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Abstract

In this thesis we study the Unit Commitment Problem with Stochastic Demand. We solve
this problem using the Sample Average Approximation method with diverse instances,
changing the deviation values and number of generators. We tested how this method
performs when the amount of scenarios to be evaluated are too large to be handled by
CPLEX. These tests were implemented in python with Gurobi solver. The results showed
a considerable decrease in the time needed to find an acceptable solution to the problem.
Moreover, the results demonstrated high quality of results.
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1| Introduction

1.1. Energy Systems and the UCP problem

The electricity power industry across the globe is experiencing a radical change in its
business and operational models, undergoing restructuring and deregulation. Electricity
providers are responsible for the generation, transmission and distribution of electricity,
and must guarantee a reliable service of high quality. Since electricity cannot be easily
stored, it’s delivery is practically instantaneous; generation and demand are permanently
in balance to keep the stability and integrity of the system. Therefore, power generat-
ing units are scheduled in advance in order to satisfy the upcoming forecasted demand,
allowing preventive measures and action planning to cope with setbacks. Forecasting de-
mand and scheduling production is of extreme importance to guarantee energy supply
at all times. Thus, electricity providers face the challenging problem of deciding, from a
set of electrical generators (i.e. generating units), which power units to operate (the
unit status), in which periods and at what level of production, in order to satisfy
the demand of electrical energy. This optimization problem is traditionally known in
operation research as the Unit Commitment Problem (hereinafter UCP). The two
main objectives of this problem are either to minimize cost or to maximize revenue, while
respecting the constrains of the system.

The UCP is a critical task for the the operation of power systems, and its efficient so-
lution offers many advantages to market players and final customers. Ideally, we seek
to find optimal solution for this problem. However this is a challenging task considering
the magnitude of the problem, its complicating constrains and possible computational
limitations. For this reason, there are numerous studies in the literature where different
approaches are proposed to find an optimal solution to this problem. This constitutes a
fundamental objective for the progress of operational research in this field

The first UCP models were deterministic (e.g. Ahmad, Aijaz et al. [11]), problems were
small and the demand to be satisfied was predictable, the systems were simpler than
today’s. As we will see, the applications of the UCP nowadays calls for new formulations
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that take into account for further complexities and the uncertainty of available data.

1.2. Uncertainty in the Power Systems

In past decades, coal-fired power plants were generally the thermal basis of power sys-
tems, while combined cycle gas turbines were relegated for high-demand periods and
fast-ramping gas turbines were used to cover demand peaks. This operation was steady
over time and did not demand further modeling developments to achieve an efficient op-
erational management. Nowadays, the trend is changing: updated greenhouse policies,
implementation of emission-allowance trading right markets, and many renewable-oriented
political decisions have brought a paradigm shift. Renewable Energy Sources (RES)
increasing penetration has brought new challenges to formulation of appropriate UCPs.
For example, the inclusion of wind and photovoltaic energy sources in energy markets lead
to uncertainty in production yield. Given that this depends on the weather, a variable
extremely challenging to predict precisely, the resulting UCPs are extremly challenging.

In general, the operation of real power systems is implicitly subject to uncertainty. The
RES production forecasts are highly dependant on weather and environmental variables,
while demand is extremly sensitive to inaccuracy or sudden changes due to unexpected
events. The continuous growth of electricity markets has made forecasting an increasingly
complex and important challenge to be taken into account. For these reasons, the consid-
eration of uncertainty in UCPs enhances the reliability of the resulting schedule. In this
thesis we investigate a UPC under uncertainty.

There are several alternatives to transform a deterministic problem into a stochastic one
(e.g. Louveazu et al. [3]). The most popular techniques applied to the unit commitment
problem under uncertainty are Stochastic Optimization, Robust Optimization and Monte
Carlo Simulation, which will be discussed in Section 2. The term stochastic refers to the
property of a variable of being able to be represented by a random probability distribu-
tion. This distribution might be analysed statistically but can not be predicted precisely.
Therefore, when using stochastic optimization, we are actually taking decision consid-
ering different realizations of future events, called scenarios, which have an associated
realization probability.

The more uncertain a variable is, a larger number of scenarios needs to be considered in
the model. In such cases, finding an exact solution becomes a challenging. Therefore,
techniques have been developed to approximate the solution under less computational
effort.
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Uncertainty is found mainly in several parameters of the UCP. For example, the energy
price (when the problem considers buying and selling electricity from the market), or in
technical aspects, like maintenance operations. However, the main source of uncertainty in
UCPs relates to the demand, as consumption is influenced by external factors which might
cause it to rapidly increase or decrease. Demand’s uncertainty affects schedule and raises
new challenges in the context of the UCP. Therefore, various techniques and methods have
been studied and employed to control the consequences of uncertainties associated with
demand uncertainty. In this thesis, we propose a sample average approximation method
for the UCP under Stochastic Demand (hereinafter UCPSD).

In section 2 we review the relevant the literature. In section 3 we describe our problem,
and present our solution method in section 4. We describe our computational study in
Section 5 and show its results in Section 6. Lastly, we present our conclusions in Section
7.
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2| Literature Review

The unit commitment problem is frequently addressed as an optimization problem with
the objective of minimizing costs (e.g. Correa, Augusto [22]).The problem is sometimes
modeled as a profit-maximization problem (e.g. Abdi, Hamdi [1]). Nowadays profit-based
UCPs are gaining importance given the privatization and restructuring process that has
been taking place in the energy power industry.

The solution methods used to solve the UCP can be categorised as classical/conventional
approaches, non-classical approaches and hybrid techniques (Mallipeddi et al. [13]). Clas-
sical algortihms are the deterministic ones, where the most know approaches are Dynamic
Programming (e.g. Padhy [18]), Branch and Bound (e.g. Pales et al. [19]), Lagrange Re-
laxation (e.g. Ongsakul et al. [16] or Shiina [25]) and Mixed Integer Lienar Programming
(e.g. Xie et al. [30]).

In the last decade, there has been a significant growth in the application of non-classical
approaches, mainly there has been a significant development of stochastic models, as re-
searchers have observed that stochastic models perform better than deterministic models
under uncertainty (e.g. Takriti et al.(1996) [27]). As previously mentioned, the changes
that the global electric power sector has been facing have increased the uncertainty as-
sociated with various input parameters of UCPs. Different studies and reviews were
published considering uncertainty management, attempting to control the consequences
of uncertainties associated with parameters.

There are several approaches to cope with uncertainty. Namely, Two-Stage Stochastic
Programming (e.g. Geng et al. [6], Huand et al. [8] and Wang et al. [29]) and Multi-Stage
Stochastic Programming (e.g. Shiina et al. [26] and Zou et al. [33]) the most common
ones. These formulations are based on modeling a decision as a random experiment
appropriately described by a probability space. The random parameters of the problem
are described by a random variable whose value is populated by the outcome of the
random experiment. When the random variable is discrete, it counts a finite number
of realizations, which are called scenarios in the stochastic programming jargon. Other
methods like Risk Consideration Stochastic Programming (e.g. Xiong et al. [31]) , Chance
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Constrained Stochastic Programming (e.g. Wu et al. [32]) or other hybrids approaches
(e.g. Sayed et al. [23]) are less common and solve particular formulations of the UCP.
For further study on the mentioned topics please refer to Montero et al. (2022) [14] and
Mallipeddi et al. [13], or to Martin Haberg’s work (2019) [9] for specific analysis on
stochastic models.

