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Abstract

AUTONOMOUS robot navigation represents a core aspect in the field
of robotics, due to the many applications (e.g., agriculture and
farming and automated driving). Simultaneous Localization and

Mapping (SLAM) methods address the problem of constructing a model of
the environment surrounding the robot, i.e., the map, while simultaneously
estimating its pose within it. In literature, a plethora of SLAM systems
have been proposed in the last decade. The created methods, however,
greatly differ one from the other, in terms of architecture, data, and adopted
frameworks. For this reason, extending or just using a SLAM method that
suits specific criteria has become increasingly difficult over the past few
years. For this reason, in the thesis, we present a common framework to
perform SLAM, by developing multiple novel methods, distinguishable one
from the other by the main sensor used and the specific real-world problem
tackled. These systems can be summed up as follows: SLAM using a
LiDAR as the main sensor, SLAM using both cameras and LiDAR, SLAM
exploiting radar information and SLAM aided with information coming from
third-party mapping services. All presented methods contribute in multiple
ways. First, they improve existing algorithms, to mainly increase accuracy
and performance. Then, some of the systems deal with situations that are
not fully explored in literature, such as for SLAM where the main sensor is
a radar, localization in GNSS-denied environments, and SLAM aided with
prior maps. Lastly, the development of a unique framework allows users
to adopt a SLAM system suited to their needs. The proposed methods are
tested on state-of-the-art datasets, including KITTI and MulRan.
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CHAPTER1
Introduction

Autonomous robot navigation has been an increasingly studied topic in the
last decades. A lot of tasks, which are repetitive or hazardous for humans,
may be carried out by means of unmanned agents. Examples include mobile
robots for cleaning, agriculture, and farming, automated driving vehicles,
robots for delivery and transportation, search and rescue operations, and the
list is expanding, especially towards industry-oriented operations.

Robots that perform all these tasks need to be built in a way that allows
them to operate, safely and reliably, in complex or unknown environments,
based only on the perceptions of their onboard sensors. To achieve this, a
robot must be able to create an accurate map of the surrounding environ-
ment, while simultaneously estimating its own trajectory with high accuracy.
Simultaneous Localization and Mapping (SLAM) methods address the prob-
lem of constructing a model of the environment surrounding the robot, i.e.,
the map, while simultaneously estimating its location within it.

Due to the growing number of applications, in the last decade, the SLAM
problem involved an increasing number of researchers and experts, both
from the world of academia and industry. The considerable variety of
situations (and available hardware) where SLAM can be used, lead to the
development of many systems, using different sensors and methodologies.

1



Chapter 1. Introduction

The first SLAM method to be considered exploited the probabilistic
nature of the problem, which can be summarized as follows. The robot is
assumed to move in an unknown environment, along a trajectory described
by the sequence of random variables x1:T = {x1, . . . , xT}, where the single
variable xi represent the pose of the robot w.r.t. an initial pose x0, arbitrarily
set. While moving, in correspondence of each pose xi, the robot acquires
a sequence of values u1:T = {u1, . . . , uT}, which are data from motion
sensors, and sensor measurements of the environment z1:T = {z1, . . . , zT}.

Solving the SLAM problem consists of estimating the posterior prob-
ability of the trajectory x1:T of the robot and the map m, given all the
measurements plus the initial pose x0. Probabilistic approaches presented
many disadvantages, including poor scalability and lack of consistency.

Over the course of the years, the concept of SLAM moved away from the
probabilistic approach, still improved in many recent works, and reached
a more mature and modular representation. Instead of treating the SLAM
problem as a whole, the state-of-the-art consists in breaking the process into
multiple independent modules, while adopting exteroceptive sensors to both
estimate the motion of the robot and construct a map of the environment.

The standard architecture of a SLAM system can be summed up as a
combination of two main parts, namely the front-end, and the back-end. The
front-end processes data coming from one or multiple sensors, and extracts
spatial relations between each observation of the robot. Moreover, sensor
measurements taken at different moments of time are confronted and used
to estimate the motion of the robot, while creating a coarse and rough map
of the surrounding environment. The front-end represents the core of the
localization aspect of SLAM, as it keeps track of the location of the robot
while performing data association using sensor-dependent techniques.

While the front-end provides an initial estimate of the path traveled by
the robot, the back-end optimizes it to generate a more accurate trajectory.
Optimization takes into account all possible sensor data and constraints, not
necessarily associated with the front-end (e.g., a direct measurement coming
from a proprioceptive sensor). Moreover, optimization can be either global,
if the whole trajectory is adjusted and corrected, or local if only a limited
set of estimated poses are considered. Lastly, in the back-end, the map of
the environment is fully built and refined, to be later used for other tasks.

The most widely developed type of SLAM system is visual SLAM, where
data is gathered by one or multiple cameras. In the last decades, visual
SLAM has been actively discussed, because of the numerous advantages
camera sensors have. First, a camera is one of the few sensors that were
available when localization and mapping, especially in three dimensions,
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started interesting the scientific community, many decades ago. Moreover,
over the course of the years, cameras have become cheaper, while providing
images with increasingly detailed resolution, optimal to perform visual
SLAM. Lastly, their setup and configuration on robots are simpler w.r.t.
other sensors, making them a viable solution for many applications.

The main goal of visual SLAM systems is to sequentially estimate the
motion of the robot (i.e., the movement of the sensors) depending on the
perceived movements of pixels in a sequence of two or multiple images.
This is achieved in different ways. A possible approach is to detect and
track salient points, named keypoints, in the image. All keypoints are then
matched and aligned to estimate the relative motion of sensors. This method
takes the name of feature-based visual SLAM. Another solution, also known
as direct visual SLAM, involves using the entire image. Moreover, a robot
can easily localize itself inside a map by checking for previous similar
images, an operation also known in the literature as place recognition.

Even if visual SLAM provides accurate results, methods are prone to
errors because of the sensitivity of cameras to light changes or a low-textured
environment. Furthermore, image analysis, feature extraction, direct asso-
ciation, and similarity search still require a considerable amount of com-
putational resources, especially when dealing with high-resolution images,
which are commonly gathered from state-of-the-art sensors.

To overcome some of the problems associated with cameras, such as
illumination dependencies, many SLAM systems adopted, instead, the use
of laser rangefinders, e.g., LiDARs. As the majority of laser SLAM methods
process LiDAR data, this sensor is considered the standard, and it is used in
the rest of this thesis to describe and deal with laser SLAM.

By transmitting and receiving the laser beam, a LiDAR uses the Time
of Flight (ToF) method to obtain the distance of the scanning point from
the center of the sensor, which is almost unaffected by the illumination
conditions, different from cameras, and has a long detection range and high
precision (even millimeters), in indoor and outdoor scenes.

Laser scanning methods appear to be a cornerstone of both 2D and
3D mapping research. LiDAR sensors deliver point clouds that can be
easily interpreted to perform SLAM, by performing a simple scan-to-scan
alignment and estimating the transformation that best overlaps two input
scans. Mainly thanks to the detailed nature of point clouds derived from laser
sensors, which are characterized by a considerable field of view (possibly
covering the whole surroundings), LiDAR SLAM methods achieve superior
accuracy, and they are generally preferred when precision is a must (e.g.,
industrial applications). For the same reason, however, laser SLAM systems
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Chapter 1. Introduction

are generally computationally demanding, especially when dealing with
3-dimensional data, making the algorithms not suitable for real-time tasks.

As just described, SLAM can be performed both thanks to visual sensors
and lasers. Cameras have the main advantage of being plentifully studied in
the literature. Even though visual SLAM systems provide accurate results,
they have some issues, e.g., the drift of the scale when using only one
camera, the poor depth estimation and small range of view, and the sparsity
of the reconstructed maps. On the other hand, laser sensors have very
good accuracy in ranging and, as a consequence, in mapping, despite being
computationally intensive both in terms of memory and time needed.

For these reasons, it became evident that the fusion of both modalities
could have been of great help in modern SLAM applications. The systems
born from this approach take the name of hybrid SLAM and use data of
different types to directly estimate the motion of the robot. Hybrid SLAM,
however, is still a maturing field, as the majority of methods existing in the
literature just use one type of datum to compensate for another (e.g., visual
front-end and laser back-end), and no true sensor fusion is performed.

Moreover, hybrid systems share some of the common issues of visual and
laser SLAM, including the high elaboration time needed to process images
and LiDAR scans, but also being unusable under certain weather conditions,
e.g., snow or fog. Lastly, to overcome these problems, another type of
SLAM has been recently proposed, even though only a few algorithms are
available at this moment. Radar sensors are unaffected by illumination and
weather and they can be efficiently used to perform localization and mapping,
as the gathered data can be either represented as images or point clouds
living in two dimensions (hence, having low computational requirements).

1.1 Thesis contribution

From the introduction, one can understand the variety of simultaneous
localization and mapping systems available in the literature. From cameras
to radars, each created system deals with a specific situation, consisting of
many elements. Sensors used, configuration, type of considered scenario,
possible environmental constraints, and user needs are just a few of the
multitude of aspects to take into account when developing a SLAM system.

Moreover, the created methods greatly differ one from the other, in terms
of architecture, needs, data format, and frameworks adopted. For this reason,
studying, extending, or just using a SLAM method that suits specific criteria
has become increasingly difficult over the past few years.

To solve this issue and advance the state of the literature, in our Ph.D.
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1.1. Thesis contribution

program, we developed a common framework for SLAM, which can be
adapted and exploited to deal with a specific situation or user needs. The
framework is formed by multiple novel SLAM systems, implemented by us,
able to achieve accurate and real-time localization under different environ-
mental and hardware constraints (e.g., different sensors or unavailability of
GNSS), while also constructing an accurate map of the environment.

The base of the framework is also the first system developed, ART-
SLAM [1], an accurate real-time LiDAR SLAM system. Here, an input point
cloud (obtained from a LiDAR sensor) is processed and used to estimate the
motion of the robot, by matching it against previous scans. The estimated
pose, along with additional information (e.g., floor coefficients) and an
efficient loop detection method, are later used to optimize the trajectory
and build a map of the environment. The work has been published in the
IEEE Robotics and Automation Letters (RA-L) and it was presented at the
International Conference on Robotics and Automation (ICRA) 2022.

Aside from SLAM, also localization plays an important role in real-world
applications, as maps may be already available through some means (e.g.,
coming from SLAM itself). To tackle the issue of localization in GNSS-
denied scenarios, we developed a localization module [2] for ART-SLAM,
based on an Unscented Kalman Filter. High-frequency IMU and odometric
data are fed to the filter to predict the position of the robot, which is later
corrected by matching a low-frequency input LiDAR scan with the available
3D map of the environment. The work has been recently published in the
Frontiers in Robotics and AI Journal 2023, specifically in the Localization
and Scene Understanding in Urban Environments topic.

From there, we extended an existing odometry estimation method into a
SLAM system, using the infrastructure of ART-SLAM as the base. Instead
of matching consecutive point clouds obtained from a LiDAR, input scans
are converted into 2D range/depth images and possibly coupled with RGB
images taken from cameras. From a pair of RGB and range/depth images,
multiple cues are extracted, such as intensity, depth, and normals. These
cues, coming from different sensors (hence the name MCS-SLAM [3],
Multi-cues Multi-sensors Fusion SLAM), are used to perform photometric
error minimization and estimate the motion of the robot. This front-end is
then embedded into the developed framework for SLAM, to optimize the
estimated trajectory and build a 3D map. The work has been published and
presented at the IEEE Intelligent Vehicles Symposium (IV) 2022.

Returning to the original ART-SLAM, we then addressed the specific
situation where prior information coming from third-party mapping services
is already available, which is not much developed in the literature, despite
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Chapter 1. Introduction

its importance. We integrated 2D maps obtained from OpenStreetMap into
ART-SLAM, creating OSM-SLAM [4]. Before optimization of the estimated
trajectory takes place, the new system tries to find the best alignment between
the current input point cloud, opportunely processed, and the 2D map of
buildings. This alignment enforces further constraints in the optimization
step, increasing local accuracy w.r.t. ART-SLAM. The work has also been
published in the Frontiers in Robotics and AI Journal 2023, again in the
Localization and Scene Understanding in Urban Environments topic.

To fully exploit the availability of multiple sensors, we then integrated
ART-SLAM with two additional front-end branches and one more module
for loop detection. A backbone Error State Kalman Filter allows to continu-
ously estimate the trajectory of the robot, acting as a support of the original
LiDAR odometry estimation method. Moreover, a stereo visual tracker has
been added to the system front-end, which can be used in the case of an
only-cameras setup or to integrate poses estimated with different methods
(e.g., laser rather than visual). The system, which is a visual inertial laser
3D SLAM method, named D3VIL-SLAM, achieves superior accuracy than
the baseline, and it allows to also perform visual SLAM. The work has been
presented at the IEEE Intelligent Vehicles Symposium (IV) 2023.

Lastly, we studied SLAM in case radar is used as the main sensor, which
is not a typical choice for SLAM, as it provides only 2D range data. This
choice is motivated by the fact that radar sensors are more robust to environ-
mental changes w.r.t. cameras and LiDARs so they can almost always be
used to perform SLAM. Moreover, radar SLAM is not as studied or devel-
oped as visual or laser SLAM, despite having noticeable advantages. As the
last step of our Ph.D. program, we completed our framework by creating a
radar-based accurate and real-time SLAM system, named RadART-SLAM,
to ascertain the accuracy and precision attainable using only radars.

We can sum up the contributions of our Ph.D. program as follows.

• Development of a LiDAR SLAM system, ART-SLAM [1], able to
perform accurate localization and mapping, also thanks to a novel loop
detection method, and serving as the baseline for other systems.

• Extension of ART-SLAM with a localization module [2], to deal with
scenarios in GNSS-denied environments, both indoor and outdoor.

• Creation of a system that exploits multiple sensors to extract image cues
and achieve faster than real-time tracking, named MCS-SLAM [3].

• Extension of ART-SLAM, integrating it with 2D map priors from
OpenStreetMap, and developing a new system able to also perform
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localization only, named OSM-SLAM [4].

• Construction of a hybrid SLAM system, supported by a backbone
Error State Kalman Filter and able to perform simultaneous visual and
laser-based tracking and loop detection, named D3VIL-SLAM.

• Creation of a real-time radar-based SLAM system, RadART-SLAM,
built upon the developed SLAM framework.

It should also be noticed that all methods, except MCS-SLAM [3] achieve
greater localization accuracy than state-of-the-art systems, while also work-
ing in real-time (or even faster, in the case of MCS-SLAM).

1.2 Thesis outline

The thesis is organized into three parts. First, we provide the background
materials needed to understand the contributions of the thesis.

• Chapter 2 gives general information about SLAM, including the de-
scription of typical architectures. Then, a review of the literature is
presented, with a particular focus on state-of-the-art methods.

The second part contains one of the contributions of this thesis, consisting
of the base framework of the whole work.

• Chapter 3 consists of two sections. The first illustrates ART-SLAM,
an accurate and real-time LiDAR SLAM system, that can outperform
state-of-the-art methods in laser SLAM. The second section describes
an extension of ART-SLAM, consisting of a module for localization,
implemented as an Unscented Kalman Filter (UKF). In this section we
also give a detailed comparison of SLAM systems that are also able to
perform localization, benchmarking them using real data.

The other contributions of the thesis are described in the remaining
chapters, each detailing a new system that extends ART-SLAM.

• Chapter 4 presents a variant of ART-SLAM, named MCS-SLAM
(Multi-Cues Multi-Sensors SLAM). MCS-SLAM performs sensor fu-
sion by exploiting multi-cues extracted from sensor data, i.e., color/in-
tensity, depth/range, and normal information. For each sensor, motion
estimation is achieved through the minimization of the pixel-wise
difference between two multi-cue images. All estimates are jointly op-
timized, to best satisfy the motion constraints derived from all sensors.
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• Chapter 5 shows an improved version of ART-SLAM, which can ex-
ploit additional information coming from mapping services like Open-
StreetMap, hence the name of OSM-SLAM (OpenStreetMap SLAM).
The system integrates the 2D geometry of buildings in the trajectory
estimation and optimization procedures, by matching a prior Open-
StreetMap map with a single LiDAR scan. This way, the estimated
trajectory of the robot can be corrected, further enhancing the localiza-
tion and mapping accuracy of the SLAM system.

• Chapter 6 further extends the framework developed in our Ph.D. pro-
gram by adding a vision branch, able to perform tracking based on
stereo images, and a backbone Error State Kalman Filter, which col-
lects odometry estimates coming from all other sensor branches to
accurately predict the motion of the robot in real-time. All trajectory
estimates obtained from the various front-ends are then merged around
the poses acquired in almost the same instant and jointly optimized.

• Chapter 7 describes the last extension of the proposed framework,
which uses radar images as input to estimate the motion of the robot.

Lastly, the thesis ends by revisiting briefly its contributions in Chapter 8,
including challenges in SLAM, possible improvements, and future works.
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CHAPTER2
SLAM overview and state-of-the-art

In this chapter, the Simultaneous Localization and Mapping process, also
known as SLAM, is presented, along with different classifications, state-of-
the-art approaches, and techniques developed to solve it. The chapter begins
with the introduction of concepts and definitions, in Section 2.1, which gives
basic information to understand the SLAM problem. Section 2.2 follows
with a description of a generic SLAM architecture. The next sections deal
with three specializations of SLAM systems: laser SLAM, in Section 2.3,
visual SLAM, in Section 2.4, and radar SLAM, in Section 2.5. Then,
Section 2.6 briefly describes the concept of Hybrid SLAM, and the chapter
ends in Section 2.7, with a high-level overview of SLAM algorithms used
for dynamic environments, which are outside the scope of this thesis but
they are included for completeness. Together with a description of the main
features of these systems, some state-of-the-art works are also discussed.

2.1 Concepts and definitions

Simultaneous Localization and Mapping is the process by which a robot
builds a map of the environment and, at the same time, uses this map to
compute its location while navigating it. To solve the SLAM problem, many
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techniques have been proposed in the last decades, all relying on the ability
of robots to capture information from the environment as they go through it.
To do so, they must be equipped with a sensorial system (e.g., cameras or
radars), capable of extracting valuable data from the world, such as images
of the scene or point clouds, to be used in finding its location.

Probability plays a large role in successful SLAM solutions, due to the
inherent noise in sensor measurements. The robot has no prior knowledge
of its surroundings so it must use its sensors in order to gather informa-
tion. Therefore, SLAM must deal with the uncertainty of locations due to
inaccurate sensor data, often making mistakes in localizing the robot.

SLAM can be modeled in a probabilistic way, as follows. The robot is
assumed to move along a trajectory described by the sequence of random
variables x1:T = {x1, . . . , xT}, where the single variable xi represent the
pose (position and orientation), either 2D or 3D, of the robot w.r.t. an initial
pose x0, arbitrarily set. In correspondence with each pose xi, the robot
acquires a sequence of odometry (i.e., the process of estimating the robot
position and rotation) values u1:T = {u1, . . . , uT}, which are data from
motion sensors (e.g. rotary encoders), and measurements of the environment
z1:T = {z1, . . . , zT}, uniquely determined by the equipped sensors.

The map of the environment, denoted as m can be parameterized as a set
of spatially located landmarks, which are salient space points characterized
by similar appearance, by dense representations like occupancy grids, sur-
face maps, or by raw sensor measurements. The choice depends on many
factors, such as the used sensor, the characteristics of the environment, and
the techniques adopted to perform both localization and mapping.

Solving the SLAM problem consists of estimating the posterior probabil-
ity of the trajectory x1:T of the robot and the map m of the environment given
all the measurements plus the initial pose x0. A possible model to describe
a SLAM system is the Dynamic Bayesian Network, which is a graphical
model used to represent a stochastic process as a directed graph. The robot
poses and measurements can be modeled separately, highlighting which
elements of the SLAM process they depend on. The motion model, also
known as the state transition model, describes the robot pose as a function
of its previous pose and odometry measurements: xt = f(xt−1, ut). The
observation model, instead, describes the robot sensor measurements as a
function of the robot position and the map elements: zt = f(xt,m).

A visual representation of the probabilistic interpretation and modeling
of a SLAM process is given in Figure 2.1. Gray nodes indicate the observed
variables, which are the odometry and available sensor measurements. White
nodes represent, instead, hidden variables, x1:T and m, which model the
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Figure 2.1: Dynamic Bayesian Network of a SLAM process. The figure shows which parts
of the graph are involved in the state motion (green) and observation (orange) models.

trajectory of the robot and the map of the environment, respectively.
The connectivity of the graph follows a recurrent pattern, characterized

by the motion and observation models. The transition model is represented
by the two edges leading to xt and consists in the probability that the robot,
at time t, is in xt, given that at time t − 1 it was in xt−1 and it acquired
an odometry measurement ut. The observation model is represented by
two edges pointing at zt and it describes the probability of performing the
observation zt, given that the robot is at location xt in the map m.

Expressing SLAM as a Dynamic Bayesian Network highlights its tempo-
ral structure, and therefore this formalism is well suited to describe filtering
processes that can be used to tackle the SLAM problem. Since the ’90s,
different approaches have been proposed to solve the SLAM problem using
its probabilistic interpretation, including Kalman Filters (KF), Particle Fil-
ters (PF) and Expectation Maximization (EM). A detailed explanation and
comparison of the different probabilistic methods are discussed in [5], while
the following paragraphs give a brief description of the various methods.

KF are Bayes filters that represent posteriors using Gaussians, i.e., uni-
modal multivariate distributions that can be expressed compactly by a small
number of parameters. KF SLAM relies on the assumption that the state tran-
sition and the measurement functions are linear with added Gaussian noise,
and the initial posteriors are also Gaussian. Many variations of KF can be
found in literature, including the well known Extended Kalman Filter [6–9]
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Chapter 2. SLAM overview and state-of-the-art

and its related Information Filtering (IF) or Extended IF [10].

PF [11, 12], also known as sequential Monte-Carlo (SMC) methods, are
recursive Bayesian filters that are implemented in Monte Carlo simulations.
The basic idea is to approximate the pose posterior distribution, i.e., the
belief, with a set of sample states x

[i]
t , or particles, with index i ranging

from 1 to M (considered as the size of the particle filter). At time t > 0,
each particle x

[i]
t−1 from the previous belief follows the motion model of the

robot, given actuation commands, reaching a new pose estimate x
[i]
t . From

all the particles obtained, M new elements are generated with a probability
proportional to the likelihood of the expected sensor value for that state
value. Through these three steps, the belief of the robot is periodically
updated, using the information of the particles. The procedure is repeated
until the probability estimated from the extracted particles converges.

EM estimation is a statistical algorithm developed in the context of
maximum likelihood (ML) estimation and it is able to build a map when
the robot pose is known by means of expectation. EM iterates two steps:
an expectation step, where the posterior over robot poses is calculated for
a given map, and a maximization step, in which the most likely map is
calculated given the expectations associated with the various poses. The
final result of EM estimation is a series of accurate maps.

Probabilistic approaches have many disadvantages. Kalman filter-based
SLAM results are often inconsistent and present a considerable computa-
tional complexity, which grows e2.4 w.r.t. the number of features in the map,
when the environment scale increases (e.g. urban scenery). Particle filter
methods have many limitations, due to their constrained number of particles
- again, for computational reasons - required to estimate the current pose of
the robot. Lastly, expected maximization techniques are very limited and
perform poorly in the localization aspect of SLAM.

Over the course of the years, the concept of SLAM moved away from
the probabilistic methods, still improved in many recent works, and reached
a more mature and modular representation. Instead of treating the SLAM
problem as a whole, the state-of-the-art consists in breaking the process
into multiple independent modules, each assigned to a different task. This
way, the whole localization and mapping approach can be easily made
more efficient, and each module can be highly specialized in dealing with a
particular issue (e.g., motion estimation, rather than mapping).
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2.2. SLAM system architecture

2.2 SLAM system architecture

The standard architecture of a SLAM system can be described with differ-
ent degrees of detail. From a high-level perspective, a SLAM process is
composed of two main modules: the front-end and the back-end.

The front-end abstracts sensor data and extracts spatial relations between
individual observations. In the front-end, sensor measurements from differ-
ent time steps are processed and confronted to estimate the relative motion
between the corresponding robot poses. This module is the core of the
localization aspect of SLAM, as it keeps track of the robot trajectory while
performing data association, exploiting different techniques (dependent on
the type of data considered and sensors used). Moreover, in the front-end,
also a rough map is created, either broken in pieces associated with each
sensor measurement (local maps) or as a whole (global map), or both.

If the front-end builds a rough estimate of the robot trajectory, the back-
end optimizes it to generate a more accurate set of robot poses. An important
fact is that the trajectory can be optimized anytime and in different ways.
If the whole trajectory is improved, the process takes the name of global
optimization. If only a limited amount of poses is adjusted, the procedure
is called local optimization. Global optimization produces more accurate
results since it takes into account all the information associated with the
robot poses, but it is slow. Instead, local optimization is faster than its global
counterpart, but leads to minor improvements, due to its reduced scope.

In the back-end module, the map of the environment is fully built and
eventually refined, along with the trajectory of the robot. Depending on the
choice of the map representation, this creation and improvement task can
degrade the performance of a system, especially when using certain sensors.

For example, if the sensor used is a laser rangefinder, which registers
point clouds, and the map is represented as a set of points, the only task
that the back-end module should complete is a simple and fast alignment of
the sensor data. On the other hand, if the input sensor is a camera, which
captures images of the scene, and the map is represented as a set of small
filled volumes, the back-end module needs to perform conversion (from 2D
images to 3D spaces), space-filling, and other demanding procedures.

A more detailed representation of a generic SLAM architecture is repre-
sented in Figure 2.2. The typical workflow includes the following steps.

Sensor data acquisition. Intuitively, it refers to the gathering of data by
the sensor suite equipped on the robot. It also includes the acquisition and
synchronization between encoders, IMU, and other sensors, if available.

Data pre-processing. Available in the front-end module, it refers to the
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Chapter 2. SLAM overview and state-of-the-art

Figure 2.2: Scheme of a generic SLAM architecture. Sensor data is processed by the
front-end, which elaborates the measurements and tracks the poses of the robot, after
data association. The trajectory is then passed to the back-end, which performs pose
optimization and creates or updates the map of the environment around the robot.

task of elaborating the acquired sensor data, making it suitable for the pose
estimation procedure and all successive SLAM parts (e.g., loop detection).

Data association. Still remaining in the front-end part of a SLAM system,
data association is the process of finding the associations between the data
gathered at two different time steps (short term association if consecutive,
otherwise long term), which then allow to estimate the motion of the robot.

Rough map creation. While performing data association and pose esti-
mation, each sensor measurement, or the most important ones, is attached to
a rough estimate of the map, to be processed later in the back-end.

Local and global optimization. These back-end activities optimize ei-
ther parts or the whole trajectory of the robot, estimated during the data
association phase, sometimes exploiting the corresponding rough maps.

Map refinement. It takes the local maps created in the front-end, which
are then integrated and corrected in the global map of the environment.

The SLAM process begins with the acquisition of sensor data by the robot.
Raw data is often not suitable to be used directly in the SLAM process and,
dependently on the algorithms used to associate multiple measurements,
it is processed and elaborated in different ways. Size reduction, feature
extraction, data conversion, denoising, and filtering are just some of the
possible ways to prepare the data for the other modules of a SLAM system.

After the raw measurements have been elaborated, the front-end performs
the core task of a SLAM process: data association and pose estimation. The
goal of this step is to first find correspondences between data, and then use
them to estimate the motion of the robot between the two acquisitions. Data
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association is classified into two types: short term and long term.
Short term data association is the process of finding correspondences

between the data gathered at two consecutive time steps. This allows pose
tracking, which is the task of finding the rigid transformation between the
current pose of the robot, at time step t and the previous one, at time step
t− 1. Once the relative motion has been found, the current location can be
easily computed from the previous position. Formally, given the robot pose
xt−1 and the sensor measurements zt−1 and zt, pose tracking, which follows
short term data association, finds the transformation between the two data
readings, with which it estimates the current location of the robot, xt.

Using this procedure, the trajectory of the robot is incrementally updated
using the information extracted from the environment. Moreover, each esti-
mated pose is associated with a rough partial estimate of the map, obtained
by combining the input data and the information obtained from tracking.

Long term data association is a more subtle task, but essential for back-
end optimization. The goal of this procedure is to recognize whether the
robot is visiting a previously discovered location in the environment, which
translates into the estimated trajectory displaying a ring-like structure, i.e.,
a loop. This is known as loop detection and closure, and it allows for the
enforcement of positioning constraints over the trajectory of the robot.

Figure 2.3 shows a 2D toy example to describe the concept of loop detec-
tion and closure: the robot moves along a trajectory made of consecutive
poses {x0, . . . , x10}. The last position x10 is close to previously visited
locations, namely x1 and x2. This means that the robot has generated a loop
in its trajectory while moving, represented by the dashed red arrows.

While the purpose of tracking is to find the current pose of the robot
using consecutive processed sensor measurements, loop detection is simply
a “yes and no" search in the set of known poses, also using the available
data. In this sense, such a task is more time-consuming than simple tracking,
since it involves the comparison of the current sensor measurement with all
the previous ones, in pairs. Usually, these comparisons are done with the
same or similar algorithms used to perform tracking. However, many works
adopt a different approach to speed up the process and to find the relative
motion between the poses corresponding to a loop, i.e., performing closure.

Lastly, one must not fall into the temptation of comparing only the poses
to detect a loop, since they are already available (loop detection and closure
are always done after pose tracking), to speed up the task. Estimated poses
are an unreliable source of information, due to possible drifting errors and
mistakes accumulated by tracking, while sensor measurements represent an
accurate description of the environment, so the latter must be preferred.
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Chapter 2. SLAM overview and state-of-the-art

Figure 2.3: Toy example of loop closure. The robot (blue triangle) moves along a certain
trajectory, represented by dashed black arrows (where the head represents the direction
of movement). When reaching position x10, the robot is nearby the previously visited
locations x1 and x2, detecting a loop in the trajectory (red arrows close the loop).

The poses estimated with front-end tracking are influenced by the noise
afflicting the input data (or even reading mistakes of the sensors, such as
LiDAR measurements in foggy or snowy environments), diverging from
the actual locations of the robot by a non-trivial amount. Using both the
estimated map, or map parts, the detected loops, and optional additional
constraints, the trajectory is optimized either locally, globally, or both.

Local optimization exploits the map representation to enforce consistency
between multiple consecutive poses. Global optimization involves, instead,
the whole estimated trajectory and it uses the constraints derived from
loop closures and map elements (floors, walls, known locations) to adjust
simultaneously all the poses, such that all the constraints are satisfied.

To sum up, in this section, a brief explanation of the common elements
of all SLAM systems has been given. To better understand the various
approaches adopted and evolved over the course of the years, a more detailed
description of the already discussed steps is given in the following sections.

2.3 Laser SLAM

To overcome some of the problems associated with cameras, such as illu-
mination dependencies, many SLAM systems use laser rangefinder sensors
(e.g. LiDAR or Microsoft Kinect). As the majority of laser SLAM systems
process LiDAR data, this sensor is considered the standard, and it is used in
the rest of this thesis to describe and deal with laser SLAM methods.

By transmitting and receiving laser beams, a LiDAR uses the Time of
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Figure 2.4: Typical architecture of a Laser SLAM system. Modules covered by the green
box represent laser tracking, the process of estimation of the robot movement by using
consecutive input scans, which correspond to sparse or dense point clouds.

Flight method to obtain the distance of the scanning point from the center
of the sensor, which is almost unaffected by the illumination conditions.
Moreover, LiDAR sensors have a long detection range and high precision.

LiDARs can deal with large-scale, light or dark environments, and are a
reliable source of information for SLAM systems. The typical architecture
of a LiDAR-based SLAM algorithm follows the same steps as the baseline
architecture, presented in Section 2.2 and visible in Figure 2.2. The structure
and pipeline of a LiDAR SLAM system can be seen in Figure 2.4.

Sensor data gathering. As described at the beginning of the section, in
laser SLAM, the sensors used are laser rangefinders, which obtain a point
cloud representation of the environment, which can be either sparse or dense.

Laser odometry (LO). This task is the front-end of a laser SLAM system,
as it estimates the sensor movement (hence, the trajectory of the robot)
between consecutive measurements. As each scan is already a rough map of
the environment, different from visual SLAM methods, where the map must
be extracted from scratch, laser SLAM requires only refining and stitching
together the available local maps. The majority of laser SLAM systems take
input scans obtained from sensors whose specifics (equivalent to camera
intrinsic and distortion parameters) are given by the constructor.

Loop detection and closure. As described in Section 2.2, it is the task
of finding if a robot is visiting a previously seen location, meaning that is
passing through the same area. In laser SLAM, this is done by checking
similarities between pairs of LiDAR scans. If a loop is detected, it will
provide additional information to improve the accuracy of the optimization.

Optimization. Since it is considerably hard and computationally expen-
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sive to enforce consistency between multiple point clouds, laser SLAM
algorithms rely on additional data structures, usually known as keyframes,
to model the whole trajectory and optimize them instead.

Laser SLAM systems have a more intertwined front-end and back-end
since the latter highly relies on structures created and updated in the first
phase. The state-of-the-art methods use graphs as data structures to model
the SLAM process, enforcing consecutive motions and loop closures.

The front-end of laser SLAM consists of the following steps. First, a
global coordinate system is defined for the robot. It is not needed to also
associate it for the different scans, locally, since they are already directly
related to the robot by known transformations, differently from visual SLAM
methods, where features extracted from images must be correlated both with
the camera sensor and the constructed map of the environment.

After this step, tracking and mapping are continuously performed to
estimate the poses of the robot. In the tracking phase, either the estimated
map or the previous point cloud are tracked in the current LiDAR scan, to
find the current pose of the robot. This is done in different ways, either by
aligning the whole clouds or by extracting 3D features and matching them.

After the current pose is estimated, the corresponding scan is integrated
into the available map, eliminating redundant points and adjusting positions.
Moreover, a secondary model of the SLAM process is built (usually a graph),
to be used in the optimization phase, as mentioned before.

Loop detection and closure follow the same procedure as adopted for
tracking: to search for loops in the estimated trajectory of the robot, the cur-
rent scan (or its features) is compared either with the previous measurements
or with the map of the environment (or, again, the extracted features).

The back-end of laser SLAM main purpose is to optimize the estimated
poses. Differently from the visual counterpart, these systems do not usually
require re-localization, since pose tracking is robust enough and does not
suffer from the same problems as image-based tracking: scans represent
the whole environment surrounding the robot, capturing rich and complete
information about the surroundings, which is exploited to accurately track
the movement of the robot. On the other hand, images show only a limited
view of the scene, which may be lost in consecutive sudden movements.
Optimization, as already stated, is done using side data structures, built in
the front-end and are easier to manipulate, to model the SLAM process.

