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1. Introduction
Shape optimization is a crucial task in Aero-
nautical Industry for the reduction of costs and
emissions. Performing an aerodynamic opti-
mization requires multiple calls to high-fidelity
CFD software, in some contexts the computa-
tional burden can be unsustainable. It is impor-
tant to reduce at most this cost, choosing the
procedure that allows maximizing the results in
these terms.
We perform airfoil shape optimization by inte-
grating Fluid Mechanics with Machine Learning
(ML) algorithms. The main goals of this work
are represented by the generation of an appropri-
ate data-set and the construction of a surrogate
model linking design parameters to aerodynamic
force coefficients. This model, based on Artifi-
cial Neural Networks (ANNs), is then used to
perform the airfoil optimization in two different
ways: with a Standard Surrogate Model Opti-
mization, in which the optimization is performed
on a single ANNs-based surrogate model, and
with an Iterative Surrogate Model Optimization,
in which the optimization is performed on a se-
quence of surrogate models whose design space
is centred on the optimization point of the pre-
vious iteration. An example of ANN is shown in
Figure 1.

Input Layer � �� Hidden Layer � �� Output Layer � �²

Figure 1: Example of Feed Forward ANN

2. Generation of the Data-Set
The construction of an ANN-based surrogate
model requires the generation of an appropriate
data-set. This set is made by input-output pairs,
where the inputs are the values of some geomet-
rical parameters that come from the shape de-
formation of the original airfoil, and the outputs
are the aerodynamic force coefficients obtained
via CFD simulation.

2.1. Numerical Simulation
The first task to be performed is to obtain an
accurate CFD solution of the reference condi-
tion. This requires the generation of an appro-
priate mesh and the choice of suitable numerical
methods for space and time discretization. In
this work, the reference solution is represented
by the transonic flow around a RAE2822 (air-
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Figure 2: Pressure coefficient - Comparison with
experimental solution

foil), at the following conditions: M∞ = 0.729;
T∞ = 288.15 K; α = 2.31 deg; Re = 6.500.000.
Where M∞ is the freestream Mach number, T∞
is the freestream temperature, α is the angle of
attack of the airfoil, Re is the Reynolds num-
ber Re = ρU∞c

µ , computed with the density ρ,
freestream velocity U∞, chord c, and dynamic
viscosity µ. These conditions have been experi-
mentally replicated by Cook et al. in [1]. The
flow is transonic and it presents a strong shock-
wave on the suction side of the airfoil.
This experiment has been numerically replicated
by means of the Finite Volume Method, which
is implemented in the solver rhoCentralFOAM,
whithin the open-source software OpenFOAM.
To reduce the computational burden associated
with the CFD simulation and given the high
Reynolds number, the flow has been considered
inviscid. In this way, the numerical solution ap-
proximates the solution of the Euler Equations.
The numerical simulation has been run using
a C-type grid, second order numerical methods
with flux limiters for the space dicretization and
Crank-Nicholson scheme for the time discretiza-
tion. This allowed us to obtain a good conver-
gence in terms of pressure coefficient behaviour
along the chord, illustrated in Figure 2, with a
2.95% error on the lift coefficient and a 11.8%
error on the drag coefficient. The Mach num-
ber flowfield is displayed in Figure 5(a). With
these settings, the numerical solution requires 17
minutes of computation on a 6-core laptop.

2.2. Shape Parametrization and
Mesh Deformation

The airfoil deformation has been performed in
two ways, firstly with Radial Basis Functions-
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Figure 3: Deformation issues

based Free Form Deformation, then with Hick-
Henne functions. In both cases the mesh of the
reference simulation has been deformed with Ra-
dial Basis Functions.

2.2.1 Radial Basis Functions

Radial Basis Functions (RBFs) are commonly
used for the interpolation of scattered data
across many fields, from image manipulation to
mesh deformation. In this work, RBFs are used
to map a deformation vector of structural nodes
on the airfoil surface to each point of the struc-
tured grid. RBFs Φ are real-valued functions
whose value at the point x depends only on the
distance from a certain control point xc

i , hence
Φ(x,xc

i ) = Φ(||x− xc
i ||).

The interpolation function s describing the dis-
placement in the whole domain can be approxi-
mated by a sum of basis functions:

s(x) =
N∑
i=1

γiΦ(∥x− xc
i ∥) + h(x) (1)

where N is the number of control points, each
one associated with a coefficient γi, Φ is a Radial
Basis Function and h(x) is a linear polynomial,
with x = (x, y)T . The coefficients are recovered
imposing interpolation conditions, from which a
linear system is created. With the known value
of the displacement on the control points it is
hence possible to recover the displacement field
s(x). Evaluating this field on each mesh point
allows to find the final position of that point,
associated with that displacement of the control
points.
The deformation algorithm has been gener-
erated starting from the work of R. Lapuh [2], to
which a damping function has been added as in
Equation (2). By choosing appropriate radii R1

and R2, it is possible to obtain a smooth mesh
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deformation that leaves the outer boundary ele-
ments untouched.

fdamp (r) =


1 r ⩽ R1

1− r−R1
R2−R1

R1 < r ⩽ R2

0 r > R2

(2)

This mesh deformation strategy has been used in
two ways: i) by choosing a low number of control
points and imposing their translation it is possi-
ble to obtain at the same time the deformation of
the airfoil and of the mesh. This is possible be-
cause the points of the airfoil surface are treated
in the same way of the other mesh points. Their
displacement is hence derived from the motion
of the control points. This procedure requires
the tuning of a smoothing parameter, σ; ii) by
choosing as control points all the airfoil bound-
ary points, whose displacement is obtained by
means of Hicks-Henne functions.
The computational power available limited the
number of the control points, since an increase of
a single degree of freedom required much more
samples to be simulated to generate an accu-
rate surrogate model. The maximum number of
control points used has been set to eight. With
such a low number of design parameters, the de-
formed airfoils generated with the procedure (i)
showed some problems at the leading and trail-
ing edges, as shown in figure. To obtain good
results in the shape optimization, the generated
shapes should show sufficient regularity. How-
ever, with such a low number of control points it
was not possible to satisfy this requirement with-
out obtaining an unwanted change in the angle
of attack, as shown in Figure 3, where it can be
seen that both the leading and trailing edges are
shifted in the deformed configuration. For this
reason it has been decided to perform the air-
foil deformation with another parametrization,
following the procedure (ii).

2.2.2 Hicks-Henne Functions

Hicks-Henne functions have been introduced in
the context of airfoil optimization. The Hicks-
Henne deformation method consists in adding
a linear combination of n augmented sine func-
tions to the original coordinates of the airfoil,
these functions are in the form of a bump.

ymod = y0 +
n∑

i=0

aisinwi(πxln(0.5)/ln(xM
i )) (3)

Where y0 are the initial y-coordinates of the up-
per and lower surface points, ymod are the final
y-coordinates, n is the number of bumps for each
one of the upper or lower surfaces, xMi is the x
coordinate of the bump, wi is the bump width,
while ai are the bumps intensities. In this work,
the position and width of each bump has been
fixed, and the design parameters are then ai, for
i = 1, ..., n. These functions allowed us to ob-
tain a smooth deformation and at the same time
a fixed angle of attack.
As mentioned above, also in this case the mesh
deformation has been performed with RBFs, by
using as control points all the points on the air-
foil surface y0, imposing them the deformation
g = ymod − y0.

3. Surrogate Models
Surrogate models have been introduced in the
context of shape optimization to capture the
most important features of a high fidelity model
at a low computational cost. The surrogates
are constructed using data drawn from high-
fidelity models, and provide fast approximations
of the objectives and constraints at new de-
sign points. The surrogate models used in this
work are based on Feed Forward Artificial Neu-
ral Networks, which have been implemented by
F. Regazzoni in the model-learning library, ex-
plained by Regazzoni et al. in [4]. ANNs have
been chosen for this work thanks to the Univer-
sal Approximation Theorem, which states that
ANNs with a single hidden layer can approxi-
mate with arbitrarily small error any continuous
function on a compact set, provided that a suf-
ficient number of hidden neurons are employed.
The algorithms present in model-learning library
are thought for a data-driven Model Order Re-
duction of time-dependent problems. For com-
putational limitations, the problem here consid-
ered is steady and hence the Machine Learning
algorithms were modified to work on a steady
problem. In particular, the input-output pairs
were given as constant in time and the Loss func-
tion that the ML algorithm minimizes was re-
defined so that it was computed only at the lat-
est time-step. The ANNs-based surrogate model
thus obtained was then evaluated only at that
time during the shape optimization procedures.
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- εTrain [%] εTest [%] εCV [%]
Cl 0.0310 0.0873 0.0879
Cd 1.113 1.392 1.418

Table 1: Learning errors - 16 neurons

3.1. Results
All the optimizations have been performed us-
ing a Hick-Henne parameterization with eight
bumps, five of which on the suction side of the
airfoil. Figure 4 shows the design space of this
test. Using the Sobol sequence to obtain the
values of the bumps, a sufficient number of air-
foil samples has been generated and then simu-
lated with the CFD software. This sequence has
shown to help in reducing the number of sam-
ples needed to obtain an accurate ANNs-based
surrogate model [3]. With this parameteriza-
tion, 500 airfoil samples were generated. The
numerical values of the bumps constitute the in-
puts of the network, and the aerodynamic coef-
ficients represent the output. The data-set has
been divided in three sets: train set (70% of the
samples), test and cross-validation sets (15% of
the samples each). The training set is directly
used in the training phase to evaluate the loss
function and to modify the values of the neu-
rons activations thanks to the back-propagation
procedure. The test set is used, during the learn-
ing phase, to evaluate the network’s accuracy
on unseen data, allowing to stop the learning as
soon as the error on this set starts increasing, to
avoid overfitting. The cross-validation set is in-
stead used, once the best-performing network is
chosen, to evaluate the generalization error, i.e.
the error that the network does on unseen data.
In the learning phase, different neural networks
were trained, which differ in the number of hid-
den neurons. The best performance in terms of
error on the training set was found for the 16-
neurons network, whose performances have been
summarized in Table 1, where εTrain is the Root
Mean Squared Error (RMSE) on the train set,
εTest is the RMSE on the test set, εCV is the
RMSE on the cross-validation set.

4. Optimization
4.1. Objective Function
The first step associated with the aerodynamic
optimization is the definition and the minimiza-
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Figure 4: Design space

tion of an objective function. In this work two
different objective functions have been consid-
ered, associated with two different goals: the in-
crease of the aerodynamic efficiency (lift-to-drag
ratio), as in Equation (4) and the reduction of
drag at fixed lift, as in Equation (5), where P
is a penalization factor, max is the function tak-
ing the maximum value between the two inside
the brackets, so that when the lift coefficient is
lower than the reference the value of the objec-
tive increases.

O1(E(Cl, Cd)) =
Eref

E
, (4)

O2(Cl, Cd) =
Cd

Cref
d

+ Pmax(0, 0.999− Cl

Cref
l

).

(5)

The optimization was then performed by means
of the interior-point method, implemented in the
Matlab fmincon function. Since the algorithm
requires an objective function whose derivatives
are continuous, and the function (5) has a dis-
continuous derivative along the line Cl = Cref

l ,
the objective has been modified to go along with
fmincon. To obtain a smooth tendency, the pe-
nalization term has been defined using an expo-
nential function of the ratio between the refer-
ence and the actual lift coefficient.

4.2. Standard Surrogate Model Opti-
mization

The Standard Surrogate Model Optimization
(SSMO) procedure consists in finding a unique
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- Ref Opt O1 Opt O2

Cl 0.7526 0.6558 0.7588
Cd 0.01355 0.009986 0.01182
E 55.54 65.67 64.20

∆O[%] - 15.44 12.79

Table 2: SSMO - Results

surrogate model that maps the whole design
space, as the one presented in section 3.1. This
model is then given to the optimization algo-
rithm that finds a minimum in the objective
function using the surrogate model to evaluate
the aerodynamic coefficients.
One of the advantages associated in the gener-
ation of such a model is that, once it has been
built, it is possible to inexpensively perform op-
timizations with different objective functions.
This would not be possible using directly the
CFD solver, since for each objective function it
would be necessary to calculate a large amount
of solutions, requiring a high computational ef-
fort. The model presented in section 3.1 has
been indeed used with both the objective func-
tions defined in section 4.1, giving the results
presented in Table 2, where E is the aerody-
namic efficiency, Opt O1 is the airfoil optimized
with the goal of increasing efficiency, and Opt
O2 is the airfoil optimized in the drag-reduction
case, ∆O is the percentage improvement on the
case-specific objective function. In each one of
the two cases, the model is able to predict the
aerodynamic coefficient values at the minimum
point with a Cl prevision error below the 0.3%
and a Cd prevision error below the 2.5%.

4.3. Iterative Surrogate Model Opti-
mization

We propose then an Iterative Surrogate Model
Optimization (ISMO) with the goal of reducing
the number of samples required for the training
of the networks, therefore reducing the computa-
tional cost of the optimization. This procedure
consists in reducing the dimension of the param-
eters space, reducing the boundary of each de-
sign variable, generating the space S1. Using
the samples previously generated that fall inside
this reduced space, an ANNs-based surrogate
model is trained. At this point, if the general-
ization error of the surrogate model is above the
accepted tolerance (1.5%) 25 new samples are

(a) Mach number contour - Original Airfoil

(b) Mach number contour - SSMO Optimized Airfoil

(c) Mach number contour - ISMO Optimized Airfoil

Figure 5: Mach number contours - Comparison

added in this space, and the training procedure
is repeated. The resulting model is used as in the
SSMO case to perform the optimization within
the space S1, concluding the first iterative step.
The following steps k, for k = 2, ..., Nk consist
again in the selection of the space Sk whose cen-
ter is shifted in the minimum point of the pre-
vious iteration. This procedure continues until
the relative norm of the step Nk falls below the
tolerance t̂ = 0.5%. This procedure was tested
only in the drag-reduction case. After the first
two steps, the drag coefficient has decreased of
the 13.31%, which is an increase of the 0.6% in
the performance compared to the SSMO case.
The research of this minimum required only 234
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Step Cl Cd ∆Ok ∆Otot

1 0.7537 0.01216 - 10.28
2 0.7608 0.01175 3.372 13.31
3 0.7584 0.01170 0.4274 13.67

Table 3: ISMO steps

samples, with a 54% reduction in the computa-
tional time compared to the SSMO. With the
third step, the objective function improved fur-
ther, obtaining in this way the best result of the
whole work with this objective function. The
percentage improvements on the objective func-
tion at each step are given in Table 3, where
∆Ok is the improvement compared to the pre-
vious step and ∆Otot is the total improvement.
The third iterative step required the addition of
50 samples, increasing the computational time
from 65 to 78 hours, which is a 43% improvement
compared to the SSMO procedure, achieving at
the same time better results.
Figure 5 shows the comparison between the
original airfoil simulation, and the solutions ob-
tained in the drag-reduction case with the SSMO
and ISMO procedures. It can be seen that, in
both cases, the reduction in the drag coefficient
is achieved with a reduction in the shock inten-
sity. This is caused by a smooth isentropic com-
pression that starts soon after the leading edge.
This compression allows to reduce the pressure
jump caused by the shock and hence the shock
drag and the drag coefficient.

