
Bayesian Optimization of RANS
turbulence models using Ensemble
Kalman Filter

Tesi di Laurea Magistrale in
Mathematical Engineering - Ingegneria Matematica

Author: Matteo Eddy Cesaratto

Student ID: 945343
Advisor: Prof. Lorenzo Valdettaro
Academic Year: 2021-22

i

Abstract

Navier-Stokes equations are widely exploited to describe fluid flow. In most of the real
situations we face turbulent flows, in which particles move in a chaotic, difficult to fore-
cast, way. Several mathematical tools have been proposed to model this motion: the most
detailed Direct Numerical Simulations (DNS), which are highly computationally expen-
sive, the Large Eddy Simulation (LES), in which only structures up to a given threshold
are resolved, and the Reynolds Averaged equations (RANS), in which the mean flow is
modelled. Several types of turbulence models have been proposed, to model the Reynolds
stress tensor and guarantee the closure of the system: in this work we will focus on Eddy
Viscosity models, based on Boussinesq assumption. Examples are the k-ε model, k-ω
model and Spalart–Allmaras model.
These strategies are those researchers most rely on, but a new approach has been proposed
to better fit the models results to real data: Field Inversion (FI) strategy allows to per-
form a data-driven correction of the models, comparing RANS results with high-fidelity
data, coming from DNS or real measurements. In this thesis, FI approach is studied and
exploited to improve model constants and get more precise results compared to those
obtained with standard models. Specifically, Bayesian approach using Ensemble Kalman
Filter (EnKF) is used, first to directly infer the turbulent viscosity νT without any further
assumption on νT , and then to try to correct the constant values playing a role in the k-ω
model.

RANS simulations have been performed in OpenFOAM using the simpleFoam solver.
For EnKF field inversion DAFI library coupled with OpenFOAM has been taken as a
base.

Keywords: Navier-Stokes equations, RANS, Eddy Viscosity turbulence models, Bayesian
optimisation, Field Inversion, Ensemble Kalman Filter, OpenFOAM, DAFI

Abstract in lingua italiana

Le equazioni di Navier-Stokes sono largamente utilizzate per descrivere il comportamento
di fluidi in movimento. Nella maggior parte dei casi reali, ci troviamo di fronte a moti
turbolenti, dal comportamento caotico e difficile da prevedere. Diversi strumenti matem-
atici sono stati proposti per provare a descrivere questi tipi di moto: le Direct Numerical
Simulations (DNS), molto dettagliate e per questo molto costose dal punto di vista com-
putazionale, le Large Eddy Simulations, che invece modellizzano le strutture sotto una
certa scala, e le equazioni mediate alla Reynolds (RANS), in cui la turbolenza viene mod-
ellizzata attraverso un modello di chiusura del tensore di Reynolds. Svariate idee sono
state presentate per modellizzarlo: in questo lavoro, in particolare, concentreremo la nos-
tra attenzione sui modelli a viscosità turbolenta, basati sull’ipotesi di Boussinesq. Esempi
sono i modelli k-ε, k-ω e Spalart–Allmaras.
Al momento, questo è l’approccio più diffuso: tuttavia, l’adattamento di tecniche di
Inversione di Campo (FI) al caso della fluidodinamica permette di ottenere risultati
che meglio approssimano i dati reali. In questa tesi, viene analizzato quest’approccio,
in particolare servendosi dell’Ensemble Kalman Filter (EnKF) all’interno del contesto
dell’ottimizzazione Bayesiana, sfruttando dati high-fidelity provenienti da simulazioni
DNS. In un primo momento si è cercato di stimare direttamente i valori della viscosità
turbolenta νT senza ulteriori ipotesi sulla sua espressione, poi si è cercato di correggere
alcune delle costanti che sono coinvolte nel modello k-ω.

Le simulazioni RANS sono state implementate in OpenFOAM, facendo affidamento sul
solutore simpleFoam. Per l’algoritmo di FI per mezzo di EnKF è stata sfruttata la libreria
DAFI.

Parole chiave: equazioni di Navier-Stokes, RANS, modelli di turbolenza, Inversione
di Campo, ottimizzazione Bayesiana, Ensemble Kalman Filter, OpenFOAM, DAFI

v

Contents

Abstract i

Abstract in lingua italiana iii

Contents v

Introduction 1
General context . 1
Thesis outline . 2

1 The Navier-Stokes equations and Turbulence models 3
1.1 The Navier-Stokes equations . 3
1.2 Turbulent flow models . 5
1.3 Eddy viscosity models . 6

1.3.1 The Spalart-Allmaras model . 7
1.3.2 The k-ε model . 7
1.3.3 The k-ω model . 11

1.4 The SIMPLE algorithm . 12
1.5 OpenFOAM implementation and test case 15

2 Field Inversion 17
2.1 The Field Inversion workflow . 17
2.2 Gradient based methods . 19
2.3 Derivative Free methods . 20

2.3.1 The Ensemble Kalman Filters . 21
2.4 DAFI implementation . 24

3 Cases of study and results 31
3.1 Inference on νT field for TCF . 31
3.2 Inference on k-ω model constants . 34

3.2.1 β∗ constant for TCF . 37
3.2.2 β∗ constant for PHC . 38

3.3 Extension to k-ω model coefficients varying over the domain 41
3.3.1 β∗ field for TCF . 43
3.3.2 β∗ field for PHC . 44

4 Conclusions and further developments 49

Bibliography 51

A Appendix A 53

List of Figures 59

List of Tables 63

Introduction

General context

Fluid behaviour is a crucial aspect for industrial and engineering applications. The Navier-
Stokes equations are a well known model to describe fluid flow, obtained by coupling mass
conservation principle and momentum balance for a fluid. From their general formula-
tion, the case of Newtonian, incompressible fluids can be retrieved, and through proper
computation, a dimensionless version can be written, so as to highlight the parameter of
interest Re (Reynolds number).
The value of Re characterizes the nature of the flow, whether laminar or turbulent: in
the former case, for low Re, the fluid particles move on parallel, well ordered streamlines,
while in the latter, for high Re (indicatively Re > 2000), motion is chaotic and difficult to
describe. In this case, RANS equations are obtained by decomposing each field in a mean
and fluctuating component and then averaging through ensemble average. The resulting
system needs to be closed: a plenty of models have been proposed. Many of them are
Eddy viscosity models, based on the Boussinesq assumption ([8]) of similarity between
the Reynolds stress tensor τR and the viscous stress tensor τ for Newtonian fluids. In this
work, k-ε, k-ω, k-ω SST models are considered ([12],[22],[16]).
These models are, then, discretized and numerically solved: to this purpose, the open
source software OpenFOAM is used, in particular the SIMPLE algorithm is exploited [4].
In this thesis, we will refer to the numerical solution of the Navier-Stokes equations cou-
pled with a turbulence model as the ‘forward solution’, to distinguish it from the following
Field Inversion step.

In order to better fit the numerical results with the experimental or DNS ones (high-fidelity
data), a data-driven approach is considered [20]: the Field Inversion technique allows to
correct the original turbulence model in order to get better results. To do that, several
algorithms have been proposed: some of them are based on the gradient computation for
the minimization of a cost function, other, doing without derivative computations, correct
input fields taking advantage of Bayesian statistics techniques. In this work the Ensemble
Kalman Filter has been analysed and exploited [9]. At first, νT field is directly inferred

and used in the customized OpenFOAM solver nutFoam to compute mean longitudinal
velocity field, then we try to correct input coefficients of Eddy Viscosity turbulence models,
both keeping them constants over the whole domain and then considering them as a non
constant field. Numerical results have been obtained for the common cases of Turbulent
Channel Flow and Periodic Hills Channel.

Thesis outline

In Chapter 1 the general setting of turbulence modeling is presented, from Navier-Stokes
equations (Section 1.1) to the Eddy Viscosity models (sections 1.2, 1.3). Finally, the
SIMPLE algorithm and its implementation are discussed (Section 1.4) and a base case is
shown with its implementation in OpenFOAM (Section 1.5).
In Chapter 2 the Field Inversion framework is presented (Section 2.1) and some techniques
are further analysed: gradient based methods (Section 2.2) and derivative free methods
(Section 2.3), among which the Ensemble Kalman Filter (Section 2.3.1). Finally, an
example of Field Inversion coupled with the Navier-Stokes equation is shown (Section
2.4).
In Chapter 3 some complete cases are shown and discussed and a new OpenFOAM model
implementation is described to allow scalar field as input coefficients for k-ω model.

3

1| The Navier-Stokes equations

and Turbulence models

In this chapter the Navier-Stokes equations are briefly presented (Section 1.1), from their
general formulation to a more applied version, for the specific case of Newtonian fluid in
incompressible flows. Then, two different regimes are distinguished, laminar and turbu-
lent, and discussed in relation to the dimensionless Reynolds number. We will focus, in
particular, on turbulent regime (Section 1.2) and some of the most effective mathemat-
ical models are presented (Section 1.3): the eddy viscosity models (k-ε, k-ω). Finally,
the SIMPLE algorithm and its OpenFOAM implementation are presented, to solve the
system resulting from the discrete formulation of the problem (Section 1.4).

1.1. The Navier-Stokes equations

In the latest years of 19th century, the well known Navier-Stokes equations were formulated
describing the flow of a fluid. Joining the momentum balance equation for a fluid volume
with the mass conservation law they retrieved the system in its more general form:

ρ
∂

∂t
ui + ρuj

∂

∂xj
ui −

∂

∂xj
Tij − ρfi = 0 , on Ω

∂

∂t
ρ+

∂

∂xj
(ρuj) = 0 , on Ω

(1.1a)

(1.1b)

where the componentwise notation and Einstein notation are exploited. u ∈ Rn is the
velocity field, ρ the fluid density, f ∈ Rn an external forcing, T ∈ Rn×n the stress tensor
describing the properties of the fluid considered and i, j = 1, ..., n the vector components.
In case of compressible flows, an energy evolution equation and the state equation need
to be provided.
Instead, in this work we will focus only on incompressible flows for Newtonian fluids. Once

4 1| The Navier-Stokes equations and Turbulence models

written T = −pI+ τ , where p is the pressure field, for a Newtonian fluid the stresses have
been modelled through a linear and isotropic relation with respect to the strain rate tensor
S := 1

2
(∇u+∇Tu). Thus: τ = 2µS− 2

3
µ(∇·u)I, where µ is the dynamic viscosity of the

fluid. On the other hand, incompressibility means ∂
xj
uj = 0 in the whole domain. Then,

(1.1) for Newtonian fluids, in incompressible flows reads:

ρ
∂

∂t
ui + ρuj

∂

∂xj
ui +

∂

∂xi
p− µ

∂2

∂x2j
uj − ρfi = 0 , on Ω

∂

∂xj
uj = 0 , on Ω

(1.2a)

(1.2b)

We will consider in the following the case where ρ in constant.
As last consideration about the formulation of the Navier-Stokes system, a more versatile
version can be obtained by normalizing all the quantities by a reference value, depending
on the case at hand. Let consider, for instance, a channel flow where δ is the channel
half-height and U a reference velocity magnitude. Then, we can assume U and L = 2δ

as reference quantities for that flow, and defining u∗ := u
U
, x∗ := x

L
, t∗ := t

L/U
, p∗ := p

ρU2 ,
f ∗ := f

U2/L
, ∇∗ := L∇ and ∆∗ := L2∆ as dimensionless quantities and operators, (1.2)

becomes:

∂

∂t∗
u∗i + u∗j

∂

∂x∗j
u∗i +

1

ρ

∂

∂x∗i
p∗ − 1

Re
∂2

∂x∗2j
u∗j − f ∗

i = 0 , on Ω

∂

∂x∗j
u∗j = 0 , on Ω

(1.3a)

(1.3b)

where Re := UL
ν

, being ν := µ
ρ

the kinematic viscosity of the fluid.
Note that from now on (1.3) formulation is considered, but the ∗ notation will be avoided
for the sake of clarity: it allows to model different scales and fluids with the same numerical
solution, provided that they have the same Re.
Considered a flow case, the value of Re characterizes whether it is in a laminar or turbulent
regime. Up to Re ≈ 2000 the flow is considered to be laminar: streamlines ordered and
it is well simulated by the usual weak/discrete formulation workflow of the two equations
in (1.3) only. For Re ≳ 2000, instead, the flow begins to be chaotic, presenting more
complex structures: this case needs to be properly modelled, as analysed in Section 1.2.