Laser SLAM systems can be classified into three categories, depending
on how pose tracking is performed and how the environment is represented:
point cloud based methods, feature based methods, and grid based methods.
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2.3.1 Point cloud-based laser SLAM

In point cloud-based SLAM methods the map is represented as a set of
points, forming a cloud, and the input scans directly contribute to the map
construction. The core of point cloud-based methods is the Iterative Closest
Point (ICP) [13–15] algorithm and its variants, proposed over the years.

Straightforward ICP works as follows. Given two scans S = {s1, . . . , sn}
and M = {m1, . . . ,mn} (source and model), the goal is to find the rigid
transformation (rotation R and translation t) which best aligns the given
clouds. One iteration of the algorithm consists of the following steps.

1. Compute the nearest point in set S for every point (or part of the points)
in set M , e.g., using the Euclidean distance:

di = min
√

m2
i − s2j , j = 1, . . . , |S|. (2.1)

2. If the computed distance is greater than a threshold, meaning di >
threshold, the corresponding pair of points is removed.

3. Add weights wij to pairs of points i and j. In straightforward ICP,
wij = 1 if the two points are close and form a correspondence, zero
otherwise. In other variants of ICP, the weights can be set accordingly
to the direction of the normal vectors associated with the points, as
their dot product, wij = ni · nj .

4. Compute the rotation matrix R and translation vector t using a Least
Squares-based method for distance minimization.

5. Compute the transformation of set S using computed values: R · sj + t.

6. Compute the error between the model cloud and the transformed cloud
and iterate until the required accuracy is achieved, i.e., convergence.

Firstly, the nearest point in the set S is calculated for every point in the
set M . It is possible to use all of the points or they can be chosen randomly.
The ICP algorithm assumes that the corresponding points are the nearest
ones; hence, it is suited for the SLAM front-end due to its consecutive nature,
i.e., because of the reduced amount of change in translation and orientation
between consecutive poses. For these pairs of corresponding points, the
rotation matrix and translation vector are computed, by minimization of the
distance error between all point correspondences:

E(R, t) =

|M |∑
i

|S|∑
j

wij||mi − (R · sj + t)||2. (2.2)
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The previous distance error can be rewritten in the following way:

E(R, t) ∝ 1

N

N∑
i

||mi − (R · sj + t)||2, (2.3)

where N =
∑|M |

i

∑|S|
j wij is the sum of all weights.

To find R and t, Singular Value Decomposition (SVD) is used. The
centroids of both point sets are computed, to be used in SVD, as:

CM =
1

N

N∑
i

mi and CS =
1

N

N∑
i

si. (2.4)

Using these centroids, both point sets are re-aligned, as:

M ′ = mi − CM1,...,N
and S ′ = si − CS1,...,N

. (2.5)

From these values, the covariance matrix H = M ′S ′T is computed, and
decomposed as H = UΛV T . The desired rotation matrix is given by
R = V UT , while the translation vector is t = CS −RCM . Lastly, the error
between the transformed source set and the model point cloud is calculated,
and the whole process is iterated until convergence (error below a threshold).

Different improvements of ICP have been proposed to satisfy better
convergence and improve performance. ICP algorithm computation can be
efficiently accelerated (up to 10 times [16]) by using KD trees, which are
a special case of binary space partitioning trees, to perform fast neighbor
correspondence between points from different input LiDAR scans.

Point clouds often contain noise points and outliers. To avoid wrong
alignments of the scans, multiple criteria are added to eliminate, or at least
mitigate this problem. The usual recommendation is to remove pairs of
points that contain elements at the borders of the clouds. Another option is
to remove points that have a greater distance than a given threshold.

A variant of ICP, named point-to-plane ICP [17], uses a different error
function, with the goal of minimizing not only the distance of two points but
also the approximate distance of one point to the plane to which the other
point belongs. This method reduces the number of iterations, converging
faster, but is not as robust as the standard version. Figure 2.5 shows the
difference between ICP (on the left) and point-to-plane ICP (on the right).

Another version, the Generalized ICP algorithm (GICP) [18] combines
normal ICP and point-to-plane ICP to achieve superior performance while
dealing with multiple cases. A detailed summary of most of the possibilities
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Figure 2.5: Difference between the ICP (on the left) and point-to-plane ICP (on the right)
algorithms. The blue and red lines represent the source and target point clouds.

Figure 2.6: Example state of the ICP-based SLAM system proposed in [23].

in cloud matching methods is covered in [19]. More recent approaches mod-
ify ICP to incorporate semantic information [20] (e.g., from segmented Li-
DAR scans), use accelerated iteration methods [21] to improve performance,
or even combine ICP with other point cloud matching algorithms [22].

Mendes et al. [23] proposed a purely ICP-based SLAM system, modeled
as a graph. Figure 2.6 describes a hypothetical state of the system after
processing some scans. There are two main layers plus the scan stream,
which is simply the history of acquired sensor measurements.

The ICP layer is composed of keyframes Ki, and their associated scans,
also called keyframe scans. Each keyframe Ki is associated with a node
xi in the graph layer, representing the pose of the robot when gathering
the corresponding scan. Some of these keyframes are selected to compose
local maps (blue clouds), which are used as reference inputs for the ICP
process. The other keyframes (gray clouds) are stored and may be later used
to correct local maps in case of loop detection. The robot pose X is always
expressed w.r.t. the closest keyframe in the current local map.

Still referring to Figure 2.6, as the robot starts, a first keyframe K0 is
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associated with the first acquired LiDAR scan. The corresponding node x0

is also created in the graph, and a constraint representing the initial pose of
the robot w.r.t. the world origin is added (black square).

Every time a new input (green cloud) is available, ICP finds the transfor-
mation that aligns it with the last local map (green arrow), estimating the
current pose of the robot. If the overlap between the current scan and the last
local map is lower than a threshold, a new keyframe is created, otherwise,
the scan is just discarded (crossed circles in the scan stream level).

When a new keyframe is created, it is initialized with the estimated
location. A new pose variable is then added as a node to the graph, as well
as a constraint (blue squares) containing the transformation between the new
and former keyframes (blue arrows). Lastly, the local map is updated with
the scan of the newest keyframe, while the oldest cloud is removed from it.

When the system detects a potential loop between two keyframes, a local
map is built around the oldest between these candidates. Then an ICP call
tries to align the scan of the other keyframes, i.e., the most recent one, with
this local map. If ICP is successful, a new factor is added to the graph
between the variables associated with these keyframes, closing a loop in the
graph. Optimization is then triggered and the loop detection process ends
with the system re-positioning all keyframes using the optimization results,
and reconstructing all local maps with the corrected estimated poses.

6D SLAM [24] is another ICP-based SLAM system. To match two 3D
scans with the ICP algorithm it is necessary to have a sufficiently accurate
starting guess for the current scan pose, due to the fact that their points
correspond to two different locations in the same environment.

To overcome this problem, in 6D SLAM, first, the transformation found
in the previous scan matching is applied to the current pose estimation, to
implement the assumption that the error model of the pose estimation is
locally stable; then, a pose update is calculated by matching octree repre-
sentations of the scan point (visible in Figure 2.7) sets, rather than the point
sets themselves, to speed up the whole pose tracking process.

Loop closure in 6D SLAM is done by matching the current scan with
earlier measurements. To avoid processing all the previous scans, first a hy-
pothesis based on the maximum laser range. Then the octree-based method
used for scan matching is applied to the candidate scans for loop detection.
Lastly, if a loop is found, the corresponding relative transformation is dis-
tributed over all existing 3D scans, and the total displacement error is then
minimized according to the simultaneous matching method [25, 26].

Behley and Stachniss [27] proposed a novel, dense approach to laser-
based mapping that operates on 3-dimensional point clouds obtained from
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Figure 2.7: Octree generation from point clouds, described in [24]. The left figure
represents two scans; the middle panel shows the octree corresponding to the black/front
point cloud; and the right image shows the octree based on the gray/back points.

rotating laser sensors. They construct a surfel-based map and estimate the
changes in the pose of the robot by exploiting the projective data association
between the current scan and a rendered model view from that surfel map.

For detection and verification of a loop, the map representation is again
leveraged to compose a virtual view of the map before a potential loop
closure, which enables more robust detection, even with low overlap between
the scan and the already mapped areas. The approach is efficient and enables
real-time registration and loop closure, although it requires a GPU to keep
such performance, making it unusable on low-end devices.

A more recent approach using full point clouds is HDL [28]. The system
can be summed up as a pipeline of four steps. First, a laser input is pre-
processed and filtered to reduce its size, a mandatory operation to improve
the performance of scan matching, as aligning full clouds is demanding.

Then, the filtered scans are used to simultaneously perform tracking,
through a scan-to-keyframe matching approach, and to possibly detect the
sub-part of the cloud representing the ground plane in them. Poses estimated
through tracking, and floor coefficients extracted from the point clouds, are
lastly used to build a graph of the trajectory, i.e., a pose graph, which is
later optimized to best satisfy all motion constraints. The system achieves
superior performance, but, as for all full point cloud-based methods, it is
slow, especially when dealing with considerably large point clouds.

Lastly, CT-ICP [29] developed a new real-time LiDAR-only odometry
method called CT-ICP (for Continuous-Time ICP), completed into a full
SLAM with a novel loop detection procedure. The core of this method is
the introduction of the combined continuity in well known scan matching
procedures, and discontinuity between scans. It allows both the elastic
distortion of the scan during the registration for increased precision, and
the increased robustness to high frequency motions from the discontinuity.
Loop detection is based on the conversion of submaps into elevation images,
which are then matched using a RANSAC-like approach.
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Figure 2.8: Linear (yellow) and planar (red) points extracted from a 3D point cloud.

2.3.2 Feature-based laser SLAM

In feature-based SLAM methods, the map of the environment can be either
represented as a point cloud or as a set of space features, although the first is
generally preferred. Particular features are extracted from the sensor scans
in the form of corners, lines, and planes, to facilitate the subsequent scan
matching process. Figure 2.8 shows linear and planar points, respectively
colored in yellow and red, extracted from a 3D point cloud.

LOAM [30] represents one of the state-of-the-art in feature-based laser
SLAM, and its architecture is represented in Figure 2.9. Let Pk be the set of
points received in the current laser scan. Pk is processed in two algorithms.

The laser odometry, running at a frequency of around 10 Hz, takes
the point cloud and computes the motion of the laser sensor between two
consecutive scans. The estimated motion is used to correct distortion in
Pk. The outputs are further processed by LiDAR mapping, which matches
and registers the undistorted cloud onto a map, at a frequency of 1 Hz.
Finally, the pose transforms outputted by the two algorithms are integrated
to generate a result at around 10 Hz, regarding the pose w.r.t. the map.

Let i be a point in Pk, i ∈ Pk, and let S be the set of consecutive points
of i, returned by the laser in the same scan. Since the sensor generates point
returns in clockwise or counter-clockwise order, S contains half of its points
on each side of i, at fixed angular intervals. A function is defined to evaluate
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Figure 2.9: System architecture of LOAM [30], including the various modules and data.

the smoothness of the local surface formed by nearby points:

c =
1

|S| · ||XL
(k,i)||

||
∑

j∈S,j ̸=i

(XL
(k,i) −XL

(k,j))||, (2.6)

where XL
(k,i) indicated the coordinates of point i in the sensor frame k.

The points in a scan are sorted based on c. Then, feature points are
selected with the maximum c values, namely, edge points, and the minimum
c values, namely planar points. To evenly distribute the feature points within
the environment, scans are separated into four identical regions. Each region
can provide a maximum of 2 edge points and 4 planar points. A point i can
be selected as a feature only if its c value is larger or smaller than a threshold,
and the number of already selected points does not exceed the maximum.

Features are then matched in the following way. Let Ek and Ek+1 be
the set of edge points extracted in scans k and k + 1 respectively. Let i be
a point in Ek+1. Let j be the closest neighbor of i in Pk, and let l be the
closest neighbor of i in the two consecutive scans to the cloud to which j
belongs. (j, l) forms the correspondence of i. Then, to verify that both j and
l are edge points, the previous equation is used to enforce the smoothness of
the related local surface, exploiting the associated c values.

The same thing is done for planes correspondences. Let Hk and Hk+1 be
the set of planar points extracted in scans k and k+1 respectively. Let i be a
point in Hk+1. The planar patch is represented by three points. Similarly to
the edge correspondence, the closest neighbour j of i in Pk is found. Then,
points l and m, as the closest neighbors of i, are considered, one in the same
scan of j, and the other in the two consecutive scans to the scan of j. This
guarantees that the three points are non-collinear. To verify that j, l, and m
are all planar points, the previous equation is checked once again.

The motion estimation is adapted to a robust fitting. For each feature
point, a bi-square weight is assigned. Feature points that have larger dis-
tances to their correspondences, computed as point-to-line and point-to-
plane distances, are assigned with smaller weights, and feature points with
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distances larger than a threshold are considered outliers and assigned with
zero weights (similarly to ICP). The pose transform between the two scans
is computed and updated using non-linear optimization, formulated on the
feature correspondences. The whole process is iterated until convergence.

Lastly, the mapping phase is done similarly to the laser odometry proce-
dure described in the previous paragraphs. Here, the current scan is matched
and inserted in the map of the environment, updating it. Differently from
LOAM laser odometry, 10 times the number of features are used, in mapping,
to achieve better correspondence and denser representations.

LOAM achieves good results in various scenes when integrated with an
IMU to estimate initial guesses of the robot motion (speeding up the laser
odometry algorithm). However, extracted features can be sparse in road-
dominated autonomous driving scenes, and, without IMU, LOAM tends to
drift as there is no loop closure, making it unsuitable for large trajectories.

Many feature-based works have been developed using LOAM as a base-
line, due to its relatively high efficiency and performance. Deschaud et
al. [31] proposed IMLS-SLAM, which relies only on LiDAR sensors. The
proposed SLAM algorithm consists of three consecutive steps.

First, a local deskewed point cloud is computed from one scan of the
LiDAR used. Second, specific samples from that point cloud are selected,
to be considered as feature points. Lastly, the extracted samples are used to
minimize the distance to a model cloud representing the environment. The
main contribution of IMLS-SLAM is the way tracking of the robot motion
is performed: sampled features are compared against the Implicit Moving
Least Square (IMLS) representation, computed directly on the point cloud
of the map formed by the last n localized LiDAR scans.

LeGO LOAM [32], whose architecture is represented in Figure 2.10,
is a direct improvement of LOAM. The system receives input from a 3D
LiDAR and outputs 6 degrees of freedom pose estimates. The method is
characterized by the presence of five modules. The first, segmentation, takes
the point cloud derived from the current scan and projects it onto a range
image for segmentation. The segmented point cloud is then sent to the
feature extraction module, which works in the same way as for LOAM.

Then, LiDAR odometry uses features extracted from the previous module
to find the transformation relating consecutive scans, exploiting the labels
obtained through segmentation. The features are further processed in LiDAR
mapping, which registers them to a global point cloud map. Lastly, the
transform integration module fuses the pose estimation results from LiDAR
odometry and LiDAR mapping and outputs the final pose estimate.

MULLS [33] is a recent efficient, low-drift, and versatile 3D feature-based
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Figure 2.10: System architecture of LeGO LOAM [32], including the various modules.

LiDAR SLAM system. For the front-end, roughly classified feature points
(ground, facade, pillar, beam, etc.) are extracted from each frame using dual
threshold ground filtering and principal components analysis. Then, the
registration between the current frame and the local submap is accomplished
efficiently by the proposed multi-metric linear least square ICP algorithm.

Point-to-point (plane, line) error metrics within each point class are
jointly optimized to estimate the ego-motion. Static features of the registered
frame are appended to the local map to keep it updated. For the back-end,
hierarchical pose graph optimization is conducted among regularly stored
history submaps to reduce the drift resulting from dead reckoning.

Lastly, F-LOAM [34] adopts a non-iterative two-stage distortion com-
pensation method to reduce the computational cost of scan matching. For
each LiDAR scan input, the edge and planar features are extracted and
matched to a local edge map and a local plane map separately, where the
local smoothness is also considered for iterative pose optimization. Despite
not performing loop detection, F-LOAM is able to achieve accurate results.

2.3.3 Grid map-based laser SLAM

Grid map-based SLAM algorithms focus on the discretised representation
of the environment, which can be either 2D, 2.5D, or 3D.

2D grid maps are associated with planar SLAM, typically used for indoor
localization and mapping. They represent the space as a set of relatively
small cells, forming a regular grid. Each cell is associated with a random
variable mx,y which holds the probability of this cell being occupied.
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Figure 2.11: On the left, 2D occupancy grid representation of a map; on the right, large
scale 2D reconstructed map in an occupancy grid.

Grid maps where an occupancy variable is associated with each cell are
named occupancy grid maps. Sensor measurements determine the probabil-
ity value of each cell, efficiently allowing the building of a 2D map during
the SLAM process, as represented in Figure 2.11. Different SLAM systems
can be considered state-of-the-art for 2D grid map-based laser SLAM.

Gmapping [35] uses a Rao-Blackwellized Particle filter SLAM approach.
It is one of the most widely used 2D SLAM methods in robotics, especially
for land-based mobile robots. In general, the particle filter family of the
algorithm may require a large number of particles to obtain accurate results.
Also, the depletion problem associated with this method decreases the
accuracy of the algorithm. This arises with the elimination of a large number
of particles, during the re-sampling step described in Section 2.1.

An adaptive re-sampling technique has been developed to minimize the
depletion problem. Moreover, this approach takes into account not only the
movement of the mobile robot but also the most recent sensor observation,
with odometry information. This decreases the uncertainty of the robot pose
in the prediction step of the particle filter.

Hector SLAM [36] does not require any auxiliary odometry sensor (e.g.
wheel encoders) which directly measures the travel distance of a land-based
robot, but only relies on the information from laser scan matching ap-
proaches. Therefore, Hector SLAM is more suitable for aerial vehicles. It
takes advantage of the low distance measurement noise and high sampling
rates of LiDAR sensors, using a fast scan matching method. Another ad-
vantage of Hector SLAM is its capability to generate multi-resolution grid
maps to avoid singularities during point cloud registration.

Lastly, Cartographer [37] is another approach that provides real-time

28



2.3. Laser SLAM

Figure 2.12: Architecture of Google Cartographer [37], including 2D and 3D modules.

SLAM in 2D and 3D across multiple platforms and sensor configurations,
developed by Google. Cartographer does not require a particle filter algo-
rithm for mapping and it overcomes the issue of error accumulation during
long iterations by pose estimation against a recent submap.

Cartographer primarily consists of two subsystems, global SLAM, and
local SLAM. Local SLAM is used to generate good submaps of a region
and global SLAM is used to tie the submaps together as consistently as
possible. Moreover, it generates a series of submaps, which are meant to be
locally consistent, and it also creates the local trajectory. The local SLAM
algorithm inserts the scan into the current submap via scan matching.

This process uses an initial guess from the pose extrapolation algorithm,
which uses other sensors to make an initial prediction of where the scan
should be inserted into the submap. Once registration is computed, a motion
filter ensures that only scans resulting from significant motion (based on
distance or angle, or time) are included in the submap.

A submap is considered complete when the local SLAM has received a
given amount of range data. The local SLAM algorithm stores the submaps
and their range data in a data structure known as a probability grid. The
global SLAM algorithm takes the submaps and attempts to rearrange them
so that they form a coherent global map and executes loop closure by scan
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(a) (b) (c)

Figure 2.13: Example of the different 2D Grid map-based SLAM systems on the 2011-01-28-
06-37-23 MIT sequence. From left to right, maps are obtained with Cartographer [37],
GMapping [35] and Hector SLAM [36], respectively.

matching scans of sensor data against the submaps. Figure 2.12 shows the
architecture of Cartographer, including also the 3D components.

Figure 2.13 represent the 2D occupancy map of the same environment
reconstructed using Cartographer (Figure 2.13a), GMapping (Figure 2.13b)
and Hector SLAM (Figure 2.13c), from left to right, respectively.

2.5D maps differ in many aspects from occupancy grids. Point cloud
data is first rasterised in a 2D grid map. Let the spherical coordinates of the
ith LiDAR point pi be (γi, ϕi, θi), where γ is the depth of the point, ϕ is the
horizontal angle and θ is the vertical angle. The 3D Cartesian coordinates of
pi(xi, yi, zi) are:

xi = γi · cos θi · cosϕi

yi = γi · cos θi · sinϕi

zi = γi · sinϕi.

(2.7)

Each point is projected onto a 2D grid map, obtaining a new 2D point p′i:

x′
i = floor(

xi

fx
+ cx)

y′i = floor(
yi
fy

+ cy),
(2.8)

where fx and fy are the grid map resolutions in the x and y axis respectively,
and cx and cy are the centers of the grid map (half the number of row and
columns of the grid). For each cell of the grid, the height z of all points in
it is kept. This is done by considering the mean µi to represent the height
expectation of each cell:

µi =
1

n

n∑
k=1

zk (2.9)
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Figure 2.14: Example of 2.5D map, which also shows the heights associated with each cell.

where n is the number of cloud points projected into the grid cell i.
2.5D maps retain the advantages of easy storage and building as 2D

grid maps and also represent the height information, which is crucial for
registration in the outdoor environment. Furthermore, more precise models
of height distribution can be adopted in these maps, as Gaussian mixture
distributions. An example of a 2.5D map is represented in Figure 2.14.

DLO [38] adopts a 2.5D representation of the environment as it performs
pose tracking by minimizing the height difference error between correspond-
ing cells associated re-projections obtained from two consecutive scans.
Instead of performing a point-wise or feature-wise matching, consistency is
enforced between two height expectations µi,t−1 and µi,t.

Since DLO does not perform loop closure, a recent work [39] based on it,
named DL-SLAM, has been proposed. The main contribution consists of the
development of a loop closure detection method based on the matching of
2.5D segments obtained from the map. Segments are obtained by clustering
grid cells with K-mean, assigning them different features: principal direction,
height gradient, curvature, omni-variance, and eigen entropy.

The features of each segment in the current height map are matched with
features of the segments in the map of the environment by calculating the
score between the corresponding features vector and thresholding it.

Similarly to 2.5D maps, 3D grid maps, commonly referred to as voxel
grid maps, are built by dividing the space into multiple cells of the same size
and assigning to them cloud points according to their spatial location. Let
pi(xi, yi, zi) be a point belonging to a scanned point cloud. It is projected
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onto a 3D grid map, obtaining a new 3D point p′i such that:

x′
i = floor(

xi

fx
+ cx)

y′i = floor(
yi
fy

+ cy)

z′i = floor(
zi
fz

+ cz),

(2.10)

where fx, fy and fz are the grid map resolutions in the x, y and z axis
respectively; and cx, cy and cz are the centers of the volumetric grid map.

Matching between two scans is then performed either by applying ICP
on the cell points, meaning that only the mean locations are considered
(highly reducing the computational cost of the algorithm), or exploiting
the probabilistic information contained in each voxel, using the NDT [40]
method. A detailed explanation of the NDT algorithm and its variants can be
found at [41]. LiDAR odometry works based on NDT include [42] and [43].

2.4 Visual SLAM

When the main source of data is one or multiple cameras, the name used to
describe the system is visual SLAM, or V-SLAM. Visual SLAM uses the
images taken by the main sensor as observations of the environment [44].

In the last decade, SLAM using cameras has been actively discussed
because the hardware configuration is simpler w.r.t. other sensors. Visual
SLAM algorithms have been widely proposed in the field of computer vision,
robotics [45, 46], and augmented reality [47]. Even though visual SLAM
techniques have been proposed for different purposes, in different research
communities, they share parts of implementation core ideas.

The typical architecture of a visual SLAM system does not differ much
from the one presented in Section 2.2. As depicted in Figure 2.15, a generic
workflow consists of multiple phases, divided into front-end and back-end.

Sensor data gathering. As already described at the beginning of the
section, for visual SLAM systems, the gathered data comes mainly from a
single camera (standard or RGB-D) or a pair of cameras (stereo setup).

Visual odometry (VO) [48]. This task is part of the front-end of a visual
SLAM system, as it estimates the camera movement (hence, the trajectory
of the robot) between adjacent steps, while generating a rough map of the
environment (usually in the form of 3D points in the space), using features
associated to the input images. In other words, visual odometry comprises
short term data association and motion tracking. Visual SLAM systems
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Figure 2.15: Visual SLAM architecture. Modules covered by the orange box form visual
odometry, the process of finding consecutive robot motions by using visual information.

generally take as input images from calibrated cameras, so that intrinsic and
distortion parameters are known. Therefore, a camera pose is equivalent to
extrinsic camera parameters, w.r.t. a chosen coordinate system.

Loop closure detection. As described in Section 2.2, it is the task of
determining whether the robot is visiting an already discovered location. In
visual SLAM, this is done by checking similarities between pairs of images.

Optimization. The camera/robot poses and the loop closures are used to
generate an optimized trajectory and map, eliminating the accumulated drift.

From a high-level point of view, visual SLAM is the combination of
visual odometry, loop closure, and optimization [49,50]. While in pure visual
odometry the geometric consistency of a map is considered only in a small
portion and the camera motion is often computed without creating a map, in
visual SLAM the global geometric consistency of a map is considered, as the
robot trajectory is estimated and grows in size. This is done by performing
both global and local optimization on the poses of the robot, tracked in the
visual odometry part of the front-end, and the detected loop closures.

The front-end of visual SLAM is composed of three consecutive steps.
First, it is necessary to define a certain coordinate system for camera pose and
map estimation of an unknown environment. Therefore, in this initialization
step, the global coordinates system is defined, and a part of the world is
reconstructed as an initial map using pre-processed visual data. After the
initialization, tracking and mapping are performed to continuously estimate
camera poses, at each time step, exploiting the sensor measurements.

During the tracking phase, either the reconstructed map, the previous
image, or both, are tracked in the current image to estimate the current
camera pose. To do so, 2D-to-3D or 2D-to-2D correspondences are ob-
tained, between the image and the map or between two consecutive images,
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respectively. Then, the camera pose is computed from the correspondences
by solving the Perspective-n-Point (PnP) problem [51]. Lastly, the estimated
map is updated with the new areas of the environment seen by the robot.

The back-end of a visual SLAM system is tasked with the re-localization
of the robot and the optimization of trajectory and map. Differently from
laser SLAM systems, here re-localization is required, to cope with possible
front-end failures, which may be caused by fast camera motion or images
with low information (e.g., a white straight wall cannot be used for tracking).
The front-end temporarily stops the motion estimation procedure and the
current camera pose is computed w.r.t the map, to re-localize the robot.

The map and the estimated poses include accumulated errors, to be
corrected enforcing consistency between the map and the images. Similarly
to any SLAM system, the strongest type of consistency is given by loop
closures. As described in Section 2.2, loop detection is performed by
searching similarities between the current image and previously acquired
images or between features extracted from the current image and the re-
projection of the map features on it. In case a loop is found, the cumulative
error that occurred during camera movement can be estimated and used in the
optimization step. It should be noticed that loop detection and re-localization
can be performed using, more or less, the same techniques.

Following different criteria, visual SLAM systems can be classified in
multiple ways. The first classification is done depending on how visual
odometry is performed: feature based methods [52–54] estimate the tra-
jectory by matching points of interest in consecutive images, while direct
methods [46, 55] compute the motion of the camera directly according to
pixel information (brightness, color). A second classification is done con-
sidering which particular camera setup is used in the SLAM system, which
can be monocular (only one camera), stereo (two nearby cameras), or depth
based (e.g., structured light scanners, or Time of Flight 3D cameras).

2.4.1 Classification based on visual odometry

In the majority of visual SLAM systems, natural features present in the
world have been used, such as corners, interest points, or edge segments.
These features are extracted from the input images and from the estimated
map of the environment. The features obtained from the current image are
then compared and matched against the features of the map or the features
from the previous image, to find the transformation corresponding to the
current camera pose, hence upgrading the trajectory. These methods are
known as feature-based, and they represent the map as a set of features.
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In contrast to feature-based methods, direct methods directly use a whole
input image to estimate the current camera pose, and for this reason, they are
called featureless approaches. They optimize the geometry on the intensities
by performing image alignment (differently from feature alignment). In
addition to higher accuracy and robustness, in particular, in environments
with few features, this provides information about the geometry of the
environment, which can be very valuable to create semi-dense 3D maps.

Engel et al. [56] provided a good comparison between the two approaches,
highlighting their advantages and disadvantages. Feature-based methods are
more robust to geometric noise, but the features extraction and matching is
time consuming. Moreover, the obtained representation of the environment
is sparse and cannot be used for a detailed 3D reconstruction.

Direct methods perform better in low-texture regions but are generally
more sensitive to dynamic objects. Moreover, none of the above methods
can solve the problems caused by common dynamic objects in the scenes.

Feature-based visual odometry

Feature-based methods rely on a particular representation of the images, seen
as a set of features. Before continuing with the discussion, some definitions
are necessary to better understand this category of algorithms.

Feature points are structures formed by two elements, a keypoint, and
its descriptor. A keypoint is the location of a salient point in an image, rep-
resented in the form of 2D coordinates, containing also useful information,
such as scale and orientation. A Descriptor represents the statistics and
values about the pixels surrounding the keypoint (e.g., intensity).

The steps of visual tracking for feature-based techniques are as follows.

1. Extraction of a set of sparse features from the input images and/or the
estimated map, which can be points, edges, planes, or small areas.

2. Matching of the features of the current image with the features obtained
from the previous image, or from the estimated map (data association).

3. Motion computation and tracking, by using the matched features to
find the transformation that leads to the current camera pose.

Different state-of-the-art algorithms are used to perform feature extrac-
tion. The SIFT detector [57] is based on the Difference-of-Gaussians (DoG)
operator, and feature points are found by searching local maxima using DoG
at various scales of the images. SIFT is robustly invariant to rotations, scale,
and affine variations but its main drawback is high computational cost.
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(a) Desk image (b) SURF features

(c) FAST features (d) ORB features

Figure 2.16: Results of feature detection methods on an image taken from the Desk sequence
of the TUM Vision Dataset [65]. From top to bottom, left to right: desk image, SURF
features, FAST features, and ORB features.

The SURF detector [58] is based on the determinant of the Hessian
Matrix computed at a point (u, v) in the image, at scale σ, which is used as a
measure of the local change around the point. SURF features are invariant to
rotation and scale but they have little affine invariance, w.r.t. SIFT detectors.
The main advantage of SURF over SIFT is its low computational cost.

The FAST corner detector [59, 60] uses a circle of 16 pixels to classify
whether a candidate point p is actually a corner. If a set of N contiguous
pixels in the circle are all brighter than the intensity of candidate pixel p,
plus a threshold value t, or all darker than the intensity of candidate pixel p,
minus threshold value t, then p is classified as a corner point.

Other famous feature detectors are ORB [61], BRIEF [62], BRISK [63]
and KAZE [64]. Figure 2.16 shows some of the features detection methods
on the Desk sequence of the TUM Vision Dataset [65]. More detailed
explanations on some of the mentioned detectors are available at [66–68].

In the features matching step, the descriptors associated with all the
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Figure 2.17: Re-projection error of point X̂ using the camera parameters. The location
of the measured 2D point x lies at a certain distance from the re-projection of the
corresponding 3D point X̂ , which is x̂. This distance represents the re-projection error.

extracted features from consecutive images (or from the current image and
the estimated map) are confronted and matched. The simplest way to match
features between two images is to compare all descriptors in the first image to
all other feature descriptors in the second image using a similarity measure.

The pose corresponding to the current image is calculated through differ-
ent methods. One of them is the RANSAC [69, 70], an iterative algorithm
used to estimate the parameters of a model such that they best fit a set of
data corrupted by many outliers. Another technique consists in minimizing
the re-projection errors of the features, represented in Figure 2.17.

The re-projection error is a geometric error corresponding to the distance
between a projected point and a measured one. Let P be the projection
matrix of a camera and x̂ the image projection of an estimated point X̂ . The
re-projection error of X̂ is given by d(x, x̂), which is the distance between
the image projection of the measured point x in the image, and x̂.

Features are extracted from two images, Ii and Ij , and matched, obtaining
pairs of imperfect 2D-to-2D correspondences. The problem of finding
the transformation between the poses corresponding to Ii and Ij can be
formulated as follows. The goal is to find a homography Ĥ that transforms
the features in Ii to the features in Ij , corresponding to some 3D points.

This is done by minimizing the re-projection error function, defined as:∑
i

d(xi, x̂i)
2 + d(x′

i, x̂
′
i)
2, (2.11)

where d is the re-projection error, xi and x′
i are the image locations of point

X̂ , and x̂i and x̂′
i are the image points obtained by re-projecting X̂ using the
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estimated camera extrinsic parameters, i.e., its rotation and translation.
Feature-based methods have many disadvantages. The first is that storing

the processed features can quickly become very costly. However, since this
method eliminates all data that cannot be used (non-features), it is typically
faster than direct methods. Then, it is difficult to extract features in poorly
textured environments, leading to mandatory re-localization, which degrades
visual SLAM performance. Lastly, feature-based methods usually originate
sparse maps, making 3D reconstructions harder to obtain.

SLAM systems that exploit visual features can be further classified into
filter-based and keyframe-based. Filter-based SLAM systems fuse measure-
ments from all images sequentially by updating probability distributions
over features and camera pose parameters. Localization and mapping are
intertwined: the camera pose, with the entire state of all features in the map,
are tightly joined and need to be updated at every processed image.

On the other hand, in keyframe-based SLAM systems, localization, and
mapping are separated into two steps: the first takes place on consecutive
images over a subset of the map, while the optimization takes place only on
keyframes. As we have previously mentioned in laser SLAM 2.3, keyframes
are data structures that contain useful information for SLAM, including the
estimated pose of the robot, the corresponding input data, and so on.

Keyframes are generated during the tracking procedure, adopting at least
one of the following criteria. If a large motion (either rotation or translation)
is detected between the current input and the previous keyframe, a new
keyframe is generated. Moreover, if enough time has passed since the
creation of the last keyframe, a new one is built using the current data.
Strasdat et al. [71], compared keyframe-based methods and filter-based
methods, and found that the first has higher accuracy than the latter, under the
same computational cost condition, but they are not scalable or extendable.

