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Abstract

This work describes the design and development of the controller of the CERN DCTT
Calibrator (CDC), a critical component in the power converter controls system in CERN’s
facilities. The CDC is responsible for providing an accurate and reliable current that can
be used to calibrate current sensors or other devices. The development of the controller
of such an instrument is described in the following pages, following a hardware upgrade
that was carried out in the recent past.

The research begins with an introduction to CERN and the LHC, setting the stage for
understanding the significance of the CDC within this context. The thesis then explores
the CDC’s working principles, its recent upgrade, and the control system requirements
for its operation. Special attention is given to the explanation of the working principle of
DCCTs (Direct-Current Current Transformers) and the stringent calibration requirements
they must meet.

A key focus of the thesis is the hardware and software aspects of the CDC. It presents a
comparative study of different system-on-chip (SoC) solutions, highlighting the adoption
of the Zynq system and the use of FPGA (Field-Programmable Gate Array) technology.
The thesis also addresses the application of Continuous Integration/Continuous Deploy-
ment (CI/CD) methodologies in FPGA development, leading to a leap in development
efficiency and reliability.

The software development section describes the Petalinux operating system and the de-
velopment of the Python application and user-space drivers.

Lastly, the thesis presents application and performance testing methodologies, including
continuous integration and deployment strategies, to ensure the CDC’s robustness and
reliability. The performance assessment section provides an overview on the challenging
metrological validation of the instrument’s performance and the results of the tests carried
out.
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Abstract in lingua italiana

Questo lavoro descrive la progettazione e lo sviluppo del controller CERN DCCT Cali-
brator (CDC), un componente cruciale nel sistema di controllo dei convertitori di potenza
nell’infrastruttura del CERN. Il CDC è responsabile della fornitura di una corrente di
riferimento precisa e affidabile che può essere utilizzata per calibrare sensori di corrente e
altri dispositivi. Le seguenti pagine descrivono lo sviluppo del controller di tale strumento,
a seguito di un aggiornamento hardware che è stato effettuato di recente.

La ricerca inizia con un’introduzione al CERN e al LHC, preparando il terreno per com-
prendere l’importanza del CDC in questo contesto. La tesi esplora quindi i principi di
funzionamento del CDC, il suo recente aggiornamento e i requisiti del sistema di controllo
per il suo funzionamento. Particolare attenzione viene dedicata alla spiegazione del prin-
cipio di funzionamento dei DCCT (Trasformatori di Corrente a Corrente Diretta) e ai
rigorosi requisiti di calibrazione che devono soddisfare.

Un focus chiave della tesi è sugli aspetti hardware e software del CDC. Presenta uno studio
comparativo di diverse soluzioni system-on-chip (SoC), risultato nell’adozione del sistema
Zynq e l’uso della tecnologia FPGA (Field-Programmable Gate Array). La tesi affronta
anche l’applicazione delle metodologie di Continuous Integration/Continuous Deployment
(CI/CD) nello sviluppo FPGA, portando a un salto in termini di efficienza e affidabilità
dello sviluppo.

La sezione dello sviluppo software descrive il sistema operativo Petalinux e lo sviluppo
dell’applicazione Python e dei driver in user-space.

Infine, la tesi presenta metodologie di test di applicazione e di performance, inclusi strate-
gie di integrazione e distribuzione continue, per garantire la robustezza e l’affidabilità del
CDC. La sezione di valutazione delle performance fornisce una panoramica sulla sfida della
validazione metrologica delle prestazioni dello strumento e sui risultati dei test effettuati.

Parole chiave: CERN, sorgente di corrente, calibrazione, Zynq, DCCT, FPGA
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1| Introduction

1.1. CERN

Conseil Européen pour la Recherche Nucléaire (CERN) is the world’s biggest organization
for research in high-energy physics. Most of the laboratory research activity is carried out
with the use of particle accelerators. Particle accelerators are organized in the so-called
"accelerator complex", where they are connected for operation.

Figure 1.1: CERN accelerator complex diagram, Source: [32]
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The CERN accelerator complex is composed of several accelerators, that most of the time
run with protons. The starting point of the protons is the Linear Accelerator 4 (LINAC4),
a recent upgrade from the Linear Accelerator 2 (LINAC2), that injects protons at the
energy of 160 MeV. The LINAC4 injects into the Proton Synchrotron Booster (PSB),
followed by the Proton Synchrotron (PS), the Super Proton Synchrotron (SPS) and finally
the Large Hadron Collider (LHC).

The LHC experiments are not the only scientific users of the complex, in fact, their
usage accounts for only a minor percentage of the total proton production, many other
experiments exist and receive particle beams from the various accelerators in the complex.

The complex is run 24 hours a day, 7 days a week, for most of the year. This implies that
all systems in the accelerator are requested to be highly reliable and available.

Accelerators, in general, are constituted by magnets, used to bend and shape the beam
and by RF cavities, used to accelerate the beam. The magnets are powered by power
converters, that get AC power from the power grid and convert it to DC power, controlled
with considerable precision.

1.2. The LHC

The LHC is a superconducting ring-shaped particle accelerator. It is the largest in CERN’s
complex and the largest in the world, with a circumference of 27 km. It is located
underground, across the border of Switzerland and France, at about 100m depth. Two
particle beams circulate in two beam pipes, in opposite ways, to meet in a head-to-head
collision at four points along the accelerator, where the four main experiments are located:
A Toroidal LHC Apparatus (ATLAS), Compact Muon Solenoid (CMS), A Large Ion
Collider Experiment (ALICE) and Large Hadron Collider beauty (LHCb). The ATLAS
and CMS experiments are the ones that confirmed experimentally the existence of the
Higgs boson in 2012.

1.3. Powering for the accelerator complex

The LHC is largely constituted by dipole magnets. The dipole magnets are used to
curve the beam and keep it orbiting in the accelerator. They are made of two opposing
superconducting coils, that are cooled down to 1.9 K, to reach the superconducting state.
A large current, in the order of 10 kA, is passed in the coil to produce a magnetic field in
the order of 8 T, that is used to curve the beam. Since the turn radius is a function of the
current, it is critical to control the current with high precision. Moreover, since the LHC
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dipoles are powered in eight separate sectors, it is necessary that the sector currents are
equal to each other, to avoid a step in the magnetic field at the sector boundaries. This
is achieved by using a Direct-Current Current Transformer (DCCT), which is a current
sensor that measures the current in the coil, and a control loop implemented digitally in
the power converter.

The CERN accelerator complex is powered by a network of power converters, that are
located in the various underground and above-ground facilities. The power converters are
connected to the power grid, and convert the AC power into DC power. The DC power
is then used to power the magnets in the accelerator.

1.3.1. The Hi-Lumi upgrade

An upgrade for the LHC is currently under development. The upgrade is called High
Luminosity LHC (Hi-Lumi) and will increase the luminosity of the accelerator by a factor
of 10. By luminosity we mean the number of collisions per second per unit of area that
an accelerator can produce. This will allow to increase the number of collisions in the
experiments, and therefore increase the probability of observing rare events.

The new inner triplet magnets

The upgrade will include, among other upgrades, the replacement of the inner triplet
magnets in the LHC for the ATLAS and CMS experiments. The inner triplet magnets
are the magnets that are located at both ends of the interaction points of the accelerator,
where the experiments are located. They take their name from the fact that they are
functionally made of three quadrupole magnets. In practice, one of the quadrupoles is
split in two. Two configurations of quadrupole magnets exist: focusing and defocusing.
One is focusing the beam on the horizontal plane, but defocusing it in the vertical plane,
and they are called focusing quadrupoles. The defocusing quadrupoles do the opposite,
defocusing the beam on the horizontal plane and focusing it in the vertical plane. Other
than the quadrupole magnets, the inner triplet also contains a dipole magnet.

The inner triplet upgrade will be key to increasing the luminosity of the accelerator. The
new inner triplet’s magnets will require increased precision in the current control, for
which new upgraded DCCTs are required.
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1.3.2. Current control

Since the magnetic field in an electromagnet depends on the current in the coil, the cur-
rent is controlled to adjust the magnetic field. To meet the strict specification for current
control on the beam magnets, a closed loop system is in use. In general, a power con-
verter control system will be constituted of a voltage source (the power converter itself), a
current measurement system, and a controller. While the power converter topologies can
greatly vary between converters, in CERN’s installations the controller is implemented
in a modular platform called Regulating FGC (RegFGC) [3] [15]. The RegFGC platform
supports the Function Generator Controller (FGC), on which the control is implemented.
Various modules are then used to interface the FGC to the power converter. The current
control loop needs an accurate measurement of the output current to control it effectively.
Many solutions exist to measure current in this kind of application, including shunt re-
sistors, Hall effect sensors and current transformers. The described systems combine the
requirement for high precision and the need to measure high currents, leaving DCCTs as
the only option [6].

1.3.3. DCCTs

The DCCTs are current sensors that exploit the core saturation of a transformer to mea-
sure DC currents. DCCTs were initially developed at CERN for beam current monitoring
in particle accelerators, for which they are still used to this day, including in the LHC [36].
At CERN, they have been in use to measure the current output of the power converters
for control and regulation, from several generations of accelerators [1].

A current transformer, in general, is not able to operate in the DC regime, since it is based
on the principle of induction. The DCCTs can operate in the DC regime, by exploiting a
modulation and demodulation signal in the magnetic core.

Principle of operation

The DCCTs are constituted by a toroidal transformer core, on which is wound a conductor,
called primary, that carries the DC current to be measured, I. Since I is DC, it cannot
induce an AC magnetic flux in the core that can be picked up by another coil. The core is
therefore modulated using a winding, that is excited by an AC voltage. The AC voltage
is generated by an oscillator. The current in the excitation winding is then measured.
Since the current measured by the primary can often be very large, the primary is made
of a single bus bar going through the center of the transformer’s core, which makes it a
one turn winding.
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Figure 1.2: DCCT block diagram, Source: [9]

Zero flux detector Magnetic saturation is a phenomenon that occurs in magnetic
materials, where the magnetic flux density B stops increasing with the magnetic field H.
At that point, the ratio between voltage and current in the winding stops being linear,
and exhibits peaks in the current when the core reaches saturation. When there is even
a minor DC offset in the core, the peaks in the current are asymmetric, as shown in
Figure 1.3.

Figure 1.3: Core saturation in time

This allows to easily measure any DC offset in the core with great sensitivity. The DC
offset is then used to null the flux in the core, by injecting a secondary current in a
secondary winding, that is wound in the opposite direction with respect to the primary
winding.
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Harmonics analysis Studying the distorted waveforms of the currents in Figure 1.3 in
the frequency domain, it is possible to see that the current is composed of a fundamental
component and odd harmonics when the DC offset is zero, while it is composed of a
fundamental component and all harmonics when the DC offset is not zero. This is shown
in Figure 1.4.

Figure 1.4: Core saturation in frequency

The second harmonic is then used as an error signal so that an amplifier injects a secondary
current such that the error is nulled. This means that the DC offset has been removed
from the core, so the secondary current matches with the primary to a high degree of
precision. To extract the second harmonic for the signal, a synchronous demodulation is
used.

Secondary current measurement The secondary current can then be measured with
a current sensor, without perturbing the original current. Since the turn ratio between the
secondary and the primary determines the ratio between the secondary and the primary
current, the secondary current can be much smaller, thus more easily measurable with
high accuracy, for example with a shunt resistor, often referred to as a burden resistor.

Since transformers are reciprocal electric machines, in a DCCT constructed as described,
the AC modulation would induce an AC component both in the primary and in the
secondary, disturbing the measurement. Instead, the core is effectively divided into two
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symmetrical cores and the AC modulation is injected in two identical windings, one on
each core, that are wound in opposite directions. The other windings are then wound
on both cores. This way, the AC modulation is greatly reduced as long as the two cores
match, and the DCCT is able to measure DC currents without affecting the primary or
secondary currents. This is shown in Figure 1.2.

1.3.4. Calibration requirements

To ensure the precision of the current control, the DCCTs need to be calibrated. The
calibration is performed by injecting a known current in the coil and measuring the output
of the DCCT. The calibration is performed periodically, to ensure that the DCCTs are
still within the required precision.

Since producing a very large and very precise current is not trivial, a calibration winding
is sometimes used. The calibration winding is a winding that is placed on the DCCT
core and has a certain turn ratio with respect to the primary winding. This turn gain
is used to scale the injected current, to emulate the flux produced by the current in the
primary winding. The calibration current is provided, in CERN’s installations, by the
CERN DCCT Calibrator (CDC).

1.4. The CERN DCCT Calibrator (CDC)

The CDC is a device that is used to calibrate the DCCTs. It is a programmable ±10 A

current source. It can be used in various configurations, both to check and calibrate the
DCCTs, as well as to test in-situ current references, as Figure 1.5 shows.

Figure 1.5: CDC configurations, Source: Fig. 4 in [9]
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The original CDC was designed in the early 2000s [18] and is now hard to manufacture as
it contains many obsolete components. It is based on a modular architecture, where the
modules are connected to a backplane. It is in use in the LHC and in some test facilities
at CERN, as well as in other laboratories around the world.

1.4.1. CDC working principle

The CDC system itself is based on the DCCT principle. Reference Figure 1.6 for a basic
functional block diagram of the CDC.

The system works by injecting a very stable reference current - called the primary current
- in a winding, which creates a non-null magnetization in the core. The magnetization is
picked up by the zero-flux detector module, which creates an error signal, that is then fed
in a Proportional Integral (PI) loop which generates a secondary current, in the opposite
direction, such that the error (and so the flux in the core) is nulled. The secondary current
is then output from the instrument. This way, the CDC is able to output a current that
mirrors the current reference.

Figure 1.6: CDC basic structure, Fig. 6 in [9]

By varying the number of turns of the primary winding it is possible to vary the output
current, in steps multiple of the primary current. The winding modification is achieved
through a binary encoding system, where a set of discrete windings with turns ratios of
2048, 1024, 512, 256, 128, 64, 32, 16, 8, 4, 2, and 1 are selectively inserted or removed from
the current path. This selective inclusion and exclusion mechanism allows for a highly
flexible and precise adjustment of the total number of turns, enabling the customization
of the output current in incremental steps that are multiples of the primary current.
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Each specific combination of included windings corresponds to a unique total number of
turns, providing a wide range of output current options to precisely mirror the reference
current. Finer tuning is allowed by a second single-turn winding that is connected to a
Digital to Analog Converter (DAC) and is used to fine-tune the output current. The DAC
is controlled by the CDC’s control system.

Zero-flux detector

The zero-flux detector is at the core of the instrument, and it is very similar to the
one used in the DCCTs. It is constituted by twin inner cores that are modulated in
opposite directions, and the result is then picked up by two windings that are wound on
both cores. The twin cores are then used to cancel out the AC modulation so that the
secondary current is not affected. The pickup coils are wired in anti-series to not cancel
out the two modulations but rather to add them up. This is shown in Figure 1.7.

Current reference

The CDC needs a very stable current reference to work. The current reference is provided
by a commercial module called PBC. It is based on an ovenized zener diode, the LTZ1000,
that is used to generate a very stable voltage reference. Upgraded units, called V3, exploit
the even better-performing ADR1000. The voltage reference is then used to generate a
very stable current reference, that is used as the primary current in the CDC. The device
has been described in [19]. The PBC is able to generate a current reference of 10mA with
stability in the order of a few parts per million per year, detailed in Table 1.1

Table 1.1: Detailed comparison between PBC Current Reference V3 and V2, from [33]
[34]

Specification PBC V3 PBC V2

Temperature Stability ±0.1ppm/°C ±0.2ppm/°C

Time Stability (first year typical) ±3ppm/year ±3ppm/year

Time stability - ongoing (typical) ±1.5ppm/year ±2ppm/year

Noise (typical, RMS) 150pA 200pA

PBC x5 Chassis

As part of the upgrade, the possibility of using five 10 mA current references in parallel
instead of one was introduced. This is achieved by using a PBC x5 chassis, that is able
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to host five PBCs. The PBC x5 chassis is able to generate a current reference of 50mA.
This introduces two main advantages: the first is that the current reference is more stable,
since the variance is reduced by

√
5, so the stability is improved by a factor of 2.2. The

second advantage is that the ampere-turns in the primary winding are increased by a
factor of 5 in the 1 A range while being able to operate effectively as in the 5 A range.
This way, the contribution of the magnetic noise in the core is reduced.

A third advantage is that being the PBC x5 chassis a separate assembly, it can be placed
further away from the CDC itself, reducing the thermal influence of the CDC on the
reference current.

Voltage booster

Since the compliance voltage of the CDC is limited to 5V , a voltage booster is used to
increase the compliance voltage to 70V . This allows to use the CDC with DCCTs that
have a higher resistance in the calibration winding.

The Voltage Booster (VB) is an amplifier that is connected between the output terminals
of the CDC, as shown by Figure 1.6. The VB acts so that the current being output by
the output terminals enters the load and is then sunk by the VB. The VB is able to sink
a current of up to 5A, so the range is limited to 5A when the VB is used. TheVB is
controlled by the CDC’s control system, which is able to set the output current and the
compliance voltage.

1.4.2. Upgrade overview

The CDC is currently being upgraded. The upgrade is being carried out by the SY-
EPC High Precision Measurements section (SY-EPC-HPM) section, which is in charge
of the high-precision measurements for power converters. The purpose of the upgrade is
to improve the performance of the CDC, to meet the new requirements for the Hi-Lumi
upgrade. The requirements for the upgrade were specified in [7] and are summarized in
Table 1.2.
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Table 1.2: Comparison of Specifications between the Target and Existing Current Sources.

Parameter Reference
Current
Source

Existing
Current
Calibrator

Initial uncertainty after calibration (2xrms ppm) 0.5 1

Linearity (max ppm) 0.3 0.5

Stability during a 12h fill (max ppm) 0.2 1.2

Short term stability during 20min (2xrms ppm) 0.1 0.1

Noise at <500Hz (2xrms ppm) 1.5 1.0

Fill to fill repeatability (2xrms ppm) 0.1 0.5

Long term fill to fill stability (max ppm) 1.5 2.0
Temperature coefficient (2xrms ppm/C) 0.2 approx. 0.2

The upgrade is being carried out in two phases. The first phase is the upgrade of the
CDC’s hardware, while the second phase is the upgrade of the CDC’s controls. The
present work is about the second phase of the upgrade. The hardware upgrade consists
of the redesign of the CDC’s modules with new, better-performing, ones.