1| The Navier-Stokes equations and Turbulence models 5

1.2. Turbulent flow models

A straightforward solution process leads to try solving eq.(1.2) in the same way as for
laminar regime, with a more refined mesh to capture also the smallest turbulent structures:
the idea behind DNS strategy moves in this direction. However, the smallest scales
(called Kolmogorov scales, η) can be shown, by dimensional arguments, to be η ∼ Re−

3
4L,

uη ∼ Re−
1
4U for velocities and tη ∼ Re−

1
2 L
U
. Suppose to simulate even a simple turbulent

flow, such as a car driving at U = 15m/s, with reference dimension L = 1m, in the
air (ν = 1.5 · 10−5m2/s): thus Re = 106 (cfr. [19]), and the the smallest scales are
approximately η ∼ 3.2 · 10−5m and tη ∼ 6.67 · 10−5s for time. A spatial mesh refinement
of order 10−5 is required to capture Kolmogorov scale for length in each direction, thus
entailing a tridimensional mesh of about 3.2 ·1013 nodes, and a time step discretization of
order 10−5. 3.2 · 1016 points in the time-space mesh are needed, making the computation
too expensive to be performed even for common cases.

For this reason, other strategies, modelling the turbulence rather than solving it, have
found large application.
Let us consider a scalar or vector quantity ϕ as the sum of a mean value ϕ̄ and a fluctuating
component ϕ′, such that ϕ̄′ = 0 (zero-mean fluctuation).
Thus: ϕ(x) = ϕ̄(x) + ϕ′(x) , ∀x ∈ Ω. The Reynolds Averaged Navier-Stokes equations
(RANS) aim to model the mean fields for the flow (ū for velocity, p̄ for pressure) and to
model the fluctuating components u′ and p′. In case of statistically stationary flow, the
mean field for quantity ϕ is obtained by applying the mean operator ϕ̄(x) := 1

T

∫ T

0
ϕ(x, t)dt

to (1.2),
After some computations, the RANS system reads:

∂

∂t
ūi + ūj

∂

∂xj
ūi +

1

p

∂

∂xi
p̄− ν

∂2

∂x2j
ūj −

1

ρ

∂

∂xj
τRij − f̄i = 0 , on Ω

∂

∂xj
ūj = 0 , on Ω

(1.4a)

(1.4b)

where the Reynolds stress tensor τR is introduced, collecting all the fluctuating terms
appearing in (1.4). More precisely: τRij := −ρu′iu′j. It results in a 4 equations system with
10 unknowns (ū, τRij , p̄): it needs to be properly closed in order to be solved.
Several ideas have been proposed to close (1.4) such as the Eddy viscosity models and the
Reynolds stress models. In Section 1.3 some of the Eddy viscosity models are analysed.
In this work we focus on statistically steady flow, the time dependence is excluded, con-

6 1| The Navier-Stokes equations and Turbulence models

sidering ∂
∂t
ū = 0.

As an intermediate method between RANS and DNS, Large Eddy Simulation (LES) can
be considered: a spatial filtering operation is applied to the velocity field. The resolved
scales of turbulence are simulated directly, whereas it is assumed that the scales below a
given threshold size have a more universal nature, and then they are modelled through a
closure model.

1.3. Eddy viscosity models

A possible way to close the RANS system in (1.4) is represented by the Eddy viscos-
ity models, where the Reynolds stress tensor τR is modelled by exploiting the so called
Boussinesq assumption (cfr. [8]).
Let us consider the term τRij := −ρu′iu′j that we want to model. We can, at first, decom-
pose it in a diagonal, isotropic tensor and in an anisotropic tensor τAij : τRij = 1

3
δijτ

R
kk + τAij .

In (1.4) the j−th spatial derivative is considered, thus ∂
∂xj
τRij = 1

3
δij

∂
∂xj
τRkk + ∂

∂xj
τAij =

1
3

∂
∂xi
τRkk+

∂
∂xj
τAij . By defining the turbulent kinetic energy per unit mass k := 1

2
u′i

2, we can
write ∂

∂xj
τRij = −2

3
ρk + ∂

∂xj
τAij and (1.4) becomes:

∂

∂t
ūi + ūj

∂

∂xj
ūi +

1

ρ

∂

∂xi
P − ν

∂2

∂x2j
ūj −

1

ρ

∂

∂xj
τAij − f̄i = 0 , on Ω

∂

∂xj
ūj = 0 , on Ω

(1.5a)

(1.5b)

where P := p̄+ 2
3
ρk.

Thus our focus can be only on modeling the anisotropic term τAij . Following Boussinesq
idea, we can proceed in analogy with the kinetic theory of gases, assuming the hypothe-
sis of similarity between the motion of turbulent structures in a flow and the molecular
agitation: the resulting expression is τAij = 2ρνT S̄ij, which shares such a similarity with
the expression of the stress tensor T for a Newtonian fluid.
In this way, the focus is uniquely on νT , the so-called turbulent kinematic viscosity, since
it has the same dimension as a kinematic viscosity.

We now compare two widely used families of methods to model this term: one equation
models, whose most famous case is the Spalart-Allmaras model, and the two equations
models, such as the k-ω and the k-ε models.

1| The Navier-Stokes equations and Turbulence models 7

For the former, the turbulent kinematic viscosity νT is modelled by mean of a single PDE
for the evolution of νT itself. The latter, instead, propose a dimension-coherent expres-
sion for νT , as a function of the turbulent kinetic energy k and of a term related to the
dissipation rate and then solve a couple of PDE for these two terms: note that, being a
kinematic viscosity, νT = [V][L], meaning that νT has the same dimensions as the product
of a velocity and a length.

1.3.1. The Spalart-Allmaras model

Spalart-Allmaras model ([16]) was proposed in 1994 to describe the evolution of νT by
mean of a single PDE. It consists of a transport model for νT itself, where a production
and destruction term appear. The turbulent kinematic viscosity is computed as νT = ν̃fv1,
being fv1 := χ3

χ3+c3v1
and χ := ν̃

ν
. ν̃ obeys the transport equation:

∂

∂t
ν̃ + uj

∂

∂xj
ν̃ =

1

σ

[
∂

∂xj
(ν + ν̃)

∂

∂xj
ν̃ + cb2

∂

∂xi
ν̃
∂

∂xi
ν̃

]
+

+ cb1 (1− ft2)Sν̃ −
[
cw1fw − cb1

κ2
ft2

]
(
ν̃

d
)2 , on Ω (1.6)

Moreover, S̃ := S − ν̃
κ2d2

and fv2 = 1 − χ
1+χfv1

, with S =
√

∂
∂xj
ui − ∂

∂xi
uj the magnitude

of the vorticity and d the distance from the closest wall. Finally, fw := g

[
1+c6w3

g6+c6w3

1
6

]
, with

g := r + cw2(r
6 − r) and r := ν̃

S̃κ2d2
(which can be truncated at 10, since fw reaches a

plateau value for high r). At the boundary, ν̃ = 0.

This model was designed for applications involving wall-bounded flows and has been
shown to give good results for boundary layers subjected to adverse pressure gradients.

1.3.2. The k-ε model

Let us define the dissipation rate per unit mass of kinetic energy as ε := ν
∂v′i
∂xj

∂v′i
∂xj

.
In this model, a couple of partial differential equations describes the behaviour of k and
ε, such to compute νT . Being the dimensions of ε = [V]3[L]−1, k = [V]2 and νT = [V][L],
the unique way to express this latter as function of k and ε is νT ∝ k2

ε
by mean of a

dimensional analysis. In particular, we will consider Cµ a non-dimensional constant such
that νT = Cµ

k2

ε
.

8 1| The Navier-Stokes equations and Turbulence models

After some filtering and modeling, we get the following advection-reaction-diffusion equa-
tion for the unknown term k:

∂

∂t
k + ūj

∂

∂xj
k =

∂

∂xj

[
(ν +

νT
σk

)
∂

∂xj
k

]
+

1

ρ
τRij

∂

∂xj
ūi − ε , on Ω (1.7)

ū is the advective field transporting k, ∂
∂xj

[
(ν + νT

σk
) ∂
∂xj
k
]

represents its diffusion and
1
ρ
τRij

∂
∂xj
ūi and −ε play the role of production and external dissipation term, respectively.

For the sake of simplicity, the equation for ε is built by analogy with (1.7), thus reading:

∂

∂t
ε+ ūj

∂

∂xj
ε− ∂

∂xj

[
(ν +

νT
σε

)
∂

∂xj
ε

]
− Cε,1

ε

k
τRij

∂

∂xj
ūi + Cε,2

ε2

k
= 0 , on Ω (1.8)

The involved coefficients are calibrated to best suit some benchmark cases, and common
choices are Cµ = 0.09, Cε,1 = 1.44, Cε,2 = 1.92, σk = 1 and σε = 1.3 ([22]).

However, a very refined mesh is required to properly capture what happens close to
the wall in the viscous subregion. For high Re this region could be as thin to make the
computation too heavy: a universal modeling needs to be set up to capture the behaviour
of the flow when sufficiently close to the wall. Moreover, boundary conditions for the inlet
need to be discussed.
To solve the first issue, the so called ‘Law of the Wall’ has been proposed [21]. Focusing
on the region near the wall (y

δ
≪ 1, with δ a characteristic length for the flow, for example

the half-height of a channel), we define the references quantities:

uτ :=

√
τw
ρ

friction velocity

y+ :=
y

δν
wall coordinate

τw represents shear stress at the wall and, starting from definition of τ for Newtonian
fluids given in Section 1.1, it can be computed as:

τw = τxy|y≈0= 2µSxy −
2

3
µ (∇ · u) δxy = µ

[
∂

∂y
ux +

∂

∂x
uy

]
≈ µ

[
∂

∂y
ux

]
(1.10)

1| The Navier-Stokes equations and Turbulence models 9

while δν := ν
uτ

is the viscous lengthscale.

In the region closest to the wall (viscous sublayer, approximately y+ < 5), it can be
consider valid ūx = uτy+, while in the so called ‘Logarithmic region’ (approximately y+ >
30 but still y

δ
≪ 1) the logarithmic law of the wall holds: ūx = uτ

[
1
κ
log y+ + A

]
, being

A = 5.5 and κ ∈ [0.38, 0.43], the von Karman constant, both determined experimentally.
In Figure 1.1 a profile for ūx is sketched in a log-linear plot.

Figure 1.1: Mean streamwise velocity profile ūx near the wall (log-linear plot).
We can distinguish the linear behaviour in the viscous sublayer and the logarithmic profile in the log-layer.

Picture from [19].

Figure 1.2: τTOT = τ̄xy + τRxy : in the viscous sublayer the whole τTOT can be explained by means of τ̄xy , while in the
log-layer they are of the same order of magnitude.

Picture from [19].

Moreover, as can be seen in Figure 1.2, in the logarithmic region the total shear stress
τTOT is mainly due to the Reynolds shear stress τRxy:

τTOT = τ̄xy + τRxy ≈ τRxy = τAxy = 2ρνT S̄xy = 2ρνT
1

2

(
∂

∂y
ūx +

∂

∂x
ūy

)
=

= 2ρνT
1

2

(
∂

∂y
ūx

)
= ρνT

uτ
κy

(1.11)

10 1| The Navier-Stokes equations and Turbulence models

but also

τTOT = τ̄xy + τRxy = ρu2τ −Ky (1.12)

with the terms τ̄xy and Ky negligible near the wall. Thus, it results in ρνTuτ

κy
= ρu2τ , and

by expressing νT = Cµ
k2

ε
as said before:

ε =
Cµk

2

uτκy
(1.13)

Finally, consider εFLU
:= ε− ν

ρ
∂2

∂xi∂xj
τRij ≈ ε− ν

ρ
∂2

∂x∂x
τRxy ≈ ε.

Then, ρεFLU = τRij Ŝij ≈ τRxyŜxy + τRyxŜyx = 2τRxyŜxy = 2τRxy
1
2

∂
∂y
ûx = ρu3

τ

κy
, therefore we can

write:

ε =
u3τ
κy

(1.14)

and combining 1.13 and 1.14, we get the expression for k, which results to be constant
inside the logarithmic layer:

k =
u2τ√
Cµ

(1.15)

To sum up the model near the wall (30 ≤ y+ ≤ 100, to be verified a posteriori):

ūx = uτ

[
1

κ
log y+ + A

]
ε =

Cµk
2

uτκy

k =
u2τ√
Cµ

(1.16)

(1.17)

(1.18)

and in the viscous sublayer, the closest to the wall:

ūx = uτy+

As for the inlet boundary conditions, provided the average velocity field U at the inlet,

and given a turbulence intensity level defined as I :=

√
v′x

2

U2 , if the fluctuations v′i2 are
considered isotropic (v′i2 = v′j

2,∀i, j = x, y, z), we can write k = 1
2
(v′x

2 + v′y
2 + v′z

2) =

1| The Navier-Stokes equations and Turbulence models 11

2
3
(IU)2. Common values for I are included in the range 5%-20%. Finally, for ε, define
ReT := lk1/2

νT
the Reynolds number based on the turbulent fluctuations and the turbulent

length scale l and assume it to have order of magnitude 1: lk1/2

νT
= lεk1/2

Cµk2
= 1, then

ε = Cµk3/2

l
at the inlet.

