
Executive Summary of the Thesis

A methodology for the reliability analysis and the efficient hardening
of Convolutional Neural Networks

Laurea Magistrale in Computer Science and Engineering - Ingegneria Informatica

Author: Alessandro Nazzari

Advisor: Prof. Antonio Rosario Miele

Co-advisor: Prof. Luca Cassano

Academic year: 2021-2022

1. Introduction
Convolutional Neural Networks (CNNs) usage
has been steadily increasing in the last decade,
especially for perception functionalities in both
safety-critical systems and not. An example
of this phenomenon is the Autonomous Driving
System (ADS), a set of high-level functionalities
aiming at partially or entirely substituting the
human driver. Design principles for digital sys-
tems in safety-critical applications are strictly
regulated by standards such as ISO 26262 [5].
Similarly, the Society of Automotive Engineers
(SAE) regulates ADS functionalities. A high
level of reliability and fault detection mecha-
nisms are required by both standards. Overall
the request for the reliability of digital systems
has always been crucial.
In 1996 Boeing Defence and Space Group pub-
lished a research paper [6] stating that the oc-
currence of faults in ground segment systems av-
erages around two every thousand billion hours.
While it seems a negligible rate, the number of
cars used has exponentially increased since 1996,
with an average of 268 million vehicles used in
Europe in 2019. Considering this number, the
estimate of faults per car would be one every
3.7 hours, concerning information indeed. In

this scenario, classical redundancy approaches
may not be feasible due to the high complexity
of the models and the hardware used. However,
deep learning applications have an intrinsic de-
gree of fault resiliency. Many tools can be used
to analyze the reliability of CNNs. We decided
to adopt and improve an existing Error Simula-
tor called CLASSES.

2. Goals and Contribution
The goals of this thesis were threefold:
Improve CLASSES: The first one was to im-
prove the prototype implementation of the error
simulator framework. It was required to iden-
tify the most critical components of the frame-
work and design solutions aimed at fixing them.
Moreover, we improved the usability of the tool
and designed a more flexible interface allowing
for easy usage of all its components.
Extensive error simulation campaign: The
second goal was to design and execute an ex-
tensive error simulation campaign. The objec-
tives of this campaign were, in turn, twofold.
Firstly to validate the framework’s effectiveness
and demonstrate that it is possible to perform
an error simulation campaign of substantial size.
Secondly, to assess the robustness against faults

1



Executive summary Alessandro Nazzari

of multiple CNNs to verify that the results ob-
tained with CLASSES are meaningful.
Hardening of CNNs: The third and final goal
of the thesis was to define a hardening strat-
egy for CNNs capable of exploiting in an auto-
mated and effective way information produced
by CLASSES.

3. Background
3.1. Convolutional Neural Networks
Convolutional Neural Networks are a particu-
lar class of Neural Networks that presents supe-
rior performances with image, speech, or audio
signals. They manage multidimensional data,
known as tensors, and aim at deriving semantic
representation from the input to accomplish a
high-end task. CNNs are internally organized in
a sequence of layers implementing different oper-
ators, mainly Convolutional, Pooling and Fully-
connected ones. Each model is composed of vari-
ous blocks containing those main ones and other
smaller layers.

3.2. Reliability Analysis Tools
Reliability analysis of machine learning models
has always been a fundamental topic among re-
searchers. Several tools and solutions have been
developed to carry on this task. At the ap-
plication level, one of the most used groups of
tools consists of error simulators. As the name
suggests, they replicate the presence of an error
in the data path of the program. Their oper-
ation is explained in Section 3.3. Among the
existing tools, the two most interesting ones are
CLASSES [1] and TensorFI [2]. CLASSES is an
error simulator framework with the particular-
ity that the error models available are generated
from an error injection campaign and are thus
validated against real-world observations. Un-
like a fault injector, an error simulator works at
the application level and introduces errors based
on a database of models. It allows the developer
to observe the faults’ effects on the application
during the design phase instead of waiting for
the deployment of the completed model. Ten-
sorFI is also an error simulator framework that
presents a limited set of fault types and allows
the user to specify which class of operator to
target.

3.3. CLASSES
We decided to use CLASSES due to its flexibil-
ity, ease of usage and methodological robustness
in presenting validated error models. The frame-
work is composed of two sections:
Error model generation phase. It is initially
run on a target GPU where custom scripts ex-
ecute a set of selected ML operators. An archi-
tectural error injection fault is used during the
execution of these scripts, and their outcome is
compared with a golden version. The faulty out-
puts are analyzed to generate models that pro-
vide a structured description of the observed er-
rors.
Error simulation phase. In this second phase,
the user selects a specific layer of a CNN then the
tool extracts an error model from the database.
The error model and its probability of being se-
lected are based on what was observed in the
first half of the framework. The extracted er-
ror is injected into the chosen layer allowing the
developer to analyze its effects on the model’s
outcome.

