expected iterations: thanks to that, we have been able to produce the
testing results even for complex tests that might be run for months. Analyzing the results
of the McEliece tests with high dimension codes we have concluded that the McEliece
cryptosystem instantiated with the parameter sets proposed by the NIST is secure, since
the syndrome decoding problem becomes intractable for the Information Set Decoding
algorithms using these parameter sets.
A possible future development can be moving the current implementation of the informa-
tion set decoding algorithms in GPU to see how the performances change.



125

Bibliography

[1] May, a.; meurer, a.; thomae, e. decoding random linear codes in O(20.054n). in pro-
ceedings of the advances in cryptology—asiacrypt 2011—17th international confer-
ence on the theory and application of cryptology and information security, seoul
south korea, 4–8 december 2011; pp. 107–124.

[2] M. Albrecht and G. Bard. The M4RI Library. The M4RI Team. URL https:

//bitbucket.org/malb/m4ri.

[3] M. R. Albrecht and C. Pernet. Efficient decomposition of dense matrices over gf (2).
arXiv preprint arXiv:1006.1744, 2010.

[4] N. Aragon, J. Lavauzelle, and M. Lequesne. decodingchallenge.org, 2019. URL
http://decodingchallenge.org.

[5] M. Baldi, A. Barenghi, F. Chiaraluce, G. Pelosi, and P. Santini. A finite regime
analysis of information set decoding algorithms. Algorithms, 12(10), 2019. ISSN
1999-4893. doi: 10.3390/a12100209. URL https://www.mdpi.com/1999-4893/12/

10/209.

[6] G. V. Bard. Accelerating cryptanalysis with the method of four russians. Cryptology
ePrint Archive, Report 2006/251, 2006. https://ia.cr/2006/251.

[7] K. E. Batcher. Sorting networks and their applications. In Proceedings of the April
30–May 2, 1968, spring joint computer conference, pages 307–314, 1968.

[8] A. Becker, A. Joux, A. May, and A. Meurer. Decoding random binary linear codes
in 2n/20: How 1+ 1= 0 improves information set decoding. In Annual international
conference on the theory and applications of cryptographic techniques, pages 520–536.
Springer, 2012.

[9] D. J. Bernstein, T. Lange, and C. Peters. Smaller decoding exponents: ball-collision
decoding. In Annual Cryptology Conference, pages 743–760. Springer, 2011.

[10] D. J. Bernstein, C. Chuengsatiansup, T. Lange, and C. van Vredendaal. Ntru prime:
Reducing attack surface at low cost. In C. Adams and J. Camenisch, editors, Se-

https://bitbucket.org/malb/m4ri
https://bitbucket.org/malb/m4ri
http://decodingchallenge.org
https://www.mdpi.com/1999-4893/12/10/209
https://www.mdpi.com/1999-4893/12/10/209
https://ia.cr/2006/251


126 | Bibliography

lected Areas in Cryptography – SAC 2017, pages 235–260, Cham, 2018. Springer
International Publishing. ISBN 978-3-319-72565-9.

[11] D. Blackman and S. Vigna. Scrambled linear pseudorandom number generators.
ACM Trans. Math. Softw., 47(4), sep 2021. ISSN 0098-3500. doi: 10.1145/3460772.
URL https://doi.org/10.1145/3460772.

[12] L. Both and A. May. Decoding linear codes with high error rate and its impact
for lpn security. In International Conference on Post-Quantum Cryptography, pages
25–46. Springer, 2018.

[13] A. Esser and E. Bellini. Syndrome decoding estimator. Cryptology ePrint Archive,
Report 2021/1243, 2021. https://ia.cr/2021/1243.

[14] A. Esser, A. May, and F. Zweydinger. Mceliece needs a break – solving mceliece-
1284 and quasi-cyclic-2918 with modern isd. Cryptology ePrint Archive, Report
2021/1634, 2021. https://ia.cr/2021/1634.

[15] M. Finiasz and N. Sendrier. Security bounds for the design of code-based cryptosys-
tems. In International Conference on the Theory and Application of Cryptology and
Information Security, pages 88–105. Springer, 2009.

[16] C. A. R. Hoare. Quicksort. The Computer Journal, 5(1):10–16, 01 1962. ISSN 0010-
4620. doi: 10.1093/comjnl/5.1.10. URL https://doi.org/10.1093/comjnl/5.1.

10.

[17] P. Indyk and R. Motwani. Approximate nearest neighbors: towards removing the
curse of dimensionality. In Proceedings of the thirtieth annual ACM symposium on
Theory of computing, pages 604–613, 1998.

[18] Intel. Intel® intrinsics guide. URL https://www.intel.com/content/www/us/en/

docs/intrinsics-guide/index.html#.

[19] P. J. Lee and E. F. Brickell. An observation on the security of mceliece’s public-
key cryptosystem. In Advances in Cryptology - EUROCRYPT ’88, Workshop on the
Theory and Application of of Cryptographic Techniques, Davos, Switzerland, May
25-27, 1988, Proceedings, volume 330 of Lecture Notes in Computer Science, pages
275–280. Springer, 1988. doi: 10.1007/3-540-45961-8_25.