1.3.3. The k-ω model

This model has been proposed in 1942 by Kolmogorov and further developed and corrected
by other (Landau and Spalding, Wilcox, Speziale). Here the couple of partial differential
equations describe k, the turbulent kinetic energy (again k = [V]2), and ω, which can be
seen as a characteristic frequency or the dissipation rate ε normalized by the turbulent
kinetic energy k (i.e.: ε

k
). In any case, ω = [T]−1 = [V][L]−1. Therefore, by matching the

dimensions, we can express νT = k
ω
. By noting that in 1.3.2 νT = Cµ

k2

ε
, we can retrieve

the coupled equations for k-ω by substituting ε = Cµkω. Then (1.7) becomes:

∂

∂t
k + ūj

∂

∂xj
k − ∂

∂xj

[
(ν + σ∗νT)

∂

∂xj
k

]
=

1

ρ
τRij

∂

∂xj
ūi − β∗kω , on Ω (1.19)

and (1.8) becomes:

∂

∂t
ω + ūj

∂

∂xj
ω − ∂

∂xj

[
(ν + σνT)

∂

∂xj
ω

]
− α

1

ρ

ω

k
τRij

∂

∂xj
ūi + βω2 = 0 , on Ω (1.20)

The involved coefficients are calibrated to best suit some benchmark cases. OpenFOAM
sets as default values: σ∗ = 0.5, β∗ = 0.09, σ = 0.5, α = 0.52 and β = 0.072.

For our purposes, the k-ω model has been preferred to the k-ε model, exploiting its
superior performance for wall-bounded boundary layers and its suitability for adverse
pressure gradient and separation.
In general, the two equations approach is more precise but entails a greater computa-
tional burden than Spalart-Allmaras model. In [17], whose result is reported in Section
2.4, Spalart-Allmaras is used as low fidelity but not expensive model, and k-ω model as
high fidelity but more expensive model, while in our cases of Chapter 3, k-ω model is used
both for low and high fidelity simulations, with different grid refinement.

12 1| The Navier-Stokes equations and Turbulence models

1.4. The SIMPLE algorithm

The Semi-Implicit Method for Pressure Linked Equations (SIMPLE), presented in [14],
is an iterative method proposed by Spalding to solve Navier-Stokes system.

Consider again Navier-Stokes equations. Let us focus on the steady, vector formulation,
and take f = 0:

 (u · ∇)u− ν∆u = −1

ρ
∇p , on Ω

∇ · u = 0 , on Ω

(1.21a)

(1.21b)

Note that from now on, for the sake of simplicity and to fit the usual notation, we will
denote by p what would properly be 1

ρ
p, the so called kinematic pressure.

Following the usual workflow, the weak formulation of (1.21) reads:

“Find (u, p) ∈ (V ×Q) such that:

a(u,v) + c(u,u,v) = −b(v, p)

b(u, q) = 0

u = g , on ΓD

(1.22a)

(1.22b)

(1.22c)

∀v ∈ V0, ∀q ∈ Q”

being V := [H1(Ω)]
n and Q := L2(Ω),with n the domain dimension, proper spaces for

u and p, v and q suitable test functions, g a function representing Dirichlet boundary
conditions on ΓD ⊂ ∂Ω and V0 ⊂ V of functions vanishing on ΓD. Moreover, a (·, ·),
b (·, ·), c (·, ·, ·) are bilinear and trilinear forms, defined as follows:

a(u,v) :=

∫
Ω

ν∇u : ∇vdΩ

b(u, q) := −
∫
Ω

q∇ · vdΩ

c(w,u,v) :=

∫
Ω

(w · ∇)u · vdΩ

(1.23a)

(1.23b)

(1.23c)

By expressing each function with a discrete approximation in a desired space, the discrete

1| The Navier-Stokes equations and Turbulence models 13

formulation reads similarly:
“Find (uh, ph) ∈ (Vh ×Qh) such that:

a(uh,vh) + c(uh,uh,vh) = −b(vh, ph)

b(uh, qh) = 0

uh = gh , on ΓD

(1.24a)

(1.24b)

(1.24c)

∀vh ∈ Vh,0, ∀qh ∈ Qh”

where all the functions are considered discretized in the proper spaces Vh, Qh and Vh,0, of
dimension Nv, Nq and Nv respectively.

Since the system (1.24) needs to be fulfilled for each test functions in Vh,0×Qh, it is enough
to be satisfied for all the (finite) basis functions of those spaces. Denoted as {ϕj}Nv

j=1 the
vector basis functions for Vh,0 and {ψj}Nq

j=1 the scalar basis functions for Qh, we can ex-
press uh and ph as a linear combination of the basis functions: thus uh =

∑Nv

j Ujϕj and
ph =

∑Nq

j Pjψj.
Substituting this formulation in 1.24 can be written in its matrix formulation as:

{
AU + C(U)U +BTP = 0

BU = 0

(1.25a)

(1.25b)

with the matrices resulting from the computation of the bilinear and trilinear forms.
Namely:

Aij = a(ϕj, ϕi) , A ∈ RNv × RNv

Bij = b(ϕj, ψi) , B ∈ RNq × RNv

C(U)ij =
Nv∑
k=1

Ukc(ϕk, ϕj, ϕi) , C(U) ∈ RNv × RNv

(1.26a)

(1.26b)

(1.26c)

which can be reduced to:

M(U)

[
U

P

]
= 0 (1.27)

14 1| The Navier-Stokes equations and Turbulence models

where M =

[
A+C(U) BT

B 0

]
, and uh appearing in this matrix makes the problem non

linear, thus needing a specific treatment to linearize this term.

Consider now the formulation in 1.25a, but without including the term ∇ph in the vectorial
form: in particular it can be written as AU + C(U)U = −∇ph, being ∇ph a discrete
evaluation of ∇p. Being a non linear equation in U , an iterative method is needed.
Once set an initial guess both for U (UΓ30256) and P (PΓ30256), define M̃k := M̃(U k) =

A + C(U k) the matrix resulting at each iteration. This matrix can be decomposed in a
diagonal and an off-diagonal matrix: M̃k = Dk −Hk, with Dk diagonal, Hk off-diagonal.
Therefore, the algebraic formulation of the momentum equation can be written as M̃kU =

(Dk −Hk)U = −∇P k, which can be solved for U by mean of the inverse of the diagonal
matrix Dk:

U = Dk−1
(HkU k)−Dk−1∇P k (1.28)

where HkUk is considered in place of HkU to easily solve the equation. Denote the
resulting solution U as U k+1/2: it is a partial solution, fulfilling the momentum equation
(1.25)a, but anything as been said about the continuity equation (1.25b).
Merging U k+1/2 just found in 1.25b, we end up with a Poisson problem to be solved for
P :

∇ · (Dk−1∇P) = ∇ · (Dk−1
(HkUk)) (1.29)

Denoted by P k+1 the solution of (1.29), we correct U k+1/2 by substituting P k+1 in (1.28),
thus obtaining U k+1.

Algorithm 1.1 SIMPLE algorithm (coupled with k-ω turbulent model)
1: Initial guess for velocity and pressure fields: U0, P0

2: while convergence criterion not fulfilled do
3: Build matrix M̃k = A+ C(U k)
4: Find matrices Dk and Hk s.t. M̃k = Dk −Hk

5:
6: Solve momentum equation 1.28: U k+1/2

7: Solve continuity equation 1.29: P k+1

8: Correct the velocity vector by mean of P k+1: U k+1/2 → U k+1

9:
10: U k = U k+1, P k = P k+1

11: end while

A new algorithm iteration can now start, shifting U k+1 to U k and P k+1 to P k, up to a

1| The Navier-Stokes equations and Turbulence models 15

desired convergence criterion.
In case of turbulent flows, once computed U k+1, an algebraic system can be solved for
the turbulent kinetic energy (k) and for ε or ω, depending on the chosen model.
In Algorithm 1.1, the SIMPLE algorithm coupled with k-ω model is summarized.

1.5. OpenFOAM implementation and test case

OpenFOAM is an open source software developed in C++ to perform high-performance
CFD simulations [4]. It provides several solvers and all the most wide spread turbulent
models, included those described in Section 1.3. Moreover, it gives the user the possibility
to customize his own solvers or models.
As for mesh construction we relied on the application blockMesh, included in OpenFOAM
itself: all the faces and edges can be specified, together with the type of each mesh face
(inlet, outlet, wall...) and the mesh refinement, which can be either homogeneous or lo-
cally thickened. Finally, initial and boundary conditions can be easily specified, together
with flow properties.
At first, we exploited OpenFOAM to analyse the two most used turbulence models (k-ε
and k-ω, see Section 1.3) on a common benchmark case, the bidimensional fully developed
turbulent channel flow (TCF): a simulation for each model has been performed and the
results have been compared with high-fidelity results, obtained by mean of DNS simula-
tions by [3].

The channel is a 2D domain, with half height h = 1m, and without an actual z ex-
tension, where just a single computational cell is present (Table 1.1). The domain has
been simulated to be longitudinally infinite, thus cyclic boundary condition have been
imposed at the inlet and outlet. The lower boundary condition is a no slip condition,
due to the presence of the wall, while the upper boundary is meant as a symmetry line,
so that only half of the whole channel is simulated, reducing computational costs (Table
1.1). The chosen data makes the case fully turbulent, and since a fully developed flow is
considered, a stationary simulation has been preferred.

As a convergence criterion for the iterative solution of the system, Ux, k, ε and ω are
requested to be less then or equal to 10−3: this conditions make k-ω to converge in 599
iterations and k-ε to converge in 1329 iterations of the SIMPLE algorithm for the mesh
described in Table 1.1. In Figure 1.4 longitudinal velocity profiles obtained with k-ω and
k-ε models are compared against DNS observations taken from [3]. On background the
complete velocity field is reported for the whole channel height, as obtained by Open-

16 1| The Navier-Stokes equations and Turbulence models

domain dimensions [m] mesh refinement domain BC

L 8π Nx 100 inlet cyclic

h 1.0 Ny 100 outlet cyclic

d 0.1 Nz 1 base wall no slip

central line symmetry line

Table 1.1: Domain properties and boundary conditions (cfr: [3]).
Nz = 1 makes the case bidimensional.

flow properties

ν 10−4 m2/s

Ux 1.0 m/s

Reh 104

I 5%

Table 1.2: Flow properties.
Re is computed with respect to the half-height

of the channel (cfr. [3]). I represents the
turbulent intensity at the inlet.

Figure 1.3: Residuals for ūx, k and ω in simpleFoam solver coupled with
k-ω model in the turbulent channel flow. Related domain and flow

properties are in Tables 1.1 and 1.2

FOAM with the k-ω model. As commonly noted, k-ω model better fits the behaviour of
the velocity field close to the wall, while k-ε is slightly preferable in the middle of the
channel, where k-ω underestimates the longitudinal velocity field.

Figure 1.4: k-ε model and k-ω model profiles for longitudinal velocity ūx compared to the DNS observations from [3].
On the left side profiles are plotted, on the right side the same profiles are plotted in logarithmic scale.
k-ω better fits the observations close to the wall than k-ε, which is more precise in the central region.

Focus is only on the velocity field because it will be the core of the analysis in Chapter 2 and 3
Mesh is refined closed to the wall through simpleGrading OpenFOAM functionality.

17

2| Field Inversion

In this chapter Field Inversion (FI) workflow for state estimation is presented. After a
general description of the problem and its formulation in the Bayesian framework (Section
2.1) two cases are distinguished: gradient based methods (Section 2.2) and the so called
‘Derivative Free methods’ (Section 2.3), including the Kalman Filter methods (KF), and
in particular the Ensemble Kalman Filter (EnKF, subSection 2.3.1). Finally, DAFI library
is presented and its EnKF implementation is exploited, focusing on its coupling with
OpenFOAM (Section 2.4).

2.1. The Field Inversion workflow

In many areas of science and engineering, it is a common task to infer physical input
fields from observations of an output quantity: in field inversion workflow two sets of
fields are related to each other through a forward model and observations of the output
fields are used to correct the input fields. The forward model generally consists of a
system of PDEs and the resulting numerical model, usually affected by uncertainties, is
tried to be improved by incorporating observations. This task can be performed by using
data assimilation techniques iteratively: the iterations are required to account for the
non-linearity of the forward model since data assimilation filtering techniques assume a
linear mapping between the state and observations ([18]).

More formally, denote the forward model by R(β), where β is an input field required
by the model, and by d the measured observations: the goal of the field inversion is to
reconstruct βOPT from the data, such that R(βOPT) best approximates d.

One approach is to assume that the data are affected by independent, normally distributed
errors and to find the Maximum Likelihood estimator (MLE) to find the corrective field
which maximizes the probability of the data given the corrective field: thus, the objective
is to estimate βMLE

:= argmin
β

∥R(β)− d∥2.
If the forward model is non-linear, there might be several local optima, or in some cases
βOPT might not exist, for example because of too heavy noise in the data, or even there

18 2| Field Inversion

might exist multiple corrective fields leading to the output corresponding to the data. In
this case, the solution to the inverse problem is not unique. Finally, the problem might
be ill-conditioned, and it is possible that a small change in the data causes a large change
in the resulting model.