PTAM (Parallel Tracking and Mapping) [54] is a known SLAM keyframe-
based method, as it marked the beginning of multi-threaded SLAM. In
PTAM, the initial map is reconstructed using the five-point algorithm [72].
Tracking and mapping are separated as two independent tasks, executed
in parallel. In the tracking thread, mapped points are re-projected onto an
image to make 2D-to-3D correspondences using texture matching.

From there, the camera poses can be computed. In the mapping thread,
scenery points are reconstructed by triangulation, at certain times, deter-
mining the 3D locations of feature points. Lastly, all keyframes, selected
depending on the spatial distance between the correspondent cameras, and
map points are adjusted using local and global bundle adjustment. The
camera re-localization algorithm [73] adopted uses a randomized tree-based
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feature classifier for searching the nearest keyframe of an input image.
Recently, an improved version of PTAM has been proposed, named S-

PTAM [74], based on stereo vision. The system defines the global reference
frame at the camera pose in the first frame of the sequence. An initial map
is then estimated by matching and triangulating salient point features in
the first stereo pair. For every consecutive image pair, the tracking thread
estimates the corresponding camera poses by minimizing the re-projection
errors between the projected map points and their image correspondences.

The system selects a subset of keyframes that is later used in a second
thread, to estimate the map at a lower rate. The map points are triangulated
from the stereo matches of each keyframe and added to the map. The
mapping thread is constantly minimizing the local re-projection error by
refining all the map points and the stereo poses using bundle adjustment.

The global consistency is enforced by modeling the SLAM process as
a graph. Point correspondences are actively searched between keyframes
in order to strengthen the constraints of such graph. S-PTAM runs a loop
closure detection in a third thread, which searches for loop closure candidates
using the visual appearance of features. The relative motions of loop closures
are added to the graph, which is optimized to accommodate such constraints.

ORB-SLAM [52] is another feature-based system that uses and improves
the PTAM framework in multiple ways. ORB-SLAM uses ORB [61] features
rather than FAST [59,60] corners, which have better angle invariance. ORB-
SLAM adds a loop closing mechanism to eliminate error accumulation and
it selects keyframes in a different, more refined, way.

Later, the same author proposed the ORB-SLAM2 algorithm [53], which
increases the support for stereo cameras and RGB-D cameras (similarly to
S-PTAM [74], where a stereo configuration is supported), although the latter
case is part of the sensor fusion SLAM category (and not purely visual).

Very recently, the system evolved in ORB-SLAM3 [75] (Figure 2.18).
The first main novelty of the method is a feature-based tightly-integrated
visual-inertial SLAM system that fully relies on Maximum-a-Posteriori
(MAP) estimation, even during the IMU initialization phase. The result is
a system that operates in real-time, in small and large, indoor and outdoor
scenarios, and is two to ten times more accurate than previous approaches.

The second novelty is a multiple map system that relies on a new place
recognition method with improved recall. Thanks to it, ORB-SLAM3 is able
to survive long periods of poor visual information: when it gets lost, it starts a
new map that will be seamlessly merged with previous maps when revisiting
mapped areas. Compared with visual odometry systems that only use
information from the last few seconds, ORB-SLAM3 is the first system able
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Figure 2.18: System architecture of ORB-SLAM3 [75].

to reuse, in all the algorithm stages, all previous information. This allows
to include in bundle adjustment co-visible keyframes, that provide high
parallax observations boosting accuracy, even if they are widely separated
in time or if they come from a previous mapping session.

Linyan et al., recently proposed Semantic Optical Flow SLAM (SOF-
SLAM) [76], a visual semantic system toward dynamic environments, which
is built on the RGB-D mode of ORB-SLAM2. The system utilizes the
complementary characteristic of motion prior information, from semantic
segmentation of images, and motion detection information, from epipolar
constraints, proposing a new algorithm named semantic optical flow.

In this way, SOF-SLAM can remove dynamic features effectively, leading
to more accurate results when estimating the camera poses. Figure 2.19
represents the overall architecture of SOF-SLAM. One can immediately
notice the similarities with ORB-SLAM3, by comparing Figure 2.19 and
Figure 2.18. This must not be a surprise, since they are both built on ORB-
SLAM2, which is considered state-of-the-art in feature-based visual SLAM
systems and the majority of recent works rely on its architecture.
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Figure 2.19: System architecture of SOF-SLAM [76]. Similarities with the architecture of
ORB-SLAM2 [53] are noticeable.

Other methods, such as SPM-SLAM [77] and its successor UcoSLAM
[78], solve some of the limitations of standard visual SLAM systems, such
as unknown map scale, failure when the movement is only rotational and
the need of rich textured environments, by using squared fiducial markers
(squared patterns with a unique ID) instead of natural features.

Markers are freely placed in the environment and the two methods are
able to create a map of them. Camera localization can be done in the
correct scale by observing a single marker. The main drawback of these
systems is that they require the physical placement of a lot of elements in the
environment, in order to build the map. UcoSLAM, however, can perform
well using markers only, feature points only, or even a combination of both.

Direct visual odometry

Direct methods, also known as featureless approaches, use all image pixels
(dense approach [55]), pixels with sufficiently large intensity gradient (semi-
dense approach [46]) or sparsely selected pixels (sparse approach [56, 79,
80]) to minimize the photometric error obtained by direct alignment of the
selected pixels, estimating camera poses and pixel depths.

In other words, direct algorithms minimize the per-pixel intensity dif-
ference. Given two images, Ii and Ij , the corresponding motion Ti,j is
computed as:

Ti,j = argmin
T

∑
i

||Ij(u′
i)− Ii(ui)||2 (2.12)

u′
i = P (T · (P−1(ui) · di), (2.13)
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Figure 2.20: Photometric error minimization scheme. Pixels/regions in the left image k− 1
correspond to space points located at certain depths, which are re-projected in the right
image k. The intensity difference between the original and re-projected elements is the
photometric error of the 2D points.

where P is the camera projection matrix, ui is the pixel in image Ii and u′
i is

the corresponding pixel in image Ij , obtained through the re-projection of
the 3D point corresponding to ui and located at space depth di.

The scheme for photometric error minimization is represented in Fig-
ure 2.20. It is important to notice that, instead of a pixel-by-pixel, another
approach is to consider small image regions, as represented in the figure.

Different from feature-based methods, direct approaches are more robust
in low-texture scenes and can deliver dense maps. However, they suffer
from illumination changes, which reduce their performance.

In DTAM [55], tracking is done by reducing the photometric error be-
tween the current image and multiple synthetic images generated from the
estimated map, whose initial creation is done similarly to PTAM [54], using
a stereo measurement. Depth information is then estimated for every pixel
by using multi-baseline stereo [81], and then, it is optimized by considering
space continuity. DTAM is robust to feature deletion and image blur, but it
cannot achieve real-time computation without a GPU.

Semi-direct Visual Odometry (SVO) [79] is a hybrid method combining
the feature-based approach and the direct technique. As PTAM [54], track-
ing and mapping are separated into two threads. In the tracking thread, the
motion between two consecutive images is obtained by minimizing the pho-
tometric errors. Mapping is then performed by minimizing the re-projection
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Figure 2.21: High-level system architecture of LSD-SLAM [46].

error between the obtained feature points and predicting their optimized
positions in the images. SVO can be seen as a sparse version of DTAM.

In a more recent work, Engel et al. proposed the Direct Sparse Odometry
(DSO) method [56]. Different from SVO, DSO is a completely direct
approach. The front-end of DSO tracks the camera pose by matching the
current frame and the keyframe, which is the same as for feature-based
SLAM systems, by minimizing the photometric errors. In order to suppress
the accumulated error, DSO removes error factors as much as possible, from
geometric and photometric perspectives, by proposing a photometric camera
calibration method. Later, a stereo version of DSO has been proposed [82].

LSD-SLAM [46] is part of the state-of-the-art in direct methods. The idea
of LSD-SLAM follows the working principle of SVO. First, random values
are set as initial depths for each pixel in the image. Then, camera motion is
estimated by synthetic view generation from the reconstructed map.

Reconstructed areas of the maps are limited to high-intensity gradient
areas in the images. Lastly, global optimization is employed to obtain a geo-
metrically consistent map. The architecture of LSD-SLAM is represented in
Figure 2.21. LSD-SLAM was born as a monocular SLAM system but has
been later extended to stereo and omnidirectional cameras [83, 84].

A recent work based on DVO, named VI-DVO [85], integrates cameras
with IMU measurements. Camera poses and sparse scene geometry are
jointly estimated by minimizing photometric and IMU errors in a combined
energy function. The visual part of the system performs bundle adjustment
as optimization on a sparse set of points, but unlike feature-based systems,
it directly minimizes the photometric error between consecutive images.

This makes it possible for the system to track not only corners but any
pixels with large enough intensity gradients. IMU information is accu-
mulated between several frames using measurement pre-integration and is
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inserted into the optimization as an additional constraint between keyframes.
VI-DVO performs partial marginalization of old variables (e.g., poses) so
that updates can be computed in a reasonable time.

2.4.2 Classification based on camera type

Cameras are cheaper w.r.t. other sensors, have low weight, small size, and
provide rich information about the scene. They can be divided into multiple
categories [86], including monocular configuration, where only one camera
is used to collect images, stereo configuration, where two cameras placed
nearby simultaneously gather pairs of pictures, and RGB-D sensors, which
collects images enriched by depth values for each pixel.

In monocular SLAM, a single camera, usually having 6 DoF (degrees of
freedom), is the sole input sensor of the system. While range sensors, such
as LiDAR, provide range and angular information, cameras are projective
sensors, which measure the location of image features. For this reason,
depth information cannot be obtained through points from a single image
and requires multiple consecutive views. Examples of monocular SLAM
systems are Mono-SLAM [87], PTAM [54], ORB-SLAM [52] and DSM [88].

A stereo camera consists of two synchronized monocular cameras, placed
at a known distance from each other, the baseline. Since the physical
distance of the baseline is available, the 3D position of each pixel can be
found by performing a simple triangulation. A stereo camera setup is usually
computationally expensive in the estimation of the depth for each pixel.

The depth range measured is related to the baseline length, and the longer
a baseline is, the farther it can measure with a given accuracy. For this reason,
stereo cameras mounted on robots have often a large size (the whole setup)
but can be applied without the need for other sensors. The disadvantage of
such a setup is, as already stated, the complexity of its configuration, the
noticeable computational cost, and the low accuracy of the estimated depths.

There are two main advantages of using a stereo configuration for visual
SLAM. First, stereo avoids scale ambiguity, inherent in monocular visual
SLAM, especially during the beginning of the SLAM process, when little
information of the environment is known. Second, there is no need for tricky
initialization procedures of the map, since a stereo pair of images gives an
estimate of the depth of points. Examples of stereo SLAM systems are
LSD-SLAM [46, 83], SVO [80], ORB-SLAM2 [53] and ProSLAM [89].

Lastly, an RGB-D camera, also known as depth camera, shares both
the characteristics of a monocular camera and a laser scanner, providing
an RGB image along with the depth of each pixel of the image, visible in
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Figure 2.22: Example of RGB-D image: the colored image on the left is associated with a
depth image containing the depth values of each of its pixels, on the right.

Figure 2.22. Relying on the infrared structure of light and Time-of-Flight
principles, it is able to measure the distance between itself and an object by
emitting light and receiving it back after having encountered a surface.

Differently from a stereo camera, the computation of the depth is not done
by code, but by the sensor itself, greatly reducing the cost and showing an
advantage over a stereo setup. However, depth cameras have many disadvan-
tages. The gathered data is often noisy, cannot measure transparent objects,
and is heavily influenced by sunlight. Moreover, the small field of view and
measurement range limit depth cameras to indoor environments, making
them not suited for outdoor applications (e.g. urban autonomous driving).
Generally, RGB-D sensors are mainly used for indoor environments, as their
technology limits their range from 1 to 4 meters.

By using RGB-D cameras, the 3D structure of the environment, along
with its texture, can be obtained directly. In addition, different from monoc-
ular visual SLAM algorithms and similar to the stereo case, the scale of the
coordinate system is known because the 3D structure can be acquired.

The basic framework of depth-based visual SLAM is as follows. Pose
tracking is achieved by minimizing both geometric and photometric errors,
with the aid of a scan matching algorithm (because the depth information is
similar to the measurements of laser sensors). Then, the 3D structure of the
environment is reconstructed by combining multiple depth maps.

Newcombe et al. proposed KinectFution [90], in 2011. In KinectFusion,
a voxel grid is used for representing the 3D structure of the environment.
This is reconstructed by combining obtained depth maps in the voxel space.
Camera motion is estimated by matching the computed map and the input
depth image. KinectFusion is implemented on GPU to achieve real-time.

Salas-Moreno et al. proposed an object-level RGB-D Visual SLAM
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algorithm, named SLAM++ [91]. In this method, several 3D objects are
registered in the database in advance, and these objects are later recognized
in an online process. In this way, the estimated map is continuously refined,
and 3D points are replaced by 3D objects to reduce the amount of data.
Lastly, Schops et al. [92] proposed an RGB-D-based variant of bundle
adjustment for SLAM systems, included in their system, BAD-SLAM.

An extensive evaluation of RGB-D SLAM systems has been recently
presented by Zhang et al. [93]. With their work, they mainly introduced
the basic concept and structure of a typical RGB-D SLAM system and then
discussed the differences, and open problems, between the various RGB-
D SLAM methods existing in literature, distinguishing them by tracking,
mapping, and loop detection. In the end, the authors conducted a large
number of evaluation experiments on multiple RGB-D SLAM algorithms
and analyzed their advantages and disadvantages, as well as performance
differences in different application scenarios (e.g., indoor).

2.5 Radar SLAM

Radar, which is the acronym for radio detection and ranging, is a sensor
that exploits radio waves to determine the velocity, range, and angle of
surrounding objects w.r.t. itself. Radars are long-range active sensors,
which are immune to poor weather conditions and can operate in low-
texture environments, making them preferable over laser rangefinders or
even cameras in these situations. For these reasons, various approaches have
been proposed in the literature to estimate the ego-motion of ground and
aerial vehicles based solely on radar measurements.

Radar sensors are available in two forms: pulse and continuous wave
(CW). A pulse radar sensor emits short and powerful pulses and receives
echoing signals during silent periods. CW radars, and in particular frequency-
modulated continuous wave (FMCW) radars, transmit a steady stream of
continuous wave signals, of a frequency that varies linearly with time. The
main difference between the two is that a continuous wave radar can generate
high-resolution images, while pulse sensors suffer from blind spots.

In particular, continuous wave radars have attracted a lot of attention in
the fields of localization and object avoidance due to their characteristics,
such as low power consumption, their usability in different weathers, and,
more importantly, their minimum target range and maximum distance.

Radar sensors can be further categorized into automotive and scanning,
depending on the working principle of their underlying hardware (Fig-
ure 2.23). With Doppler information, automotive radars offer radial velocity
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Figure 2.23: On the left, an image obtained from a scanning sensor; on the right, a 2D
point cloud derived from an automotive radar. The difference in density is noticeable.

measurements. However, these data are with relatively low accuracy and are
sparse, since only highly confident measurements are output. In contrast,
scanning radars provide raw polar power-range images (i.e., images with
each row representing the sensor reading at every azimuth and each column
representing the raw power return at a particular range) with relatively high
angular and range resolution. Nevertheless, radar images from scanning
radars include noise and do not provide velocity information.

An early work on odometry and mapping (not to be mistaken with
SLAM) using automotive radars is proposed by Kellner et al. [94]. They use
radial velocity measurements to estimate the ego-velocity of the robot, while
simultaneously removing outlier elements via RANSAC [69], according to
the radial velocity of each 2D point estimated with the radar.

From there, new methods directly extracted point clouds from sensor
data, to be later matched using associated descriptors (i.e., combining the
ideas of visual and laser methods). Some examples are given by [95], which
adopts Binary Annular Statistical Descriptor (BASD) visual descriptors, or
the work in [96], which performs scan matching using ICP.

Rapp et al. [97, 98] later applied joint Doppler clustering-based NDT,
which weights each radar point by the similarity between the measured
and estimated velocities, removing outliers. Nevertheless, radar odometry
methods based on cloud matching could fail when the set of points extracted
from a radar input is too sparse, which is typical of automotive radars.

Recently, Holder et al. [99] proposed a system based on radar submaps,
i.e., a combination of several radar scans. These are used to handle the
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sparseness issue mentioned above, and tracking is performed via submap-to-
submap matching, using ICP. However, this method does not consider the
uncertainty of ego-motion, which influences the readings of the used sensor.

To avoid the sparsity issues of automotive radars seen before, researchers
shifted their focus to the use of scanning sensors, which offer detailed
power-range images. Earlier works leveraged constant false alarm rate
(CFAR) [100] to extract features and associate them by minimizing a cost
function defined by the distortion model of the scanning radar [101].

Later, vision-inspired works, such as [102,103], exploited feature extrac-
tors and descriptors directly on radar images. Cen et al. [104, 105] proposed
a new feature extraction approach (along with an update) and a descriptor for
radar odometry, and used a shape similarity metric to remove outliers. More
recently, the work in [106], also known as YETI radar odometry, included
motion distortion and Doppler effect correction in their proposed pipeline.

Up to this point, one may have noticed that almost all works in literature
are odometry and mapping methods, and not SLAM systems. The main rea-
son is that loop detection using radars is inherently difficult (independently
of the type of the sensor). Using a feature-based approach is out of the
question, for the following reasons. First, radar images have less distinctive
characteristics on pixels compared with camera images, which means similar
feature descriptors can be repeated widely across radar images.

Second, the multi-path reflection problem in radar can introduce ambigu-
ity for the feature descriptor. Lastly, a small rotation of the radar sensor may
produce tremendous scene changes, significantly distorting the histogram
distribution of the descriptors. On the other hand, directly performing
point cloud alignment on clouds extracted from radar images does not yield
accurate results, being the scans cluttered with noisy elements and outliers.

Holder et al. [99] presented a real-time pose graph-based SLAM system
for automotive radars. In particular, loop closure is achieved by applying
a technique for place recognition, originally thought for 2D LiDAR point
clouds, to radar scans. In order to find the transformation between a candi-
date pair of submaps, a variant of RANSAC is applied, to find the largest set
of feature correspondences. The transformations of the remaining pairs are
then refined using their full point clouds for ICP matching.

2.6 Hybrid SLAM

Both visual and laser SLAM have advantages and disadvantages. Visual
SLAM systems are easier to set up; plenty of algorithms have been developed
to implement them in accurate and efficient ways; loop closure can be
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performed with better performance; and input data can be efficiently stored.
However, they require ad-hoc techniques to reduce the errors introduced
by visual odometry, and the environment is usually represented as a sparse
set of features, not suitable for 3D reconstruction. Moreover, input sensor
measurements are highly affected by changes in illumination and view.

Laser SLAM solves many of these problems because LiDAR scans
that are used for registration and map creation, output structures richer of
information w.r.t. simple images and suitable for reconstruction, as they are
dense representations of the environment. Laser SLAM technology needs to
overcome the problems of large computation and motion distortion effects.

To get the best from both worlds, multi-sensor SLAM systems have
been proposed in the last decade, becoming the trend in SLAM. Thanks to
the advancement of technology, the decreasing prices and the standards in
sensor configuration have been a huge impact factor on the development of
SLAM systems, and multiple sensors are no longer seen as a limitation.

Due to the great variety of multi-sensor SLAM systems proposed in
recent years, instead of describing the various steps and classifications of
the architectures, as done for visual and laser SLAM, in this section only a
few works are outlined in detail, to highlight the adopted methods and the
way sensor data is used together to achieve accurate results.

2.6.1 ElasticFusion

The approach used by ElasticFusion [107, 108], whose architecture is rep-
resented in Figure 2.24, is grounded in estimating a dense 3D map of an
environment, explored with a standard RGB-D camera, in real-time. As
RGB-D cameras provide both visual information (RGB images) and depth
information (depth image), systems built upon them are considered as multi-
sensor systems. The key elements of ElasticFusion are as follows.

1. Estimation of a fused surfel-based model of the environment, divided
into active and inactive parts, depending on their location.

2. Tracking and fusion of input data.

3. Detection of local loops, at every time step, by searching for common
elements in the map.

4. For global loops, inclusion of predicted synthetic views of the scene to
a randomized encoding database to find a matching predicted view.

Figure 2.25 provides an example visualization of the outlined main steps
of ElasticFusion. Initially, all data is in the active model as the camera
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Figure 2.24: Complete system architecture of ElasticFusion [107, 108].

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 2.25: Visualization of the different steps of ElasticFusion [107, 108].

moves left (Figure 2.25a). As time goes on, the area of the map not seen
recently is set to inactive, highlighted in red (Figure 2.25b).

Then, the camera revisits the inactive area of the map, closing a local
loop and registering the surfaces together (Figure 2.25c). The previously
highlighted inactive region then becomes active (Figure 2.25d). Camera
exploration continues to the right and more loops are closed, continuing to
new areas (Figure 2.25e), repeating the whole deactivation procedure.

Following this, the camera revisits an inactive area (Figure 2.25f) but
has drifted too far for a local loop: the misalignment is apparent, with red
arrows visualizing equivalent points from active to inactive (Figure 2.25g).
For this reason, a global loop detection is triggered, which aligns the active
and inactive models (Figure 2.25h). The exploration continues as more local
loops are made and inactive areas are reactivated (Figure 2.25i). Lastly, the
final full map, colored with surface normals, is computed (Figure 2.25j).
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The scene is represented as a set M of surfels, data structures having
the following attributes: a position p ∈ ℜ3, a normal n ∈ ℜ3, an RGB
color c ∈ N3, a weight w ∈ ℜ, a radius r ∈ ℜ, the initialization timestamp
t0 and the last updated timestamp t. The radius of each surfel is intended
to represent the local surface area around a given point while minimizing
visible holes. A surfel in M is declared inactive when the time since it was
last updated (i.e., had a raw depth used for fusion) is greater than δt.

The way sensor fusion is achieved consists in combining the pose tracking
obtained from images and from depth information. The goal is to minimize
the joint cost function:

Etracking = Eicp + wrgbErgb. (2.14)

Eicp corresponds to the point-to-plane error between 3D re-projected points
from the predicted active surfel model of the last input and the current
depth map. Ergb corresponds to the per-pixel photometric error between the
current color image and the predicted active model color of the last input.
The joint cost function is minimized using the Gauss-Newton non-linear
least squares method with a three-level coarse-to-fine pyramid scheme.

2.6.2 Visual LiDAR SLAM

Visual LiDAR SLAM [109], abbreviated as VL-SLAM, is a laser SLAM
algorithm that integrates visual information from images. It is composed of
a LiDAR odometry estimator, a pose graph optimization back-end, and a
set of loop detection and closure modules based on visual recognition. Its
architecture is represented in the block scheme of Figure 2.26.

LOAM [30] is chosen as the laser odometry estimator, mainly due to its
real-time capabilities. Even though it has a tendency to drift in challenging
environments, it still exhibits a level of accuracy and efficiency superior to
other algorithms of the same type. To mitigate the drift problem, an online
pose optimization back-end has the purpose of building a graph of poses
with the output from LOAM. Moreover, the back-end periodically queries a
place recognition module to search for loops, which are added as edges to
the pose graph. On every iteration, the trajectory of the robot is optimized
by non-linear least squares, and the LOAM odometry estimate is corrected.

The pose optimization module of VL-SLAM keeps a collection of N
keyframes K. Every keyframe Ki is associated with a timestamp ti, a pose
estimate Pi, a point cloud Ci, a node in the pose graph xi and an image
Fi. Both the pose and the cloud are outputs of LOAM and share the same
timestamp. Images might arrive at different moments in time w.r.t. the
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Figure 2.26: High-level system architecture of Visual LiDAR SLAM [109].

measured odometry, and for this reason, they are associated with the latest
keyframe created, if it is not already associated with an image.

In order to detect loops in the trajectory, VL-SLAM integrates three
different approaches for place recognition. One module, which matches
point clouds, takes the latest keyframe captured Ki as a reference for place
recognition. Then, previously captured keyframes Ki−1

0 are considered part
of the set of candidates S for matching if they satisfy multiple conditions.

The first condition is if keyframe Kj is within a fixed distance Dr from
Ki. The second condition is if the distance along the robot path between
both keyframes is higher than a threshold Da. The last check is if they are at
a certain distance Dl from the latest keyframe involved in a loop closure.

If a keyframe has an image frame F associated with it, FAST corners [59,
60] are extracted from the image, and ORB [61] descriptors are used to
represent them. Then, a visual bag of words representation is constructed.

When searching for loops, the visual bag of words description allows the
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system to identify which keyframes are most likely to be similar. Then, a
geometric consistency check is performed, by running a nearest neighbor
search between the feature points, and assessing if the proportion of matches
within a certain distance is less than a percentage (Lowe’s ratio test [57]).

Lastly, both the Euclidean and smoothness-based region growing seg-
menters, belonging to SegMatch [110, 111], are used by VL-SLAM for
localization. SegMatch is constantly fed with point clouds from the newest
keyframes created by VL-SLAM. It runs in a concurrent thread, and once a
loop is detected, it adds a corresponding constraint to the pose graph.

2.6.3 DVL-SLAM

DVL-SLAM [112] is a visual SLAM system that combines the sparse depth
measurements of LiDAR sensors with the intensity of camera images and
utilizes the direct matching method, as described in Section 2.4.

Only sparse depth measurements are available from the LiDAR, as they
are trimmed to be overlapped on the field of view of the camera. Although
these sparse measurements can be associated with visual features to perform
feature-based visual SLAM, their utility is diminished by the lack of mean-
ingful information in blurred images, needed to compute the corresponding
descriptors. For this reason, the direct approach is selected as an effective
method for handling sparse depth measurements with the images.

In addition, direct SLAM is known to provide more accurate motion
estimation results in low-resolution cameras. However, the narrow field
of view of sparse 3D LiDAR remains an issue, as it only allows for an
association of depth and image in the partial image region. To overcome
this limitation, the depth of neighboring frames is integrated into keyframes,
and motion estimation is performed using multiple keyframes.

DVL-SLAM consists of a front-end and a back-end similar to the general
SLAM approaches. The input of the algorithm is sequential image data and
sequential LiDAR scans. Given an image with an associated sparse depth,
only the image is used for the tracking process. Then the module takes a
point sampling strategy for fast and robust motion estimation. The front-end
focuses on accurate motion estimation using windowed optimization and
data association for loop-closing. The associated data received from the
front-end is used for global pose graph optimization in the back-end.

The description of each part of the system, represented in Figure 2.27 is
as follows. The visual odometry (VO) module performs the tracking process
for fast motion estimation without visual features. The initial motion is
estimated using only a small number of sampled points, named salient
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Figure 2.27: High-level view system architecture of DVL-SLAM [112].

points, which are directly tracked by the intensity in the image domain.
Tracking occurs at a fast rate, without requiring feature extraction and

matching. In addition, using only LiDAR-associated points eliminates the
triangulation phase, typical of visual SLAM, to estimate the depth. This
simplicity benefits the various SLAM systems with cameras and LiDAR.

Once the tracking process has been successfully performed, the current
frame is added to a sliding window that performs local optimization followed
by optimization to improve local accuracy within the window. The window
consists of Nw keyframes, and each keyframe has its image and point cloud.
A point pk in a keyframe is projected into all keyframes with covisibility.

Photometric residuals are then calculated between the patch at the existing
point and the other patch at a projected point. Figure 2.28 shows this
procedure. This refinement allows the motion from the tracking process to
maintain the low drift. The oldest frames exceeding a user-defined number
are marginalized and fed into the back-end pose graph.

The final component of the front-end is the place recognition module,
i.e., the loop detector. This module confirms whether the position of a
marginalized keyframe is revisited and then integrates depth information
from adjacent frames to perform a two-view alignment. Lastly, the back-end
module optimizes the global pose graph, including the current motion and
the loop constraints provided by the front-end.

2.7 SLAM in dynamic environments

Environments in the real world include static elements, short-term changes,
such as moving cars, and long-term changes, similar to those caused by the
passing of seasons or the change from day to night. Dynamic environments,
i.e., environments that are characterized by the presence of dynamic ele-
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Figure 2.28: Window-based local optimization used by DVL-SLAM [112]. Gray dots
represent the point cloud and rectangles describe images. A point in a keyframe is
projected into all keyframes with covisibility. Photometric residuals are then calculated
between the patch at the existing point and the other patch at a projected point.

ments, pose multiple challenges to the different modules of SLAM, including
data association, pose estimation, loop detection, and map construction.

The standard approach adopted to solve SLAM in dynamic environments
is to identify, track and elaborate (or even remove) the dynamic elements of
the scene. Removing moving objects in the environment can benefit the pose
estimation process, as it minimizes the error of both short and long-term
data association. There are many works in the literature on dynamic object
detection and tracking, based on prior information combined with visual or
laser features, often including the usage of deep learning, and they can be
classified into geometric-based and segmentation-based approaches.

2.7.1 Geometric-based approaches

Geometric-based methods for dynamic SLAM rely on the properties of
data and sensors to directly identify moving elements in the scene. When
considering laser scans, algorithms can be further divided into visibility-
based and voxel-based. The visibility-based methods identify dynamic
points in the scan by checking whether the laser elements (i.e., 3D points)
are occluded on the corresponding optical path.

Xiao et al. [113] proposed a local cylindrical reference frame for in-
terpolating occupancy between rays, to solve irregular point densities and
occlusions. The occupancy of the reference point cloud is fused at the
location of target points and then the consistency is evaluated directly on
those. Lastly, a point-to-triangle (PTT) distance-based method is combined
to improve the occupancy-based algorithm proposed in the work.
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Qian et al. [114] presented RF-LIO, which builds on LIO-SAM [115].
The method adds adaptive multi-resolution range images and uses tightly-
coupled LiDAR inertial odometry to first remove moving objects, and then
match LiDAR scan to the currently active submap. Thus, it can obtain
accurate poses even in highly dynamic environments. However, RF-LIO is
sensitive to pose accuracy and image resolution. Considering the angle error,
ranging error, and light spot effect of LiDAR frames, false deletion of scan
points may also become a serious issue, influencing the overall accuracy.

Kim and Kim [116] proposed some tricks to solve the occlusion problem.
They developed Removert, a multi-resolution range image-based false pre-
diction reverting algorithm. First, definite static points are conservatively
retained. Then, more uncertain static points are iteratively recovered by en-
larging the scan-to-existing map association window size, which implicitly
compensates for the LiDAR motion or registration errors. However, some
large moving objects may block the LiDAR beams and the static points
behind the dynamic points cannot be observed, which makes it difficult to
remove these types of dynamic points even with this method.

Voxel-based methods, instead, maintain the map in a probabilistic way
and they require preserving a large voxel map, which can consume a lot of
memory and computing resources. For example, Dewan et al. [117] used
object detection and a new voxel traversal method to speed up the process
of building an occupancy map, enabling real-time dynamic object removal.
However, the premise of using these methods is to have accurate localization,
which cannot be achieved before removing dynamic objects.

Aside from LiDAR-based methods for geometric object detection, RGB-
D data has been widely used in the field, thanks to the color and depth
information embedded in each datum. Li et al. [118] proposed a real-time
depth edge-based RGB-D SLAM system for dynamic environments based
on frame-to-keyframe registration. To reduce the influence of dynamic
objects, they adopted a static weighting method for edge points in keyframes.
Static weight indicates the likelihood of one point being part of the static
environment. This static weight is lastly added to the intensity-assisted
iterative closest point method to perform the registration task.

Sun et al. [119] classify pixels using the segmentation of the quantized
depth image and calculate the difference in intensity between consecutive
RGB images. Tan et al. [120] proposed a novel online keyframe representa-
tion and updating method to adaptively model dynamic environments. The
camera pose can reliably be estimated even in challenging situations using a
prior-based adaptive RANSAC algorithm to efficiently remove outliers.

Although the geometric-based solution in dynamic environments can
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restrict the effect of moving objects to some extent, there are some limi-
tations, as these methods cannot detect the potential dynamic objects that
temporarily remain static (e.g., chairs in a room or parked vehicles) and they
lack the ability to detect true object-level semantic information.

2.7.2 Segmentation-based approaches

State-of-the-art methods for dynamic object detection rely on deep learning
methods, which perform both object detection and semantic segmentation,
information that is missing in geometric-based systems. More works have
been developed in indoor environments than in outdoor scenarios, with RGB-
D sensors used as the dominant sensor. Based on the semantic segmentation
of RGB images and the combination of depth images, RGB-D sensors can
achieve more accurate detection and tracking of dynamic objects in SLAM.

DS-SLAM [121], implemented on ORB-SLAM2 [53], combines a se-
mantic segmentation network (SegNet [122]) with a moving consistency
check to reduce the impact of dynamic objects and produce a dense semantic
octree map [123]. DS-SLAM assumes that the feature points on the people,
considered dynamic objects in the scene, are most likely to be outliers. If,
however, a person is determined to be static, then matching points on the
person can also be used to predict the pose of the camera.

DynaSLAM [124] combines Mask R-CNN and ORB-SLAM2 to achieve
visual SLAM in dynamic environments; however, this method eliminates
all moving objects (such as cars parked on the roadside), which may lead
to errors in data association. The method can detect moving objects either
by multi-view geometry, deep learning, or both, and inpaint the frame
background that has been occluded by dynamic objects using a static map
of the scene. It uses Mask R-CNN to segment out all the priori dynamic
objects, such as people or vehicles. DynaSLAM II [125] tightly integrates
the multi-object tracking capability. But this method only works for rigid
objects (differently from people, as they may assume different poses).

Dynamic-SLAM [126] proposed a missed detection compensation algo-
rithm and selective tracking method to improve pose estimation.

SuMa++ [127] uses semantic segmentation results as constraints to im-
prove the ICP algorithm to achieve LiDAR-based SLAM in dynamic en-
vironments; the semantic information of the image is used to assist pose
correction to achieve point cloud registration [128], and a feature map is
constructed by extracting simple semantic features from point clouds.

Detect-SLAM [129], another system derived from ORB-SLAM2, in-
tegrates visual SLAM with a single-shot multi-box detector (SSD) [130].
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The probability of a feature point belonging to a moving object is called
moving probability. A visual keypoint can be divided into four states:
high-confidence static, low-confidence static, low-confidence dynamic, and
high-confidence dynamic. Considering the delay of detection and the spa-
tiotemporal consistency of successive frames, only the RGB values of the
images associated with keyframes are employed for detection. Once the
result is obtained, a keyframe is inserted into the local map, updating the
moving probability of its 3D points that matched with the keyframe.