[20] J. S. Leon. A probabilistic algorithm for computing minimum weights of large error-
correcting codes. IEEE Trans. Inf. Theory, 34:1354–1359, 1988.

https://doi.org/10.1145/3460772
https://ia.cr/2021/1243
https://ia.cr/2021/1634
https://doi.org/10.1093/comjnl/5.1.10
https://doi.org/10.1093/comjnl/5.1.10
https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#
https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#


| Bibliography 127

[21] R. J. McEliece. A Public-Key Cryptosystem Based On Algebraic Coding Theory.
Deep Space Network Progress Report, 44:114–116, Jan. 1978.

[22] W. Muła, N. Kurz, and D. Lemire. Faster population counts using avx2 instructions.
The Computer Journal, 61(1):111–120, 2018.

[23] H. Niederreiter. Knapsack-type cryptosystems and algebraic coding theory. Prob.
Contr. Inform. Theory, 15(2):157–166, 1986.

[24] E. Prange. The use of information sets in decoding cyclic codes. IRE Transactions
on Information Theory, 8(5):5–9, 1962. doi: 10.1109/TIT.1962.1057777.

[25] scandum. Binary Search. URL https://github.com/scandum/binary_search.

[26] C. E. Shannon. A mathematical theory of communication. The Bell System Technical
Journal, 27(3):379–423, 1948. doi: 10.1002/j.1538-7305.1948.tb01338.x.

[27] P. Shor. Algorithms for quantum computation: discrete logarithms and factoring.
In Proceedings 35th Annual Symposium on Foundations of Computer Science, pages
124–134, 1994. doi: 10.1109/SFCS.1994.365700.

[28] V. M. Sidelnikov and S. O. Shestakov. On insecurity of cryptosystems based on
generalized reed-solomon codes. 1992.

[29] J. Stern. A method for finding codewords of small weight. In International Colloquium
on Coding Theory and Applications, pages 106–113. Springer, 1988.

[30] V. Vasseur. Dumer ISD implementation. URL https://github.com/vvasseur/isd.

[31] T. Wang. Integer hash function, 2007. URL http://web.archive.org/web/

20071223173210/http://www.concentric.net/~Ttwang/tech/inthash.htm.

[32] H. S. Warren Jr. The quest for an accelerated population count. Beautiful code:
leading programmers explain how they think, pages 147–60, 2007.

[33] P. Wegner. A technique for counting ones in a binary computer. Communications of
the ACM, 3(5):322, 1960.

https://github.com/scandum/binary_search
https://github.com/vvasseur/isd
http://web.archive.org/web/20071223173210/http://www.concentric.net/~Ttwang/tech/inthash.htm
http://web.archive.org/web/20071223173210/http://www.concentric.net/~Ttwang/tech/inthash.htm




129

A| Appendix A



130 A| Appendix A

Ta
bl
e
A
.1
:
O
pt
im

al
pa

ra
m
et
er
s
re
tu
rn
ed

by
th
e
Le

da
to
ol
s
es
ti
m
at
or

C
o
d
e

(n
,
k
,
w

)
p
(L

B
)

p
(L

eo
n
)

`
(L

eo
n
)

p
(S
te
rn
)

`
(S
te
rn
)

p
(F

S
)

`
(F

S
)

p
(M

M
T
)

`
(M

M
T
)

`
1
(M

M
T
)

p
(B

JM
M
)

`
(B

JM
M
)

∆
1
(B

JM
M
)

∆
2
(B

JM
M
)

S
y
n
d
ro
m
e
te
st
s

(1
00
,5
0,
14
)

2
3

3
4

6
6

14
4

14
9

4
14

2
0

(1
30
,6
5,
18
)

2
3

3
4

7
6

15
4

13
7

4
15

2
0

(1
50
,7
5,
20
)

2
3

3
6

14
6

15
4

14
7

4
15

2
0

(1
80
,9
0,
24
)

2
3

3
6

15
6

16
4

14
6

4
20

2
0

(2
00
,1
00
,2
7)

2
3

3
6

16
6

17
4

14
5

4
16

2
0

(2
20
,1
10
,2
9)

2
3

4
6

16
6

18
4

14
4

4
16

2
0

(2
50
,1
25
,3
2)

2
3

4
6

17
6

18
4

15
4

4
16

2
0

(2
70
,1
35
,3
4)

2
3

4
6

18
6

19
4

15
3

4
18

2
0

(3
00
,1
50
,3
8)

2
3

4
6

18
6

19
4

16
3

4
17

2
0

(3
20
,1
60
,4
0)

2
3

4
6

19
6

19
4

16
2

4
17

2
0

(3
50
,1
75
,4
4)

2
3

4
6

19
6

20
4

16
1

4
17

2
0

M
cE

li
ec
e
te
st
s

(1
97
,1
58
,5
)

2
2

3
4

14
4

16
4

22
19

4
17

2
0

(2
40
,1
92
,6
)