4. Improving CLASSES
While using the framework, we identified some
problems related to the technologies used. This
section explains the issues and how we decided
to deal with them.
Architectural Fault Injector. The first
implementation of CLASSES integrated SAS-
SIFI [4]. In this work we introduced NVBitFI
[7] which is the state-of-the-art fault injector.
The main advantage of this tool is that it
can inject any CUDA binary without needing
the source code. Moreover, it is capable of
targeting dynamically loaded libraries which is
a crucial improvement over SASSIFI. Moreover,
we developed an automating script for the
execution of the fault injection campaign.
Caffe. CLASSES relied on Caffe to implement
test applications for each CNN operator to
be used in fault injection campaign for error
modeling. We switched to cuDNN for multiple
reasons:

• Better support: cuDNN has a better on-
line support than Caffe which has been dis-
continued.

• Used by TensorFlow: TensorFlow’s
back-end is built on top of cuDNN. Using

2



Executive summary Alessandro Nazzari

this library ensures that the algorithms’ im-
plementations are perfectly matched.

• Easier to use: tensors extracted from
TensorFlow can be directly used by cuDNN
while they had to be reshaped in order to
be used in Caffe.

To move from Caffe to cuDNN, we were required
to write the code that executes each operator
from scratch. Due to the initial complexity of
this process, we developed a skeleton program
to explain all the steps required with clarity and
made it available in the framework for anyone
interested in using it.
Support for different ML frameworks. We
tested the portability of our approach by design-
ing a Keras implementation of the Error Simula-
tor developed as a custom layer that can be in-
serted into a model. We also developed a script
to correctly upload the saved weights for the
model after the introduction of said layer.
Enhancing CLASSES’ usability. In addi-
tion to the technological improvements we also
increased the tool’s usability and made it more
flexible. We wrote an extensive guide on how
to use the tool and improved the input/output
interfaces allowing an easier usage of the frame-
work.

5. Case studies in reliability
analysis

The two objectives of this phase were to val-
idate the framework’s effectiveness and assess
the robustness of multiple CNNs. To do so, we
selected four different models belonging to ei-
ther the Image Recognition or the Steering An-
gle Detection class of networks. We selected
these two domains due to their importance in the
considered working scenario. Moreover, to test
the tool against the maximum number of condi-
tions, the four models have different depths, and
we trained them against three distinct datasets.
They are CIFAR10, the German Traffic Sign
Recognition Benchmark and a custom set of im-
ages taken from a moving vehicle.
For an exhaustive execution of the campaign, we
ran the error simulator approximately five thou-
sand times for each tuple image and targeted
layer.
To correctly analyze the results, CLASSES
needs an oracle function that classifies a single
outcome as usable or not. We decided that a re-

[0, 1e-5] [1e-5, 1] [1, 5] [5, 10] [10, 45] [45, 90] [90, ]
Classes

0

10000

20000

30000

40000

50000

60000

Co
un

t

add_9

[0, 1e-5]
[1e-5, 1]
[1, 5]
[5, 10]
[10, 45]
[45, 90]
[90, ]

Figure 1: PilotNet Add9 Layer

sult is considered usable when dealing with Im-
age Recognition models if the produced label is
the same as the expected one. Differently, in
the Steering Angle Detection, we accepted all
the outcomes where the absolute value differ-
ence between the nominal result and the faulty
one is less than five degrees. The choice of the
oracle is entirely context-dependent, and it can
be changed at any time. An example would be
to check the absolute difference between proba-
bilities instead of predicted labels. It does not
influence the methodology’s validity.

5.1. Results
Among the results obtained we can highlight
some of the most interesting:
Different layers behave differently: The op-
eration that a layer performs can be either com-
plex, i.e., convolution, or simple, i.e., add. A
complex operator generates error models with
a higher number of corrupted values. The effect
of this behavior is that, depending on the layer’s
type, the impact it has on the model’s outcome
is different. It can be understood by observ-
ing Figure 4.7 and Figure 4.8. Despite being
nearly at the same depth in the net, their influ-
ence is vastly different, with the former having a
distribution of differences spread among all the
classes while the latter resides almost entirely in
the [90;∞] range.
Closer to the output means stronger ef-

fects: A layer’s impact on the outcome is af-
fected by its distance. A fault striking the first
operation of the model will have a lower effect on
the output since there is a high number of lay-
ers that will recover its damages. Images 3 and
1 show two different add operators where the
former is closer to the output and has a much
stronger impact.