SOF-SLAM [76], previously described in Section 2.4, is yet another
visual semantic SLAM built on only the RGB-D mode of ORB-SLAM2. In
the paper, a new dynamic features detection approach is proposed, which
can fully take advantage of the dynamic characteristics of features. The
pixel-wise semantic segmentation results generated by SegNet [122] serve as
a mask in the developed semantic optical flow to get a reliable fundamental
matrix, which is then used to filter out the truly dynamic features. Only the
remaining static features are lastly reserved in the tracking and optimization
modules, to achieve accurate camera pose estimation.

DM-SLAM [131] combines Mask R-CNN, optical flow, and epipolar
constraint to judge outliers. The Ego-motion Estimation module estimates
the initial pose of the camera. Fan et al. [132] proposed a novel semantic
SLAM system with a more accurate point cloud map generation in dynamic
environments, relying on BlizNet [133] to obtain the masks and bounding
boxes of the dynamic objects in the image.

In general, the majority of segmentation-based methods wait for the
semantic results of every frame, or keyframe, before estimating the camera
pose. To solve this issue, Liu and Miura proposed RDS-SLAM [134], a real-
time visual dynamic SLAM algorithm that is built on ORB-SLAM3 [75] and
adds a semantic thread and a semantic-based optimization thread for robust
tracking and mapping. These novel threads run in parallel with the others,
and therefore the tracking thread does not need to wait for the semantic
information anymore. Semantic information is updated and propagated
using the moving probability, which is saved in the map and used to remove
outliers from tracking using a data association algorithm.
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CHAPTER3
ART-SLAM: Accurate Real-Time 3D LiDAR

SLAM and Localization

In Section 2.3 we described the main approaches presented in literature
over the last decades. Overall, existing methods can be distinguished in
feature-based and full point cloud-based algorithms, depending on the way
motion tracking is performed. Feature-based SLAM systems are fast, but
they often lack accuracy over long trajectories. On the other hand, full point
cloud-based methods show the opposite properties, being extremely accurate,
but not usable for online SLAM (i.e., they do not work in real-time).

Moreover, the majority of works only deal with simultaneous localization
and mapping, not considering the case in which a map is already available,
which is known as just localization. With the goal of improving the state-of-
the-art, we developed an accurate, real-time laser system, ART-SLAM [1],
and extended it with modules able to perform also only localization.

In Section 3.1 we describe ART-SLAM, showing also the improvements
w.r.t. what exists in literature, to which it is compared. Follows Section 3.2,
in which the localization module of ART-SLAM, named ART-SLAM LOC,
is briefly explained, together with a thorough comparison with state-of-the-
art methods that perform both SLAM and localization.

59



Chapter 3. ART-SLAM: Accurate Real-Time 3D LiDAR SLAM and Localization

3.1 ART-SLAM

Trajectory estimation and map building represent core aspects of many
applications in robotics, such as autonomous driving. A great amount of
simultaneous localization and mapping (SLAM) systems with 6 degrees-of-
freedom (6 DoF) have been proposed in the literature in the last decades,
some of them described in Section 2.2, with the goal of estimating accurate
trajectories in real-time. These methods can be grouped into vision-based
and point cloud-based systems, depending on the main sensor used, with the
latter preferable because of their overall greater accuracy and usability in
different environments (e.g., changing illumination or weather).

All point cloud-based algorithms available in literature either achieve
high accuracy at the cost of computational time or sacrifice the quality of
the trajectory to obtain real-time performance. Furthermore, these systems
are monolithic and difficult to modify and adapt, and they are usually bound
to some existing framework (e.g., ROS [135]), often hindering portability
on different operating systems and integrability with other software. Nev-
ertheless, systems which fully exploit LiDAR scans are preferable, as the
maps (or submaps) created can be used to efficiently obtain accurate 3D
reconstructions of the environment, as described in [136], useful for many
applications, such as autonomous driving, virtual and augmented reality.

For these reasons, the first step of our Ph.D. program consisted in the
development of a new system, ART-SLAM [1], to perform point cloud-based
graph SLAM, inspired by HDL [28], with multiple contributions. ART-
SLAM achieves real-time performance, retaining high accuracy, even in
scenarios without loops and considering dense point clouds as input. The
proposed system is also able to efficiently detect and close loops in the
trajectory, using a three-phased algorithm. ART-SLAM presents a high
degree of modularity, due to its architecture, and can be easily integrated and
improved. Moreover, ART-SLAM is a zero-copy software, as unnecessary
data copies are avoided, e.g. the point clouds passed between modules,
keyframes, or other types of sensor data. For these reasons, ART-SLAM has
been used as the base system for all other methods developed in the thesis.

We first discuss related works in Section 3.1.1, to give a brief review of
laser SLAM methods in literature. In Section 3.1.2 we give a high-level
description of the architecture of ART-SLAM, followed by a detailed discus-
sion about all of its modules. The pre-filterer is described in Section 3.1.3,
while the motion estimation procedure is in Section 3.1.4, aided with the
pre-tracker module of Section 3.1.5. Then, details about floor and loop
detection are given in Section 3.1.6 and Section 3.1.7, respectively, with
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information about pose graph building and optimization in Section 3.1.8.
Lastly, in Section 3.1.9 and Section 3.1.10 we evaluate the system.

3.1.1 Related works

Point cloud-based algorithms can capture and represent the environment
with a high level of detail, due to the density of the clouds, and they are not
afflicted by the issues of vision-based methods, such as illumination and
viewpoint changes. Moreover, tracking performed with point clouds is more
accurate and stable than its visual counterpart, and it is generally preferred
when LiDAR data is available. However, achieving real-time performance
while keeping high accuracy, remains an open quest in point cloud-based
systems, as previously discussed in Section 2.3.

The most critical aspect that hinders real-time point-cloud SLAM is
the alignment of LiDAR scans. During the last decades, many algorithms
have been created to find the relative motion between two point clouds, an
operation also known as scan matching. The most widely used and known
methods to perform scan matching are Iterative Closest Point (ICP) [13]
and its many variants. The idea behind these algorithms is to align two
point clouds iteratively until convergence or a stopping criterion is satisfied.
Although ICP suffers from high computational cost, Generalized ICP [18]
and more recent parallel versions (e.g., VGICP [137]) are faster, more
accurate, and can be used as better alternatives than the original algorithm.

To overcome the computational shortcomings of full point cloud scan
matching, feature-based approaches have been proposed. These methods
work similarly to standard scan matching but require fewer resources. They
achieve this by extracting 3D features from the clouds, such as edges or
planes, and then matching them. A low-drift and real-time LiDAR odometry
and mapping (LOAM) method is proposed in [30]. LOAM performs 3D
point feature-based scan matching to find correspondences between point
clouds. The performance of LOAM deteriorates when resources are limited
and no loop detection is performed, leading to large estimation errors.

LeGO-LOAM [32] has successively been proposed, being a lightweight
real-time pose estimation and mapping system, composed of five modules:
segmentation, feature extraction, LiDAR odometry, LiDAR mapping, and
transform integration. Speedup is achieved by filtering the input clouds
through image-based segmentation performed on the 2D range projection
of each scan. More recent variants of LOAM and LeGO-LOAM have been
proposed, optimizing them, namely A-LOAM and LeGO-LOAM-BOR.
Another improved system, w.r.t. LOAM, is LIO-SAM [115], which couples
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mandatory IMU data and the registration method of LOAM, achieving better
performance than the other systems, with the same precision.

Feature-based systems are, in general, less accurate than methods that
perform scan matching on whole clouds. For this reason, loop closure and
trajectory optimization are mandatory steps in their pipeline. These tasks
can easily become computationally demanding as the size of a trajectory
increases. To overcome this problem, graph SLAM systems have been
proposed, such as [23] and [138], where the trajectory of the robot, estimated
via scan matching, is modeled as a graph. There are multiple advantages
of this approach, as described by Grisetti et al. in [139], such as the ability
to introduce relationships between sensor data and/or observations from
the environment, or the great availability of frameworks for efficient graph
optimization, which results in the correction of the robot trajectory.

A recent point cloud-based system relying on a graph is HDL [28],
which consists of four steps. First, laser scans are pre-processed and filtered
to reduce their size. Then, the filtered clouds are used to simultaneously
perform tracking and possibly detect the ground plane. Poses estimated
through tracking and floor coefficients extracted from the point clouds are
used to build a graph of the trajectory, i.e., a pose graph, which is later
optimized. The system achieves superior accuracy, but it is slow, especially
when dealing with large point clouds (e.g., more than 100K points).

3.1.2 System architecture and overview

An overview of the proposed framework is presented in Figure 3.1. The
system is composed of multiple distinct modules that can be grouped into
two main blocks. The first, mandatory (colored in gray), is the core of
ART-SLAM [1], and it is formed by all the modules that perform SLAM
on the input point clouds (orange, in the figure). The other blocks of the
proposed framework are optional, as they can be used to integrate the main
system with data coming from different sensors or with pre-processed input.

Given an incoming laser scan, the first step is to process it, in the pre-
filterer, to reduce its size and remove noisy points. The filtered cloud is then
sent simultaneously to two modules. The most important one, the tracker,
estimates the current displacement of the robot by performing an advanced
version of scan-to-scan matching with previous filtered scans (keyframes).
The other module, named floor detector, finds the robot pose w.r.t. the
ground, adding height and rotational consistency to the estimated trajectory.

The current pose estimate is sent, along with its corresponding point
cloud, to the loop detector module, which tries to find loops between new
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Figure 3.1: Architecture of the proposed system, ART-SLAM. Core modules are the manda-
tory blocks of the pipeline, used to estimate an accurate trajectory and to build a 3D
map of the environment, given a sequence of input point clouds.

and previous point clouds, again performing scan-to-scan matching. In
addition, poses, loops, and floor coefficients (estimated by the floor detector
module) are used to build the pose graph, which represents the trajectory of
the robot. Lastly, the pose graph is optimized to satisfy these constraints.

IMU and GPS data (pink in Figure 3.1) can be integrated into the pose
graph builder module, to increase the accuracy of the estimated trajectory.
IMU data can also be used in the pre-filterer to de-skew point clouds, which
are usually skewed due to the motion of the robot. Moreover, pre-computed
odometry (e.g., through a different sensor or system) can be fed to the tracker
as an initial guess for the scan matching. The pre-tracker module (green in
Figure 3.1) performs multi-level scan-to-scan matching, to obtain a rough
estimate of the motion of the robot, before the tracking step: this estimate is
sent to the tracker, to boost the performance of scan-to-scan matching.

Differently from the majority of systems available in the literature, our
developed method for LiDAR SLAM is fully modular and its components
work independently one from another. This is possible thanks to a register
and dispatch technique used to create the system, leading to the creation of
modules formed by the following elements. Observers allow a module to
capture data as soon as it is available, independently of the type, which is
then put into one or multiple dispatch queues, i.e., FIFO structures with the
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Figure 3.2: Input LiDAR scan (left) and the corresponding processed output of the pre-
filterer module (right). The difference in number and density of elements is noticeable.

purpose of avoiding the loss of incoming data. The core of a module is its
characteristic: it elaborates one datum per queue at a time, extracting it from
the relative dispatch queue. As soon as the core finishes its task, it gives
the byproducts of the module to the notifier, which broadcasts them to the
modules in need (the same object, so that no copy is necessary).

There are three main advantages of using this architecture. First, input
data, for each module, is safely stored for later usage, independently from its
processing rate, meaning that it cannot be lost. Then, new modules can be
easily integrated into the system, being only dependent on the type of data
needed. Lastly, the same core task can be performed in parallel, on multiple
threads, if it does not require temporal coherence (e.g., floor detection).

3.1.3 Pre-filterer

The pre-filterer module has the purpose of reducing the size of the input
point cloud and removing noise and outliers, as can be seen in Figure 3.2.
Data reduction, or downsampling, is essential because, as stated in Sec-
tion 2.3 and Section 3.1.1, scan matching on full point clouds can become
computationally demanding if the size of the cloud is large enough. Down-
sampling can reduce point clouds by a factor of five, or more, depending on
the context, while retaining the spatial structure of the initial scan.

The clouds are then filtered to remove outliers and noise points. This
operation is usually more costly w.r.t. the downsampling task. To improve
performance w.r.t. HDL [28], we split the cloud into four pairs of octants
and perform filtering on each separately, in parallel, obtaining a noticeable
speedup (the amount depends on the hardware, but it is greater or equal to a
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factor of 1). After that, all the smaller clouds are combined to form a larger,
filtered point cloud, ready to be broadcasted to other modules.

3.1.4 Tracker

Pose tracking, which comprises short term data association followed by
motion computation, establishes the roto-translation between consecutive
poses. The tracker adopts a keyframe-based approach to estimate the trajec-
tory of the robot, performing scan-to-scan matching using state-of-the-art
algorithms (e.g., ICP [13], GICP [18], VGICP [137] and NDT [40]), se-
lected depending on the user choice and the type of environment the robot is
navigating (e.g., outdoor or indoor). For example, NDT has several advan-
tages over ICP, such as surface representation capability, accuracy, and data
storage. However, the performance of the NDT is directly related to the size
of its cells, and there is no proven way of choosing an optimum cell size,
making it less suitable in large outdoor scenes, such as urban scenarios.

Keyframes are data structures describing the motion of the robot in se-
lected locations of its trajectory. They are represented by multiple variables,
used to collect data associated with the various poses. In ART-SLAM,
each keyframe contains a point cloud and the pose (odometry) estimated by
the tracker, data which is also used for loop closure detection, pose graph
construction, and map creation. Other useful information contained in a
keyframe are the timestamp associated with the point cloud, the estimated
accumulated distance from the beginning of the trajectory, and, if available,
acceleration, orientation, and position coming from other sensors.

To reduce the computational resources needed to efficiently perform
SLAM, not all the filtered point clouds in input to the tracker become
keyframes. Except for the first keyframe, which corresponds to the first
LiDAR scan received by the system, an input cloud must satisfy at least one
of the following criteria to be considered a new keyframe.

• Be distant from the estimated location of the previous keyframe of a
user-defined translation ∆trans, in meters.

• Be rotated from the estimated location of the previous keyframe of a
user-defined angle ∆orientation, in radians.

• Have a time difference of a user-defined interval ∆T , in seconds.

The thresholds ∆trans, ∆orientation and ∆T depend on the dataset
considered (e.g., length, type, or complexity) and the type of trajectory to be
estimated, and should be tuned accordingly to obtain a reasonable number
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of keyframes, as too few would decrease the accuracy of the SLAM system,
and too many would degrade its performance. In indoor scenes, for example,
∆trans could be set to 0.2 meters, while in large scale urban environments
∆trans > 5 meters, where longer paths are traversed.

Given the cloud corresponding to the current keyframe Kn and the avail-
able new filtered point cloud in input ct, scan-to-keyframe matching is
performed between them, to find their relative motion. The algorithm re-
quires an initial guess, to boost performance and accuracy, which can be
chosen in two ways: either it is available through other means (e.g., odome-
try from another sensor), or a constant velocity motion model is assumed,
and the previous transformation is used (the one computed between the point
cloud of the current keyframe Kn and the previous filtered cloud ct−1).

Usually, algorithms for point cloud-based tracking find the relative mo-
tion between consecutive LiDAR scans, ct−1 and ct, and then compose this
transformation with the previous ones, to estimate the current odometry.
This method may seem more accurate, but it accumulates errors the more
distant the clouds are from the current keyframe. In ART-SLAM, instead,
the motion of the robot is always referred to the keyframe closest in time,
and the previous motion is taken into consideration only to estimate the
guess for scan matching if we assume a constant velocity motion model.

This approach, which is unique to ART-SLAM, also allows the system to
skip the whole scan matching procedure if pre-computed odometry is avail-
able. The latter, even if not completely accurate, allows one to immediately
check if the current point cloud is a candidate for the selection of a new
keyframe. If it is not, the tracker does not perform scan matching, and the
relative transformation between the current keyframe and the pre-computed
odometry is used as the guess in the next tracking iteration.

Once the tracker has detected a point cloud that satisfies any of the
keyframe creation criteria described previously, a new keyframe is built
and it is broadcasted to the loop detection and pose graph builder modules,
moving from the front-end part of ART-SLAM to its back-end.

3.1.5 Pre-tracker

Aligning two full scale point clouds would result in the best transformation
estimate, as all the 3D points are accounted for. However, this approach is
often unsuitable for real-time applications, especially on low-end devices.
Moreover, not all elements of a LiDAR scan carry useful information, like
flat ground surfaces, which are indistinguishable one from the other. For
this reason, scan matching should be aided with a rough initial guess. The
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Figure 3.3: Input LiDAR scan (left) and the corresponding floor, detected and extracted
from the point cloud using the floor detection module (right).

computation of the latter is the purpose of our pre-tracker module, which
performs multi-scale alignment while working in parallel to the pre-filterer.

First, the same point cloud given in input to the pre-filterer is fed to this
module, where it is heavily downsampled. The reduced cloud is then used
to perform scan-to-scan matching with a previously downsampled cloud
(i.e., the preceding one). This alignment is fast, due to the reduced size of
the inputs, even if not as accurate as if it was done with non-downsampled
clouds. This procedure can be repeated using the same point clouds but
downsampled at a different scale, lower than the one used in the first phase.
The relative motion resulting from these steps is broadcasted to the tracker,
to be used as the initial guess in the current scan matching, allowing it to
possibly skip the frame and reduce the computational resources needed.

3.1.6 Floor detection

To enforce height and orientation consistency in the trajectory, filtered
point clouds are processed to find the ground plane in them, as visible in
Figure 3.3. This can be modeled as a four-dimensional vector GP (a, b, c, d)
representing the plane equation a ∗ x+ b ∗ y + c ∗ z + d = 0.

Floor detection should handle multiple scenarios, such as planar or similar
to planar motion (e.g., urban roads), rough terrains (e.g., rocky paths), and
environments with ascents and descents. While HDL [28] deals only with
planar motion, in ART-SLAM all scenarios are considered.

In the first case, i.e., planar or planar-like motion, the floor detector
module takes a point cloud and manipulates it in the following way. As
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the ground can be found within a small region of the input scan, the first
step performed is clipping the cloud within an acceptable range of search.
This step greatly reduces the size of the cloud, increasing performance when
searching the floor. Then, the clipped output is filtered to eliminate points
whose normal is highly non-vertical. This is done to avoid mistakes due to
planar-like surfaces in the environment, such as walls or windows. Lastly,
Random Sample Consensus (RANSAC) for plane detection is done on the
filtered laser scan, to detect and estimate the ground plane coefficients.

When dealing with rough terrains, a floor cannot be found in the previous
way, as no planar structures can be detected with RANSAC. The input scan is
further clipped, this time horizontally: only the 3D points within a threshold
distance from the center of the cloud are kept. This is done to trim the cloud
to be as close as possible to the robot, removing outlier objects such as rocks,
logs, or anything that is not planar-like. The few remaining points are then
used to perform closed-form plane fitting with the least squares method. If
the parameters {a, b, c, d} are found, they are broadcasted, together with the
timestamp associated with the corresponding point cloud, to the pose graph
builder module, to enforce multiple constraints on the estimated trajectory.

The last scenario, i.e., inclined surfaces, is trickier to identify just by
using a point cloud, as inclined planes are parallel to the robot body frame
and cannot be directly distinguished from non-inclined planes. The process
of discovering inclined planes takes place in the pose graph builder module.
When a set of floor coefficients {a, b, c, d} is associated with a keyframe,
the builder checks if there is a noticeable change (user-defined) in a vertical
orientation from the considered keyframe w.r.t. the previous one. In this
case, it means that there has been a change in slope in the trajectory of the
robot, and an inclined ground plane has been successfully detected.

3.1.7 Loop closure

While moving, the robot may return to a place that was previously visited,
forming a loop in its trajectory. Finding loops adds motion constraints in the
estimated robot poses, correcting drift and estimation errors. The hard part
about loop identification and closure is not asserting the presence of a loop,
which can be accomplished via simple scan matching, but detecting when
loop closure is even a possibility. To do this, we need to decide when and
where to look. In ART-SLAM, detection is performed in three consecutive
steps, to efficiently search for loops within the collected keyframes.

First, each time a keyframe Kquery is available, it is compared against all
previous existing keyframes. Instead of performing scan-to-scan matching
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between the possible pairs {Kquery, Kcandidate}, an odometry-based selec-
tion is performed. If Kquery and Kcandidate are too close in terms of trajectory,
meaning that they have a low accumulated distance, they cannot be consid-
ered candidates, as it is unlikely that two keyframes, corresponding to point
clouds acquired shortly from each other, would result in a useful loop.

Moreover, the loop detector checks if the position, estimated through
tracking, of Kcandidate is in the neighborhood of the pose corresponding to
Kquery, within a threshold range, which accounts for drift errors induced by
the tracker module. If Kquery and Kcandidate have sufficient time distance
and satisfy these constraints, meaning that they are sufficiently close in space
and far in time, they can be considered a loop candidate pair.

Once all candidate pairs have been found, they must be further thinned
down to avoid unnecessary computation. The approach proposed in [140]
converts point clouds into 2D polar grids and efficiently compares them using
a KD tree to select the most similar one to a given point cloud query. The
second phase for efficient loop detection in ART-SLAM slightly modifies this
method, by comparing the 2D polar grid of the point cloud associated with
the query keyframe with the 2D polar grids corresponding to the candidate
keyframes. It should be noticed that the 2D polar grids are created once,
whenever a new keyframe is generated, and not each time loop detection
takes place. At the end of this procedure, only k candidate pairs for loop
detection and closure remain, ready to be compared in the last step.

The few number of candidates allows for scan-to-scan matching on the
elements of each pair (the point clouds corresponding to the new keyframe
and candidate keyframe), to obtain a set of relative motions. All transforma-
tions are then compared to find the best one, i.e., the one with the highest
accuracy, and corresponding to the smallest Euclidean distance between all
the pairs Kquery and Kcandidate. If a best match is found, it means that a new
loop has been efficiently detected, and it is added to the pose graph as a new
constraint, to be closed during the optimization procedure.

Differently from HDL [28], where only the first and last steps are per-
formed, in ART-SLAM, the addition of the Scan Context method allows for
scalable and efficient loop detection. Indeed, as the length of the trajectory to
be estimated increases, the number of pairs to be checked for loop detection
and closure also grows in size, as more and more keyframes are added.

The first two steps are fast operations, with the former consisting mainly
of matrix multiplication and the latter being proved to be scalable [140].
Moreover, the 2D polar grids are pre-computed when inserting the keyframes
in the pose graph, further decreasing the time needed by the module. At
the end of the second phase, there will always be at most k candidate pairs,

69



Chapter 3. ART-SLAM: Accurate Real-Time 3D LiDAR SLAM and Localization

independently from the number of keyframes to check, making this three-
phased approach suitable for efficient loop detection and closure.

3.1.8 Pose graph building and optimization

As mentioned in the description of the system, our framework is a form of
graph SLAM [139]. In graph SLAM, the poses of the robot are modeled
as nodes in a graph, named pose graph, and labeled with their pose in
the environment. The nodes are connected with edges representing spatial
constraints between poses, resulting from sensor measurements (e.g., IMU
or GPS) or scene elements, as the floor coefficients, in our case.

Each node in the pose graph represents a robot pose, and at least one
measurement (the point cloud is mandatory) that is acquired at that location;
moreover, each node is associated with the corresponding keyframe. An
edge between two nodes consists of a sample from a probability distribution
over the relative transformation of the robot poses corresponding to the
nodes. These transformations are either odometry measurements between
consecutive poses or are determined by aligning the sensor measurements
acquired between two keyframes, via tracking. Due to the noise that corrupts
the sensors and the drift in the robot odometry, the associated edges represent
soft constraints and are not fixed, to be later optimized.

It is also possible to insert absolute constraints that cannot be modified.
Examples of hard constraints are floor coefficients, GPS, and IMU orienta-
tion data, although they can also be set as non-absolute elements, to account
for the uncertainty of the sensors or the measurements (e.g., a GPS RTK
sensor has centimeter precision accuracy, and the obtained positions can be
used as hard constraints). Finally, edges can be added when performing loop
detection, between non-consecutive nodes in the graph, forming a ring-like
structure. The just described structure of the pose graph is represented in
Figure 3.4, including all possible nodes and edges.

The pose graph is given to optimization algorithms to compute the op-
timal trajectory, which satisfies all sensors and motion constraints, giving
high-accuracy estimates, while elaborating a large number of poses. In our
implementation, we use the g2o optimization framework [141], as it proves
to be fast and accurate over long trajectories. Moreover, g2o allows for the
insertion of custom elements in the pose graph, and as such, it is an optimal
solution for our modular system, allowing future upgrades.
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Figure 3.4: Representation of a possible pose graph in ART-SLAM [1]: the estimated
poses and ground coefficients represent nodes, while odometry, loops, IMU, and GPS
measurements correspond to the edges of the graph.

3.1.9 Experimental validation of the system

The proposed system is compared with other methods for point cloud-based
SLAM: LOAM [30], LeGO-LOAM [32], A-LOAM, LeGO-LOAM-BOR,
LIO-SAM [115] and HDL [28], with A-LOAM and LeGO-LOAM-BOR
being two improvements of LOAM and LeGO-LOAM, respectively.

We also include, in the comparison, different variants of our system:
ART-SLAM without Scan Context, ART-SLAM with Scan Context, ART-
SLAM with IMU (for de-skewing and orientation correction in the pose
graph), and ART-SLAM with GPS, which is used only in the back-end.

We evaluate these systems in three scenarios coming from the KITTI
dataset [143, 144], corresponding to short, medium, and long sequences,
respectively. Lastly, we perform a brief study on the Chilean underground
mine dataset [145], to test ART-SLAM in rough environments, typical of
long tunnels with very few distinctive features in the surrounding space.

LOAM, LeGO-LOAM, A-LOAM, LeGO-LOAM-BOR, and LIO-SAM
do not require particular parameter tuning, although they need a custom
implementation of the point cloud projection module, depending on the laser
sensor used. Hence, in our tests, we changed such parameters accordingly.
On the other hand, HDL and ART-SLAM share the same configuration
parameters, e.g., keyframe selection thresholds and pre-filtering method.
Table 3.1 shows the most important parameters used in the experiments, for
both HDL and ART-SLAM, to allow reproducibility, as described in [142].

It should be noticed that in the KITTI dataset, both IMU and GPS data are
acquired at very low frequency, the same as for LiDAR point clouds (about
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Table 3.1: The most important parameters of each module, used in the experimental
validation, for reproducibility, as described in [142].

Module Parameter name Value

pre-filterer

Downsample method VOXELGRID
Downsample resolution 0.25 [m]
Outlier removal method RADIUS
Radius 0.4 [m]

tracker
∆Trans keyframes 5.0 [m]
∆Angle keyframes 0.25 [rad]
∆Time keyframes 1.0 [sec]

loop detector
Loop closure search radius 35.0 [m]
Loop closure min. distance 25.0 [m]

scan matching
Registration method FAST_GICP
Max. iterations 64
Transformation epsilon 0.01

10 Hz). For this reason, we consider them unreliable, giving low weights
in the pose graph, meaning they have only a minor contribution during
the graph optimization phase. LIO-SAM, to correctly work, obligatorily
requires IMU data at high frequency, and for this reason, to evaluate it, we
used the unsynchronized version of the KITTI dataset, having IMU data
taken at 100 Hz, giving the system a slight advantage.

For a fair comparison, the systems are tested on a 2021 XMG 64-bit
laptop with Intel(R) Core(TM) i7-11800H CPU @ 2.30GHz x 8 cores, with
24576 KB of cache size. Although available, no GPU has been used.

3.1.10 Comparison and results

To evaluate the systems we compute the absolute trajectory error (ATE). This
metric measures the difference between points of the true and the estimated
trajectory. As a pre-processing step, we associate the estimated poses with
ground truth poses using timestamps and point cloud indices.

We also include a visual evaluation of the estimated trajectories and show
the reconstructed 3D map in the long sequences (KITTI 00 and Chilean).
Finally, we also discuss the processing time of the modules of ART-SLAM,
to prove its real-time performance even in complex scenarios.

Figure 3.5 shows the estimated trajectories of Sequence 07 of the KITTI
odometry dataset [143]. All the methods considered for comparison, except
for LOAM, accurately follow the ground truth, correctly finding the only
loop and optimizing the poses. LOAM, instead, quickly drifts from the
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Figure 3.5: Visual comparison between the trajectories estimated using LOAM [30],
LeGO-LOAM [32], A-LOAM, LeGO-LOAM-BOR, LIO-SAM [115], HDL [28] and ART-
SLAM [1], without Scan Context, on Sequence 07 of the KITTI odometry dataset [143].

true trajectory. This behavior is caused by the fact that no loop detection is
performed (being LOAM an odometry and mapping method only).

Table 3.2 further details the obtained results, as it represents the mean,
root mean square error (RMSE), and standard deviation (STD) of the abso-
lute trajectory error, in meters. The highest accuracy is achieved by ART-
SLAM with IMU data. This was expected, as this method combines both the
advantages of scan-to-keyframe matching, to track de-skewed clouds, and
orientation integration in the pose graph, to correct the motion estimates.

It should be noticed that LIO-SAM comes in second place, proving that,
with the same sensors, tracking relying on full point clouds is the best choice
for accurate results. Furthermore, the slightly worse results of the other
variants of ART-SLAM are also expected. The quality of ART-SLAM with
Scan Context depends on the loops identified by the Scan Context method,
which are not necessarily the best ones, hence reducing the overall accuracy.
ART-SLAM with GPS shows a higher ATE because, as stated before, we
consider GPS data as unreliable (high variance in the pose graph) and this
negatively influences the optimization process, leading to a trajectory slightly
farther from the ground truth and worse than the base method.

After having dealt with a large sequence with the presence of a loop
at the end, we also evaluated the systems on a shorter sequence. As short
datasets do not have a ground truth, we use, instead, raw GPS data, provided
along with the point clouds. Figure 3.6 shows the estimated trajectories of
city Sequence 05 of the KITTI raw dataset [144]. As before, all methods
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Table 3.2: Computed ATE on Sequence 07 of the KITTI odometry dataset [143].

ATE [m] MEAN RMSE STD
LOAM >10 >10 >10

LeGO-LOAM 1.191 1.309 0.546
A-LOAM 2.467 2.741 1.195

LeGO-LOAM-BOR 1.604 1.807 0.832
LIO-SAM 0.509 0.675 0.351

HDL 0.954 1.253 0.767
ART-SLAM 0.698 0.777 0.341

ART-SLAM (SC) 0.730 0.813 0.358
ART-SLAM (IMU) 0.343 0.366 0.127
ART-SLAM (GPS) 0.782 0.869 0.382

Table 3.3: Computed ATE on city Sequence 05 of the KITTI raw dataset [144].

ATE [m] MEAN RMSE STD
LOAM >5 >5 >5

LeGO-LOAM 0.707 0.768 0.300
A-LOAM 0.938 1.044 0.459

LeGO-LOAM-BOR 1.094 1.169 0.409
LIO-SAM 0.493 0.338 0.280

HDL 0.893 0.912 0.476
ART-SLAM 0.742 0.812 0.331

ART-SLAM (SC) 0.742 0.812 0.331
ART-SLAM (IMU) 0.746 0.814 0.326
ART-SLAM (GPS) 0.343 0.588 0.477

accurately represent the ground truth, with small errors in the trajectory.
It should not come as a surprise that the results are more or less the same,

as, for short trajectories, tracking is performed a limited amount of times,
and there is not enough distance to accumulate errors.

Table 3.3 shows the ATE statistics, in meters. As before, all the systems
but LOAM show good results, accurately following the GPS signal, here
used as ground truth due to its relatively high accuracy. This is the reason
ART-SLAM with GPS is the most accurate method, even though, for a fair
comparison, LIO-SAM was highlighted as the most accurate system.

In Figure 3.7, we show the behavior of ART-SLAM on one of the most
complex sequences of the KITTI odometry dataset, i.e., Sequence 00. In
the visual comparison, we did not include A-LOAM and LIO-SAM, whose
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Figure 3.6: Visual comparison between the trajectories estimated using LOAM [30],
LeGO-LOAM [32], A-LOAM, LeGO-LOAM-BOR, LIO-SAM [115], HDL [28] and
ART-SLAM [1], on city Sequence 05 of the KITTI raw dataset [144].

Figure 3.7: Visual comparison between the trajectories estimated using LOAM [30], LeGO-
LOAM [32], LeGO-LOAM-BOR, HDL [28] and ART-SLAM [1], without Scan Context,
on sequence 00 of the KITTI odometry dataset [143].

estimated trajectories are far off the ground truth, and would have cluttered
the image. From Table 3.4, one can see the high degree of accuracy achieved
by the proposed system, reaching low translation error. Once again, the
best accuracy is achieved by ART-SLAM with IMU, followed by ART-
SLAM without Scan Context. Figure 3.8 and Figure 3.9 show the 3D map
reconstructed by ART-SLAM and a detailed area of it, respectively.

Table 3.5 shows the average processing times, per frame, of the various
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Table 3.4: Computed ATE on Sequence 00 of the KITTI odometry dataset [143].

ATE [m] MEAN RMSE STD
LOAM >10 >10 >10

LeGO-LOAM 9.537 11.666 6.718
A-LOAM >10 >10 >10

LeGO-LOAM-BOR 6.240 6.613 2.188
LIO-SAM >10 >10 >10

HDL 1.378 1.424 0.779
ART-SLAM 0.981 1.092 0.478

ART-SLAM (SC) 1.232 1.409 0.684
ART-SLAM (IMU) 0.907 1.014 0.454
ART-SLAM (GPS) 1.092 1.156 0.380

Table 3.5: Comparison of the processing time [ms], per frame between the variants of
ART-SLAM [1] (base, with Scan Context, with IMU, and with GPS).

Time [ms] Seq. Filterer Tracker Floor det. Loop det. Optimization
base

00

18.627 39.462 25.976 19.301 16.330
base + SC 18.627 39.462 25.976 9.380 17.791

base + IMU 21.667 39.462 25.976 13.747 14.486
base + GPS 18.627 39.462 25.976 14.681 12.733

base

07

18.627 39.462 25.976 10.226 1.320
base + SC 18.627 39.462 25.976 7.239 1.598

base + IMU 21.667 39.462 25.976 9.808 1.710
base + GPS 18.627 39.462 25.976 10.407 1.331

base

City

18.627 39.462 25.976 6.819 0.132
base + SC 18.627 39.462 25.976 6.819 0.132

base + IMU 21.667 39.462 25.976 6.720 0.091
base + GPS 18.627 39.462 25.976 9.085 0.165

ART-SLAM variants. Intuitively, independently from the sequence consid-
ered, pre-filtering, tracking, and floor detection take the same time (aside
from the ART-SLAM with IMU case, where de-skewing is also performed,
hence the higher pre-filtering time). It is important to notice, instead, the
different times associated with loop detection and graph optimization, which
clearly depend on the size and length of the trajectories to estimate.