4.4. HF Model Optimization
To investigate the advantages associated with
the surrogate model optimization, an optimiza-
tion using the CFD solver to generate the force
coefficients was performed. Due to computa-
tional limitations, this optimization was limited
to 10 iterative steps of the interior-point method.
Findings show that, with the same number of
interior-point iterations and with 148 calls to the
CFD solver, the results obtained are worse in
terms of objective function improvement, com-
pared to the same procedure performed with
the surrogate model. Furthermore, the compu-
tational time required for the CFD simulations
called from Matlab is increased of the 50%, re-
quiring a total of 72 computer hours.

5. Conclusions
The airfoil shape optimization requires multiple
calls to expensive numerical CFD solvers, the
usage of surrogate models in the context of con-
strained optimization is an attractive proposi-
tion. This work shows that, as long as the surro-
gate model provides an accurate approximation
of the PDE while being computationally cheap
to evaluate, it can be used within standard op-
timization algorithms with good results, leading
to computational advantages.
Among the tested procedures, the Standard Sur-
rogate Model Optimization has the main advan-
tage of being inexpensively used to perform op-
timizations with different goals. It allowed us to
obtain a 15.4% improvement with the goal of in-
creasing the aerodynamic efficiency, and a 12.8%
improvement in the drag-reduction problem, re-
quiring a total computational time of 135 hours.
The Iterative Surrogate Model Optimization, in-
stead, allowed us to obtain a 13.7% reduction in
the drag coefficient, reducing the computational
time required for the generation of the training
set to 78 hours. With the same parameters used
in the Standard Surrogate Model Optimization,
the Direct Optimization using the CFD solver
instead of the surrogate model has shown to sig-
nificantly increase the required computational
time and, with the same number of iterations,
it gave worse optimization results.
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Abstract

In this thesis, airfoil shape optimization is carried out by integrating Computational
Fluid Dynamics with Machine Learning algorithms. With this aim, we perform: i)
the generation of an appropriate data-set and ii) the construction of a surrogate
model linking design parameters to aerodynamic force coefficients. This model,
based on Artificial Neural Networks (ANNs), is then used to perform the airfoil
optimization.

A goal of this work is to produce an appropriate data-set that is required to train
the ANNs-based surrogate models. This set is composed of input/output pairs,
which the Machine Learning algorithm uses to find a model mapping the input
space to the output space. To perform this task, Hicks-Henne functions are used
for the perturbation of the initial airfoil geometry, generating a sufficient number
of airfoil samples. The input values of the training data-set are represented by the
numerical values of the Hicks-Henne bumps intensities, which define the shape of
each sample. The outputs of the data-set are the airfoil lift and drag coefficients,
computed through CFD simulations in OpenFOAM, an open-source software based
on finite volume space discretization.

The surrogate models are then generated by means of Feed-Forward ANNs, using
a sufficient number of samples so that they can accurately predict the force coeffi-
cients on unseen airfoils. The development of the ANNs-based model allows us to
perform the airfoil shape optimization, with different objectives, without the need
to run expensive CFD simulations, hence leading to significant savings in terms of
computational time.

Keywords: Airfoil Optimization, Machine Learning, Artificial Neural Networks,
Surrogate Model, Computational Fluid Dynamics.





Abstract in lingua italiana

In questa tesi l’ottimizzazione di forma di un profilo alare viene svolta integrando
la fluidodinamica computazionale con algoritmi di Machine Learning. Le fasi prin-
cipali di questo lavoro sono rappresentate dalla generazione di un data-set e dalla
costruzione di un modello surrogato in grado di legare le variabili di progetto ai co-
efficienti aerodinamici. Questo modello, basato su Reti Neurali Artificiali, è quindi
utilizzato per svolgere l’ottimizzazione del profilo.

Uno degli obiettivi di questo lavoro è rappresentato dalla generazione di un set di
dati richiesti per la fase di apprendimento del modello surrogato. Questo set è
composto da coppie input/output che vengono utilizzate dall’algoritmo di Machine
Learning per trovare un modello che colleghi gli spazi delle variabili di ingresso e di
uscita. Per generare questi dati sono state utilizzate delle funzioni di Hicks-Henne
per la deformazione della geometria iniziale del profilo alare, producendo, così, un
opportuno numero di campioni. Gli input della Rete Neurale sono costituiti dai
valori delle intensità dei bump di Hicks-Henne, che definiscono la geometria dei
profili perturbati. I valori di output sono rappresentati dal coefficiente di portanza
e di resistenza di ogni profilo. Questi coefficienti sono ottenuti con simulazioni
CFD svolte con il software open-source OpenFOAM, basato su una discretizzazione
spaziale operata con il Metodo dei Volumi Finiti.

I modelli surrogati vengono quindi generati tramite Reti Neurali Artificiali con flusso
in avanti ("feed-forward"), usando un numero di campioni sufficiente per poter ot-
tenere un modello surrogato in grado di prevedere accuratamente il valore dei coeffi-
cienti aerodinamici anche su profili non utilizzati durante la fase di allenamento della
Rete Neurale. Questo ha permesso di effettuare l’ottimizzazione di forma del profilo
senza dover richiamare il software CFD, comportando un significativo risparmio in
termini di costo computazionale.

Parole chiave: Ottimizzazione di Profili Alari, Machine Learning, Reti Neurali
Artificiali, Modello Surrogato, Fluidodinamica Computazionale.
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Introduction

Fluid mechanics has traditionally dealt with massive amounts of data from experi-
ments, field measurements, and large-scale numerical simulations. In the last years,
the advances in computational hardware and the reduced costs for computations
have allowed to increase the volume of data easily available to the user. These im-
provements have fueled renewed interest in the field of Machine Learning (ML) to
extract information from these data.

Artificial intelligence and ML can be applied to several different sectors of the
aerospace industry such as air traffic management [1, 14], turbulence closure mod-
elling [15, 37, 41], shape optimization [39, 44, 65] and control [6, 16].

In 2017, the aviation sector created 13.9% of the emissions from transport, making it
the second biggest source of transport Greenhouse Gas (GHG) emissions after road
transport. Aviation also impacts the climate through the release of nitrogen oxides,
water vapour, and sulphate and soot particles at high altitudes, which could have
a significant climate effect [17]. This problem is confirmed by the European Union
Aviation Safety Agency report [13]. To achieve climate neutrality, the European
Green Deal sets out the need to reduce transport emissions by 90% by 2050 (com-
pared to 1990-levels). The aviation sector will have to contribute to the reduction.

Shape optimization is a crucial task in the aerospace industry for both the reduction
of costs and emissions. A 1% decrease in drag coefficient on a Boeing 747 can lead
to a reduction of almost 400.000 liters of fuel each year, this impacts both on the
airline operating costs and on the emissions [2].

In this work, we applied ML to Computational Fluid Dynamics (CFD) to perform
an airfoil shape optimization. CFD has become an important tool in the aerospace
industry; it is widely used within the design and performance evaluation of aerody-
namic bodies [50, 66].

Given the high computational costs associated with CFD simulations, it would be
beneficial to find a direct relationship between given inputs and aerodynamic observ-
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ables without explicitly solving the discretized flow equations. In this work, we use
ML algorithms to find a surrogate model linking geometric parameters with aerody-
namic observables, i.e. aerodynamic coefficients. To perform this task, we need to
choose accurately the geometry parametrization algorithm, together with a suitable
mesh deformation algorithm. These tools will be used before the Artificial Neural
Network training phase to generate a training set of input/output couples, using
CFD to generate the outputs. We determine the CFD numerical solution by means
of the Finite Volume Method, which is implemented in the solver rhoCentralFOAM
[22], whithin the open-source software OpenFOAM [23]. The computational grid
is deformed using Radial Basis Functions [12]. After a comparison between Radial
Basis Functions and Hicks-Henne functions [29], the airfoil shape parametrization
is performed using the latter, since with a low number of design parameters it was
possible to fix the leading and trailing edges position, and at the same time achieve
a smoother shape deformation, matching the findings of Castonguay et al. [9].

Once a sufficient number of airfoils samples is generated and simulated, we train
the surrogate model made by a feed forward Artificial Neural Network with a single
hidden layer. This surrogate model allows a fast and accurate evaluation of the
design variables and it is used to perform the shape optimization, using the interior-
point method. This optimization is performed in two different ways, first with a
unique surrogate model mapping a large design space (standard method) and then
with an iterative method, training a sequence of surrogate models whose design
spaces are centred in the minimum found by the previous step.

Then, the results obtained with the surrogate models optimization are presented.
The combination between the surrogate model and the interior-point method allowed
us to improve the objective function by more than the 10%.

Finally, the advantages of the surrogate model optimizations are investigated through
the comparison with a direct optimization performed with the high fidelity CFD
model. This is aimed to understand the advantages of the generation of such a
model in terms of total computational time..

This thesis dissertation is organized into seven chapters, whose main topics are
summarized below.

Chapter 1
This chapter provides basic notions of Fluid Dynamics and CFD. It starts presenting
Euler equations and then it presents the main features of the Finite Volume Method
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and describes the meshing options and the solver used in this work.

Chapter 2
This chapter illustrates the choices made regarding the geometry parameterization
algorithms. Then, it explains the mesh deformation procedure, which based on
Radial Basis Functions. Finally, it presents the main sampling possibilities and the
different types of surrogate models that could be used in this work.

Chapter 3
This chapter is intended to provide the basic concepts of Artificial Intelligence and
Machine Learning. The main parameters required for a Neural Network are intro-
duced and explained in more detail, to provide the necessary theoretical knowledge
to apply ANNs to a case study.

Chapter 4
This chapter presents the setup and the results of the numerical simulation of the
reference airfoil, which is a RAE 2822 supercritical airfoil. The setup validity is
assessed with a comparison with an experimental solution.

Chapter 5
This chapter describes further the parametrization choices, highlighting the pros and
cons of each one of the two methods tested: Radial Basis Functions and Hicks-Henne
functions. Then, it presents details on the implementation of mesh deformation
algorithm.

Chapter 6
This chapter starts with a description of the ML models that are used in this work
to obtain the surrogate model. It continues with the learning results of the most
relevant tests performed.

Chapter 7
This chapter describes the the optimization strategy and the shape optimization
results. Then, it presents the comparison between the standard surrogate model
optimization, the iterative surrogate model optimization and the optimization made
using the high fidelity CFD solver. Conclusions follow.





1| Basic notions of the Finite

Volume Method

This chapter provides basic information about Euler Equations and CFD, following
[35] and [45].

1.1. Governing Equations

Euler Equations describe how the velocity, pressure, and density of a moving fluid
are related, named in honour of Leonard Euler. They are a set of coupled differential
equations obtained with a simplification of the more general Navier-Stokes equations
of fluid dynamics and they can be solved for a given flow problem by using methods
from calculus. The Euler equations neglect the effects of the viscosity of the fluid
which are instead included in the Navier-Stokes equations. A solution of the Euler
equations is therefore only an approximation to a real fluids problem. For some
problems, like the lift of a thin airfoil at a low angle of attack, a solution of the
Euler equations provides a good model of reality [25]. For other problems, like the
growth of the boundary layer on a flat plate, the Euler equations do not properly
model the problem. A useful feature of the Euler equations is that, in the unsteady
case, they are hyperbolic, and can be written in conservation form, as follows for
the 1-D case:

∂

∂t
u(x, t) +

∂

∂x
f(u(x, t)) = 0 (1.1)

Where u is a vector of conserved quantities, or state variables, such as mass, mo-
mentum, and energy in a fluid dynamics problem.

The main assumption underlying (1.1) is that knowing the value of u(x, t) at a
given point and time allows us to determine the rate of flow, or flux, of each state
variable at (x, t). The vector-valued function f(u) with jth component f(u) is called
the flux function for the system of conservation laws.

Once the viscosity terms from the Navier-Stokes equations are dropped, the system
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becomes hyperbolic and can be written in conservation form as follows, in one space
dimension:

∂

∂t

 ρ

ρv

E

+
∂

∂x

 ρv

ρv2 + p

v(E + p)

 = 0. (1.2)

Where ρ = ρ(x, t) is the density, v is the velocity, ρv is the momentum, E is the
energy, and p is the pressure. The pressure p is given by a known function of the
other state variables. Equation (1.2), can be written for a general 3D case as:

∂u(x, t)

∂t
+∇ · f(u(x, t)) = 0. (1.3)

Where f(u(x, t)) is the general flux vector of the conservative quantity u(x, t).

1.2. Finite Volume Method

The Finite Volume Method, FVM, has come to play a unique role amongst the
numerical methods used to implement CFD [36]. It is a technique that transforms
partial differential equations (PDEs) representing conservation laws over differential
volumes into discrete algebraic equations over finite volumes, also called elements
or cells. The first step in the solution process is the discretization of the geomet-
ric domain, which, in the FVM, is discretized into N non-overlapping elements or
finite volumes. The partial differential equations are then discretized into algebraic
equations by integrating them over each discrete element. The system of algebraic
equations is then solved to compute the values of the dependent variable for each of
the elements, obtaining the numerical solution [35]. This process is illustrated in
Figure 1.1. In the FVM, some of the terms in the conservation equation are turned
into face fluxes and evaluated at the finite volume faces. Because the flux entering
a given volume is identical to that leaving the adjacent volume, the FVM is strictly
conservative [45].

1.2.1. Domain Discretization

The numerical solution of a PDE consists of the values of the dependent variable
u at specified points from which its variation over the domain of interest can be
constructed. These points are called grid elements, and result from the discretization
of original geometry. In all the numerical methods for the approximate solution of
PDEs the focus is on replacing the continuous exact solution of the partial differential
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Figure 1.1: Discretization Process

equations with discrete values. The discrete values of u are typically computed by
solving a set of algebraic equations relating the values at neighboring grid elements to
each other; these discretized or algebraic equations are derived from the conservation
equation governing u [45].

The geometric discretization of the physical domain results in a mesh on which
the conservation equations are eventually solved. This requires the subdivision of
the domain into discrete non-overlapping cells or elements that completely fill the
computational domain to yield a grid or mesh system. For the mesh to be a useful
platform for equation discretization, information related to the topology of the mesh
elements, in addition to some derived geometric information, are needed. These in-
clude element to element relations, face to elements relations, geometric information
of the surfaces, area and normal direction. This information is usually inferred from
the basic mesh data. For certain mesh topologies, details about the mesh can be
easily deduced from the element indices as in structured grids, while for others it
has to be constructed and stored in lists, as for unstructured grids [45].