3



Executive summary Alessandro Nazzari

[0, 1e-5] [1e-5, 1] [1, 5] [5, 10] [10, 45] [45, 90] [90, ]
Classes

0

20000

40000

60000

80000

100000

120000

Co
un

t

Mul

[0, 1e-5]
[1e-5, 1]
[1, 5]
[5, 10]
[10, 45]
[45, 90]
[90, ]

Figure 2: PilotNet Mul Layer

[0, 1e-5] [1e-5, 1] [1, 5] [5, 10] [10, 45] [45, 90] [90, ]
Classes

0

20000

40000

60000

80000

100000

120000

140000

160000

Co
un

t

add_1

[0, 1e-5]
[1e-5, 1]
[1, 5]
[5, 10]
[10, 45]
[45, 90]
[90, ]

Figure 3: PilotNet Add1 Layer

Classes to look out for: Considering the im-
age classification models, we analyzed the mis-
classifications. Figure 1 shows the distribution
of errors among the various classes for the Ci-
far10 model. Classes 1, 4, and 9 have a much
lower count of misclassifications than the oth-
ers. It means that the model, despite being af-
fected by faults, correctly labels images belong-
ing to those classes with a much higher rate than
the other classes. It means that, whenever the
model predicts one of those classes, the devel-
oper can be sufficiently sure of the result without
needing any other tools to verify.

0 1 2 3 4 5 6 7 8 9
0

25000

50000

75000

100000

125000

150000

175000

Misclassifications

Figure 4: Cifar10 misclassifications distribution

6. Hardening CNNs
With the execution of the error simulation cam-
paign, we were able to analyze the CNNs’ crit-
ical issues at the layer level. We can now take
advantage of these observations to define hard-
ening methods.
The last goal of the thesis was to create a reli-
ability analysis technique that uses the results
of the error simulation campaign. The informa-
tion’s granularity was at the layer level and, for
sake of simplicity, we assume that each layer is
composed of a single operator.

6.1. CNN robustness
We designed an automatic way of calculating the
robustness of a CNN based on CLASSES frame-
work. We based our analysis on the concept of
Layer Vulnerability Factor [3] which is defined
as the probability that a fault striking a layer
affects the outcome of the whole model.

LV Fi =
#sdci
#exps

(1)

We then changed this metric to reflect the con-
cept of usability by replacing #sdci which is the
number of SDCs with #ui which is the number
of unusable results.
Operator’s susceptibility: this metric quan-
tifies how many times an error striking the oper-
ator under analysis results in a corrupted output
or not

perri =
#errorsi
#faultsi

(2)

Overall robustness against operator i: this
metric defines, for each operator, the effects it
has on the model’s robustness. The operator’s
susceptibility is scaled with the ratio between
usable results and error simulations performed.

Ri = (1− perri) + perri ·
#ui

#sim_errsi
(3)

Timing weight: the last metric considered is
the ratio between an operator’s execution time
and the whole model’s execution time.

Ti =
∆ti

∆tCNN
(4)

We can combine Equation 3 and Equation 4 to
produce the overall CNN robustness, defined as:

RCNN =
∑

i∈CNN

Ri · Ti (5)

4



Executive summary Alessandro Nazzari

6.2. Hardening Strategy
RCNN measures the CNN’s intrinsic robustness
against faults, i.e., its capability to output us-
able values even in presence of faults. Defining
a hardening technique that maximizes this met-
ric while limiting the performance overhead is a
goal of the thesis. We selected Duplication With
Comparison (DWC) applied at the granularity
of a single layer. It consists in executing two
instances of the same layer and comparing the
output with an ad-hoc checker. This scheme can
detect errors in the single layer run. Duplicating
a layer improves the CNN robustness while in-
curring in a performance degradation PDi due
to the additional execution of the layer. We pro-
pose to selectively harden the model by applying
DWC to a set of layers leaving the others unpro-
tected. This approach improves the overall ro-
bustness of the CNN while incurring in limited
performance degradation. A duplicated layer is
characterized by:

Ri = 1 (6)
PDi = ti + tc_i (7)

We adopted a multi-objective Design Space Ex-
ploration (DSE) process that analyzes all possi-
ble combinations of duplicated layers.
Each solution is characterized by a subset of
hardened layers H_CNN leaving the others un-
protected. The robustness of any given combi-
nation is thus calculated as:

RSH_CNN =
∑

i∈H_CNN

Ri ·
ti

tCNN

+
∑

i∈H_CNN

ti
tCNN

(8)

tSH_CNN = tCNN +
∑

i∈H_CNN

PDi (9)

It is then up to the designer to choose among
those depending on the time constraint of the
model.

6.3. Hardening results

6 8 10 12 14
Execution Time (ms)

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Ro
bu

st
ne

ss
 (p

ro
b.