Moreover, the table clearly shows the importance of Scan Context when
performing loop closure: in Sequence 00, the loop detection time, using
Scan Context, is half w.r.t. the case without it. Considering that data is
acquired at 10 Hz and looking at the system architecture of Figure 3.1, one
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Figure 3.8: Reconstructed 3D map of Sequence 00 of the KITTI odometry dataset [143],
obtained with the developed system, ART-SLAM [1].

can clearly see that ART-SLAM has real-time performance. All methods,
except HDL, are feature-based, and written to run in real-time. Nevertheless,
from Table 3.5, one can see that the proposed system, even if full point
cloud-based, achieves the same processing performance.

Lastly, we show a visual evaluation of the accuracy achieved by ART-
SLAM on the Chilean underground mine dataset [145]. This sequence is
relatively long and contains multiple loop closures. The dataset is rather
peculiar, as there are only 44 measurements, taken at 30 to 40 meters of
distance each and with large rotations, of around 25M points per cloud (while
a scan in KITTI has around 130K points). Due to this huge gap between the
locations where data was gathered, any scan matching or method to perform
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Figure 3.9: Detailed area of the map corresponding to Sequence 00 of the KITTI odometry
dataset [143], built with ART-SLAM [1].

Figure 3.10: Map corresponding to the Chilean underground mine dataset [145], built
with the proposed algorithm, ART-SLAM [1]. The density of the map is related to the
high number of 3D points acquired by each LiDAR scan (around 25M points each).

rigid alignment would fail without proper initialization.

For this reason, we gave to the tracker module the ground truth, corrupted
by noise, as an initial guess. The given noise is uniformly distributed in
the x and y directions, within the range ±1cm. We achieved translation
errors of about 1 to 5 millimeters, with a processing time much faster than
each LiDAR scan period (10 seconds of pre-filtering and 10 seconds of
tracking against 152.5 seconds needed to acquire each scan, due to their
high number of points). Moreover, for each scan, we correctly identified the
ground plane, which is distant around 1 meter from the LiDAR used. The
map reconstructed with ART-SLAM can be seen in Figure 3.10.

78



3.2. ART-SLAM Localization

3.2 ART-SLAM Localization

As we have already seen in the thesis, positioning represents one of the
key problems in robotics. Real-world applications, ranging from small
indoor spaces to large outdoor scenes, include unmanned vehicle trajectory
planning, 3D reconstruction, or search and rescue during emergencies, and
they all require an accurate 6 DoF positioning of the robot, which can be
classified using the following, well known in the literature, convention.

When the robot moves through an unknown environment, it is referred to
as Simultaneous Localization and Mapping (SLAM) (as the method devel-
oped in Section 3.1); here, the robot must build a map of the surrounding
area while simultaneously localizing itself inside it. When the robot goes
through a known environment, for example, having available a pre-computed
map, only the term localization is used, as the robot must only determine its
position in the existing map (e.g., obtained through SLAM).

Although outdoor localization is easily achieved using a Global Navi-
gation Satellite System (GNSS) receiver, the range of situations where the
sensor can be used is limited, as environments may contain physical obsta-
cles that shade the GNSS signal (e.g., urban canyons). Also, the accuracy
attained with the majority of GNSS systems is inadequate for applications
where precise localization is crucial. Over the last decade, many algorithms
have been proposed to get precise positioning in real-world indoor and
GNSS-denied environments. The idea behind the majority of these works is
to use multiple sensors to obtain good estimates of the poses of the robot.
The combination of IMU and LiDAR sensors is usually adopted to achieve
accurate results and to build detailed 3D maps.

Despite the number of systems available for 6 DoF LiDAR positioning
being considerable, to the best of our knowledge, there is no work on the
attainable positioning precision of these methods in real-world scenarios and
with real data [146]. For this reason, as the second step of our Ph.D. program,
we extended ART-SLAM [1] with new modules to perform localization in
GNSS-denied environments, named ART-SLAM LOC. Then, we focused
on a detailed evaluation of existing SLAM and localization algorithms.

The framework of the work is in relative localization accuracy, i.e., w.r.t.
a local reference system, which is defined using a map. As explained later
in Section 3.2.3 and Section 3.2.4, this map is assumed to be built using a
SLAM algorithm, and then localization is performed w.r.t. such map.

The work presented in this part of the thesis consists of the following
contributions; first, we provide a short literature review of existing 6 DoF
LiDAR localization and SLAM systems, highlighting features, advantages,
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and negative aspects. After a brief discussion about which algorithms are
more suitable to perform both SLAM and localization, we benchmark those
systems with two experimental campaigns, one indoor and one outdoor,
evaluating the precision of the results obtained on manually collected data.

Although there are plenty of datasets in literature, the majority is gathered
with high-end sensor suites, is pre-processed, and it is usually representing
the same type of environments (e.g., cities). To truly stress the accuracy of
SLAM and precision of localization, we chose to use data collected by us
through a low-end sensor suite and without pre-processing it.

The two collected datasets represent environments that are not commonly
seen in the literature. Moreover, we took multiple trajectories of more or
less the same paths, to perform localization, which is not typical of standard
datasets. The rest of the Section is outlined as follows.

We first discuss related works in Section 3.2.1, to give a brief but de-
tailed insight into existing systems for SLAM and/or localization. Then,
in Section 3.2.2 we show the sensors used in the experiments and describe
the localization algorithms used, along with the adopted evaluation metrics.
Follow Section 3.2.3 and Section 3.2.4, which are dedicated to the results.

3.2.1 Related works

Robots are commonly equipped with IMU sensors to measure linear acceler-
ation and angular velocity. These data can be used to calculate the location
of the robot relative to the starting point. However, the accumulated error
will make the localization algorithm unreliable after a few meters. GNSS
sensors are commonly used to correct the accumulated error of IMU sensors,
in outdoor environments. Nevertheless, this is not possible in GNSS-denied
scenarios. Thus, the scientific community explored alternative approaches
exploiting LiDAR information, which allows to achieve accurate results, as
we have already seen in Section 2.3 and Section 3.1.1.

A well-known method for 3D localization and mapping is LiDAR Odom-
etry and Mapping (LOAM) [30], previously already discussed. We remind
here that this work aims to divide complex tasks that are typically solved
simultaneously using SLAM methods. These algorithms work by optimiz-
ing a large number of variables at the same time, resulting in low-drift but
high-computational complexity algorithms. LOAM is designed to limit drift
error while achieving real-time performance. Even if the methods show
relatively low error estimations compared to the length of trajectories, the
lack of loop detection and closure cause noticeable drifts over time.

LeGO-LOAM [32] is another LiDAR odometry and mapping method
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that we have already previously encountered. The system is divided into
five modules. The segmentation module produces a 2D representation of
the LiDAR clouds. The obtained range images are then segmented via a
clustering algorithm, and groups with few points are discarded. Features
are successively used to match scans for finding the transformation between
them in a module called LiDAR odometry. Finally, the transform integration
module fuses the estimation results from LiDAR odometry and mapping.

LeGO-LOAM aims to improve the accuracy of the original LOAM
framework. However, LeGO-LOAM is an odometry and mapping method.
Thus, there is no easy way to adapt the implemented code just for the
localization task. A new map is created at every run of the algorithm, and it
is not possible to accurately localize the robot on an already created map.

PoseMAP is a localization method designed for 3D LiDARs. Based on
the matching of extracted distinctive 3D features in point clouds, PoseMAP
is thought for lifelong localization. It has been tested for 18 months through
a mix of human-made structured and off-road unstructured environments
without a single failure [147]. Even the changes that occurred in the en-
vironment during this long period did not affect the localization accuracy.
Indeed, the system can update the map and extend it in case of newly seen
environments. However, the authors did not make the code available.

BLAM! is an open-source software package for LiDAR-based real-time
3D localization and mapping. BLAM!1 was developed by Erik Nelson from
the Berkeley AI Research Laboratory. However, the author provides neither
a scientific paper nor a guide describing how the algorithm works. Thus, the
only way to understand the system is to read the source code entirely.

GICP-SLAM [148] is a 3D LiDAR SLAM method thought for indoor
and harsh environments, like mines. As the name suggests, it performs
scan matching via the GICP algorithm [18]. GICP-SLAM is a graph-based
SLAM [139] method; thus, it performs optimization of a graph, known as
pose graph, where nodes are the robot poses, and edges are the transforma-
tions between the poses. Also, other constraints than transformations can
be added to the pose graph. The general framework of GICP-SLAM is the
following. The input LiDAR scan is sent to three modules.

One is in charge of plane detection to exploit this as an additional con-
straint. The second performs LiDAR odometry by matching two successive
scans via GICP. The last one is in charge of handling loop constraints. After
the robot motion between scans is estimated, another module refines it by
scan matching the current scan with the map. All the constraints and the
refined transformations are sent to the Pose Graph Optimise module that

1The source code can be found at this link: https://github.com/erik-nelson/blam
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outputs the final pose result, used to build the map. Also in this case, the
authors did not make the code available, making GICP-SLAM unusable.

HDL [28], consists of a 3D LiDAR-based SLAM algorithm for long-term
operations. The system comprises two main modules, one dedicated to
offline mapping, and the other for localization. The mapping is done with
a graph-based SLAM algorithm that exploits a scan matching technique,
similar to GICP-SLAM. Being a SLAM algorithm, a loop detection and
closure procedure has been implemented. Moreover, in order to compen-
sate for the accumulated rotational error, the authors introduced a ground
plane constraint, to build consistent maps in long-term scanning processes.
The localization algorithm is implemented as an Unscented Kalman Filter
(UKF) [149], combining the information from the scan matching of the
current scan to the previously constructed map and a prediction step, which
uses the angular velocity and linear acceleration from an IMU sensor.

ART-SLAM [1], as described in Section 3.1, is also a 3D LiDAR-based
SLAM algorithm, similar to HDL. The mapping follows the same graph
SLAM approach, allowing for different context-based scan-matching tech-
niques, while also performing fast and efficient loop detection, making the
whole method scalable and suitable for real-time applications.

Being ART-SLAM easy to extend and to work with, we implemented a
localization module, named ART-SLAM LOC, to be part of the evaluation
presented in this section. The module works the same way as the HDL
localization, with some minor performance improvements, such as ground
removal from both map and input scans, for efficient pose correction, and
up-sampled prediction, to account for biases in the robot motion.

3.2.2 Materials and methods

In Section 3.2.1, we have shown how 6 DoF positioning for indoor and
GNSS-denied scenarios can be achieved with precision using LiDAR sen-
sors, integrated with other data sources (e.g., IMU). With the purpose of
understanding and evaluating existing algorithms for LiDAR-based 6 DoF
localization, we decided to perform two experimental campaigns, collecting
data from an indoor space and from a GNSS-denied outdoor environment, to
evaluate the attainable precision of these methods in constrained scenarios.

Our intent is also to contribute to the literature, as little information is
available regarding this context of navigation and positioning (GNSS-denied,
6 DoF LiDAR-based) in real-world environments. In the following, we first
describe the sensors used in our experimental campaigns. Then, we compare
the presented systems to choose which of them is suitable to perform both
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Table 3.6: Summary and comparison of the 3D localization and mapping approaches.

System Framework Purpose Localization Code
LOAM [30] ROS Odometry\mapping No Yes

LeGO-LOAM [32] ROS SLAM No Yes
PoseMAP [147] None Localization Yes No

BLAM! ROS SLAM No Yes
GICP-SLAM [148] None SLAM No Yes

HDL [28] ROS SLAM Yes Yes
ART-SLAM [1] None SLAM Yes Yes

SLAM and localization and lastly, we detail the evaluation metrics adopted.

Materials

The sensor suite used in our experiments to perform all tasks consisted
of an Ouster OS-1 sensor that provided both LiDAR and IMU data. The
LiDAR component has a range resolution of 1.2 cm, a vertical resolution
of 64 beams, and a horizontal resolution of 1024. The vertical FOV is
33.2◦ and the horizontal FOV is 360◦. The angular sampling accuracy is
±0.01◦, both vertical and horizontal, and the rotation rate is configurable
at 10Hz or 20Hz. We configured the sensor to retrieve data at 20Hz, thus
having point clouds of about 65K points. The IMU component gathers
higher frequency data (100Hz), allowing for a fast localization. A member
of our team mounted the sensor on a four-wheeled cart, which was manually
pulled by him through selected locations of the experimental campaigns. It
should be specified that the person always moved the cart while remaining
crouched, remaining outside the field of view of the LiDAR sensor.

Methods

To find the most suitable approaches to test for benchmarking, we analyzed
the characteristics of the systems discussed in Section 3.2.1. In Table 3.6,
we report a summary of these 3D LiDAR odometry and mapping methods.
We indicate the operative framework adopted in each work, the type and
purpose of the algorithm, whether a localization algorithm is provided, and
whether the code is available. SLAM methods differ from Odometry and
Mapping systems because the firsts add loop detection and closure.

For the testing phase, we opted for the approach of Koide et al. [28]
and ART-SLAM [1] (including the localization module, ART-SLAM LOC).
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Both are SLAM algorithms and, as already said, they can rely on a drift
correction procedure using loop detection and closure. This can guarantee
long-term mapping operations for large-scale outdoor environments and
accurate results in indoor and short scenes, as we have demonstrated in
Section 3.1.10. Both are graph-based, meaning that trajectories and maps
can be efficiently manipulated and stored. Both have the best performance
relative to other state-of-the-art 6 DoF LiDAR SLAM approaches. They
also both have mapping and localization modules, allowing us to benchmark
the positioning using the maps generated by the algorithms themselves.

The SLAM components of both algorithms present great accuracy, even
on long trajectories, w.r.t. other methods. In Section 3.1.10 we compared
many of the considered systems, and found out that both HDL and ART-
SLAM prove to be accurate in determining the trajectory of a robot, and
consequently, in building a high-fidelity map of the environment, for succes-
sive localization. When considering datasets collected at high frequency, i.e.,
the ones used in this section, the accuracy and precision of the algorithms
further increase, hence making them suitable systems for benchmarking.

Lastly, the localization method is implemented as an Unscented Kalman
Filter [149], in both systems. The Extended Kalman filter solves the nonlin-
ear estimation problem by linearising state and measurement equations. The
linearisation yields approximation errors which the filter does not take into
account in the prediction and update steps. In comparison, the Unscented
Kalman filter picks so-called sigma point samples from the filtering distri-
bution and propagates them through the (nonlinear) state and measurement
models. The resulting weighted set of sigma points represents the updated
filtering distribution, which, is then approximated as a Gaussian distribution.
This results in state estimates which represent the state uncertainty better
than the estimates obtained from the EKF with an increased cost.

Particle filters have some similarities with the UKF, in that they transform
a set of points via known nonlinear equations and combine the results to
estimate the mean and covariance of the state. However, in the particle filter,
the points are chosen randomly, whereas in the UKF the points are chosen on
the basis of a specific algorithm, i.e., the unscented transformation. Because
of this, the number of points used in a particle filter generally needs to be
much greater than the number of points in a UKF, usually less than ten.

While IMU data is used in the prediction step, the correction phase is
performed by aligning a LiDAR scan with a global map, with scan-to-map
registration. This way, errors in the correction step are independent of each
other and not related temporally: each scan-to-map alignment is affected by
its own error. The overall error thus depends on the distribution of the error
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in the scan matching between the current scan and the map, meaning on the
global accuracy of the map itself and not the path traversed so far.

To evaluate the selected algorithms, we estimated the localization accu-
racy on specific poses by manually re-positioning the cart in the same spots.
Thus, we named this error “re-localization" error. In our indoor experiments,
we recorded a first trajectory by stopping the cart in specifically marked
poses. Then, we recorded a second trajectory, reasonably close to the first
one, stopping more or less at the same specific positions.

A ground truth acquisition system, i.e., an OptiTrack motion capture
system, was used in the indoor experiments to compensate for the difficulty
of manually placing the sensor exactly in the same positions. Thus, in the
indoor case, the re-localization error of the systems was measured on a set of
poses by removing any bias due to incorrect re-positioning. In the outdoor
scenario, i.e., an O&G refinery, the ground truth was not available, making
it difficult to collect the positioning ground truths, due to the presence of
many physical obstacles (e.g., pipes and trusses). Thus, in the outdoor
case, we expect the re-localization error to include the error of manually
re-positioning the sensor in the same poses, low but not negligible.

To measure the re-localization error, we adopted the metrics used in the
most popular benchmarking works like [143, 150–152]. In the following,
we provide the mathematical formulation of the problem. Figure 3.11 shows
the plots of two indoor example trajectories from our indoor experiment,
with the following conventions. In creating both trajectories, we recorded
the estimated poses given by HDL and ART-SLAM, and the ground truth
poses from the OptiTrack. The experiments were carried out by a member
of our team, which manually pulled the cart throughout a laboratory, starting
from the OptiTrack area, going outside it, then coming back again.

We decided to go beyond the tracked area to make a longer trajectory,
and further stress the SLAM algorithms. We tried to make the paths as
similar as possible. The idea was to estimate the accuracy of the localization
algorithms when the system is placed in the same location, between different
runs of the methods. Thus, the re-localization error tells us how an algo-
rithm is consistent in giving the same pose over time, i.e., how the SLAM
components of the evaluated systems are coherent over multiple runs.

For each area Ai, and for each couple of trajectories, we have manually
picked a pose Pest,ij estimated by the localization algorithm; where i ∈
{1, . . . , nposes} is the area index and j ∈ {1, 2} is the trajectory index.
A pose P is a vector that contains position information along the three
directions x, y, z, and orientation as Euler angles, i.e., roll, pitch, and yaw.

For each area, we associate the corresponding ground truth pose Pref,ij
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Figure 3.11: Two indoor trajectories associated with the indoor re-localization error
experiments; the OptiTrack area is black-dashed contoured. On the left is the first path,
while on the right is the second trajectory.

as the one closer in time according to the timestamps of the messages. Given
that the OptiTrack produces data 50 to 100 times faster than the odometry
algorithms, we are sure to find very close correspondences in time. We
tried to manually park the system in the same areas in both trajectories;
nevertheless, it is nearly impossible to manually re-locate in the same place.
We estimate this difference in re-positioning the cart using the OptiTrack.

Mathematically speaking, we computed the transformation matrix Tref,i

between ground truth poses for each area Ai as

Tref,i = transm(Pref,i1, Pref,i2),

and the matrix Test,i between estimated poses for each area Ai as

Test,i = transm(Pest,i1, Pest,i2),

where transm() is a function that gives as output the transformation matrix
necessary to express the second argument of the function in the reference
system of the first argument (as both are 3D poses).

Then, we calculated the error matrix Ei as the inverse composition
between the two transformations Test,i and Tref,i

Ei = inv(Tref,i) ∗ Test,i,

where inv() is the usual inversion matrix operator. Intuitively, the matrix Ei

tells us the difference in translation and rotation between the two transfor-
mations Test,i and Tref,i. Finally, we estimated the translation and rotation
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Figure 3.12: Indoor area of the experimental campaigns. It consists of a long laboratory
(left panel) with many obstacles, visible on the map, as a point cloud (right panel),
obtained with HDL [28].

errors, trans_ei and rot_ei, respectively, with the following metrics:

trans_ei = ∥trans(Ei)∥,

where the function trans() extracts the translation part of a given transfor-
mation matrix, while for the rotation part, we use

rot_ei = |angle(rotm2axang(Ei))|.

The function rotm2axang() converts the rotation matrix extracted from
a given transformation, to the corresponding representation of the axis angle,
and the function angle() extracts the angle from an axis-angle representation.
The axis-angle representation is just one of many ways to represent rotations
together with quaternions, Euler angles, rotation matrices, and many others.

The advantage of the axis-angle representation consists in condensing
the rotation in one single number instead of having three components, as
with Euler angles. A more detailed explanation of 3D rotation error metrics
can be found in [153], including also the various representations.

In the outdoor scenario, since there was no ground truth, we only cal-
culated the transformation matrix Test,i between the estimated poses Pest,i1

and Pest,i2, for each area Ai, considering it as error matrix. Obviously, this
interpretation does not take into account possible re-positioning mistakes,
which are then included in the whole re-localization error estimation.

3.2.3 Indoor experiment

In the following, we report the information relative to the first, indoor,
experiment, corresponding to a large lab room. First, we give some generali-
ties about the setup, data collection, and registered trajectories. Then, we
show the comparison between the localization obtained through HDL and
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Table 3.7: Information about the two trajectories of the indoor experiment. The first one
is used to build a 3D map of the environment using SLAM, while the other allows the
evaluation of the selected localization algorithms.

Feature Trajectory 1 Trajectory 2
Duration 308 [s] 306 [s]
Estimated length 49.71 [m] 48.31 [m]
Estimated mean speed 0.28 [m/s] 0.24 [m/s]
Estimated max speed 0.52 [m/s] 0.50 [m/s]
# Laser scans 6167 6121
# IMU samples 30832 30606

ART-SLAM, discussing both translation and rotation errors of the second
trajectory w.r.t. the map obtained from the first traversed path.

Setup and data collection

As an indoor scenario, we used the main large room of our laboratory
(AIRLab, Politecnico di Milano, Italy), in Figure 3.12. The cart, described in
Section 3.2.2 and visible in the left panel, was pulled along two trajectories,
which characteristics are listed in Table 3.7. Ten areas Ai, i ∈ {1, . . . , 10}
have been selected in the room, to be used in the evaluation of the algorithms.

Indoor localization

Using the first trajectory traj1 with both SLAM methods, ART-SLAM and
HDL, we reconstruct an accurate representation of the room, in the form of
a dense cloud. For example, the right panel of Figure 3.12 shows the map
obtained with HDL, which contains about 1M points, while the number of
acquired points sums up to 404M elements. The dimension and accuracy of
the obtained map (and the same holds for ART-SLAM) are, along with the
explanation done in Section 3.2.2, due to the algorithm being graph-based.

Not all the laser scans are saved and used to build the map, but just the
most relevant (e.g., after a certain distance has been traveled). This allows
to run long trajectories while maintaining high accuracy and being memory
friendly, features that other algorithms in literature do not have.

As stated in Section 3.2.2, we use the first trajectory to build the 3D map.
Then, both the first and the second trajectories are used for re-localization,
obtaining multiple estimates of the robot pose (one for each laser scan).
The translation re-localization errors for all the testing areas are represented
in the left image of Figure 3.13, while the rotation re-localization errors

88



3.2. ART-SLAM Localization

Figure 3.13: Re-localization error of the indoor experiment, consisting of both translational
and rotational components, using HDL [28] and ART-SLAM [1].

can be seen in the right panel. Both HDL and ART-SLAM LOC achieve
superior accuracy, resulting in errors in the magnitude of centimeters for the
translation and tenth of degree angle for the rotation. While the accuracy
is similar, ART-SLAM (with its localization module) has the advantage of
being real-time (or even faster, see Section 3.1.10) and a zero-copy software.

Again, Figure 3.13 confirms that the length of a trajectory is not correlated
to the attained precision. Both tested systems rely on UKF localization, with
a correction step performed via scan-to-map point cloud alignment; this way,
possible localization errors are bounded by the residual error of the previous
scan and the error in one step prediction of the IMU. This was expected, as
both errors correspond to one single step in the UKF algorithm and they get
reset at each alignment, making both systems scalable and efficient.

Lastly, we give a brief comparison of the processing time of both algo-
rithms when performing localization. ART-SLAM LOC processes inputs
as fast as the data acquisition rate of the LiDAR (as the correction step is
the bottleneck of the system, being dependent on scan matching between a
point cloud and a whole 3D map), making it able to run in real-time. HDL,
on the other hand, is slower, working at a lower processing rate.

3.2.4 Outdoor experiment

In the following, we describe the second experiment, which is conducted
in an outdoor scene, which is an oil refinery. As before, first, we give some
generalities about the setup, data collection, and registered trajectories. After
that, we show the comparison between the localization obtained through
HDL and ART-SLAM, on all five trajectories, discussing, once again, both
translation and rotation errors w.r.t. the map obtained with the first trajectory.
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Figure 3.14: Outdoor area of the experimental campaigns, representing an oil refinery, in
Italy. The left panel shows the traversed environment, while the right image represents
the 3D map, obtained with ART-SLAM [1].

Table 3.8: Information about the five trajectories of the outdoor experiment. The first one
is used to build a 3D map of the environment using SLAM, while the other allows the
evaluation of the selected localization algorithms.

Feature Traj. 1 Traj. 2 Traj. 3 Traj. 4 Traj. 5
Duration 489 [s] 454 [s] 403 [s] 552 [s] 519 [s]
Length 127.79 [m] 122.58 [m] 123.73 [m] 208.58 [m] 126.69 [m]
Mean speed 0.26 [m/s] 0.27 [m/s] 0.31 [m/s] 0.38 [m/s] 0.24 [m/s]
# Laser scans 9779 9084 8051 11043 10387
# IMU samples 48888 45416 40251 55208 51930

Setup and data collection

The chosen outdoor space for testing the mapping and re-localization algo-
rithms is an oil refinery, in Italy, visible in the left panel of Figure 3.14. In
this experiment, we pulled the cart along five trajectories (see Table 3.8).

Differently from the indoor scenario, where the two trajectories were
almost identical, in the outdoor experiment, the fourth path is much longer
than the one used to create the map, as it extends far from the designated area.
Figure 3.15 left and right images correspond, respectively, to trajectories
1 and 4, making visible the difference between the two paths in terms of
covered space. Overall, eleven areas Ai, i ∈ {1, . . . , 11} have been selected
in the outdoor area, to be used in the evaluation of the algorithms.

Outdoor localization

Using again the first of the five trajectories, traj1, we are able to achieve
a full representation of the environment, as a dense 3D map. Figure 3.14
shows the map obtained using ART-SLAM, which contains about 1M points,
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Figure 3.15: Difference between the first and fourth trajectories of the outdoor experiment.

Figure 3.16: Translation re-localization errors of the outdoor experiment, using HDL [28]
and ART-SLAM [1]. The accuracy of both systems is noticeable.

the same as the one built during the indoor experiment. Stressing again the
importance of using graph-based algorithms for SLAM, it is remarkable how
comparing it with the indoor scenario, the outdoor experiment maintains
the same degree of accuracy, even if the trajectory is longer. This is also a
confirmation that the selected systems are scalable and efficient.

As stated in Section 3.2.2, we use the first trajectory to build the 3D map.
Then, the five trajectories are used for re-localization, obtaining multiple
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Figure 3.17: Rotation re-localization errors of the outdoor experiment, using HDL [28]
and ART-SLAM [1]. Again, both methods prove to achieve superior precision.

estimates of the robot pose (one for each laser scan). Figure 3.16 and
Figure 3.17 show, respectively, the translation and rotation re-localization
errors for all the four pairs of trajectories (1-2, 1-3, 1-4 and 1-5), for all the
testing areas (Figure 3.14). As for the indoor experiment, both HDL and
ART-SLAM, with the localization module, are proven to be accurate.

Differently from the indoor scenario, errors are slightly larger, probably
due to the noisy measurements, typical of outdoor environments, and the
unavailability of ground truth compensating re-positioning errors. Moreover,
the error distribution confirms that the precision of the systems does not
depend on the size of the paths, confirming that they are both scalable.

92



CHAPTER4
MCS-SLAM: Multi-cues and Multi-sensors

Fusion SLAM

As we have seen in the state-of-the-art chapter of the thesis, and in par-
ticular in Section 2.6, to combine the advantages of both laser and visual
SLAM systems, works in literature shifted their focus to hybrid approaches.
Nevertheless, there is no true sensor fusion, as data coming from sensors
of different natures are only used to support each other. To cope with this
issue, which is essential to further improve existing SLAM methods, we
developed a multi-cues and multi-sensors fusion SLAM algorithm, named
MCS-SLAM [3], which we describe in the following section.

4.1 MCS-SLAM

Both in Chapter 2 and Chapter 3, we have seen the importance of accurate
navigation and detailed map reconstruction, essential tasks in many real-
world applications. While before we focused only on LiDAR-based methods,
it is also opportune to remember that SLAM systems can also be classified
as vision-based, if the considered main sensor is a camera, and hybrid if
their input has multiple origins (usually in the form of images and clouds).
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Figure 4.1: From top to bottom: intensity, range, and normal images extracted from a point
cloud of the KITTI odometry dataset [143]. The images cover the field of view of the
LiDAR sensor used, i.e., 360 degrees horizontally and 26.8 degrees vertically.

In particular, sensor fusion techniques using heterogeneous data could
definitely allow for the improvement of the accuracy of existing SLAM
systems. However, not only sensor fusion is hardly achieved in literature,
but data association is most of the time explicit (as in ART-SLAM [1] or
ART-SLAM LOC), as it heavily depends on the type of data used.

Della Corte and Bogoslavskyi et al. [154] recently proposed a general
algorithm for multi-cue photometric registration of 3D point clouds, de-
signed without considering a specific sensor, nor a particular cue, which
represents information about sensor data. The method they proposed, to
perform odometry estimation rather than SLAM, uses multiple cues (see
Figure 4.1) from input data (either RGB-D images or LiDAR point clouds),
namely color and range (or depth), which are then used to compute normals.

By doing this, the algorithm avoids an explicit point-to-point data associ-
ation and is able to compute the transformation between viewpoints under
realistic disturbances from an initial motion guess. However, as the length
of the trajectory increases, the method drifts, being for odometry estimation
only (no form of loop detection is done). Moreover, the approach can only
handle one sensor at a time (e.g., RBG-D camera or LiDAR), and it is not
able to exploit common sensor suites installed on autonomous vehicles.

To explore the possibilities of sensor fusion and to extend the already
existing SLAM framework, consisting of both ART-SLAM and its local-
ization module, we proceeded with our Ph.D. program by developing an
extension of the work in [154] to multiple sensors, integrating it in the graph
SLAM backbone of ART-SLAM. The goal was to perform fast and accurate
multi-sensor and multi-cue SLAM, with the following contributions.

The proposed system, named MCS-SLAM (Multi-Cues Multi-Sensors
Fusion SLAM) performs tracking by integrating data coming from multi-
ple sensors while avoiding explicit data association. The method is also
capable of efficiently detecting and closing loops, using a multiple-step algo-
rithm, and it optimizes the estimated trajectory through the g2o optimization
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framework, allowing for the inclusion of corrective data, e.g., from IMU.
We first discuss related works in Section 4.1.1, to give a brief review of

hybrid SLAM methods in the literature. In Section 4.1.2 we give a high-level
description of the architecture of MCS-SLAM, followed by a discussion
about all of its modules. The pre-filterer is described in Section 4.1.3 along
with the cloud projector module, in Section 4.1.4. The way tracking is
performed is available in Section 4.1.5, followed by loop detection and pose
graph handling in Section 4.1.6 and Section 4.1.7, respectively. Lastly, in
Section 4.1.8 and Section 4.1.9 we describe the evaluation of the system.

4.1.1 Related works

To combine the advantages of visual and laser SLAM, the focus shifted
to hybrid systems, which couple the data coming from different sensors,
with the goal of achieving accurate results in real-time. The work in [155]
presented an RGB-D camera with LiDAR EKF SLAM, with the purpose of
tackling the issue of unsuccessful visual tracking. If visual tracking fails, the
LiDAR pose is used to localize the point cloud data of the RGB-D camera.

In Limo [156], LiDAR measurements are used for depth extraction, as 3D
points are projected on the corresponding RGB images, which are employed
later in keyframe-based bundle adjustment. Zhu et al. [157] developed a
3D laser SLAM system associated with a visual method to perform loop
detection through a keyframe-based technique, using visual bags-of-words.
The work in [158] used both visual and LiDAR measurements by first
running in parallel SLAM for each modality, and then coupling the data.

Hybrid systems give accurate results, but they do not truly target sensor
fusion, as one type of data is often used to improve the quality of an existing
system based on another type of data (e.g., point clouds to aid Visual SLAM
methods or images to improve LiDAR SLAM efficiency). The closest work
to sensor fusion is [159], where graph optimization is performed using a
specific cost function, considering both laser and feature constraints.

4.1.2 Architecture and overview

A high-level overview of the system architecture of the proposed system
can be seen in Figure 4.2. MCS-SLAM is made up of distinct modules, the
gray boxes in the figure, which represent the core of the system. The current
implementation of MCS-SLAM requires point clouds as mandatory input,
as loop closure involves scan matching between a pair of clouds.

Given an incoming laser scan, the first step is to process it, in the pre-
filterer and in the cloud projector. The first reduces the size of the cloud,
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Figure 4.2: High-level architecture of the proposed system, MCS-SLAM [3].

downsampling it, and it removes noisy elements, as in ART-SLAM [1]. The
filtered point cloud is used later for efficient loop detection, to correct the
estimated trajectory. The cloud projector, instead, converts the 3D point
cloud into two 2D images. One represents the ranges of all elements of the
point cloud, while the other displays their intensities.

The two images are used by the core component of the system, the tracker,
which estimates the current displacement of the robot by performing two
consecutive steps. First, pairs of images derived from one or multiple sensors
(e.g., two LiDARs, a LiDAR and a camera, an RGB-D camera and a LiDAR)
are processed in parallel and independently one from the other, to obtain
a rough estimate of the current motion. Then, these estimates are jointly
optimized to get the transformation that best satisfies all constraints.

The current pose estimate is sent, along with its corresponding filtered
LiDAR scan, to the loop detector module, which tries to efficiently find
loops between new and previous clouds, via scan-to-scan matching. Poses
and loops are used to build the pose graph, which is periodically optimized
to increase the accuracy of the poses. IMU and GPS data (pink boxes in
Figure 4.2) can also be integrated both in the tracker, to give it an initial
guess for improving the estimated motion, and in the pose graph builder.
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Figure 4.3: Coordinate system of a spinning LiDAR on the left, with ϕ being the azimuth
angle, and θ being the elevation angle. Given a 3D point, its 2D counterpart in the
corresponding spherical image is represented on the right.

4.1.3 Pre-filterer

The pre-filterer module is the same as in ART-SLAM. Its goal is to reduce
the number of elements of a point cloud, while also removing noisy data
and outliers. In MCS-SLAM, pre-filtering is not used for tracking, where
having dense point clouds is, instead, a benefit, but for loop closure. Indeed,
scan-to-scan matching is one of the steps followed to detect loops, and it is
essential to have reduced clouds, to achieve detection in reasonable time.