The advantage of a structured grid is that its connectivity is simple and the points of
an elemental cell can be easily addressed by double indices (i,j). The disadvantage,
particularly for more complex geometries, is the increase in grid non-orthogonality
or skewness that can cause unphysical solutions due to the transformation of the
governing equations.

Unstructured meshes are instead well suited for handling arbitrary shape geometries,
especially for domains having high curvature boundaries. In this type of grid, an
elemental cell may have an arbitrary number of neighbouring cells attaching to it,
making the data treatment and connection much more complicated with respect to
the structured case, as explained by J. Tu et al. in [63]. Figure 1.2 illustrates the
differences between structured and unstructured grids in 2D.
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(a) Structured grid

(b) Unstructured grid

Figure 1.2: Types of grids, image taken from [58]

Figure 1.3: Finite Volume Ωi. Image taken from [47]

1.2.2. Governing Equations Discretization

In the FVM, the discretization procedure of the governing equations starts from
the integration of the PDEs over a each element Ωi, represented in Figure 1.3, as
explained in [47]. This, for Equation (1.3) results in∫

Ωi

(
∂u(x, t)

∂t
+∇ · f(u(x, t))

)
dΩ = 0. (1.4)
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Which is the integral form of the conservation law, evaluated on that element. Using
the divergence theorem allows to obtain a system of ODEs. Equation (1.4) becomes:

∂

∂t

∫
Ωi

u(x, t) dΩ +

∫
∂Ωi

f(u(x, t)) · nidl = 0 (1.5)

where the second integral represents the net flux across the surface of the control
volume considered and ni represents the vector of unit normal, positive outwards of
∂Ωi. Denoting with Li the number of interfaces lij of Ωi, and by nij, j = 1, .., Li

the unit vector normal to the side ij of ∂Ωi, the previous equation can be rewritten
as

∂

∂t

∫
Ωi

u(x, t) dΩ +

Li∑
j=1

∫
lij

f(u(x,t) · nijdl = 0. (1.6)

For i = 1, ...,M ith M being the total number of elements. The interfaces lij can be
lines (in 2D) or surfaces (in 3D).

The flux at the interfaces f(u) is replaced by a numerical flux F(u). This numerical
flux can be defined according to different numerical schemes, but it needs to satisfy
flux conservation at adjacent control volumes and consistency [35]. A numerical
scheme is identified by the way the numerical flux approximates the physical flux
across each cell face or edge. The reader is referred to [35] for more information on
the numerical schemes.

The surface integral needs to be evaluated at each face of the element, which can be
an interface with another element or with the domain boundary. Considering the
interface between the cell i and j:∫

∂lij

f(u) · nij dS ≃ Fij∆lij (1.7)

At this point, a piecewise constant cell average is introduced for each grid element
Ωi.

ûi(t) =
1

|Ωi|

∫
Ωi

(u(x, t)) dΩ (1.8)

Substituting Equation (1.8) in the first term of Equation (1.6) yields

∂

∂t

∫
Ωi

u(x, t) dΩ = |Ωi|
∂ûi

∂t
. (1.9)

The combination of Equation (1.6), (1.7) and (1.9) leads to the space discretization
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of the governing equation in conservation form, evaluated on the element Ωi:

|Ωi|
∂ûi

∂t
=

Li∑
j=1

Fij∆lij (1.10)

To obtain a fully discrete form, it is required to introduce a time discretization.
Using the forward Euler scheme on Equation (1.10) yields

|Ωi|(ûn+1
i − ûn

i ) = −∆t

Li∑
j=1

Fij∆lik. (1.11)

Where time n+1 and n refer to two consecutive discrete time steps. The the compu-
tational domain has now been discretized, and the governing PDEs are transformed
into a set of algebraic equations, one for each element in the computational domain.
These algebraic equations are then assembled into a global matrix and vectors that
can be expressed in the form:

A[û] = b (1.12)

where the unknown variable vector û is defined at each interior element and at
the boundary of the computational domain. Boundary values for û are generally
obtained from the specified boundary conditions [45].

The value of u at a grid point influences the distribution of û only in its immediate
neighborhood. As the number of grid elements increases, the solution of the dis-
cretized equations is expected to approach the exact solution of the corresponding
differential equation.

Steady - State Simulations

The problem here considered in this work is steady. Steady-state solutions are
achieved by setting an initial condition, e.g. a uniform flow, and introducing a fic-
titious time t̂. This problem is hence treated as an unsteady problem, in which the
steady state solution is achieved when the variation in the solution between two fol-
lowing pseudo-time steps falls below some tolerance. The pseudo-time discretization
can be performed, for example, with the Crank-Nicolson method, for which equation
(1.13) is discretized as equation (1.14), where the subscript i refers to the spatial
point i, where n is the pseudo-time step.

∂u(x, t̂)

∂t̂
= F (u, x, t̂) (1.13)



1| Basic notions of the Finite Volume Method 11

un+1
i − un

i

∆t̂
=

1

2
[F (un+1

i , xi, t̂
n+1) + F (un

i , xi, t̂
n)] (1.14)

1.2.3. CFD Solver: OpenFOAM

The Open Source Field Operation and Manipulation (OpenFOAM) is an open-
source CFD software package, which implements the FVM. All the codes in Open-
FOAM are written in C++ with an oriented programming interface [23]. It pro-
vides a variety of solvers and utilities both pre-processing, such as the meshing tools
blockMesh, and snappyHexMesh and postprocessing solvers with several finite vol-
ume solvers that can work on structured and unstructured grids. These solvers are
capable of solving the steady, unsteady, compressible, incompressible, viscous, invis-
cid, laminar, and turbulent flows using finite volume numeric that solve a system of
PDEs within up to three space dimensions.

Any OpenFOAM case structure contains three major folders called 0, constant,
and system respectively. The 0 folder contains all the initial field definitions like
pressure, temperature, velocity, turbulent energy, dissipation rate etc. The constant
folder contains full information about the geometry and boundary conditions. The
system folder contains information about the solver control. Figure 1.4 depicts the
case structure of OpenFOAM.

A central theme of the OpenFOAM design is that the solver applications, writ-
ten using the OpenFOAM classes, have a syntax that closely resembles the partial
differential equations being solved. For example the equation:

∂ρv

∂t
+∇ · ϕv −∇ · µ∇v = −∇p (1.15)

Is represented as:

s o l v e
(

fvm : : ddt ( rho , v )
+ fvm : : div ( phi , v )
− fvm : : l a p l a c i a n (mu, v )

==
− f v c : : grad (p)

) ;

This operation casts the PDE into a matrix system of the form [A][û] = [b], where
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Figure 1.4: OpenFOAM case structure. Image taken from [23]

[A] is composed of the algebraic coefficients derived from the discretization of the
convective, gradient and Laplacian terms; [û] is the matrix of the dependent variables
and [b] is the matrix resulting from the source terms [57].

rhoCentralFoam

The finite volume numerical solution of compressible fluid flow equations can be
addressed using different approaches i.e, pressure-based and density-based solvers
with the corresponding governing equations solved either in segregated or coupled
manners [22]. Within OpenFOAM, both approaches are implemented, for instance,
the density-based rhoCentralFoam and the pressure-based sonicFoam.

rhoCentralFoam solves explicitly the inviscid part of governing equations and then
corrects them implicitly to account for viscous terms. It has been chosen for this
work since it contains the inviscid flow option, which, if activated, allows to avoid
the calculation of the viscous correction, allowing for faster computation.
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2| Design Variables and

Reduced-Order Modelling

The aerodynamic shape optimization will be performed in Chapter 7 by using
a surrogate model that links some design variables to the force coefficients. The
construction of a surrogate model that allows a reliable evaluation of the output is
crucial for an accurate investigation of the parameters space.

The model construction is based on the results obtained by the evaluation of a
significant number of samples via the High Fidelity model that the surrogate model
approximates. In this case, those samples consist in input/output pairs, where
the inputs are given by the geometrical parameterization and the outputs by the
CFD solution of several different airfoils. To produce different airfoils and meshes, a
suitable parameterization and mesh deformation algorithm need to be chosen. Then,
after the selection of an appropriate sampling sequence and surrogate model, shape
optimization can be performed.

2.1. Choice of the Design Variables

There are many ways to parametrize an airfoil, such as Bezier Curves [68], NURBS
[19, 46] , B-Splines [40]. This works uses as initial geometry the RAE 2822 super-
critical aerofoil, set in transonic flow conditions. Since in this case we are referring
to a specific reference airfoil of which we know the exact coordinates, we do not want
to find a parametrization that resembles the base airfoil, because this would entail
a difference between the original and the parametrized airfoil. In airfoil optimiza-
tion, a crucial aspect is the shape deformation and the mesh morphing technique.
Between the possibilities Free Form Deformation (FFD) [56], Hicks-Henne func-
tions [38, 39, 67], Radial Basis Functions [37] need to be considered. The idea of
FFD parameterization is to embed a flexible object into a parallelepiped lattice of
control points that define the parametric space. By modifying the lattice, a defor-
mation is transmitted to the included object similarly, creating a new shape. FFD is
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known to be reliable with small boundary deformations. The Hicks Henne formula-
tion consists instead in using a base airfoil to which is added a linear combination of
trigonometric "bump" functions to perturb the upper and lower surface of the initial
geometry. Radial Basis Functions (RBF) can also be used to deform the original
coordinates of the airfoil. This can be achieved, in the same way of the free form
deformation, by linking the movement of some points of the domain (that can be
some points on the airfoil surface) with a part or all of the grid points, via Radial
Basis Functions interpolation.

According Castonguay et al. [9], B-splines and Hicks Henne are among the best
solutions to perform shape parameterization with a low number of design variables.
Thanks to its simplicity and for the possibility to obtain a smooth surface defor-
mation, RBFs deformation has been tested at first. This method allows to modify
the initial shape using as design variables some of the points on the airfoil. Then,
after a comparison with the Hicks-Henne formulation, the latter has been used for
the following studies, since it gives more freedom on surface deformation with a low
number of design variables.

The mesh deformation will be performed in all cases using Radial Basis Functions.
When RBFs are also used for the geometry deformation, both the modification of
the airfoil shape and of the mesh are performed at the same time, whereas when
Hicks-Henne functions are used for the airfoil deformation, the two steps remain
distinct, as further explained in the next section.

In the following sections, the theory behind Hicks - Henne and RBFs will be reviewed.

2.1.1. Radial Basis Functions

In this work, the mesh created for the simulation of the RAE 2822 airfoil is deformed
to account for the deformations in the shape of the airfoil. This mesh deformation
approach is based on Radial basis function interpolation of the displacements of
some control points. This method requires knowing the initial position of each one
of the mesh nodes, the position and the displacement of the control points. From
the displacement of these control points, the displacement of all the mesh points is
derived. The initial mesh for CFD can be structured or unstructured. This method
can deal with large shape deformation with good quality, excellent versatility, and
robustness, according to [12].

This method has been used in two ways:
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1. By choosing a low number of control points and imposing their translation it
is possible to obtain at the same time the deformation of the airfoil and of the
mesh. This is possible because the points of the airfoil surface are treated in
the same way of the other mesh points. Their displacement is hence derived
from the motion of the control points. This procedure requires the tuning of
a smoothing parameter, σ, that will be introduced in the next section.

2. By choosing as control points all the airfoil boundary points, whose displace-
ment is obtained by means of Hicks-Henne functions, as explained in Section
2.1.2.

Mathematical Representation

This section is inspired by the work of De Boer et al. in [12].

Radial Basis Functions Φ are real-valued functions whose value at the point x

depends only on the distance from a certain control point xc
i , hence Φ(x,xc

i ) =

Φ(||x− xc
i ||).

The interpolation function s describing the displacement in the whole domain in the
x, y and z directions, can be approximated by a sum of basis functions:

s(x) =
N∑
i=1

γiΦ(∥x− xc
i ∥) + h(x) (2.1)

where xc
i = (xc

i , yci )
T are the control points in which the displacement values are

imposed, N is the number of control points, each one associated with a coefficient
γi, Φ is a given Radial Basis Function that can assume different expressions, as the
ones in Tables 2.1 and 2.2, and h(x) is a linear polynomial that enables the rigid
motion of the point x:

h(x) = β1 + β2x+ β3y, (2.2)

with x = (x, y)T . s(x), γi, h(x) are vectors, where the number of elements depends
on the dimensionality of the case, assuming one element for each space dimension.
The coefficients γi and the polynomial coefficients of h(x) are determined by inter-
polation conditions, imposing that s(xc

i ) = s̄i with s̄i being the known value of the
displacement of the i-th control point. An additional requirement is that the total
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contribution of the polynomial in the control point is null. This condition reads:

0 =
N∑
i=1

γiq(x
c
i ). (2.3)

for all polynomials q with a degree less or equal to the degree of the polynomial h.

Table 2.1: RBF with global support

Name Φ(x)
Spline type (n odd) σ|x|n

Multiquadric
√

1 + σ|x|2
Gaussian 1− e−σ|x|2

Table 2.2: RBF with local support

Name Φ(η)
CP C0 σ(1− η)2

CP C2 σ(1− η)4(4η + 1)

From the previously explained conditions one can obtain a the following system of
equations: [

s̄

0

]
=

[
Mc,c Pc

P T
c 0

][
γ

β

]
(2.4)

Where Mc,c is a N ×N matrix such that Mij = Φ(||xc
i − xc

j ||) for 1 < i, j < N and
Pc is the matrix that contains the control points coordinates, with row j given by
(1, xc

j, ycj) Once the linear system is solved, one can obtain:

s(x) =

{
sx(x) =

∑N
i=1 γ

x
i Φ (∥x− xc

i∥) + βx
1 + βx

2x+ βx
3y

sy(x) =
∑N

i=1 γ
y
i Φ (∥x− xc

i ∥) + βy
1 + βy

2x+ βy
3y

(2.5)

This system allows to find the displacement s(x̄) of the generic mesh point x̄, such
that:

x̄deformed = x̄+ s(x̄). (2.6)

There are several types of RBFs presented in the literature, the main division that
can be done is between RBFs with global and local support. When an RBF with
local support is used, mainly the mesh points inside a circle in 2D (or a sphere in 3D)
with radius r and centre xc

i are influenced by the movement of the centre. The main
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Figure 2.1: Example of RBFs-deformed airfoil

advantage of RBF with local support is that the system of equations that needs
to be solved (2.4) becomes sparse, whereas with global support it is full. Global
support, on the other hand, provides more accurate solutions.

In Tables 2.1 and 2.2, some of the most common RBFs are presented, where
η = ||x−xc

i

Rs
||, with Rs being the support radius of the local RBFs.

With this procedure, the displacement of each grid point can be computed individu-
ally starting from its original position and the displacement of the boundary points,
without needing any information on the connectivity structure of the grid.