2
2

3
4

14
4

16
4

22
18

4
22

2
0

(2
86
,2
29
,7
)

2
2

3
4

15
4

15
4

21
17

4
18

2
0

(3
81
,3
05
,9
)

2
2

3
4

16
4

16
4

22
18

4
19

2
0

(4
31
,3
45
,1
0)

2
2

3
4

16
4

17
8

47
39

4
19

2
0

(4
82
,3
86
,1
1)

2
2

3
4

16
4

17
8

48
40

4
19

2
0

(5
34
,4
28
,1
1)

2
2

3
4

17
4

17
8

49
41

4
20

2
0

(5
87
,4
70
,1
2)

2
2

3
4

17
4

18
8

50
42

4
20

2
0

(6
40
,5
12
,1
3)

2
2

3
4

17
4

18
8

51
42

4
20

2
0

(6
95
,5
56
,1
4)

2
2

3
4

18
4

18
8

52
43

4
20

2
0



A| Appendix A 131

Ta
bl
e
A
.2
:
O
pt
im

al
pa

ra
m
et
er
s
re
tu
rn
ed

by
th
e
Sy

nd
ro
m
e
D
ec
od

in
g
es
ti
m
at
or

(n
,
k
,
w

)
p

(S
te
rn
)

`
(S
te
rn
)

p
(B

C
D
)

`
(B

C
D
)

z
(B

C
D
)

p
(F

S
)

`
(F

S
)

p
(M

M
T
)

`
(M

M
T
)

`
1

(M
M
T
)

p
(B

JM
M
)

`
(B

JM
M
)

∆
1

(B
JM

M
)

∆
2

(B
JM

M
)

p
(B

M
)

r
1

(B
M
)

w
1

(B
M
)

∆
1

(B
M
)

S
y
n
d
ro
m
e
te
st
s

(1
00
,5
0,
14
)

4
3

4
5

2
4

6
4

6
2

4
10

2
0

4
2

0
0

(1
30
,6
5,
18
)

4
4

4
5

2
4

5
4

7
2

8
18

0
0

4
3

0
0

(1
50
,7
5,
20
)

4
6

4
6

2
4

6
4

7
2

8
16

0
0

4
2

0
0

(1
80
,9
0,
24
)

4
6

4
6

2
4

6
4

7
2

8
17

0
0

4
3

0
0

(2
00
,1
00
,2
7)

4
5

4
6

2
4

6
4

7
2

8
18

0
0

4
3

0
0

(2
20
,1
10
,2
9)

4
6

4
7

2
4

7
4

8
2

8
18

0
0

4
3

0
0

(2
50
,1
25
,3
2)

4
6

4
7

2
4

7
4

8
2

8
19

0
0

4
3

0
0

(2
70
,1
35
,3
4)

4
8

4
7

2
4

7
4

8
2

8
19

0
0

4
3

0
0

(3
00
,1
50
,3
8)

4
6

4
7

2
4

8
4

8
2

8
19

0
0

4
4

0
0

(3
20
,1
60
,4
0)

4
8

4
8

2
4

8
4

8
2

8
20

0
0

4
3

0
0

(3
50
,1
75
,4
4)

4
8

4
8

2
4

8
4

9
2

8
20

0
0

4
4

0
0

M
cE

li
ec
e
te
st
s

(1
97
,1
58
,5
)

2
7

2
4

2
2

4
4

6
2

4
14

2
0

2
3

0
0

(2
40
,1
92
,6
)

2
7

2
4

2
2

4
4

12
2

4
20

2
0

4
4

0
0

(2
86
,2
29
,7
)

2
7

2
4

2
2

4
4

13
2

4
21

2
0

4
7

0
0

(3
81
,3
05
,9
)

2
6

2
4

2
2

4
4

13
2

4
22

2
0

4
2

0
0

(4
31
,3
45
,1
0)

2
6

4
12

2
4

12
4

13
2

4
23

2
0

4
2

0
0

(4
82
,3
86
,1
1)

2
6

4
12

2
4

12
4

13
2

4
23

2
0

4
3

0
0

(5
34
,4
28
,1
1)

2
7

4
13

2
4

13
4

14
2

4
24

2
0

4
2

0
0

(5
87
,4
70
,1
2)

4
14

4
13

2
4

13
4

14
2

4
24

2
0

4
2

0
0

(6
40
,5
12
,1
3)

4
14

4
13

2
4

13
4

14
2

8
28

0
0

4
2

0
0

(6
95
,5
56
,1
4)