4.1.4 Cloud projector

As the name implies, the cloud projector module has the purpose of con-
verting a point cloud into 2D images, representing range and intensity.
Projection is achieved through the spherical projection model, which best
captures the characteristics of laser rangefinders. Spherical projection offers
several advantages, such as being able to capture the full field of view and
being able to maintain consistent point density across the whole projection.

The process of projecting point clouds from a spinning LiDAR sensor
into a spherical image involves converting the Cartesian coordinates of the
measurement points into spherical coordinates. Specifically, the process con-
verts each point in the point cloud represented by its Cartesian coordinates
[x, y, z], into spherical coordinates represented by [ϕ, θ, r]. This conversion
is illustrated in Figure 4.3. The ϕ coordinate corresponds to the azimuth
angle of the point in the XY plane, θ is the elevation angle from the positive
Z-axis, and r is the Euclidean distance from the origin. Spherical projection
is a way to capture the geometry of the sensor in a single image.

Let K be a camera matrix, where fx and fy specify respectively the
resolution of azimuth and elevation and cx and cy their offset in pixels, then
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the spherical projection of a 3D point P = [px, py, pz]
T is given by:

proj(P ) = K

 atan2(py, px)

atan2(pz,
√

p2y + p2x)

1

 . (4.1)

4.1.5 Tracker

Tracking, which follows short term data association, is the task of finding the
relative motion between two consecutive poses of the robot, independently
of the sensor(s) used. The tracker module operates in two consecutive
phases: standalone motion estimation and collective motion optimization.

The standalone motion estimation phase is done on all data coming
from multiple sensors, independently from each other. In particular, for
each sensor, the pipeline described in [154] is executed, to obtain multiple,
independent, rough estimates of the robot motion. As a consequence, con-
sidering S sensors, we are able to obtain S motion estimates by running the
algorithm presented in [154], in parallel (at least one thread for sensor).

This approach seeks to register either two observations with respect to
each other or an observation against a 3D model. Sensor observations are
normalized into a 2D representation, e.g., an image from a regular camera,
or a range image from a LiDAR (as explained previously in Section 4.1.4).
This representation consists in a multi-cue image, where each pixel con-
tains different types of information, i.e., light intensity, range (or depth)
information, and surface normals, as represented in Figure 4.1.

Each measurement is aligned to a model M = {Pi, i = 0, . . . , N}, for
which 3D information is available in the form of a cloud enriched with
the different cues. As in photometric error minimization approaches, the
method tries to iteratively minimize the pixel-wise difference between the
current multi-cue image I and the predicted image Î(M,X), the latter being
a multi-cue image obtained by projecting the model M onto a virtual camera
located at the estimated pose PX (occlusions in the model are handled with
depth/range buffers so that only the closest point to the LiDAR sensor is
kept). X is the transformation matrix that transforms the points of M from
the global into the local camera coordinate system.

98



4.1. MCS-SLAM

The goal is to find the best transformation X , such that:

X∗ = argmin
X

∑
u,v,c

∥∥∥Îcu,v(M,X)− Icu,v

∥∥∥2

Ωc

= argmin
X

∑
u,v,c

ecu,v(M,X)T Ωc ecu,v(M,X), (4.2)

where ecu,v is the error at pixel (u, v) between the predicted value Îcu,v and
the measured value Icu,v for a particular index c associated to a cue, and
Ω = diag({Ωc}) is a diagonal information matrix used to weight the cues.

Instead of solving Equation 4.2, the approach in [154] re-formulates it as
a linear system, where a perturbation ∆x is calculated iteratively, as

X∗ = X ⊕∆x, (4.3)

where X is an initial guess of the transformation and ∆x is a vector with six
elements, corresponding to the difference in translation and orientation.

This formulation comes from the Taylor expansion of the error described
above, combined with the just described Equation 4.3:

ecu,v(X ⊕∆x) ⋍ ecu,v(X) +
δecu,v(X ⊕∆x)

δx

∣∣∣∣
x=0

∆x (4.4)

= ecu,v(X) + J c
u,v(X)∆x. (4.5)

The minimization problem then becomes

∆x∗ = argmin
∆x

∑
u,v

wu,v

∑
c

∥∥ecu,v(X) + J c
u,v(X)∆x

∥∥2

Ωc , (4.6)

with wu,v being a regularization weight. This, in turn, is equivalent to solving
the linear system H∆x∗ = b, with the terms H and b, given by

H =
∑
u,v

wu,v

∑
c

J c
u,v(X)TΩcJ c

u,v(X) (4.7)

b =
∑
u,v

wu,v

∑
c

J c
u,v(X)TΩcecu,v(X). (4.8)

This procedure is done incrementally and on multiple scales of the input 2D
images, to find the best ∆x∗, while avoiding falling into local minima.

As previously stated, in MCS-SLAM, this pipeline is executed once
for each sensor, in parallel, such that data coming from sensor i generates
a motion estimate transi. Once all estimates are computed, the tracker
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proceeds to the next phase, namely the collective motion optimization, taking
also into account the rotational offsets of the various sensors.

First, all motion estimates associated with the multiple sensors are
weighted and summed, with each weight wi being inversely proportional to
the re-projection error previously computed as part of the procedure to find
transformation transi. In this way, a single collective motion of the robot is
obtained, combining the tracking information associated with each sensor.

This unique transformation is then fed again to each standalone motion
estimation pipeline, as an initial guess, and optimized only for one iteration.
These two steps form a single iteration of the collective motion optimization
and are continuously repeated, until convergence, or up to N times.

The tracker of MCS-SLAM adopts a keyframe-based approach to esti-
mate the trajectory of the robot, as in ART-SLAM. MCS-SLAM, differently
from the majority of SLAM systems in literature, works using two types
of keyframes: one for tracking and one for loop closure and pose graph
construction and optimization, independently one from the other.

Keyframes associated with the tracker hold the current estimated position
of the robot and the corresponding multi-cue images. For each sensor i,
we keep track of the current keyframe Ktracker

i , as it has no other purpose
than to avoid useless computations (as for the scan-to-keyframe matching
in ART-SLAM). Keyframes related to the other modules (i.e., loop closure
detection and pose graph handling) contain a point cloud and the pose
(odometry) estimated by the tracker, along with the timestamp of the cloud,
accumulated distance from the beginning and, if available, camera images.
We refer to these keyframes with Kgraph

j , since they are computed following
the collective optimization phase and are mainly used in the pose graph.

The first tracker keyframe, for each sensor, and the first graph keyframe,
correspond to the first point cloud received by the system. Consecutive
keyframes (this applies independently from the type) must satisfy at least
one of the criteria described for ART-SLAM, in Section 3.1.4.

Keyframes Ktracker
i correspond to very low thresholds, as we want to

compare images close in time, to avoid accumulating initialization errors.
In our experiments, we use ∆trans and ∆orientation of, respectively,
50 centimeters and 1 degree. The poses obtained by the tracker after the
collective optimization are then filtered through higher thresholds, to obtain
multiple graph keyframes Kgraph

j , which are stored in the pose graph. In our
experiments, we set ∆trans to 5 meters and ∆orientation to 5 degrees.
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4.1.6 Loop detection

As we have already seen, loops are additional useful constraints to insert
into the pose graph, allowing the correction of drifts and estimation errors.
In the current MCS-SLAM implementation, the detection of loops is done
the same way as in ART-SLAM. It is strictly associated with the availability
of point clouds, which are mandatory inputs in the current implementation
of the system, and it involves only the Kgraph keyframes. In the following,
we drop the suffix graph, referring to keyframes only as Kj .

Whenever a keyframe Kquery is created, it is compared with all the other
keyframes, which are candidates for loop closure. To make loop detection
scalable, odometry-based filtering is performed. A pair Kquery and Kcandidate

is kept only if the two keyframes correspond to estimated poses far in time
but close in location. If Kquery and Kcandidate satisfy these constraints, they
probably correspond to a loop in the trajectory.

Once all the candidates have been discovered, they are compared using
the approach described in [160], which converts the corresponding clouds
into a bird-eye view grid and selects the pairs with the most similar cells. At
the end of this step, only k candidate pairs for loop detection remain.

These few candidates are then compared using scan-to-scan matching,
to find the alignment between the point clouds of each pair. Then, all
the transformations obtained are confronted. If found, the transformation
corresponding to the smallest distance and highest accuracy represents a
loop, which is then added to the pose graph as a new constraint.

4.1.7 Pose graph building and optimization

As ART-SLAM, MCS-SLAM is a graph SLAM [139] system, where the
poses of the robot are modeled as nodes in the pose graph, and edges rep-
resent spatial constraints resulting from tracking or measurements coming
from different sensors, e.g., IMU or GPS. Moreover, each node j is asso-
ciated with the corresponding keyframe Kgraph

j and edges can be added
also when performing loop detection and closure, between non-consecutive
nodes in the graph. Periodically, the pose graph is optimized to best satisfy
the constraints provided by the measurements associated with each edge.

4.1.8 Experimental validation of the system

MCS-SLAM [3] has been compared against four methods for point cloud-
based SLAM (LeGO-LOAM-BOR, which is an improved variant of LeGO-
LOAM [32], LIO-SAM [115], HDL [28] and the baseline, ART-SLAM [1]),
and two vision-based systems (ORB-SLAM2 [53] and ORB-SLAM3 [75]).
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Figure 4.4: Range images obtained through the spherical projection of a point cloud split
in two, from City Sequence 05 of the KITTI raw dataset [144]. The image on the left
corresponds to the environment in front of the LiDAR acquiring the scan, while the
image on the right represents the part of the scene behind the sensor.

Figure 4.5: From left to right, RGB image, sparse range image obtained through LiDAR-
to-camera projection and enhanced range image, from city Sequence 05 of the KITTI
raw dataset [144]. The enhancement is achieved through simple bilinear filtering.

IMU data, which is mandatory in LIO-SAM, is also used in ART-SLAM,
to deskew point clouds and to enforce rotational constraints in the pose
graph. We evaluate MCS-SLAM in two scenarios coming from the KITTI
dataset [143,144], corresponding to a short path without loops and a medium
sequence with one closure at the end of the trajectory.

To test the proposed system, we run it under five different conditions. In
the first case, from a single point cloud covering the surrounding environ-
ment (360 degrees horizontal field of view), we generate a single multi-cue
image, having no color information (meaning that we consider only range
and normal cues). In the second and third scenarios, we split the point cloud
in two and use only the points, respectively, in front and behind the LiDAR,
covering a horizontal field of view of 180 degrees each, obtaining the range
images represented in Figure 4.4. It should be noticed that the first three
experimental campaigns involve only a single sensor, and they are used to
evaluate the SLAM part of MCS-SLAM.

The fourth case considers the point clouds, from the second and third
scenarios, as coming from two different sensors. This way, for each input,
the standalone motion estimation is performed, followed by the collective
motion optimization, described in Section 4.1.5 (differently from the first
three cases, where only the standalone motion estimation is needed).

Lastly, in the fifth scenario, we project LiDAR data onto the correspond-
ing RGB image, obtaining a large multi-cue image (color and range). As it
can be seen in the central picture of Figure 4.5, the projected cloud is sparse
w.r.t. the colored image. For this reason, we first apply windowed bilateral
filtering on the sparse range image, then we fill each column with the highest
range value in them, obtaining the right picture of Figure 4.5. The fourth
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Figure 4.6: Comparison between the trajectories estimated by LeGO-LOAM-BOR (derived
from LeGO-LOAM [32]), HDL [28], ART-SLAM [1] and the proposed MCS-SLAM [3]
(in the multiple sensors scenarios), on Sequence 07 of the KITTI odometry dataset [143].
The other methods considered are not included, to avoid overlapping.

and fifth experimental campaigns involve two sensors (two pseudo-LiDAR
and a LiDAR coupled with a camera, respectively), and they are used to
evaluate the data and sensor fusion capabilities of MCS-SLAM.

As always, experiments are tested on a 2021 XMG 64-bit laptop with
Intel(R) Core(TM) i7-11800H CPU @ 2.30GHz x 8 cores, each with 24576
of cache size, and no GPU has been used in the comparison.

4.1.9 Comparison and results

As done for ART-SLAM, to evaluate the systems we compute the absolute
trajectory error (ATE), i.e., the difference between coordinates of the points
belonging to the true and the estimated trajectories, and show the processing
time, per frame, of the most important modules of MCS-SLAM.

Figure 4.6 shows some of the estimated trajectories on Sequence 07 of
the KITTI odometry dataset [143]. All the evaluated methods present a high
degree of accuracy, following the ground truth trajectory and easily detecting
the loop at the end of the path. Table 4.1 further details the obtained results,
as it represents the mean, root mean squared error (RMSE), and standard
deviation (STD) of the absolute trajectory error, in meters.

The proposed MCS-SLAM presents an accuracy within an acceptable
threshold of about 1.8 meters, which is similar to the LeGO-LOAM-BOR.
This result was expected, as tracking performed through MCS-SLAM loses
precision due to the projection of point clouds in 2D images, which are later
back-projected in 3D clouds, as described in [154]. Moreover, all results
associated with the five considered scenarios behave as expected, with the
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Table 4.1: Computed ATE on Sequence 07 of the KITTI odometry dataset [143].

ATE [m] MEAN RMSE STD
LeGO-LOAM-BOR 1.604 1.807 0.832

LIO-SAM (mandatory IMU) 0.509 0.675 0.351
HDL 0.954 1.253 0.767

ART-SLAM (with IMU) 0.343 0.366 0.127
ORB-SLAM2 1.189 1.326 0.585
ORB-SLAM3 1.310 1.527 0.785

MCS-SLAM (one LiDAR) 1.679 2.219 1.137
MCS-SLAM (one LiDAR, front) 1.894 2.392 1.215
MCS-SLAM (one LiDAR, back) 1.917 2.421 1.054

MCS-SLAM (two LiDAR) 1.714 1.892 0.798
MCS-SLAM (camera + LiDAR) 2.822 2.924 1.957

Table 4.2: Computed ATE on city Sequence 05 of the KITTI raw dataset [144].

ATE [m] MEAN RMSE STD
LeGO-LOAM-BOR 1.094 1.169 0.409

LIO-SAM (mandatory IMU) 0.493 0.338 0.280
HDL 0.893 0.912 0.476

ART-SLAM (with IMU) 0.746 0.814 0.326
ORB-SLAM2 5.136 6.141 3.366
ORB-SLAM3 5.174 6.178 3.376

MCS-SLAM (one LiDAR) 0.679 0.807 0.437
MCS-SLAM (one LiDAR, front) 0.561 0.639 0.305
MCS-SLAM (one LiDAR, back) 0.708 0.806 0.383

MCS-SLAM (two LiDAR) 0.578 0.659 0.317
MCS-SLAM (camera + LiDAR) 1.341 1.551 0.892

one LiDAR case being the most accurate, followed by the fusion of front
and back. The camera plus LiDAR setup is less accurate, as range image
densification is achieved through simple bilinear filtering and completion.

To evaluate the accuracy when loop closures are not available, we also
considered a short sequence. As the dataset corresponding to raw odometries
does not have a ground truth, we use, instead, GPS data, provided along
with the point clouds and RGB images. Figure 4.7 represents the estimated
trajectories on city Sequence 05 of the KITTI raw dataset [144].

As for the medium-length sequence, all the methods considered for
evaluation tightly follow the trajectory, even if no loop closure is available
to correct drifts, even though for shorter sequences there is not enough room
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Figure 4.7: Comparison between the trajectories estimated by LeGO-LOAM-BOR (derived
from LeGO-LOAM [32]), HDL [28], ART-SLAM [1] and the proposed MCS-SLAM [3]
(in the multiple sensors scenarios), on city Sequence 05 of the KITTI raw dataset [144].
The other methods considered are not included, to avoid overlapping.

to accumulate such errors. Table 4.2 shows the ATE statistics, in meters. As
before, all systems show good results, with the proposed method performing
almost as well as the method with the best accuracy (with a difference of
about ten centimeters). These results are also motivated by the fact that the
trajectory is relatively simple, almost straight with very smooth turns.

Among all the systems, only HDL is not able to run real-time, being
two to three times slower than the data acquisition rate (which is one frame
every 100 milliseconds, i.e., 10 Hz). LeGO-LOAM-BOR, LIO-SAM, ORB-
SLAM2, and ORB-SLAM3 are designed to perform real-time SLAM, with
LIO-SAM being even faster. Moreover, as described in Section 3.1.10, also
ART-SLAM is able to achieve real-time results, even on long sequences.

Table 4.3 shows the average processing time, per frame, of MCS-SLAM,
in all five scenarios considered in the evaluation, for both sequences. MCS-
SLAM, despite being less or as accurate as the other methods, is able to
run more than five times faster than the data acquisition rate. It should be
noticed that tracking is performed in parallel to the whole loop detection and
graph construction and optimization procedure, proving, once again, that
MCS-SLAM can be faster than real-time and used on low-end devices.

Intuitively, the split single-sensor scenarios (back and front) are associ-
ated with the lowest runtime, as we are dealing with small images (half the
width of the image obtained in the one LiDAR case). The processing time
associated with the camera plus LiDAR setup may surprise, but it is due to
the densification of the projected point cloud onto the RGB image.

Lastly, we include a visual evaluation of the map obtained by MCS-
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Table 4.3: Comparison of the processing time [ms], per frame, of the various modules,
between the variants of MCS-SLAM [3].

Time [ms] Seq. Processing Tracker Loop det. Optimization
base (one LiDAR)

07

10.172 22.648 10.226 1.320
base (one LiDAR, front) 8.907 13.893 10.226 1.320
base (one LiDAR, back) 8.907 13.753 10.226 1.320

base (two LiDAR) 9.371 16.393 10.226 1.320
base(camera + LiDAR) 149.823 19.712 10.226 1.320

base (one LiDAR)

City

10.172 22.648 6.819 0.132
base (one LiDAR, front) 8.907 13.597 6.819 0.132
base (one LiDAR, back) 8.907 13.642 6.819 0.132

base (two LiDAR) 9.371 17.241 6.819 0.132
base (camera + LiDAR) 155.712 21.712 6.819 0.132

Figure 4.8: Map obtained by MCS-SLAM [3] with two LiDAR, on Sequence 07 [143].

SLAM (Figure 4.8), in the two LiDARs scenario, of Sequence 07 of the
KITTI odometry dataset [143], proving the accuracy of the method.
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CHAPTER5
OSM-SLAM: SLAM with OpenStreetMap

Priors

Simultaneous localization and mapping systems are increasingly becoming
more accurate and less computationally demanding, independently of the
type (e.g., laser SLAM, visual SLAM, and so on). Nevertheless, with the
rise in Earth-level mapping systems and services, the availability of prior
maps is resulting in a new standard, in many applications (e.g., mobile).

Not only these prior maps could be efficiently integrated into existing
SLAM systems to improve their accuracy, but they could also be exploited
to cope with common issues present in the majority of works, such as the
need to re-localization in case of sensor failure or lack of input data. For
these reasons, we developed a SLAM system aided with OpenStreetMap
prior maps, named OSM-SLAM, described in the following section.

5.1 OSM-SLAM

SLAM methods address the problem of constructing a model of the environ-
ment surrounding the robot, i.e., the map, while simultaneously estimating
its pose within it. As we have seen in the previous chapters of the thesis,
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state-of-the-art systems are capable of building a map of the environment
using only equipped LiDAR sensors and do not exploit existing prior maps,
which can be integrated to achieve better localization. Moreover, temporary
loss of input data, e.g., caused by a sudden sensor failure, proves to be a
challenge for almost all methods, as it requires efficient re-localization to
continue the whole trajectory estimation and mapping process.

To address these problems, we moved from the idea of multi-sensors
SLAM, as described in Chapter 4, and returned to the base of our framework,
being accurate, real-time, and laser-based. The fourth step of our Ph.D.
program consisted of the development of an extension of ART-SLAM [1]
(meaning that it is used as the baseline) in which we include information
derived from OpenStreetMap maps, hence the name OSM-SLAM [4].

In particular, we improved the pose graph construction and optimization,
achieved through the g2o framework [141], adding knowledge about the
buildings surrounding the robot, at a given location. Our work stands from
other approaches leveraging on external maps as we add buildings to the pose
graph, which represents 3D information, as 2D nodes, actively participating
in the optimization phase. This allows to simultaneously correct both the
estimated trajectory, via LiDAR tracking, and the buildings themselves, in
case their OSM placement is not coherent with at least one input scan.

It should also be noted that, in our work, the pose graph is built using
nodes belonging to different dimensions (2D for buildings and 3D for robot
poses), while in the majority of works, all data are brought in the same
dimension, usually 2D. OSM-SLAM is able to cope with three different
scenarios: buildings are fixed and only the estimated trajectory is corrected
(Prior SLAM), buildings surrounding a robot pose are moved by the same
rigid motion while correcting the estimated trajectory (Rigid SLAM), and
every single building is roto-translated with respect to a single input scan
while constraining the corresponding robot pose (Non-rigid SLAM).

We first discuss related works in Section 5.1.1, to give a brief insight into
existing systems for LiDAR-based SLAM using OpenStreetMap data. Then,
we explain OSM-SLAM in Section 5.1.2, going into more detail about its
implementation. In particular, Section 5.1.3 and Section 5.1.4 are dedicated
to the explanation of the processing steps needed to convert point clouds
and OSM maps into a suitable form for successive alignment. Then, in
Section 5.1.5 and Section 5.1.6 we describe three implemented approaches
in OSM-SLAM, namely Prior SLAM, Rigid SLAM, and Non-rigid SLAM.
Lastly, Section 5.1.7 and Section 5.1.8 are dedicated to the experimental
validation of our system, which includes a discussion about the influence of
the quality of the maps on the localization and mapping approach.
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5.1.1 Related works

To further improve the accuracy in SLAM systems, over the past years, many
works have been proposed, which exploit already available pre-computed
2D maps, coming from external mapping services, such as Google Maps,
OpenStreetMap [161] (OSM), or maps from the local land registry.

In particular, information from OSM seems to be the best choice, in terms
of availability, as it requires no permissions or tokens to retrieve 2D data.
Many systems relying on OSM include maps into the observation model
of a Monte Carlo localization, as in [162], in which buildings are extracted
from the 2D map as a set of lines and are used to compute the expected
range measurement at a given pose of the robot, or as in [163], where the
trajectory of the robot is aligned w.r.t. the road network.

A more recent graph SLAM system, proposed by Vysotska et al. [164],
directly related LiDAR measurements with the data associated with buildings
coming from OSM. This alignment is included in the pose graph, in the
form of a localization error w.r.t. the available OSM map. A disadvantage
of this approach is that a precise alignment between buildings and LiDAR
scans is required in order to get good accuracy on the estimated robot poses.

However, alignment becomes difficult when there is a lot of clutter in
the environment, typical of urban areas, or in zones when there are few
buildings surrounding the robot (in the OSM map, not necessarily in the
physical world). Other problems arise when buildings are not correctly
positioned in OSM, caused by human errors or wrong annotations when
creating the 2D maps. Lastly, the OSM map could also not be representative
of the real environment, as the topology may change over time.

Instead of directly using OSM maps, Naik et al. [165], proposed a graph-
based semantic mapping approach for indoor robotic applications, which
extends OSM with robotic-specific, semantic, topological, and geometrical
information. They introduce models for basic structures, such as walls, doors,
or corridors, which are semantically grouped into a graph. Its hierarchical
structure is then exploited to allow accurate navigation, whose accuracy is
compatible with grid-based motion planning algorithms.

OpenStreetMap provides many advantages, such as global consistency, a
heavy-less map construction process, and a wide variety of publicly available
road information. The work in [166] presented an autonomous navigation
pipeline that exploits OSM information as environment representation for
global planning. To overcome one major issue of OSM maps, i.e., low local
accuracy, the authors proposed a LiDAR-based Naive-Valley-Path method,
which exploits the idea of valley areas to infer the local path always further

109



Chapter 5. OSM-SLAM: SLAM with OpenStreetMap Priors

from obstacles. This allows navigation through the center of trafficable
areas, following the shape of the road, independently of OSM errors.

Cho et al. [167] developed a vehicle localization (not SLAM) method
purely based on OSM maps. Their method generates OSM descriptors by
calculating the distances to buildings from a location in OpenStreetMap at a
regular angle, and LiDAR descriptors by calculating the shortest distances
to building points from the current location at a regular angle. Comparing
the OSM descriptors and LiDAR descriptors yields a highly accurate vehicle
localization result. Compared to methods that use prior LiDAR maps, the
algorithm presents two main advantages: vehicle localization is not limited
to only places with previously acquired LiDAR maps, and the method is
comparable, in terms of precision, to LiDAR map-based approaches.

Following the ideas of [164] and [167], in the following we introduce
OSM-SLAM [4] and show how the issues currently present in state-of-the-art
approaches leveraging OSM information have been faced, providing a robust
yet flexible system for 3D LiDAR SLAM in urban cluttered environments.
Besides handling clutter and possible errors in the OSM information, OSM-
SLAM is also able to perform re-localization using OSM maps as prior 2D
maps, to handle possible situations where sensor data is lost for brief time
periods (e.g., sensor failure, disconnection, or other issues).

5.1.2 System overview

An overview of the proposed method is presented in Figure 5.1. As already
stated, OSM-SLAM is built upon the first system developed in our Ph.D.
program, ART-SLAM [1], with which it shares the majority of modules used
to perform straightforward LiDAR-based graph SLAM.

An input laser scan is processed to remove noise, reduce its size, and
possibly deskew it. The new cloud is then used to perform scan-to-scan
matching, estimate the robot motion, and possibly detect the ground plane
to be later integrated into the pose graph as height and rotational constraints.
As for ART-SLAM, being keyframe-based, the proposed system extracts,
from the tracker module, only a few odometry estimates (depending on the
current rotation, translation, and time gap w.r.t. previous scans). These
estimates, along with corresponding point clouds, form a keyframe and are
used to find loops in the trajectory and to build the pose graph.

Before the optimization of the pose graph is performed, we introduce
a new pipeline, to allow a direct association between point clouds and
buildings derived from OSM data. The idea behind this pipeline is that
by aligning a prior map with a LiDAR scan, one can obtain meaningful
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Figure 5.1: Architecture of the proposed system. The majority of core modules come from
ART-SLAM [1], while our improvements can be found in the pose graph builder, and in
the new module OSM MAP BUILDER, which handles OpenStreetMap data.

information about the pose of the robot (as the LiDAR scan is associated
with it), w.r.t. the features present in the map (e.g., global coordinates of
elements within it, like buildings), and vice-versa. A high-level scheme of
the approach is represented in Figure 5.2. Once a keyframe, obtained from
the front-end of the SLAM system, is inserted in the pose graph, it is ready
to be given as input to the whole OSM data association procedure.

Odometry and 3D point cloud related to the keyframe considered are
processed to extract a 2D map of the buildings, while odometry and optional
GPS data (only one datum in the whole trajectory is required to make the
method work, possibly at the beginning) are used to download and parse
OSM data, to be converted in a 2D point cloud representing the buildings
surrounding the robot. Once the buildings and the map from the LiDAR scan
are retrieved, ICP [13] scan matching is performed, to obtain a first rough
estimate of the rigid motion that should move the robot towards its true pose
in the OSM map. This procedure is named Rigid SLAM, as alignment is
done at a local level, involving all surrounding buildings.

Alignment can also (optionally) be repeated, using as an initial guess
the just computed transformation, for each building, independently of one
another. This allows to obtain more precise information about their displace-
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Figure 5.2: High-level pipeline describing the contribution of the OSM-SLAM. The whole
procedure happens during the pose graph construction before optimization takes place.

ment, and possible errors in the OSM map. As, following this approach,
buildings now exist as separate entities w.r.t. the pose of the robot, differ-
ently from the previous case where the computed transformation was the
same for all buildings surrounding it, the name given is Non-rigid SLAM.
Independently from the selected approach, i.e., Rigid or Non-rigid, all the
constraints of the type {robot pose, building} are added to the pose graph.

It should also be noticed that buildings can be fixed during the graph
optimization procedure, especially if it is known that the used 2D OSM map
is precise and accurate. This solution, which takes the name of Prior SLAM,
has the advantage of increasing the overall performance w.r.t. the non-fixed
buildings counterparts, but it also maintains a relationship between buildings
and pose of the robot, exploited in the optimization step. In other words,
buildings are not modified but still constrain the estimated trajectory.

5.1.3 Point cloud processing branch

LiDAR scans cannot be directly aligned with a 2D prior map represent-
ing buildings. First, the point cloud is 3-dimensional, different from the
prior map, leading to convergence errors, assuming that the scan matching
procedure even starts. Then, LiDAR scans represent a richer environment
than the one given by OSM maps, including many elements of disturbance,
such as vehicles, road signs, fences, small walls, and even the ground itself.
Lastly, using a whole point cloud would be wasteful, needing too many
computational resources, due to the complexity of scan matching.

To overcome these problems, we propose a small sequence of pre-
processing operations, to be applied on an input point cloud, with the goal
of obtaining a 2D map of the buildings, extracted from it (blue box of Fig-
ure 5.2). As a first step, we remove all non-vertical and non-planar elements
of the cloud, as they should not be part of the final map. This is achieved
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through the iteration of a slightly modified version of RANSAC, i.e., Ran-
dom Sample Consensus Model for Parallel Planes, to estimate all planes in
the cloud which normal is perpendicular (meaning that the plane is parallel)
to the normal to the ground, within a threshold angle. In our experiments,
we consider a maximum value of 10 degrees, above which a plane is no
longer considered a wall, to account also for errors in the LiDAR scans.

As a second step, we filter the obtained point cloud to only consider
points above the LiDAR horizon. Indeed, it is very likely to find false walls
between the ground and the considered height threshold, including small
fences, cars, road signs, and so on. This way, we further de-clutter the point
cloud, leaving in it almost only 3D points associated with walls and high
vertical planes, mostly representing the contours of buildings in the cloud.

To perform accurate scan matching with a map derived from OSM, as a
third step, we then transform the point cloud into the map coordinate frame,
using the estimated corrected odometry (meaning that it follows a previous
optimization, to take into account possible adjustments).

Once transformed, the point cloud is projected from 3D to 2D, onto the
ground plane z = 0. At this point in the pipeline, the point cloud obtained is
already usable to perform scan matching, having a similar representation to
the OSM map. Nevertheless, we want to further clean up the 2D cloud, so,
as a last step, we perform some noise filtering and outlier removal, using a
radius search algorithm based on a KD tree representation of the cloud.

The blue box of Figure 5.2 follows the procedure described above, show-
ing the initial point cloud to the left and the processed buildings map to
the right. Thanks to this pre-processing, we are able to obtain great data
reduction, while simultaneously refining more and more an initial scan to
better fit our alignment purposes. However, the iterative RANSAC proves
to be a bottleneck in the pipeline, as it involves a continuous search in the
initial cloud. We believe that this step can be interchanged with equivalent
methods, which are beyond the scope of this thesis, e.g., deep learning-based
3D point cloud segmentation or advanced forms of 3D clustering.

5.1.4 OSM buildings map creation branch

Data downloaded from third-party mapping services such as OpenStreetMap
do not come already in the form of point clouds. Instead, they are given
in a specific data format and structure, typical of many systems outside
the field of robotics. For this reason, it is mandatory to collect OSM data
surrounding the robot position and process it, to create a suitable point cloud
representation that allows fast and efficient scan-to-scan 2D matching.
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OSM implements a conceptual data model of the physical world based
on components called elements. There are three types of elements: nodes,
ways, and relations. All elements can have one or more associated tags. A
node represents a point on the surface of the Earth and it comprises at least
an ID number and a pair of high-precision coordinates corresponding to the
latitude and longitude of the point. A way is an ordered list of nodes that
define a poly-line. It can be used to represent linear features, such as roads
or rivers, or the boundaries of areas and polygons (closed way).

A relation is a multi-purpose data structure that tells the relationship
between two or more data elements, being an ordered list of nodes, ways,
and other relations. Lastly, a tag describes the meaning of the particular
element to which it is attached. It is made up of two fields: a key and a value,
both represented as strings of characters. The key describes the meaning of
the tag, such as “highway", and it is unique. The value is the description of
the key, such as “residential", and it gives more detailed information.

It is possible to access and download map data from the OSM dataset in
many ways. The most convenient, and suitable for the purpose of our work,
is the Overpass API. It is a read-only API that allows accessing parts of the
OSM map data selected in a custom way, given search location (latitude and
longitude), radius, and optional filters (e.g., which elements to search for).
It allows the client to send a query through an HTTP GET request to the
API server, which will send back the dataset that resulted from the query.

There exist two languages in which to write a query: Overpass XML or
Overpass QL. The Overpass QL syntax is more concise than Overpass XML
and is similar to C-like programming languages. On the other hand, the
Overpass XML syntax is safeguarded, because it uses more explicit named
parameters than QL. We chose the QL language because it is easier to use.
The response can also be in different formats, such as OSM XML, OSM
JSON, custom templates, and pretty HTML output. In this case, we chose to
get the data in the OSM XML format, as it can be parsed in an efficient way.

Figure 5.3 shows an XML response, following a query to the Overpass
API. Aside from tags of the header, other elements inside the response
are nodes and ways, as described above. In particular, inside the way, nd
elements are specified, whose attribute ref coincides with the id of a node
belonging to it. As the tags suggest, the object represented by the way in the
response is a building, as we are interested in such structures to later align
them with LiDAR scans associated with the estimated keyframes.

As a first step, to query the Overpass API and find the buildings sur-
rounding the robot, we need a position to center the search of buildings. In
fact, the query has the following structure: (way["building"](around: radius,
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Figure 5.3: Example of an OSM XML response, following a query to the Overpass API.
The structure described in this response is a building, as can be seen by its tags.

latitude, longitude);); (._;>;); out;, which retrieves all buildings annotated
in a certain area, specified by a radius centered in a given position.

As we have seen before, the geographic position in longitude and latitude
coordinates is required. GNSS data is not always available, or even reliable,
as it may happen in complex scenarios (due to errors caused by the Urban
Canyon effect) or tunnels. For this reason, the pose, estimated through
tracking, associated with the considered keyframe is used as the geographic
location to query the Overpass API and download buildings.

The pose used is the same as mentioned in Section 5.1.3 when converting
the LiDAR scan from local to map coordinate frame. Nevertheless, at least
one GNSS datum is required to give a rough estimate of where, in the world,
the robot is located. This value serves as the origin of the map, and it is
used to convert both robot-estimated poses and buildings of OSM from
Longitude-Latitude-Altitude to East-North-Up (ENU) coordinates.