From this formulation, it is easy to obtain the airfoil deformation by choosing as
control points xc

i some of the points on the airfoil surface. Imposing a movement
on those points allows to obtain new airfoil geometries. Increasing the parameter
σ allows to obtain a smooth surface deformation. This methods works with both
two and three dimensional meshes. In this work, in particular, the mesh is two-
dimensional and the boundary movement has been given only in the y direction,
which is perpendicular to the airfoil’s chord.

2.1.2. Hicks-Henne Deformation

These alternative parameterization has been introduced to overcome some issues
found with the RBFs parameterization, that are shown in Section 5.2.1. Hicks-
Henne functions have been chosen since they have shown good results in airfoil
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Figure 2.2: Example of Hicks-Henne functions deformed airfoil

parameterization using a low number of design parameters [9]. This is a crucial
point of this work since the increase in the dimension of the problem has shown to
dramatically increase the computational costs associated with the shape optimiza-
tion. Figure 2.2 shows an example of airfoil obtained with this procedure using
eight design parameters.

These functions have been introduced by R. Hicks and P. Henne in 1978 [29] in the
context of airfoil optimization. This method consists in adding a linear combina-
tion of n augmented sine functions to the original coordinates of the airfoil, these
functions are in the form of a bump.

ymod = y0 +
n∑

i=0

aisinwi(πxln(0.5)/ln(xM
i )) (2.7)

Where ymod are the final coordinates of the upper or lower surface of the airfoil, n
is the number of bumps for each one of the upper or lower surfaces, xmi is the x
coordinate of the bump, wi is the bump width, while ai are the bumps intensities.
Each bump can hence be defined by three variables: ai, wi, xM

i . In this work,
wi and xM

i are fixed, while the ai are the parameters of the optimization. Figure
2.1 shows an example of airfoil obtained with this procedure using eight design
parameters, while Figure 2.3 shows the shapes of the bumps for n = 16, t = 4,
xM
i = 0.5(1− sin(θi), with θi = π i

n
, for i = 1, 2, ..., n.
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Figure 2.3: Hicks Henne bumps

Once the coordinate of each bump has been chosen, the y-coordinate of each airfoil
point is modified according to equation (2.7). The difference between the final
y-coordinate ymod and the initial coordinate y0 are then given to the RBFs mesh
deformation algorithm as a deformation vector, which is used to determine the
motion of each one of the mesh points.

It should be noticed that in this case the dimension of the deformation vector is
far greater than the Free-Form RBFs case, this causes a much higher computational
time required for the mesh deformation. This cost remains negligible compared to
the computational cost of the CFD simulation.

2.2. Shape Optimization and Surrogate Models

Shape optimization is a crucial task in Aeronautical Industry, being able to reduce
drag on a civilian airliner can increase the profits of that aeroplane by several per-
centage points. Performing an aerodynamic optimization requires multiple calls to
high-fidelity CFD software, in some contexts the computational burden can be un-
sustainable. It is important to reduce at most this cost, choosing the procedure that
allows maximizing the results in these terms.
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Before choosing the optimization procedure it is important to define an objective
function, that can be for example the drag coefficient at fixed lift or the lift-to-
drag ratio. Once this has been done, the first possibility is to start from an initial
geometry and numerically compute the derivatives of the objective functional with
respect to any design parameter. This method can be costly since it requires at least
one call to the CFD solver for each derivative evaluation.

Another option that must be considered is to construct a surrogate model. Surrogate
models have been introduced in the context of shape optimization to capture the
most important features of a high fidelity model at a low computational cost. The
surrogates are constructed using data drawn from high-fidelity models, and provide
fast approximations of the objectives and constraints at new design points, thereby
making sensitivity and optimization studies feasible [49]. The computational time
required for the generation of the data set and the construction of the surrogate
model should be lower than the time required for the optimization performed di-
rectly with the HF software. Once the surrogate model has been built it is easy to
perform parametric studies and optimizations with different objectives which would
be infeasible if they were to be performed with the HF model.

The construction of a surrogate model usually involves the following tasks, described
also in Figure 2.4:

1. Design space sampling. This can be done using one of the methods described
in Section 2.3;

2. Numerical simulation of the selected location via High Fidelity model;

3. Construction of a surrogate model;

4. Evaluation of the generalization error made by the model, using unseen data.
If the model does not satisfy the accuracy requirements, the previous tasks
need to be repeated.

Surrogate models can be divided into three categories: reduced-order models, data
fit models, multi-fidelity models.

2.2.1. Reduced-Order Models and Multi-Fidelity Models

A reduced-order model can be derived from the HF model using a projection tech-
nique. These methods require the generation of a data set and the computation of
a set of basis functions, such as eigenvectors, and the identification of how many of
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Figure 2.4: Stages of the surrogate model construction

them are required to capture well enough the dynamics of the problem.

One example of these methods is the Proper Orthogonal Decomposition (POD)
[28, 48], which has been used in the approximation of Euler [21] and Navier-Stokes
equations [7]. This method uses a series of snapshots generated with the HF model
and computes the left singular vectors corresponding to the most dominant singular
values of the matrix having the snapshot vectors as its columns. The POD basis
can then be used to determine an approximate solution for different values of the
design parameters.

In the case of multi-fidelity surrogate models, the model is a lower fidelity approx-
imation of the HF model, but it is still based on the same physical considerations.
This can be done for example in CFD using a coarser domain discretization.

Data Fit Models

Data fitting methods involve the construction of a surrogate model using data gen-
erated with the high fidelity model. These methods involve the evaluation of the
HF model on many points spread over the parameters ranges. Using these data it
is possible to generate a response surface [18] that can be obtained using different
methods, such as:

• Polynomial regression, the surrogate is built using of nth order with least-
square regression;

• Radial Basis Functions, the surrogate is built using a summation of local sup-
ported RBFs such as the ones presented in Table 2.2;

• Artificial Neural Networks, which consists of an interconnected architecture
of artificial neurons that changes some parameters as information flows in the
network during the learning phase. In this work, as mentioned above, Artificial
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Neural Networks will be used to produce a surrogate model linking the design
parameters to the aerodynamic force coefficients.

2.3. Design Space Sampling

Once the design variables and the type of surrogate model have been defined, one
important step is to choose how to vary the parameters in the design space. The
choice of the sampling type is crucial for the success of the generation of a working
surrogate model. It influences both the result and the number of samples needed.

2.3.1. Grid Search and Random Search

The easiest way to vary the design parameters is called "grid search", this method
consists in the creation of a Cartesian grid of points that will then be evaluated with
the High Fidelity model. This method is exhaustive but requires the evaluation of
many points to obtain good results in terms of accuracy of the surrogate model.

The Random Search method consists in choosing random points in the parameters
space where the High Fidelity model is evaluated. This method does not guarantee
good results but, for a sufficient number of points, it is more promising than grid
search [5].

2.3.2. Latin Hypercube

Latin Hypercube sampling has been introduced in the context of numerical integra-
tion over multi-dimensional domains [61]. It is one of the most common sampling
techniques, as it allows in many cases to reduce the number of samples needed for
a good approximation of the High Fidelity model. This strategy allows for a more
efficient search using the same number of points, it examines more values for each
parameter and ensures that each value shows up only once in randomly blended
combinations. This method is more likely to give better results with respect to grid
and random search.

Figure 2.5 shows the different samples chosen with the three methods that have just
been explained, showing that for those two variables X1 and X2 both grid search
and random search do not sample the peak in the corresponding function, whereas
with the Latin Hypercube Sampling technique those functions are sampled correctly
and it is more likely to obtain a better approximation.
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Figure 2.5: Different sampling techniques. Image taken from [54]

2.3.3. Low Discrepancy Sequences

Low discrepancy sequences are Quasi-Montecarlo sequences that allow a faster rate
of convergence with respect to standard Montecarlo algorithms [30]. In the context
of numerical integration, the rate of convergence of a standard Montecarlo algorithm
is of the order O(1/

√
N), whereas with a low discrepancy sequence such as Sobol

sequence the rate of convergence is close to O(1/N) [33]. In the same context,
the LHS technique can outperform the Standard Montecarlo techniques, but only
for specific types of functions [33]. Mishra et al. [43] motivate the use of low-
discrepancy sequences to train neural networks was based on the equidistribution
property of these sequences, i.e. these sequences fill the underlying domain more
uniformly than random points and hence can better represent the underlying map.
Sobol sequence has been successfully used to generate samples for Deep Learning-
based surrogate models in [39]. For these reasons, Sobol sequence has been chosen
in this work.
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Learning
“Machine learning (ML) is the study of computer algorithms that can improve auto-
matically through experience and by the use of data.”

Mitchell, Tom (1997). Machine Learning.

This chapter aims to provide a broad introduction to Machine Learning and Neural
Networks’ history and fundamentals.

3.1. Artificial Intelligence and Machine Learning

Artificial Intelligence made its first steps at the beginning of the 20th Century. In
1936, the English mathematician Alan Touring developed a code-breaking machine
for the British government, aiming to decipher the Enigma code used by the German
army in the Second World War. This machine, The Bombe, is generally considered
the first working electro-mechanical computer [24]. Touring published in 1950
the article "Computing Machinery and Intelligence" [64] describing how to create
intelligent machines, providing also a test: the machine can be considered if it can
fool people into thinking it is a person. The word Artificial Intelligence was coined
in 1956 by M. Minsky and J. McCarthy. In 1969, D. Hebb started a research on the
imitation of the process of neurons in the human brain, which led to the creation
of the research on Artificial Neural Networks [24]. The evolution of this field was
slowed down by the moderate computing capabilities available at that time. Through
the years, many challenges were beaten as when in 1997 the IBM computer DeepBlue
beat the chess world champion, Gary Kasparov. In the last years, we have entered
the age of Big Data, in which we can collect huge amounts of data, too much for a
person to process. The application of AI has been fruitful in many industries, such
as banking, marketing, and entertainment [3]. It is now part of our everyday life
inside our mobile phones, for speech recognition, image recognition, and much more.
In the future, we can expect that ML will have a growing impact in most of the
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Figure 3.1: Artificial neural network

fields, among the most promising projects, the development of quantum computing
can be mentioned [4]. To better understand the differences between AI, Machine
Learning, and Artificial Neural Networks some definitions are needed.

Artificial Intelligence is the field of study that aims to enable a machine to simulate
human behaviour, with a very wide range of scope. Machine Learning is a subset of
AI that focuses on enabling computers to perform tasks without explicit program-
ming. The goal of ML is to allow a machine to automatically learn from data so that
it can give accurate predictions for future outputs. A Neural Network is a collection
of algorithms used in Machine Learning for data modelling using graphs of neurons.
Figure 3.1 shows an example of Artificial Neural Network.

Machine Learning algorithms can be categorized into two classes: supervised and
unsupervised learning.

3.1.1. Supervised Learning

Supervised Learning uses labelled data sets to train algorithms to classify data or
predict outcomes accurately. This training data set includes inputs and correct
outputs, which allow the model to learn over time, measuring accuracy through a
loss function. Supervised Learning can be divided into two types of problems:

• Classification: the algorithm deals with discrete output values i.e. categories.
It aims to find which labels need to be assigned to input data in order to divide
it into those categories. One example of a classification algorithm is logistic
regression.
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• Regression: the algorithm is used to find a continuous relation between in-
put and output data. It can be used to make projections. One example of
regression is polynomial regression.

3.1.2. Unsupervised Learning

In Unsupervised Learning the task is to extract features from data, discovering hid-
den patterns or group data without human supervision. One of the most important
classes of these algorithms is represented by Clustering algorithms, which are used to
find structures within data that share similar features. These clusters can be exclu-
sive or overlapping and their number can be pre-assigned (e.g. K-means algorithm
[27]) or can be automatically decided by the algorithm [31].

3.2. Neural Networks

(Artificial) neural networks are information processing systems, whose structure and
operation principles are inspired by the nervous system and the brain of animals and
humans. They consist of a large number of fairly simple units, the so-called neurons,
which are working in parallel. These neurons communicate by sending information
in the form of activation signals, along with directed connections, to each other [32].
Between the many useful properties of ANNs, the Universal approximation theorem
[11] deserves to be reported. This theorem states that ANNs with one hidden
layer (provided that there is a sufficient number of neurons) can approximate any
continuous function to an arbitrarily small error.

3.2.1. Biological Background

This section is taken from [32] and it is intended to explain the biological structures
which ispired ANNs.

The effective structure of artificial neural networks is an oversimplification of the
biological process happening in our brain, which is depicted in Fig 3.2.

A neuron is a cell that collects and transmits electricity pulses. The cell body, which
contains the nucleus is called soma. From the cell body extend several branches
that are called dendrites and a long extension called axon, that can be up to 1mt
long. The axons are the paths along which neurons communicate with each other.
The axon of a neuron is connected to the dendrites of other neurons. At the end
of the axons, there are ramifications that end in terminal buttons. Each button
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Figure 3.2: Neuron structure. Image taken from [32]
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Figure 3.3: Artificial Neuron

almost touches a dendrite of another neuron. That gap is called synapse. The most
common form of communication between neurons is that a terminal button of the
axon releases chemicals that act on the receiving dendrite and change its electric
potential. If the sudden change of potential caused by the interaction of the neuron
with many others, is large enough, above a certain threshold, the impulse propagates
along the axon. In this way, information is transmitted.

3.2.2. Artificial Neuron - Mathematical Modelling

We model a neuron as a threshold logistic unit, that takes as an input n real-valued
inputs xi and returns as output a real number y. A weight wi is assigned to each
input xi. The inputs xi and the weights wi with 1 < i < n are combined into an
input vector x and a weight vector w with the addition of a bias unit w0, as in
Figure 3.3.

The inner state of the neuron z is then computed as z =
∑n

i=1 wixi + w0. Then
the activation function f(z) can be calculated. This function determines the output
value of the neuron and can be for example the sigmoid function or the Heaviside
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step function.

Neural Networks consist of multiple connected layers of neurons. Each layer contains
one or more neurons. The neurons of each layer can be connected to some or all the
neurons of the previous and the following layer, depending on network architecture.
The network depicted in Figure 3.1 has one input layer, two hidden layers, one
output layer.

All neural networks have one hidden layer and one output layer, while the number
of hidden layers can change depending on the problem requirements and complexity.
Networks in which all the neurons of one layer are connected to all the neurons of
the following layer are called fully connected ANNs.

The working principle is the following: the output yij = f(zij) of the neuron i in
layer j is fed as input to all the neurons of the layer j + 1 to which that neuron is
connected. This value will be multiplied by the appropriate weight in each one of
those neurons of the layer j + 1. This process is called forward propagation. The
learning problem can be summarized as the process of making estimations of the
relationship between inputs and outputs. This approximation is stochastic, as the
core of a ML process is the minimization of a loss function J(θ):

J(θ) :=
∑
x∈S

|L(x)− Lθ(x)|p (3.1)

For any x ∈ S, with L(x) being the true output and Lθ(x) being the estimated
output. At each iteration of the learning algorithm, the weights of each unit are
updated according to the gradient of the loss function that measures the distance be-
tween the actual and the predicted output through the back-propagation algorithm.
The name comes from the fact that errors are propagated backwards through the
network to iteratively find optimal values for the weights and biases [55].