4
13

4
13

2
4

13
4

14
2

8
29

0
0

4
6

0
0





133

List of Figures

1.1 Error correcting code over a noisy channel . . . . . . . . . . . . . . . . . . 5

2.1 Partial systematic form of H . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1 Situation with the transformed matrix and vectors after calling the RREF 45
3.2 Weight distribution in Prange algorithm . . . . . . . . . . . . . . . . . . . 49
3.3 Weight distribution in Lee-brickell algorithm . . . . . . . . . . . . . . . . . 52
3.4 Weight distribution in Leon algorithm . . . . . . . . . . . . . . . . . . . . 54
3.5 Weight distribution in Stern algorithm . . . . . . . . . . . . . . . . . . . . 58
3.6 Weight distribution in Ball-Collision Decoding algorithm . . . . . . . . . . 62
3.7 Weight distribution in Finiasz-Sendrier algorithm . . . . . . . . . . . . . . 66
3.8 Weight distribution in May-Meurer-Thomae algorithm . . . . . . . . . . . 69
3.9 Lists of MMT algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.10 Weight distribution in BJMM algorithm . . . . . . . . . . . . . . . . . . . 74
3.11 Lists of BJMM algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.12 Weight distribution in Both-May algorithm . . . . . . . . . . . . . . . . . . 80
3.13 Lists of Both-May algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.14 Lists of Esser-Bellini algorithm . . . . . . . . . . . . . . . . . . . . . . . . 86
3.15 Array of unsigned int for representing a binary vector . . . . . . . . . . . . 89
3.16 Bidimensional array of unsigned int for representing a binary matrix . . . . 90

4.1 Comparison between different RREF procedures . . . . . . . . . . . . . . . 97
4.2 Comparison between different partial RREF procedures . . . . . . . . . . . 97
4.3 Comparison between binary range search variants: percentage speedup of

the execution time with respect to the one of the standard binary range
search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.4 Comparison between sorting algorithms: percentage speedup of the execu-
tion time of Quicksort with respect to the one of the Djbsort . . . . . . . . 100

4.5 Expected computational cost returned by the Ledatools and the Syndrome
Decoding estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.6 Prange, Lee-Brickell, Leon and Stern algorithms evaluation (syndrome tests)104



134 | List of Figures

4.7 Ball-Collision Decoding, Finiasz-Sendrier, May-Meurer-Thomae and Becker-
Joux-May-Meurer algorithms evaluation (syndrome tests) . . . . . . . . . . 105

4.8 Both-May and Esser-Bellini algorithms evaluation (syndrome tests) . . . . 106
4.9 Multiplicative factor between the measured cost and the estimate returned

by the estimators (syndrome tests) . . . . . . . . . . . . . . . . . . . . . . 107
4.10 Computational cost comparison between all the ISD algorithms (syndrome

tests) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
4.11 Evaluation of the ISD algorithms without using threads to find the target

error for small tests (syndrome tests) (1) . . . . . . . . . . . . . . . . . . . 109
4.12 Evaluation of the ISD algorithms without using threads to find the target

error for small tests (syndrome tests) (2) . . . . . . . . . . . . . . . . . . . 110
4.13 Expected total cost of the ISD algorithms to find the target error with

complex tests (syndrome tests) (1) . . . . . . . . . . . . . . . . . . . . . . 111
4.14 Expected total cost of the ISD algorithms to find the target error with

complex tests (syndrome tests) (2) . . . . . . . . . . . . . . . . . . . . . . 112
4.15 Expected total cost for all the ISD algorithms with complex tests (syndrome

tests) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
4.16 Prange, Lee-Brickell, Leon and Stern algorithms evaluation (mceliece tests) 114
4.17 Ball-Collision, Finiasz-Sendrier, May-Meurer-Thomae and Becker-Joux-May-

Meurer algorithms evaluation (mceliece tests) . . . . . . . . . . . . . . . . 115
4.18 Both-May and Esser-Bellini algorithms evaluation (mceliece tests) . . . . . 116
4.19 Multiplicative factor between the measured cost and the estimate returned

by the estimators (mceliece tests) . . . . . . . . . . . . . . . . . . . . . . . 116
4.20 Computational cost comparison between all the ISD algorithms (mceliece

tests) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
4.21 Evaluation of the ISD algorithms without using threads to find the target

error for small tests (mceliece tests) . . . . . . . . . . . . . . . . . . . . . . 119
4.22 Expected total cost of the ISD algorithms to find the target error with

complex tests (mceliece tests) . . . . . . . . . . . . . . . . . . . . . . . . . 120
4.23 Expected total cost for all the ISD algorithms with complex tests (mceliece

tests) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121



135

List of Tables

2.1 Time complexities of the RREF procedures . . . . . . . . . . . . . . . . . . 22
2.2 Space complexities of the RREF procedures . . . . . . . . . . . . . . . . . 22

4.1 Parameter sets suggested by NIST for McEliece cryptosystem . . . . . . . 122

A.1 Optimal parameters returned by the Ledatools estimator . . . . . . . . . . 130
A.2 Optimal parameters returned by the Syndrome Decoding estimator . . . . 131