)

All selective DWC solutions
Best selective DWC solutions
Solution defined as in [3]
Plain solution
DWC layer comparison
DWC all layers comparison

Figure 5: VGG11

Figure 5 shows the DSE for the VGG model.
The blue points represent the Pareto front.
These are the solutions for which the robust-
ness is maximized under a certain time thresh-
old. Red dots instead represents all the possible
solution in the design space. We also identified
two particular hardening schemes.
The first one is the DWC outcome comparison,
in which we duplicate the whole model but ap-
ply the checker only at the end.
The second one is DWC all-layers comparison,
where we duplicate all layers and check every
result. Clearly, both schemes have perfect ro-
bustness. The main difference is the execution
time.
In VGG, the time of each checker is comparable
to the time of each layer, making these solutions
more favorable than most of the cases explored.
Instead, if we consider a model such as Pilot-
Net, where the execution time of each layer is
consistently higher than those of the checkers,
both solutions are at the top-right of the Graph
6. They have the best robustness but also the
highest execution time.
It is of particular interest to highlight the green
dots in the graph. Those represent the hard-
ened solutions as discussed in [3]. The proposed
approach consists of ordering all the available
layers based on the LVF. And then hardening
them one by one, starting from the most critical
one. This solution is faster since the number of
cases to consider is much smaller but also less
precise.

5



Executive summary Alessandro Nazzari

500 600 700 800 900
Execution time (ms)

0.965

0.970

0.975

0.980

0.985

0.990

0.995

1.000

Ro
bu

st
ne

ss
 (p

ro
b.

)

Figure 6: PilotNet

We can conclude our analysis with two more
observations.
Some models are intrinsically robust.
Looking at Figure 7, we see how the robustness
of the base model is already really high, almost
0.93. It is an intrinsic property of this particular
model due to how it was built, and it does not
depend on the depth of the net itself. Looking
at Figure 5, we have a deep model with much
lower base robustness or, looking at Figure
6, the opposite, a model with a low number
of layers and high base robustness. It means
that, in order to design a reliable model, the
developer must carefully choose how the net
is constructed and then use our technique to
improve the base result.
Great improvements might come at low
costs. Figure 7 is a clear example of how
improvements might not be expensive. Reach-
ing maximum robustness of 1 would require
an execution time of approximately 1200 ms.
We can reduce the execution by nearly 200ms,
almost 17%, while keeping the robustness over
0.98.

600 700 800 900 1000 1100 1200
Execution time (ms)

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

Ro
bu

st
ne

ss
 (p

ro
b.

)

Figure 7: Cifar10

7. Conclusions
The first two goals of the thesis were to improve
the existing error simulator and use it in a struc-
tured and comprehensive error simulation cam-
paign. We were able to complete these goals.
CLASSES is now accessible to anyone interested
in using it, and it is easy to exploit its function-
alities. The campaign we performed highlighted
multiple interesting points on how CNNs react
to the presence of faults and the effects they have
on the outcomes. While these results alone are
already relevant for any developer interested in
hardening theirs ML model, we decided to move
one step further and design an indicator that
uses the information produced and uniquely de-
fines the robustness of a given CNN. Using this
metric, we proposed a hardening technique that,
through DWC, aims at finding the solutions that
maximize the robustness while maintaining the
execution time under a given threshold. Design-
ing this metric was the third and final goal of
the thesis.

References
[1] C. Bolchini, L. Cassano, A. Miele, and

A. Toschi. Fast and accurate error simula-
tion for cnns against soft errors. To appear
in IEEE Transactions on Computers.

[2] Z. Chen et al. TensorFI: A Flexible Fault In-
jection Framework for TensorFlow Applica-
tions. arXiv:2004.01743 [cs, stat], Apr. 2020.

[3] F. F. dos Santos, L. Carro, and P. Rech. Ker-
nel and layer vulnerability factor to evaluate
object detection reliability in GPUs. IET
Computers & Digital Techniques, 2019.

[4] S. K. S. Hari et al. SASSIFI: An architecture-
level fault injection tool for GPU application
resilience evaluation. 2017.

[5] ISO Central Secretary. Road vehicles – func-
tional safety. Standard, International Orga-
nization for Standardization, 2018.

[6] E. Normand. Single event upset at ground
level. IEEE Transactions on Nuclear Sci-
ence, 43(6):2742–2750, Dec. 1996.

[7] T. Tsai et al. NVBitFI: Dynamic Fault Injec-
tion for GPUs. In Proc. DSN, pages 284–291,
2021.

6


	Introduction
	Goals and Contribution
	Background
	Convolutional Neural Networks
	Reliability Analysis Tools
	CLASSES

	Improving CLASSES
	Case studies in reliability analysis
	Results

	Hardening CNNs
	CNN robustness
	Hardening Strategy
	Hardening results

	Conclusions