Another strategy is to consider a Bayesian setting for the problem and find a probability
distribution over corrective fields rather than a single corrective field, as in the case of the
maximum likelihood approach; from Bayes’ rule:

p(β|d) = p(d|β)p(β)
p(d)

(2.1)

is the posterior distribution over the corrective fields given the data, where p(β) is the
prior distribution for β, p(d|β) quantifies the likelihood of observing d given parameter
realizations β and p(d) is a normalizing term ensuring the total posterior probability to
be 1. Assuming that the observed data d consists of the sum of the forward model output
R(β) and a Gaussian noise ξ ∼ N (0, Cm), with Cm the covariance matrix for ξ, then
d|β ∼ N (R(β), Cm). Also, that β ∼ N (βPRIOR, Cβ), where βPRIOR is the prior guess for β

mean and Cβ represents the prior covariance matrix.
Therefore, (2.1) becomes

p(β|d) ∝ e−J (2.2)

where

J :=
1

2
∥d−R(β)∥Cm

+
1

2
∥β − βPRIOR∥Cβ

=
1

2
[d−R(β)]T C−1

m [d−R(β)] +
1

2
[β − βPRIOR]

T C−1
β [β − βPRIOR]

(2.3)

By minimizing J , the maximum a posteriori estimate (MAP) is found.
Covariance matrices can be chosen in several ways, depending on the influence assumed
among the variables ([20]).

In section 2.2 and 2.3 two different optimization procedures are proposed to minimize
the function J in (2.3).

In this work, the forward model R(·) corresponds to the RANS model and the measured
data corresponds to high-fidelity data: these data can be taken from experimental mea-

2| Field Inversion 19

surements, from DNS simulations, or from RANS simulations performed on highly refined
meshes.

Refer, in particular, to the RANS model: the forward model captures the correct physics
but there are uncertainties in some input fields, such as the Reynolds stress tensor τR,
which requires a modelisation representing the largest source of uncertainty in RANS
simulations. The input quantity β to be inferred can be directly τR in (1.4), as in [23],
or the νT term in Eddy Viscosity models (section 1.3), as in [18], or the constant values
appearing in the turbulence models equations for k, ε or ω: this tackles the spread of
uncertainty in the model and makes the output fields, for instance the velocity field,
better fit the experimental data.

2.2. Gradient based methods

Several methods have been proposed to maximize J in (2.3).
In gradient-based optimization methods, an approximation of the gradient of J is used
to determine the direction to step into [13]. For the computation of the gradient, it is
necessary that the objective function is sufficiently smooth. Furthermore, gradient-based
methods only guarantee convergence when there exists a single global minimum or if the
initial guess is sufficiently close to the global minimum, given an appropriate step size
([20]).

The most immediate gradient-based optimization algorithm is Gradient Descent Algo-
rithm (or Gradient Ascent Algorithm if we want to maximize −J): it is a first-order
iterative optimization algorithm to find a local minimum (respectively, maximum) of a
differentiable function. The idea is to iteratively use the gradient as the direction in which
to change the parameters at step n with a given step size αn. The i-th element of the
corrective terms then updated according to

βn+1
i = βn

i − αn ∂

∂βi
Jn (2.4)

being, indeed, ∂
∂βi
Jn the gradient of function J , to be approximated somehow. Conjugate

Gradient Method ([15]) and its generalization of Fletcher–Reeves nonlinear conjugate
gradient method ([10]) improve the optimization by requiring subsequent search directions
to be conjugate.

Newton’s method, instead, exploits second derivative for each iteration update:

20 2| Field Inversion

βn+1
i = βn

i + αn

(
∂2

∂βiβj
Jn

)−1
∂

∂βi
Jn (2.5)

with the Hessian ∂2

∂βiβj
Jn to be properly estimated ([20]). This method converges quadrat-

ically, but, due to the calculation of the Hessian it is significantly more expensive for
high-dimensional problems. Furthermore, Newton’s method can suffer far away from the
optimum and when the Hessian is close to be singular. Quasi-Newton methods trade off
the cost of computing the Hessian and the increased convergence of quadratic methods
by approximating the Hessian.

In any case, these methods require a numerical approximation of the gradient and the
Hessian: this can be achieved by mean of a sensitivity analysis, which has the drawback
of requiring a great number of simulations, or by mean of the analysis of the adjoint
problem, where the gradients can be obtained at a cost which is practically independent
of the number of optimization parameters, as done in [20].

2.3. Derivative Free methods

On the other hand, Derivative-Free Methods perform field inversion avoiding to appeal
to the derivatives of function J . A derivative free approach is advantageous, since ob-
taining the gradient of a cost function with respect to input fields in complex science and
engineering models could be a non-trivial task. Genetic algorithms, for instance, use an
analogy of the theory of evolution to search for an optimal solution ([7]): the optimization
problem is parameterized into a set of genes, and relies on biologically inspired operators
such as mutation and crossover. The evolution usually starts from a base population of
randomly generated individuals, and is an iterative process, with the population in each
iteration called a generation. In each generation, the fitness of every individual in the
population is evaluated; the fitness is usually the value of the objective function in the
optimization problem being solved. The more fit individuals are selected from the current
population, and each individual’s genome is recombined to form a new generation. The
new generation of candidate solutions is then used in the next iteration of the algorithm.
Commonly, the algorithm terminates when either a maximum number of generations has
been produced, or a desired fitness level has been reached for the population. These algo-
rithms generally work for non-smooth objective functions with multiple local optima, but
suffer from relatively slow convergence. Generally, the high-dimensional nature of some
optimization problems requires a large population size, and therefore a large number of
cost function evaluations.

2| Field Inversion 21

Another approach to address estimation problems is Kalman Filter (KF), introduced
in the 60s’ as recursive filters to improve the prediction of the model state by taking
into account measured data ([11]): KF is meant for situations where the model is linear
and the model and observation errors are assumed to be zero mean Gaussians with given
covariance matrices. In case of large dimension problem, Ensemble Kalman Filter (EnKF)
is considered, as a Monte-Carlo approximation of KF ([9]).

2.3.1. The Ensemble Kalman Filters

In this work, Derivative-Free approach has been chosen, and in particular EnKF is used
to reconstruct the desired parameters.

Consider again (2.3). To introduce KF, start considering a linear forward model, so that
the model output can be expressed in a matrix formulation as z = Hβ. Moreover, let
keep valid assumptions made in Section 2.1: β ∼ N (βPRIOR, Cβ) and ξ ∼ N (0, Cm). Then
to compute

β̂ = argmin
β

[
1

2
∥d−Hβ∥Cm

+
1

2
∥β − βPRIOR∥Cβ

]
(2.6)

gradient vanishing can be imposed:

∇ (J(β)) = Cβ
−1(β − βPRIOR)−HTCm

−1 (d−Hβ) = 0 (2.7)

Then:
Cβ

−1(β − βPRIOR) = HTCm
−1 (d−Hβ)(

Cβ
−1 +HTCm

−1H
)
β = HTCm

−1d+ Cβ
−1βPRIOR

(2.8)

which results in:

β̂ =

P︷ ︸︸ ︷[
Cβ

−1 +HTCm
−1H

]−1 (
HTCm

−1d+ Cβ
−1βPRIOR

)
= P

[
HTCm

−1d+ Cβ
−1βPRIOR +HTCm

−1HβPRIOR −HTCm
−1HβPRIOR

]
= P

[
P−1βPRIOR +HTCm

−1 (d−HβPRIOR)
]

= βPRIOR + PHTCm
−1 [d−HβPRIOR]

= βPRIOR +K [d−HβPRIOR]

(2.9)

22 2| Field Inversion

Figure 2.1: Qualitative representation of EnKF algorithm: at each time step a new observation is measured and state
variable probability distribution is updated. Then, an ensemble of N evaluations of the model are performed. At each

state update step, covariance matrix C′
β is estimated from the sample according to (2.13)

once defined
K := PHTCm

−1 =
[
C−1

β +HTCm
−1H

]−1
HTCm

−1 (2.10)

the Kalman Filter Gain matrix.

Therefore, the posterior consditional distribution of β|d can be written as:

β|d ∼ N (β̂, Ĉβ) (2.11)

where
Ĉβ = P =

[
C−1

β +HTCm
−1H

]−1 (2.12)

The obtained distribution is the posterior distribution, a correction of the prior belief
about β distribution by mean of data observations. Then, the model is evolved in time
exploiting this new belief on input field, and corrected again with a new observation
measured at the following time step. In Figure 2.1, a sketch of KF algorithm is shown:
for ease of picture, the particular case in which state space and observation space (both
scalar spaces) coincide is considered.

The EnKF is a Monte Carlo approximation of KF, which avoids evolving the covariance
matrix Cβ of β: the covariances of the current estimate involved in the Kalman filter is
approximated by computing the sample covariance of a set (ensemble) of cases (particles)
sampled from the distribution. The covariance matrix of the state vector β need not be
evolved, thus eliminating the costs associated with storing, multiplying and inverting the
matrices appearing in (2.12) and (2.10).

2| Field Inversion 23

It is estimated as

C ′
β =

1

N − 1

N∑
j=1

(β − β̂)(β − β̂)T (2.13)

being β̂ = 1
N

∑N
j=0 βj the sample mean of columns of B.

This evaluation and update procedure can be repeated iteratively: originally, KF were
introduced to calibrate model parameters through time (cfr. Figure 2.1), correcting them
by assimilating new data at any desired time interval. Thus iterations consist in advancing
the model in time. Instead, if a steady case is considered, time advancing dynamics is
substituted by an artificial dynamics ([18]): at each iteration, belief on β is updated by
mean of observations and the model is run again considering state variable sampled from
the new updated distribution. This procedure is replicated up to a desired convergence
criterion or a maximum number of iterations. In Algorithm 2.1, EnKF algorithm is
summarized in its iterative version.

Algorithm 2.1 EnKF algorithm
1: Sample N ensembles βj ∼ p(β) : prior ensemble
2: Build matrix B = [β1, ...,βN] ∈ Rn×N

3: Build matrix D = [d1, ...,dN] ∈ Rn×N of observations (dj = d+ ξj, ξj ∼ N (0, Cm))
4: while convergence criterion not fulfilled do
5: Compute matrix C ′

β, the sample covariance of columns of B
6: Compute matrix K ′ = C ′

βH
T (HC ′

βH
T +R)−1

7: Evaluate the model for each column of B : Z = HB

8: Update the ensemble matrix B : B̂ = B +K ′(D − Z)

9: end while

In Figure 2.2, Figure 2.1 is revised to sketch EnKF for a time dependent model: after a
state update due to data measurements, an ensemble of Nsamples evaluations of the model
are performed to estimate the sample covariance matrix C ′

β according to (2.13).

Note that, excepted for the prior ensemble, columns of matrix B are not actually inde-
pendent, since the updated distribution is somehow influenced by each column (i.e.: each
particle of the ensemble): however, the method is thought as if they were independent.
EnKF is preferable with respect to classical KF for models resulting in an high dimensions
numerical solutions.

We are interested to couple EnKF with steady Raynolds Averaged Navier-Stokes equa-

24 2| Field Inversion

Figure 2.2: Qualitative representation of EnKF algorithm: at each time step a new observation is measured and state
variable probability distribution is updated. Then, an ensemble of N evaluations of the model are performed. At each

state update step, covariance matrix C′
β and mean value µ̂ are estimated from the sample according to (2.13)

tions, which are fully non linear and with large dimensions numerical solutions: evaluation
of the model z = Hβ considered above is replaced by z = R(β), where R(·) represents
our model and iterations are considered as fictitious dynamics for the model, and EnKF
algorithm is exploited to perform Field Inversion.

2.4. DAFI implementation

DAFI is an open source library for ensemble-based Data Assimilation and Field Inversion
([1],[2],[17]) written in Python: its structure allows for interchanging different solution
methods and different physics problems. The code provides native tools for integrating the
library with OpenFOAM and operates in a non intrusive way: no gradient computations
are required and no modifications to the physics solver are needed.

DAFI is particularly useful to inverse problems involving continuous fields over a de-
sired domain while does not provide native functionalities to infer constant states: case
studied in [17] is here reported as base example to better present and understand DAFI
capabilities.

Let us consider (1.5) in a steady case and develop τAij according to Boussinesq assumption
presented in section 1.3:

ūj

∂

∂xj
ūi +

∂

∂xi
pρ −

∂

∂xj

(
(ν + νT)

∂

∂xj
ūi

)
= 0 , on Ω

∂

∂xj
ūj = 0 , on Ω

(2.14a)

(2.14b)

where f̄ = 0 and pρ = 1
ρ
P . Following the workflow presented in Section 1.3 the term νT

2| Field Inversion 25

can be modelled according to some further assumptions, exploiting the available closure
models (k-ε, k-ω, Spalart-Allmaras, etc.). In this setting, instead, we want to infer νT field
by mean of Field Inversion, thus doing without a turbulence model. On this purpose, a
new customized OpenFOAM solver has been coded by [17], called nutFoam and based on
the alreay existing simpleFoam solver implementing the SIMPLE algorithm (Section 1.4):
in particular, a new field nut is declared inside createFields.H (Listing 2.1) and directly
inserted UEqn.H where momentum equation is actually solved (Listing 2.3).