3.2.3. Types of networks

Among the many types of neural networks, the most common are:

• The feed forward NN, also known as multilayer perceptrons, consists of a
network where each neuron of a given layer is connected with each neuron of
the next layer, as in figure 3.4;

• The radial basis NN are particular multilayer-type perceptrons where the
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Figure 3.4: Feedforward network

Figure 3.5: Recurrent network

activation function is a radial basis function instead of a logistic function;

• The recurrent NN (Figure 3.5) are characterized by their memory as they
take information from prior inputs to influence the current input and output.
This is done with the introduction of a different cell that receives its output
within a fixed delay or following a different law [69]. This kind of network is
used for example for natural language processing;

• The deep feedforward NN are FFNN that have more than one hidden layer,
as in Figure 3.6, this causes a higher computational burden but can lead to
better results;

• The convolutional NN perform the convolution of the information given in
the input layer. They are commonly used in image recognition.
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Figure 3.6: Deep feed-forward network

3.2.4. Machine Learning Features

These sections are intended to provide background on some of the most important
parameters and problems that can be found in ML problems.

Data Sets

In Supervised Learning problems it is common practice to divide the complete data
set into three subsets:

• Training set: this is the largest set of data and it is used to fit the model
during the learning phase. This set usually contains 60 or 70% of the total
samples.

• Test set: this set is used to select the model that works best on unseen data.
This is done by repeating the training phase for more than one model, varying
for example the number of neurons or a regularization parameter. This set
usually contains 15 or 20% of the total samples.

• Cross - validation set: this set is commonly used to get an estimate of the
generalization error, which will be further explained in the next section. This
set usually contains 15 or 20% of the total samples.

Loss Function

The goal of the learning phase, as previously stated, is the minimization of a loss
function, which in supervised learning is a measure of how well the learning machine
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is approximating the I/O relationship. This function can be defined in many ways,
depending on the problem goal. In this section the two most common possibilities
are presented:

• Mean squared error MSE :

MSE =
1

n

N∑
i=1

(yi − ȳi)
2 (3.2)

• Mean absolute error MAE :

MAE =
1

n

N∑
i=1

|yi − ȳi| (3.3)

Another measure that can be used is the Root Mean Squared Error that is RMSE =√
MSE.

Model Selection

An important part of the learning phase, where some of the model parameters still
need to be selected is called model selection. In this phase, it can be useful to study
the evolution of some error measures. The training error is the error that the model
does on the training set. This measure usually decreases with the increase of the
model complexity, this does not necessarily mean that the model is more accurate.

To have insights on the accuracy, the model needs to be tested on unseen data, in
the model selection phase this data is represented by the test set. This error usually
assumes a "U" shape as in Figure 3.7. This behaviour is due to the fact that the
model can tend to show an oscillatory behaviour outside of the points of the training
set, as shown in Figure 3.8 representing a polynomial regression task performed on
eleven points with a ten-degree polynomial. This behaviour is known as overfitting
and coincides with the right part of Figure 3.7. Overfitting can also happen if the
number of epochs, i.e. the number of times the training error is fed back to the
network, is too high.

The left part of Figure 3.7 is referred to as underfitting i.e. both the errors on the
train and test set are high because the model is too simple to fit the train set data.
In that case, the model continues to learn from train data but does not generalize
well using unseen (test) data.
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Figure 3.7: Learning curves
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Figure 3.8: Overfitting - polynomial regression

Once the model has been selected, the error on the training set cannot be considered
a correct estimate of the accuracy since it has been used in the selection of the model.
The accuracy of a supervised learning task is often measured employing the so-called
generalization error that is the error on the estimate that is made on unseen data
[42] that is the cross-validation set.
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Activation Function

One of the most important parameters of the network is the so-called activation
function. This function determines the activation (output) value of each neuron,
starting from its inner state z and must be computationally effective since it is
recalled many times during each step of the learning phase.

The purpose of the activation function is to add a nonlinear behaviour to the net-
work, this is crucial since without it the output of the NN would trivially be a linear
transformation of the inputs.

Among the many possibilities, the following deserve to be presented:

• Heaviside step function: this is the most simple possibility. The inner
state z is compared to a certain threshold θ, if z is greater than θ the neuron
will be activated (i.e. the output will be one). The strongest limitation of
this function is that it cannot provide multi-valued output. Another problem
is that its gradient is null, and this causes troubles in the back-propagation
algorithm. The Heaviside step function is illustrated in Figure 3.9.

• Linear activation function: the activation is proportional to the inner
state. As well as the previous one, this function causes troubles in the back-
propagation process as all the derivatives of f are equal and unrelated to the
inputs and the inner state of the neuron. The linear activation function is
illustrated in Figure 3.10.

Figure 3.9: Step function
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Figure 3.10: Linear function

• Sigmoid/Logistic activation function: this is the first nonlinear function
here presented and it is one of the most widely used. As illustrated in Fig-
ure 3.11, it can assume any value between 0 and 1. The larger the inner state,
the larger the activation will be, whereas the smallest (i.e. the more negative)
the inner state, the more the activation will be near zero. The main advan-
tage of this function, aside from being nonlinear, is that the output is limited
between 0 and 1 and could be seen as a probability value. Furthermore, it has
C∞ continuity, which ensures the continuity of its derivative. The downsides
of this function are its computational cost, involving an exponential function,
and the so-called "vanishing gradient" problem [20]. As it can be seen in
Figure 3.12 the function’s derivative assumes really low values for inner states
whose absolute value is greater than 3.

• Hyperbolic tangent: this function has similar properties to the previous one.
It is shown in Figure 3.13 Its main advantage with respect to the standard
sigmoid is that it is symmetric with respect to both the x and y axes, as its
output is between -1 and +1. This is the activation function chosen for this
work.
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Figure 3.11: Sigmoid function

Figure 3.12: Sigmoid derivative

Figure 3.13: Hyperbolic tangent function
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Figure 3.14: ReLU function

• ReLU activation function: its name stands for Rectified Linear Unit. As
shown in Figure 3.14, it is a simple nonlinear function that activates the
neuron only if its inner state is greater than zero. Thanks to its simplicity,
this function is computationally effective and can lead to a reduction in the
training time.

Back-propagation Algorithm

The process that starts with the inputs assigned to the input layer, that continues
in the hidden layer and ends producing the output is called forward propagation.
During training, forward propagation is used to get the output estimate needed
for the computation of the loss function. Back-propagation instead, allows the
information to flow back to compute the gradient needed to modify the weights
and biases. In Figure 3.15 the black arrows represent the forward-progagation
process, the red dashed arrows represent the back-propagation process

Back-propagation refers to the method for computing the gradient, while another
algorithm, such as stochastic gradient descent, is used to perform learning using this
gradient [20].
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Figure 3.15: Forward propagation and Back-propagation
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In this chapter the steps leading to the flow simulation of the baseline case will be
presented.

4.1. CFD Airfoil Simulations

The airfoil selected for the optimization is the RAE2822, which has been the object of
many well-known studies about transonic flows and model validations. In particular,
this work takes as reference the AGARD Report AR 138 by Cook et al [10], from
which empirical data has been obtained. Figure 4.1 shows the airfoil geometry.

Figure 4.1: RAE2822 Airfoil

This is a supercritical airfoil which has a maximum thickness of the 12.1% at 37.9%
chord and maximum camber of the 1.3% at 75.7% chord. Cook et al. in [10]
present a wide range of transonic conditions: from subcritical flow to conditions
where a comparatively strong shock wave exists in the flow above the upper surface
of the airfoil. The particular solution taken as reference in this work shows a shock
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Figure 4.2: Pressure coefficient along the chord

Table 4.1: Force and moment coefficients

Coefficient Value
Cl 0.7310
CD 0.01212

wave on the suction side of the airfoil, which is set at the following flow conditions:

M∞ = 0.729 [-];
T∞ = 288.15 [K];
α = 2.31 [deg];
Re = 6.500.000 [-].

Where M∞ is the freestream Mach number, T∞ is the freestream temperature, α is
the angle of attack of the airfoil, Re is the Reynolds number Re = ρv∞c

µ
, computed

with the density ρ, freestream velocity v∞, chord c, and dynamic viscosity µ.

The behaviour of the pressure coefficient along the chord is shown in Figure 4.2. In
these conditions, the force coefficients assume the values reported in Table 4.1.

The Mach number contours are presented in Figure 4.3, showing the supersonic
bubble formed above the upper surface of the airfoil that ends with a shock wave.



4| Numerical Simulations 41

Figure 4.3: Mach contours

4.2. Computational Model

As stated in Chapter 1, the governing equations considered for the solution of this
case are the Euler Equations, which are a simplification of the Navier-Stokes equa-
tions that would provide more accurate results. This choice has been made to
account for computational limitations, since the solution of the viscous equations
even with a simple RANS model would have exceeded the computational power
available. All the computations are performed on a Lenovo Legion laptop with a
9th Generation Intel Core i7-9750H Processor (2.60GHz, up to 4.50GHz with Turbo
Boost, 6 Cores, 12MB Cache).

4.2.1. Mesh Generation

The computational grid has been generated with the Python utility CuriosityFluids
[60], which allows generating a structured C-shaped grid for the CFD simulation of
airfoils with OpenFOAM. This utility requires setting some parameters to produce
a grid that fits the user’s requirements, such as the height of the first element near
the airfoil boundary and the progression of the elements’ dimensions along some
lines. This python script has been edited to further increase the dimension of the
elements in the wake.
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Figure 4.4: Farfield mesh

Figure 4.5: Mesh near the airfoil

The computational grid is represented in Figures 4.4 and 4.5, the dimension of
the elements decreases approaching the airfoil, with high density in the part of
the domain where the physical solution presents a shock wave. The computational
domain is made of a semi-circular part which has a radius of 10c, with c being the
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length of the airfoil’s chord, and of a square part with a is 20c long edge, so that
the total length of the domain is 30c and its height is 20c.

4.2.2. Boundary Conditions

In OpenFOAM, initial and boundary conditions are set in the 0 folder, which in-
cludes several files that depend on the problem. In this case, four files are present,
that refer to temperature (T ), pressure (p), Mach number (Ma), velocity (U ). These
files are reported in Appendix A for completeness. The full external boundary is
labelled as farfield, and there the freestream velocity is set as well as the static tem-
perature and pressure, and the Mach number. The boundary condition set on the
airfoil is a slip condition.

4.2.3. Stability

One common problem that occurs with rhoCentralFoam is that the solution oscillates
around a mean value, even if dissipative first order numerical schemes are used for
the space discretization. According to Greenshields et al. [22], this problem can be
solved by imposing a strict limitation on the Courant number, for this problem the
value that allowed to obtain a stable solution is 0.1.

4.2.4. Space and Time Discretization

To give an accurate representation of the discontinuity that is present in the refer-
ence flow field, and to reduce oscillations across discontinuities that are associated
with second-order schemes, the numerical schemes that were chosen for the space
discretization in this work are second-order accurate with flux limiters. The full list
of numerical methods is given in Appendix A.

As anticipated in Chapter 1, in a steady-state simulation a fictitious time is intro-
duced to allow the solution to evolve from an initial condition, given in the 0 folder,
to the steady-state. In this work, the pseudo-time discretization has been performed
using the Crank-Nicolson method reported in Section 1.2.2.

4.2.5. Results

Grid independence has been assessed by looking at the lift and drag coefficients,
as can be seen Figures 4.8 and 4.6 showing the drag and lift coefficient errors
compared to the reference solution.
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Figure 4.6: Lift coefficient error
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Figure 4.7: Computation time

Figure 4.8 shows that the error on the drag coefficient decreases with the increase
of the number of elements. The main disadvantage associated with the finest grid
is its computational time, as shown in Figure 4.7.

Making a trade-off between accuracy and computation time, the grid with 24000
elements has been chosen for the rest of this work. The results obtained with the
selected grid are summarized Table 4.2.
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Figure 4.8: Drag coefficient error

Table 4.2: Force coefficients computed with OpenFoam

Coefficient Value Error [%]
Cl 0.7526 +2.955
Cd 0.01355 +11.80

The error on the drag coefficient is still significant, but since all the computations
will be performed using the same grid, it has been assumed that approximately the
same error will be introduced in the other computations. Figure 4.9 shows the pres-
sure coefficient behaviour along the chord compared with the experimental solution.
Since the behaviour follows almost exactly the experiment, the mesh selected has
been kept for the remaining part of this work. In Figures 4.10 and 4.11 the Mach
and pressure contours obtained with the numerical solution are shown.
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Figure 4.9: Pressure coefficient - comparison with reference solution

Figure 4.10: Mach contours
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Figure 4.11: Pressure contours
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In this chapter, the work behind the generation of an appropriate number of airfoil
samples is presented, from the deformation of the airfoil and of the computational
grid to the sampling type and the CFD simulation of each airfoil. The numerical
values assigned to the parameters are given in Chapter 6.

5.1. Design Parameters

As mentioned above, two types of parametrizations have been tested. The first
method consists in selecting an appropriate number of points N on the upper and
lower surface of the airfoil and imposing a vertical displacement to those control
points, as explained in Section 2.1.1. The design parameters of this method are
the vertical displacement of the control points. Interpolating those displacements
via Radial Basis Functions with the appropriate parameter σ allows obtaining the
deformed shape of the airfoil.

The second method uses Hicks-Henne bump functions to deform the original sur-
face of the airfoil. With this method, the design parameters are the values of the
intensities ai (see section 2.1.2) which, together with the bumps position xM

i and
their width wi determine the final shape.

In both cases, mesh deformation is obtained using Radial Basis Functions interpo-
lation. That algorithm will be explained in section 5.3
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Figure 5.1: RBFs Control points - N = 8

5.2. Airfoil Deformation

The generation of the training data-set for the ANNs-based surrogate model requires
the generation and the simulation of deformed airfoils. The next sections illustrate
the two different parameterizations that have been tested in this work, explaining
why it was necessary to introduce the Hicks-Henne functions deformation procedure.

5.2.1. Radial Basis Functions

The airfoil deformation based on RBFs requires the definition of the number of
control points, their position, the smoothing parameter σ and the upper and lower
bound for each control point. The learning task will be performed for different
numbers of parameters nU , for each case the parameter σ is chosen to obtain a
smooth surface of the airfoil since a "bumpy" airfoil could perform better than
the original with these particular boundary conditions but would reasonably under-
perform the original with only a small change in the flow conditions, as stated by
Painchaud-Ouellet et al. in [46]. By increasing this parameter, the influence of the
motion of the control points enlarges, leading to a smoother deformation.