137

List of Algorithms

2.1.1 Reduced Row Echelon Form . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.2 RedRowEchelonForm: Reusing Existing Pivot . . . . . . . . . . . . . . . 19
2.1.3 Partial Reduced Row Echelon Form . . . . . . . . . . . . . . . . . . . . . 20
2.1.4 PartialRedRowEchelonForm: Optimized . . . . . . . . . . . . . . . . . . . 21
2.1.5 Method of the Four Russians Inversion (M4RI) . . . . . . . . . . . . . . . 24
2.2.1 Standard Binary Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2.2 Boundless Binary Search . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2.3 Doubletapped Binary Search . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.2.4 Monobound Binary Search . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.2.5 Tripletapped Binary Search . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.2.6 Monobound Quaternary Search . . . . . . . . . . . . . . . . . . . . . . . . 30
2.2.7 Monobound Interpolated Binary Search . . . . . . . . . . . . . . . . . . . 31
2.2.8 Adaptive Binary Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.2.9 Boundless Binary Range Search . . . . . . . . . . . . . . . . . . . . . . . 33
2.3.1 NextComb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.3.2 Init Partial Sums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.3.3 NextColSum Optimized . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.4.1 Hoare Partition Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.4.2 Quicksort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.4.3 Djbsort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.1.1 Basic Structure of an ISD algorithm . . . . . . . . . . . . . . . . . . . . . 46
3.2.1 Prange algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.2.2 Lee-Brickell algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.2.3 Leon algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.2.4 Stern algorithm using lists for finding collisions . . . . . . . . . . . . . . . 60
3.2.5 Stern algorithm using hash table for finding collisions . . . . . . . . . . . 61
3.2.6 Ball-Collision algorithm using lists for finding collisions . . . . . . . . . . 64
3.2.7 Finiasz-Sendrier algorithm using lists for finding collisions . . . . . . . . . 67
3.2.8 May-Meurer-Thomae algorithm . . . . . . . . . . . . . . . . . . . . . . . . 71



138 | List of Algorithms

3.2.9 Becker-Joux-May-Meurer algorithm . . . . . . . . . . . . . . . . . . . . . 77
3.2.10 Nearest Neighbor Search algorithm . . . . . . . . . . . . . . . . . . . . . . 81
3.2.11 Both-May algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.2.12 Indwik-Motwani Search algorithm . . . . . . . . . . . . . . . . . . . . . . 85
3.2.13 Esser-Bellini algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
3.3.1 Brian Kernighan’s test for computing the Hamming weight . . . . . . . . 92



139

List of Symbols

Variable Description

C Linear code

G Generator matrix of a linear code

H Parity-check matrix of a linear code

n Length of the linear code (number of columns of H)

k Rank of the linear code

r Number of rows of H (r = n - k)

s Syndrome

e Target error

w Weight of the target error to be found
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1. Introduction
Nowadays, the most used public-key cryptosys-
tems are based on the hardness of factoring very
large numbers or on the intractability of the dis-
crete logarithm problem. Thanks to the Shor’s
algorithm, we already know that in the future,
when it will be possible to build sufficiently
performing quantum computers, these problems
will be solvable in polynomial time.
Therefore, there is a need to study alternative
cryptosystems based on different hard mathe-
matical problems that will be resistant in the
era of the quantum computers. One of this al-
ternative is code-based cryptography on which
the McEliece and Niederreiter cryptosystems are
based on. The functioning of these cryptosys-
tems is founded on the hardness of the syndrome
decoding problem, or equivalently, the decoding
of a random linear code.
In this work we are going to analyze and im-
plement the algorithms with the best com-
plexities in the current state of the art that
solves the syndrome decoding problem. They
are called Information Set Decoding algorithms
and we have implemented the following ones
to concrete evaluate them for understanding
how they behave in practice: Prange, Lee-
Brickell, Leon, Stern, Ball-Collision Decoding,
Finiasz-Sendrier, May-Meurer-Thomae, Becker-

Joux-May-Meurer, Both-May and Esser-Bellini.

2. McEliece Cryptosystem and
the Syndrome Decoding
Problem

The McEliece cryptosystem is an asymmet-
ric encryption algorithm developed by Robert
McEliece in 1978 [5] based on the hardness of
decoding a random linear code. The working
principle is the following: a linear code C is
chosen from the Goppa codes family capable of
correcting w errors and being indistinguishable
from random codes. Then, a random k× k non-
singular binary matrix S and a random n × n
permutation matrix P are selected and the k×n
matrix G̃ = SGP is computed, where G is the
generator matrix of the code chosen from the
Goppa family. The public key of this cryptosys-
tem is composed by 〈G̃, w〉 while the private key
is 〈S, P,G〉. This scheme works thanks to the
hardness of decoding random linear code: the
original code with generator matrix G is hidden
by the code generated with the matrix G̃ ob-
tained perturbating randomly G with the ma-
trices S and P .
A problem equivalent to the decoding random
linear code is the so called syndrome decoding
problem on which the Niederreiter cryptosys-
tem, a variant of the McEliece one, is based

1
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on. Instead of working with the generator ma-
trix of the code C, this scheme exploits the bi-
nary parity-check matrixH of the code following
the same logical reasoning(using different ma-
trices size) obtaining a public key composed by
〈H̃, w〉 and a private key by 〈S, P,H〉. Since
the decoding random linear code and the syn-
drome decoding problem are equivalent, we will
focus our attention to the latter because the bi-
nary parity-check matrix has smaller dimensions
with respect to the generator matrix and so, we
can solve the problem with less effort. It fol-
lows a formal definition. Let H̃ ∈ F(n−k)×n

q be
a parity check matrix, s = H̃eT ∈ Fn−k

q the
syndrome and w an integer. The Syndrome De-
coding Problem asks to find an error e ∈ Fn

q

with HW(e) ≤ w such that H̃eT = s. This prob-
lem is NP-hard and if we can solve it we are
able to break the code-based cryptosystems of
McEliece and Niederrieter. In the next section,
we are going to study the Information Set De-
coding algorithms for solving the syndrome de-
coding problem.