1 volScalarField nut (
2 IOobject (
3 "nut",
4 runTime.timeName (),
5 mesh ,
6 IOobject ::MUST_READ ,
7 IOobject :: AUTO_WRITE
8),
9 mesh

10);

Listing 2.1: createFields.H

1 nut = Foam::max(nut , nutMin);
2 tmp <fvVectorMatrix > tUEqn (
3 fvm::div(phi , U)
4 - fvm:: laplacian(nut ,U)
5 - fvm:: laplacian(nu ,U)
6 - fvc::div(nut*dev(T(fvc::grad(U)))) //nut field is directly

considered in the momentum equation
7 - fvc::div(nu*dev(T(fvc::grad(U))))
8 ==
9 fvModels.source(U)

10);

Listing 2.2: UEqn.H for nutFoam solver

1 tmp <fvVectorMatrix > tUEqn (
2 fvm::div(phi , U)
3 + MRF.DDt(U)
4 + turbulence ->divDevSigma(U) // turbulence is modelled
5 ==
6 fvModels.source(U)
7);

Listing 2.3: UEqn.H for simpleFoam solver

26 2| Field Inversion

For the case at hand, a Periodic Hills Channel (PHC) has been considered. In Figure 2.4
the domain grid can be seen and in Table 2.1 and 2.2 properties of mesh and fluid for
this flow case are summarized. Note that both for longitudinal and transversal direction
a uniform ratio of expansion for the cells has been chosen to refine the mesh near the
boundaries, specified in OpenFOAM by the keyword simpleGrading in system/blockMeshDict

file.

domain dimensions [m] mesh refinement domain BC

L 9 Nx 100 inlet cyclic
h 2.036 Ny 30 outlet cyclic
d 0.1 Nz 1 bottom wall no slip
hH 1.0 top wall no slip

Table 2.1: Domain properties (cfr: [17]). Nz = 1 makes the case bidimensional.
h is meant as the inlet and outlet faces height while hH and is the height of the hills

flow properties

ν 0.000017857142857142857m2/s

Ub [1.0, 0, 0]m/s

ReH 5600

I 5%

Table 2.2: Flow properties: Re is computed with respect to hH (cfr. [17]). I represents the turbulence intensity at the inlet.

EnKF analysis is implemented by DAFI in nutfoam.py while user input can be inserted in
dafi.in. In particular, this latter file allows the user to specify:

inverse_method: in our case EnKF;

nsamples: number of samples composing the ensemble;

max_iteratios: number of EnKF iterations to be performed;

klmodes_file, nklmodes: discussed below;

nut_baseline_foamfile: prior mean for νT distribution;

obs_file: where read the observations to calibrate the state variables.

2| Field Inversion 27

To establish a prior mean for νT field, a low cost simulation is performed at the beginning,
exploiting Spalart-Allmaras model (Section 1.3.1): obtained field is taken as prior mean
for EnKF algorithm. Moreover, to generate the prior samples, assumed to be Gaussians,
a Gaussian Field around the estimated mean is required. Karhunen-Loeve (KL) decom-
position is used to sample an approximation of it: more precisely, the Gaussian random
field G(x, ω) can be represented as the infinite series

G(x, ω) = G0(x) +
∞∑
i=1

√
λibiYi(ω), (2.15)

where G0(x) is the mean field, λi and bi are the corresponding eigenvalues and eigenvectors
of the covariance matrix CνT and Yi(ω), i = 1, 2, . . . is a sequence of i.i.d random variables
with standard normal distribution. For a suitable N , specified by the user as nklmodes in
dafi.in, the truncated KL series

G(x, ω) = G0(x) +
N∑
i=1

√
λibiYi(ω), (2.16)

represents a reliable approximation of the original random field. For this task, eigenvalues
and eigenvectors of the covariance matrix CνT are computed in klmodes.py, where also the
kernel can be specified. In this specific case, accounting for the periodic nature of the
flow, DAFI relies on a mixed periodic squared exponential kernel, thus the covariance
matrix entries can be written as:

Cij
νT

= σ2exp

{
−
(
2
sin2(|xi − xj|π/p)

l2x
+

|yi − yj|2

2l2y
+

|zi − zj|2

2l2z

)}
(2.17)

where σ is a user defined coefficient for the variance of the Gaussian Field, lx, ly, lz repre-
sent the correlation lengths in each direction, xi and xj are all the mesh cells pairs and p
the periodicity of the domain. All the computed modes are saved in klmodes_file specified
in dafi.in. [17] shows that the first 200 modes capture the largest part of the variance.
Using this reduced set of modes to represent the state reduces the dimensionality of the
state space from Nxy, corresponding to the number of cells, to 200, corresponding to
the number of KL modes. The state would now consist of the 200 coefficients Yi to be
estimated.

As for the observations of mean velocity field ū, [17] proposes to consider values obtained
by a high refined RANS simulation coupled with k-ω model: in that work only one
observation is considered to calibrate νT field, while in Chapter 3 cases with several

28 2| Field Inversion

Figure 2.3: Profiles of longitudinal mean velocity field ūx for the PHC.
On the left side, profiles at different x are reported. On the right side, a focus around the only observation: after EnKF

algorithm the profile approaches the measured value.

sparse observations have been faced.

The core of EnKF algorithm is implemented in nutfoam.py: it provides the connection
between EnKF and OpenFOAM. At first, the flow case is initialized and a prior ensemble
is sampled. Thanks to parallelized code, nsamples OpenFOAM simulations are run simul-
taneously exploiting nutFoam solver (Section 2.4), Kalman gain matrix K ′ and sample
covariance matrix C ′

nuT
are computed and distribution for νT is updated. DAFI itself

provides methods to properly read and write files in OpenFOAM style, which have been
sligthly modified to best fit our needs for this work.

In Table 2.3 some other parameters of this case are reported, then results are shown and
briefly discussed.

EnKF prameters

Nsamples 10

max iterations 10

nklmodes 200

obs position [7.0, 2.5]

Table 2.3: EnKF parameters (cfr. [17]).

As can be seen in Figure 2.3, the inferred νT field leads to a better estimate of the
measured data; it is obtained as the sample mean of all the ensemble at the last EnKF
iteration. [17] also points out that the entire velocity field can be improved with a single
observation. In Figure 2.4, the whole inferred νT field is plotted.

2| Field Inversion 29

Figure 2.4: νT field resulting from the posterior sample mean of the inferred ensemble νT fields.

.

31

3| Cases of study and results

In this chapter some cases of study and results are reported. In Section 3.1 the same
paradigm presented in Section 2.4 is used to infer νT field in the case of a Turbulent
Channel Flow (TCF), considering as high fidelity results DNS simulations from [3]. Then
we try to extend the workflow considering k-ω model (Section 1.3) as turbulent model and
trying to infer one of the coefficients included in it: in particular, β∗ has been noted to
be significant for such a study. In Section 3.2 EnKF algorithm has been slightly modified
to give constant results over the domain instead of fields, while in Section 3.3 a new
OpenFOAM turbulent model is proposed to allow the forward simulation to consider β∗

as a field over the domain. In these last two cases, both Periodic Hills Channel Flow
(PHC) and Turbulent Channel Flow (TCF) are studied.

We will refer to profiles obtained with prior distribution of the states as the ‘baseline’ and
to profiles obtained with the inferred states as the ‘corrected’ profiles.

3.1. Inference on νT field for TCF

In Section 2.4 the case of field inversion for a PHC has been discussed, starting from [17].
In particular, νT field over the domain is inferred by mean of EnKF, without a turbulent
model by mean of nutSolver. As first case of study, the same is done in this section for the
TCF case presented in 1.5. In Table 3.1 and 3.2 the case settings about computational
mesh and EnKF algorithm are listed, while flow properties are the same considered in
Table 1.2.

For this specific case, the longitudinal correlation length lx in the mixed periodic squared
exponential kernel has been set to 5.0, much higher than the example presented in Section
2.4: this is aimed to reduce longitudinal variability of eigenfunctions when constructing
the KL decomposition for the prior Gaussian Field for νT (cfr. Section 2.4), as expected
for the geometry at hand. In figure 3.1, eigenvalues λ of the prior covariance matrix
normalized by λMAX are reported: as can be noted, for KL truncation we can consider only
the first 30 modes, which capture almost all the variance. In Figure 3.2 the first, fifth and

32 3| Cases of study and results

Figure 3.1: Cβ normalized eigenvalues decay for TCF. Almost all the variance is captured by the first 30 modes.

Figure 3.2: From left to right: first, fifth and ninth eigenfunctions (modes) for the considered covariance kernel.
σ2 = 1.0, ly = 0.25 as suggested in [17], lx = 5.0 to limit longitudinal fluctuations.

ninth considered modes are reported as an example.
As for observations, we rely on DNS results from [3], while k-ω model with usual constant
values is used to get the prior mean field of νT . Finally, Figure 3.3 motivates the choice to
perform 4000 nutFoam iterations for each sample of the ensemble for any EnKF update.

Our prior mean for νT has been obtained through a k-ω simulation, and in Figure 3.4
the resulting ūx profile is reported in red. This profile approximates quite well the DNS
observations (black crosses) but still suffers from inaccuracy. The green profile is obtained
performing a simulation which relies, for νT , on the sample mean of all posterior νT fields
inferred by EnKF from the observations. As can be seen, this profile better fits not only

domain dimensions [m] mesh refinement domain BC

L 8π Nx 60 inlet cyclic

h 1.0 Ny 30 outlet cyclic

d 0.1 Nz 1 base wall no slip

central line symmetry line

Table 3.1: Domain properties and boundary conditions (cfr: [3]).
Nz = 1 makes the case bidimensional.

3| Cases of study and results 33

EnKF parameters

Nsamples 15

EnKF iter 10

Nmodes 30

obs positions [12.5, 0.156] [12.5, 0.482] [12.5, 0.928]

Table 3.2: EnKF parameters.

Figure 3.3: Residuals for ūx, ūy and p in nutFoam solver for TCF.

the observations used to correct the model (Table 3.2 and Figure 3.4 left) but approaches
all the DNS results: just few observations correct the profile even in other locations.
To quantify the improvement, the L2 distance between observation and profiles has been
computed: it results that the profile obtained with the inferred νT field reduces error from
0.122 to 0.078, thus almost 40% less than the error of the baseline profile obtained with
standard constant for k-ω model.

The resulting inferred νT field is plotted in Figure 3.5 and is coherent with νT field obtained
with standard k-ω. However, comparing what we get with νT field of a highly refined k-ω
simulation, we cannot appreciate any improvement than the baseline: this drawback is
due to high non linearity of the problem and is pointed out also in [17] and [24], where it
is shown that corrections are relevant only for observed field. This could be alleviated by
including observations also from other quantities, as done in [24].

Finally, we can conclude the discussion by noting that the periodic, horizontal geometry
of the domain let us expect results to vary mostly on the transversal direction than the
longitudinal one. This, actually, happens for ūx and νT field, for example (cfr. Figure
1.4): thus we tried to approximate the inferred νT field by averaging it over x. In Figure

34 3| Cases of study and results

Figure 3.4: On the left: ūx baseline profile for ūx obtained with k-ω model. The underlying νT field represents the prior
mean for samples of EnKF ensemble. Here, only 6 ensemble profiles are plotted, for clarity, taken at the first iteration.

Marked observations are those effectively used to correct the state.
On the right: corrected profile obtained with inferred νT is compared against all the DNS observations and baseline

profile. All DNS observations are reported, not only those used for state EnKF correction.

Figure 3.5: νT field resulting from the posterior sample mean of the inferred ensemble νT fields for TCF.
Moreover, high refined νT profile (black) and mean along x axis of inferred νT (green, νAV G

T) are compared, both scaled to
highlight the differences.

3.5, νAV G

T (y) := 1
Nx

∑Nx

i=1 νT (xi, y) has been reported, in green. A simulation performed
with νAV G

T instead of the properly inferred νT shows negligible worsening, as the L2-norm
error results to be 0.0867, 1.1 times the error measured in the proper case.

3.2. Inference on k-ω model constants

As presented in Introduction, the goal of this work is to apply the presented workflow to
infer coefficients involved in Eddy Viscosity turbulence models (Section 1.3). These values

3| Cases of study and results 35

are usually calibrated on simple benchmark cases. In the following, the EnKF algorithm
is slightly modified in order to infer a constant value for the coefficients, instead of a field.
Indeed, natural setting of Kalman Filter as implemented in DAFI allows to consider only
fields over the whole domain to be inferred and not constant values. On the opposite,
standard formulation of Eddy Viscosity models takes as input constant coefficients, and
not fields. For this reason, as explained in Algorithm 3.1, at each iteration, for each
sample of the ensemble, the mean of the correction step output is given as input for the
next prediction step. In this way, the implemented EnKF algorithm is not modified in its
correction step, but OpenFOAM receives as input a constant scalar as coeffcient.