First phase: hardware upgrade

The hardware upgrade was carried out between 2021 and 2022. The main focus points
were:

• Improve on linearity;

• Improve on 12h stability;

• Identification of 1/f noise source;

• Better thermal management;

• Reduction of modulation noise;

• Improved Electromagnetic Interference (EMI) performance;

• Replacement of the obsolete components;

• Research on magnetic materials.

The upgrade was completed in June 2022, with two development units manufactured and
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tested in all the parts. The upgraded CDC featured a USB controller based on a Digital
Signal Processor (DSP) from Texas Instrument. This was a temporary solution, to allow
for testing of the new hardware. The final control system will be based on a Zynq System-
on-Chip (SoC). The new CDC was tested in the laboratory with good results. The results
of the upgrade are shown in [30].

Second phase: control upgrade

The control upgrade consists of the replacement of the upgraded CDC’s temporary con-
trols with a new control system. The control of the old units was based on a Renesas
M32C/87 microcontroller. During the first phase of the upgrade, the control was sub-
stituted with a DSP-based temporary solution, for testing purposes. The new control
system will be based on a Zynq DSP, which will be used to implement the control.

The new control system will adopt the Network Command-Response Protocol (NCRP), to
standardize the interface and uniform it to the one already in place for power converters.
The old CDC control was based on the serial version of the Command-Response Protocol
(CRP), while the new one will be based on the network version of the protocol.

1.4.3. CDC control system

The duties of the control system are:

• Provide a user interface to the user, to allow for the control of the CDC. The user
will control the CDC through the network, by sending commands via Transmission
Control Protocol (TCP) to the control system;

• Control the various modules of the CDC, following the commands received from the
user;

• Monitor the status of the CDC, in particular, the status of the modules and the
power supply rails, and raise alarms if necessary;

1.4.4. Modules

The CDC is constituted by various modules, that are connected to a backplane. The
modules are:

• Power Supply Unit (PSU) module;

• Modulation Amplifier (MODAMP) module;
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• Secondary Relays (SECREL) module;

• Primary Relays (PRIMREL) module;

• One-Turn DAC Driver (1TDAC) module;

• Active Filter (ACTFILT) module;

• Feedback and Demodulation Amplifier (FADEM) module;

• 10mA current reference module (PBC);

• Network Controller (NETCTRL) module;

• Zero-Flux Detector (ZFD) module;

• Nullmeter (NULLMETER) module.

1.4.5. Control specificaiton

The focus for the development is ease of development, flexibility and maintainability.
Since the CDC is not manufactured in large quantities, cost is not a primary concern.
The lifespan of the instrument design is expected to be in the order of decades, so the
control system is required to be easily maintainable and extensible, to allow for future
upgrades and modifications. Testability and ease of deployment are also design goals.

The control system is implemented in the NETCTRL module, and it is required to control
the following:

• The FADEM module via Serial Peripheral Interface (SPI);

• The PRIMREL module via SPI;

• The NULLMETER module via SPI;

• The network interface, where it receives commands from the user and sends re-
sponses;

The NETCTRL module is also required to monitor the status of the CDC, in particular
the status of the modules and the power supply rails, and raise alarms if necessary.

1.4.6. NCRP protocol

The FGC NCRP is a protocol commonly used at CERN for the control of power converters.
It is specified by [4] [29].



1| Introduction 15

FGC device classes

Every device controlled by the NCRP protocol must adhere to a device class. Device
classes are defined by the SY-EPC Converter Control Software section (SY-EPC-CCS)
group at CERN. Each device class specifies which commands are available for the device,
and how the device must respond to the commands. The device classes are defined in [4].

The CDC is implemented in Class 150: CALSYS_CDC, which is the class that is used
for all the CDC devices in the accelerator complex.

NCRP properties

Each device class is characterized by a series of properties that are common to all devices
of that class. The properties are defined by a name, a type, and a range. Typically,
FGC properties are structured in a hierarchy, where each level may contain other levels
or properties.

Properties for the CDC controller are defined in [8]. In the CDC, 33 properties are
implemented in total.

In general, a property name is a string or a series of strings separated by dots, where the
dots define the hierarchy. For example, CALSYS.CDC.ADC.GAIN_1A is a property that
is defined in the CALSYS.CDC.ADC hierarchy. Inside CALSYS.CDC.ADC many other
properties are found, all related to the ADC, such as I_MEAS, I_NULL, PBC_TEMP,
RAW_ZERO, V_MEAS. In CALSYS.CDC other properties and groups of properties are
found, such as DAC1TW_CAL, DAC1TW, NULL and so on.

Each property is, in principle, an array. The array can be of any dimension, scalar
properties are arrays of dimension 1. The array can be of any type, including integer,
floating point, string, boolean, and so on.

The properties are detailed in Appendix 8.

NCRP commands

The NCRP command is the means of interaction with properties. It is based on a set-get
paradigm, where the user can set a property to a certain value, or get the value of a
property. The commands are defined in [4] and [29].

Each command should start with an exclamation mark and should end with a new line.
It should contain a verb and a property name, where the verb can either be set (s) or get
(g). A minimum command is, therefore:
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! g CALSYS.CDC.ADC.GAIN_1A

The command can also contain a value, in the case of a set command. The value is a
string that is converted to the property type. For example, the command:

! s CALSYS.CDC.ADC.GAIN_1A 1.0

The commands are case-insensitive.

To get and set values of properties that are arrays, the command can contain an index or
a range. Supported ranges are in the form of [index], [from, to], [from, ] (with the
meaning of "from index to the end of the array") and [from, to, step].

The values to set can either be targetted individually by index or they can be set in a
range by specifying values separated by commas. For example, to set the first 2 values of
the CALSYS.CDC.DAC.RAW property to 100 and 200, the command would be:

! s CALSYS.CDC.DAC.RAW[0,1] 100,200

To get the first 2 values of the CALSYS.CDC.DAC.RAW property, the command would
be:

! g CALSYS.CDC.DAC.RAW[0,1]

NCRP responses

The FGC devices respond to commands with a response. The response is a string that
contains the result of the command. The response is defined in [4] and [29].

A successful response to a set would be:

$ .

;

A successful response to a get would be:

$ .

value

;

If the command was unsuccessful, the response would be an error code and a short string,
such as:

$ !

15 no delimiter
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;

The error codes are defined in the FGC protocol specification.

FGC Gateways

In the NCRP protocol, no device is standalone. Each device is connected to the network
through a gateway, that groups together a number of devices. The connection between the
gateway and the devices is arbitrary and can be implemented in any way. Multiple types
of gateways, implemented as FGC devices with their own set of properties, are available.
The gateways are defined in [5], along with the rest of the protocol and the device classes
with their properties.

To be able to interact with the standard tools that are available for the NCRP protocol, the
CDC will need to be connected to the network through a gateway. Instead of implementing
a real gateway, the CDC will feature a gateway emulator, where all the relative properties
will exist formally in the CDC controller, but they will not be implemented. The CDC
logic will then route commands either to the CDC controller or to the gateway emulator,
depending on the specified device. This way, the CDC will be able to interact with the
standard tools that are available for the NCRP protocol.

The NCRP protocol is defined in such a way that each command addresses a specific
device in the gateway. The device is specified by a device number, that is a number
that uniquely identifies the device in the gateway. The device number is specified in the
command, after the gateway name, separated by a colon. For example, a valid command
looks like:

! \verb> <device-number>:<property-name>\n

If the device number is not specified, the gateway is assumed to be the target of the
command.

1.5. Programmable electronics for the controls

1.5.1. Network

The control system of the Current Calibrator benefits greatly from an embedded proces-
sor, in particular regarding the networking capabilities. One of the standout features of
utilizing embedded processors is their support for Linux. With the Linux operating sys-
tem, network support and utilities are available out of the box on an embedded processor.
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The embedded processor simplifies the integration of the control system into the network.
Linux provides a mature and robust network stack ensuring reliability and efficiency in
communication, facilitating seamless and complete remote control capabilities. Moreover,
because Linux is a well-known, widely-used, and open-source operating system, it pro-
vides a wealth of resources, including a global community of developers and extensive
documentation, aiding in rapid development and troubleshooting.

1.5.2. Hardware interfaces

The control system of the Current Calibrator requires a number of hardware interfaces
to control the various modules of the CDC. These interfaces can be implemented in an
FPGA, in particular considering that the required IP blocks are readily available.

The FPGA solution to implement interfaces allows for a high degree of flexibility and
customization. The FPGA can be programmed to implement any interface, and it can
be reprogrammed to implement a different interface. This speeds up the development
process.

1.5.3. The Zynq system

The Zynq system is a SoC that combines an ARM Cortex-A9 processor with a Xilinx
7-series Field Programmable Gate Array (FPGA). The Zynq system is a very popular
choice for embedded systems, due to its flexibility and performance. The Zynq system is
also used in many CERN projects, both for the experiments and for the machine.

A natural choice for the control system of the CDC is the Zynq system. The Zynq system
allows for the implementation of the control system in a single chip, with the ARM
processor running Linux and the FPGA implementing the hardware interfaces.

1.5.4. The CI/CD methodology for FPGA development

The development of the controller exploited the Continuous Integration and Continuous
Deployment (CI/CD) methodology. It is a methodology that is used in software develop-
ment to ensure that the software is always in a working state and that it can be deployed
at any time. The CI/CD methodology is based on the use of a version control system,
such as Git, and on the use of automated testing and deployment.

The CI/CD methodology is not commonly used in FPGA development, but it is a very
powerful tool that can greatly improve the development process. The CI/CD methodology
is based on the use of a version control system, such as Git, and on the use of automated
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testing and deployment. CI/CD for FPGAs is a relatively new concept, but it is gaining
traction in the industry.

This paradigm allows for testing the code at every commit, and to prepare and package
the code for deployment at every commit. This allows for a very fast development cycle,
where the developer can test the code at every commit, and the code is always ready for
deployment. This greatly speeds up the development process.
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2.1. Introduction

This chapter describes the hardware design of the system. The system is designed to be
modular so that parts can be replaced or upgraded without the need to redesign the whole
system. The control hardware will constitute a module in the system.

2.2. Requirements

The main points of the requirements for the control hardware are:

• The controller should accept an Ethernet connection for receiving commands;

• The controller should monitor the voltages of the power supply;

• The controller should be able to control the three SPI devices over Low Voltage
Differential Signaling (LVDS);

• The controller should be able to connect to the 1-Wire (1-Wire) bus and power the
devices on the bus using the parasitic power mode;

• The controller should have a 1-Wire device of its own to identify itself on the bus.

Moreover, the primary targets are:

• Optimizing development time;

• Optimizing maintainability: the system should be designed using technologies that
are already known by the team, and that can be easily understood by other devel-
opers;

• Optimizing the lifetime of the solution: the system should be designed using tech-
nologies that are not going to be obsolete shortly.

• Design for testability: the system should be designed in a way that allows for easy
testing of the hardware and software.
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The cost of the controller was deemed secondary, as the system will be manufactured in
small quantities and the cost of the controller is expected to be negligible compared to
the cost of the whole system.

2.3. SoC vs SoC with FPGA

Two main paths were studied for the development of the controller: one solution makes
use of a SoC and its hardware peripherals, while the other solution makes use of a SoC
and an FPGA.

Both solutions have advantages and disadvantages. FPGAs are a very flexible solution,
that offers complete customization of the interfaces but requires the developer to spend
more effort in the development. SoCs are a simpler solution, that offers less flexibility but
requires less effort in the development. At CERN the FPGA technology is widely used,
well known and well supported, while the standalone SoC solution is not widespread.
Both solutions are analyzed in the following sections.

2.3.1. Operating system vs bare-metal programming

Embedded processors can be programmed using a bare-metal approach or using an oper-
ating system. The bare-metal approach is more suitable for real-time applications, as it
allows for more control over the execution of the code. The operating system approach is
more suitable for multi-tasking applications and for applications that require a high level
of abstraction. The operating system already integrates the full network stack, so it is
easier to implement the Ethernet interface using an operating system. The bare-metal
approach requires the implementation of the network stack, which is a complex task. The
bare-metal approach is more suitable for the control logic, as it allows for more control
over the execution of the code. The operating system approach is more suitable for the
Ethernet interface, as it allows for a higher level of abstraction. As the control logic is not
a real-time application, the operating system approach is more suitable for the controller.

2.3.2. Operating systems

A variety of operating systems are available for the embedded processors. The most
popular operating systems are Linux and FreeRTOS. Linux is a full-featured operating
system, while FreeRTOS is a real-time operating system. The control logic is not a real-
time application, and it can benefit greatly from the high level of abstraction and the
large number of drivers available in Linux, so Linux is more suitable for the controller.
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The Ethernet interface is not a real-time application either, and it can benefit from the
fully implemented network stack in Linux, so Linux was the chosen operating system for
the controller.

2.4. The Zynq-7000 SoC

The original proposal for the development of the controller was to use a Zynq-7000 SoC. It
offers a dual-core ARM Cortex-A9 processor and a FPGA in a single chip. The FPGA can
be used to implement the SPI interface, the 1-Wire bus driver and the interface to control
an Analog to Digital Converter (ADC) for voltage monitoring. The ARM processor can
be used to implement the Ethernet interface and the control logic. The FPGA could also
be used to implement the Ethernet interface, but the ARM processor is more suitable for
this task.

The SoC is available in a few sizes and configurations, with the cost greatly varying
between solutions. The cheapest bare SoCs are available for around 50 CHF, while System
on Modules (SoMs) and module boards are available from 100 CHF to 500 CHF.

2.4.1. Lifetime of the solution

The Zynq-7000 SoC was released in 2011, and it is still in production. The Zynq-7000
SoC at launch was expected to be in production until 2027. In 2023, AMD (formerly
Xilinx) announced that the lifetime of the 7-Series FPGA family was extended until 2035
[42], due to the high demand for the 7-Series FPGA family. The Zynq-7000 SoC is part
of the 7-Series FPGA family, so it is expected to be in production until 2035.

2.4.2. Available boards

Different boards exist that feature a Zynq-7000 SoC. The most suitable boards are the
ZedBoard, the Zybo and the Cora Z7 boards, which are manufactured by Digilent.

The Zybo board

The Zybo board uses a Zynq-7000 XC7Z010-1CLG400C SoC, which features a dual-core
ARM Cortex-A9 processor and a FPGA with 28k logic cells. The board features 512MB
of DDR3 RAM, 16MB of Quad-SPI Flash memory, a microSD card slot, a USB-JTAG
port, a USB-UART port, an HDMI port, an audio jack, a VGA port, an Ethernet port,
a Pmod connector, and a multitude of General Purpose Input Output (GPIO) pins. The
board is powered by a 5V power supply.
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The form factor of the board is not ideal for the final system, as it cannot be easily
plugged-in onto a carrier board.

The ZedBoard

The ZedBoard uses a Zynq-7000 XC7Z020-CLG484 SoC, which features a dual-core ARM
Cortex-A9 processor and a FPGA with 85k logic cells. The board features 1GB of DDR3
RAM, 128MB of Quad-SPI Flash memory, a microSD card slot, a USB-JTAG port, a
USB-UART port, an HDMI port, an audio jack, a VGA port, an Ethernet port, a Pmod
connector, and a multitude of GPIO pins. The board is powered by a 5V power supply.

Again, the form factor of the board is not ideal for the final system, as it cannot be easily
plugged-in onto a carrier board.

The Cora Z7 board

The Cora Z7 uses a Zynq-7000 XC7Z007S-1CLG400 SoC, which features a single-core
ARM Cortex-A9 processor and a FPGA with 23k logic cells. The board features 512MB
of DDR3 RAM, a microSD card slot, a USB port for UART and JTAG, an Ethernet port,
two Pmod connectors, and a multitude of GPIO pins. The board is powered by a 5V
power supply.

The form factor of the board is adequate for the final system, as it can be easily plugged-in
onto a carrier board. The board is also cheaper than the other boards, as it uses a smaller
SoC.

2.5. The Zynq UltraScale+ MPSoC

The Zynq UltraScale+ MPSoC is the successor of the Zynq-7000 SoC. It offers a quad-core
ARM Cortex-A53 processor, a dual-core ARM Cortex-R5 processor, a GPU and a FPGA
in a single chip. The FPGA can be used to implement the SPI interface, the 1-Wire bus
driver and the interface to control an ADC for voltage monitoring. The ARM processors
can be used to implement the Ethernet interface and the control logic.

This SoC is much more powerful than the Zynq-7000 SoC, but it is also much more ex-
pensive. Moreover, the controller does not need any high-performance features. Handling
the complexity of the SoC would also require more effort in the development, although
many projects are maintained at CERN that use the Zynq UltraScale+ MPSoC, including
some in the Systems department - Electrical Power Converters group (SY-EPC) group.
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The MPSoC is available in many sizes and configurations, with the cost greatly varying
between solutions. The cheapest bare SoCs are available for around 250 CHF, while the
SoMs are available from 350 CHF to 1,500 CHF. It should also be considered that the
bare SoCs require many external components to be used and an expensive high-layer count
PCB to be designed, while the SoMs are ready to be used and require only a simple carrier
board to be designed. The bare SoC approach is usually more suitable for high-volume
production, while the SoM approach is more suitable for low-volume production.

2.5.1. Lifetime of the solution

The Zynq UltraScale+ MPSoC was released in 2015, and it is still in production. The
Zynq UltraScale+ MPSoC at launch was expected to be in production until 2034, at
least. The life expectancy of the Zynq UltraScale+ MPSoC matches the requirements of
the project.

2.5.2. Available boards

Different boards and SoMs are available that feature the Zynq UltraScale+ MPSoC. Some
are manufactured by Xilinx such as the Kria SoM, while others are available from third-
party manufacturers.