Exact mathematical programming methods are less common nowadays, as they are re-
stricted to cases with reduced uncertainty, that’s to say, small numbers of scenarios. In
this thesis we propose a sampling based approach to handle a large number of scenarios.
Over the years the sampling methods have been used in stochastic problems in various
ways, from discrete optimization by Kleywegt [10] to programs with integer recourse by
Ahmed et al. [2] and even to solve routing problems (e.g. Verweij et al. [28]). We will
applied the Sample Average Approximation Method (SAA) in the UCPSD with
uncertain demand.

The SAA method uses random discrete samples draw from the true distribution of the
uncertain parameters to generate scenarios. The UCPSD problem is then solved for
this sample instead of the original scenario set. Then it replicates the process over several
iterations to estimate the solution. The quality of these estimates is assessed by an analysis
on the optimality gap and a confidence intervals. There are several methods to generate
a limited number of scenarios from either a specified continuous distribution or a large
data set that describes the uncertain parameters. These include random sampling (e.g.
Glasserman [7]), moment matching (e.g. Ponomareva et al. [20] and scenario reduction
by distance measures (e.g. Dupacová et al. [5]). In the UCP, the first one and the last one
are mainly used, while moment matching is more common in power generation expansion
problems.

In this thesis, we present a computational study of the application of the SAA to solve
a cost-minimization UCPSD. In implementing the SAA, we followed de Mello et al. al-
gorithm [4], Pernille et al. [24] formulations and Verweij [28] methodology. The main
objective of this thesis is to examine the efficiency of SAA for the UCPSD.
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3| The Unit Commitment
Problem with Stochastic
Demand

3.1. Problem Description

The problem’s input is composed of some known data, e.g., technical parameters, and
the distribution of the demand. Considering a finite discrete planning horizon denoted as
T , the problem is formulated in two decision stages. In the first stage, we decide which
generators are going be turned on or committed to production across the entire planning
horizon. In the second stage, the actual demand values are revealed at each time period,
and we decide the production level of each unit in order to satisfy it. In the second stage,
production decisions are made while being bounded by the commitment decisions realized
in the first stage.

We considered demand to be a random parameter described by a random variable. Specif-
ically, we model it as a discrete random variable, counting for a finite number of real-
izations called scenarios. Each scenario is a vector of |T | elements representing a possible
realization of demand at each time period t ∈ T . We will be using S to denote the set of
scenarios and s for each scenario.

A generic formulation of this two stage stochastic problem is as follows:

min
x∈X

z = CTx+Q(x)

s.t. Ax = b

x ≥ 0

(3.1)

where Q(x) = ES [Q(x, s)] is referred to as the recourse function and ES [Q(x, s)] is the
expectation of the second stage recourse cost over all scenarios s ∈ S. The CT represents
the costs associated with the first stage decision variable x, and the matrix Ax = b
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describes the constrains to be satisfied in the first stage problem.

For a given scenario s ∈ S, Q(x, s) is defined as an optimization problem corresponding
to the second stage decisions where x shows up as a right hand side parameter and the
objective is to minimize the total recourse costs associated with the second stage decision
variables y:

Q(x, s) = min
y∈Y

cTy

s.t. Wy = h− Tx

y ≥ 0

(3.2)

Given this, Q(x) represents the optimal objective function value of the second stage
problem given a certain x. Thus, x is an input of Q and therefore, it is considered as a
parameter in the second stage problem.

The variable y denotes the second-stage production levels decisions, while cT the costs
associated with the y decision variables. The expression Wy = h − Tx describes the
constrains to be satisfied in the second stage problem.

This entails that demand uncertainty is hidden in the recourse function Q(x), given that
first stage decision are made without knowing the demand values.

We will model demand as a discrete random variable using the Monte Carlo sampling
method. Given that S counts for a finite number of scenarios, we can account for dif-
ferent y for each scenario s, therefore, ys will be telling us what to do in case scenario s

materializes. Then the expectation function of ES [Q(x, s)] can be approximated by:

ES [Q(x, s)] =
∑
s∈S

qsc
T
s ys (3.3)

where qs corresponds to the probability of occurrence of demand scenario s and cTs the
costs of the second stage variables given scenario s. In our case, cTs is independant of the
realizations of demand and therefore, constant for all scenarios.

First stage decisions are made taking into account technical constraints and physical
limitations into account. For example, the requirement of certain generators of staying on
for a certain period of time after start-up before being able to be turned off again (called
Minimum Up Time). Another example is that units should be turned off for at least a
certain period of time (Minimum Down Time). Other parameters taken into in the first
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stage are the cost of committing a unit to production, which is the cost of keeping it on
(independent of the quantity produced) and the cost of starting up a unit.

Second stage decisions or, production decisions, have to respect the commitment decisions
made in the first stage, as well as some technical constraints, like upper and lower limits to
power production. Other limits are the ramp up and ramp down limits, which constrains
the increment or reduction of the power output between subsequent periods. Another
decision to be made in the second stage is the shedding amount: if the committed units
are not enough to satisfy the load, part of the demand could be shedded at a given cost
in order to match production to the load.

3.2. Mathematical Model

Let T = {1, . . . , T} be the set of time periods, T ′ = {2, . . . , T} the set of time periods
without taking into account the first time period t = 1, G = {1, 2, . . . , G} be the set of
generators and S = {1, 2, . . . , S} be the set of possible scenarios for the uncertain data,
in our case, demand. These sets are summarized in Table 3.1.

The term ug,t is a binary variable representing the state of unit g ∈ G at period t ∈ T ,
meaning, ug,t = 1 when the generator g is on and ug,t = 0 when it’s off. This variable is
used to address the commitment cost and, more importantly, as input of the second stage
problem ones the first stage is solved.

ug,t =


1, unit g is on at time t a

0, otherwise

∀g ∈ G,∀t ∈ T

(3.4)

While cg,t is a binary variable representing if unit g ∈ G had been turned on at period
t ∈ T . This variable is mainly used to address the start-up cost in the objective function.

cg,t =


1, unit g is was turned on at time t a

0, otherwise

∀g ∈ G, ∀t ∈ T

(3.5)

Let pg,t,s be a continuous variable representing the power production of unit g ∈ G at
period t ∈ T in scenario s ∈ S. Finally, lt,s represents the amount of demand satisfied by
shedding the load in period t ∈ T under scenario s ∈ S.
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For a summary of the variables refer to Table 3.2

Each scenario s ∈ S has an associated realization probability qs, which represents how
likely is it to get scenario s, and

∑
s∈S qs = 1. In our case, we are working with a Monte

Carlo simulation, so qs =
1
|S| is constant and equal for each scenario. Lastly, the value for

demand under the scenario s ∈ S for each period t ∈ T will be represented by dt,s.