Algorithm 3.1 EnKF algorithm, modified to return a constant corrected state.
1: Sample N ensembles βj ∼ p(β) : prior ensemble
2: Build matrix B = [β1, ...,βN] ∈ Rn×N

3: Build matrix D = [d1, ...,dN] ∈ Rn×N of observations (dj = d+ ξj, ξj ∼ N (0, Cm))
4: while convergence criterion not fulfilled do
5: Compute matrix C ′

β, the sample covariance of columns of B
6: Compute matrix K ′ = C ′

βH
T (HC ′

βH
T +R)−1

7: For each column Bj compute the sample mean µ̂B
j

8: Evaluate the model for each column of B : Z = Hµ̂B
j

9: Update the ensemble matrix B : B̂ = B +K ′(D − Z)

10: end while

Adding this constraint, we can expect we are decreasing the efficiency of the original
algorithm: indeed, we are reducing an information described by a field over the whole
domain just to a single constant value. This will result in an higher number on EnKF
iterations needed to get the final inferred result: a possible measure of the degree of
convergence reached by the algorithm could be the sample variance of the ensemble.

This approach has been tested on several constant coefficients involved in k-ω model: some
considerations are listed below and results can be compared in Figure 3.6. In particular,
an increase of β∗ results in a reduction of mean longitudinal velocity in the region closest
to wall and in an increased velocity in the free stream: thus, in the case of TCF, the
maximum value for ūx reaches higher values than the case of low β∗ while the profile is
under estimated near the wall (Figure 3.6, left). For high values of β∗, k equation would
reduce to

36 3| Cases of study and results

Figure 3.6: Comparisons of different values of β∗,α and σ∗ for k-ω model in TCF.

β∗kω ≈ 0 , on Ω (3.1)

and numerically has been seen that it implies νT to vanish. Actually, profile obtained
for high β∗ approaches the laminar case, with its typical parabolic shape and with the
maximum longitudinal velocity at the center line ux,0 = 3

2
Ub.

A similar behaviour, but less significant, has been registered also for α (Figure 3.6, cen-
tre). Instead, an independence region has been found with respect to σ∗: even choosing
significantly different values, the resulting differences are negligible (Figure 3.6, right).
For usual values of σ∗, the resulting k slightly oscillates around its initial value: we ob-
served numerically that this behaviour is slightly enhanced by low value of σ∗, while for
high values k tends to flatten out to a constant value.

The main weakness of this method is that we are trying to find a constant value all over
the domain, thus EnKF state correction should conciliate regions presenting different
ūx behaviour, in particular for PHC case, where we can distinguish not only close/far
from the wall, but also before/after a hill. This aspect does not allow to consider many
points for the calibration, and also the considered points should belong to similar region
in terms of mean longitudinal velocity field. When attempting to join together a great
number of observations from different region, the computation of Kalman Gain matrix
K ′ in Algorithm 2.1 suffers by ill-conditioning and the algorithm stops because of the
singularity of matrix HC ′

βH
T +R.

In the next sections, we focus our analysis on parameter β∗ in the cases of TCF and PHC.

3| Cases of study and results 37

Figure 3.7: Profiles comparisons for ūx. As expected, inferring a constant over the whole domain leads to minimal
improvement of the corrected profile. EnKF algorithm inferred β∗ = 0.0927.

In blue are the observations actually used for EnKF, in black other DNS data from [17].

3.2.1. β∗ constant for TCF

At first, the idea is applied to TCF case, with the same characteristics listed in Table 3.1.
Again, Nsamples = 15 and Nmodes = 30, while the number of EnKF iterations has been
increased to 25 as said in Section 3.2. Table 3.3 summurizes this informations, together
with observations location, which is not modified. Also parameters for KL decomposition
are the same discussed in Section 3.1.

Since TCF is one of the benchmark cases on which constants are calibrated, we expect
to find a confirmation of the value of β∗ rather than a significant correction. Actually,
sample mean of the inferred β∗ values results to be 0.0927, with a negligible sample
covariance around this value of the order of 10−6. Corrections on the resulting profile are
not evident, and the corrected posterior profile does not approach observations so much:
computed L2 error with respect to DNS observations is reduced from 0.122 to 0.116, only
of 5%. As noticed in Section 3.1, other profiles do not exhibit significant improvements, as
shown in Figure 3.8. However, the slight correction of mean longitudinal velocity profile

EnKF parameters

Nsamples 15

EnKF iter 25

Nmodes 30

obs positions [12.5, 0.156] [12.5, 0.482] [12.5, 0.928]

Table 3.3: EnKF parameters fot TCF.

38 3| Cases of study and results

leads to a correction of the measured shear stress at the wall τw := τxy |y=0 : precisely,
OpenFOAM wallShearStress function computes 1

ρ
τTOT ([6]) which can be approximated to

1
ρ
τ̄xy near the wall (cfr. Figure 1.2) thus resulting in the squared friction velocity u2τ (cfr.

Section 1.3.2), and it goes from 0.0306165 m2/s2 of the baseline to 0.002896 m2/s2 of the
corrected profile, against a measure of 0.00276551 m2/s2 of the highly refined simulation.
Its behaviour inside the whole half channel is reported in Figure 3.8

Figure 3.8: Profiles comparisons for baseline, corrected and high refined k, ω, νT , τw. Since [3] provides only ūx data,
k,ω,νT and τw are extrapolated from an highly refined simulation (Ny = 100). k, ω and 1

ρ
τTOT profiles are in logarithmic

scale to better highlight differences.

3.2.2. β∗ constant for PHC

Let us consider now the PHC case, with the same geometry and flow properties of Tables
2.1 and 2.2. The only exception is related to Ny, which has been reduced because of
computational reasons and also to have a reduced accuracy in the baseline prior profile.
Applying EnKF analysis in this framework will return a correction constant that provides
more precise results still relying on a coarse mesh: we can interpret the inferred result as
a correction to account for in order to tackle inaccuracies introduced by the coarsening of
the mesh. Observations are obtained from an highly refined k-ω simulation.

3| Cases of study and results 39

baseline mesh highly ref mesh

Nx 100 Nx 100
Ny 15 Ny 70
Nz 1 Nz 1

Table 3.4: Mesh refinement for PHC.

As hinted above, we expect the algorithm to suffer different behaviour of the longitudinal
mean velocity profile over the domain. Actually, a first attempt with sparse observations
failed: a too high number of observations, in the order of 10, leads to singularity of matrix
HC ′

βH
T +R which can not be inverted in the computation of the Kalman Gain K ′, while

a reduced number of observations has a negligible correction of β∗ as a consequence. For
this reason, we distinguished three different zones inside the domain where perform the
analysis separately: in particular, we run EnKF with observations only in the central line
of the domain, another with observations only in the region just before the hill and the last
with observations gathered immediately after the hill. Table 3.5 summarizes observations
location. Then the expected result is an inferred constant fitting the specific region on
which it has been calibrated.

observations β∗

post hill [1,0.6] [2,0.1] [2,0.6] [3,0.3] 0.168321
central line at x = 5, 8 obs uniformly distributed 0.138526

pre hill [6,0.3] [7,0.1] [7,0.6] [8,0.6] 0.098404

Table 3.5: Observations for each region of PHC.

EnKF parameters

Nsamples 10

EnKF iter 25

Nmodes 110

Table 3.6: EnKF parameters for PHC.

40 3| Cases of study and results

Figure 3.9: Cβ normalized eigenvalues decay. Almost all the variance is captured by the first 110 modes.

Figure 3.10: Profiles based on the respective inferred β∗ against the baseline, in different region of the domain: after a hill
(left), central region (centre), before a hill (right).

As for EnKF parameters (Table 3.6), for computational reasons the ensemble is composed
of 10 sample, 25 iterations are run and first 110 modes are included, as motivated in Figure
3.9.

EnKF algortihm infers β∗ = 0.138526 for the central line and β∗ = 0.168321 after an hill:
following what is discussed in Figure 3.6, we could expect such a result, since the coarser
baseline we took as starting point underestimates longitudinal velocity profile far from the
wall and overestimates it close to the wall. This misfit decreases in the third considered
region, before the hill, and the inferred value is β∗ = 0.098404. These values are obtained
as the mean of the values returned by each sample of the ensemble, which show a variance
of the order of 10−3. In Figure 3.10 a comparison among profiles is shown: we estimate
a reduction of about 15% of L2 error between each corrected mean longitudinal velocity
field and the highly refined case.

Finally, we run a simulation on the same coarse mesh of baseline but assigning respective
inferred values of β∗ at each zone: this domain subdivision has been performed qualita-
tively (Figure 3.12, above left). Above right, resulting values of mean longitudinal velocity
is plotted, showing the recirculation region just past the hill.

3| Cases of study and results 41

In this case, L2 error decreases of about 20% over the whole domain. In any case, as said
in Section 3.1, we do not observe any significant correction for other fields, such as k, ω
and νT . On the contrary, being τw directly dependent on ūx (τw ∝ ∂

∂x⊥
ū∥, with x⊥ normal

direction and ū∥ parallel velocity component to the wall), we can expect a consequent
improvement. The improvement can actually be observed, in particular at the upper wall
(Figure 3.11), probably as a consequence of the higher correction of ūx.

Figure 3.11: u2
τ profiles compared at upper (above) and lower (below) wall.

We conclude with a comparison among prior (Figure 3.12 below left), corrected (Figure
3.12 above right) and high refinement (Figure 3.12 below right) mean longitudinal velocity
field. As can be seen, recirculation region is reduced in the prior field and not completely
corrected by EnKF: this could be, probably, better investigated by taking more observa-
tions in that region. Instead, we have a correction of the magnitude in the upper part of
the domain, coherently with Figure 3.10.
Prova

3.3. Extension to k-ω model coefficients varying over

the domain

In previous examples, we preserved the idea of providing constant input coefficients to
our turbulence model, according to the canonical formulation. This forced to sacrifice
the EnKF inferred field at each iteration, reducing it to a constant value, specifically the
sample mean of the field. Even if we get some improvements, this workflow suffers from
slow convergence and poor final corrections.
Things got better when we increased the number of degrees of freedom for our coefficients:

42 3| Cases of study and results

Figure 3.12: Above: subdivision of the domain according to zones described (left) and ūx field resulting when associated
inferred β∗ values have been used (right).

Below: prior ūx field (left) and high refinement ūx field (right).

more accurate results are found when allowing coefficients to be piecewise constant, as
proposed in Section 3.2.2. Now we extend our focus to the case in which coefficients can
be considered as a field, varying all over the domain. The only constraint, due to code
structure, is value at the wall, which must be specified as boundary condition for the
field: since k-ω performs quite well here, we decided to keep standard values at the wall
as proposed by [22] and discussed in Section 1.3.3.

In its original formulation, OpenFOAM provides classical version of k-ω model, where
all coefficients are meant as constant. To adapt it to our purposes, a new model has
been implemented allowing to work with fields: we will refer to it as k-ωField model and
it relies directly on k-ω model original implementation. Its implementation is listed in
Appendix A.

This approach, again, has been applied both to TCF and PHC, and results are discussed
below.

3| Cases of study and results 43

3.3.1. β∗ field for TCF

For β∗ optimization on TCF we used same EnKF data as Table 3.2, domain properties as
Table 3.1 and flow properties as Table 1.2. The inferred β∗

AV G
(y) := 1

Nx

∑Nx

i=1 β
∗(xi, y) field

is plotted in Figure 3.13, again as the longitudinal mean as described in Section 3.1. We
can notice that inferred β∗ values oscillate around default value 0.09. In the closest region
to the wall, up to y ∼ 0.15, baseline underestimates the real profile, thus according to
what we pointed out in Figure 3.6 β∗ should be decreased to better fit observations. The
opposite behaviour is expected up to the a half of the domain, where the overestimate
is reduced by increasing β∗. Then, for 0.45 ≲ y ≲ 0.75 baseline still overestimate real
observations, but Figure 3.6 suggests a reduction of the coefficient. Finally, in the central
zone a β∗ > 0.09 best fits observations. Therefore, Figure 3.13 is quite coherent with our
expectations. Moreover, sample average of this inferred field is 0.095, not far from values
suggested in Section 3.2.1 for the same case.

Figure 3.13: β∗ field for TCF optimised as a field over the domain. Inferred profile is compared against default constant
value 0.09.

Comparison of ūx obtained profiles is plotted in Figure 3.14, where an improvement with
respect to all DNS observations can be appreciated, not only with respect to those actually
used for EnKF correction. Moreover, with respect to Figure 3.7, we can observe a better
fit also in the central region of the half channel.

