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1. Introduction

The comprehension of the link between the

topological properties and the electronic prop-

erties of nanostructured materials is of primary

interest. In this context, my investigation fo-

cuses on the energy separation between frontier

orbitals, commonly referred to as the HOMO-

LUMO gap. The energy gap is an electronic

property of molecules relevant to the determi-

nation of their reactivity and their optical char-

acteristics.

I considered benzenoid hydrocarbons (BHs).

BHs are a class of organic molecules character-

ized by fused benzene rings, and they belong

to the family of graphene molecules. For BHs,

crucial properties such as aromaticity are tied

to the topological arrangement of the fused

rings [1].

Therefore, for these compounds, it holds sig-

ni�cance investigating the energy gap through

topological descriptors within the framework

of chemical graph theory.

2. Methods

The molecules under analysis can be repre-

sented in a simpli�ed manner through chemical

graph theory. In this framework, each molecule

can be depicted as a graph, where every carbon

atom corresponds to a vertex and each carbon-

carbon bond corresponds to an edge. Addi-

tionally, through the planar graphs of graph

theory, it is possible to de�ne polyhexes, which

are polygonal shapes consisting of fused hexag-

onal rings. Consequently, each BH molecule

can be associated to a polyhex [2]. In par-

ticular, the molecules that I have studied are

associated to n-hexes, namely BHs with a �xed

number n of rings, as shown in Figure 1. Then

I considered highly symmetric BHs associated

to: oblate rectangles O(p, q) with 1 ≤ p, q ≤ 6;

parallelograms L(p, q) with 2 ≤ p, q ≤ 7; pro-
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late rectangles P (p, q) with 2 ≤ p, q ≤ 6;

hexagons H(3, 3, r) with 2 ≤ r ≤ 7, H(4, q, r)

with 3 ≤ q ≤ 4 and 3 ≤ r ≤ 6, H(5, 5, r) with

5 ≤ r ≤ 6, as shown in Figure 2.

Within the graph theory, it is also possible to

de�ne graph invariants to describe the prop-

erties of the molecules. Among these invari-

ants, I focused on β representing the ratio

of carbon-carbon bonds (M) to the number

of carbon atoms (N), and on the number of

Kekulé structures K. Kekulé structures have

both chemical and mathematical signi�cance,

and correspond to the possible distributions

of π-electrons along the molecule. They also

serve as a chemical graph that represents the

possible con�gurations of non-adjacent edges

(associated to C=C bonds) covering all ver-

tices. The number of Kekulé structures asso-

ciated to the analyzed molecules is tabulated

or determined through combinatorial formu-

las [3]. Moreover, for each molecular graph,

I de�ned its dualist graph, that indicates cer-

tain peripheral conformations of BHs, such as

fjords, and coves, leading to non-planar con-

�gurations due to steric hindrance, and bays

that result in a planar con�guration of the

molecule [1], as shown in Figure 3.

Figure 1: Molecular graphs of BHs associated

to n-hexes, with n = 5, 6. Grey circles repre-

sent the vertices of the molecular graph; black

segments are the edges of the molecular graph.
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Figure 2: Molecular graphs of BHs associ-

ated to prolate rectangles P (p, q) (Panel a),

parallelograms L(p, q) (Panel b), oblate rect-

angles O(p, q) (Panel c), hexagons H(p, q, r)

(Panel d). Grey circles represent the vertices

of the molecular graph; black segments are the

edges of the molecular graph.
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Figure 3: Particular perimeter con�guration

in BHs highlighted by the thick red segments.

Purple circles represent the vertices of the dual

graph and purple segments are the edges of the

dual graph.
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I study the electronic many-body problem

of a molecule within the Born-Oppenheimer

approximation and the Hohenberg-Sham the-

orems of Density Functional Theory (DFT).

The HOMO-LUMO gaps of speci�c classes of

BHs have been computed using both Hückel

molecular orbital theory and DFT. Hückel the-

ory, a simpli�ed model, facilitates the study of

π-conjugated systems, while the DFT method,

grounded in the Hohenberg-Sham theorem,

strives to approximate the actual electron den-

sity and the proper geometry of the molecule.

The basis set that I used for studying the

HOMO-LUMO gap of all the molecules is

Pople's 6-311G(d,p).

3. Energy gap of BHs

In the '80s, Ciosªowski proposed a formula

to estimate the HOMO-LUMO gap calculated

using Hückel theory (χHL), for n-hexes with

1 ≤ n ≤ 8 [4]. The formula employs two

topological parameters, (2M/N)1/2 and K2/N ,

where M is the number of C-C bonds, N is the

number of carbon atoms, and K is the number

of Kekulé structures.