2.6. The DI/OT platform

The Distributed I/O Tier (DI/OT) platform is a common platform used at CERN for
the development of control systems. It is developed by the Beams department - Controls
Electronics and Mechatronics group (BE-CEM) group, which is in charge of establishing
common platforms and technologies for the organization. The DI/OT is constituted by a
carrier chassis with a backplane that fits different types of boards. The system board is
the main board of the DI/OT platform, and it makes use of a Zynq UltraScale+ MPSoC.

This board could be used to develop the controller, it would plug in directly into the
backplane of the system, not requiring any carrier board. The board is very expensive
and very high-performance. The use of this board would require the redesign of the
backplane of the existing CDC, which is a time-consuming task.

Due to step pricing available to the organization, the cost of the board is significantly
less than the cost of the Zynq UltraScale+ MPSoC itself. The board can be procured
internally for 1,500 CHF, while the Zynq UltraScale+ MPSoC alone costs 2,900 CHF on
the regular market.
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2.6.1. Lifetime of the solution

This board is part of the DI/OT platform, which is a common platform at CERN. The
DI/OT platform is expected to be in production for many years, as it will be supported
by CERN directly.

This solution would not require the development of a custom Linux distribution, as the
DI/OT platform already provides a Linux distribution that can be used.

2.7. The Toradex SoM

Toradex is a Swiss company that manufactures SoMs for embedded systems. The SoMs
are based on ARM processors, and they are designed to be used in embedded systems.
The SoMs feature various processors, with different Input Output (IO) characteristics and
available features.

A SoM based on the NXP i.MX 8M series would be a reasonable choice for this project,
as it features a quad-core ARM Cortex-A53 processor with support for Linux. The SoC
also features a SPI interface and an onboard ADC. The SoC does not include a feature to
implement the physical LVDS interface, but it can be implemented in external circuitry.
The SoC also features a Gigabit Ethernet interface. The SoC is not a high-performance
SoC, but it is more than enough for the controller.

Notably, it does not feature any hardware support for the 1-Wire bus, so the 1-Wire bus
driver would have to be implemented in software. This is possible, but no kernel driver
implementation is readily available for use with the parasitic power mode of the 1-Wire
bus. It would have to be implemented using the GPIO interface of the SoC, but this
would either require a custom kernel driver or a custom userspace driver that would not
be as efficient as a kernel driver and may risk not being able to meet the strict timing
requirements of the 1-Wire bus.

The support for a Linux distribution is already available for the SoC from the manufac-
turer, so the development of a custom Linux distribution would not be required. The
support for the SoC is expected to be maintained for many years, as the SoC is part
of the NXP i.MX 8M series, which is a widely used series of SoCs. Customization of
the Linux distribution would be required to implement the 1-Wire bus driver, and some
configuration of the Yocto build system would be required to build the Linux distribution.
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2.7.1. Lifetime of the solution

These modules are industrial computing modules, and as such enjoy a long life expectancy.
The modules are expected to be in production for 10 years or more [37], and since they
are widely used, they are expected to be supported by the manufacturer for many years.

Moreover, the manufacturer states that the modules are designed to be pin-compatible
with future modules, so the modules can be replaced with newer modules without the
need to redesign the carrier board. This would allow for the controller to be upgraded in
the future without the need to redesign the carrier board and with just minor changes to
the software.

2.7.2. Available boards

The modules are available in many sizes and configurations, with the cost greatly varying
between solutions. The cheapest SoMs are available from 100 CHF to 300 CHF.

2.8. Comparison of the solutions

Table 2.1: Detailed comparison between the FPGA modules.

Zynq-7000 Zynq Ultra-
Scale+

DI/OT Toradex SoM

SPI FPGA FPGA FPGA x3

1-Wire FPGA FPGA FPGA GPIO

ADC 12 bit 17ch 10 bit 17ch 10 bit 17ch 12 bit 4ch

Ethernet Gigabit Gigabit Gigabit Gigabit

Complexity Mid High High Low

Form factor SoM SoM Card SoM

Price Mid to Low Mid to High High Mid to Low

Use in CERN Common Common Standard Uncommon
Long-Term 2035+ 2030+1 CERN support 2034+

1 The lifespan of Zynq UltraScale+ is expected to be extended, similar to the Zynq-7000
series, although there is no official announcement yet.
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Both the bare SoC and the SoC with FPGA solutions are viable, and both present unique
challenges. Moreover, there is a great variety of boards and SoMs available for both
solutions. The SoC with FPGA solution is more flexible, but it requires working with
a niche technology and brewing a custom Linux distribution. The bare SoC solution is
less flexible, but it requires less effort in the development and it allows for the use of a
standard Linux distribution. On the other hand, the expertise in the FPGA technology
is widespread at CERN, while the bare SoC technology is not widespread.

Table 2.1 offers an overview of the different solutions. The Zynq-7000 SoC and the
Toradex SoM are the cheapest and have a suitable life cycle ahead, but the Zynq-7000 SoC
requires the development of a custom Linux distribution and the Toradex SoM requires
the development of a custom 1-Wire bus driver for the kernel. The Zynq UltraScale+ SoC
is the most expensive and has a long life cycle ahead, but it is overkill for the controller and
it would require the redesign of the backplane of the existing CDC. The DI/OT platform
is the most expensive and has a long life cycle ahead, but it would require the redesign
of the backplane of the existing CDC with a backplane with inhomogeneous connectors.

2.8.1. Conclusions

The DI/OT solution was discarded both because of the complexity and because of the
need to redesign a new hybrid backplane. The price of the solution was more than 15
times the price of other solutions, and the project wouldn’t have benefited from the high-
performance features of the DI/OT platform.

The Zynq UltraScale+ solution was similarly deemed too complex and costly for not
making use of the enhanced performance of the SoC.

The Zynq-7000 solution was preferred in the end, both for the familiarity of the group
with the tools and technologies and for flexibility. The Toradex SoM solution was also
considered, but the lack of hardware support for the 1-Wire bus with parasitic power and
the little diffusion of the technology at CERN made it less suitable for the project.
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Table 2.2: Detailed comparison between the Zynq-7000 boards.

Features/Boards Zybo ZedBoard Cora Z7-07S

SoC XC7Z010-1CLG400C XC7Z020-CLG484 XC7Z007S-1CLG400

Processor ARM Cortex-A9 ARM Cortex-A9 ARM Cortex-A9

Processor Cores 2 2 1

FPGA Cells 28k 85k 23k

RAM 512MB DDR3 1GB DDR3 512MB DDR3

Flash Memory 16MB Quad-SPI 128MB Quad-SPI -

MicroSD Slot Yes Yes Yes

Ethernet Yes Yes Yes

USB-UART Yes Yes Yes

GPIO Pins 40 on Pmod 82 on FMC-LPC 49 on pin headers

Power Supply 5V 5V 5V

Form Factor Not ideal Not ideal Adequate

Price 299 USD1 589 USD1 149 USD1

1 Price from the manufacturer’s website at the time of writing

The Cora Z7 board was selected as the preferred Zynq-7000, for the ability to be mounted
directly and securely on a carrier board, and due to availability concerns for the other
solutions.

2.9. LVDS drivers

To ensure reliable communication, the SPI control in this project adheres to the LVDS
physical specification. The LVDS, a differential signaling standard, is particularly favor-
able for its application in ensuring reliability and performance in data transmissions [23].
However, the native configuration of the Zynq-7000 SoC in the selected module does not
support LVDS, necessitating the integration of external LVDS drivers. The challenges and
solutions associated with this integration are discussed further in the subsection 3.4.2.

In our design, we face a challenge with the physical layer requirements of the SPI interfaces,
which demand the use of LVDS. While a single SPI master interfacing with multiple slaves
is generally feasible, the implementation becomes complex with LVDS due to the need
for extra circuitry to avoid bus contention, especially for multiple transmitting devices.
As will be detailed in subsection 3.4.1, this complexity leads us to a design decision to
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instantiate three separate SPI drivers on the PCB, ensuring each device has its dedicated
interface, thus simplifying the connection and avoiding potential issues associated with
bus contention.

The use of a Commercial Off-The-Shelf (COTS) driver chip was preferred, as they are
readily available and easy to use. The COTS driver chips are also more reliable than
a custom implementation, as they are designed and tested by the manufacturer. They
are also known to be more cost-effective than a custom discrete parts implementation, as
they are mass-produced and the cost of the chip is negligible compared to the cost of the
whole system.

Two Integrated Circuits (ICs) were selected for the application, one as a receiver for the
Master In Slave Out (MISO) signals, and the other as a bus driver for the Master Out
Slave In (MOSI), Clock (CLK) and Chip Select (CS) signals. The MISO receiver is the
SN65LVDT2DBV [25], while the bus driver is the SN65LVDS1DBV [25]. Both ICs are
manufactured by Texas Instruments, and they are available in a small SOT-23 package.
The ICs are designed to be used together for the same bus.

The LVDS standard requires the use of a termination resistor at the end of the bus. The
termination resistor is required to avoid signal reflections on the bus, which would cause
the signal to be distorted and the communication to fail. The termination resistor is placed
at the receiver end of the bus. The receiving IC features an internal 100Ω termination
resistor

2.10. OneWire bus driver

The 1-Wire bus driver in the system has to support the parasitic power mode, as the
1-Wire devices are powered by the bus itself. In this functioning mode, the ID chips are
powered by the bus strong pull-up during the communication, where they get the energy
for the transaction and then they execute the transaction on the bus, on a single wire.

The 1-Wire bus driver’s logic is implemented in the Zynq-7000 FPGA, but it needs hard-
ware support, in particular, to ensure the strong pull-up and the needed drive strength
for the bus.

To design the driver, different options were available. Both COTS driver ICs and custom
discrete-components driver were considered. Since the COTS drivers are usually translat-
ing between two different interfaces, meaning that they would need a different interface
to be implemented with its software support, it was decided to adopt the 1-Wire IP from
CERN and to instantiate the supporting hardware.
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The driver is made of three discrete MOS transistors, one for controlling the low resistance
pull-up part required for the parasitic powering of the devices on the bus and two for the
pull-down of the voltage level of the bus. Additionally, a resistor between the bus and
the positive supply voltage rail pulls up the bus during the communication. During the
transactions, the bus is pulled to 3.3V by R3. The driver connects to the bus via a 100Ω

resistor to protect the driver and the system from shorts on the bus.

Figure 2.1: The 1-Wire bus driver circuit.

2.11. Voltage monitoring

The supply rails have to be monitored to ensure that the system is operating within
the specified limits. The supply rails are monitored using the ADC on the Cora board.
The ADC is a 12-bit ADC with 17 channels, 14 of which are available on the Cora pin
headers, 6 of which are single-ended and 8 of which are differential. The ADC can accept
voltages up to 3.3V on the single-ended channels and up to 1V on the differential channels.
The ADC is integrated in the SoC. For the purpose of voltage monitoring, the ADC is
configured to operate in single-ended mode.

Since the rails to be monitored are: +5V , +12V , +15V and −15V , the voltages need an
analog circuit to be scaled down to the maximum input voltage of the ADC. The voltages
are scaled down using a voltage divider. The voltage divider features also a low-pass filter
to avoid aliasing in the ADC. The filter is then connected to a buffer to avoid loading the
voltage divider, as the native ADC range is 1V , and the input is scaled on the Cora board
with another resistive divider, as shown in [16], the signal sees an impedance of about
3.3kΩ. The buffer is then implemented using two low noise dual operational amplifiers,
the AD8658 [13].
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The +5V rail

The +5V rail must be scaled in the 3.3V range. A ratio of 1⁄2 is deemed suitable, as it
translates the 5V into 2.5V and allows enough room around it to measure deviations from
the nominal value. It is implemented by R11 = R15 = 2.2kΩ. A 1µF capacitor is used
to filter the signal, which yields a pole at f = 1/[2π(R11//R15)C20] = 114.7Hz. Finally, the
buffer is implemented using the AD8658 [13].

The +12V rail

To scale the +12V rail, a divider with two resistors, R10 = 12kΩ and R14 = 2.2kΩ, is
used, yielding a ratio of 2.2kΩ⁄14.2kΩ = 0.1549. The output voltage is then Vout = G12V ·Vin =

0.1549 · Vin, so it is scaled down for the nominal 12V to 1.86V . The filter is implemented
using a 1µF , that gives a pole at f = 1/[2π(R10//R14)C19] = 85.5Hz.

The +15V rail

To scale the +15V rail, a divider with two resistors, R12 = 12kΩ and R16 = 2.2kΩ, is
used, yielding again a ratio of 2.2kΩ⁄14.2kΩ = 0.1549. This is done to reduce the part count
on the Bill of Materials (BOM) and to simplify the design. The output voltage is then
Vout = G15V · Vin = 0.1549 · Vin, so it is scaled down for the nominal 15V to 2.32V . The
filter is implemented using a 1µF , that gives a pole at f = 1/[2π(R11//R15)C20] = 85.5Hz.

The −15V rail

Since the −15V rail is negative, an offset of 3.3V is applied at the voltage divider. This
way the division has a ratio offers G−15V = 2.2kΩ/14.2kΩ = 0.1549 and the output voltage
is Vout = G−15V · (Vin − Voffset) + Voffset = G−15V · Vin + Voffset (1−G−15V )
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Figure 2.2: The voltage monitoring circuit.

2.12. Ethernet interface

The Ethernet interface is already present on the Cora board, and it is implemented using
the SoC integrated Ethernet controller.

The interface is presented to the front panel by the RJ-45 jack on the Cora board, the
module is then mounted with the Ethernet side aligned to the edge of the carrier, so that
the Ethernet jack is accessible from the front panel.

2.13. Powering

The controller is powered by the CDC power supply. Since the Cora supports 5V power
input, the 5V voltage rail is used to power the module. All the needed voltage in the
module are then derived from the 5V rail.

The circuitry on the carrier board is powered by 3.3V that are generated in the carrier
board from the 5V rail. Since the current requirement for the onboard circuitry is minor,
the 3.3V rail is generated using a linear regulator IC. In the first design, the LM1117-3.3
IC was selected, but due to availability and package concerns, the IC was changed to the
LT1963A-3.3 IC, which is largely available.
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2.14. Power domain separation

Due to the two different 3.3V power domains, some power domain separation was required.
In particular, the LVDS interfaces are powered by the carrier board, but receive digital
signals from the Cora’s 3.3V power domain. Similarly, the 1-Wire bus driver is powered
by the carrier board, but it receives digital signals from the Cora’s 3.3V power domain.

To avoid conflicts, backfeeding of power and potential cascade failures, a voltage level
translator is inserted between the two domains. The voltage level translator is imple-
mented using a COTS IC, the SN74LVC8T245 IC [24]. The IC is a bidirectional voltage
level translator with 8 channels. Since each SPI bus needs four signals, and the 1-Wire
bus needs four, at least two voltage-level translators are needed. Furthermore, since the
chip allows to select the direction of translation only on a chip-wide level, the direction
of the signals are to be considered.

Each SPI bus needs three signals from the Cora to the carrier (MOSI, CS and CLK) and
one signal from the carrier to the Cora (MISO). The 1-Wire bus needs two signals from
the Cora to the carrier (pull-up and transmit) and one signal from the carrier to the Cora
(receive).

This accounts to a total of 10 signals from the Cora to the carrier and 6 signals from the
carrier to the Cora. This means that more than two voltage-level translators are needed.
The solution is to use three voltage level translators, two for the Cora to carrier signals
and one for the carrier to Cora signals.

2.15. PCB layout

At last, the circuit was implemented in a PCB. The PCB was designed using KiCad,
an open-source Electronic Design Automation (EDA) suite. The PCB was designed to
fit inside a 3U (100mm) Eurocard slot, with a length of 220mm. This is the size of
all modules in the CDC. The mechanical constraints were the position of the backplane
connector, the position of the module that allows access to the Ethernet jack from the
front, and some cutouts to allow for some parts of the Cora module that are taller than
the connectors so that the Cora can properly connect without interference.
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As defined in subsection 1.4.5, the system will need to be interfaced with the hardware
as follows:

• One SPI bus to communicate with the FADEM module, over LVDS.

• One SPI bus to communicate with the PRIMREL module, over LVDS.

• One SPI bus to communicate with the NULLMETER module’s ADC, over LVDS.

• One 1-Wire bus to check ID chips and temperature of the modules.

• Four ADC channels to monitor the four power rails.

Some interfaces can be implemented using the FPGA vendor’s built-in Intellectual Prop-
erty (IP) libraries, while others will need to be implemented in VHDL.

VHSIC Hardware Description Language (VHDL) is a hardware description language that
is used to describe digital circuits. It is used to describe the behavior of the hardware and
not the structure. The structure is inferred from the behavior. The VHDL code is then
synthesized into a netlist, which is a list of components and connections between them.
The netlist is then mapped to the FPGA resources and routed. The VHDL code can be
simulated to verify the behavior of the hardware before synthesis.

The following sections will describe the interfaces and the IP that will be used to imple-
ment them.

The IPs will connect to the Processing System (PS) through an Advanced eXtensible
Interface (AXI) interface, which is the standard interface for the PS to communicate with
Programmable Logic (PL) IPs. The AXI interface is then accessible from the PS in the
memory map and can be accessed as simple memory addresses.

3.1. Block Design Overview

The block design is shown in Figure 3.1. The AXI interface is routed from the PS to the
IPs through the AXI interconnect. The purpose of the AXI interconnects is to allow one
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master to communicate with multiple slaves. The AXI interconnect is then connected to
all the peripherals in the PL. The AXI bus is connected to three instances of the SPI IP,
to the 1-Wire IP, to two instances of the AXI GPIO IP for controlling status LEDs, and
to one Xilinx Analog to Digital Converter (XADC) IP.

Figure 3.1: Block design overview

3.1.1. IPs

IPs are pre-made modules that can be used in a design. They are usually provided by the
FPGA vendor, but can also be provided by third parties. Some of the IPs for this project
were developed internally by the CERN SY-EPC - Converter Control Electronics section
(SY-EPC-CCE) team, and some were provided by Xilinx.