The last parameters are related to the initial conditions of each generator g, representing
the state of the unit at the end of the previous scheduled period, denoted with t = 0 Let
uInitg, pInitg and tInitg be the state of generator g, its power production and the time
periods that it has been on at the beginning of the scheduling horizon t = 0, for g ∈ G.
Note that negative values of tInitg account for the time periods the unit has been off at
the beginning of the scheduling horizon.

Parameters CS
g , C

C
g , C

P
g represents the Start Up, Commitment and Production costs re-

spectively for generator g ∈ G. Commitment cost is the cost associated to keeping a
generator producing for a period (like costs associated to maintenance). We also have the
production upper and lower bound Pmax

g and Pmin
g respectively, and let RUp

g and RUp
g be

the ramp-up and ramp-down limitations for generator g. These values represent the max-
imum variation the production can have between periods. Lastly let TUp

g and TDown
g be

the minimum up time and downtime respectively. Lt represents the cost of load shedding.

Parameters can be found in Table 3.3.



3| The Unit Commitment Problem with Stochastic Demand 11

3.2.1. Formulation

We formulate the problem as follows:

min
∑
g∈G

∑
t∈T

(
CS

g cg,t + CC
g ug,t +

∑
s∈S

qs ·
(
Ltlt,s + CP

g pg,t,s
))

(3.6)

subject to

cg,1 ≥ (ug,1 − uInitg) ∀g ∈ G

cg,t ≥ (ug,t − ug,t−1) ∀g ∈ G, ∀t ∈ T ′∑
g∈G

pg,t,s + lt,s ≥ dt,s ∀t ∈ T , ∀s ∈ S

pg,t,s ≥ PMin
g ug,t ∀g ∈ G, ∀t ∈ T , ∀s ∈ S

pg,t,s ≤ PMax
g ug,t ∀g ∈ G, ∀t ∈ T , ∀s ∈ S

pg,1,s − pInitg ≤ RUp
g ∀g ∈ G, ∀s ∈ S

pg,t,s − pg,t−1,s ≤ RUp
g ∀g ∈ G, ∀t ∈ T ′, ∀s ∈ S

pInitg − pg,1,s ≤ RDown
g ∀g ∈ G, ∀s ∈ S

pg,t−1,s − pg,t,s ≤ RDown
g ∀g ∈ G, ∀t ∈ T ′, ∀s ∈ S

TUp
g −1∑
δ=0

(ug,δ) ≥ TUp
g cg,1 ∀g ∈ G

TUp
g −1∑
δ=0

(ug,δ+t) ≥ TUp
g (ug,t − ug,t−1) ∀g ∈ G,∀t ∈ {2, ..., T − TUp

g + 1}

TDown
g −1∑
δ=0

(1− ug,δ) ≥ TDown
g (uInitg − ug,1) ∀g ∈ G

TDown
g −1∑
δ=0

(1− ug,δ+t) ≥ TDown
g (ug,t−1 − ug,t)∀g ∈ G,∀t ∈ {2, ..., T − TDown

g + 1}

ug,t, cg,t ∈ {0, 1} ∀g ∈ G,∀t ∈ T

pg,ts, lt,s ≥ 0 ∀g ∈ G,∀t ∈ T ,∀s ∈ S

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)
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Indices Description List

G Set of generators {1, 2,. . . , G}
T Set of time periods {1, 2,. . . , T}
T ′ Set of time periods without t = 1 {2, 3,. . . , T}
S Set of scenarios {1, 2,. . . , S}

Table 3.1: Notation for the sets
Variable Description Type

ug,t Generator g status at time t binary
cg,t if generator g was turned on at time t binary
pg,t,s power produced by generator g at time t in scenario s continuous
bt,s amount of shedded energy at time t in scenario s continuous

Table 3.2: Notation for the variables

Parameters Description

CS
g Start up cost for generator g

CC
g Commitment cost for generator g

CP
g Production cost for generator g

Bt Price of electricity at period t

PMin
g Minimum production Level for generator g

PMax
g Minimum production Level for generator g

RUp
g Maximum ramp up time for generator g

RDown
g Maximum ramp down time for generator g

T Up
g Minimum up time for generator g

TDown
g Minimum down time for generator g

dt,s Energy demand at period t in scenario s

qs Realization probability of scenario s

uInitg State of generator g at start of the schedule
pInitg Production level of generator g at start of the schedule

Table 3.3: Notation for the parameters
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The objective of formulation (3.6) is to minimize the total costs, i.e., the total start up,
commitment and production costs of all generators g added to the cost of shedded energy,
along the time schedule T , taking into account the possible scenarios s. Notice that the
contribution of the second stage costs are expressed as a linear combination of the costs
associated to each scenario s, expressed as (Ltlt,s + CP

g pg,t,s) with constant probability
realization of that scenario qs.

The first two constraints (3.7) and (3.8) are called associating constraints and are respon-
sible of populating the binary variable cg,t with 1 value when the status of generator g

(ug,t), changes from 0 to 1 at period t. The difference between these constraints is that
(3.7) takes into account the condition of generator g before the scheduling horizon at
t = 0 in order to populate just cg,1, while (3.8) encompass the rest of the time horizon
populating cg,t for t ∈ T ′.

Constraints (3.9) are called the power balance constraints and ensures that the power
generated by all generators at a time period t for a scenario s meets the forecasted demand
dt,s. In this model there are two particular situations that must be taken into account.
First, there is the possibility of over production: given the first-stage decisions, it could
happen that we have an overproduction of energy compared to demand that cannot be
compensated by reducing production given the ramping constraints or the production
limit of the committed units. In general, an extra variable is added to account for the
excess energy sold to the grid. In our case, we will assume the excess energy to be gifted
to the grid at price zero and bear the cost of producing that energy by adding a "≥" sign
on the demand constraints. Other situation to be taken into account is underproduction.
For this we added the lt,s variable which is used to address the cost of shedding part of the
load to accommodate for the under production. This variable counts the energy reduction
in demand by load shedding. The objective of this thesis is to analyze the efficiency of
a particular solution methodology, so this shedding of energy allows the model to always
have a feasible solution.

Constraints (3.10) and (3.11) restrain the range of power generation so that it fits the min-
imum and maximum production levels, respectively PMin

g and PMax
g for every generator

g at all time periods t and scenarios s.

Constraints (3.12) to (3.15) restrain the variation in power generation of generator g

between subsequent time periods for all time periods t in all scenarios s. The first two
(3.12) and (3.13) are called ramp-up constraints and limit the increase of power out put
of generator g between subsequent time periods to RUp

g . While (3.14) and (3.15) are
called ramp-down constraints and limit the decrease of power out of generator g between
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subsequent time periods to RDown
g .

Constraints (3.16) to (3.19) are referred to as minimum time constraints, and are associ-
ated with the minimum up and down time of the generators. The first two, (3.16) and
(3.17), ensures that every generator g in every scenario s will be committed (on) con-
tinuously for a certain time period TUp

g before its decommitment (shutdown). While the
other two, (3.18) and (3.19), ensures that every generator g in every scenario s will be
decommited (off) continuously for a certain time period before its commitment.