Figure 5.1 shows the original airfoil and an example of 8 control points, while
Figure 5.2 shows the first nine airfoils generated with the Sobol sequence using
those points. These airfoils have been generated limiting the maximum deformation
of each control point to the ±20% of its y-coordinate.
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Figure 5.2: Deformed airfoils example
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Figure 5.3: Deformation issues

The airfoils generated with this method seem to be sufficiently smooth, but the
position of the leading and trailing edges is not fixed, as shown in Figure 5.3. This
leads to a change in the angle of attack of up to 0.1◦. This issue is strongly mitigated
when the number of control points N is sufficiently high (N ≥ 25) but in this work
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such a high number of degrees of freedom can not be used for the computational
cost associated with such a high dimensional design problem. For this reason, an
alternative parametrization has been tested.

5.2.2. Hicks-Henne Functions

To generate the deformed airfoil samples with Hicks-Henne functions, it is necessary
to define which of the parameters are fixed and which ones are varied. In this work,
the bumps widths and positions defined in Equation (2.7) are fixed, while the bumps
intensities will be used as design parameters and hence will be varied, according to
the Sobol sequence, to obtain those samples. With this method, by properly varying
the value of the width of the bumps, it is possible to control the smoothness of the
airfoils.

For the case illustrated in Figures 5.4 and 5.5, the bump heights have been limited
to the 10% of the airfoil’s thickness, the bump widths wi have been set to 2 for every
i = 1, ..., N and the xM

i are the x coordinates of the points in Figure 5.4.

With this parametrization, the upper and lower surfaces of the airfoil are deformed
independently. The leading and trailing edge are fixed for each choice of N . The
bounds set in this case are on the maximum absolute value of the bump intensity
ai.
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Figure 5.4: Control points - N = 8
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Figure 5.5: Deformed airfoils example

5.3. Mesh Deformation

The mesh deformation method explained in Section 2.1.1 was implemented as an
algorithm called deform that has been built starting from the implementation given
in [34], where only linear spline-type RBF was implemented. To increase the free-
dom in the smoothness of the deformed airfoil in the case of RBF airfoil deformation,
the parameter σ was introduced. Furthermore, to impose that the mesh points near
the outer boundary are not deformed, the damping term in equation (5.1) has been
added.

fdamp (r) =


1 r ⩽ R1

1− r−R1

R2−R1
R1 < r ⩽ R2

0 r > R2

(5.1)

The deform algorithm requires as input the initial position of the control points,
the complete list of grid points together with their coordinates, and the vector s̄ of
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Figure 5.6: Mesh deformation algorithm flow chart

vertical displacements of the control points. This function returns a deformation
vector d for each grid point. Once the vector d is multiplied by the fdamp function,
it is summed to the original vector of grid points to obtain the deformed mesh
associated with the displacements s̄.

The complete algorithm is depicted in the flow chart 5.6. Once the mesh has been
deformed, its quality is assessed through the pre-processing tool CheckMesh, looking
in particular at the maximum skewness and mesh non orthogonality. With all the
cases tested, both the linear and gaussian global RBFs give satisfactory results, with
this values showing moderate changes compared to the base grid.

Figures 5.7 and 5.8 (a) show the comparison between the original and the deformed
grid points, associated with the airfoil deformation shown in Figure 5.8 (b).
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Figure 5.7: Mesh points before and after deformation
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Figure 5.8: Original and deformed airfoil

5.3.1. Sampling Procedure

The sampling procedure is a crucial choice in the design of the experiment, a bad
sequence could drastically increase the number of simulations required in the learning
phase. This could cause a bottleneck, i.e. to get an accurate surrogate model using
the machine learning algorithm, one would need to use a large number of training
samples making the training problem computationally expensive [43].
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As previously explained in section 2.3, low discrepancy sequences such as Sobol
[59] or Halton [26] can help in keeping low the number of samples. In this work, the
Sobol sequence, which is implemented in Matlab [62] with the function sobolset, has
been chosen. The y-coordinate of each design point is deformed according to the
Sobol sequence, choosing in each test the most appropriate upper and lower bound
for each design variable.

5.3.2. Sampling Algorithm

To ease the generation of samples, a bash script has been created that automates
the generation of samples and their computation, taking as only input the number
of samples to be generated. This Create_samples.sh algorithm performs also some
post-processing tasks, such as the mean of the force coefficients on the last iterations,
the generation of the pressure coefficient along the chord, the acquisition of flowfield
screenshots through a python script for Paraview.
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Figure 5.9: Create_samples.sh algorithm
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6.1. Model-Learning

In this work, the Machine Learning algorithms are taken from the work of Regaz-
zoni et al. in [52] and [53], implemented in the Model-Learning repository by F.
Regazzoni [51].

The purpose of Regazzoni et al. in [52] is to find a data-driven Model Order
Reduction based on ANNs which applies to dynamical systems arising from Ordinary
Differential Equations or time-dependent Partial Differential Equations.

The models generated have been shown to approximate every time-dependent model
described by ODEs with any desired level of accuracy. These data-driven reduced-
order models, thanks to their black-box nature, can be applied when the state of
the high fidelity model is unknown and/or one may not be interested in the explicit
definition of a reduced model. These models could also be used in a system iden-
tification problem where nor the high fidelity model F nor the full-order state X is
known, but only input-output pairs.

In this work, time dependence is not considered for computational limitations.

6.1.1. Building a Surrogate Model

This section derives from the adaptation of [52] to a steady problem. The HF
model (in this case the CFD solver) can be seen as a map φ : U −→ Y from the
space of input signals (the design variables) U = RNu to the space of output signals
Y = RNy , which in this work is the space of the force coefficients. To build the
surrogate model, Ns simulations are performed with the HF model, collecting a set
of input-output pairs:

{(ûj, ŷj)}j=1,...,Ns
⊂ U × Y (6.1)
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Then after selecting a subset of candidate models, Φ̂ ⊆ Φ the best-approximation
problem with respect to the HF model is defined in the least square sense:

φ∗ = argmin
φ∈Φ̂

J(φ) (6.2)

Where the loss function is defined as the squared distance between estimated and
true output:

J(φ) =
1

2

Ns∑
j=1

|ŷj − (φûj)|2 . (6.3)

6.1.2. Network Optimization Strategy

The surrogate model is created by means of ANNs, structured in a Feed Forward
Neural Network, where each neuron is connected to each neuron of the next layer,
such as the one presented in Figure 6.1. The input neurons represent the value
of the design variable, the output neurons represent the values of the lift and drag
coefficients.

A feed-forward neural network represents a class of functions written as:

f(p;µ) = WnL−1fact (. . .W2fact (W1p− ϑ1)− ϑ2 . . .)− ϑnL−1 (6.4)

Where p ∈ RNu is the input vector and µ ∈ RNf is the parameters vector, collecting
weights Wi and biases ϑi. The activation function adopted is the hyperbolic tangent.
The optimization is made by the Levenberg-Marquardt method, which finds the
descent direction as a combination of the gradient descent direction with the Gauss-
Newton direction, which is an approximation of the Newton direction obtained by
neglecting the quadratic term in the computation of the Hessian [52].

Thanks to the possibility to compare the L2 error on the train and test set during the
computation, it is possible to prevent overfitting by stopping the learning process
as soon as, while the error on the train set keeps decreasing, the error on the test
set starts increasing. In this work, the test set has been used to control overfitting
by early stopping and to choose the network architecture in terms of the number
of hidden neurons, whereas the cross-validation set has been used to estimate the
generalization error made by the surrogate model.
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Input Layer � �� Hidden Layer � �¹² Output Layer � �²

Figure 6.1: Example of feed forward ANN

Normalization

To increase the learning performance, before starting the training phase, all inputs
have been normalized so that they assume values in the range [−1, 1].

6.1.3. Original Contributions

The model-learning library is thought for time-dependent problems and hence to use
it for this work it needed to be modified to focus on a steady solution. For further
information on the original codes, the reader is redirected to the original library
documentation that can be found at https://model-learning.readthedocs.io/

https://model-learning.readthedocs.io/en/latest/
https://model-learning.readthedocs.io/en/latest/
https://model-learning.readthedocs.io/en/latest/
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en/latest/.

To reduce at most the implementation complexity, the input and output variables
have been given to the learning machine as constant signals on a time-domain t ∈
[0, 1], and the loss function has been modified to obtain a network that predicts the
correct values at the latest time step. This modification has been performed in the
model_learn.m script. The resulting code learns to predict the lift and drag values
at the latest time and, as a consequence, the following algorithms will consider the
output of the network only at that time step.

6.2. Surrogate Model Generation

In this section, the results obtained with the ANNs-based surrogate model training
will be discussed for both the parametrizations tested. For each parameterization,
the initial number of degrees of freedom has been set to two, i.e. one design param-
eter on the upper and one on the lower surface of the airfoil. This choice allowed
us to verify that the modifications presented in Section 6.1.3 succeed in obtaining
a suitable surrogate model.

The results displayed here start from five degrees of freedom since this is the mini-
mum number of design parameters for which the deformation complexity has been
considered sufficient.

For all the cases here presented, 70% of the samples have been used as train-set,
while the remaining 30% has been equally split into test and validation sets. The
learning phase has been performed changing the number of hidden neurons, selected
within a suitable range outside of which the results are not compatible with the
following tasks. Once the networks have been trained, the one that performs best
on the test set is chosen.

We are presenting here four different tests, two of them are obtained with Radial
Basis Functions and the remaining two are generated with Hicks-Henne functions.

https://model-learning.readthedocs.io/en/latest/
https://model-learning.readthedocs.io/en/latest/
https://model-learning.readthedocs.io/en/latest/
https://model-learning.readthedocs.io/en/latest/
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Figure 6.2: Design space - Test 1

6.2.1. Test 1

The Test 1 refers to a set of 100 samples and five design parameters, where the
shape deformation is performed with RBFs. The design parameters are points on
the airfoil surface taken at the 20%, 45%, 70% of the chord on the suction side and
at the 30% and 60% of the chord on the pressure side. To these points it has been
assigned a deformation between the ±15% of the y-coordinate of the original airfoil
point, the value of each parameter in each sample is given according to the Sobol
sequence. Figure 6.2 illustrates the design space.

Figure 6.3 (a-h) shows the behaviour of the pressure coefficient along the chord for
four sample airfoils, compared to the reference simulation. From the on the left
it can be seen that the deformed airfoil show some irregularities. These cause the
jumps in the pressure coefficients that can be seen in all the figures on the right.
These irregularities are harmful to the performance of the airfoils and should be
avoided.
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(b) Cp comparison - Airfoil 3
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(c) Shape comparison - Airfoil 5
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(d) Cp comparison - Airfoil 5
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(e) Shape comparison - Airfoil 6
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(f) Cp comparison - Airfoil 6
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(g) Shape comparison - Airfoil 9
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(h) Cp comparison - Airfoil 9

Figure 6.3: Airfoils shapes and pressure coefficients comparison - Test 1
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Table 6.1: Learning errors - 13 neurons

- εTrain [%] εTest [%] εCV [%] εG [%]
Cl 0.0597 0.332 0.346 0.286
Cd 1.947 2.198 2.307 0.360
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(b) Lift coefficient RMSE

Figure 6.4: Learning errors - Test 1

Figure 6.4 (a-b) shows the force coefficients root mean squared error (RMSE) on
the train and test sets with the number of hidden neurons.

Figure 6.4 (a) and (b), shows that the error on the lift coefficient is always lower
than the error on the drag coefficient. Furthermore, the lift coefficient shows some
overfitting, as there is a distance between the errors on the train and test set of
almost one order of magnitude also in the best architecture, which is the one with
thirteen hidden neurons. The numerical values of the RMSE are reported in Table
6.1, where εTrain is the RMSE on the train set, εTest is the RMSE on the test set,
εCV is the RMSE on the cross-validation set, εG is an estimate of the percentage
generalization gap, which is the difference between εCV and εTrain.

Test 2

This section presents the learning results related a RBFs-based parameterization
with eight design parameters. The position of the control points is shown in Figure
5.1.

Figure 6.5 shows the first four airfoils together with the behaviour of the pressure
coefficient along the chord on four selected airfoils.
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(b) Cp comparison - Airfoil 1
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(c) Shape comparison - Airfoil 5
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(d) Cp comparison - Airfoil 5
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(e) Shape comparison - Airfoil 6
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(f) Cp comparison - Airfoil 6
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(g) Shape comparison - Airfoil 9
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(h) Cp comparison - Airfoil 9

Figure 6.5: Airfoils shapes and pressure coefficients comparison - Test 2
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Table 6.2: Learning errors - 15 neurons

- εTrain [%] εTest [%] εCV [%] εG [%]
Cl 0.2362 0.4803 0.5313 0.2951
Cd 5.129 5.603 5.734 0.605
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(a) Drag coefficient RRMSE
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(b) Lift coefficient RRMSE

Figure 6.6: Learning errors - Test 2

From Figure 6.6 it can be seen that the shape deformation succeeds in changing the
flow behaviour, but the pressure coefficient plots show several oscillations that could
be avoided with a better parametrization.

The increase in number of the parameters, leads to an increase in the number of
samples needed to obtain an accurate ANNs model. The learning results displayed
below are related to a total number of samples Ns equal to 300. Table 6.2 gives the
numerical values of the errors made by the 15-neurons network. Despite the number
of samples being three times higher with respect to the previous case, the errors
made by the ANNs on these data is significantly higher. This is due to the increase
in the dimension of the parameters space, this is a common problem in ML, often
referred to as the curse of dimensionality.

6.2.2. Test 3

In this test, eight Hicks - Henne functions are used to parametrize the airfoil surface,
five of which are set on the upper surface of the airfoil. The control points are shown
in Figure 5.4, the bump intensities have been limited to the 15% of the thickness
and the bump widths have been set to 2. Figure 6.7 shows the design space for this
case, presenting the airfoils that correspond to the maximum and minimum values
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Figure 6.7: Design Space - Test 3

of the parameters ai, together with the original airfoil, that corresponds to ai = 0,
for i = 1, 2, ...8.

Figure 6.8 shows the results of the simulations on four airfoil samples together with
their shapes. This parametrization allows to create a smoother tendency of the
pressure coefficient plots with respect to the previous tests.
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(a) Shape comparison - Airfoil 3
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(b) Cp comparison - Airfoil 3
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(c) Shape comparison - Airfoil 6
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(d) Cp comparison - Airfoil 6
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(e) Shape comparison - Airfoil 7
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(f) Cp comparison - Airfoil 7
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(g) Shape comparison - Airfoil 14
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(h) Cp comparison - Airfoil 14

Figure 6.8: Airfoils shapes and pressure coefficients comparison - Test 3



70 6| Machine Learning and CFD

14 15 16 17 18 19 20 21
0

5

10

15

20

25

30

35

40

45

50

E
rr

o
r 

[%
]

(a) Drag coefficient RMSE
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Figure 6.9: Learning errors - Test 3

Table 6.3: Learning errors - 20 neurons

- εTrain [%] εTest [%] εCV [%] εG [%]
Cl 0.2133 0.6779 0.7124 0.4991
Cd 4.416 5.498 5.507 1.091

The results discussed in this section have been obtained with 300 samples. The
RMSE values related to the 20-neurons network are reported in Table 6.3. The
errors made by this surrogate model are comparable with the ones made by the
15-neurons network presented in the Test 2 in Section 6.2.1.