For this project, there was no need to develop any IPs from scratch, as the interfaces
were standard enough that the ones provided by Xilinx and CERN were sufficient. The
main tasks associated with the gateware were to configure the IPs and integrate them into
the design, by generating the interfaces, memory maps, clocks and resets, and connecting
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them to the AXI interconnect.

(a) Zynq-7000 PS IP block (b) AXI interconnect IP block (c) SPI IP block

Figure 3.2: Combined figure of IP blocks

3.2. PS IP

The core of the block design is the IP that represents the PS (Figure 3.2a). This building
block does not actually get instantiated as programmable logic but rather configures the
PS hardware to behave as set.

Many features of the PS are configured from this block, such as:

• Clock generation;

• Definition of the AXI interfaces between the PS and the PL;

• Universal Asynchronous Receiver/Transmitter (UART) configuration for the Linux
console;

• Interrupts between the PS and the PL;

• Ethernet interface in the PS;

• Definition of the GPIO interfaces.
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3.3. AXI interconnect

The purpose of the AXI interconnect (Figure 3.2b) is to allow multiple AXI peripherals
to be connected to the PS AXI interface. The AXI interconnect is configured to have one
master and multiple slaves.

The master can select between the slaves by writing to the AXI interconnect’s memory
map. The AXI interconnect then forwards the read or write request to the selected slave.
The AXI interconnect also handles the AXI protocol, which is a standard protocol for
AXI peripherals to communicate with the PS.

It is understood that, for this to be possible, the memory interface address space for the
various IPs must be reasonably small compared to the available address range. Typically,
the IPs used in this application, has a 64kB address space, which is small compared to
the 1GB address space dedicated to each AXI port.

The system described here makes use only of the AXI0 port, so all addresses start from
0x4000_0000 as per Figure 3.3

This translation is transparent for the IPs, as they are configured to have a 64kB address
space, and the AXI interconnect handles the translation between the AXI address space
and the IP address space.

3.4. SPI IP

The SPI requirements were for a simple interface with a single data line, with three
devices connected to it. The SPI IP (Figure 3.2c) provided by Xilinx was sufficient for
this application.

3.4.1. Multislave SPI

As noted in the hardware chapter, the physical layer requirement for the SPI interfaces
to operate with LVDS complicates the use of a multidrop SPI configuration. Although
SPI inherently supports multiple slaves, implementing this with LVDS becomes challeng-
ing. Particularly, the contention that arises with multiple transmitting devices requires
additional circuitry to mitigate.

Recalling the discussions from the previous chapter, to circumvent these complexities and
to adhere to the physical layer specifications, we opted to instantiate three separate SPI
IPs. Each SPI IP is dedicated to a specific device, facilitating a direct connection to the
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Figure 3.3: Zynq-7000 memory map, from the Zynq-7000 Technical Reference Manual
[39]
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FPGA pins without the need for complex circuitry or bus management protocols.

3.4.2. LVDS Physical Layer

As mentioned in section 2.9, the project employs LVDS for the SPI control, overcoming
the Zynq SoC’s native limitation with the aid of external LVDS drivers. While the Zynq
SoC and FPGAs in general can be tailored to support LVDS signaling through the instan-
tiation of IO transceivers [38], the specific conditions of our project presented additional
challenges.

IO bank voltages

FPGAs IO banks are powered externally, offering flexibility in IO voltage levels, a feature
detailed in our chosen board’s schematic. In our case, the IO banks are powered by a 3.3V
supply, restricting the use of native LVDS drivers which require 2.5V or 1.8V supplies for
the LVDS_25 and LVDS transceivers respectively.

Hence, the implementation of LVDS translation was accomplished using external LVDS
drivers, compatible with the 3.3V supply. These drivers facilitate the required LVDS
signaling while conforming to the IO bank’s voltage specifications. The IO standard
selected is LVCMOS33, aligning with the 3.3V IO banks. Configuration details are discussed
in the FPGA constraints file, as highlighted in section 3.8.

3.4.3. SPI IP configuration

The configuration for this IP is relatively simple, as it only needs to be configured as a
master, with a single data line. The configuration is detailed in [41]. The transactions
on the SPI bus for the FADEM and PRIMREL modules are detailed in subsection 5.5.1.
Both modules use 16-bit words, and the SPI IP is compatible with this word size. The
Linux driver for the IP is not compatible with 16-bit transactions, so the IP was configured
to use 8-bit words, as two 8-bit words are equivalent to one 16-bit word.

The frequency of the SPI bus is set to 1MHz, which is the frequency supported by the
FADEM and the PRIMREL modules. The SPI IP supports frequencies up to several
MHz, so this is not a limitation. The frequency is set by generating a PL clock of 2MHz
from the Zynq PS IP and setting the minimum divider of 2 in the SPI IP.

A hardware First In First Out (FIFO) queue is enabled to provide some buffering, with
a depth of 16 words.
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At last, the interrupt signal is connected from the SPI IP to the AXI interconnect so that
the PS can be notified when a transaction is complete. Since the PS interrupt port is for
a vector of interrupts and the SPI IP only has one interrupt, the interrupts are fed in a
concatenation IP that bundles the interrupts into a vector.

3.5. AXI GPIO IP

(a) AXI GPIO IP block (b) XADC IP block (c) OneWire IP block

Figure 3.4: Combined figure of additional IP blocks

Two GPIO IPs (Figure 3.4a) are used in this application, one for the status LEDs on the
development board, and one for the status LEDs on the carrier board.

Two Red Green Blue (RGB) LEDs are on the development board, so six GPIOs are
instantiated to control those. Four more GPIOs are instantiated to control the four
status LEDs on the carrier board.

The GPIO IP are connected to the AXI interconnect, and mapped in the PS memory
map. The GPIO IP is configured to have a 64kB address space.

3.6. XADC IP

The Zynq SoC features an ADC that can be used to monitor the voltage rails, which is
called XADC. The XADC is implemented in hardware and can be controlled from the PS
and the PL.

An IP (Figure 3.4b) is instantiated in the FPGA fabric that connects the XADC to the
AXI bus.

The configuration of the XADC IO sets the interface to AXI and enables the necessary
channels. The XADC actually contains one ADC, and the channels are multiplexed to the
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ADC. The ADC is 12-bit and supports differential inputs. The ADC is configured to have
a sampling frequency of 1MHz, which is the maximum sampling frequency supported by
the ADC, sequencing through the four channels.

3.7. OneWire IP

The 1-Wire IP (Figure 3.4c) is used to communicate with the 1-Wire bus. The IP is
provided by CERN, as it is in use in other projects such as the FGC.

The IP is instantiated in the FPGA fabric and connected to the AXI bus. The configu-
ration for this IP is elementary. The frequency of the clock is given as a parameter, and
the IP is configured to have a 100MHz clock. The IP has a few IO ports:

• S_AXI: the AXI interface;

• axi_aresetn_i: the AXI reset;

• axi_clk_i: the clock;

• ow_i: the signal from the read buffer of the 1-Wire bus;

• ow_o: the signal to the write buffer of the 1-Wire bus;

• ow_en_o: the signal to enable the write buffer of the 1-Wire bus;

• ow_pullup_o: the signal to enable the strong pullup of the 1-Wire bus;

• ow_ctrl_o: this signal is used in complex applications where multiple 1-Wire buses
are used, and it is not used in this application.

The IP supports triplicated Block RAM (BRAM), which is used in radiation-hardened
applications. This feature is not used in this application, so the IP is configured to use a
single BRAM.

3.7.1. LFSRs

To generate the timing for the 1-Wire bus, the IP uses a Linear Feedback Shift Register
(LFSR). The LFSR is a shift register that is clocked at a high frequency, and the output
is a pseudo-random sequence. The LFSR is used to generate the timing for the 1-Wire
bus, as they are efficient and simple to implement.

The LFSR is implemented in PL logic, and the IP is configured to have a 100MHz clock,
so the correct LFSR polynomial is selected to generate the proper 1-Wire timing from a
100MHz clock.
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The calculation of the configuration and seed of the LFSR is quite complex, and the IP
simulation suite is designed to calculate the correct configuration and seed for a given
clock frequency and output it. At this point, the configuration can be copied in the IP
configuration.

3.8. Constraints files

The FPGA constraints file is used to configure the FPGA resources, such as the IO stan-
dards, the IO bank voltages, the clock frequencies, and the pin locations. The constraints
file is a text file that is read by the FPGA synthesis tool, and it contains the configuration
for the FPGA resources.

As no other IO standard is available for the IO banks used in this application, the IO
standard is set to LVCMOS33, which is the standard for 3.3V IO banks. The IO bank
voltages are set to 3.3V, as this is the voltage supplied to the IO banks on the board. The
clock frequencies are set to the frequencies used in the application, and the pin locations
are set to the pins used in the application.

The pin locations are bound by the hardware, both by the available pins in the develop-
ment board and by the layout of the carrier board, which is influenced by the pinout of
the connectors.
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This chapter describes the software architecture of the system. The software is divided
into three main parts: the Linux operating system, the bootloader, and the application.
The Linux operating system is the core of the system and is responsible for managing the
hardware and providing an interface for the application. The boot loader is responsible
for loading the Linux kernel into memory and starting the system. The application is the
main part of the system and is responsible for controlling the hardware and providing an
interface for the user. The application also contains userspace drivers to facilitate access
and communication to the hardware.

4.1. Petalinux

Petalinux is a toolchain for building embedded Linux systems. It is based on the Yocto
project and was developed by Xilinx. Petalinux is used to build the Linux operating
system for the system. The toolchain is based on the Yocto project and uses the Open-
Embedded build system. The build system is based on the BitBake tool, which is used to
build the Linux operating system. The build system is configured using recipes, written
in Python, which are used to specify the build process. Recipes are organized in layers,
where each layer contains a set of recipes.

A Petalinux project serves to integrate Yocto with Xilinx’s technology on FPGAs. Typ-
ically a Petalinux project is created by importing a Hardware Description File (HDF)
which is generated by Vivado. The HDF contains information about the hardware and is
used to configure the Linux kernel.

The output product is a system image that contains a bootloader, a compiled kernel, and
a filesystem image (rootfs).

4.1.1. Layers

Layers are used to organize the recipes. A layer is a directory that contains recipes and
configuration files. A layer can be added to a project to add recipes to the project.
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Layers are organized in a hierarchical structure, where the bottom layers contain the
base recipes for Yocto, and then each subsequent layer contains recipes that are more
fine-grained to the project, for example, silicon vendor layers, board vendor layers, BSP
layers, application layers, etc.

A layer can be used to override recipes from another layer. This is useful when a recipe
from a layer needs to be modified. The layer is added to the project and the recipe is
modified in the layer. This way, the recipe is not modified directly and can be updated
without losing the modifications. The default Petalinux project contains a set of layers
that are used to build the system. The layers are organized in a hierarchy, where each
layer can override recipes from the layers below it.

4.1.2. Petalinux project structure

A typical Petalinux project looks like this, where the tree is truncated to show only the
relevant files:

petalinux-project/
project-spec/

configs/
config
rootfs_config

meta-user/
conf/

layer.conf
petalinuxbsp.conf
user-rootfsconfig

meta-xilinx-tools/
recipes-bsp/

device-tree/
u-boot/

recipes-core/
dropbear/

recipes-kernel/
linux/

The project directory contains the Petalinux project. The project-spec directory contains
the configuration files for the project. The configs directory contains the configuration
files for the Linux kernel and the rootfs. The meta-user directory contains the recipes
for the system. The meta-xilinx-tools directory contains the recipes for the Xilinx tools
and customizations. The recipes-bsp directory contains the recipes for the Board Support
Package (BSP) layer, in this case, the bootloader and the device tree. The recipes-core
directory contains the recipes for the rootfs. The recipes-kernel directory contains the
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recipes for the Linux kernel. Additionally, application recipes can be added to the project
in the recipes-apps directory.

A typical recipe looks like this:
recipes-apps/

hello-world/
files/

hello-world.c
hello-world.bb

The files folder contains the source code for the application. The hello-world.bb file
contains the recipe for the application. The recipe specifies the name of the application,
the version, the source code and the dependencies. The recipe also specifies the build
process and the install procedure for the application. The recipe is written in Python and
is used by the build system to build the application.

The recipe for the application in hello-world.bb is listed in 4.1.

Figure 4.1: Recipe for the hello-world application� �
1 SUMMARY = "Hello world application"
2 SECTION = "examples"
3 LICENSE = "MIT"
4 LIC_FILES_CHKSUM = "file ://${COMMON_LICENSE_DIR }/MIT;md5 =0835

ade698e0bcf8506ecda2f7b4f302"
5

6 SRC_URI = "file ://hello -world.c"
7

8 S = "${WORKDIR}"
9

10 do_compile () {
11 ${CC} ${LDFLAGS} hello-world.c -o hello-world
12 }
13

14 do_install () {
15 install -d ${D}${bindir}
16 install -m 0755 hello-world ${D}${bindir}
17 }
18

19 FILES_${PN} += "${bindir }/hello -world"
20� �

The first section of the recipe specifies the name of the application, the version, the section
and the license. Note that it is mandatory, for any recipe, to specify a license. This is
because the build system checks that all the licenses of the dependencies are compatible
with the license of the application.
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The second section specifies the source code files for the application. The third section
specifies the build directory, named S, where the source code is copied. The fourth section
specifies the build process, in this case the compilation. The fifth section specifies the
install process, in this case it is made of two steps: creating the directory where the
application will be installed and copying the application to the directory. The sixth
section specifies the files to be installed.

When the system build is started, the build system will build each recipe in the project,
and bundle it in the system image.

Recipe appends

Another way to customize the build process is to use recipe appends. A recipe append is
a recipe that is used to modify the build process of another recipe without modifying the
recipe itself. This is useful when the recipe is provided by a layer and cannot be modified.
A recipe append is written in Python and is used by the build system to modify the build
process of a recipe.

For the CDC network controller, some customization had to be done to the kernel. A
bbappend recipe is used to specify configurations - such as drivers and features to include
- and patches to apply to the kernel. The bbappend recipe is written in Python and is
used by the build system to modify the build process of the kernel.

4.1.3. Petalinux tools

Petalinux includes a set of customization of the Yocto project, including the automatic
creation and configuration of a base project that includes the custom Xilinx bootloader
and kernel, automatically compiles the device tree from the hardware description files
and automatically configures the kernel. The tools also package the output files into a
bootable image, which can be loaded onto the system.

The designer is left with the customization of the system to their needs. This includes the
configuration of the rootfs, the addition of applications, the addition of custom drivers
and the settings of the device tree.

4.1.4. Bootloader

The Zynq-7000 platform makes use of a multi-step boot process. The first step is the
bootROM, which is a small piece of code that is stored in the bootROM of the Zynq-7000
platform. The bootROM is responsible for loading the First Stage Boot Loader (FSBL)
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Figure 4.2: Boot process of the Zynq-7000 platform. Figure 4-6 from [40].

into memory and starting it. The FSBL is a small piece of code that is stored in the boot
flash of the Zynq-7000 platform. The FSBL is responsible for loading the bitstream into
the PL and either loading the baremetal application or u-boot in the PS.

U-boot is a bootloader that is used to load the Linux kernel into memory and start the
system. It is very common in embedded systems and is used in the Zynq-7000 platform.
Petalinux makes use of a Xilinx-customized u-boot. U-boot can be configured to load the
Linux kernel from a variety of sources, including a Trivial File Transfer Protocol (TFTP)
server, a Universal Serial Bus (USB) drive, an Secure Digital (SD) card, etc. The Linux
kernel is loaded into memory and started by u-boot.

4.1.5. Linux Kernel

The Linux kernel is configured using a Device Tree Source (DTS) file which is generated
by Petalinux from the HDF, and integrated by Device Tree Source Include (DTSI) files,
which modify the device tree. It contains information on the peripherals that are available
and how they are connected, together with the configuration of the peripherals and the
driver to use.

The Device Tree Blob (DTB) is a compiled version of the DTS and is generated by merging
the information from the HDF with the information from the recipes, where the designer
does the configuration. The DTB is used by the Linux kernel to configure the hardware
and to load the appropriate drivers. The DTB is also used by the bootloader to configure



52 4| Software

the hardware before the Linux kernel is loaded.

In the case of the CDC, the DTSI file that configures the PL side is configuring the SPI
devices to be of type "cern,hpc-cdc-fadem", "cern,hpm-cdc-primrel" and "cern,hpm-cdc-
nullmeter". These strings tell the kernel which drivers to associate to the devices.

Listing 4.1: Device tree snippet for the SPI devices� �
1 &spi_1_fadem {
2 status = "okay";
3 spidev@0 {
4 compatible = "cern ,hpm -cdc -fadem";
5 reg = <0>;
6 spi -max -frequency = <1000000 >;
7 };
8 };
9

10 &spi_2_primrel {
11 status = "okay";
12 spidev@0 {
13 compatible = "cern ,hpm -cdc -primrel";
14 reg = <0>;
15 spi -max -frequency = <1000000 >;
16 };
17 };
18

19 &spi_3_nullmeter {
20 status = "okay";
21 spidev@0 {
22 compatible = "cern ,hpm -cdc -nullmeter";
23 reg = <0>;
24 spi -max -frequency = <1000000 >;
25 };
26 };� �

It is evident how the compatible = "cern,[...]" strings are custom to the CDC and are
not part of the Linux kernel. This is because the spidev driver requires the user to patch
itself to specify the kind of device for each device. For this reason, a patch is applied
to the spidev driver to add support for the CDC devices. The patch is applied by a
bbappend recipe, which is used to modify the build process of the kernel. The patch adds
the strings "cern,hpc-cdc-fadem", "cern,hpm-cdc-primrel" and "cern,hpm-cdc-nullmeter"
to the spidev driver. The DTSI file is then modified to use these strings to configure the
SPI devices.
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Listing 4.2: Device tree snippet for the SPI devices� �
1 diff --git a/drivers/spi/spidev.c b/drivers/spi/spidev.c
2 index 1bd73e322b7b .. e67522e51e8d 100644
3 --- a/drivers/spi/spidev.c
4 +++ b/drivers/spi/spidev.c
5 @@ -682,6 +682,9 @@ static const struct spi_device_id spidev_spi_ids [] = {
6 { .name = "m53cpld" },
7 { .name = "spi -petra" },
8 { .name = "spi -authenta" },
9 + { .name = "hpm -cdc -fadem" },

10 + { .name = "hpm -cdc -primrel" },
11 + { .name = "hpm -cdc -nullmeter" },
12 {},
13 };
14 MODULE_DEVICE_TABLE(spi , spidev_spi_ids);
15 @@ -696,6 +699,9 @@ static const struct of_device_id spidev_dt_ids [] = {
16 { .compatible = "menlo ,m53cpld" },
17 { .compatible = "cisco ,spi -petra" },
18 { .compatible = "micron ,spi -authenta" },
19 + { .compatible = "cern ,hpm -cdc -fadem" },
20 + { .compatible = "cern ,hpm -cdc -primrel" },
21 + { .compatible = "cern ,hpm -cdc -nullmeter" },
22 {},
23 };
24 MODULE_DEVICE_TABLE(of , spidev_dt_ids);� �

The DTSI also includes configurations for the AXI GPIO IP used for the LEDs and the
XADC configuration.