We decided to create constraints (3.16) only for the case where generator g was off before
the t = 1, i.e., for uInitg = 0. If this condition applies, we can have two possible situations
for t = 1: either generator g becomes on and ug,1 = 1, or it stays off and ug,1 = 0. In the
first sitation, constraints (3.16) become active as cg,1 = 1 and forces the next TUp

g periods
to keep generator g on. On the other hand, if ug,1 = 0, we assumed that t = 1 was the
last period of the required minimum down time TDown

g . Therefore, there is no constraint
for generator g to stay off for the next time periods. In this situation, we will have that
cg,1 = 0 and constraints (3.16) do not become active. The same logic applies for the case
where uInitg = 1: constraints (3.18) are then generated and only may become active if
ug,1 = 0, whereas if ug,1 = 1, we assume that it is the last period of the required TUp

g and
there is no need for generator g to stay on the next time periods.

When considering t = 1 the last period of the minimum up or down time limitation, we are
ignoring the time periods that generator g was on or off before the time schedule tInitg,
and only considering the status of generator g at the beginning of the time horizon uInit.
This simplification could slightly change the objective values, but likely not affect the
overall conclusion of this thesis. In the worst case scenario, generator g could be turned
off before TUp

g time periods have passed (or turned on before TDown
g limitation applies)

which would constrain a little the solution, but would not make a significant impact.
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4| Sample Average

Approximation Method

The Sample Average Approximation (SAA) method works by repeatedly solving
the two-stage model previously formulated with a limited number of scenarios, sampled
from the set of the true scenario set S. In this technique, the expected objective function
value of the stochastic problem is approximated by a sample average estimates derived
from random samples. Below we provide a step wise procedure for the SAA algorithm
based on Pernille et al. [24]. In this paper, sampled scenarios are generated by the Monte
Carlo sampling method.

A sample is constructed by w1, w2, . . . , wN of N sample scenarios, randomly generated
from the set S. We call N the size of the sample and qw the realization probability for
each scenario wi in the sample. Given that we are working with Monte Carlo simulation,
we know every scenario has the same probability, i.e., qw = 1

N
= constant for w ∈ W =

{w1, w2, . . . , wN}.

The resulting sample average approximating problem is then solved for sample set W
instead of the whole set S. We do so by solving the resulting deterministic extensive
formulation in order to obtain an optimal value zN and optimal solution x̂ and ŷ. These
will be used to provide estimates of the actual optimal value of z∗. For clarification, in
our case x̂ represents the first-stage variables cg,t and ug,t

x̂ = (cg,t, ug,t)g∈G,t∈T

The Sample Average Approximation problem corresponding to the original two-
stage stochastic problem stated in Section 3.2.1 can now be formulated in its deterministic
equivalent problem as follows:

min zN =
∑
g∈G

∑
t∈T

(
CS

g cg,t + CC
g ug,t +Q(u)

)
(4.1)
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subject to

cg,0 ≥ (ug,0 − uInitg) ∀g ∈ G

cg,t ≥ (ug,t − ug,t−1) ∀g ∈ G, ∀t ∈ T ′

TUp
g −1∑
δ=0

(ug,δ) ≥ TUp
g (ug,0 − uInitg) ∀g ∈ G

TUp
g −1∑
δ=0

(ug,δ+t) ≥ TUp
g (ug,t − ug,t−1) ∀g ∈ G, 0∀t ∈ {1, ..., T − TUp

g + 1}

TDown
g −1∑
δ=0

(1− ug,δ) ≥ TDown
g (uInitg − ug,0) ∀g ∈ G

TDown
g −1∑
δ=0

(1− ug,δ+t) ≥ TDown
g (ug,t−1 − ug,t)∀g ∈ G,∀t ∈ {1, ..., T − TDown

g + 1}

ug,t, cg,t ∈ {0, 1} ∀g ∈ G,∀t ∈ T

(4.2)

(4.3)

(4.4)

(4.5)

(4.6)

(4.7)

(4.8)

(4.9)

where Q(u) represents the optimal objective value of the second stage problem given a
certain ug,t over all scenarios w ∈ W .

As mentioned before, this function Q(u) is the expectation of the second stage problem

Q(u) = EW [Q(u,w)] (4.10)

Given that we are sampling with Monte Carlo technique, the expectation can approxi-
mated by:

EW [Q(u,w)] =
1

N

∑
w∈W

(Ltlt,w + CP
g pg,t,w)

Now we can formulate Q(u,w) as an optimization problem corresponding with the second
stage decisions:
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Q(u,w) = min
∑
g∈G

∑
t∈T

(
Ltlt,w + CP

g pg,t,w
)

subject to∑
g∈G

pg,t,w + lt,w ≥ dt,w ∀t ∈ T

pg,t,w ≥ PMin
g ug,t ∀g ∈ G, ∀t ∈ T

pg,t,w ≤ PMax
g ug,t ∀g ∈ G, ∀t ∈ T

pg,0,w − pInitg ≤ RUp
g ∀g ∈ G

pg,t,w − pg,t−1,w ≤ RUp
g ∀g ∈ G, ∀t ∈ T ′

pInitg − pg,0,w ≤ RDown
g ∀g ∈ G

pg,t−1,w − pg,t,w ≤ RDown
g ∀g ∈ G, ∀t ∈ T ′

pg,t,w, lt,w ≥ 0 ∀g ∈ G, ∀t ∈ T

(4.11)

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

Notice that in constraints (4.13) and (4.14) we find the first stage decisions ug,t which are
now parameters (and not variables anymore).1

This procedure is then repeated by generating M samples and solving several associated
optimization problems to obtain candidate solutions along with statistical estimates of
their optimality gaps.

4.1. Methodology

The SAA method consists of solving the SAA problem (4.1) several times for M inde-
pendent samples, each composed of N scenarios, in order to generate the associated ob-
jective values z1N , z

1
N ,. . . , zMN and their corresponding candidate solutions x̂1

N , x̂
2
N , . . . , x̂

M
N

and ŷ1N , ŷ
2
N , . . . , ŷ

M
N . These values are now used to get valuable information on the actual

objective function value z∗

4.1.1. Lower Bound Estimate

Once we have generated M independent samples, each of composed of N scenarios, and
solved the UCPSD problem M times for each candidate sample, we will have M optimal
solutions zN . We denote an optimal solution for a sample m ∈ {1, . . . ,M} by zmN . We
calculated the average of the optimal objective function values of the M SAA problems,

1This is just a representation to clarify the formulation of the second stage problem. In practice we
solved the extensive formulation described in Section 3.2.1 considering W.
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which we will denote zN :

zN =
1

M

M∑
m=1

zmN (4.20)

Then E[zN ] ≤ z∗, as proved in Mak et al. (1999) [12] and in Norkin (1998) [15]. Therefore,
zN provides a statistical estimate for a lower bound (LB) of the optimal value of the
original problem LBM,N :

LBM,N = zN (4.21)

The variance of the lower bound σ̂2
LBM,N

(M) is estimated by the variance estimator:

σ̂2
LBM,N

=
1

(M − 1)

M∑
m=1

(zmN − zN)
2 (4.22)

For this calculated estimate, we would like to know how much we expect to get close
to the same estimate if we run again the SAA with different samples. This is called the
confidence interval of an estimate and it measures the degree of uncertainty of a variable
in a sampling method. It is a range of values, bounded above and below the statistic
mean, providing lower bound and upper bound to the estimate, with a confidence level
representing the percentage of probability that this interval would contain the solution
value when a random sample is drawn many times. In this chapter we will be using the
formulas for the confidence interval provided by Kleywegt et al. (2002) [10]:

[
LBM,N − zα

σ̂2
LBM,N√
M

;LBM,N + zα
σ̂2
LBM,N√
M

]
(4.23)

Where zα represents the critical value of the normal distribution for a confidence level of
1− α.