χHL = 2( 2.90611 (2M/N)1/2

+ 3.91744 K2/N)

I assessed the formula's applicability to the

DFT-calculated gap of molecules linked to n-

hexes molecules with 1 ≤ n ≤ 6 . Through

the square least method, I determined the co-

e�cients, obtaining a re�ned version of the

Ciosªowski formula with a correlation coe�-

cient r = 0.9540, as shown in Figure 4.
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Figure 4: The scatter plot of DFT HOMO-

LUMO gap over χHL for planar (blue circles)

and non-planar molecules (red stars).

From Figure 4, I observed that the dif-

ference between the DFT-calculated HOMO-

LUMO gap and the estimated gap χHL is

comparable for both planar and non-planar

molecules. This suggests that the HOMO-

LUMO gap of molecules associated to n-hexes

with 1 ≤ n ≤ 6 depends mainly on topology

rather than the molecule being planar (i.e., the

perimeter classi�cation of Figure 3).

I then shifted my focus on testing the valid-

ity of the Ciosªowski formula for an expanded

set of molecules, including those associated to

prolate rectangles, oblate rectangles, parallel-

ograms, and hexagons. By analyzing the spa-

tial distribution of the HOMO and LUMO or-

bitals, I observed that in smaller molecules

the frontier orbitals span the entire structure,

while in larger molecules, they localize along

the zig-zag edges. Given this observation, I

hypothesized that the topological parameters

e�ectively describe the HOMO-LUMO gap for

BHs with more than 8 rings but less than 20
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rings. However, I noticed that for some classes

of molecules, for example the ones associated

to prolate rectangles, K2/N is not an e�ective

topological parameter since K2/N = (p+1)
1

p+4

only increases with p, not q. Through another

best �tting of the coe�cients again, I derived a

new formula that predicts the DFT-calculated

HOMO-LUMO gap of molecules associated to

n-hexes with 1 ≤ n ≤ 6, oblate rectan-

gles, parallelograms and hexagons. In Fig-

ure 5, the modi�ed Ciosªowski formula demon-

strates good predictive power, with relative er-

rors within 0.20 for parallelograms, 0.25 for

hexagons, and 0.20 for oblates. Having ini-

tially studied molecules with one to six rings, I

extended my investigation to larger molecules.

To explore the formula's limits, I examined

graphene, an in�nite two-dimensional layer,

and �nd that the Ciosªowski formula may pre-

dict the zero gap of graphene. Acknowledging

the main limitations of the formula, I sought

new indices that are easier to calculate than

the number of Kekulé structures but still ex-

hibit a high correlation coe�cient.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−0.5

0

0.5

1

1.5

2

χHL

R
el
at
iv
e
er
ro
r

prolate
parallelogram
oblate
hexagon

Figure 5: The relative error over χHL of the

BHs associated to parallelograms, oblate rect-

angles, prolate rectangles and hexagons.

I considered four parameters. Two of them,

1/P and 1/N , where P is the number of ex-

ternal edges, are connected to the size of the

molecules. The other two parameters explored

are P/Mint and P/N , and they re�ect the rela-

tive weight of peripherical region with respect

to the overall connectivity. Mint is de�ned as

the number of C-C internal bonds.

1/P 1/N P/Mint P/N

prolate rectangles 0.931 0.925 0.884 0.828

oblate rectangles 0.794 0.694 0.657 0.551

parallelograms 0.994 0.996 0.989 0.967

hexagons 0.642 0.753 0.500 0.486

Table 1: Correlation coe�cients of the

HOMO-LUMO gap calculated with DFT for

molecules with more than 20 rings.

As shown in Table 1, for molecules with

more than 20 rings, I observed that 1/P per-

forms well as a correlation coe�cient for those

characterized by both armchair and zig-zag

pro�les. For molecules with only zig-zag edges,

1/N yields the best correlation coe�cients.

P/Mint and P/N exhibit lower performances.

Thus, I infer that, for molecules with more

than 20 rings, topological descriptors strictly

increasing with the dimension correlate better

with the DFT-calculated HOMO-LUMO gap

than descriptors re�ecting the general connec-

tivity of the molecule.

4. Bond length alternation
I investigated bond length alternation

within all analyzed classes of BHs, revealing an

increase in average bond length from 1.400 Å

to 1.425 Å. I noticed that the bond length
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alternation is more pronounced in the periph-

eral region than in the core region across all

the molecules. Furthermore, I identi�ed spe-

ci�c trends in di�erent classes of BHs. For

molecules associated to prolate and oblate rect-

angles, the armchair edges show a bond length

alternation more marked than zig-zag edges.

In the case of parallelograms, this alternation

is more pronounced on some edges than on oth-

ers.