The DTSI also includes a fix for a bug in Petalinux, which generates the DTS always for
a two-core Zynq-7000 chip, thus referencing the second core in the DTS. This causes the
DTB to fail compiling. The fix is to remove the reference to the second core in the DTSI
file.

GPIO pin numbers. The GPIO pin numbers are used to configure the GPIO IP and
are different from the PL pin numbers. The DTSI file is modified to use the correct pin
numbers.
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Listing 4.3: Device tree snippet for the CDC� �
1 &axi_carrier_leds {
2 status = "okay";
3 };
4

5 &amba {
6 ptm@f889d000 {
7 cpu = <&cpu0 >;
8 };
9 };

10

11 &xadc_wiz_0 {
12 #address -cells = <1>;
13 #size -cells = <0>;
14 xlnx ,channels {
15 VmonP5@2 {
16 reg = <2>;
17 };
18 VmonP15@7 {
19 reg = <7>;
20 };
21 VmonP12@10 {
22 reg = <10>;
23 };
24 VmonN15@16 {
25 reg = <16>;
26 };
27 };
28 };� �

4.1.6. Rootfs

The Root File System (RootFS) is the filesystem that is loaded by the Linux kernel.
It contains the applications and libraries that are used by the system. The RootFS
is configured using a RootFS configuration file, which is generated by Petalinux and
customized by the user through the Petalinux RootFS configuration menu.

Packages and applications included in the RootFS can either be needed by the application,
by the system or by the user, for development or to perform system maintenance.

Packages like busybox and dropbear are needed by the system to provide basic function-
ality, like a shell and a Secure Shell (SSH) server. Packages like sudo and vim are needed
by the user to perform system maintenance and development. Packages like python3 and
python3-datetime or python3-spidev are needed by the system to run the application.

In the RootFS configuration, users are created and their passwords are set. This means
that the passwords of the users are included in the source code. This raises security
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concerns, as the passwords are accessible by anyone with access to the source code. This
security implication is significant and it will be discussed in subsection 6.2.2

4.2. U-boot

U-boot is the second stage bootloader for the system, it is started by the FSBL and is
responsible for loading the Linux kernel into memory and starting it. The configuration
needed for u-boot is generated by Petalinux and is customized by the user through the
Petalinux u-boot configuration menu.

The customization done in this case is minimal. The only customization consists of
enabling the environment variable fetch from the SD card. This is needed to properly
set the Media Access Control (MAC) address. Since the Cora board does not have an
onboard Electrically Erasable Programmable Read-Only Memory (EEPROM), the MAC
address for the system cannot be stored there. It can be specified at compile time, but
this is not ideal, as it would require a different image for each board. The MAC address
can be specified in the u-boot environment variables, which are stored in the SD card.
The MAC address is then read from the SD card, in a file called uEnv.txt and it is set
in the environment variables. The MAC address is then passed to the Linux kernel to
configure the network interface.
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Note:

In this chapter, code snippets from the source code are presented. For brevity, the
code snippets are not complete and some parts are omitted. The complete source
code is available in [35].

The application is the main part of the system, and it is written in Python3. It is respon-
sible for controlling the hardware, providing an interface for the user and bridging the two.
The application is divided into many parts: the first part to be developed was a Python
representation of the NCRP commands and responses, followed by a representation of
the FGC property model. These implemented the core concept and mechanisms of the
system. It was followed by the development of the NCRP command parser. A NCRP
server was developed to receive commands from the client and send the response back
to the client. A handler thread is responsible for interacting with the CDC class, which
represents the CDC with all the properties and peripherals. Each property is either an
instance of the base FGC property class, or a class derived from that one.

Userspace drivers are used to control the FPGA hardware from the Linux system. The SPI
driver is responsible for communicating with the FADEM, PRIMREL and NULLMETER
modules. The three SPI drivers rely on the spidev package of Python. The 1-Wire driver
accesses directly the memory through the /dev/mem virtual device.

Two more threads, one responsible for the monitoring of the system and an Hypertext
Transfer Protocol (HTTP) server complete the application. The monitoring thread is
responsible for periodically reading the 1-Wire bus and the XADC voltage monitoring,
and moving the CDC to a faulty state if the voltage is too low. The HTTP server is
responsible for serving an HTML debug page, that shows the status of the system. The
debug page provides a complete overview of the status of the system and its components,
as well as the log of the system since the power-on.
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� �
1 class Error(Exception):
2 def __init__(self , error_code , error_message , error_description):
3 self.error_code = error_code
4 self.error_message = error_message
5 self.error_description = error_description
6 def __str__(self):
7 return f"{self.error_code} {self.error_message}"
8

9 class UnknownCmd(Error):
10 def __init__(self):
11 super ().__init__(9, ’unknown cmd’, ’Unknown command: Indicates that the command

buffer didn\’t start with either "S " or "G " (or the lower case equivalents). This
will not be seen when using the terminal with the editor enabled , as the editor will
add "G " by default if neither "S " or "G " are found.’)� �

Figure 5.1: Sample of Error classes

5.1. FGC NCRP module

This module contains implementation for all of the basic concepts of the NCRP protocol.
The ncrp.py file contains the Command and Response classes, that are used to represent
FGC NCRP commands and responses in the project. The errors.py file contains the
Error class and all the derived classes, one for each error. The fgc_property.py file
contains the Property class and a derived class.

5.1.1. NCRP errors

Many errors are defined in the NCRP protocol, some of which are used in the project.
The errors.py file contains a base Error class and many derived classes. Each error is
expected to have an error code, a short error string and a detailed error description. The
derived classes call the base class’ init method with the proper arguments, as can be seen
in Figure 5.1.

The Error class is derived from the Exception class so that it can be raised as an excep-
tion. The Error class also contains a __str__ method, that returns a string representation
of the error. This method is used by the NCRP server to send the error to the NCRP
client.

5.1.2. NCRP commands and responses

The ncrp.py file is the file that contains the Command and the Response classes. These
are used to represent FGC NCRP commands and responses in the project. Both classes
contain an init method and a convert-to-string method, used to print commands with the
proper structure.
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Command class

The Command class is made of an init method, that takes the tag, the verb, the device,
the NCRP property, the transaction id, the user selector, the array and the payload as
arguments. The init method validates the arguments and stores them in the class. If the
arguments are not valid, an exception is raised. The Command class also contains a convert
to string method, that converts the command to a string, that can be sent to the NCRP
server. The convert to string method is used by the NCRP server to send the command
to the FGC.� �

1 class Command:
2 def __init__(self , tag , verb , device , ncrp_property , transaction_id , user_selector ,

array , payload):
3 # Validate arguments
4 # ...� �

Response class

As the Command class, the Response class is used to represent the various FGC NCRP
responses. The Response class is made of an init method, that takes the tag, the error
object (one of the Error classes) and the data, if any. The data field is used to pass
the value back to the user if the command was a get command. It is not used for set

commands.

The init stores the arguments in the class. The Response class also contains a convert to
string method, that converts the response to a string, that can be sent back to the NCRP
client. The convert to string method is used by the NCRP server to send the response to
the FGC.� �

1 class Response:
2 def __init__(self , tag , error=None , data=None):
3 self.tag = tag
4 self.data = data
5 self.error = error
6 def __str__(self):
7 if self.error == errors.OkRsp or self.error is None:
8 if self.data is None:
9 return f’${self.tag} .\n\n;’

10 else:
11 data = str(self.data).strip("[]’ ")
12 return f’${self.tag} .\n{data}\n;’
13 else:
14 return f’${self.tag} !\n{self.error }\n;’� �

Figure 5.2: Response class
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5.1.3. FGC property

The concept of FGC NCRP property was discussed in subsubsection 1.4.6. The fgc_property.py
file contains the Property class and the derived NotImplementedProperty class, which
is used as a placeholder for a property that must exist but is not yet implemented.

Property class

A property is the terminal node of a branching structure that contains one or more values
as part of an array. Each property has many characteristics, such as a name, some access
rights, a type, a length, a default value, a minimum and a maximum value.

The property class serves to represent a property in the system. The most minimal
implementation would contain an init method, a set method that takes a command as
an argument and a get method that takes a command as an argument and returns an
array of values. These methods can also raise exceptions if the input is not valid or if the
method encounters an error. Many utility private functions ensure the proper functioning
of the class.

Getters and setters

To allow for greater flexibility, the base class allows to attach so-called getters and setters.
These items are meant as one per item in the property and are not mandatory. For some
properties, only the setters or only the getters can be provided. If provided, the Property
class expects the getters and setters to be a list of functions, one for each item in the
property. The getters and setters are called by the get and set methods, respectively. A
getter is expected to take no argument and to return exactly one value of the type of the
property. A setter is expected to take exactly one value and return nothing.

NotImplementedProperty class

The NotImplementedProperty class is a placeholder for a property that must exist but
is not yet implemented. It is used to avoid raising an UnknownProperty exception when
a property is not implemented and instead raises a NotImplemented exception. The
NotImplementedProperty class is a subclass of the Property class and it overrides the get
and set methods so that they return an error when called. The NotImplementedProperty
class is very simple, as can be seen in Figure 5.3.
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� �
1 class Property:
2 def __init__(self ,
3 name: str ,
4 access: str ,
5 val_type: Callable ,
6 length: int = 1,
7 getters: Optional[List[Callable ]] = None ,
8 setters: Optional[List[Callable ]] = None ,
9 min_val: Optional[Union[Any , List[Any]]] = None ,

10 max_val: Optional[Union[Any , List[Any]]] = None ,
11 unit: str = "",
12 description: str = "",
13 default: Optional[Union[Any , List[Any]]] = None ,
14 configs_path: str = "configs/",
15 default_path: str = "defaults/"
16 ):
17 # Validate access
18 # Check if val_type is callable
19 # Assign the arguments to the class
20 # Initialize min and max values with proper length
21 # Initialize the value with the default value , either from the config file or from

the default file
22

23 def _get_scalar_or_list(self , val: Union[Any , List[Any]]) -> List[Any]:
24 """ Helper method to create a list of correct length from a scalar or a list."""
25

26 def _load_or_get_default_value(self) -> List[Any]:
27 """ Load the value from the config file if it exists , otherwise return the default

value."""
28

29 def _write_value(self , new_value: List[Any]) -> None:
30 """ Write the value to the config file."""
31

32 def _expand_command_array(self , command_array: Union[None , List[Union[int , str ]]]) ->
slice:

33 """ Expand the array from the command and return a slice object """
34

35 def _validate_array_slice(self , array_slice: slice) -> None:
36 """ Test if the array slice is valid , by checking if start and stop are within the

array length. Also checks that start < stop."""
37

38 def _get(self , array_slice: slice = slice(None , None , None)) -> List[Any]:
39 """ Internal method to get the property value. This method is called by the get

method."""
40

41 def _validate_payload_length(self , command_array: Union[None , List[Union[int , str]]],
payload_length: int) -> None:

42 """ Validate that the payload length matches the command array."""
43

44 def _validate_and_cast_payload(self , new_values: List[str]) -> List[Any]:
45 """ Validate and cast the payload values to the correct type."""
46

47 def _set(self , new_values: List[Any], array_slice: slice = slice(None)) -> None:
48 """ Internal method to set the property value."""
49

50 def get(self , command: Any) -> List[Any]:
51 """ Get the property value."""
52

53 def set(self , command: Any) -> None:
54 """ Set the property value."""� �



62 5| Application

� �
1 class NotImplementedProperty(Property):
2 "This class is used to create a property that is not implemented yet."
3

4 def __init__(self , name):
5 super ().__init__(name , ’rw’, str , description=’This property is not implemented yet’)
6

7 def get(self , command):
8 """ Raise an error if the property is not implemented yet."""
9 raise errors.NcrpNotImplemented

10

11 def set(self , command):
12 """ Raise an error if the property is not implemented yet."""
13 raise errors.NcrpNotImplemented� �

Figure 5.3: NotImplementedProperty class

5.2. NCRP command parser module

The NCRP command parser module is responsible for parsing the NCRP commands and
converting them into Command objects. The module is made of a parse function, that
takes a string as an argument and returns a Command object. The function also takes the
reference to a logger object, to log errors and debug data. The parse function is used by
the NCRP server to parse the commands received from the NCRP client.

Internally, given the regularity of the NCRP language, the parse function matches valid
command patterns with regular expressions. The regular expressions are defined in the
gen_regex function. The parse function also runs basic checks on the command, such
as checking if the command contains invalid characters. The checks on the content of the
command are left to the Command class, and to the CDC class, as the parse function does
not have enough information to perform these checks.

Since the regular expression is quite complex in order to foresee all the possible valid
commands, the regex string is quite long and complex. It is reported here for completeness,
but it is not very useful to understand the code. The regex string is shown in Figure 5.4.

5.3. The CDC Application modules

The CDC application is made of many modules, each of which is responsible for a specific
task. The modules are described in the following sections.

5.3.1. NCRP server

The NCRP server is a class that is designed to listen to incoming NCRP commands and
to send back the responses. The NCRP server is implemented as a thread, that is started



5| Application 63

� �
1 def gen_regex ():
2 """ Validation of the regex at https :// regex101.com/r/aAyMZQ /1"""
3

4 # magic spell begins
5 r_preamble = r’!’
6 r_tag = r’([a-zA -Z0 -9\_]{0 ,31})\s+’
7 r_verb = r’([sgSG])\s+’
8 r_device = r’(?:([a-zA-Z0 -9]+) \:)?’
9 r_property = r’([a-zA-Z0 -9\_]*’

10 r_additional_property = r’(?:\.[a-zA -Z0 -9\_]+)*)’ # non capturing group
11 r_transaction_id = r’(?:\ <(\d*)\>)?’ # no range provided!
12 r_user_selector = r’(?:\((\d\d?)\))?’ # should check range 0-31
13 r_array_id = r’(?:\s*\d+\s*)?|’ # non capturing group
14 r_array_fromid = r’(?:\s*\d+\s*,\s*)|’ # non capturing group
15 r_array_fromid_toid = r’(?:\s*\d+\s*,\s*\d+\s*)|’ # non capturing group
16 # non capturing group
17 r_array_fromid_toid_step = r’(?:\s*\d+\s*,\s*\d+\s*,\s*\d+\s*)’
18 r_payload = r’\s*([a-zA-Z0 -9.,_\-\s]*)?’ # can either be values or options
19 r_terminator = r’\n’
20

21 r_array = r’(?:\[( ’ + r_array_id + r_array_fromid + \
22 r_array_fromid_toid + r_array_fromid_toid_step + r’)\])?’
23

24 regex = r_preamble + r_tag + r_verb + r_device + r_property + r_additional_property + \
25 r_transaction_id + r_user_selector + r_array + r_payload + r_terminator
26

27 return regex� �
Figure 5.4: Regex string

by the main thread at the beginning of the program. The NCRP server is listening on the
standard NCRP port (1905) and it is responsible for receiving connection from the client,
putting the connection in a queue and creating the consumer threads that will handle the
connection. The consumer threads are responsible for receiving the commands from the
client, parsing them, sending them to the CDC class and sending the responses back to
the client. The NCRP server is implemented in the fgc_ncrp_server.py file, and the
code executed by the worker threads is in the fgc_ncrp_handler.py file.

Client queue

The client queue is implemented using a standard Python library, the queue library. A
queue with a fixed capacity (set by the configuration system) is created at the initialization
of the Server class and populated with tasks as the connections are received. The tasks
are then pulled from the queue by the worker threads. After the task is completed, the
worker signals the queue by calling the task_done() method. At that point, the task was
already removed from the queue when it was started, but the queue is still keeping track
of how many tasks are still running. When the main thread calls the join() method, it
will wait until the queue is empty, that is until all the tasks are completed.
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Worker threads

The main logic for the worker threads is implemented in the handler.handler function.
The function takes the client TCP socket as an argument, as well as references to the
CDC object, the gateway object, the logger and the configuration system. The function
is responsible for receiving the commands from the client, parsing them, sending them
to the CDC class and sending the responses back to the client. If a call to the set
or get method of the CDC class raises a NCRP exception, the exception is caught and
transformed into a Response object, that is sent back to the client. If a different exception
is raised, the exception is logged and a generic LogWaiting error is sent back to the client.
This prevents the system from crashing if an unforeseen error happens, and allows to keep
track of the incident. If no exception is raised, an OkRsp response is sent back to the client,
with the data if the command was a get command.

Another important task managed by the handler is the routing of commands to the
gateway or to the CDC. As discussed in subsubsection 1.4.6, the gateway needs to be
emulated by the NETCTRL module. The gateway emulation will be discussed further in
the following subsection 5.3.3.

5.3.2. FGC device

Since the CDC and the gateway share the same principles, both being FGC devices,
a common class describes a generic device that contains a set of properties organized
in a Python dictionary, that can be accessed by a set(command) and a get(command)

methods.