4.1.2. Upper Bound Estimate

For any candidate solution x̂m
N = (ĉmg,t, û

m
g,t), the objective value

∑
g∈G

∑
t∈T (C

S
g ĉ

m
g,t +

CC
g û

m
g,t + E[Q(û)]) is an upper bound for z∗, since x̂m

N is a feasible point of the true
problem. This upper bound value is estimated by fixing the first-stage solution and
solving the formulation for sample W ′ of size N ′ scenarios:
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ẑN ′(ĉg,t, ûg,t) = min
∑
g∈G

∑
t∈T

(
CS

g ĉ
m
g,t + CC

g û
m
g,t +

1

N ′

∑
w∈W ′

Q(u,w)

)
(4.24)

For any of the feasible solutions x̂m
N and ŷmN , the objective value that comes from fixing

the first stage variables on (4.1), and solving the problem, provides an upper bound on
z∗. We can follow any criteria, we choose the solution that provides the smallest z̃mN .

The N ′ (called reference sample size) represent the size of the new sample W ′. We
choose N ′ randomly from S and N

′ ≫ N , i.e., quite larger than N . Ideally, we wish this
reference sample to be the true distribution, but typically this is not possible. Therefore
we choose it as close as possible to |S|. Given that W ′ is randomly generated, we have
an unbiased estimator, and therefore we have that E[ẑN ′ ] ≥ z∗, providing a statistical
estimate for an upper bound (UB) of z∗.

UBN ′(x̂m
N) = ẑN ′(ĉg,t, ûg,t) (4.25)

The variance of the upper bound σ̂2
UBN′ is estimated by the variance estimator:

σ̂2
UBN′ =

1

(N ′ − 1)

∑
w∈W ′

((
P ′ +Q(û, w)

)
− ẑN ′(ĉg,t, ûg,t)

)2
(4.26)

where P ′ =
∑

g∈G
∑

t∈T (C
S
g ĉ

m
g,t + CC

g û
m
g,t) of the given candidate first-stage solution and

Q(û, w) represents the optimal solution of the second-stage for scenario w for a given first
stage optimal solution û.

As mentioned before, for the upper bound we also need to calculate a confidence level,
using the same formula:

[
UBN ′(x̂m

N)− zα
σ̂2
UBN′√
N ′

;UBN ′(x̂m
N) + zα

σ̂2
UBN′√
N ′

]
(4.27)

4.2. Optimality Gap Estimate

Once we have calculated our estimates and confidence intervals, the most important ques-
tion we need to ask is how close is z∗ to these upper and lower bounds? Which would be
the equivalent of asking, how well our samples perform in comparison with the original sce-
narios in finding a candidate solution? To do this, we would like to compute optimality
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gaps, defined as the distance between the estimate and the best known solution.

In our case, it would be formulated as UP - z∗ and z∗ - LB. Unfortunately, the very
reason to develop the methodology described in this paper is that the computation of this
solution z∗ is extremly hard. For this reason, we use the proposed formulations by Seljom
et al. [24] of the estimator of the optimality gap GAPM,N,N ′ , its variance σ2

GAPM,N,N′ and
the confidence interval of this gap based on the calculated optimality gaps of the estimated
bounds, according to the following equations:

GAPM,N,N ′ = UBN ′ − LBM,N (4.28)

σ2
GAPM,N,N′ =

σ̂2
UBN′√
N ′

+
σ̂2
LBM,N√
M

(4.29)

[
GAPM,N,N ′ − zασ

2
GAPM,N,N′ ;GAPM,N,N ′ + zασ

2
GAPM,N,N′

]
(4.30)

4.3. Example

We present a small example to help understanding the methodology. We used the data
provided for the model (see Appendix A) applying the SAA method for a set composed
of 20 scenarios |S| = 20 solved for 10 independent samples M = 10 composed of N = 3

scenarios each. For the upper bound, we assume N´= S = 20, as S is relatively small.

We used an instance of G = 12 generators and a standard deviation σ of 15%. This σ is
taken into account when sampling the demand to generate the scenarios. For each time
period t ∈ T we define its standard deviation as a percentage of the average demand of
that time period t, i.e., σt = σdt.

Finding the exact solution is relatively easy:

z∗ = 525, 754

For the lower bound, we generate M = 10 independant random samples and solve the
UCPSD problem for each of them.

The expected value of the average is calculated by simply multiplying each objective value
by its probability, which is qm = 1

10
, and added to the product.



4| Sample Average Approximation Method 21

Sample Objective Value
1 512,871
2 547,378
3 551,181
4 510,364
5 509,150
6 517,043
7 501,330
8 520,173
9 513,322
10 519,851

Table 4.1: Example: UCPSD Objective Values

zN = 520, 266

Following the described procedure, we calculate the standard deviation of the lower bound
estimate using the objective values calculated for each sample:

Sample zmN zmN − zN (zmN − zN)
2

1 512,871 -73,950 54,690,462
2 547,378 27,111 735,044,276
3 551,181 30,914 955,718,676
4 510,364 -9,902 98,055,545
5 509,150 -11,116 123,572,125
6 517,043 -3,223 10,389,662
7 501,330 -18,936 358,583,457
8 520,173 -93 8,704
9 513,322 -6,944 48,223,302
10 519,851 -415 172,474

Table 4.2: Example: SAA Upper Bound Objective Values

Specifically, the variance of the estimator of the lower bound is calculated by the square
root of the sum of the last column, divided by the amount of (M − 1):

σ̂2
zN

= 16, 277

With this information the confidence interval would be:
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CILB = ±10, 088

zN ∈ [510, 178; 530, 354]

For the upper bound, we choose the sample with the smallest objective function value
(sample number 7). We use this solution’s first stage variables values, ûz7

g,t and ĉz7g,t to solve
a UCPSD for N ′ scenarios fixing the first stage variables ug,t and cg,t to ûz7

g,t and ĉz7g,t. Given
the relatively small S, we can solve N ′ = S = 20 scenarios. This is a relatively quick
problem to solve as the constraints of the second stage are just a group of independant
linear equations.
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Scenario zmN zmN − zN (zmN − zN)
2