3. Information Set Decoding
Algorithms

All the Information Set Decoding algorithms
have the goal to find a target error e having in
input a binary parity-check matrix H, a syn-
drome s and a weight w. First, let’s define what
is an information set: having a parity-check ma-
trix H ∈ Fr×n

2 , we define IS as an information
set with size k if and only if rank HIS∗ = |IS∗| =
n− k = r where IS∗ = {0, . . . , n− 1} \ IS.
All the algorithms have the same basic structure:
they choose an information set IS with size k of
H that divides the error e in two parts, eS∗ and
eS, where eS∗ are the bits in e indexed by the
information set IS∗, while eS are the ones in-
dexed by IS, and then try to guess in the eS
part a certain weight p. The phase of choosing
an information set is simply done transforming
the matrix H in input in reduced row echelon
form obtaining Ĥ = [Ir V ], while the guessing
part depends on the specific ISD chosen. In Fig-
ure 1 we can see the syndrome decoding problem
structure after applying the RREF method with
the error splitting thanks to the information set
found.

I V

êT

ŝ=

r k

r

k

r

r

êS∗

êS

Figure 1: Situation after calling the RREF
where an information set has been found

Different methods for computing the RREF of
a binary matrix has been taken in consideration
with possible optimizations: all of them start
with a random shuffling of the matrix columns
and then, try to transform the left sub-matrix of
the permuted one into an identity matrix. The
original syndrome decoding problem has been
transformed in an equivalent problem composed
of a transformed matrix Ĥ = [Ir V ] and a
transformed syndrome ŝ = UsT , where U is a
matrix holding all the row operations applied to
H during the RREF transformation. At the end,
the error vector relative to the original problem,
is obtained applying the permutation initially
performed to H to the error vector retrieved
from the transformed problem.
After computing a correct systematic form, each
ISD algorithm needs to recover the target error:
the simplest ones follow a bruteforce technique
for guessing p positions set to 1 in êS: the guess
is correct if and only if HW(êS∗) = w− HW(êS) =
w−p where HW(x) indicates the Hamming weight
of the binary vector x. When a right guess is
found, we obtain the permuted error as the con-
catenation between êS∗ and êS. If the algorithm
hasn’t found the wanted target error after it has
tried all the possible guesses, it needs to choose
another information set calling another time the
RREF procedure picking a new initially random
permutation and restart the guessing procedure
with a new transformed matrix and syndrome.
The Information Set Decoding algorithms are
probabilistic since their output depends on the
permutation picked for computing the RREF
form of H. For this reason, each ISD tries to re-
trieve the error vector repeating a certain num-

2
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ber of times an attempt whose average value de-
pends on the success probability of the single
attempt itself. The computational complexity
of all the ISD algorithms has the following form:

CISD(n, r, w) =
citer
Prsucc

=

=
1

Prsucc
(CIS(n, r) + CSEARCH(n, r, w))

where citer is the complexity of each attempt
composed by the computation of the RREF
CIS(n, r) and the searching of the error
CSEARCH(n, r, w), while Prsucc denotes the
success probability of a single attempt. The
difference between all the Information Set De-
coding algorithms is how the error is retrieved
after the call to the RREF, therefore, how
CSEARCH(n, r, w) changes. In the following
there is a brief description for each ISD algo-
rithm that has been implemented.
Prange. Prange was the first variant of
ISD designed and it is based on the idea of
guessing a set k of error-free positions in the
target vector; from Figure 1 it guesses that
HW(êS) = 0. Therefore, after the computation
of the RREF it simply checks if the permuted
syndrome ŝ has weight equal to w. When
this happens, the original error is obtained
applying the permutation to the permuted error
ê = [ŝ 01×k].
Lee-Brickell. The Lee-Brickell algorithm
improves Prange allowing p positions set to
1 in the second part of the permuted error
obtaining: HW(êS) = p. It considers all the
possible combinations of k size vectors with
weight equal to p and for each combination it
checks if HW(êS∗) = w − p. If all the possible
combinations have been tested without finding
the target error, a new RREF computation is
done picking a different permutation and the
previous step is repeated with the new matrix.
Leon. The Leon algorithm improves the Lee-
Brickell’s one assuming that the contribution to
the value of the first ` bits of the syndrome ŝ,
ŝup, comes only from columns in V: this means
that there is a run long ` bits of zeroes in the
first part of êS∗ . It performs a pre-check on the
` long vector to control if its weight is equal to
zero before checking HW(êS∗) = w − p.
Stern. Stern’s algorithm improves Leon’s ISD
by employing a meet-in-the-middle strategy
for finding which set of size p, containing `

bit portions of columns of V , adds up to the
first ` bits of the syndrome. The part of the
permuted error with weight p, êS, is splitted
into two binary vectors with weight p