From this query, we are able to obtain a list of buildings surrounding
the estimated pose, of the keyframe, in the format described above. This
response is then parsed, to form a point cloud for each building, containing
the 2D points representing its corners, referenced w.r.t. the GNSS origin
(meaning that the corners are expressed in ENU coordinates, easier to
work with). Given the corners, for each building, we interpolate its edges,
generating 100 to 1000 points for each one, obtaining a structured and refined
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Figure 5.4: Example of alignment between the 2D buildings map from OSM (pink) and
the 2D map extracted from the LiDAR scan (orange). The aligned point cloud (blue)
correctly overlaps the two maps, correcting the estimated trajectory of the robot.

2D cloud. Lastly, all the point clouds associated with the various buildings
are merged, to form an accurate 2D map of the buildings surrounding the
robot. This map is now ready to be matched against the map computed in
the point cloud processing branch, previously described in Section 5.1.3.

5.1.5 Data association - Rigid SLAM

Following the procedures described in Section 5.1.3 and Section 5.1.4, OSM-
SLAM is able to obtain, starting from the pose associated with a keyframe
and the corresponding point cloud, a rough 2D map that contains the visible
edges of the buildings surrounding the robot and a refined 2D map formed
by the contours of all buildings, derived from OSM data collected at the
position of the robot in that time instant and location.

These two point clouds are matched using the ICP algorithm, fine-tuned
to obtain very accurate alignments. Figure 5.4 shows the result of this
alignment: the 2D map extracted from the LiDAR scan (orange) is matched
against the OSM map (pink), obtaining an accurate transformed point cloud
(blue, clearly overlapping the map derived from OSM, as it should). Now
that the transformation is computed, we need to add this constraint to the
pose graph. Figure 5.5 can be used to understand the insertion of new
elements in the pose graph, including buildings, described as follows.

Given a building Bi, we always set its reference frame in the corner with
the lowest x value, in ENU coordinates. PBi

j is the 2D pose of the said
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Figure 5.5: First, we find the correct pose of the robot P̂j , w.r.t. OSM buildings map. Then,
we compute the displacement between P̂j and the pose of the building, PBi

j .

corner when associated with keyframe j (the same building can be seen by
multiple keyframes, but it has only one associated pose, i.e., the one that best
satisfies all pose graph constraints). Building Bi is inserted in the pose graph
as a node, and its pose corresponds to PBi

j . In particular, the translation
part coincides with the associated ENU coordinates of the reference corner,
while the rotation is the 2-by-2 identity matrix, meaning that the local frame
of the building is oriented as the ENU frame.

Given the estimated pose of the robot Pj , again related to keyframe j,
to which correspond a node in the pose graph, we would like to associate
it with the building node Bi, through some sort of measurement. Let P̂j

be the correct pose of the robot w.r.t. the OSM map. Ideally, Pj = P̂j ,
which means that the current estimated pose of the robot is also the correct
pose w.r.t. OSM. In practice, this does not happen, and the scan matching
algorithm would return a rigid transformation between the buildings map
and the processed LiDAR scan. We name this transformation P̂jTPj

, as it
moves the estimated pose towards the correct one, such that:

P̂j =
P̂j TPj

∗ Pj. (5.1)

Now that we have an adjusted value of the pose of the robot w.r.t. the
buildings map of OSM, we are able to find the rigid motion between the
corrected keyframe and the pose of the associated building Bi, computed as:

P
Bi
j TP̂j

= PBi
j ∗ P̂−1

j . (5.2)
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This transformation suggests how rotated and translated are, w.r.t. each
other, the pose of the building (corner), and the estimated pose of the robot.
The constraint is inserted into the pose graph as an edge between the two
corresponding nodes and is later used in the optimization phase to adjust
and correct the poses associated with the nodes. To better understand this
concept, one can think, again, at the ideal case, where Pj = P̂j .

What happens in the pose graph is that nodes and constraints already
satisfy an equality with no measurement error, as there is no displacement
between the estimated and correct pose (same by assumption). However,
this scenario does not happen, and the given measurement yields some
information about the true displacement between the robot pose and the
building pose, which is later satisfied and corrected by the optimizer. In
other words, we try to align the LiDAR scan with the contour of the building.

The whole procedure takes the name of Rigid SLAM, as it always esti-
mates a rigid motion between the considered keyframe and the buildings,
considered as a whole, surrounding the associated robot pose. When inserted
in the pose graph, all buildings are treated equally, as the same transformation
P̂jTPj

is used to find the measurements needed to characterize the constraint,
as previously described. Nevertheless, consecutive keyframes may lead to
different transformations for the same building, making the Rigid SLAM
approach only “rigid" when considered w.r.t. a single keyframe.

Moreover, one can decide to fix the poses of the buildings, if it has the
prior knowledge that the OSM map is mostly precise and correctly annotated.
In this case, which takes the name of Prior SLAM, the poses associated with
the corners of buildings are not modified during the optimization procedure.
However, their influence on the corresponding keyframe is considered in the
same way as described for Rigid SLAM, as all surrounding buildings are
associated with it by transformation P

Bi
j TP̂j

.

5.1.6 Data association - Non-rigid SLAM

As we have seen in Rigid SLAM, a single global alignment is performed to
associate the pose of a keyframe and the corresponding map of the buildings
surrounding it, downloaded from OSM. Although simple to implement and
relatively accurate, this approach may lead to some problems.

When multiple keyframes see the same building in almost the same
location, even if the building is wrongly positioned w.r.t. the real world, its
pose would never be modified. In other words, the Rigid SLAM method is
able to move and correct buildings but is not able to tell whether a building
is in the wrong or correct location in the real world, leading also to mistakes
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in the optimization procedure, e.g., incoherence between the relationships
keyframe - buildings across multiple, consecutive, keyframes.

To address this issue, once the global alignment is computed, each build-
ing is taken individually, to repeat the same procedure described in Sec-
tion 5.1.5, with few differences. Before, we tried to align the LiDAR scan,
associated with keyframe j, against the point cloud that represents all the
contours of the building surrounding the robot at that precise location.

This alignment resulted in transformation P
Bi
j TP̂j

, which is the same for
all buildings. In other words, let i ∈ {k, k+1, . . . , k+s} be all the buildings
in the OSM map surrounding the robot whose estimated pose is described
by keyframe j. In Rigid SLAM, we obtain the same transformation, i.e.,

P
Bk
j TP̂j

=P
Bk+1
j TP̂j

= . . . =P
Bk+s
j TP̂j

, i ∈ {k, k + 1, . . . , k + s}. (5.3)

In Non-rigid SLAM, after this procedure, each building is considered
separately, being formed by a relatively low number of 2D points. Then,
scan matching is performed between the LiDAR scan and the point cloud of
the single building. This alignment is aided using transformation P

Bi
j TP̂j

as
an initial guess, to facilitate it and boost performance. The resulting motion
P

Bi
j T̂P̂j

directly tells the correct pose of the building w.r.t. the keyframe, and
it is independent of the transformations derived from the other buildings.

Let us consider again buildings i ∈ {k, k+1, . . . , k+ s}, located around
the robot w.r.t. keyframe j. From Rigid SLAM, we are able to align the
LiDAR scan of the keyframe with the clouds formed by all 2D buildings,
resulting in a global transformation P

Bi
j TP̂j

. It should be noticed that this
relative motion is the same for all entities since they are considered jointly.

In Non-rigid SLAM, the buildings are then considered separately one
from the other and are once again aligned with the point cloud of the same
keyframe as before, using the global transformation as an initial guess. This
way, for each building we can obtain a local transformation P

Bi
j T̂P̂j

, which
is more precise and captures the true displacement between the 2D structure
and the LiDAR scan, since it will be used later in the optimization step.

Differently from Rigid SLAM, each building is treated as a standalone
element in the pose graph, associated with at least one keyframe by a
unique transformation. With Non-rigid SLAM, we are able to detect errors
present in the OSM map by using LiDAR scans, which directly model the
environment surrounding the robot. From a local alignment, in fact, we are
able to check for discrepancies between the OSM map and the map built
using SLAM, possibly caused by annotation issues or due to a large time
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gap between LiDAR acquisitions and the creation of the OSM outline.

5.1.7 Experimental validation of the system

We compare the proposed system with different methods for LiDAR SLAM:
LOAM [30], LeGO-LOAM [32], LIO-SAM [115], HDL [28] and the base-
line of our work, ART-SLAM [1] (without Scan Context). In particular, we
evaluate all three variants of OSM-SLAM. First, we consider Prior SLAM,
which follows the same procedure as in Rigid SLAM (described at the end
of Section 5.1.5), in which the nodes in the pose graph associated with
buildings are fixed and therefore cannot be modified by the optimization
procedure. Then, we evaluate both Rigid and Non-rigid SLAM approaches,
to see their differences and behaviors when dealing with long trajectories.

Lastly, we present a re-localization experiment on one of the sequences
used for testing, where we stop the tracking for about 100 consecutive
initial frames, and use OSM buildings to estimate the missing odometry and
evaluate the re-localization possibilities using external mapping services.

We evaluate all systems on Sequence 07 and Sequence 00 of the KITTI
odometry dataset [143], as they correspond to trajectories with medium
and high complexities, respectively, and the associated OSM maps are
sufficiently detailed (but not necessarily correct) for testing. Experiments
are done on a 2021 XMG 64-bit laptop with Intel(R) Core(TM) i7-11800H
CPU @ 2.30GHz x 8 cores, with 24576 KB of cache size.

5.1.8 Comparison and results

The goodness of the methods used for the comparison is computed by means
of absolute trajectory error (ATE), as done in the previous chapters and for
the other developed systems of our SLAM framework. We also include here
a detailed visual evaluation of the estimated trajectory and placement of the
buildings in the global map, overlapped with OSM tiles.

Table 5.1 details the obtained results (ATE statistics, in meters) on Se-
quence 07 of the KITTI odometry dataset [143]. Looking at the table, one
may infer that the overall accuracy of the proposed system, in all three
approaches, decreased w.r.t. the baseline, even if by an acceptable amount
when compared with all other methods. However, using only these statistics
does not explain in detail how the proposed methods truly behave.

Figure 5.6 shows the distribution of the ATE over the whole trajectory. In
particular, Figure 5.6a refers to the results obtained with Prior SLAM, while
Figure 5.6b represents the trajectory estimated with Non-rigid SLAM. It is
clear how, especially for the latter case, the majority of the estimates prove
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Table 5.1: Computed ATE on Sequence 07 of the KITTI odometry dataset [143].

ATE [m] MEAN RMSE Standard Deviation
LOAM > 10 > 10 >10

LeGO-LOAM 1.191 1.309 0.546
LIO-SAM 0.509 0.675 0.351

HDL 0.954 1.253 0.767
ART-SLAM (baseline) 0.698 0.777 0.341

Prior SLAM (ours) 1.084 1.198 0.510
Rigid SLAM (ours) 3.253 3.420 1.057

Non-rigid SLAM (ours) 0.912 1.157 0.485

(a) Error distribution (Prior SLAM). (b) Error distribution (Non-rigid SLAM).

Figure 5.6: Local accuracy of two proposed approaches (Prior SLAM on the left, Non-rigid
SLAM on the right) on Sequence 07 of the KITTI odometry dataset [143].

to be definitely more accurate than the baseline, reaching error values below
half a meter. Other sections, however, heavily influence the overall ATE
mean value, possibly because of mistakes in the corresponding area of the
OSM map or time discrepancies w.r.t. the acquisition date and when OSM
annotations took place (OSM maps are usually more recent than KITTI).

These results also give us more insight into the proposed systems. In
the case of Prior SLAM, where buildings are fixed, the constraints between
buildings and keyframes are completely weighted on the keyframes them-
selves, leading to an overall distribution of the trajectory error. On the other
hand, in Non-rigid SLAM, all buildings, independently one from the other,
are free to move and adjust their location in the map, jointly with keyframes.

This means that the trajectory error will be majorly concentrated in
areas with possible issues. Lastly, one can also see the optimization effects
on the buildings in Figure 5.7, which shows two detailed areas of the 3D
reconstruction obtained with Non-rigid SLAM, overlapped to OSM tiles.
Elements are slightly moved (blue dots), w.r.t. their original position (red
shape), to satisfy all constraints explained in Section 5.1.6.

As the last experiment on this sequence, we tried to evaluate the re-
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Figure 5.7: Details of the reconstruction with Non-rigid SLAM on Sequence 07. Notice the
displacement of the buildings (blue dots) w.r.t. their original location (red shape).

Figure 5.8: 3D map obtained through the re-localization experiment. The red zone consists
of frames that are not used for tracking, and for which the odometry is computed through
OSM map alignment.

localization capabilities of OSM-SLAM. This was achieved by simulating
a faulty tracking, for about 100 consecutive frames, right at the beginning
of the trajectory, as depicted in Figure 5.8. Then, we used the available
OSM maps to re-localize the robot within it (using the same scan matching
procedure described for both Rigid SLAM and Non-rigid SLAM) estimating
the relative motion of consecutive LiDAR scans.

While the baseline of the system would completely fail, OSM-SLAM
works as intended, after re-localization, with a small loss in accuracy (a few
centimeters worse than ART-SLAM). This proves that re-localization can be
performed through means of 2D maps coming from mapping services.

We then moved to Sequence 00 of the same dataset. Table 5.2 contains
the ATE statistic. As in the previous case, the accuracy of OSM-SLAM
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Table 5.2: Computed ATE on Sequence 00 of the KITTI odometry dataset [143].

ATE [m] MEAN RMSE Standard Deviation
LOAM > 10 > 10 >10

LeGO-LOAM 9.537 11.666 6.718
LIO-SAM > 10 > 10 >10

HDL 1.378 1.424 0.779
ART-SLAM (baseline) 0.981 1.092 0.478

Prior SLAM (ours) 3.802 4.778 2.893
Rigid SLAM (ours) 4.064 4.494 1.918

Non-rigid SLAM (ours) 3.648 4.214 2.110

(a) Error distribution (Prior SLAM). (b) Error distribution (Non-rigid SLAM).

Figure 5.9: Localization accuracy of two proposed approaches (Prior SLAM on the left,
Non-rigid SLAM on the right) on Sequence 07 of the KITTI odometry dataset [143].

seems to be worse than the baseline. Remembering the same reasoning done
for Sequence 07, one should also look at the trajectory error distribution, to
effectively understand the impact of OSM maps. Figure 5.9 represents the
distribution of the ATE over the whole trajectory, with Figure 5.9a referring
to Prior SLAM, and Figure 5.9b showing the results of Non-rigid SLAM.

In the first case, most of the estimated trajectory has a low error, almost
half of the baseline, whereas in a small area (curved road on the bottom
right side) we see a noticeable drift that influences the mean error. On the
other hand, in the Non-rigid SLAM scenario, we can clearly see that the
error is spread over the whole trajectory, reaching a lowest value of less than
10 centimeters. This is a remarkable result, considering that we are dealing
with a large and complex map, containing multiple sharp turns and loops.
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CHAPTER6
D3VIL-SLAM: 3D Visual Inertial LiDAR SLAM

With MCS-SLAM [3], described in Chapter 4, we demonstrated how true
sensor fusion still remains a hard task in SLAM systems, mainly due to the
difference between data coming from different sensors. Although speed is
easily achievable, accuracy on par with state-of-the-art methods performing
single-sensor localization and mapping is still an open issue.

Many systems in literature, in fact, adopt a multi-sensor-based direct data
association, using heterogeneous sensor data such that one type is integrated
to aid another (e.g., depth from lasers to support visual SLAM).

To enhance the framework proposed in this thesis also with a method
able to perform accurate and real-time multi-sensor SLAM with direct data
association, we developed a novel 3D visual inertial LiDAR SLAM system,
named D3VIL-SLAM, described in the following section.

6.1 D3VIL-SLAM

As we have already demonstrated in Chapter 3 to Chapter 5, LiDAR-based
SLAM systems are more robust w.r.t. other methods, even though additional
information, like visual odometry, could improve the accuracy of the trajec-
tories, via direct data association (differently from the system we developed

125



Chapter 6. D3VIL-SLAM: 3D Visual Inertial LiDAR SLAM

in Chapter 4, MCS-SLAM [3]). Moreover, using visual, LiDAR, and inertial
measurements, would make a system more resilient in different scenarios,
having the various motion estimates compensate for each other.

To address this situation, and improve the overall precision of our frame-
work for SLAM developed in our Ph.D. program, we designed a 3D Visual
Inertial LiDAR SLAM system, named D3VIL-SLAM, as a further extension
of ART-SLAM [1]. In particular, D3VIL-SLAM is equipped with three
main branches to perform motion tracking: a laser front-end, relying on
scan-to-keyframe matching to estimate the pose of the robot, as in ART-
SLAM; a vision front-end, which exploits consecutive pairs of stereo images
to identify 3D points in the world and uses them to compute the robot motion
by re-projection error minimization; and a filter front-end, where IMU data
is given to an Error State Kalman Filter [168] to predict the robot location.
The three branches can be either independent or collaborate with each other,
e.g., having the filter front-end pass its predictions as initial tracking guesses
for the laser front-end and vision front-end.

Loops in the trajectory are then detected using two, independent, algo-
rithms. The first one finds pairs of point clouds that best overlap, while
the second method tries to find similar locations by matching descriptors
associated with 3D salient points, extracted from stereo images. Front-end
and loop closure information are collected and used to build a g2o [139]
pose graph, which is periodically optimized to satisfy all constraints.

We first discuss related works in Section 6.1.1, to give a brief insight
into existing hybrid SLAM systems. Then, after a high-view description of
D3VIL-SLAM architecture, in Section 6.1.2, we explain the three branches
forming its front-end: the laser branch in Section 6.1.3; the vision path
in Section 6.1.4; and the inertial-based front-end in Section 6.1.5. Follow
Section 6.1.6 and Section 6.1.7, in which we describe how loop detec-
tion and pose graph building and optimization are performed, respectively.
Lastly, Section 6.1.8, Section 6.1.9 and Section 6.1.10 are dedicated to the
experimental validation of D3VIL-SLAM, including also an ablation study.

6.1.1 Related works

Despite being the most accurate type of SLAM, LiDAR-based localization
and mapping needs to overcome the problems of large computation and
possible motion distortion. To do so, different visual LiDAR SLAM sys-
tems have been proposed in the last decade. Visual LiDAR SLAM [169],
abbreviated as VL-SLAM, is composed of a LiDAR odometry estimator,
based on scan matching, a pose graph optimization back-end, and a set of
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Figure 6.1: Architecture of the proposed 3D Visual Inertial LiDAR system, D3VIL-SLAM.

loop detection modules relying on visual recognition only.
DVL-SLAM [112] takes as input a sequence of images and LiDAR scans.

Given an image with an associated sparse depth (range measurements from
the LiDAR), only the image is used for the tracking process. The front-end
focuses on accurate tracking using data association for loop-closing, and the
associated data is then used for efficient pose graph optimization.

Recently, DV-LOAM [170] has been proposed, consisting of three mod-
ules. First, a two-staged direct visual odometry module estimates the pose
of the camera. Then, every time a keyframe is generated, in the usual way
already described, a LiDAR mapping module is utilized to refine the pose
of the keyframe to obtain better robustness. Finally, a Parallel Global and
Local Search Loop Closure Detection module that combines visual Bag of
Words and LiDAR-Iris feature is applied for place recognition.

In contrast to all these approaches, our system is able to obtain multiple,
independent, estimates of the position of the robot (one for each front-end),
which are later combined in a pose graph and jointly optimized, avoiding
the hard task of accurately and efficiently fusing heterogeneous data.

6.1.2 System overview

An overview of the proposed method is represented in Figure 6.1 (in the
same way it was done for all other systems presented in this thesis) and
Figure 6.2, which is more detailed. The system front-end, associated with
the tracking procedure, consists of three branches for motion estimation.
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Figure 6.2: In-depth architecture of D3VIL-SLAM, represented in a graphical way.

The laser front-end comes from ART-SLAM. It takes as input a scan
and processes it, to reduce its size. The filtered cloud is then given to two
independent modules. The floor detector finds the robot pose w.r.t. the
ground, enforcing height and rotational constraints. The tracker, instead,
estimates the motion of the robot, by performing scan-to-keyframe matching.

The vision front-end uses a pair of stereo images as input, and as a first
step, it generates 3D visual points from them, via triangulation. The visual
points in the map are then matched and tracked from the previous pair of
stereo images, to find enough associations to compute the current pose.

The filter front-end is the last branch of the proposed system tracking
procedure. Through an Error State Kalman Filter, IMU data is processed
and used to accurately predict the motion of the robot. This prediction can
be used as tracking guess in all other front-ends, to increase their accuracy
and boost their performance. Conversely, the poses estimated in the vision
and laser front-ends can be used by the filter to perform a correction step.

The current pose estimate is sent, along with its corresponding data
(images or point clouds), to the loop detector modules, which try to find
loops using different techniques: efficient scan-to-scan matching, in case of
point clouds (as in ART-SLAM), and similarity between descriptors, when
considering stereo image pairs. Poses, loops, and floor coefficients are used
to build a pose graph, which is optimized to satisfy all motion constraints.

6.1.3 Laser front-end

The laser front-end shares the same modules of ART-SLAM [1], since the
proposed system builds on it. As a first step, input point clouds are fed to
the pre-filterer module, which downsamples them and removes outliers.

The filtered scans are then simultaneously sent to both floor detector
and tracker. The floor detector module tries to find the ground plane,i.e.,
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the plane with equation a ∗ x + b ∗ y + c ∗ z + d = 0, in the given scans,
to enforce height and rotational consistency in the trajectory. To avoid
searching a whole cloud, the floor detector clips it and removes all points
having orthogonal normal w.r.t. the ground direction.

Working in parallel to the floor detector, the tracker uses the filtered
clouds to perform short term data association. The tracker adopts a keyframe-
based approach to estimate the trajectory, meaning that not all inputs are
used to create keyframes. While the first received scan will always be part
of a keyframe, a new one is generated only if the current cloud is far enough
from the previous keyframe, both spatially and temporally.

6.1.4 Vision front-end

The goal of the vision path is to correctly estimate the motion of the robot,
given consecutive pairs of left and right stereo images. This is achieved
thanks to three modules: visual points generator, tracker, and map manager.

As the name implies, the visual points generator creates visual points (i.e.,
3D points derived by image processing) following a series of consecutive
steps. First, left and right keypoints, which are salient image features, are
detected in the stereo image pair. For each keypoint, the corresponding
descriptor is then extracted, and directly associated to it. In the current
implementation of our system, we use a FAST keypoints detector and ORB
descriptors. Together, keypoints and descriptors form a visual feature.

Instead of directly matching the descriptors of left and right visual points
by brute force, the visual points generator performs a fast epipolar search,
motivated by the fact that being the images belonging to a stereo pair,
correspondences should lie more or less on the same image row and that a
visual point in the right image should be on the same or lesser column w.r.t.
its counterpart in the left image (being the images in stereo configuration).

Once all correspondences between left and right visual features have been
found, they are triangulated (using the stereo camera baseline as a given
value), to obtain the coordinates of the associated point in the real world. 3D
position, left and right visual features are combined to form a visual point.
Together, all detected visual points are grouped into a visual frame, which
also contains information about the estimated pose of the robot.

Consecutive visual frames are used by the tracker module, to estimate
the motion that the left camera went through to get from the previous to the
current position. As a first step, visual points of the previous visual frame
are projected on the current left image (using a motion guess), generating
keypoints predictions. These elements are then compared with the keypoints
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detected as described in the previous paragraphs.
If the predicted and true keypoints have similar descriptors, then the

corresponding previous visual point is a candidate for tracking. In case of
a successful match, the same epipolar search of the visual points generator
is followed, to find a corresponding visual feature in the right image. If the
search gives a positive result, the visual point of the previous visual frame is
said to have been successfully tracked in a visual point of the current frame.

All tracked visual points are then used to estimate the motion of the robot.
The problem can be solved via minimization of the re-projection error:

error =

#V P∑
i=0

||f(V P i,t−1)− V Fi,t||2, (6.1)

where f(V Pi,t−1) is the re-projection of the previous ith visual point in the
current left image and V Fi,t is the corresponding visual feature in it.

Instead of solving this problem, it is re-formulated as a linear system,
where, rather than finding the transformation X∗ that yields the best result,
a perturbation ∆x is calculated iteratively, starting from an initial guess X
(e.g., obtained under the assumption of constant velocity).

Once the motion of the robot has been estimated, and, consequently, its
position in the world, the last step of the vision front-end is to create a sparse
map using the available 3D visual points. Not all elements are used to create
a map, but only the ones tracked along a certain number of consecutive
visual frames. These points are also known as visual landmarks, as they
represent stable elements that have been tracked along multiple images.

The map manager module takes all estimated visual landmarks and
generates multiple structures. First, it determines when to create a local
map, which is a collection of visual frames, along with the corresponding
landmarks. As in the laser front-end, also here keyframes are generated. In
particular, a visual keyframe contains a local map and the corresponding
position of the robot (i.e., the position associated with the last visual frame).

The keyframe generation procedure follows the same rules as stated in
Section 6.1.3. Let V Fi be the last visual frame of the local map associated
to keyframe Kn. If the current visual frame V Fi+k is displaced enough from
V Fi, then a new local map is created, using all visual frames from V Fi+1 to
V Fi+k, and it is associated to a new keyframe Kn+1.

6.1.5 Filter front-end

A standard approach in SLAM is to support the front-end with a Kalman
Filter, which employs IMU data to predict the position of the robot. This
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prediction is then used as an initial guess in the tracking step, and the
estimated odometry serves as correction data for the filter. In our system,
we also introduce an optional Kalman Filter-based module, to continuously
predict the motion of the robot. In particular, D3VIL-SLAM adopts an
Error State Kalman Filter (ESKF), which has many advantages w.r.t. other
methods [168]. The main benefit of this choice is that complex dynamic
modeling of the robot and its interaction with the environment is avoided.

An ESKF consists of true, nominal, and error-state values, with the first
being a suitable composition of the others. Input IMU data is integrated into a
nominal state, which does not take into account imperfections, accumulating
errors. These are, instead, collected in the error state, which can be defined
by a time-variant linear system, with its dynamic control and measurement
matrices derived from the nominal state.

In the filter front-end of our system, the nominal state is a vector of 16
elements, which represent the following estimated quantities: 3D position of
the robot Pt, velocities Vt, orientation Qt (expressed as a quaternion), accel-
eration bias AB t and angular velocity bias WB t, where t is the current time
step. The error-state is a vector of 15 elements (because, for convenience,
the rotation is expressed in Euler angles), representing the differences w.r.t.
the nominal-state: δPt, δVt, δθt, δAB t and δWB t.

The equations of the nominal state follow simple kinematics, given input
acceleration am and angular velocities wm:

Pt+1 = Pt + Vt∆t+ 0.5(Rt(am − AB t) + g)∆t2,

Vt+1 = Vt + (Rt(am − AB t) + g)∆t,

Qt+1 = Qt ⊗Q{(wm −WB t)∆t},
AB t+1 = AB t,

WB t+1 = WB t,

(6.2)

with g being the gravity vector, Rt the rotation matrix associated with
Qt, and ∆t the time difference between the current and previous IMU
measurements. The nominal, deterministic, part is integrated normally,
while the integration of the error, stochastic, component is:

δPt+1 = δPt + δVtδt,

δvt+1 = δvt −Rt([am − AB t]×δθt + δAB t)∆t+ vi,

δθt+1 = RT{(wm −WB t)∆t}δθt + δWB t∆t+ θi,

δAB t+1 = δAB t + ai,

δWB t+1 = δWB t + wi,

(6.3)

where vi, θi, ai, and wi are random perturbations applied to velocity, orien-
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tation, and bias estimates, respectively. In the case of the error state, we also
need to compute the covariance matrix C.

Let Fx and Fi be, respectively, the Jacobians of the error-state dynamics
function w.r.t. the error and perturbation vectors. Let also be Qi be the
composition of the covariance matrices of the perturbations. Then, the
error-state prediction can be fully written in the following way:

δstatet+1 = Fx(statet, {am, wm})δstatet,
Ct+1 = FxCtF

T
x + FiQiF

T
i .

(6.4)

When data is received from the laser or vision front-ends, the ESKF performs
a correction step. Let H be the Jacobian matrix, defined w.r.t. the error-state
and evaluated at the best true-state estimate; the correction equations are:

K = Ct+1H
T (HCt+1H

T + V )−1,

error t+1 = K(y − h(nominal t+1)),

Ct+1 = (I −KH)Ct+1(I −KH)T +KVKT ,

(6.5)

where I is the identity matrix, y is the measurement, V is its covariance
matrix, and h is the measurement function.

The corrected error state is then injected in the nominal state, by simple
composition and summation (e.g., Pt+1 = Pt+1 + δPt+1). Lastly, the error
state is reset, by setting its mean to zero and updating the corresponding
covariance matrix as Ct+1 = GCt+1G

T , with G being the Jacobian matrix
of the reset function w.r.t. the error-state itself.

6.1.6 Loop detection

In our system, we decouple, as in the front-end, vision and laser approaches,
adopting two different techniques, working in parallel, to detect possible
loops in the trajectory and close them with matching techniques.

In D3VIL-SLAM, loop detection with point clouds is achieved through
three consecutive phases, as in ART-SLAM. First, a new keyframe Kquery

is compared against all existing keyframes, using a spatial and temporal
selection method. If Kquery and a candidate Kcandidate have far enough
timestamps and their associated positions are within a threshold range, both
keyframes pass the first selection of candidate pairs for loop detection.

Scan-Context [140] is an algorithm that converts 3D scans into 2D polar
grids and compares them using KD-tree search to get the most similar to a
given point cloud query. Loop detection in the laser branch continues by
using a slightly modified version of Scan-Context, by allowing the indices
of the k-most similar point clouds w.r.t. Kquery to be retrieved.
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The corresponding point clouds are directly used to perform scan-to-scan
matching, which tries to align them with the cloud associated with Kquery.
All the retrieved transformations are then filtered to obtain the one with the
highest accuracy above a fixed threshold. If such transformation is found,
then the corresponding pair, Kquery and Kcandidate, represents a loop.

To detect loop closures using input pairs of stereo images, instead, we
exploit the fact that the front-end already extrapolates keypoints and de-
scriptors, packing them together in visual features, visual points, and visual
landmarks. As explained in Section 6.1.4, a visual keyframe contains a local
map, which is a collection of visual frames and the corresponding landmarks.
Intuitively, visual landmarks are a good representation of a small region in
the world and they can be exploited to find possible loops.

The idea is that if a robot passes through a previously visited location,
then the landmarks representing the current map will be similar to the visual
landmarks of the local map associated with that location. To estimate how
similar two local maps are, we use the Hamming binary search tree library
(HBST [171]), which performs similarity search directly on descriptors.
This allows the system to retrieve landmark-to-landmark matching pairs. All
pairs of corresponding landmarks are then aligned using a linearized version
of the ICP [13] algorithm. If the resulting transformation is acceptable and
the number of ICP inliers is high enough, then the two local maps effectively
form a loop, and their relative pose is given by the estimated transformation.

6.1.7 Pose graph building and optimization

As already mentioned in Section 6.1.2, D3VIL-SLAM is a form of graph
SLAM [139], where the poses of the robot are modeled as nodes and spatial
constraints between said poses are represented as edges. Each node in the
graph, named pose graph, represents the pose of the robot and at least one
sensor measurement (e.g., filtered clouds or local visual maps).

In D3VIL-SLAM, the pose graph construction does not follow fixed
rules, and the graph can be built in different ways, depending on the scenario
considered, the reliability of the sensors, and so on. Without loss of general-
ity, we will describe the implementation used in our experimental campaigns.
Two separate sub-graphs are incrementally created, one associating nodes
to laser keyframes, and the other for nodes of visual keyframes. If two
keyframes of different types correspond to more or less the same timestamp,
it means that they represent the same pose in the world and they can be
joined as a single keyframe, merging and constraining also the pose graphs.

Other than the constraints derived from the various front-ends, the pose
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graph is enriched with other edges. As seen in Section 6.1.3, the floor
detector finds the distance and orientation (roll and pitch) of the robot w.r.t.
the ground plane, given an input LiDAR scan. This information is added to
the pose graph, including also one fixed node representing the ground.

Visual keyframes hold the position in the world of the last visual frame
added to the corresponding local map. The relative motion between two local
maps, which is already added in the pose graph, does not directly involve
visual point matching and tracking between the associated visual frames. To
enforce a further constraint, we take all common visual landmarks available
in the last visual frames of the two local maps. Then, if enough elements
are available (at least 10), we estimate the essential matrix and retrieve the
relative orientation between the considered visual frames, which is then
added as an additional constraint in the visual pose graph.

Also, edges can be added when performing successful loop detection
and closure (either using point clouds or image descriptors), between non-
consecutive nodes in the graphs, forming a ring-like structure.

As a last step, the pose graph is given to an optimization algorithm, to es-
timate the trajectory that best satisfies all constraints induced by the existing
edges. To build and optimize the graph, we use the g2o framework [141], as
it proves to be fast, accurate over long trajectories, and easily customizable.

We briefly mention another possible design for the pose graph construc-
tion. One could decide to use the corrected poses from the ESKF as main
nodes, which are later constrained by the odometry estimations coming from
both vision and laser tracking branches, separately, obtaining a single graph
with two or more edges connected to each node (from the inertial branch).

6.1.8 Experimental validation of the system

The developed system D3VIL-SLAM is evaluated against other methods
for SLAM (not odometry, for a fair comparison), both laser-based (LeGO-
LOAM [32], LIO-SAM [115], HDL [28] and ART-SLAM [1] with Scan-
Context) and vision-based (ORB-SLAM2 [53] and ORB-SLAM3 [75]). To
measure the accuracy of the methods, we use, as we have always done in the
thesis, Sequence 00 and Sequence 07 of the KITTI odometry dataset [143]
and short, loopless, City Sequence 05 of the KITTI raw dataset [144].

We evaluate the implementation of our system described in Section 6.1.7,
which proved to be more accurate in the considered scenarios. Here, the
ESKF is used to support only the laser front-end, and its estimates are
added as additional constraints in the pose graph, coupling them with edges
associating visual keyframes only when representing the same location in the
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Table 6.1: ATE of the compared systems on three sequences of the KITTI dataset [143,144].