Furthermore, the Device class contains a Mutual Exclusion (MutEx) mechanism, that is
implemented as a threading.Lock object. The lock is acquired at the beginning of the
set and get methods and released at the end of the methods. The lock is used to prevent
concurrent access to the device, as the NCRP protocol does not specify how to handle
concurrent access to the same device. The Device class is implemented in the fgcd.py

file.

Set and get methods

Both methods, after acquiring the lock, look for the property specified by the command
in the self.properties dictionary. If no match is found, an UnknownProperty exception
is raised, that is to be caught and transformed into a Response object by the handlers
described in subsubsection 5.3.1. If the property is found, the set method calls the set
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� �
1 class GatewaySerial(fgcd.Device):
2 def __init__(self):
3 # create the properties
4 properties = {
5 ’CLIENT ’: ncrp_property.NotImplementedProperty(’CLIENT ’),
6 ’CLIENT.CMDS_HELD ’: ncrp_property.NotImplementedProperty(’CLIENT.CMDS_HELD ’),
7 ’CLIENT.TOKEN’: ncrp_property.NotImplementedProperty(’CLIENT.TOKEN’),
8 # omissis ...
9 ’TIME.START_A ’: ncrp_property.NotImplementedProperty(’TIME.START_A ’),

10 }
11 super ().__init__(properties)� �

method of the property, passing the command as an argument. The get method calls the
get method of the property, passing the command as an argument. Both methods return
the Response object returned by the property.

5.3.3. Gateway emulation

The official reference for FGC [5] describes many device classes for gateways. In this case,
since the previous version of the instrument made use of the FGC_GW_SERIAL class, that is
the serial gateway, the same class was used for the emulation. The FGC_GW_SERIAL class
is implemented in the fgcd_gateway_serial.py file, in the GatewaySerial class. It is
defined as containing 66 properties, but in this case, none is implemented.

5.3.4. CDC Class

The CDC class is the main class of the application. It is responsible for creating the CDC
object, that contains all the properties of the CDC. The CDC class is implemented in
the fgcd_cdc.py file, in the CDC class. The CDC class contains the properties dictionary
along with many device-specific methods.

State machine

The CDC operates in a very simple state machine. The states are:

• INIT: the CDC is in the initialization state. It is waiting for the initialization of
the hardware modules.

• IDLE: the CDC is in the idle state. It is waiting for a command from the user.

• NULLING: the nulling process is ongoing, the CDC is waiting for the nulling
process to complete.

• ACTIVE: the CDC is in a valid range, the user can set the output current.
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• ERROR: the CDC is in an unrecoverable faulty state.

The __init__

The __init__ method is responsible for initializing the class. It handles many tasks:

1. Instantiate three spidev, for the FADEM, the PRIMREL and the NULLMETER
modules.

2. Instantiate the FADEM, the PRIMREL and the NULLMETER modules, passing
the spidev objects as arguments.

3. Create the system monitor thread, passing the logger and the config object as ar-
guments. Start the thread.

4. Create the properties dictionary, instantiating the base class for the simplest ones
and the derived classes for the more complex ones.

5. Pass the properties and the logger to the constructor of the base class.

6. Fetch and set the persistent values for the one turn DAC (fullscale and zero) and
set them in the PRIMREL module.

Once the __init__ method is completed, the CDC object is ready to be used. The
hardware_init can be called to bring all the hardware modules to a known state, and
the calibrator moves to the IDLE state. The hardware_init method is called by the entry
point of the application, as described in section 5.4.

5.3.5. CDC properties

In the simplest case, properties are a simple array of a given type, that are stored on
the user set and returned on the user get. In the case of the CDC, many properties are
more complex, as they require interaction with the hardware. The CDC properties are
described in the following sections. Only a subset of the properties are simple enough to
be implemented as just an instance of the base Property class described in subsubsec-
tion 5.1.3. The other properties are implemented as derived classes of the base Property

class. Nonetheless, the base class defines several methods that are used by the derived
classes. Only a small subset of the properties’ implementations are described here. The
purpose of this section is to give an overview of the variety of ways in which properties
can be implemented. A thorough description of the properties’ meanings is available in
Appendix A, and the full implementation is available in the source code [35].
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DEVICE.VERSION.MAIN_PROG

This is the simplest property to be implemented in the CDC. It is a read-only property
that returns the version of the main program. The property is implemented as an instance
of the Property class, as can be seen in Figure 5.5.� �

1 properties = {
2 ’DEVICE.VERSION.MAIN_PROG ’: ncrp_property.Property(’DEVICE.VERSION.MAIN_PROG ’, ’r’, int

, description=’This property indicates the current version of the software ’, min_val
=0, default =0),

3 # ...
4 }� �

Figure 5.5: DEVICE.VERSION.MAIN_PROG property

CALSYS.CDC.DAC.VOLT

This property is a read-only property that returns the voltage corresponding to the preset
output of the specified DAC channel. In this case, the property is not as straightforward
as the previous one. It gets the voltage from the FADEM and the PRIMREL modules,
which return just the raw value. Some calculation is required to present the value in Volts.
This conversion is done in two separate functions, that are then tied to the property as
getters. The property is implemented as a derived class of the Property class, as can be
seen in Figure 5.6.� �

1 class CalsysCdcDacVolt(fgc_property.Property):
2 def __init__(self , cdc):
3 self.cdc = cdc
4 # create getters and setters
5 getters = [self.get_ch0_volt , self.get_ch1_volt]
6 super ().__init__(
7 name=’CALSYS.CDC.DAC.VOLT’,
8 access=’r’,
9 length=2,

10 getters=getters ,
11 val_type=float ,
12 unit=’V’,
13 description=’This property returns the voltage corresponding to the preset output

of the specified DAC channel.’
14 )
15 def get_ch0_volt(self):
16 voltage = self.cdc.fadem.get_dac () ∗ 5.0 / 65536.0 - 2.5
17 return voltage
18 def get_ch1_volt(self):
19 voltage = self.cdc.primrel.get_dac () ∗ 5.0 / 65536.0 - 2.5
20 return voltage� �

Figure 5.6: CALSYS.CDC.DAC.VOLT property
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CALSYS.CDC.OUTPUT

The CALSYS.CDC.OUTPUT property is a key property for the functioning of the CDC. It is
a read-write property that sets the output current range of the instrument. The property
is implemented as a derived class of the Property class, it is a complex property, as other
than performing a vast amount of checks and interacting with various pieces of hardware,
interacts with the CALSYS.CDC.NULL.AUTO property that is responsible for the nulling
process. The CALSYS.CDC.OUTPUT property is implemented in the fgcd_cdc_output.py

file, in the CalsysCdcOutput class. The CalsysCdcOutput class is shown in Figure 5.7.
In this case, as in the previous ones, the property makes use of the getter-setter paradigm
to perform complex tasks in a modular way.� �

1 class CalsysCdcOutput(fgc_property.Property):
2

3 def __init__(self , cdc):
4 self.cdc = cdc
5 super ().__init__(
6 name=’CALSYS.CDC.OUTPUT ’,
7 access=’rw’,
8 val_type=str ,
9 setters =[self.set_output],

10 description=’This property gets and sets the range the current calibrator is in’,
11 default=’OFF’
12 )
13

14 def _validate_value(self , value):
15 # checks that the required range is not in conflict with the current state of the

instrument
16

17 def _set_value(self , value):
18 # handles the range switch procedure , by preparing the hardware , calling _set_range

and starting the nulling process
19 # ...
20 self.cdc.state = self.cdc.CDCStates.ACTIVE
21 self.value [0] = value
22 self.cdc.logger.debug(’OUTPUT set’)
23

24 def _set_range(self , value):
25 # sets the range in the hardware modules
26 # clamp the fadem
27 self.cdc.fadem.set_clamp1(True)
28 self.cdc.fadem.set_clamp2(True)
29 # wait for the fadem to settle
30 time.sleep (0.1)
31

32 self.cdc.fadem.set_range(self.ranges_map[value][’fadem’])
33 self.cdc.primrel.set_range(value)
34 # wait for the system to settle
35 time.sleep (0.1)
36

37 def set_output(self , value):
38 # setter
39 self._validate_value(value)
40 self._set_value(value)� �

Figure 5.7: CALSYS.CDC.OUTPUT property
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STATUS.WARNINGS

The STATUS.WARNINGS property is a read-only property that returns the list of warnings
that are currently active. The property is implemented as a derived class of the Property
class. It is implemented as a Python set(), which is a collection of unique elements. In
this case, the property makes use of the getter-setter paradigm in a different way, defining
a lambda function that returns the set of warnings. The STATUS.WARNINGS property is
implemented in the fgcd_status_warnings.py file, in the StatusWarnings class. The
StatusWarnings class is shown in Figure 5.8. The property exposes a set_warning and
a clear_warning method, that are to be used by the rest of the application to set and
clear the warnings.� �

1 class StatusWarnings(fgc_property.Property):
2 warnings = [’PBC_TMP ’, ’CLP_OFF ’, ’CLP_ON ’]
3

4 def __init__(self , cdc):
5 self.cdc = cdc
6 super ().__init__(
7 name=’STATUS.WARNINGS ’,
8 access=’r’,
9 getters =[ lambda: ’ ’.join(self.value [0])],

10 val_type=set ,
11 description=’This property indicates the current warnings of the device ’
12 )
13

14 def set_warning(self , value):
15 if value not in self.warnings:
16 raise ValueError(’Argument must be a Warnings object ’)
17 self.value [0]. add(value)
18

19 def clear_warning(self , value):
20 if value not in self.warnings:
21 raise ValueError(’Argument must be a Warnings object ’)
22 self.value [0]. discard(value)� �

Figure 5.8: STATUS.WARNINGS property

5.3.6. System monitor

The system monitor is tasked to monitor:

• The voltage rails of the system;

• The presence and temperature of all the modules;

• Check for any fault or warning flags in external hardware;

• Update a cache for the HTTP server described in subsection 5.3.7.

The tasks are run every 5 seconds.
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Voltage monitoring

The voltage monitoring of the four supply rails is done through the on-chip XADC. The
XADC driver is loaded by the kernel, and the channels are presented as files in the
filesystem, under the path: /sys/bus/iio/devices/iio:device1/. The channels are:

• in_voltage8_raw: 5V rail;

• in_voltage10_raw: 12V rail;

• in_voltage9_raw: +15V rail;

• in_voltage11_raw: -15V rail.

The XADC is 12-bits, so the values are in the range 0-4095. The voltages are scaled
in the input voltage range by the hardware, as described section 2.11. The monitoring
function reconstructs the original voltages by applying the inverse scaling factors and
offsets. A calibration gain is set by setting the CALSYS.DCM.PSxx.CAL properties described
in appendices A.23, A.25, A.27 and A.28. Those properties are set to the current value
of the voltage rails measured by a calibrated voltmeter, and a calibration gain is derived
and stored persistently. The calibration gain is then used to calculate the actual voltage
of the rails.

The allowed voltage range is expressed as two floating point numbers, sysmon.voltage_min_alarm
and sysmon.voltage_max_alarm. If the voltage is outside the range, the CDC is moved
to the ERROR state and the event is logged.

Temperature monitoring

The temperature monitoring is done through the 1-Wire bus. Since there is no protection
for concurrent use of the bus, a MutEx mechanism is put in place. With the 1-Wire driver
logic being custom-made, no kernel space driver is available out of the box. To simplify
development, a userspace driver is instead used. The low-level driver is provided together
with the IP core.

In the temperature monitoring routine, first of all, the devices are read from the bus. If
the devices are a number different than the expected one, the CDC is moved to the ERROR
state and the event is logged. If the number of devices is correct, the system checks that
the device IDs match the ones stored in a configuration file, called modules.ini. If the
IDs do not match, the CDC attempts to recover. If just one ID is different and all the rest
match, the CDC assumes that one module was replaced and it updates the configuration
file. If more than one ID is different, the CDC has no way to tell which module is updated
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to which ID, so it logs the error. Since the failure is not unrecoverable, the CDC is not
moved to the ERROR state.

External faults

The PRIMREL module register space also contains some flags regarding other modules or
external fault and warning flags. A dictionary links every fault and warning to a function
that returns a boolean value. If the function returns True, the fault or warning is set.
If the function returns False, the fault or warning is cleared. When necessary, lambda
functions are defined to return the boolean value.

If any fault is to be raised, the fault indicator LED is turned on. The LEDs are driven by
the AXI GPIO IP described in section 3.5. The GPIOs are controlled by a kernel driver
that maps the GPIO registers to the filesystem. GPIOs are presented as files under the
/sys/class/gpio/ path.

5.3.7. HTTP server

An HTTP server is implemented to allow for remote monitoring of the CDC. The server
is implemented using the http.server Python library. The server is started by the main
thread at the beginning of the program. The server is listening on the standard HTTP
port (8080) and it is responsible for serving the HTTP requests from the client. The
HTTP server is implemented in the cdc_http.py file.

The server makes use of the f-string feature of Python, to insert the proper information
in a predefined HTML template.

5.3.8. Session logger

The session logger, implemented in the SessionLogger class, is a class that is responsible
for logging each session data. The session data is logged in a file, whose name is the
current date and time. The session is intended as one power cycle of the CDC.

The session logger features two independent outputs for the logs: the console and the file.
Four logging levels are available: DEBUG, INFO, WARNING and ERROR. The logging level can
be set independently for the console and the file.

Each level has a dedicated function that can be called to log a message. The functions are
debug(), info(), warning() and error(). The functions take a string as an argument
and log the message with the proper level. The functions are implemented as shown in
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� �
1 def _log(self , level , message):
2 with self.lock:
3 getattr(self.logger , level)(message)
4

5 def debug(self , message):
6 """ Log the message at the debug level."""
7 self._log(’debug ’, message)
8

9 def info(self , message):
10 """ Log the message at the info level."""
11 self._log(’info’, message)
12

13 def warning(self , message):
14 """ Log the message at the warning level."""
15 self._log(’warning ’, message)
16

17 def error(self , message):
18 """ Log the message at the error level."""
19 self._log(’error ’, message)� �

Figure 5.9: SessionLogger class methods for logging

Figure 5.9.

5.4. Entry point

The cdc.py file is the entry point of the application, which is responsible for fetching the
configuration, retrieving system time from Network Time Protocol (NTP), starting the
logger and the CDC object, starting the NCRP server and the HTTP server. It monitors
the threads and restarts them if they crash.

The entry point takes as an argument the port on which the NCRP server is listening. If
not provided, the default port is used.

5.4.1. Configuration system

The configuration system for the current calibrator is based on the INI, which is an easy-
to-read, text-based configuration format. The configuration system is implemented by
making use of the configparser Python library. The file is read as a dictionary and the
dictionary is passed to the objects that require configurations.

5.5. Userspace drivers

The application makes use of userspace drivers for controlling the 1-Wire and the SPIs
for the FADEM, the PRIMREL and the NULLMETER modules. The 1-Wire driver is
bundled with the IP, and it is the work of other engineers, so it will not be discussed here.
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The FADEM and the PRIMREL contain instances of the same register logic, so they can
be controlled in the same way at the low level. The NULLMETER SPI is connected to a
COTS ADC IC, the AD7689 [12].

5.5.1. SPI Controller driver

The PRIMREL and FADEM devices use a word width of 16 bits. Since, for compatibility
reasons, the SPI driver is limited to 8 bits, the driver is implemented as a SPI driver that
uses two bytes for each word. The driver is implemented in the spi_controller.py file,
in the SPIController class.

This driver must provide the few basic functionalities common to the FADEM and the
PRIMREL modules. It offers a _readWord(addr) method and a _writeWord(addr,

data) method, that reads and writes a word to the specified address. The two 8-bit trans-
actions are implemented in these methods. The methods exploit the spidev.xfer2() and
spidev.writebytes() from the spidev Python library. The protocol looks like this:

0123456789101112131415

R̄W U 6-bit addr 8-bit data

Figure 5.10: 16-bit transfer structure

The read and write methods are shown in Figure 5.11.� �
1 def _readWord(self , addr):
2 addr &= 0x3F # make sure the address is only 6 bits
3 if addr % 2 != 0:
4 addr -= 1
5 response = self.spi.xfer2([addr , 0, addr + 1, 0])
6 return (response [1] << 8) | response [3]
7

8 def _writeWord(self , addr , value):
9 addr &= 0x3F # make sure the address is only 6 bits

10 if addr % 2 != 0:
11 addr -= 1
12 value &= 0xFFFF # make sure the value is only 16 bits
13 addr |= (1 << 7) # set bit 7 to 1 for write
14 self.spi.writebytes ([addr , value >> 8, addr + 1, value & 0xFF])� �

Figure 5.11: SPI Controller driver read and write methods

The base class also implements utilities to get and set specific bits, as shown in Figure 5.12.
The methods are used by the derived classes to implement the specific functionalities of
the FADEM and the PRIMREL modules.
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� �
1 def _getBit(self , addr , offset):
2 if addr % 2 == 0:
3 response = self._readWord(addr)
4 return (response >> (offset + 8)) & 1
5 else:
6 response = self._readWord(addr - 1)
7 return (response >> offset) & 1
8

9 def _setBit(self , addr , offset , value =1):
10 if addr % 2 == 0:
11 response = self._readWord(addr)
12 if value:
13 response |= (1 << (offset + 8))
14 else:
15 response &= ∼(1 << (offset + 8))
16 self._writeWord(addr , response)
17 else:
18 response = self._readWord(addr - 1)
19 if value:
20 response |= (1 << offset)
21 else:
22 response &= ∼(1 << offset)
23 self._writeWord(addr - 1, response)� �

Figure 5.12: SPI Controller driver get and set bit methods

5.5.2. FADEM driver

The FADEM class is derived from the SPIController class. It implements the FADEM

class, which is responsible for the low-level communication with the FADEM module. The
FADEM class is implemented in the fadem.py file. The FADEM class implements high-level
methods for accessing the various registers, that are documented in Table 5.1.

The class features a reset() method that sets all the register to a known state, a
set_range() and a get_range() methods to set the range gain in the FADEM mod-
ule, a set_dac() and a get_dac() methods to set the current in the 1T-DAC winding,
a set_clamp1() and a set_clamp2() methods to set the clamps, together with several
methods that just write or read a 16 bit value to and from the appropriate register.