In my analysis, the scatter plots representing

the Hückel theory-calculated HOMO-LUMO

gap against the DFT-calculated HOMO-

LUMO reveal a general linear correlation, ex-

cept for parallelograms. This deviation is

linked to the instability of parallelograms, pri-

marily characterized by the presence of just

zig-zag edges, which leads to an open-shell con-

�guration, marked by unpaired electrons.
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Figure 6: In blue circles, the scatter plot

showing the relation between the HOMO-

LUMO gap evaluated with the Hückel the-

ory and the HOMO-LUMO gap calculated

with DFT for molecules associated to paral-

lelograms.

5. Isoarithmicity
I �nally considered selected unbranched

catacondensed BHs, where "catacondensed"

denotes that each carbon atom is shared with

no more than two benzenoid rings (i.e. ,no

internal carbon atoms), and "unbranched" im-

plies the absence of rami�cations in the dualist

graph. The ring concatenation in these BHs

is denoted by a sequence of L (representing a

ring attached to the adjacent one forming no

angle in the dualist graph) or A (when the ring

is linked to the adjacent one forming an angle

in the dualist graph). Balaban introduced the

concept of isoarithmicity [5], which identi�es

BHs characterized by the same LA sequence

but di�erent chemical structures. An example

is shown in Figure 7. It has been shown that

isoarithmic molecules, sharing identical LA se-

quences, exhibit the same HOMO-LUMO gap

as calculated by Hückel theory.

Figure 7: The molecular graphs of two

isoarithmic molecules, characterized by the

same sequence LAAL. The two unbranched

catacondensed BHs are associated to the same

dual graphs and the same LA sequences but

their dualist graphs(in violet) are di�erent.

My aim is to validate this statement for

the DFT-calculated HOMO-LUMO gap of

isoarithmic n-hexes with 1 ≤ n ≤ 6. The

5



Executive Summary Noemi Carol D'Ausilio

results demonstrate that within each isoarith-

mic class, the deviation from the average DFT-

calculated HOMO-LUMO gap is small. Hence,

it is reasonable to assert that the HOMO-

LUMO gap of isoarithmic BHs calculated by

DFT does not depend on the periphery or pla-

narity of the molecule but rather on its topol-

ogy. The parameter that contains the de�ni-

tion of isoarithmicity is K since isoarithmic

molecules have the same number of topolog-

ical structures [5].

6. Conclusions
My investigation reveals that the DFT-

calculated HOMO-LUMO gap for small n-

hexes can be accurately predicted using pa-

rameters introduced by Ciosªowski. My data

also show that the HOMO-LUMO gap is in-

dependent of the planarity of the molecule.

Moreover, the extension of the Ciosªowski for-

mula to BHs with up to 20 rings demonstrates

its e�cacy in describing the HOMO-LUMO

gap of small BHs. However, limitations arise

as the Ciosªowski formula fails to predict the

zero gap of graphene and the HOMO-LUMO

gap for certain classes of BHs. To address

this, I explored alternative topological param-

eters. For molecules with more than 20 rings,

my analysis identi�es 1/P (inverse perimeter)

and 1/N (inverse number of carbons) as the

most e�ective correlation coe�cients across all

classes, showing the relation between molec-

ular size and the HOMO-LUMO gap. Fur-

thermore, my study establishes a robust cor-

relation between the DFT-calculated HOMO-

LUMO gap and the Hückel theory-calculated

counterpart, also supported by the analysis of

carbon-carbon bond lengths. Lastly, my inves-

tigation of isoarithmic BHs reveals that these

molecules exhibit (as expected [5]) nearly iden-

tical DFT-calculated HOMO-LUMO gaps, em-

phasizing that the gap's dependence lies not in

planarity but solely in the molecular topology.

References
[1] Yosadara Ruiz-Morales. Homo- lumo gap

as an index of molecular size and struc-

ture for polycyclic aromatic hydrocarbons

(pahs) and asphaltenes: A theoretical

study. i. The Journal of Physical Chem-

istry A, 106(46):11283�11308, 2002.

[2] Ivan Gutman and Sven J Cyvin. Introduc-

tion to the theory of benzenoid hydrocar-

bons. Springer Science & Business Media,

2012.

[3] Sven J Cyvin and Ivan Gutman. Kekulé

structures in benzenoid hydrocarbons, vol-

ume 46. Springer Science & Business Me-

dia, 2013.

[4] J Cioslowski. A uni�ed theory of the

stability of benzenoid hydrocarbons. In-

ternational journal of quantum chemistry,

31(4):581�590, 1987.

[5] Alexandru T Balaban. Applications of

graph theory in chemistry. Journal of

chemical information and computer sci-

ences, 25(3):334�343, 1985.

6


	Introduction
	Methods
	Energy gap of BHs
	Bond length alternation
	Isoarithmicity
	Conclusions