2 . It saves
inside a list or an hashtable all the possible(k/2
p/2

)
vectors long ` with weight p/2 relative

to the first part of the upper matrix of V and
then enumerates all the possible

(k/2
p/2

)
vectors

relative to the second part of the upper matrix
of V and tries to find these latter vectors inside
the list or the hashtable. The list needs to be
sorted and then a binary range search is applied
to find collisions. If a match is found, exists a
valid candidate pair for constructing êS, and
so, it can go on controlling if the lower part has
weight equal to w − p to build the complete
permuted error.
Ball-Collision Decoding. The Ball-Collision
Decoding algorithm applies the same steps as
the Stern but allowing z error affected positions
in the ` part of the permuted error. Also the `
part of the error is splitted into two binary vec-
tors with weight z/2 and the same procedures
of the Stern is applied for populating the list
or the hashtable, each time considering all the
possible

(k/2
p/2

)(`/2
z/2

)
binary vectors.

Finiasz-Sendrier. The Finiasz-Sendrier algo-
rithm improves the Stern’s algorithm removing
the ` window of zeroes in the permuted error
and moving this ` region in the part of the error
where we need to guess p error bits. Since the
p positions to be guessed are picked among the
last k + ` position of the error vector and not
among the last k as in the previous ISDs, we
need to have only an identity matrix of size
(r − `) × (r − `) on the upper leftmost portion

of Ĥ obtaining Ĥ =

[
Ir−` Vup

0(r−`)×` Vdown

]
. This

form is obtained computing a partial systematic
form of H. Then, the same steps of Stern are
done, building the list or the hashtable with all
the possible

((k+`)/2
p/2

)
binary error vectors.

May-Meurer-Thomae. The May-Meurer-
Thomae (MMT) algorithm improves the
Finiasz-Sendrier’s algorithm changing the way
in which the p positions of the vector are
chosen. Instead of splitting them equally as
p
2 in the lefmost k+`

2 columns and p
2 in the

rightmost k+`
2 ones, the algorithm picks two

disjoint sets α, β ⊂ {0, . . . , k+`−1}. Therefore,
the May–Meurer–Thomae algorithm exploits a

3
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time to memory trade-off like the one employed
by Stern, applying twice the precomputation
strategy. For building the p weight part of the
error two layers of lists are used: at layer 1 two
lists hold binary vectors with weights p/2 that
have been retrieved from the four lists at layer
2 holding binary vectors with weight p/4.
Becker-Joux-May-Meurer. The BJMM al-
gorithm considers that it is possible to represent
the error with weight p, êS, as the sum of two
error vectors ê1 and ê2 with weight equal to
p
2 + ∆ under the assumption that the extra ∆
ones cancel out during the addition. It uses
three layers instead of two obtaining at the
first layer two lists holding binary vectors with
weight p1 = p

2 + ∆1, at the second four lists
holding vectors with weight p2 = p1

2 + ∆2 and
at the last layer eight lists holding vectors with
weight p3 = p2

2 .
Both-May. The Both-May algorithm takes
the idea of the BJMM algorithm but goes back
computing a full systematic form. It uses two
layers of lists and it applies a nearest neighbor
search technique for their construction instead
of sorting the lists for applying a binary range
search. The algorithm doesn’t want to find an
exact matching between binary vectors but it
wants to find pairs of vectors such that, given
a target weight wi, their sum has a weight
equal to wi (approximate matching problem).
Both-May algorithm works with a p part of the
permuted error long k and not k + ` like the
last algorithms we have seen.
Esser-Bellini. The Esser-Bellini algorithm is a
variant of the Both-May algorithm presented in
[4]. The algorithm is almost equal to the Both-
May algorithm, the only thing that changes is
the application of the Indwik-Motwani search
instead of the nearest neighbor search to build
the lists at the various layers. In a nutshell, be-
fore checking the weight wi of the resulting sum
for solving the approximate matching problem,
the two binary vectors must be equal in some
λ coordinates picked at random. The indwik-
motwani search relies on the fact that the sum
between the two vectors will have small weight,
therefore, for a certain number of λ coordinates,
is more likely that on these coordinates the
two vectors have the same values with respect
to the situation where the sum has larger weight.