State Value

FADEM_RAMPDOWN 0b100

FADEM_NORMAL 0b011

FADEM_DEGAUSS 0b010

FADEM_IDLE 0b001

FADEM_INIT 0b000

Figure 5.13: FADEM states and values

The FADEM class has also a definition for the state machine states, that are used by the
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CDC to set the state of the FADEM module. The states are shown in Figure 5.13. A
get_state() and a set_state() methods are implemented to get and set the state of
the FADEM module.

5.5.3. PRIMREL driver

The PRIMREL class is derived from the SPIController class. It implements the PRIMREL
class, which is responsible for the low-level communication with the PRIMREL module.
The PrimRel class is implemented in the primrel.py file. The PrimRel class implements
high-level methods for accessing the various registers, that are documented in Table 5.2.

The PRIMREL module is tasked with controlling the primary relays (setting the output
current), the secondary relays (setting the range) and many IOs for external hardware,
that are mapped to the registers in the SPI peripheral.

The class features a reset() method that sets all the register to a known state, a
set_range() and a get_range() methods to set the secondary relays, a set_dac() and
a get_dac() methods are used to control the DAC that nulls the offset in the control
loop.
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6| Application testing

Testing and automation are two tools instrumental to the maintainability objective of
this work, as they allow us to ensure that the system is working as expected and that the
system is not broken by future changes. This chapter describes the testing and automation
tools that have been put in place to ensure the maintainability of the system.

6.1. Continuous integration

Continuous Integration (CI) is a paradigm that is used to ensure that the code is always
in a working state. The idea is that every time a change is made to the code, the code
is tested and verified to be working. This is done by running the tests on a server,
which is called the CI server. The CI server is configured to run the tests every time a
change is made to the code. If the tests fail, the CI server notifies the developers that the
code is broken. This allows the developers to fix the code before going forward with the
development.

The automation infrastructure is made available from GitLab, which is a web-based ver-
sion control system, in an instance run by CERN. CERN’s GitLab provides a CI server
that is integrated with the version control. The CI server is configured to run the tests
every time a change is made to the code. The tests run in a clean environment every
time, to ensure isolation between tests. The code coverage is also measured at every run.
The code coverage is a measurement of the lines of code that are executed by the tests.
While a code coverage of 100% does not ensure that the code is exempt from bugs, it is
a good indication that there are no pieces of code that are left untested. In practice, it
is hard or impossible to reach a code coverage of 100%, so a code coverage of 85-95% is
considered a good target. The code coverage is measured with the pytest-cov plugin.

6.1.1. Pytest

Pytest [10] is a testing framework for Python. It allows the user to write tests simply and
intuitively. The tests are written in Python, and they can be run from the command line.
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Pytest is a very popular testing framework, and it is used in many projects. The tests
are written in a way that is very similar to the way the code is written, which makes it
easy to write and maintain the tests. For this application, unit tests are written. Unit
tests are tests that test the smallest unit of code, which is usually a function or a class.
The tests are written to test the functionality of the code, and to ensure that the code is
working as expected, as well as testing the handling of errors.

6.1.2. Documentation generation and deployment

The documentation is generated with Sphinx [11]. Sphinx is a documentation generator
that is used to generate documentation from reStructuredText files. The documentation
is generated from the docstrings in the code. The docstrings are strings that are written
in the code to document it. They are written in a way that is very similar to the way the
code is written, which makes it easy to write and maintain the documentation. Sphinx
generates documentation in an HTML format, and the CI/CD deploys it to a web server.
The documentation is generated automatically every time a change is made to the code,
and it is deployed automatically to the web server. This ensures that the documentation
is always up to date, and readily available to the developers.

6.2. Continuous Deployment

Continuous Deployment (CD) is a paradigm that is used to ensure that the code is always
available and ready to be deployed on the field. After the CI testing is run, the system
image is built with Petalinux and packaged in a format that makes it practical to deploy.

6.2.1. Building the Petalinux project

Petalinux was not built with compatibility with a versioning system in mind, as it is not
possible even to change the location of a project without breaking it. Paths are absolute
and hardcoded, so the only way to move a project to a new location, even on the same
machine, is to package it and unpackage the project in the new desired location. The
packaged project is particularly ill-suited for versioning, as it is a single file that is not
intelligible.

The proposed solution is to create a new project every time the build is run, in a clean
environment, and to copy the user-modified files over the new project to implement the
customizations on the final build. The script that does this is presented in Listing 6.1.

The build produces three files that should be copied onto the SD card to be used in
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Listing 6.1: Script for building the petalinux project on the CI machine� �
1 BUILD_NAME=build
2 PROJECT_NAME=cdc -petalinux
3 PETALINUX_USER="petalinux"
4 CI_PETALINUX_PASSWORD="${PETALINUX\_PASSWORD:-zynqdev}"
5

6 # create a "build" project
7 petalinux -create -t project -n $BUILD\_NAME --template zynq
8

9 # run the hw config
10 petalinux -config --silentconfig --get -hw-description=design\_1\_wrapper.xsa -p $BUILD\

_NAME
11

12 # run the config
13 petalinux -config --silentconfig --project $BUILD\_NAME/
14

15 # set the user name and password from the secrets
16 CONFIG\_FILE="$PROJECT\_NAME/project -spec/configs/rootfs\_config"
17 sed -i "s/CONFIG\_ADD\_EXTRA\_USERS =\" petalinux:zynqdev ;\"/ CONFIG\_ADD\_EXTRA\_USERS =\"

$PETALINUX\_USER:$CI\_PETALINUX\_PASSWORD ;\"/g" $CONFIG\_FILE
18

19 # copy over previos config
20 rsync -av --exclude=’hw -description ’ $PROJECT\_NAME/project -spec $BUILD\_NAME/
21

22 # build
23 petalinux -build -p $BUILD\_NAME && \
24 # package
25 petalinux -package --boot --force --fsbl $BUILD\_NAME/images/linux/zynq\_fsbl.elf --fpga

$BUILD\_NAME/project -spec/hw-description/design\_1\_wrapper.bit --u-boot --project
$BUILD\_NAME && \

26 # do bsp
27 petalinux -package --bsp -p $BUILD\_NAME -o cdc -petalinux.bsp� �

the FPGA board. The files are the boot script boot.scr, the binary of the bootloader
BOOT.BIN and the system and kernel image image.ub. These files are marked as ar-
tifacts of the build so that they are stored and passed to the next step, described in
subsection 6.2.3.

6.2.2. Protecting the passwords in the CD

In a Petalinux project, the users and their passwords are defined in a source file called
rootfs_config. This file is part of the source files and as such it is committed to the
repository and it is public. This means that the passwords of the users can be seen by
anyone, which raises great security concerns.

Instead, the password can be stored as a secret variable in the CI environment, and the
file can be overwritten by the CI script. In this way, the password is never exposed to the
public, and it is only known to the CI server and to the staff with access to the repository.
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6.2.3. Making the SD image

Once the build is complete, the last step is to make the SD image. The SD image is
an image file that already contains a partition with the build products generated by
subsection 6.2.1, and another partition with the application python files. The SD image
is made with a script that is run on the CI machine. The script is presented in Listing 6.2.

The sdcard.img file can then be copied bit by bit to an SD card, which can then be used
to boot the FPGA board.
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Listing 6.2: Script for building the image for the SD� �
1 # 1. Set up the environment for creating SD card images
2 apt -get update && apt -get install -y parted losetup kpartx git
3

4 # 2. Create an empty SD card image (let’s say 2GB)
5 dd if=/dev/zero of=sdcard.img bs=1M count =2000
6

7 # Create the partitions on the SD card image
8 parted sdcard.img --script mklabel msdos
9 parted sdcard.img --script mkpart primary fat32 1M 500M

10 parted sdcard.img --script mkpart primary fat32 500M 100%
11

12 # check the result
13 fdisk -l sdcard.img
14

15 # create loop device
16 sudo mknod -m660 /dev/loop10 b 7 10
17 sudo chown root:disk /dev/loop10
18

19 # Generate a MAC address and store it in an environment variable
20 export TARGET_MAC_ADDRESS="00:18:3e:04:71: c7"
21

22 # Create the uEnv.txt file with the generated MAC address
23 echo "ethaddr=${TARGET_MAC_ADDRESS}" > uEnv.txt
24

25 # Report the chosen MAC address to the job’s output
26 echo "Chosen MAC address ${TARGET_MAC_ADDRESS}"
27

28 # Setup loop devices for the partitions
29 sudo losetup -P /dev/loop10 sdcard.img
30 LOOP_DEV="/dev/loop10"
31 sudo kpartx -avs $LOOP_DEV
32 sudo ls /dev/mapper/
33 sudo partprobe $LOOP_DEV
34 ls /dev/loop*
35

36 # 3. Mount each partition and populate them with the necessary files
37 # For the 1st partition
38 sudo mkdir -p /mnt/part1
39 sudo mkfs.vfat /dev/mapper/loop10p1
40 sudo fatlabel /dev/mapper/loop10p1 BOOT
41 sudo mount /dev/mapper/loop10p1 /mnt/part1
42 sudo cp $BUILD_NAME/images/linux/* /mnt/part1/
43 sudo cp uEnv.txt /mnt/part1/
44 sudo umount /mnt/part1
45

46 # For the 2nd partition
47 sudo mkdir -p /mnt/part2
48 sudo mkfs.vfat /dev/mapper/loop10p2
49 sudo fatlabel /dev/mapper/loop10p2 APP
50 sudo mount /dev/mapper/loop10p2 /mnt/part2
51 sudo cp -r cdc -control -application /mnt/part2
52 sudo umount /mnt/part2
53

54 # 4. Unmount the partitions and detach loop device
55 sudo kpartx -dvs $LOOP_DEV
56 sudo losetup -d $LOOP_DEV� �
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7| Performance testing

The last part of this work focuses on the validation of the system from a metrological
perspective. Tests are conducted to assess the performance of the system with a particular
focus on the stability over 12-48h.

Measuring the performance of such a high-precision system poses significant challenges,
as it requires the use of high-end instruments and advanced techniques. A direct mea-
surement of the current would be vastly inadequate. Considering for example the direct
measurement of the current with a metrological digitizing multimeter such as the Fluke
8588A in the 1 A range, the uncertainty of the measurement in the ideal case would be
no less than ±27.5 ppm over 20 minutes (see [22]). For reference, the specification for
the same instrument on the DC 10 V range is ±0.1 ppm over 20 minutes, increased to
±0.55 ppm over 24 hours. Similar specifications hold for the HP 3458A, one of the leading
metrology digitizing multimeters [27].

7.1. Performance assessment

The insufficient performance of the COTS Digital Voltmeters (DVMs) is mostly due to
the internal working, where the current that is to be measured is run in a shunt resistor
and the voltage drop across the resistor is measured. The limiting factor in terms of
performance is the stability and the self-heating of the internal shunt resistor. A resistor
that is physically large enough to dissipate the heat generated by the current flowing
through it would be too large to be integrated into a DVM. Instead, to perform the
measurements required by this work, a DVM is used to measure the voltage drop across
a large and temperature-controlled precision resistor, which is then used to calculate the
current. The precision resistor is an Alpha Electronics FNP 0.200 Ω shunt resistor [17].

The resistor is specified by the manufacturer to have a temperature coefficient within 0±1

ppm/◦C and a resistance tolerance of ±0.05%. The resistor is mounted on a temperature-
controlled aluminum heatsink, on which a fan ensures constant flow of air. The assembly
is then put in a temperature-controlled chamber, where the temperature is set to 30.0 ◦C.
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The temperature stability of the setup allows the temperature coefficient of the resistor
to not become significant in the measurement. The voltage drop across the resistor is fed
in a x10 gain stable amplifier, that is placed in the same temperature-controlled chamber.
The amplifier is a custom design based on the OPA189 precision operational amplifier
[26]. This methodology is mutuated from [30].

At the output of the amplifier, for a current of 5 A, a voltage of 10 V is to be measured.
This voltage is chosen as it is the voltage range at which the DVMs have the best specified
performance. The voltage is measured with two Keysight 3458A DVM [27], which is
specified to have a 24-hour accuracy of ±0.55 ppm. Since we want to measure a stability of
0.1 ppm over 24 hours, the DVMs are the limiting factor in the measurement. Nonetheless,
this measurement sets the first benchmark for the performance of the system.

7.1.1. Current reversal test

Figure 7.1: Current reversal system, images adapted from [30]

At the levels of precision required by this measurement, the thermoelectric effect of
bimetallic junctions becomes significant [28]. Common materials such as nickel and cop-
per, when coupled, can result in thermoelectric voltage coefficients as high as 10µV/◦C

per junction. If the junctions or the materials are not perfectly symmetric, or if there is
an asymmetric temperature gradient, the thermoelectric voltage adds a variable offset to
the measurement that is impossible to extract, which can be significant at the levels of
precision required by this work. To mitigate this effect, a common technique is to reverse
the measured voltage. The thermoelectric voltage is then reversed, and the difference
between the two measurements is taken. The thermoelectric voltage is canceled out, and
the measurement is free from the effect of the thermoelectric voltage. This technique is
used in this work to measure the stability of the system.
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To perform the reversal, a special mosfet bridge board was designed. The bridge inverts
the polarity of the current fed into the shunt resistor. The bridge is controlled by a
separate FPGA and does the reversing every second. The bridge board outputs a sync
signal that is used to synchronize the measurements of the DVMs. The overall system is
shown in figure 7.1.

The current reversal board provides a trigger signal to the DVMs to synchronize the
measurements. The timing of the current reversal is as follows: 120 ms of short (dead
time), 1080 ms of current in verse A, 120 ms of short, and 1080 ms of current in verse B.
The voltage is sampled from 240 ms after the short to 240 ms before the next short, for
a 600 ms window. The current reversal behavior is shown in Figure 7.2.

Figure 7.2: Current reversal timing

The test ran over 37 hours and the results are shown in figure 7.3. The results show a
worst-case stability of 0.53 ppm over 37 hours. With the DVMs being the limiting factor,
this is a good result. The results show that the system is stable enough to outperform
the DVMs used in the measurement. A measurement is then run to assess the baseline of
the DVMs. The results are shown in section 7.1.2.

7.1.2. HP 3458A Baseline test

To assess the baseline of the DVMs used in the measurement, a test is run with the DVMs
directly connected to a voltage reference. To minimize the effects of voltage variations
induced by thermal effects, the reference is placed in a temperature-controlled chamber.
The reference used is a PBC v3 [34]. The reference is expected to have a one-year stability
of 1.5 ppm, for a 24-hour period it is expected to be irrelevant for the purpose of this test.
The configuration is shown in figure 7.4.
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Figure 7.3: Test results for the current reversal test

Figure 7.4: HP 3458A baseline test system

The test is run over 24 hours and the results are shown in Figure 7.5. The results show a
spread of worst-case stabilities of over 1 ppm for the three DVMs used in the measurement.
This is in line with the specifications of the DVMs, which specify a 24-hour accuracy of
±0.55 ppm. This finally shows that the DVMs are the limiting factor in the measurement.
It can also be observed from Figure 7.5 how one of the DVMs presents more noise than
the other two. This may indicate that the instrument is faulty or, in general, worse than
the other two.

7.1.3. Current reversal with reference test

To assess the performance of the system with the DVMs being the limiting factor, it is
proposed to use a voltage reference to be measured in between every measurement. To do
the switching, a metrology multiplexer could be used to switch between the reference and
the shunt resistor. Since such an instrument is not available, and since the functionality
is readily available in the Fluke 8588A [22], it is decided to use the Fluke 8588A to switch
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Figure 7.5: Test results for the HP 3458A baseline test

between the reference and the shunt resistor. Moreover, the Fluke 8588A outperforms the
low-frequency characteristic of the HP 3458A [31]. The configuration is shown in figure
7.6. Since the Fluke 8588A acquires one measurement per trigger, switching between front
and back terminals at subsequent triggers, the current reversal board is modified to hold
the same polarity for two cycles, while still producing two separate trigger pulses.

Figure 7.6: Current reversal with reference test system

The reference in use is a Fluke 732B, which is one of four units that make up the main
voltage standard for the metrology laboratory in SY-EPC-HPM. The unit is known to
be the most stable available, and it has been calibrated traceably in the Swiss Federal
Institute of Metrology (METAS) for several years in a row. The specifications for the
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Fluke 732B foresee a 0.3 ppm change per 30 days [20], but historical data shows that the
unit exhibits a stability of 0.1 ppm over one year, the drift is therefore neglected for this
test. The manufacturer of the equipment confirms that the stable drift is a characteristic
of the design of the voltage reference [21], so the same drift that always characterized the
unit can be expected for this time window.

Figure 7.7: Reference measured in the current reversal with reference setup

The results shown in Figure 7.7 show a significant noise on the measurement, which
indicates that some noise rejection is required for the measurement to be significant. The
specifications for the Fluke 8588A in 24 hours indicate a 0.55 ppm accuracy [22] (at 2σ).
The results show a spread of 0.18 ppm over 24 hours (2σ), which is largely within the
specifications. If a moving average is applied to the results, on a window of 100 samples,
the spread is reduced to 0.058 ppm at 2σ. Considering the average, the peak-to-peak
variation is within the required 0.2 ppm. This is enough to provide a baseline for the
measurement. The voltage reference is used to establish a calibration for the measuring
system at each sample. Considering the voltage reference as the absolute reference for this
measurement, every reading of the DVMs can be divided by the reading of the reference.
This way, the measurement at the reference is used to calibrate the measurement at the
shunt resistor. The specification sheet for the Fluke 8588A quote, for this scenario, has a
worst-case 2σ tolerance of 0.10 ppm.