1 695,575 135,251 18,292,916,299
2 764,161 203,837 41,549,403,961
3 648,861 88,536 7,838,702,636
4 514,444 -45,880 2,104,968,425
5 489,402 -70,923 5,030,016,432
6 542,053 -18,271 333,842,617
7 603,689 43,365 1,880,528,398
8 456,417 -103,907 10,796,721,840
9 589,023 28,699 823,613,838
10 526,600 -33,724 1,137,317,695
11 523,822 -36,502 1,332,425,581
12 548,675 -11,649 135,708,845
13 494,724 -65,600 4,303,414,387
14 520,975 -39,349 1,548,348,241
15 535,926 -24,398 595,259,424
16 561,514 1,189 1,414,669
17 492,206 -68,118 4,640,065,605
18 508,800 -51,524 2,654,696,579
19 574,775 14,451 208,837,901
20 614,842 54,518 2,972,158,095

Table 4.3: Example: SAA Lower Bound Objective Values

Following the formula (4.24) we calculate the estimate for the upper bound:

ẑN ′(ûz7
g,t, ĉ

z7
g,t) = 560, 324

And as previously described in formula (4.26), we calculate the standard deviation of the
upper bound estimate using the objective value found in each scenario:

σ̂2
ẑN′ (û

z7
g,t,ĉ

z7
g,t)

= 75, 457

Following the formulation, the confidence interval would be:

CIUB = ±46, 768

ẑN ′(ûz7
g,t, ĉ

z7
g,t) ∈ [513, 556; 607, 091]

At last, we calculate the optimality gap, its variance and confidence interval for a 95%
confidence (significance level α = 0.05) with formulas (4.28), (4.29) and (4.30) respectively.
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GAPM,N,N ′ = 607, 091− 510, 178 = 96, 913

σ2
GAPM,N,N′ =

75, 457√
20

+
16, 277√

10
= 16, 873− 5, 147 = 22, 020

GAPM,N,N ′ ∈
[
73, 931; 119, 895

]
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5| Computational Study

In Section 5.1 we discussed the choice of data of the generators, and the adjustments we
implemented to the original set of data in order to cope with the missing information.
Then in Section 5.2, we described the demand and the scenario sampling process. Section
5.3 develops the procedure for the generation of different instances. Lastly, Section 5.4
describes the equipment and software used in the experiments.

5.1. Choice of Data

In order to make a correct decision on the choice of data it is important to underline the
purpose of the model. In general, we would like to find a solution for a UCPSD given
certain data. In our case, we are trying to demonstrate the performance of the SAA in
efficiently solving the UCPSD when the number of scenarios is large. Therefore, the value
of the specific solutions we found to our data is not relevant, outside the fact that we were
able to find a solution. We will focus on the time it takes the algorithm to find a solution,
and how close is this solution to the real one. As we are using a sampling method, we
will come up with upper and lower bounds, so we will be analyzing the dispersion of these
bounds and how centered they are with respect to the actual solution.

Due to the previously mentioned reasons, we have decided to use the same problem
instances as the work of Magnus [21], "An updated version of the ‘IEEE RTS 24-Bus
System for Electricity Market and Power System Operation Studies’ " [17], as we consider
this a great opportunity to have some perspective. The data was designed for a network-
constrained UCP, but we can omit the node distribution of generators and demand. These
data set are not a representation of some real data, but are constructed with the purpose
of being well suited for testing.

This data set has 12 generators and a system load for a 24 hs period. As mentioned before,
each generator has start-up cost, production cost, minimum and maximum production,
ramp-up and ramp-down times, minimum up and down time, initial state as well as initial
production. However, this data set doesn’t provide commitment cost nor shedding cost.
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For the first, we are gonna make an approximation. The same way it is expressed in Rimer
[21], we will be assuming the commitment cost to be a 5% of the maximum production
cost. This is an arbitrary decision, as the main goal of this paper is to understand the
advantages of using SAA and not to be close to reality. The main idea, is to avoid
generators to be unnecessary committed. Thus,

CC
g = 0.05PMax

g CP
g (5.1)

For the shedding cost, we used the production cost as a reference. The objective is to
avoid the shedding load if possible, so we want the shedding cost to be high enough
to incentivize the model to overproduce (and sell it for free to the grid) as opposed to
paying the cost of shedding. The main idea is to avoid infeasible solution in case of under
production. Given that the biggest production cost value is 20.93 e/MB, a value of 200
e/MB is enough for our purpose. It could be argued that the shedding cost should be
dependant on time. As mentioned the objective of this thesis is to evaluate the SAA and
the exact value of the solution is only relevant for this endeavour.

Lt = 200 e/MB ∀t ∈ T (5.2)

5.2. Stochastic Demand

The original paper provides a fix discrete demand for each time period which will denoted
with Doriginal

t . The data is provided in Appendix A. We would like to have a demand
distribution in order to generate scenario set S, and we want these scenarios to be the
same for all experiments. First for each time period t, we will assume a continuous
distribution of the demand centered at Doriginal

t with a standard deviation of σ. Then
we will randomly take the sample of scenarios from this continuous distribution using
a random seed of value 1 to keep this scenario set constant between experiments. By
doing so, we guarantee that the distribution is centered around the demand found in the
data. The only problem would be to create negative values for the demand. This can be
achieved by keeping the standard deviation relatively small. Notice that the samples for
the SAA are chosen randomly, so the random seed is reset every time we take a sample
from S.
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5.3. Instance Generation

We took into consideration up to 24 generators. We created a new set of generators
starting from the original set of 12 generators and properly multiplying the parameters
PMin
g , PMax

g , RUp
g , RDown

g , TUp
g , TDown

g , CP
g , C

C
g , C

S
g and pInitg corresponding to each gener-

ator by a coefficient of 1.5 to obtain a new set of 12 generators with increased capabilities
and associated costs. These 24 generators were used to solved the UCPSD problem for
discrete demand.

The original data set was design to satisfy the demand previously mentioned, so by adding
these new generators to the original ones we are not affecting the nature of the UCPSD
problem. This is done with the soul purpose of giving information on the changes in the
objective values as well as a deeper understanding of the limitations of our model and the
computational system.

For solving the extensive formulation of the UCPSD we generated 15 instances. While for
the SAA method, we considered 36 instances. For this, we considered two key parameters
in the model: the generators and the standard deviation to generate the scenarios
from the continuous probability demand function.

For the generators we considered different instances between the extensive UCPSD and
the SAA method. For the first, we run the model for 8, 10, 12, 14 and 16 generators.
While for the later, we took even sets from the complete set of generators, that’s to say,
we run the SAA for 2,4, ..., 24 generators.

Regarding the standard deviation σ, we previously mentioned that we need to keep it
small enough to avoid problems related to generating negative values. After a few tests,
we concluded that up to 15% would avoid this problem, so we choose three standard
deviations of 5%,10% and 15% to run the tests. The standard deviation is expressed as a
percentage given that the demand changes from one period to the other, meaning we need
to adjust the σt value at each period of time to the value of the demand in that period
in order to be representative. To normalize the coefficient, we took σt as a percentage of
Doriginal

t for each t.