This correction reduces L2 error with observations of 25% with respect to the prior base-
line, from 0.122 to 0.091. Instead, no remarkable improvement can be observed for other
quantities k, ω, νT and τw. For this last quantity, absence of significant improvement
could be motivated by observing position of observations, which do not approach enough
the wall.

β∗ field resulting in Figure 3.13 suggested us a further step, following the same idea

44 3| Cases of study and results

Figure 3.14: ūx profile obtained with optimised β∗ as a field over the domain. In blue, measurements actually used as
observations in EnKF.

domain division β∗

0 ≲ y ≲ 0.15 0.084281346
0.15 ≲ y ≲ 0.45 0.097918427
0.45 ≲ y ≲ 0.75 0.084358754
0.75 ≲ y ≲ 1.0 0.099132271

Table 3.7: TCF domain division and zonal constant coefficients β∗

proposed for PHC in Section 3.2.1: we divided the domain in four longitudinal stripes
and for each zone respective β∗ average was proposed as zonal constant. Qualitatively,
regions have been delimited by values discussed above and summarized in Table 3.7 and
Figure 3.15 left, together with coefficient value for each.

Figure 3.15 right shows a slight worsening of corrected profile with respect to that obtained
in Figure 3.14: this could be due to a loss of information on β∗ when flattening its value
at its mean, in particular in the central stripes, where inferred β∗ field suggests the largest
departure from base value 0.09. However, also in this case L2 error is reduced, even if
only of 11%, to 0.109, with respect to baseline, as a consequence of loss of correction
in the central region of the half channel. As for TCF in Section 3.2.1, no interesting
improvements are registered for k, ω, νT and τw.

3.3.2. β∗ field for PHC

We conclude our cases applying optimization of β∗ as a field in the case of PHC.
Higher flexibility of this method allows us to exploit a greater number of observations

3| Cases of study and results 45

Figure 3.15: On the left: β∗
AV G field and β∗

AV G for each deifferent region. On the right: ūx profiles resulting from β∗
AV G.

In blue, measurements actually used as observations in EnKF, in black other DNS observations.

and to distribute them all over the domain: in this case, 25 observations are randomly
choosen, with the only constraint of integer abscissa. Sparsity of observations accounts
for heterogeneity of different regions at once, differently from case in Section 3.2.2, where
different regions were analyzed in different runs. This requires an increased number of
EnKF iterations, specifically 20 are performed. In Table 3.8 all EnKF data are sum-
marized. As for mesh refinement, because of instabilities occurred for too coarse mesh,
setting presented in Table 2.1 has been choosen for baseline and EnKF runs, while mesh
in Table 3.4 has been used as higly refined mesh.
Starting from a more accurate baseline than Section 3.2.2, we expect a reduced rate of
correction.

EnKF parameters

Nsamples 15

EnKF iter 20

Nmodes 200

Table 3.8: EnKF parameters for PHC.

Below, results are plotted: Figure 3.17 left shows that β∗ has strong variability all over the
domain. However, the average value of the inferred field is greater than 0.09 as suggested
also by results of β∗ as a constant in Section 3.2.2, and this trend is preserved also in
each domain subregion: the most remarkable departure from standard β∗ is registered
by the average value of β∗ field in the central line and in the region just after the hill,
while a slightly lower increase is registered in the average of β∗ field just before the hill.
Differently from case in Section 3.2.2, higher value is inferred, on average, at central line
than after the hill.
In Figure 3.17 right the resulting mean longitudinal velocity field is plotted. L2 error is

46 3| Cases of study and results

actually reduced, but with a small rate, 9% as motivated above.
Finally, posterior fields for k, ω, and νT are compared with high refinement results in
Figure 3.18: again, general behaviour of these fields is preserved but not improved and
magnitudes are comparable, except for ω which is underestimated at the boundary.

Figure 3.16: Above: ūx inferred profiles for each observations line.
Below: focus on some observations from different zones of the domain, as examples.

Figure 3.17: Left: β∗ inferred field. Right: consequent ūx field.

3| Cases of study and results 47

Figure 3.18: νT , k and ω posterior field and respective profiles in x = 1, x = 3, x = 5, x = 7: high refinement (black),
baseline (red), corrected (green).

ω is in log-scale for clarity.

Prova
Prova
Prova
Prova
Prova
Prova
Prova
Prova
Prova
Prova
Prova
Prova
Prova
Prova
Prova
Prova
Prova

48 3| Cases of study and results

Prova
Prova
Prova
Prova

49

4| Conclusions and further

developments

In this work we analysed applications of EnKF algorithm to the optimisation of Eddy
Viscosity Turbulence model for RANS equations, with particular attention to k-ω model:
through Field Inversion techniques, we corrected mean longitudinal velocity field for tur-
bulent flow cases. Kalman Filter has been preferred to gradient based techniques for its
non intrusiveness and specifically Ensemble Kalman Filter (EnKF) has been used to re-
duce computational burden linked to evaluation of covariance matrices in the algorithm.
We relied on DAFI library for EnKF, coupled with OpenFOAM (release: 9) for forward
model solutions. Three different approaches have been proposed for Turbulent Channel
Flow (TCF) and Periodic Hills Channel Flow (PHC) cases.

First, following [17] proposal, we considered νT as state to be inferred and directly provided
to RANS equation as input: this has been possible exploiting nutFoam solver already
implemented in DAFI. Remarkable corrections have been obtained, both for TCF and
for PHC. Moreover, a second analysis has been done for the former case: considering
geometry configuration, a simulation considering νAV G

T (y) := 1
Nx

∑Nx

i=1 νT (xi, y) field has
been run, leading to small worsening of mean longitudinal velocity field.

Then, we focus on model coefficients for k-ω model, with specific focus on β∗, and we
tried to correct it preserving its constant nature: DAFI allows only field optimisations,
thus we proposed a modification of pure EnKF algorithm, where sample mean of inferred
state is considered inside the model at each iteration. Loosing accuracy by mean of this
approximation, a slower convergence has been obtained, as well as negligible corrections in
resulting velocity profile, in particular for TCF. This result could be expected, being TCF
one of the benchmark cases used for model constant calibration: inferred values similar to
default values confirm applicability of the method. Something different is obtained for the
more complex case of PHC, where trying to infer a unique constant all over the domain
failed, because of different nature of turbulence for different zones of the domain. For this
reason we subdivided it in three characteristic zones, and a constant has been inferred

50 4| Conclusions and further developments

for each of them. Moreover, for computational reasons, a coarse grid has been used for
prior profiles and for runs in EnKF iterations: then the results can be interpreted as a
correction on β∗ to tackle inaccuracy introduced by non refined mesh. As a drawback,
this method suffers from instability when too many observations are included: in our
simulations, no more than 8 observations have been considered.

Finally, to increase degrees of freedom for the optimisation, coefficient as scalar field over
the domain have been considered: to do this, the new OpenFOAM k-ωField model has
been implemented. This gave us a greater flexibility in term of number and locations of
observations: if for TCF aligned measurements have been exploited again, for PHC the
study included randomly placed observations. This last technique represents a middle
ground between directly inferring νT doing without a turbulence model and inferring a
coefficient constraint to be constant. As a consequence, in TCF case error correction
stands between results obtained with the other two techniques, while this comparison can
not be done with PHC since different mesh and observations have been considered.

A confrontation among all other quantities k, ω and νT shows how these fields are not
subject to an interesting correction: this has been already found also by [17] and [24].
Only τw undergoes a small improvement in case β∗ is inferred as a constant.

In this work only β∗ has been considered as state to be optimized but attention could be
generalized to other coefficients. Moreover, current version of DAFI allows to optimize
coefficients one by one, while the workflow could be extended to simultaneous optimization
of many values.
The study of the dependence of β∗ and other values on mesh refinements can be deepened,
thus allowing accurate results for low cost simulations. Finally, here, when dealing with
constant coefficients, EnKF inferred scalar fields which were then forced to mean value to
fulfill OpenFOAM: a library could be implemented to return an inferred constant value
in a more natural way. Also, dealing with piecewise constant values, a methodology can
be introduced to algorithmically establish subregions with different values of coefficients,
which in this work have been defined only manually and qualitatively. The final goal is to
automatically subdivide into several subdomains, each characterised by its own turbulence
regime, where the constants of the model are calibrated independently.

51

Bibliography

[1] DAFI, . URL https://github.com/xiaoh/DAFI.

[2] DAFI user guide, . URL https://dafi.readthedocs.io/en/latest/.

[3] DNS simulations for turbulent channel flows. URL https://turbulence.oden.

utexas.edu/.

[4] Openfoam user guide. URL https://www.openfoam.com/documentation/

user-guide.

[5] CFD with open source software. URL http://www.tfd.chalmers.se/~hani/

kurser/OS_CFD/.

[6] wallShearStress in OpenFOAM. URL http://aboutcfd.blogspot.com/2017/05/

wallshearstress-in-openfoam.html.

[7] W. Banzhaf, P. Nordin, R. E. Keller, and F. D. Francone. Genetic programming: an
introduction, volume 1. Morgan Kaufmann, 1998.

[8] J. Boussinesq. Essai sur la théorie des eaux courantes. Mémoires présentés par divers
savants à l’Académie des Sciences, pages 1–680, 1877.

[9] G. Evensen. Data Assimilation : the Ensemble Kalman Filter. Springer, 2007.

[10] R. Fletcher and C. M. Reeves. Function minimization by conjugate gradients. The
computer journal, 7:149–154, 1964.

[11] R. E. Kalman. A new approach to linear filtering and prediction problems. Journal
of Basic Engineering, pages 35–45, 1960.

[12] B. Launder and D. B. Spalding. The numerical computation of turbulent flows.
Computer Methods in Applied Mechanics and Engineering, 1974.

[13] J. Nocedal and S. Wright. Numerical optimization. Springer, 2006.

[14] S. V. Patankar. Numerical Heat Transfer and Fluid Flow. Taylor Francis, 1980.

[15] A. Quarteroni, R. Sacco, F. Saleri, and P. Gervaio. Matematica Numerica. Springer.

https://github.com/xiaoh/DAFI
https://dafi.readthedocs.io/en/latest/
https://turbulence.oden.utexas.edu/
https://turbulence.oden.utexas.edu/
https://www.openfoam.com/documentation/user-guide
https://www.openfoam.com/documentation/user-guide
http://www.tfd.chalmers.se/~hani/kurser/OS_CFD/
http://www.tfd.chalmers.se/~hani/kurser/OS_CFD/
http://aboutcfd.blogspot.com/2017/05/wallshearstress-in-openfoam.html
http://aboutcfd.blogspot.com/2017/05/wallshearstress-in-openfoam.html

52 4| BIBLIOGRAPHY

[16] P. R. Spalart and S. R. Allmaras. A one-equation turbulence model for aerodynamic
flows. 30th Aerospace Sciences Meeting and Exhibit, 1992.

[17] C. A. M. Strofer, X. Zhang, and X. H. Dafi:an Open-Source Framework for Ensemble-
Based Data Assimilation and Field Inversion. Communications in Computational
Physics, pages 1583–1622, 2021.

[18] C. A. M. Ströfer. Machine learning and field inversion approaches to data-driven
turbulence modeling. Master’s thesis, Virginia Polytechnic Institute and State Uni-
versity, 2021.

[19] L. Valdettaro. Lecture notes on turbulence, 2020. Mathematics Department, Politec-
nico di Milano.

[20] A. van Korlaar. Field inversion and machine learning in turbulence modeling. Mas-
ter’s thesis, Delft University of Technology, 2019.

[21] T. von Kármán. Mechanische Ähnlichkeit und Turbulenz. Nachrichten von der
Gesellschaft der Wissenschaften zu Göttingen, pages 58–76, 1930.

[22] D. C. Wilcox. Turbulence Modeling for CFD. DCW Industries, 2 edition, 1998.

[23] H. Xiao, J. L. Wu, J. X. Wang, R. Sun, and C. Roy. Quantifying and reducing model-
form uncertainties in Reynolds-averaged Navier–Stokes simulations: A data-driven,
physics-informed bayesian approach. Journal of Computational Physics, pages 115–
136, 2016.

[24] X. Zhang, T. Gomez, and O. Coutier-Delgosha. Bayesian optimisation of RANS
simulation with Ensemble-based variational method in convergent-divergent channel.
Journal of Turbulence, pages 14–239, 2019.

53

A| Appendix A

In its original formulation, OpenFOAM provides classical version of k-ω model, where all
coefficients are meant as constant. To adapt it to our purposes, a new model has been
implemented allowing to work with fields: we will refer to it as k-ωField model and it
relies directly on k-ω model original implementation.

In particular Listing A.1 and Listing A.3 show modifications to files, where the model
is defined, both included in src/MomentumTransportModels/momentumTransportModels/RAS/

kOmegaFields directory inside main OpenFOAM folder.