The measurement is presented in Figure 7.8. An initial settling can be observed in the
first hours. The reason for this is examined in subsubsection 7.1.3. The measurement
is then stable within 0.2 ppm for the rest of the record. This run alone, although not
conclusive, is enough to indicate that the stability of the system is on the order of the
stability of the reference used plus the stability of the DVM. This is a good result, but a
better measurement can be obtained.
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Figure 7.8: Measurement of the current in the setup, calibrated by the reference

Temperature coefficient of the shunt resistor

Every resistor is characterized by a certain temperature coefficient, which indicates how
much the resistance of the resistor changes with temperature. The temperature coefficient
of the resistor used in this work is specified by the manufacturer to be 0±1 ppm/◦C. This
means that, for a temperature change of 1 ◦C, the resistance of the resistor changes by no
more than 1 ppm. The setup put in place for the measurement of the current can be used
to measure and confirm the temperature coefficient of the resistor. With the same setup as
described before, but with the amplifier removed, the temperature in the oven is stepped
from 30.0 ◦C to 35.0 ◦C. The temperature is then kept constant for some hours. The
results for this unit are shown in Figure 7.9. The results show a change of 2.8 ppm/◦C,
which is considerably worse than what the manufacturer quotes. The measurement also
highlights a slow settling process after the temperature step and some hysteresis in the
value with temperature. This result, combined with the data on the temperature of the
resistor, yields more information on uncertainty of the measurement. The temperature of
the resistor is measured with a PT100 sensor embedded in the FNP resistor package, and
read by an HP 3458A. A 4-wire ohm measurement is set up for this. The HP 3458A is
specified to have a 24-hour accuracy of ±2.2 ppm [27] for a 4-wire 1000 Ω measurement.
This is not a concern, as the temperature of the resistor has effect on the measurement
on the order of some ppm/◦C, so the effect of this uncertainty is negligible.

During the test, the temperature of the resistor is measured, and with the calculated
Tc, the impact of the temperature change can be estimated. Figure 7.10 estimates, from
the temperature read at the burden resistor, the variation introduced by the temperature
change. Without considering the initial settling, the change caused by the resistor Tc is
quoted around 0.0355 ppm (2σ) which means 0.11 ppm peak-to-peak in a 99% confidence
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Figure 7.9: Temperature coefficient measurement of the shunt resistor

Figure 7.10: Estimated effect of the temperature change on the measurement

interval. We can therefore state that this is the limit of any measurement that uses this
resistor. It is also evident how the initial settling is correlated with the temperature
change. This is due to the fact that, while the resistor is "preheated" by a 5 A current
source, that current source is not as stable nor as accurate as the CDC, and the current
change causes a temperature change that results in a resistance change, which in turn
causes a change in the voltage drop across the resistor. Moreover, the switch is performed
manually and during the switch time no current is put through the resistor, causing
cooling. This effect is not negligible, as it is in the order of 0.1 ppm.

What is shown in Figure 7.10 can explain the settling and some of the variations observed
in Figure 7.8. This limit can only be overcome by using a resistor with a better tem-
perature coefficient, that can be selected between the available ones. The temperature
coefficient of the resistor is therefore finally the limiting factor in the measurement.
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Front vs back terminals

The specification for the difference and variation of the front and back terminals of the
Fluke 8588A is not quoted in the datasheet. Using the Fluke 732B we can measure a
known reference from front and back terminals and compare the results. The results are
shown in Figure 7.11. This shows that the difference between the two terminals has a fixed
offset of 0.08 ppm and varies in the range of 0.04 ppm peak-to-peak over 24 hours. This
is not a concern, as the difference is negligible compared to the stability of the DVMs.

Figure 7.11: Front vs back terminals offset

7.1.4. HPM7177 test

A last test was carried out using the HPM7177 [2]. The HPM7177 is a high-precision
digitizer, designed by SY-EPC-HPM. It features an ADR1000 as a voltage reference,
which is a very stable reference buried zener diode [14]. The HPM7177 is designed to be
used as a high-precision digitizer for the CERN power converters, in the most demanding
accuracy class for Hi-Lumi. Its 12-hour was shown to be better than 0.2 ppm by [2]. The
HPM7177 is used to measure the voltage drop across the shunt resistor, amplified by the
low noise amplifier, both placed in the temperature-controlled chamber.

Six units are used in the measurement, as shown in Figure 7.12. The six units sample at
a fixed rate of 10kSample/s, so the data must be decimated for storage. A first averaging
brings the data-rate to 100 Samples/s, which are stored for later analysis. The data are
read from the digitizers via optical fiber to a National Instruments PXI system, which
synchronizes the digitizers and sends the data to a computer for storage.

Five of the channels are used for the measurement, while the sixth channel is used to
measure the trigger signal coming from the current reversal board. The reversal and



94 7| Performance testing

Figure 7.12: HPM7177 test setup

trigger pattern remains the same as described in subsection 7.1.3, with a single sample
generated by averaging all the samples in two subsequent windows. An example of the
samples, trigger and triggering windows is shown in Figure 7.13.

Figure 7.13: HPM7177 samples, trigger and triggering windows

The five digitizer data streams are then averaged to be combined in a single signal, where
the noise contribution of the digitizers is reduced by a factor of

√
5. The digitizers are

calibrated separately and are expected to maintain calibration for the duration of the test.
The standard deviation between the five digitizers stays contained within 0.15 ppm, as
shown in Figure 7.14, which shows that the digitizers agree with each other to a sufficient
degree.
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Figure 7.14: HPM7177 standard deviation between the five digitizers

The test has been run in parallel with the one described in subsection 7.1.1, for the
same amount of time. The results are presented in Figure 7.15. The result is quoted
as having a σ of 0.048 ppm for the whole run and 0.028 ppm after the initial settling,
with a total peak-to-peak variation of 0.14 ppm. This remarkable result shows that the
system complies with the 12-hour stability specification, which was one of the parameters
that were improved the most during the upgrade of the CDC. It is worth noting that the
shunt resistor variation alone due to thermal variations is estimated to be around 0.12
ppm in subsubsection 7.1.3, showing once again that the resistor is the limiting factor in
the measurement.

Figure 7.15: HPM7177 test results
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8| Conclusions and Future

Developments

In this thesis, we have presented a comprehensive analysis of the design and implementa-
tion of the controller for the CERN DCCT Calibrator (CDC). The CDC is a high-precision
instrument that will be used to calibrate the current transducers that will be used to mea-
sure the current in the power converters. The new controller of the instrument will be key
to ensuring the correct calibration of the power converters that will power the upgraded
magnets in the HiLumi project.

In the following years, the maintenance of the control system will be minimal, and the
system is already designed to accept new features and improvements. The system is also
designed to be easily replicated and adapted to other applications compatible with the
FGC NCRP protocol. Moreover, at the end of the life of the Zynq-7000 system, the
system can be easily ported to a new platform such as the Zynq UltraScale+, as the
software is designed to be platform independent and only little changes will be required
to the Petalinux configuration.

The CI/CD paradigm will ensure that every change that will be introduced in the future
will not only be tested but also documented and reproducible. The CI/CD pipeline will
also ensure that the system will be continuously built and that the documentation will be
updated accordingly. The continuous build system will be left in place so that it can be
kept working with no need to reconstruct it from scratch when changes will be required.

The functionality and performance of the system have been thoroughly tested in lab
conditions, and the tests show unprecedented stability from the final system. For the first
time after the full upgrade, including the controller, the stability of the output current
over 12 hours is documented to be within 0.15 ppm after the initial settling.

Moving forward, several areas could build upon the work presented in this thesis for future
research and development. For example, the limiting factor in the measurement turned
out to be the temperature coefficient of the resistor. A better measurement of the current
stability could be achieved by using a resistor with a lower temperature coefficient. The



98 8| Conclusions and Future Developments

temperature coefficient of the resistor could also be measured compensated for in software.
On the controller side, a USB port on the front could be added and made compatible with
the FGC Serial Command Response Protocol (SCRP) for compatibility in scenarios where
there might not be access to a network.

A graphical user interface could also be developed to allow the user to interact with the
system without the need for a terminal. The user interface could be developed in a web-
based framework such as React or Vue.js and could be served by the embedded web server.
This would allow for a more practical and immediate control of the instrument.
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Here all the FGC properties are documented:

A.1. CALSYS.CDC.ADC.GAIN_1A

EXPERT PROPERTY Setting this expert property with no parameter and the CDC
output set to 1A launches a gain calibration for the CDC output current (ADC channel
2). When read, it retrieves the value of the calibrated gain.

Persistent

Type: FLOAT

Range: [0.40000 .. 1.60000]

Default: 1.00000

A.2. CALSYS.CDC.ADC.I_MEAS

Accessing this property triggers a reading of the ADC channel which measures the output
current of the CDC and returns a value in Amp.

SET not permitted

Type: FLOAT

A.3. CALSYS.CDC.ADC.I_NULL

Accessing this property triggers a reading of the ADC channel which measures the offset
current of the CDC and returns a value in µAmp.

SET not permitted

Type: FLOAT
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A.4. CALSYS.CDC.ADC.PBC_TEMP

Accessing this property triggers a reading of the ADC channel which measures the PBC
temperature of the CDC and returns a value in ºC.

SET not permitted

Type: FLOAT

A.5. CALSYS.CDC.ADC.RAW_ZERO

EXPERT PROPERTY This property contains the raw value resulting from the zero
calibration of the ADC.

Persistent.

SET not permitted.

Type: INT16S

Default: 0

A.6. CALSYS.CDC.ADC.V_MEAS

Accessing this property triggers a reading of the ADC channel which measures the output
voltage of the CDC and returns a value in Volt. This measurement includes the voltage
across the secondary windings of the CDC and across the current sense resistor.

SET not permitted

Type: FLOAT

A.7. CALSYS.CDC.DAC1TW_CAL

EXPERT PROPERTY This property contains the calibration state of the DAC 1TW
system. Setting this property with no parameters will trigger a calibration of channel 0
of the DAC. The DAC calibration is not permitted in VB mode and it requires the CDC
to be ON and at zero current with no offset present. The calibration of the zero is done
first followed by the calibration of the values corresponding to 10mA which is measured
by doing a back to back between the DAC winding with the DAC at full scale and the
“calibration” winding with the 10mA reference.
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Persistent

Range: CALIBRATED, UNCALIBRATED

A.8. CALSYS.CDC.DAC1TW.ZERO

EXPERT PROPERTY This property contains the value, in volt, of the DAC output
that generates a zero current in the DAC winding.

Persistent

SET not permitted

Type: FLOAT

Default: 0.00000

A.9. CALSYS.CDC.DAC1TW.FS

EXPERT PROPERTY This property contains the value, in volt, of the DAC output
that generates a 10mA current in the DAC winding.

Persistent

SET not permitted

Type: FLOAT Default: 10.00000

A.10. CALSYS.CDC.DAC.RAW

EXPERT PROPERTY This property returns the raw value corresponding to the preset
output of the specified DAC channel.

SET not permitted

Type: INT16S

A.11. CALSYS.CDC.DAC.VOLT

EXPERT PROPERTY This property sets the specified DAC channel output to the
indicated value in Volt. When read, it returns the last value sent to the specified DAC
channel.
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Type: FLOAT

Range: [10.00000 .. 10.00000]

A.12. CALSYS.CDC.I_REF

Setting this property sets the CDC to the requested I_REF. Reading this property returns
the present value of I_REF. This operation may take up to 5s.

Type: FLOAT Range: depends on the CALSYS.CDC.OUTPUT property

CALSYS.CDC.OUTPUT = RANGE_1A: [-1.0000000 .. 1.0000000]

CALSYS.CDC.OUTPUT = RANGE_2A5: [-2.5000000 .. 2.5000000]

CALSYS.CDC.OUTPUT = RANGE_5A: [-5.0000000 .. 5.0000000]

CALSYS.CDC.OUTPUT = RANGE_10A: [-10.0000000 .. 10.0000000]

A.13. CALSYS.CDC.NULL.AUTO

Setting this property will trigger a CDC offset nulling action. The CDC offset nulling can
only be done with the CDC on at zero current and when not in VB mode. This operation
may TAKE up to 5s.

GET not permitted

A.14. CALSYS.CDC.NULL.KI

EXPERT PROPERTY This expert property contains the value of the proportional
gain on the PI controller used for the offset nulling.

Persistent

Type: FLOAT

A.15. CALSYS.CDC.NULL.KP

EXPERT PROPERTY This expert property contains the value of the proportional
gain on the PI controller used for the offset nulling.

Persistent
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Type: FLOAT

A.16. CALSYS.CDC.NULL.NR

EXPERT PROPERTY This expert property contains the value of the maximum num-
ber of offset nulling attempts (cycles ADC reading/ DAC setting).

Type: INT16U

A.17. CALSYS.CDC.OUTPUT

Setting this property switches the current calibrator OFF or ON in the indicated RANGE.
If this property is set to OFF and there is current present at the CDC output, the current
is set to zero before turning off the CDC. If this property is set to a valid current range
(see below) the CDC status is verified before switching the CDC on to that range. If
there are any alarms active, the action is not performed and an error message is returned.
Once an ON command is accepted and the relay configuration has been set, the CDC
offset current is nulled. This operation may take up to 5s.

SET not permitted

Type: Range: OFF, RANGE_1A, RANGE_2A5, RANGE_5A, RANGE_10A

A.18. CALSYS.CDC.STATUS.RELAYS

EXPERT PROPERTY This bitmask symbol list is used to identify all the presently
active relays in the current calibrator zero flux detector. Accessing this property will
trigger a reading of the relay status.

SET not permitted

Range: INV2048T, ON2048T, INV1024T, ON1024T, INV512T, ON512T, INV256T, ON256T,
INV128T, ON128T, INV64T, ON64T, INV32T, ON32T, INV16T, ON16T, INV8T, ON8T, INV4T,
ON4T, INV2T, ON2T, INV1T, ON1T, INV1TCAL, ON1TCAL, INV1TDAC, ON1TDAC, ONS4T, ONS8T,
ONS16T, ONS40T

A.19. CALSYS.CDC.VB_MODE

Getting this property will tell you if a VB is connected to the CDC (VB_MODE =1) or
not (VB_MODE =0).
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SET not permitted

Type: INT18U

A.20. CALSYS.DCM.ADC.CAL

EXPERT PROPERTY

Setting this property with no parameters will trigger an ADC calibration. The ADC
calibration uses the value in DCM.ADC.VREF to correct for the full scale calibration.
Since the ADC channels are multiplexed, the calibration is valid for all channels.

Range:

• UNCALIBRATED

• CALIBRATED

A.21. CALSYS.DCM.ADC_RAW

EXPERT PROPERTY Accessing this property triggers an ADC reading for the spec-
ified channel and returns the value in raw reading. If in CDC mode the ADC channels
are differential and only 8 channels are available. If in SM mode the ADC channels are
single ended and 16 channels are available.

SET not permitted

Type: INT16

A.22. CALSYS.DCM.ADC.VOLT

EXPERT PROPERTY Accessing this property triggers an ADC reading, for the spec-
ified channel and returns the value in Volt. If in CDC mode the ADC channels are
differential and only 8 channels are available. If in SM mode the ADC channels are single
ended and 16 channels are available.

SET not permitted

Type: FLOAT
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A.23. CALSYS.DCM.PS05.CAL

EXPERT PROPERTY This property accepts a value for calibration of the 5V power
supply voltage ADC reading. To calibrate, the 5V voltage must be read with a calibrated
DVM and the PS05.CAL property should be set to the measured value. A gain error is
calculated automatically.

Type: FLOAT

Range: [4.00000 .. 6.00000]

A.24. CALSYS.DCM.PS05.MEAS

Accessing this property triggers a reading of the 5V power supply voltage and returns the
value in Volt.

SET not permitted

Type: FLOAT

A.25. CALSYS.DCM.PS12.CAL

EXPERT PROPERTY This property accepts a value for calibration of the 12V power
supply voltage ADC reading. To calibrate, the 12V voltage must be read with a calibrated
DVM and the PS12.CAL property should be set to the measured value. A gain error is
calculated automatically.

Type: FLOAT

Range: [11.0000 .. 13.0000]

A.26. CALSYS.DCM.PS12.MEAS

Accessing this property triggers a reading of the 12V power supply voltage and returns
the value in Volt.

SET not permitted

Type: FLOAT
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A.27. CALSYS.DCM.PS15.CALNEG

EXPERT PROPERTY This property accepts a value for calibration of the -15V power
supply voltage ADC reading. To calibrate, the -15V voltage must be read with a calibrated
DVM and the PS15.CALNEG property should be set to the measured value. A gain error
is calculated automatically.

Type: FLOAT

Range: [-16.0000 .. -14.0000]

A.28. CALSYS.DCM.PS15.CALPOS

EXPERT PROPERTY This property accepts a value for calibration of the +15V
power supply voltage ADC reading. To calibrate, the +15V voltage must be read with a
calibrated DVM and the PS15.CALPOS property should be set to the measured value.
A gain error is calculated automatically.

Type: FLOAT

Range: [14.0000 .. 16.0000]

A.29. CALSYS.DCM.PS15.MEASNEG

Accessing this property triggers a reading of the -15V power supply voltage and returns
the value in Volt.

A.30. CALSYS.DCM.PS15.MEASPOS

Accessing this property triggers a reading of the +15V power supply voltage and returns
the value in Volt.

A.31. DEVICE.VERSION.MAIN_PROG

This property indicates the current version of the software.

SET not permitted

Type: INT16U Range: INT16U
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A.32. STATUS.FAULTS

This bitmask symbol list is used to identify all the faults that may be reported by class
150.

SET not permitted

Range per class: Class 150

• PBC_TMP: PBC temperature fault

• PBC_CAL: PBC calibration fault

• PBC_CMPL: PBC compliance fault

• PBC_CHR: PBC charge fault

• VB_PWR: voltage booster unpowered

• VB_TMP: voltage booster over temperature

• PA_TMP: power amplifier over temperature

• MOD_TMP: modulator amplifier over temperature

A.33. STATUS.WARNINGS

This bitmask symbol list is used to identify all the warnings that may be reported by
classes 150 and 151.

SET not permitted

Range per class: Class 150

• PBC_TMP: PBC temperature warning

• CLP_ON: clamp on when it should be off

• CLP_OFF: clamp off when it should be on
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