4. RREF Testing
The first step of each ISD algorithm as we have
seen is the computation of the RREF of H. Dif-
ferent procedures computing a full RREF or a
partial RREF have been taken in consideration
and they have been tested to understand which
one performs best: the standard RREF, the
RREF with reusing pivots, the partial RREF
and the partial RREF optimized have been im-
plemented from scratch while the method of
M4RI is available publicly in the M4RI library
based on the work by Gregory V.Bard in [3]. We
have taken a set of challenges having different
dimensions of the parity-check matrix to stress
the procedures with increasing sizes of H. The
matrices tested have rate R = n

k = 0.5 and their
sizes go from the minimum r×n = 25×50 to the
maximum 500× 1000. For each code we call 30
times the RREF procedure in consideration and
we save the average value of the cost complexity
measured in cpu cycles spent for computing the
RREF. On the following plots we can see that
the M4RI method is the most efficient.

Figure 2: Avg cpu cycles comparison between
different RREF procedures

Figure 3: Avg cpu cycles comparison between
different partial RREF procedures
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5. ISD Algorithms Testing
In this section we are going to present the results
obtained by the testing of the implementation of
all the ISD algorithms. Two different family of
tests have been considered. The first test case
is composed by instances of the the so called
"Syndrome Decoding" that we can find at [1].
In these tests the codes taken in consideration
have a rate R = 0.5 and the weight w close to
the Gilbert-Varshamov distance.
In the second tests the code rate R is equal
to 0.8 resulting in k = 0.8n while the weight
of the target error to find is w = d n

5dlog(n)ee.
The tests in input are taken in the "Syndrome
Decoding in the Goppa-McEliece Setting" sec-
tion at [1] and they are intended to be as close
as possible to the problem on which relies the
Classic McEliece cryptosystem proposed for the
NIST standardization process. Under these con-
ditions, instances with cryptographic size are as-
sumed to be out of reach, so we have considered
instances with increasing size, as in the previous
tests, to see how hard this problem is in practice.
Since different test cases using different linear
codes properties have been considered, we have
the need to tune the parameters of the ISD algo-
rithms properly (like the parameter p used from
Lee-Brickell or the parameter ` used in Leon).
The optimal parameters of the ISD algorithms
have been chosen using two estimators already
available: the Ledatools estimator described in
[2] and the Esser-Bellini estimator described in
[4]. In the following plots, we can see the aver-
age computational cost measured in cpu cycles
of all the ISD algorithms implemented for the
two family of tests taken in consideration.

Figure 4: Avg cpu cycles comparison between all
the ISD algorithms (syndrome tests)

Figure 5: Avg cpu cycles comparison between all
the ISD algorithms (mceliece tests)

For both the tests the measured cost complex-
ity is in line with the estimated cost complexity
obtained multiplying the cost of a single itera-
tion with the expected number of iteration for
finding a target error. The latter term is the re-
ciprocal of the success probability that we have
seen in the formula of the computational com-
plexity of the ISD and it depends on which ISD
we are using. The cost of a single iteration of
an ISD has been measured as the average cost
taken from 30 runs of the algorithm: for each
test we execute the ISD algorithm only for one
iteration not worrying about finding the target
error but focusing on the cost of a single itera-
tion (one RREF computation and one call to the
search error part). Knowing that, it is possible
to estimate the complexity of the ISD algorithms
even for tests that could be run for months be-
fore finding the target error. In the following
plots we can see the estimated cost complexity
for complex syndrome tests and mceliece tests
for all the ISD implemented.

Figure 6: Estimated average cost complexity for
complex tests (syndrome tests)
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Figure 7: Estimated average cost complexity for
complex tests (mceliece tests)

We can see how with the increasing of the size of
the tests the cost for finding an error increases
exponentially: the syndrome decoding problem,
as we expected, starts becoming intractable with
greater code properties. The NIST has proposed
five security categories for the McEliece cryp-
tosystem: a parameter set matches the security
level of the category one, three or five if the
scheme instantiated with this set is at least as
hard to break as AES-128, AES-192 or AES-256,
respectively. For example, in category one the
parameter set proposed is (3488,2720,64) while
one set from category 5 is (6688,5024,128). We
can conclude, thanks to the testing results, that
the McEliece cryptosystem with the parameter
sets proposed by the NIST is considered secure
from the point of view of the Information Set
Decoding algorithms. This is true because, as
we can notice from the last plot, the syndrome
decoding problem just with the smallest set pro-
posed by the NIST will have a bigger complexity
compared to the one retrieved by the best ISD
algorithm with the largest test taken in consid-
eration. Since the complexity of the syndrome
decoding problem grows exponentially, the prob-
lems with the parameter sets in category 3 and
5 will be more complex and intractable too.

6. Conclusions
In this thesis we focused on how to solve the
syndrome decoding problem, the basis on which
the code-based cryptosystems are founded on.
This problem has been solved implementing the
Information Set Decoding algorithms, the tech-
niques with the best complexity currently known
in the state of the art. We have done a concrete
evaluation of the Information Set Decoding al-
gorithms to understand their behaviour in prac-

tice. We have tested these algorithms with in-
creasing tests size and then, computing the cost
of a single iteration for each ISD, we have re-
trieved the estimated cost complexity for high
dimension tests to see that the syndrome decod-
ing problem starts becoming intractable as the
code properties increase, confirming the security
of the McEliece cryptosystem with the parame-
ter sets proposed by the NIST.
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