σt = σDoriginal
t (5.3)

With σt it is possible to generate and sample the continuous function of demand. Just
in case, any negative value resulting from the normalization of demand is considered as
zero.
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GUCPSD = {8, 10, 12, 14, 16} GSAA = {2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24}

σUCPSD ∈ {5%, 10%, 15%} σSAA ∈ {5%, 10%, 15%}

To clarify, GUCPSD and σUCPSD represents the different sets of generators and σ values
respectively, used to run the experiments of the extensive formulation of the unit commit-
ment problem with stochastic demand. While GSAA and σSAA represents the ones used
in the sample average approximation method.

5.4. Implementation Details

The implementation of the model was done in a DELL laptop with Microsoft Windows
11 pro, processor Intel(R) Core(TM) i7-10510U CPU @ 1.80 GHz 2.30 GHz equipped
with 8 GB of RAM memory. Python version 3.10.10 was ran in Visual Basic Code
and Jupyter Notebook. The solver of the model for both the UCPSD and the SAA was
Gurobi Optimizer version 10.0.1 build v10.0.1rc0 (win64).
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6| Results

The numerical experimentation is performed in two parts. Firstly, we run the extensive
formulation of the UCPSD for 15 instances, increasing the number of sample scenarios
until the code was unable to find a solution for one instance in the stated time limit. In
the second part, we decided on a comparatively large number of scenarios and run the
code for the SAA method for 36 instances. Since the major motive of the present thesis
is to analyze the performance of the SAA, we emphasize our display of data on the run
times, the optimality gaps and confidence intervals.

6.1. Extensive Formulation UCPSD

We first analyse the extensive formulation of the UCPSD. Specifically, we solved the
instances with |S| = 100, 200, 500, 1000, 2000 and 3000 scenarios using 3 different standard
deviations for the demand of σDemand = 5%, 10%, 15% and 5 different generators set |G| =
8, 10, 12, 14, 16. The aggregate results are shown in Table 6.1, while the complete results
can be found in Appendix B. The values in the last column represent the averages. We
imposed to Gurobi a time limit of 3,600 seconds and a MIPGap of 0.5 to Gurobi. This
gap tells the solver when to stoplooking for a solution.

Scenarios |S|
|G| 100 200 500 1,000 2,000 3,000
8 2,255,251 2,244,964 2,247,735 2,242,712 2,241,018 2,238,803 2,245,080
10 774,508 768,297 770,480 769,474 768,160 768,296 769,869
12 578,110 575,914 577,520 577,040 577,451 576,748 577,131
14 576,903 566,844 568,134 567,796 568,491 570,065 569,705
16 576,084 567,080 568,003 567,597 567,519 - 569,257

Table 6.1: Objective Values: Total Costs

Table 6.1 presents the average results of experiments for all three values of σDemand. Thus,
for each number of scenarios |S| three runs are carried out. The "-" symbol represents
the incapacity of the solver to find a solution in the time restriction imposed.
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Results in Table 6.1 indicate that the objective value of the solution is relatively un-
changed with an increasing amount of scenarios. Moreover, we observe that the extensive
formulation for less than 12 generators obtains a larger total cost. On the other hand,
increasing over 12 generators does not provide a considerable decrease in the total costs.
This makes sense as the data we are using [17] is designed for 12 generators.

We calculated the standard deviation between the objective function values for different
scenarios with the same |G| and σDemand and present the results in Table 6.2

σDemand

|G| 5% 10% 15%
8 2,500 5,516 8,068 5,362
10 1,402 2,304 3,122 2,276
12 1,795 1,071 1,170 1,346
14 5,307 11,268 1,736 6,104
16 522 10,682 521 3,909

Table 6.2: Standard deviation of the objective values z along all scenarios for the same
|G| and σDemand

Results in Table 6.2 confirm that the objective values of the solution are relatively un-
changed with the number of scenarios.

σDemand=5% σDemand=10% σDemand=15%
|G| z Time z Time z Time
8 2,198,842 20 2,232,398 32 2,304,002 26
10 675,912 132 758,032 163 875,664 275
12 561,571 515 573,370 462 596,451 346
14 543,587 1,231 562,812 826 602,717 614

Table 6.3: Average objective values and run times variation with respect to the σ values
for all scenarios

Table 6.3 presents the average results of experiments for all scenarios for all six values of
|S| where the number of generators |G| ranges from 8 to 16. Results in this table present
the variation in the objective values and run times with respect to the σDemand values.
Regarding the total cost, we note a slight tendency to increase with increasing standard
deviation σDemand. As demand deviates from the mean, new generators needs to be turned
on in order to satisfy demand.

On the other hand, the run times have a more unpredictable behaviour than the standard
deviation. For 14 generators, the total cost decreases with increasing σDemand while for
10, it increases for increasing σDemand
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Scenarios |S|
|G| 100 200 500 1000 2000 3000
8 1 2 9 17 48 78
10 3 5 36 92 296 708
12 8 21 141 182 855 1,439
14 17 23 206 404 1,896 2,796
16 37 35 238 526 2,709 -

13 17 126 244 1161 1255

Table 6.4: Average Run Times in seconds

Table 6.4 results show the average run times corresponding to the entries in Table 6.1.
We note that run times significantly grow with the number of scenarios. Again, the
"-" indicates that the solver was unable to find a solution in less than 60 minutes, as
imposed to the solver. We conclude that the problem becomes impractical to solve for
large instances. This justifies the need for developing the SAA method.

6.2. Sample Average Approximation

We run the SAA method for 36 instances with |S| = 10, 000 scenarios for M = 30 samples
of size N = 50, 100, 150, 200 for the lower bound and N ′ = 40N for the upper bound, i.e.,
N ′ = 2000, 4000, 6000, 8000 respectively. For each run we computed the upper and lower
bound values, as well as their corresponding run times, confidence intervals and variance
as described in Section 4.1.