Test 4

Since the learning results of the Test 3 did not improve significantly increasing the
number of samples, to reduce further the number of samples required to learn a
surrogate model, the maximum bump intensity has been reduced by the 60%. In
this way, the parameters space has been significantly reduced and the learning task
has been eased since, with the same number of samples, in this new space the points
describing the parameters are denser. The number of samples generated in this case
is 500. The computations required 135 computer hours.
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Figure 6.10: Design space - Test 4

Figure 6.10 shows the design space for this case, presenting the airfoils that cor-
respond to the maximum and minimum values of the parameters ai, together with
the original airfoil, that corresponds to ai = 0, for i = 1, 2, ...8.

As it can be seen in Figure 6.11, with this parametrization the airfoil deformation is
significantly reduced, and the shape of the pressure coefficient curve is more regular
than all the ones shown previously.
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(a) Shape comparison - Airfoil 5
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(b) Cp comparison - Airfoil 5
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(c) Shape comparison - Airfoil 6
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(d) Cp comparison - Airfoil 6
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(e) Shape comparison - Airfoil 9
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(f) Cp comparison - Airfoil 9
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(g) Shape comparison - Airfoil 11
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(h) Cp comparison - Airfoil 11

Figure 6.11: Airfoils shapes and pressure coefficients comparison - Test 4
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Table 6.4: Learning errors - 16 neurons

- εTrain [%] εTest [%] εCV [%] εG [%]
Cl 0.0310 0.0873 0.0879 0.0569
Cd 1.113 1.392 1.418 0.305
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(a) Drag coefficient RMSE
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(b) Lift coefficient RMSE

Figure 6.12: Learning errors - Test 4

Figure 6.12 shows the RMSE on the train and test with the number of hidden
neurons.

The mean squared errors are far smaller than the previous tests, this can be explained
considering that the design space has been significantly reduced and the number of
samples is higher than all the tests previously shown. The results for the best
network are summarized in Table 6.4.
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Airfoils

Once the surrogate model has been found, an optimization algorithm is be used to
find the combination of input parameters that gives the best results in terms of some
objective function.

7.1. Objective Function

For the surrogate model-based optimization, once the ANN has been successfully
trained, the computational cost of shape optimization task is minimal, the optimiza-
tion algorithm converges to the optimal solution within one minute of computations.
This feature allows to perform optimizations with different Objective Functions at
a negligible additional cost.

7.1.1. Aerodynamic Efficiency

One of the most common objective functions that can be considered is the aerody-
namic efficiency, or lift-to-drag ratio. With this choice, the objective is to minimize
this functional O1(Cl, Cd) to find an airfoil that shows a higher efficiency.

O1(E(Cl, Cd)) =
Eref

E
. (7.1)

Where E = Cl/Cd is the aerodynamic efficiency, Cl and Cd are the force coefficients
of the optimized airfoil, Cref

l and Cref
d are the force coefficients of the reference airfoil

(see Table 4.2).

With reference to this particular test case, it is expected to find an airfoil that has
a lower drag, due to the reduction or elimination of the shock wave on the suction
side, at the cost of a decreased lift coefficient.
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7.1.2. Drag Minimization at Fixed Lift

The final objective of this work is to perform a shape optimization of the airfoil to
reduce drag at constant lift, the objective function should be defined accordingly, as
in equation (7.2), which has been used by Mishra et al. in [39].

O2(Cl, Cd) =
Cd

Cref
d

+ P max(0, 0.999− Cl

Cref
l

). (7.2)

Where Cl and Cd are the force coefficients of the optimized airfoil, Cref
l and Cref

d are
the force coefficients of the reference airfoil (see Table 4.2) and P is a penalization
factor equal to 100.

The first part of the left-hand side of the equation is less than one when the sample
airfoil has a lower drag coefficient compared to the reference, whereas the last term
penalizes the airfoils that show a lower lift coefficient with respect to the original
one, using the max function that takes the maximum value between the two terms
inside the round brackets. In this way, when the lift coefficient of the new sample
is greater or equal to the reference, the second term contribution to the objective
function is null, whereas when this is not satisfied the value of the objective function
is high and dominated by this penalization term.

The variation of the objective function with the aerodynamic coefficient is shown in
Figures 7.1 and 7.2.
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Figure 7.1: Objective Function

Figure 7.2: Objective Function

7.2. Optimization Strategy

The optimization is performed using the the interior-point algorithm, which solves
a sequence of approximate minimization problems. It is described by Byrd et al. in
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[8]. This algorithm is implemented in the Matlab [62] fmincon function, which is a
gradient-based optimizer designed to work on problems where the objective function
and its constraints are continuous and have continuous first derivatives.

Since the algorithm requires an objective function whose derivatives are continuous,
and the function (7.2) has a discontinuous derivative along the line Cl = Cref

l , the
objective function has been modified to go along with fmincon. To obtain a smooth
function, the penalization term has been defined using an exponential function, as
follows:

Ō2(Cl, Cd) =
Cd

Cref
d

+ P e
(−A

Cl

C
ref
l

+B)

. (7.3)

The smoothed function Ō2 obtained with A = 50, B = 42 is shown in Figures 7.3
and 7.4.

To provide the objective function to fmincon, it is necessary to write a Matlab func-
tion obj_fun.m that contains the selected artificial neural network. This function
takes as inputs a vector of the network’s input coordinates and returns as output
the value of the objective function associated with those inputs. The aerodynamic
force coefficients used inside this function are calculated by means of the ANN. The
optimization has been run with the following parameters assigned to fmincon:

• Central finite differences for the gradient calculation;

• Initial point U0 = (0, ..., 0)T ;

• −1 ≤ Uk ≤ 1 for every iteration k.

With U being the vector of the input variables, which are the rescaled values assigned
to the design parameters.
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Figure 7.3: Smoothed objective function

Figure 7.4: Smoothed objective function

Since the inputs have been re-scaled before the training phase, the ANN should be
fed with values ranging into [−1, 1] to provide accurate predictions of the force
coefficients.
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Figure 7.5: Optimized airfoil

7.3. Standard Surrogate Model Optimization

The optimizations presented in this section have been performed using the 16 neu-
rons surrogate model presented in Section 6.2.2, the procedure associated with these
results has been called Standard Surrogate Model Optimization and it consists in
the usage of a unique ANNs-based surrogate model for each optimization.

7.3.1. Aerodynamic Efficiency

With the objective of increasing the aerodynamic efficiency, the optimization al-
gorithm makes 642 calls to the surrogate model, iterating for 74 seconds. The
optimized airfoil is shown in Figure 7.5. The predicted coefficients, together with
the real coefficients computed with OpenFoam are reported in Table 7.1.

The airfoil result of the optimization shows a 15.44% decrease of the objective func-
tion, with a 24.32% decrease in Cd, which on the baseline airfoil was equal to 0.7524
and a 12.87% decrease in Cd, which on the baseline airfoil was 0.01355.

The pressure coefficient plot, compared to the reference solution, is shown in Figure
7.6, whereas the Mach number and pressure contours comparison with the original
airfoil is shown in Figures 7.8 and 7.7.

The flow on the optimized airfoil accelerates more at the beginning of the suction
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Table 7.1: Predicted and computed coefficients

- Cl Cd

Airfoil 1 - Predicted 0.6574 0.009744
Airfoil 1 - Simulated 0.6558 0.009986
Prediction Error [%] 0.243 2.48
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Figure 7.6: Optimized airfoil - Pressure coefficient

side and then it slowly decreases until the shock occurs. The latter is anticipated
with respect to the reference solution, an its intensity is strongly decreased, this
justifies the reduction in drag.
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(a) Pressure contour - Original Airfoil

(b) Pressure contour - Optimized Airfoil

Figure 7.7: Pressure contours - Comparison
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(a) Mach number contour - Original Airfoil

(b) Mach number contour - Optimized Airfoil

Figure 7.8: Mach number contours - Comparison

7.3.2. Drag Minimization at Fixed Lift

With the goal of reducing drag at fixed lift, the optimization algorithm makes 397
calls to the ANN surrogate model, finding the minimum in 46 seconds.
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Figure 7.9: Optimized airfoil

Table 7.2: Predicted and computed coefficients

- Cl Cd

Optimized Airfoil - Predicted 0.7596 0.01154
Optimized Airfoil - Simulated 0.7588 0.01182

Prediction Error [%] 0.106 2.37

The optimized airfoil is shown in Figure 7.9, and the predicted coefficients, together
with the real coefficients computed with OpenFoam are reported in Table 7.2. On
the optimized geometry, the ANN provides an accurate prevision of both coefficients,
with only a 0.1% error on the lift coefficient and a 2.37% error on the drag coefficient,
which has been the most difficult to predict during the whole work. The procedure
allows to successfully find a geometry that decreases drag without decreasing lift.
As it can be seen in Table 7.2, using this ANN it is possible to obtain a significant
reduction in drag (12.79%), together with a 2.34% increase in lift.
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Figure 7.10: Optimized airfoil - Pressure coefficient

Figure 7.10 shows the behaviour of the pressure coefficient compared to the refer-
ence solution. On the pressure side it shows moderate changes, whereas there are
significant changes on the suction side. The flow accelerates more in the first part,
getting to a lower pressure coefficient near the leading edge. Then, thanks to a gen-
tle deceleration with a low pressure gradient, the shock wave intensity is strongly
reduced, allowing a significant reduction in terms of total drag.

Figures 7.11 and 7.12 show the the Mach number and pressure contours around
the optimized airfoil. The maximum Mach number is equal to 1.18 and it is located
near the leading edge on the suction side, while thanks to the smooth deceleration,
the Mach number before the shock is equal to 1.08, this allows to reduce the shock
intensity and hence the shock wave drag. The maximum Mach number on the
original airfoil, that is shown in Figure 7.8 (a), is equal to 1.19 and it is obtained
just before the shock wave.
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Figure 7.11: Optimized airfoil - Mach number contour

Figure 7.12: Optimized airfoil - Pressure contour

Figure 7.13 shows the comparison between the shocks on the suction side of the two
airfoils. The Mach jump across the shock is reduced by 46%, the numerical values
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Table 7.3: Suction side shock wave comparison - Numerical values

- M1 M2 ∆ M
Base 1.19 0.848 0.342

Optimized 1.08 0.898 0.182

are reported in Table 7.3, where M1 and M2 are the Mach number values before
and after the shock wave.

0.5 0.52 0.54 0.56 0.58 0.6 0.62

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

Figure 7.13: Suction side shock wave comparison

7.4. Iterative Optimization with Surrogate Model

In this section we present an alternative procedure to perform the optimization using
ANNs-based surrogate models. This is intended to investigate different possibilities
aimed to reduce further the computational cost, which is mainly associated to the
CFD solution of the airfoil samples needed to train the ANNs.

Starting from the same 500 samples generated in the Test 4 (in Section 6.2.2), an
iterative procedure is set up.

The iterative procedure is explained in algorithm 1, where Dk is the percentage
dimension of the space Sk compared to the original parameters space, dk is the
distance between the minimums found in the last two iterations, d̂ is a tolerance set
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Algorithm 1 Iterative Optimization with Surrogate Model algorithm
1: while dk > d̂ do
2: Select the space dimension Dk, generating the new design space Sk;
3: Select the samples already generated within Sk;
4: Train the ANNs-based surrogate model Mk;
5: if Ecv < tol then
6: Add 25 new samples according to the Sobol sequence;
7: end if
8: Perform the optimization with the model Mk, finding the minimum Uk;
9: Compute the relative norm of the step dk = ||Uk−Uk−1||

||Uk||
;

10: end while

Table 7.4: Iterative Optimization with Surrogate Model steps

Step Cl Cd ∆Ck
d [%] ∆Ctot

d [%]
1 0.7537 0.01216 - 10.28
2 0.7608 0.01175 3.372 13.31
3 0.7584 0.01170 0.4274 13.67

to 0.5%, tol is the maximum accepted generalization error, measured with the error
on the cross-validation set, set to 1.5%.

Selecting the first two spaces so that their dimension is a quarter of the design space
of the fourth test, leads to an optimum solution that allows a 13% reduction in the
drag coefficient. This result is an improvement compared to the one obtained in
Section 7.3.2. The important advantage that is associated with this procedure is in
the computational time required for the generation of an appropriate training set.

For the first two iterations, the number of samples required is indeed 234, which is
significantly lower compared to the previous result. This allows a 54% reduction in
the computational time required, that drops from 135 to 65 computer hours.

For the third iteration it was needed to generate 50 new samples in order to obtain
a sufficiently accurate surrogate model, this has increased the total computational
time to 78 hours. In this case, the space dimension was set to one tenth of the fourth
experiment design space, since the norm of the second step was significantly lower
than the first, indicating the approach to a minimum in the objective function.
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Figure 7.14: Optimized airfoils sequence

Table 7.4 presents the force coefficients together with the iterative optimization
step k, with ∆Ck

d being the drag coefficient improvements compared to the previous
iteration and with ∆Ctot

d being the drag coefficient improvements compared to the
original airfoil. The last two iterations give similar results, confirming that the
procedure is converged at a local minimum. The airfoil obtained with the third
iteration gives the best results within the whole analysis.

Figure 7.14 shows the different airfoil shapes generated during the iterative proce-
dure, while Figure 7.15 shows the pressure coefficient plots of those airfoils. From
both figures it can be seen that there is a small difference between the last two iter-
ations, that are significantly different from the previous ones. The reduction of the
drag coefficient presented in Table 7.4 can be explained once again by the reduction
of the shock wave intensity.
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Figure 7.15: Pressure coefficients

Figure 7.16: Optimized airfoil - Mach number contour
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Figure 7.17: Optimized airfoil - Pressure contour

7.5. Shape Optimization with High Fidelity CFD

Model

To investigate the advantages related to the optimization performed with the ANN
surrogate model, an optimization using the High Fidelity CFD model has been
performed. This procedure has been done using the parametrization explained in
Section 6.2.2 for the Test 4. The only difference with the previous case is that,
during the optimization, the force coefficients have been evaluated with the CFD
solver. This has allowed us to obtain an estimate of the advantage in computational
time associated with the construction of an ANNs-based surrogate model. Since
this procedure requires to launch OpenFOAM from Matlab, the simulation time of
a single case has increases of the 50%, requiring for a single simulation up to 30
minutes.