1 protected:
2

3 // Model coefficients
4 // dimensionedScalar Cmu_;
5 // dimensionedScalar beta_;
6 // dimensionedScalar gamma_;
7 // dimensionedScalar alphaK_;
8 // dimensionedScalar alphaOmega_;
9

10 // Fields
11 volScalarField k_;
12 volScalarField omega_;
13

14 volScalarField CmuField_;
15 volScalarField betaField_;
16 volScalarField gammaField_;
17 volScalarField alphaKField_;
18 volScalarField alphaOmegaField_;

1 public:
2 typedef typename BasicMomentumTransportModel :: alphaField alphaField;
3 typedef typename BasicMomentumTransportModel :: rhoField rhoField;
4

5 // Constructors
6 kOmegaFields

54 A| Appendix A

7 (
8 const alphaField& alpha ,
9 const rhoField& rho ,

10 const volVectorField& U,
11 const surfaceScalarField& alphaRhoPhi ,
12 const surfaceScalarField& phi ,
13 const transportModel& transport ,
14 const word& type = typeName
15);
16

17 // Destructor
18 virtual ~kOmegaFields ()
19 {}
20

21 // Member Functions
22 // Return the effective diffusivity for k
23 tmp <volScalarField > DkEff () const
24 {
25 return volScalarField ::New
26 (
27 "DkEff",
28 alphaKField_*this ->nut_ + this ->nu()
29);
30 }
31

32 // Return the effective diffusivity for omega
33 tmp <volScalarField > DomegaEff () const
34 {
35 return volScalarField ::New
36 (
37 "DomegaEff",
38 alphaOmegaField_*this ->nut_ + this ->nu()
39);
40 }

Listing A.1: kOmegaField.H

Among protected variables of class kOmegaField, coefficients are originally defined as
dimensionedScalar, here are declared as scalar fields volScalar Field. Then, constructors,
destructors and some public member functions are adapted to new variables. Note that in
this case multiplication operation * already allowed operations between dimensionedScalar

and volScalarField as well as between volScalarField and volScalarField, thus no modifi-
cations were needed.

A| Appendix A 55

Excluding further marginal adjustement in kOmegaField.C, the most relevant modifications
are related to how coefficients are read. If in the original formulation they were just con-
stant values, now they are passed as volScalarField and since we need to couple our model
together with EnKF routine, they also need to allow to vary at eache iteration. For this
reason, they are initialized in caseDir/0 directory in the same way of other fields (U, p, k,
omega and read at the initial simpleFoam iteration. Differently from other fields, they are
not modified during the entire solver run. Their original initialization has been removed.

1 betaStarField_
2 (
3 IOobject
4 (
5 "betaStarField_",
6 this ->runTime_.timeName (),
7 this ->mesh_ ,
8 IOobject ::MUST_READ ,
9 IOobject :: AUTO_WRITE

10),
11 this ->mesh_
12),
13

14 betaField_
15 (
16 IOobject
17 (
18 "betaField_",
19 this ->runTime_.timeName (),
20 this ->mesh_ ,
21 IOobject ::MUST_READ ,
22 IOobject :: AUTO_WRITE
23),
24 this ->mesh_
25),
26

27 gammaField_
28 (
29 IOobject
30 (
31 gammaField_",
32 this ->runTime_.timeName (),
33 this ->mesh_ ,
34 IOobject ::MUST_READ ,
35 IOobject :: AUTO_WRITE

56 A| Appendix A

36),
37 this ->mesh_
38),
39

40 alphaKField_
41 (
42 IOobject
43 (
44 alphaKField_",
45 this ->runTime_.timeName (),
46 this ->mesh_ ,
47 IOobject ::MUST_READ ,
48 IOobject :: AUTO_WRITE
49),
50 this ->mesh_
51),
52

53 alphaOmegaField_
54 (
55 IOobject
56 (
57 "alphaOmegaField_",
58 this ->runTime_.timeName (),
59 this ->mesh_ ,
60 IOobject ::MUST_READ ,
61 IOobject :: AUTO_WRITE
62),
63 this ->mesh_
64)

1 // Turbulence specific dissipation rate equation
2 tmp <fvScalarMatrix > omegaEqn
3 (
4 fvm::ddt(alpha , rho , omega_)
5 + fvm::div(alphaRhoPhi , omega_)
6 - fvm:: laplacian(alpha*rho*DomegaEff (), omega_)
7 ==
8 gammaField_*alpha()*rho()*G*omega_ ()/k_()
9 - fvm::SuSp (((2.0/3.0)*gammaField_)*alpha()*rho(),divU , omega_)

10 - fvm::Sp(betaField_*alpha ()*rho()*omega_ (), omega_)
11 + omegaSource ()
12 + fvModels.source(alpha , rho , omega_)
13);
14

15 // Turbulent kinetic energy equation

A| Appendix A 57

16 tmp <fvScalarMatrix > kEqn
17 (
18 fvm::ddt(alpha , rho , k_)
19 + fvm::div(alphaRhoPhi , k_)
20 - fvm:: laplacian(alpha*rho*DkEff(), k_)
21 ==
22 alpha()*rho()*G
23 - fvm::SuSp ((2.0/3.0)*alpha ()*rho()*divU , k_)
24 - fvm::Sp(CmuField_*alpha ()*rho()*omega_ (), k_)
25 + kSource ()
26 + fvModels.source(alpha , rho , k_)
27);

Listing A.2: kOmegaField.C

Moreover, in kOmegaField.C we modified k-ω equations definitions: in addition to adapting
terms, a new version of template function fvm::SuSp() has been implemented. In src/

finiteVolume/finiteVolume/fvm/fvmSup.C it has been adapted to receive volScalarField as
input, required by our adapted model.

1 template <class Type >
2 Foam::tmp <Foam::fvMatrix <Type >>
3 Foam::fvm::SuSp
4 (
5 const volScalarField&,
6 const volScalarField :: Internal&,
7 const GeometricField <Type , fvPatchField , volMesh >&
8)

Listing A.3: fvmSup.C

Note that OpenFOAM denotes by alphaK what we refer to as σ∗ and by alphaOmega what
we refer to as σ.
Finally, the new defined model has been properly compiled following [5].

59

List of Figures

1.1 Mean streamwise velocity profile ūx near the wall (log-linear plot). We can
distinguish the linear behaviour in the viscous sublayer and the logarithmic
profile in the log-layer. Picture from [19]. 9

1.2 τTOT = τ̄xy + τRxy: in the viscous sublayer the whole τTOT can be explained by
means of τ̄xy, while in the log-layer they are of the same order of magnitude.
Picture from [19]. 9

1.3 Residuals for ūx, k and ω in simpleFoam solver coupled with k-ω model
in the turbulent channel flow. Related domain and flow properties are in
Tables 1.1 and 1.2 . 16

1.4 k-ε model and k-ω model profiles for longitudinal velocity ūx compared to
the DNS observations from [3]. On the left side profiles are plotted, on the
right side the same profiles are plotted in logarithmic scale. k-ω better fits
the observations close to the wall than k-ε, which is more precise in the
central region. Focus is only on the velocity field because it will be the
core of the analysis in Chapter 2 and 3 Mesh is refined closed to the wall
through simpleGrading OpenFOAM functionality. 16

2.1 Qualitative representation of EnKF algorithm: at each time step a new
observation is measured and state variable probability distribution is up-
dated. Then, an ensemble of N evaluations of the model are performed. At
each state update step, covariance matrix C ′

β is estimated from the sample
according to (2.13) . 22

2.2 Qualitative representation of EnKF algorithm: at each time step a new
observation is measured and state variable probability distribution is up-
dated. Then, an ensemble of N evaluations of the model are performed.
At each state update step, covariance matrix C ′

β and mean value µ̂ are
estimated from the sample according to (2.13) 24

60 | List of Figures

2.3 Profiles of longitudinal mean velocity field ūx for the PHC. On the left
side, profiles at different x are reported. On the right side, a focus around
the only observation: after EnKF algorithm the profile approaches the
measured value. 28

2.4 νT field resulting from the posterior sample mean of the inferred ensemble
νT fields. 29

3.1 Cβ normalized eigenvalues decay for TCF. Almost all the variance is cap-
tured by the first 30 modes. 32

3.2 From left to right: first, fifth and ninth eigenfunctions (modes) for the
considered covariance kernel. σ2 = 1.0, ly = 0.25 as suggested in [17],
lx = 5.0 to limit longitudinal fluctuations. 32

3.3 Residuals for ūx, ūy and p in nutFoam solver for TCF. 33

3.4 On the left: ūx baseline profile for ūx obtained with k-ω model. The
underlying νT field represents the prior mean for samples of EnKF ensem-
ble. Here, only 6 ensemble profiles are plotted, for clarity, taken at the
first iteration. Marked observations are those effectively used to correct
the state. On the right: corrected profile obtained with inferred νT is
compared against all the DNS observations and baseline profile. All DNS
observations are reported, not only those used for state EnKF correction. . 34

3.5 νT field resulting from the posterior sample mean of the inferred ensemble
νT fields for TCF. Moreover, high refined νT profile (black) and mean along
x axis of inferred νT (green, νAV G

T) are compared, both scaled to highlight
the differences. 34

3.6 Comparisons of different values of β∗,α and σ∗ for k-ω model in TCF. . . . 36
3.7 Profiles comparisons for ūx. As expected, inferring a constant over the

whole domain leads to minimal improvement of the corrected profile. EnKF
algorithm inferred β∗ = 0.0927. In blue are the observations actually used
for EnKF, in black other DNS data from [17]. 37

3.8 Profiles comparisons for baseline, corrected and high refined k, ω, νT , τw.
Since [3] provides only ūx data, k,ω,νT and τw are extrapolated from an
highly refined simulation (Ny = 100). k, ω and 1

ρ
τTOT profiles are in loga-

rithmic scale to better highlight differences. 38
3.9 Cβ normalized eigenvalues decay. Almost all the variance is captured by

the first 110 modes. 40

| List of Figures 61

3.10 Profiles based on the respective inferred β∗ against the baseline, in different
region of the domain: after a hill (left), central region (centre), before a
hill (right). 40

3.11 u2τ profiles compared at upper (above) and lower (below) wall. 41

3.12 Above: subdivision of the domain according to zones described (left) and
ūx field resulting when associated inferred β∗ values have been used (right).
Below: prior ūx field (left) and high refinement ūx field (right). 42

3.13 β∗ field for TCF optimised as a field over the domain. Inferred profile is
compared against default constant value 0.09. 43

3.14 ūx profile obtained with optimised β∗ as a field over the domain. In blue,
measurements actually used as observations in EnKF. 44

3.15 On the left: β∗
AV G

field and β∗
AV G

for each deifferent region. On the right:
ūx profiles resulting from β∗

AV G
. In blue, measurements actually used as

observations in EnKF, in black other DNS observations. 45
3.16 Above: ūx inferred profiles for each observations line. Below: focus on

some observations from different zones of the domain, as examples. 46

3.17 Left: β∗ inferred field. Right: consequent ūx field. 46
3.18 νT , k and ω posterior field and respective profiles in x = 1, x = 3, x =

5, x = 7: high refinement (black), baseline (red), corrected (green). ω is in
log-scale for clarity. 47

63

List of Tables

1.1 Domain properties and boundary conditions (cfr: [3]). Nz = 1 makes the
case bidimensional. 16

1.2 Flow properties. Re is computed with respect to the half-height of the
channel (cfr. [3]). I represents the turbulent intensity at the inlet. 16

2.1 Domain properties (cfr: [17]). Nz = 1 makes the case bidimensional. h is
meant as the inlet and outlet faces height while hH and is the height of the
hills . 26

2.2 Flow properties: Re is computed with respect to hH (cfr. [17]). I represents
the turbulence intensity at the inlet. 26

2.3 EnKF parameters (cfr. [17]). 28

3.1 Domain properties and boundary conditions (cfr: [3]). Nz = 1 makes the
case bidimensional. 32

3.2 EnKF parameters. 33
3.3 EnKF parameters fot TCF. 37
3.4 Mesh refinement for PHC. 39
3.5 Observations for each region of PHC. 39
3.6 EnKF parameters for PHC. 39
3.7 TCF domain division and zonal constant coefficients β∗ 44
3.8 EnKF parameters for PHC. 45

	Abstract
	Abstract in lingua italiana
	Contents
	Introduction
	General context
	Thesis outline

	The Navier-Stokes equations and Turbulence models
	The Navier-Stokes equations
	Turbulent flow models
	Eddy viscosity models
	The Spalart-Allmaras model
	The k- model
	The k- model

	The SIMPLE algorithm
	OpenFOAM implementation and test case

	Field Inversion
	The Field Inversion workflow
	Gradient based methods
	Derivative Free methods
	The Ensemble Kalman Filters

	DAFI implementation

	Cases of study and results
	Inference on _T field for TCF
	Inference on k- model constants
	^* constant for TCF
	^* constant for PHC

	Extension to k- model coefficients varying over the domain
	^* field for TCF
	^* field for PHC

	Conclusions and further developments
	Bibliography
	Appendix A
	List of Figures
	List of Tables