ATE [m]
Sequence 00 Sequence 07 City Sequence 05

MEAN STD MEAN STD MEAN STD
LeGO-LOAM 9.537 6.718 1.191 0.546 0.707 0.300

LIO-SAM >10 >10 0.509 0.351 0.493 0.280
HDL 1.378 0.779 0.954 0.767 0.893 0.476

ART-SLAM (SC) 1.232 0.684 0.730 0.358 0.742 0.331
ORB-SLAM2 1.639 0.818 1.189 0.585 5.136 3.366
ORB-SLAM3 1.464 0.817 1.310 0.785 5.174 3.376

D3VIL-SLAM (proposed) 1.017 0.502 0.470 0.165 0.745 0.334

world (i.e., close timestamps). The reasons for this choice are that LiDAR
odometry is more accurate than visual odometry, and IMU data is gathered
at a low frequency (10 Hz), making the ESKF pose estimates unreliable.

To conclude the results, we perform an ablation study of the system,
where laser odometry and loop detection are not used. In particular, we
evaluate, using the same sequences, the proposed system in case of only
vision, vision enhanced with essential matrix information, and vision with
essential matrix and ESKF predictions as support in the pose graph.

Tests are done on a 2021 XMG 64-bit laptop with Intel(R) Core(TM)
i7-11800H CPU @ 2.30GHz x 8 cores, 24576 KB of cache size, and using
Ubuntu 20.04 LTS as OS, with ROS Noetic (many hybrid systems could not
be tested because relying on incompatible previous versions of ROS).

6.1.9 Comparison and results

The metric used to compare the various systems is, once again, the absolute
trajectory error (ATE), which measures the difference between the estimated
trajectory and the corresponding positions of the ground truth.

Table 6.1 shows the mean and standard deviation (STD) of the absolute
trajectory error, in meters, on all tested sequences. In particular, the first three
columns refer to Sequence 00, which is one of the most complex. D3VIL-
SLAM achieves the highest accuracy, demonstrating how the integration
of vision and filter front-ends contributes positively to the overall precision.
Of particular importance is the addition of visual loop closures, which,
combined with LiDAR loop closures, strengthen the estimated trajectory by
adding more information to the pose graph. Figure 6.3 supports the results
by showing the trajectory error distribution on Sequence 00.

The same considerations can be applied to Sequence 07 (Table 6.1),
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Figure 6.3: Error distribution on Sequence 00 of the KITTI odometry dataset [143].

Figure 6.4: Detailed area of the map corresponding to Sequence 00 of the KITTI odometry
dataset [143], built by the proposed algorithm, D3VIL-SLAM.

which has only one loop at the end of the trajectory. Lastly, the results asso-
ciated with the short testing sequence are on par with the baseline, probably
caused by the fact that, for short trajectories, there is not enough information
to obtain accurate estimates, even when including visual information.

All laser modules of D3VIL-SLAM work in real-time, being modules of
ART-SLAM. Moreover, vision tracking runs at 10 Hz, while loop detection
runs at 25 Hz, on average. Considering that all modules work in parallel, the
whole system is able to maintain real-time performance. Lastly, Figure 6.4
shows a detailed area, associated with multiple loop closures, of the 3D map
of Sequence 00, reconstructed with D3VIL-SLAM.

6.1.10 Ablation study

As done for Section 6.1.9, we use the ATE metric to evaluate the accuracy
of the trajectories estimated by our system, constrained to work with only
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Table 6.2: Ablation study ATE on three sequences of the KITTI dataset [143, 144].

ATE [m]
Sequence 00 Sequence 07 City Sequence 05

MEAN STD MEAN STD MEAN STD
Vision only 10.075 5.557 1.365 0.465 0.912 0.291

Vision + ess. 6.66 4.602 1.354 0.462 0.788 0.282
Vision + ess. + ESKF 7.762 4.897 1.348 0.460 0.778 0.275

vision, vision added with essential matrix information, and vision with
essential matrix and ESKF predictions as support in the pose graph.

Table 6.2 shows the behavior of the various methods. Two main con-
siderations can be done. First, the complete vision with essential matrix
and ESKF support system almost always guarantees better results, with the
exception of Sequence 00 (probably because IMU is gathered at the same
frequency of camera images, making the whole ESKF not robust in the long
run). Then, the addition of the essential matrix as an additional constraint in
the pose graph always improves the accuracy of the estimated trajectory.
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CHAPTER7
RadART-SLAM: Using Radars for Accurate

and Real-Time SLAM

As it should be clear at this point of the thesis, SLAM has been extensively
studied in the literature, exploiting data coming from different sensors, e.g.,
camera and lasers. Although we proved, multiple times, that the latter is the
best choice in terms of accuracy for outdoor large-scale SLAM, ensuring
a high degree of precision can be very challenging when dealing with
non-typical scenarios, like in adverse weather conditions (e.g., snow or
rain). For example, LiDAR sensors do not work properly in areas with high
refraction or with fog and particles, and cameras heavily depend on possible
illumination changes that may occur, naturally or not, in the environment.

Radars, instead, are not afflicted by these kinds of problems and can be
considered as reliable sources of data, serving as replacements of more con-
ventional sensors, to perform SLAM. To enhance the framework proposed
in this thesis and complete it with a new sensor, not so common in literature,
we developed a radar-based accurate and real-time SLAM system, named
RadART-SLAM, which we describe in the following section.
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7.1 Radar SLAM

In recent years, the Frequency-Modulated Continuous Wave (FMCW) radar
sensors, which can work in many kinds of weather (differently from cameras
or LiDAR sensors), have been increasingly used in the field of autonomous
driving. Nevertheless, a still open issue is the development of a system that
performs robust, accurate, and real-time SLAM in large-scale environments,
using only radars, to cope with all possible weather conditions.

Due to their longer wavelength, radar sensors are robust to small environ-
mental artifacts, such as particles of dust, or even snow. Moreover, they can
see through certain materials, extending their detection area, going further
than the line of sight that LiDAR sensors have. Nevertheless, radars gather
data with low spatial resolution and they suffer from higher noise, making
localization and mapping inherently difficult to achieve.

To address this problem, the last step of our Ph.D. program was the
creation of a radar-based SLAM system, known as Radar for Accurate
and Real-Time SLAM, i.e., RadART-SLAM. In the developed method, we
perform 2D motion tracking, as the majority of radar sensors provide only
2D information, different from all other systems developed in the thesis.

Similarly to the pipeline described in [106], we take radar data as input
in the form of a polar image and convert it into its Cartesian representation,
which is more suitable for the successive steps. Then, from each Cartesian
image, we extract salient features, adopting well-known state-of-the-art
methods for feature detection and extraction on radar sensors. These features
are matched between pairs of consecutive images, similar to what we have
seen for D3VIL-SLAM, in Section 6.1.4. Here, however, motion distortion
and Doppler correction are also applied, to increase the accuracy of the
system. From this procedure, we are able to obtain precise motion estimates.

Loop detection is the hardest task since visual features, which represent
2D points in the world, are very noisy and there are too few of them to
adopt a simple scan matching approach, as done in ART-SLAM or any other
LiDAR-based system. For this reason, we adopt a novel loop estimation
procedure based on submap-to-submap matching and filtering.

We first discuss related works in Section 7.1.1, to give a brief insight into
the few works, in literature, that use radars as main sensors. Then, after a
high-view description of RadART-SLAM, in Section 7.1.2, we explain its
various modules. Feature detection is described in Section 7.1.3, followed
by tracking in Section 7.1.4, loop detection in Section 7.1.5 and pose graph
building and optimization in 7.1.6. Lastly, Section 7.1.7, and Section 7.1.8
are dedicated to the experimental validation of RadART-SLAM.
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7.1.1 Related works

Due to the advantages of radars over other sensors, over the course of the last
decade, many works relying on radars have been proposed in the literature,
with the majority being only odometry and mapping systems (different from
SLAM, because of the presence of loop detection and optimization).

One widely adopted standard is to exploit multiple automotive radar sen-
sors [172], which nowadays offer range and azimuth resolutions comparable
with laser rangefinders, to estimate many relative target velocities (Doppler
effect), which can be used to find the robot motion [94]. This approach, how-
ever, is not necessarily optimal for both odometry estimation and mapping,
due to the inherent low accuracy of the velocity measurements.

The focus then shifted to the possibility to exploit the underlying signal
data of radars, from which salient features can be extracted in a similar fash-
ion to vision-based systems. Nevertheless, extracting keypoints from radar
data and using them for direct data association proved to be challenging.

Jose and Adams [173] were the first to research the application of radars
in outdoor SLAM. In particular, they proposed a feature detector that es-
timates the probability of target presence while augmenting their SLAM
formulation to include radar cross-section as a discriminating feature. The
radar cross section (RCS) of a target is the fictitious area intercepting that
amount of power which, when scattered equally in all directions, produces an
echo at the radar equal to that from the target. The works in [174] and [175]
directly found the transformation between pairs of dense scans, using 3D
cross-correlation and the Fourier-Mellin transform.

Cen and Newmann [104] then presented a method to extract stable key-
points in radar images, which are then used to perform scan matching, and
accurately estimate the motion of the robot. The same authors later presented
a update [105] to their radar odometry pipeline, which improved keypoint
detection, and descriptors, and proposed a new graph matching strategy.

More recently, works using only radars either focused on improving
aspects of odometry [102, 176, 177], developing more accurate SLAM sys-
tems [99, 103], or performing place recognition [178] (i.e., loop detection).

Particularly interesting are the odometry estimation methods described
in [106] and [177]. In the first, also known in the literature as YETI, the
authors quantified the importance of motion distortion and showed that
Doppler effects should be removed during both localization and mapping.
In PhaRaO, instead of using feature-based methods for motion estimation, a
direct method has been proposed. In particular, the Fourier-Mellin transform
is applied on Cartesian and log-polar radar images, to estimate rotation and
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Figure 7.1: Architecture of the proposed real-time Radar SLAM system, RadART-SLAM.

translation, decoupled in a coarse-to-fine manner for real-time performance.
Alhashimi et al. [179] presented the current state-of-the-art in radar

odometry. Their method builds on prior work by Adolfsson et al. [180]
by using a feature extraction algorithm called Bounded False Alarm Rate
(BFAR) to add a constant offset to the usual Constant False Alarm Rate
(CFAR) threshold. The resulting radar point clouds are registered to a sliding
window of keyframes using an ICP-like optimizer.

7.1.2 System overview

The architecture of RadART-SLAM, in Figure 7.1, is very similar to all
pipelines presented in the thesis, as it is built on the same common frame-
work. In particular, one may think of the architecture of ART-SLAM [1],
from which it takes most of the modules, changing the way they work.

Instead of pre-filtering a point cloud, here a radar image must be pro-
cessed, to detect from it salient points, i.e., keypoints, and extract the corre-
sponding image descriptors. It should be noticed that conventional feature
detectors cannot be used in our case, as radar images are much different
from standard camera images, so the same algorithms cannot be applied.
Indeed, many visual artifacts are present in radar images, such as multi-path
reflection, receiver saturation, or speckle noise, and they influence the visual
descriptors, as those generally require the computation of pixel statistics
around an image feature. Moreover, these artifacts can quickly disappear
between consecutive frames, making standard visual descriptors unsuitable
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(the same feature may end up having relatively different descriptors).
Once radar features are extracted between a pair of consecutive scans,

they are matched to estimate the current motion of the robot, adopting a par-
ticular strategy. Tracking, in RadART-SLAM, consists of three consecutive
steps. First, brute force matching allows to find correspondences between
two sets of features, using their descriptor distance as a similarity metric.

All pairs of correspondences, which represent elements in radar images
but also 2D points surrounding the sensor, are then used to estimate the
velocity of the robot. This is exploited to compensate for motion distortion
and, successively, reduce the Doppler effect on each considered pair of
correspondences. This procedure is iterated multiple times, until the best
correspondences, also known as inliers, are found. Lastly, they are used to
estimate the current motion of the robot through a modified RANSAC.

As in all other developed SLAM systems, the pose estimate is sent, along
with the radar image and corresponding 2D cloud to the loop detector module.
Loop detection works similarly to ART-SLAM, but instead of matching
single scans, submap-to-submap alignment is performed, instead. This is
motivated by the fact that while 3D LiDAR scans are more informative and
contain a considerable amount of points that can be used for scan matching,
the 2D cloud associated with radar features is sparse, reduced in size, and
noisy. Poses and loops are lastly used to build the pose graph, which is
periodically optimized to satisfy all constraints.

7.1.3 Feature detector

As mentioned in Section 7.1.1, feature detection on radar data has proven
to be more challenging w.r.t. its laser and vision counterparts. There are
multiple reasons for this issue, including higher noise floor and much lower
spatial resolution, one order of magnitude less than for laser sensors.

Nevertheless, the work in [104] proposed a feature detector that estimates
multiple statistics about the noise of a radar signal, and then it scales the
power at each measured range by the probability that it represents a real
detection. Successively, in [105] the same authors developed a second,
improved, detector, which identifies continuous regions of the radar scan
characterized by high return intensities and low gradients. Keypoints are then
detected and extracted by locating the middle of each region. YETI [106]
improved the performance issues of these detectors by applying several
modifications, such as the use of a Gaussian filter instead of a binomial filter.

Radar data is usually given either as a list of signals, i.e., a sequence of
power returns, or in the form of a polar image, where each row represents
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Figure 7.2: Power returns in Polar form (left), and converted to Cartesian form (right).

the sensor reading at the corresponding azimuth and each column contains
the raw power return at a particular range. The majority of sensors output
radar scans in polar form (left image of Figure 7.2). However, both feature
extraction methods described above work directly on the raw data, extracting
a list of salient points from the numerical values. For this reason, we convert
polar images into lists of power returns, by reading them pixel by pixel.

Once the features have been detected and extracted, they need to be asso-
ciated with a visual descriptor, to be later matched as in vision-based SLAM.
This cannot be achieved by calculating descriptors on the polar representa-
tion, as it contains both azimuths and distances along those angles. Instead,
the majority of descriptors must be computed on images representing only
distances. For this reason, we convert the radar scan output, which is in
polar form, into a Cartesian image (right picture of Figure 7.2), similar to a
bird’s eye view. We then calculate a descriptor for each extracted keypoint,
directly on it. In particular, we chose ORB descriptors [61], as they are
characterized by rotational invariance and resistance to noise.

7.1.4 Tracker

Even in RadART-SLAM, the tracker, which also performs short-term data
association, adopts a keyframe-based approach to estimate the trajectory
of the robot. As plentifully seen in literature, pure feature matching is not
enough to correctly estimate the motion between consecutive radar scans,
due to their noise. For this reason, following the approach described in [106],
we perform tracking in multiple, consecutive steps, described as follows.

Feature matching

To even begin data association, the extracted features, along with the corre-
sponding descriptors, need to be related in some way. In RadART-SLAM,
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we perform brute-force matching of ORB descriptors, coupling together
keypoints, from consecutive radar scans, by their overall similarity. We
then apply a nearest-neighbor distance ratio test to remove false matches.
First, given a feature in a radar scan, we find its two nearest neighbors in
the following input. Let d1 and d2 be the distances to the nearest and second
nearest neighbors. A feature is considered a good match if the ratio d1/d2
is smaller than a given threshold. The motivation is that we expect a good
match to be much closer to the query feature than the second best match.

Compensating motion distortion

The output of feature matching is not perfect and often contains outliers. The
second step of the tracking procedure is the usage of an additional rejection
scheme that simultaneously keeps into account motion distortions caused by
the rotation of the radar sensor, known as motion-compensated RANSAC.

Instead of direct estimation, in motion-compensated RANSAC the goal is
to derive the velocity of the sensor, under the assumption of constant linear
and angular velocities between a pair of consecutive radar scans (which is
not unrealistic, given that the two inputs are usually taken at high frequency).
In other words, we want to estimate the velocity vector w̄ = [v ω], where v
and ω are the linear and angular velocities, respectively, in the sensor frame.

From the feature matching step, we obtained two sets of corresponding
good features, fm,t−1 and fm,t, where m ∈ {1, . . . ,M} is the index of the
pair of matching features, and t − 1 and t refer to the radar scans being
consecutive, taken at timestamps timem,t−1 and timem,t, respectively. Let
Ts(t) be a 4 by 4 homogeneous transformation matrix representing the pose
of the sensor frame Fs w.r.t. the inertial frame, at time t. The transformation
between a pair of measurements is then defined as

Tm = Ts(timem,t) T
−1
s (timem,t−1). (7.1)

The local transformation Tm can be used to predict the Cartesian pose
of one feature in the matched radar image, and consequently compute an
estimation error: em = fm,t − Tm fm,t−1, leading to the error function:

J(w̄) =
1

2

∑
m

eTmR
−1
m em, (7.2)

where R corresponds to the covariance in the local Cartesian frame.
A transformation T ∈ SE(3) is related to its associated Lie algebra

ϵ∧ ∈ se(3) through the exponential map. Considering the constant velocity
assumption between consecutive radar scans, the velocity vector we are
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searching for can be reformulated as a transformation matrix, such that:

T = exp(∆t w̄∧). (7.3)

To optimize the objective function exploiting Lie algebra, we first derive
the relationship between Tm and w̄. The velocity vector can, in fact, be
rewritten as a sum of nominal velocity and a small perturbation:

Tm = exp(∆tm( ˜̄w + δw̄)∧) = T̃m + δTm, (7.4)

where T̃m is the nominal transformation and δTm the small perturbation.
The quantity Tm fm,t−1, which is non-linear due to the transformation,

can be linearized around a nominal operating point, using Tailor expansions:

Tm fm,t−1 = exp(∆tmδw̄
∧) T̃m fm,t−1

≈ (1 + ∆tmδw̄
∧) T̃m fm,t−1.

(7.5)

Lastly, we swap the elements using the ()⊙ operator [181], such that:

Tm fm,t−1 = T̃m fm,t−1 +∆tm(T̃m fm,t−1)
⊙ δw̄

g̃ +Gm δw̄
(7.6)

This way we are able to re-write the prediction error as dependent on the
velocity vector perturbation. By inserting this new error into Equation 7.2,
representing the objective function, and taking its derivative w.r.t. the per-
turbation and setting it to zero, we obtain the optimal update δw̄∗. This
optimal perturbation is then used, iteratively, in a Gauss-Newton optimiza-
tion scheme and the estimation process repeats until convergence.

This method allows the efficient estimation of the linear and angular
velocities between a pair of consecutive radar scans, while also accounting
for motion distortion. In doing so, given the time difference between two
inputs, we can also estimate the corresponding relative motion, which is
needed to perform pose graph and optimization, other than for motion
tracking.

Doppler effect correction

As for all sensors, the motion of a radar sensor results in an apparent relative
velocity between the sensor itself and the environment surrounding the robot.
The radial component of this relative velocity causes the frequency received
by the sensor to be altered according to the Doppler effect.

Let v = vxcos(θ) + vysin(θ) be the relative velocity. Then, the Doppler
frequency can be formulated as:

fd =
2v

λ
, (7.7)
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where λ is the wavelength of the signal. From the equation we can see
that an object moving towards the sensor (i.e., with positive velocity) will
correspond to a positive Doppler frequency, resulting in a higher frequency
received by the radar (i.e., the object seems closer than it actually is).

For FMCW radar sensors, the distance to a target is determined by
measuring the change in frequency between the received signal and the
carrier wave ∆f :

r =
c∆f

2 (df/dt)
, (7.8)

where c is the speed of light, and df/dt is the slope of the modulation pattern
used by the carrier wave. FMCW radar sensors require two measurements
to disentangle the frequency shift resulting from range and relative velocity.
For sensors that scan each azimuth only once, the measured frequency shift
is the combination of both the range difference and Doppler frequency,
which can be compensated in the following way. Let β = ft/(df/dt), where
ft is the transmission frequency of the sensor. To correct for the Doppler
distortion, the range of each target needs to be corrected by the amount:

∆rcorr = β(vxcos(θ) + vysin(θ)). (7.9)

7.1.5 Loop detection

As described in Section 2.5, loop identification using only radar sensors is
inherently difficult, due to the nature of the collected data. Vision-based
methods cannot be adopted, as radar images corresponding to the same place
may differ greatly if gathered with a certain time gap one from the other
(even after a few minutes only), due to the many artifacts that afflict them,
including multi-path reflections, sensor saturation and speckle noise.

Using point clouds is, instead, a more feasible solution, but radar data,
especially from scanning radars, is usually given in the form of a 2D po-
lar image. Thanks to the feature extraction method, previously described
in 7.1.3, we are able to extrapolate 2D points from the input images. It
should be noted that the extracted points are already in world coordinates,
as the sensor resolution is almost always known. This way, for each scan we
are able to extract a 2D noisy cloud, which can be used for loop detection.

Similarly to ART-SLAM, loop detection and closure in RadART-SLAM
are performed in three consecutive steps, to efficiently search for loops
within the collected radar keyframes. Each time a radar keyframe is available,
it is compared against all previously created keyframes. A previous keyframe
is considered a candidate for loop closure if the corresponding estimated
pose is close enough to the pose associated with the current keyframe.
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Moreover, if the two structures are too close in time or have a low difference
in accumulated distance, they cannot be considered a loop candidate pair.

The second phase for loop detection exploits the method described
in [140], which demonstrates to be resilient also when dealing with 2D
point clouds (e.g., from radar images). Radar clouds are binned into 2D
polar grids, which are compared using a KD tree, to select the most similar
ones to a given point cloud query. Although the method was developed for
dense point clouds derived from LiDARs, it can be also used in our case
without loss in detection accuracy. From this procedure, we are able to
obtain k candidate scans w.r.t. the cloud associated with the new keyframe.

Performing scan-to-scan matching on the elements of each pair (formed
by new and candidate radar scans) is not enough to correctly identify loops.
2D clouds derived from radar data are too noisy and sparse to obtain a
truthful result using scan matching, which is instead recommended when
working on 3D LiDAR scans. The idea is then to create two submaps, one
associated with each element of a pair for loop closure. In particular, the
radar keyframe that is a candidate for loop detection is associated with a
large submap, including at least 40 radar scans around it (20 temporally
before it, and 20 after). For the other element, which is the newly con-
structed keyframe, is not possible to include in the submap all elements
that temporally came after it, since the structure is the last formed in the
trajectory. For this reason, the submap associated with the new keyframe
consists of 1 to 10 keyframes that precede it in the estimated trajectory.

The two available submaps can now be used to perform submap-to-
submap matching, to obtain a set of relative motions. All transformation
matrices are then compared to find the best one, i.e., the one with the highest
accuracy and corresponding to the smallest Euclidean distance between all
the cloud pairs. If a best match is found, it means that a new loop has been
efficiently detected and closed, and it is added to the pose graph as a new
constraint, to be later used during the optimization procedure.

7.1.6 Pose graph building and optimization

As part of the framework developed in this thesis, RadART-SLAM is a
form of graph SLAM [139]. Each node in the pose graph represents a radar
keyframe, including the corresponding location in the world, the radar image,
and the 2D point cloud obtained from the features extracted from the input,
as described in Section 7.1.3. An edge between two nodes corresponds to
the relative motion between the associated 2D poses. This transformation
is either the result of tracking, or a constraint derived from loop detection.
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Periodically, the pose graph is optimized, to align all nodes such that their
corresponding poses best satisfy all measurements associated with the edges.

7.1.7 Experimental validation of the system

To our knowledge, no radar-based SLAM system has been made publicly
available and not many radar odometry works are fully functional. For exam-
ple, PhaRaO [177] is only partially implemented and currently discontinued.
For this reason, we compare RadART-SLAM with the algorithm used as the
baseline to perform tracking only, YETI [106], whose code is accessible.

We evaluate the two systems on the five most complex sequences, in terms
of trajectory shape and presence of loops, of the MulRan dataset [182]. For
both methods, we use the same parameters for motion tracking, as described
by the authors of YETI. In particular, we use the algorithm described in [105]
to extract 2-dimensional features from radar images, as it is efficient and
reliable. Moreover, we set the inlier rejection threshold for motion distorted
RANSAC to 0.35 and the parameter for Doppler compensation (β, as we
have seen in the last part of Section 7.1.4) to 0.049.

As always, for a fair comparison, the systems are tested on a 2021 XMG
64-bit laptop with Intel(R) Core(TM) i7-11800H CPU @ 2.30GHz x 8 cores,
with 24576 KB of cache size. Although available, no GPU has been used.

7.1.8 Comparison and results

As done for all systems developed over the course of the Ph.D. program, to
evaluate RadART-SLAM and YETI we compute the absolute trajectory error
(ATE), i.e., the difference between coordinates of the locations belonging to
the true and the estimated trajectories, in all considered scenarios.

Table 7.1 represents the mean, root mean square error (RMSE), and
standard deviation (STD) of the absolute trajectory error, in meters, on all
tested sequences on DCC and KAIST, which are two areas of the MulRan
dataset. RadART-SLAM proves to be the most precise method of the two,
reaching an accuracy of 2 to 10 times better than the other method. This
was expected, as YETI is a radar odometry method, and loop detection and
optimization are not performed, differently from RadART-SLAM, which
is a complete SLAM system. Moreover, one should also consider the
error obtained when compared with the length of all five trajectories. In
particular, DCC is 4.9 km long, on average, while KAIST is 6.1 km, which
demonstrated that the resulting errors are acceptable and justified, also
keeping into account that such results are achieved using only radar data,
which is 2-dimensional, sparse, and inherently noisy.
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Table 7.1: ATE of the compared systems on five sequences of the MulRan dataset [182].

ATE[m] YETI RadART-SLAM

DCC01
MEAN 27.928 7.418
RMSE 30.696 8.676
STD 12.741 4.499

DCC02
MEAN 23.856 9.108
RMSE 25.386 11.079
STD 8.681 6.309

DCC03
MEAN 30.753 8.767
RMSE 35.534 9.839
STD 17.803 4.208

KAIST02
MEAN 30.090 7.459
RMSE 32.877 8.035
STD 13.244 2.968

KAIST03
MEAN 113.132 7.947
RMSE 120.214 8.904
STD 49.749 4.015

Figure 7.3: Map of Sequence DCC03 of the MulRan dataset [182], built by the proposed
algorithm, RadART-SLAM, overlaid on the corresponding area visible in Google Earth.

We also include a visual evaluation of two of the reconstructions obtained
using RadART-SLAM. Figure 7.3 shows the map representing Sequence
DCC03 of the dataset, overlaid on the corresponding area visible in Google
Earth. Similarly, Figure 7.4 shows the map, again obtained with RadART-
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Figure 7.4: Map of Sequence KAIST03 of the MulRan dataset [182], built by the proposed
algorithm, RadART-SLAM, overlaid on the corresponding area visible in Google Earth.

SLAM, of Sequence KAIST03, placed on top of the analogous world lo-
cation, which can be seen using Google Earth. Both maps, even if sparse,
show how accurate RadART-SLAM is, being correctly located.

To conclude, we give some information about the processing time of the
most important modules of RadART-SLAM, in a similar fashion to how has
been done for all other systems developed and presented in the thesis. The
fastest module of the proposed SLAM method is the tracker, as it is mainly
based on RANSAC on a limited amount of points. Its average processing
time per frame is less than 8 ms, including also the operations needed to
compensate for motion distortion and Doppler effect. Feature detection and
extraction is, instead, the bottleneck of the system, requiring at least 40 ms
per frame. Lastly, the loop detector proves to be a very fast operation, with
an average of less than 10 ms per frame. As all modules work in parallel, it
is intuitive how RadART-SLAM is able to work in real-time, or even faster.
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CHAPTER8
Conclusions and future works

The goal of our Ph.D. program was the development of a common framework
for 2D and 3D SLAM, with a major focus on the latter, which can be adapted
and used to deal with a specific situation or user needs. The majority of
works existing in literature are monolithic and highly different one from the
other, making it difficult to extend or even find an already available system
that tackles a particular situation (e.g., SLAM in tunnels using only lasers).

With the intent of overcoming this issue, the developed framework con-
sists of a series of novel SLAM systems, implemented by us, all able to
achieve accurate and real-time localization under different environmental
and hardware constraints. All developed methods outperform state-of-the-art
methods in terms of localization accuracy, while also being real-time, or
even faster, memory efficient, modular, and easily extendable.

As a first step of our Ph.D. program, we developed the base of our
framework, ART-SLAM [1], which is a LiDAR graph-based 3D SLAM
system. As for all laser methods, ART-SLAM achieves good localization
accuracy (better than state-of-the-art systems) and is able to run in real-time.
In ART-SLAM, an input point cloud is processed and used to track the robot
poses, by matching it against previous scans. The estimated pose, along
with additional information, and an efficient loop detection method, are used
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to optimize the trajectory and to build a detailed 3D map.
From there, we also considered the possibility of performing not only

SLAM but also localization using already available 3D maps [2]. As the
second step of our Ph.D. program, we extended ART-SLAM with a mod-
ule used for UKF-based localization in GNSS-denied environments, and
we benchmarked the framework comparing it with other methods able to
perform both SLAM and localization, using manually collected data.

We then developed a hybrid SLAM method, as the third step of our Ph.D.
program, and derived MCS-SLAM [3]. Here, instead of matching consec-
utive input LiDAR scans, as in ART-SLAM, point clouds are converted
into 2D range/depth images and possibly coupled with RGB images taken
from cameras. From a pair of RGB and range/depth images, multiple cues
are extracted, such as intensity, depth, and normals, which are later jointly
exploited to efficiently estimate the motion of the robot.

Returning to the original ART-SLAM, in the fourth step of our Ph.D.
program we then addressed the situation where prior information coming
from mapping services is already available. To do so, we integrated 2D maps
obtained from OpenStreetMaps into the existing framework, developing
OSM-SLAM [4]. The system tries to find the best alignment between the
current LiDAR scan, opportunely processed, and the 2D map of buildings
downloaded from OSM. This alignment enforces further constraints in the
optimization step, increasing local accuracy and correcting the OSM map.

To fully exploit the availability of multiple sensors by direct data associa-
tion, as the fifth step of our Ph.D. program we developed a visual inertial
laser 3D SLAM method, named D3VIL-SLAM. The system combines the
laser front-end of ART-SLAM with a backbone Error State Kalman Filter
and a stereo vision-based front-end, which can be used in the case of pure
visual SLAM. Moreover, an enhanced double-loop detection method, which
exploits both scans and images, further increases the accuracy of the system.

As a last step of our Ph.D. program, we considered the case, still not
completely addressed in the literature, where SLAM is performed using
only radar sensors, due to their multiple advantages. For this reason, we
developed RadART-SLAM, a localization and mapping system able to
achieve accurate and real-time results even on kilometers-long trajectories.

The development of this common framework for SLAM allows for many
future improvements. Each of the presented systems can be extended, to
tackle particular situations, not fully addressed in the literature. Moreover,
the SLAM methods can be strengthened to further improve their localization
accuracy, and all algorithms could be massively benchmarked, to show their
true capabilities and performance in different scenarios.
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One of the main challenges for SLAM algorithms is to deal with various
perturbations that can affect the quality of the map and the localization,
such as fast motion, non-uniform illumination, or dynamic objects. These
perturbations can cause errors in feature extraction, data association, loop
detection and closure, and many other modules. Such errors can lead to drift
or failure of the developed SLAM systems. To improve the robustness and
accuracy of SLAM algorithms, some possible solutions exist.

SLAM systems could be integrated with methods to detect and reject out-
liers or incorrect matches in the sensor data, such as using robust estimators,
geometric verification, or learning-based methods. Moreover, the handling
of dynamic objects in the environment may greatly benefit the accuracy of
localization and the quality of the created maps. Existing approaches that
can be exploited include motion segmentation, object detection and track-
ing, or even probabilistic modeling. Also, when working on vision-based
SLAM, methods should be developed to cope with illumination changes or
low-texture scenes, such as using adaptive feature detection and description,
multi-modal sensors, or deep learning techniques.

Another existing challenge in SLAM is to include semantic information.
This task is of extreme importance nowadays, due to the various applications
in emerging or improving fields, such as robotic agriculture. Semantic
SLAM is the branch of SLAM that aims to enrich the typical geometric
map with semantic labels or attributes, such as object classes, categories,
and names. Semantic information can help to improve map readability, data
association, loop detection and closure, and scene understanding.

A relatively easy solution for integrating semantic information into
SLAM is the development of methods to perform semantic segmentation or
detection on the sensor data, such as using deep neural networks, graphical
models, or multi-modal fusion. Another approach could be implementing
object-level SLAM, which treats objects as the basic units of mapping and
localization, rather than points or voxels. Object-level SLAM can reduce the
map size and complexity, and enable object manipulation and interaction.

Autonomous data association is also a possibility, as it can associate se-
mantic labels with geometric features without relying on manual annotation
or prior knowledge, and it also can enable online learning and adaptation
of semantic models. Lastly, SLAM can be integrated with semantic reason-
ing and inference, which can exploit the semantic relations and constraints
among objects and scenes. This can enhance the robustness and accuracy of
SLAM, and enable high-level tasks such as planning and navigation.

Deep learning is a powerful tool for feature extraction, representation
learning, and end-to-end learning. Deep learning can be used to enhance
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various components of SLAM, such as visual odometry, loop detection, map-
ping, or even scan matching. Deep learning can also be used to learn SLAM
models from data without relying on hand-crafted features or assumptions.

In detail, deep-based methods can extract and match features from the
sensor data, such as using convolutional neural networks, self-supervised
learning, or attention mechanisms. Moreover, deep learning techniques
can be used to estimate the relative or absolute pose of one or multiple
sensors, and this can be achieved through regression networks, recurrent
neural networks, or geometric consistency. Neural networks, such as using
generative adversarial networks, auto-encoders, or graph neural networks,
can be employed to build and refine the map of the environment. Lastly,
reinforcement learning, imitation learning, or differentiable SLAM, can
allow to perform end-to-end SLAM, which directly maps the sensor data to
the map of the environment and the pose without intermediate steps.

SLAM algorithms often face difficulties when dealing with large-scale
or long-term environments that require high memory and computational
resources. Developing methods to reduce the complexity and redundancy of
the map, handle dynamic changes in the environment, and enable lifelong
learning and adaptation is a key challenge for SLAM.

A possible solution is to perform online global loop detection and closure,
which can detect revisited places and correct the accumulated drift in the
map without storing all the sensor data or performing batch optimization.
Moreover, the mapping aspect of SLAM can be improved through submap-
ping or hierarchical mapping, which divides the map into smaller submaps
or levels of abstraction, to be later used for local or global optimization,
accordingly to the specific system requirements.

Lastly, the developed SLAM systems can be integrated with modules
that maintain and update the created map, detecting and handling changes
in the environment over time. This is a concept known as lifelong SLAM,
and it can also be coupled with self-improving SLAM, which can learn from
previous experiences and improve the performance or robustness of SLAM.
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