To reduce the computational time required for this comparison, the maximum num-
ber of iterations of the interior-point optimization algorithm has been set to 10, the
final point will not be a minimum but the result can be used to estimate the differ-
ences both in terms of results and computational time between the direct simulation
and the surrogate model. With these parameters, the algorithm makes 148 calls to
the CFD solver, requiring 72 computer hours. The value of the objective function at
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the final step is moderately reduced, assuming a value of 0.95, with a drag coefficient
equal to 0.01256 and a lift coefficient equal to 0.7534.

With the same parameters, a surrogate model optimization has been performed, as
in Section 7.3.2. The algorithm makes 99 calls to the surrogate model and its final
point is characterized by a value of the objective function equal to 0.89, with a drag
coefficient equal to 0.01196 and a lift coefficient equal to 0.7578.

These results show that, even though the number of samples required to train a
ANNs-based surrogate model is high, a direct optimization using the CFD solver
would reasonably require a larger time, without ensuring a better performance in
terms of objective function value. Furthermore, the generation of a unique surrogate
model that maps the same parameters space allows to perform optimizations with
different objective functions at a negligible computational cost.

Considering instead the comparison of the HF Model Optimization with the Iterative
Surrogate Model Optimization, the latter outperforms by far the former, both in
terms of computational time and of the objective function value.

Table 7.5: HF Model Optimization vs Standard Surrogate Model Optimization

- Number of calls Cl Cd

HF Model Optimization 148 0.7534 0.01256
Standard Surrogate Model Optimization 99 0.7578 0.01196
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Developments

The airfoil shape optimization requires multiple calls to expensive numerical CFD
solvers, the usage of surrogate models in the context of constrained optimization is
an attractive proposition. This work shows that, as long as the surrogate model pro-
vides an accurate approximation of the PDEs while being computationally cheap to
evaluate, it can be used within standard optimization algorithms with good results,
leading to computational advantages.

In this work, we carefully studied a geometry parametrization and mesh deforma-
tion procedure, aimed to the generation of the training data-set required by the
ANNs-based surrogate model. Findings show that, with a limited number of de-
sign variables, RBFs cannot provide a smooth deformation as long as the airfoils’
angle of attack is fixed. Hicks-Henne functions, instead, provide sufficiently smooth
geometries, together with sufficient freedom in the shape deformation.

The generation of the ANNs-based surrogate model was performed using single
hidden layer Feed Forward Neural Networks, implemented by F. Regazzoni in the
model-learning library. It the context of surrogate model generation, it has been
observed that the prediction of the Drag coefficient is more critical compared to
the Lift coefficient. The prediction error on the drag coefficient determined, for the
whole work, the increase in the number of samples required to obtain a sufficiently
accurate surrogate model. Furthermore, the results show that when the geometry
parametrization complexity increases, i.e. the design space is larger, the finding of
a model with the required accuracy can be difficult.

We proposed two main procedures to perform the airfoil optimization, a Standard
Surrogate Model Optimization (SSMO) and an Iterative Surrogate Model Opti-
mization (ISMO). The SSMO procedure involves the generation of a single surro-
gate model, mapping the whole parameters space. This model is used to perform
the optimization. The ISMO procedure is intended to reduce the dimension of the
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Figure 8.1: Mach number contours comparison. Original airfoil (left), optimized
airfoil - SSMO (center), optimized airfoil - ISMO (right).

required data-set and hence the computational burden associated with the CFD
simulation of the samples. It consists in finding a sequence of surrogate models,
where at each step the parameters space is shifted to the local minimum found by
the previous iteration. This method provides the most promising results, finding the
lowest value of the objective function in the drag-minimization case and reducing the
computational time required for the generation of the training set of up to the 43%
compared to the Standard Surrogate Model Optimization. The SSMO represents
instead a good choice when it is required to investigate the optimization results with
different objective functions.

The Standard Surrogate Model Optimization allowed us to obtain a 15.4% improve-
ment with the goal of increasing the aerodynamic efficiency, and a 12.8% improve-
ment in the drag-reduction problem, requiring a total computational time of 135
hours. The Iterative Surrogate Model Optimization, instead, allowed us to obtain
a 13.7% reduction in the drag coefficient, reducing the computational time required
for the generation of the training set to 78 hours. Figure 8.1 shows the comparison
between the original Mach number flow field (left), and the optimized airfoils with
the drag-reduction objective, obtained with the Standard Surrogate Model Opti-
mization (center) and with the Iterative Surrogate Model Optimization (right).

With the same parameters used in the Standard Surrogate Model Optimization,
the optimization performed using the HF model instead of the surrogate model has
shown to significantly increase the required computational time and, with the same
number of iterations, it gave worse optimization results.

Further developments of this work could include some flow parameters, such as
Reynolds Number or Angle of Attack within the design parameters, to investigate
the usage of SSMO and ISMO in a multi-objective optimization. Moreover, to
exploit the full potential of the model-learning library, the generation of a surrogate
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model to perform shape optimization of an unsteady airfoil simulation could be
examined.
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A.1. Numerical schemes

In this section the numerical schemes set in the fvSolution file are reported:
/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗− C++ −∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗\

========= |
\\ / F i e l d | OpenFOAM: The Open Source CFD Toolbox
\\ / O perat i on | Website : https :// openfoam . org
\\ / A nd | Vers ion : 8
\\/ M an ipu l a t i on |

\∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
FoamFile
{

ve r s i on 2 . 0 ;
format a s c i i ;
c l a s s d i c t i ona ry ;
l o c a t i on " system " ;
ob j e c t fvSchemes ;

}
// ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ //

fluxScheme Kurganov ;

ddtSchemes
{

de f au l t CrankNicolson 0 ;
}

gradSchemes
{

de f au l t c e l l L im i t ed Gauss l i n e a r 1 ;
grad (U) c e l l L im i t ed Gauss l i n e a r 1 ;

}

divSchemes
{

de f au l t none ;
div ( phi ,U) Gauss linearUpwindV grad (U) ;

}

lap lac ianSchemes
{

de f au l t Gauss l i n e a r l im i t ed 1 ;
}

inte rpo la t ionSchemes
{

de f au l t l i n e a r ;
r e c on s t ru c t ( rho ) vanLeer ;
r e c on s t ru c t (U) vanLeerV ;
r e con s t ru c t (T) vanLeer ;

}

snGradSchemes
{

de f au l t l im i t ed 1 ;
}
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// ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ //

A.2. fvSolution
/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗− C++ −∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗\
| ========= | |
| \\ / F i e l d | OpenFOAM: The Open Source CFD Toolbox |
| \\ / O perat i on | Vers ion : 2 . 2 . 2 |
| \\ / A nd | Web: www.OpenFOAM. org |
| \\/ M an ipu l a t i on | |
\∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
FoamFile
{

ve r s i on 2 . 0 ;
format a s c i i ;
c l a s s d i c t i ona ry ;
l o c a t i o n " system " ;
ob j e c t f vSo lu t i on ;

}
// ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ //

s o l v e r s
{

"( rho | rhoU | rhoE )"
{

s o l v e r d iagona l ;
}

U
{

s o l v e r smoothSolver ;
smoother GaussSe ide l ;
nSweeps 2 ;
t o l e r an c e 1e −09;
r e lTo l 0 . 0 1 ;

}

h
{

$U ;
t o l e r an c e 1e −10;
r e lTo l 0 ;

}
}

// ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ //

A.3. controlDict
/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗− C++ −∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗\

========= |
\\ / F i e l d | OpenFOAM: The Open Source CFD Toolbox
\\ / O perat i on | Website : https :// openfoam . org
\\ / A nd | Vers ion : 8
\\/ M an ipu l a t i on |

\∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
FoamFile
{

ve r s i on 2 . 0 ;
format a s c i i ;
c l a s s d i c t i ona ry ;
ob j e c t con t ro lD i c t ;

}
// ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ //
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app l i c a t i on rhoCentralFoam ;

startFrom latestTime ;

startTime 0 ;

stopAt endTime ;

endTime 0 . 1 08 ;

deltaT 1e−6;

adjustTimeStep yes ;

maxCo 0 . 1 ;

wr i t eContro l adjustableRunTime ;

w r i t e I n t e r v a l 0 . 0 1 ;

purgeWrite 0 ;

writeFormat a s c i i ;

w r i t eP r e c i s i on 8 ;

writeCompress ion o f f ;

timeFormat gene ra l ;

t imePrec i s i on 6 ;

runTimeModif iable t rue ;

f unc t i on s
{

#includeFunc MachNo
#includeFunc r e s i d u a l s
f o r c e s
{

type f o r c eCo e f f s ;
l i b s (" l i b f o r c e s . so " ) ;
wr i t eContro l timeStep ;
wr i t eContro l timeStep ;
w r i t e I n t e r v a l 1 ;

pName p ;
UName U;
log true ;
patches
(

a i r f o i l
) ;

rho In f 0 . 5 966 ;

CofR (0 0 0 ) ;
l i f t D i r ( −0.0403 0.9992 0 ) ;
dragDir (0 .9992 0.0403 0 ) ;
p i tchAxis (0 0 1 ) ;
magUInf 233 .6216 ;
lRe f 1 ;
Aref 1 ;

}
}
runTimeControl1
{

type runTimeControl ;
l i b s (" l i b u t i l i t yFun c t i o nOb j e c t s . so " ) ;
c ond i t i on s
{

cond i t i on0
{

type average ;
funct ionObject f o r c eCo e f f s ;
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f i e l d s (Cd ) ;
t o l e r an c e 1e−1;
window 10 ;
groupID 1 ;

}
}

}

// ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ //

A.4. Constant folder

Momentum Transport
/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗− C++ −∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗\

========= |
\\ / F i e l d | OpenFOAM: The Open Source CFD Toolbox
\\ / O perat i on | Website : https :// openfoam . org
\\ / A nd | Vers ion : 8
\\/ M an ipu l a t i on |

\∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
FoamFile
{

ve r s i on 2 . 0 ;
format a s c i i ;
c l a s s d i c t i ona ry ;
ob j e c t momentumTransport ;

}
// ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ //

simulationType laminar ;

// ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ //

Thermophysical properties
/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗− C++ −∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗\

========= |
\\ / F i e l d | OpenFOAM: The Open Source CFD Toolbox
\\ / O perat i on | Website : https :// openfoam . org
\\ / A nd | Vers ion : 8
\\/ M an ipu l a t i on |

\∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
FoamFile
{

ve r s i on 2 . 0 ;
format a s c i i ;
c l a s s d i c t i ona ry ;
l o c a t i o n " constant " ;
ob j e c t the rmophys i ca lProper t i e s ;

}
// ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ //

thermoType
{

type hePsiThermo ;
mixture pureMixture ;
t ranspor t const ;
thermo hConst ;
equat ionOfState per fectGas ;
s p e c i e s p e c i e ;
energy s en s i b l e In t e rna lEne rgy ;

}

mixture
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{
sp e c i e
{

molWeight 2 8 . 9 ;
}
thermodynamics
{

Cp 1005;
Hf 0 ;

}
t ranspor t
{

mu 0 ;
Pr 0 . 7 1 ;

}
}

// ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ //

A.5. Boundary conditions - 0 folder

Temperature
/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗− C++ −∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗\

========= |
\\ / F i e l d | OpenFOAM: The Open Source CFD Toolbox
\\ / O perat i on | Website : https :// openfoam . org
\\ / A nd | Vers ion : 8
\\/ M an ipu l a t i on |

\∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
FoamFile
{

ve r s i on 2 . 0 ;
format a s c i i ;
c l a s s v o l S c a l a rF i e l d ;
ob j e c t T;

}
// ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ //

Tin l e t 2 55 . 6 ;

dimensions [ 0 0 0 1 0 0 0 ] ;

i n t e r n a lF i e l d uniform $Tin l e t ;

boundaryField
{

f a r f i e l d
{

type i n l e tOu t l e t ;
i n l e tVa lue uniform $Tin l e t ;
va lue $ in l e tVa lue ;

}

a i r f o i l
{

type zeroGradient ;
}

frontAndBack
{

type empty ;
}

#inc ludeEtc " ca seDic t s / setConstra intTypes "
}

// ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ //
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Mach number
/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗− C++ −∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗\

========= |
\\ / F i e l d | OpenFOAM: The Open Source CFD Toolbox
\\ / O perat i on | Website : https :// openfoam . org
\\ / A nd | Vers ion : 8
\\/ M an ipu l a t i on |

\∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
FoamFile
{

ve r s i on 2 . 0 ;
format a s c i i ;
c l a s s v o l S c a l a rF i e l d ;
l o c a t i o n "0" ;
ob j e c t Ma;

}
// ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ //

dimensions [ 0 0 0 0 0 0 0 ] ;

i n t e r n a lF i e l d uniform 0 .72783363 ;

boundaryField
{

frontAndBack
{

type empty ;
}
f a r f i e l d
{

type ca l cu l a t ed ;
value uniform 0 .72783363 ;

}
a i r f o i l
{

type ca l cu l a t ed ;
value uniform 0 .72783363 ;

}
}

// ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ //

Velocity
/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗− C++ −∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗\

========= |
\\ / F i e l d | OpenFOAM: The Open Source CFD Toolbox
\\ / O perat i on | Website : https :// openfoam . org
\\ / A nd | Vers ion : 8
\\/ M an ipu l a t i on |

\∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
FoamFile
{

ve r s i on 2 . 0 ;
format a s c i i ;
c l a s s vo lVecto rF i e ld ;
ob j e c t U;

}
// ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ //

Uin l e t (233 .4317 9.4164 0 ) ;

dimensions [ 0 1 −1 0 0 0 0 ] ;

i n t e r n a lF i e l d uniform $Uin le t ;

boundaryField
{

f a r f i e l d
{

type f r e e s t r eamVe lo c i t y ;
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f r eest reamValue uniform $Uin le t ;
va lue uniform $Uin le t ;

}
a i r f o i l
{

type s l i p ;
}

frontAndBack
{

type empty ;
}
#inc ludeEtc " ca seD ic t s / setConstra intTypes "

}

// ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ //

Pressure
/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗− C++ −∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗\

========= |
\\ / F i e l d | OpenFOAM: The Open Source CFD Toolbox
\\ / O perat i on | Website : https :// openfoam . org
\\ / A nd | Vers ion : 8
\\/ M an ipu l a t i on |

\∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
FoamFile
{

ve r s i on 2 . 0 ;
format a s c i i ;
c l a s s v o l S c a l a rF i e l d ;
ob j e c t p ;

}
// ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ //

pOut 43765;

dimensions [ 1 −1 −2 0 0 0 0 ] ;

i n t e r n a lF i e l d uniform $pOut ;

boundaryField
{

f a r f i e l d
{

type f ixedValue ;
value uniform 43765;

}

a i r f o i l
{

type zeroGradient ;
}

frontAndBack
{

type empty ;
}

#inc ludeEtc " ca seDic t s / setConstra intTypes "
}

// ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ //
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