Sample Size N
|G| 50 100 50 200
2 9,877,827 9,879,316 9,873,277 9,879,625 9,877,511
4 5,265,819 5,263,574 5,269,542 5,269,039 5,266,994
6 4,333,204 4,338,234 4,337,726 4,336,931 4,336,524
8 2,239,434 2,240,058 2,244,383 2,239,400 2,240,819
10 692,032 693,231 692,613 691,934 692,452
12 501,072 500,771 500,992 500,503 500,835
14 496,152 492,778 493,593 492,287 493,703
16 494,337 492,075 491,471 493,674 492,889
18 478,299 478,591 477,746 476,916 477,888
20 418,745 419,336 419,379 419,710 419,292
22 281,375 281,730 281,637 281,428 281,542
24 281,765 281,443 281,724 281,705 281,659

Table 6.5: Average Lower Bound values for 50, 100, 150 and 200 scenarios sample size for
σ values of 5%,10% and 15%
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We will present aggregated results and average values relevant for our discussion. We
observe in Table 6.5 a reduction in total cost as we increase the number of generators
in all instances, a similar behaviour as appreciated in Table 6.1. Note the insignificant
variation in the objective values with respect to the sample size. We showed only the
lower bounds results in this table, but the same trend can be appreciated for the upper
bound results.

|G| LB UB
Run
Time

UB−LB
LB

σGAP

2 9,877,511 ± 7,246 9,878,325 ± 78,237 3 0.9% 70,991
4 5,266,994 ± 7,952 5,270,255 ± 77,942 8 1.7% 69,990
6 4,336,524 ± 7,694 4,335,391 ± 77,141 15 1.9% 69,447
8 2,240,819 ± 6,792 2,242,981 ± 67,191 48 3.4% 60,398
10 692,452 ± 2,827 692,279 ± 28,088 96 4.2% 25,262
12 500,835 ± 1,010 498,989 ± 7,809 336 1.4% 6,799
14 493,703 ± 2,125 490,084 ± 7,170 550 1.1% 5,045
16 492,889 ± 2,078 490,522 ± 7,202 1,097 1.4% 5,124
18 477,888 ± 2,083 475,090 ± 7,141 1,246 1.3% 5,058
20 419,292 ± 1,195 417,706 ± 6,460 1,152 1.4% 5,265
22 281,542 ± 877 277,748 ± 5,592 902 0.9% 4,716
24 281,659 ± 1,029 277,434 ± 6,390 1,341 1.1% 5,361

Table 6.6: Average results of the SAA for σDemand values of 5%,10%, 15% and sample size
N=50,100,150,200

We can appreciate in Table 6.6 that the run times are much smaller than those of Table
6.4 for 3,000 scenarios for the same number of generators G, regardless of the considerable
difference in the scenarios considered. In this table the Run Time considers both the time
to find both the upper and lower bound. In general, the time taken to find the upper
bound, i.e., the time taken to evaluate the N ′ sample, is insignificant with respect to the
time taken to run the M = 30 samples of N size and find the lower bound. For this reason
we indicated in Table 6.6 the total time. The specific time it took the experiment to find
the lower and upper bound respectively can be found in the Appendix B. Note that the
total cost in this case kept decreasing for instances with more than 12 generators.

Note that for 12 generators, the SAA method took an average of 5 minutes for each
instance to find the upper and lower bounds for a |S| = 10, 000 scenarios. While on Table
6.4, we can appreciate that it took the solver 20 minutes to find an exact solution for 12
generators and |S| = 3, 000. This shows a considerable reduction in the time required to
find a solution.

Moreover, the confidence intervals of both the lower and the upper bound are considerable
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small. We can appreciate a consistent decrease on the interval between 8 generators and
10 generators. At 10 generators the data seems to stabilize, and the minimum confidence
interval is reached for 22 generators.

Note that the optimality gaps doesn’t go beyond 2% in almost all instances and the
variance of the GAP, i.e., σGAP , stays below 7,000 from 12 generators onwards, which
represents 1% and 2% of the lower bound value, providing high consistency to the results.
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7| Conclusions and future

developments

In this thesis we introduced the Unit Commitment Problem with Stochastic Demand and
described a mathematical for its extensive formulation that minimizes total costs. We the
proposed the Sample Average Approximation methodology to solve instances with large
number of scenarios and studied its efficiency. The computational experiments showed
that by using the SAA method we can achive a considerable decrease in the time needed to
find a solution with small optimality gaps. From testing this methodology it became clear
how taking advantage of dividing big problems into smaller ones can beneficial without
losing quality of result. The SAA proved to be relatively simple and effective; we believe
it can be very usefull in solving other scheduling problem with the same efficiency.

To conclude we believe that the thesis paves the way to several avenues of future research.
We note that while we showed that the SAA provides high quality solutions, the run times
are directly proportional to the Sample size N . Further research could be done in trying
to find the optimal number of samples M and sample size N for the number of scenarios
|S|.

We described the UCPSD, but uncertainty can be found in many parameters (e.g. pro-
duction). As mentioned, nowadays the trend is changing and so are the formulations of
the UCPSD. In this thesis, we wanted to evaluate the performance of the SAA in solving
the UCPSD, but our work could be further developed taking into account other random
parameters or develop the formulation to make the model more realistic.





37

Bibliography

[1] H. Abdi. Profit-based unit commitment problem: A review of models, methods,
challenges, and future directions. Renewable and Sustainable Energy Reviews, 138:
110504, 11 2020.

[2] S. Ahmed and A. Shapiro. The sample average approximation method for stochastic
programs with integer recourse. Science, 2002.

[3] J. R. Birge and F. Louveaux. Introduction to Stochastic Programming. Springer New
York, NY, 2011.

[4] T. H. de Mello and G. Bayraksan. Monte carlo sampling-based methods for stochastic
optimization. Surveys in Operations Research and Management Science, 19, 2014.
ISSN 18767354.

[5] J. Dupacová, N. Gröwe-Kuska, and W. Römisch. Scenario reduction in stochastic
programming. Mathematical Programming, 95:493–511, 2003.

[6] Z. Geng, A. Conejo, Q. Chen, and C. Kang. Power generation scheduling consider-
ing stochastic emission limits. International Journal of Electrical Power & Energy
Systems, 95:374–383, 02 2018.

[7] P. Glasserman. Monte Carlo Methods in Financial Engineering. Springer New York,
NY, 2003.

[8] Y. Huang, Q. P. Zheng, and J. Wang. Two-stage stochastic unit commitment model
including non-generation resources with conditional value-at-risk constraints. Electric
Power Systems Research, 2014.

[9] M. Håberg. Fundamentals and recent developments in stochastic unit commitment.
International Journal of Electrical Power & Energy Systems, 109:38–48, 2019.

[10] A. J. Kleywegt, A. Shapiro, and T. H. de Mello. The sample average approximation
method for stochastic discrete optimization. SIAM J. Optim., 12:479–502, 2002.



38 | Bibliography

[11] D. Kothari and A. Ahmad. An expert system approach to the unit commitment
problem. Energy Conversion and Management, pages 257–261, 1995.

[12] W. Mak, D. Morton, and R. Wood. Monte carlo bounding techniques for determining
solution quality in stochastic programs. Operations Research Letters, 24(1):47–56,
Feb. 1999.

[13] R. Mallipeddi and P. Suganthan. Unit commitment - a survey and comparison of
conventional and nature inspired algorithms. Int. J. of Bio-Inspired Computation, 6:
71 – 90, 01 2014.

[14] L. Montero, A. Bello, and J. Reneses. A review on the unit commitment problem:
Approaches, techniques, and resolution methods. Energies, 15(4), 2022.

[15] V. Norkin. Global optimization of probabilities by the stochastic branch and bound
method. In K. Marti and P. Kall, editors, Stochastic Programming Methods and
Technical Applications, pages 186–201. Springer Berlin Heidelberg, 1998.

[16] W. Ongsakul and N. Petcharaks. Unit commitment by enhanced adaptive lagrangian
relaxation. Power Systems, IEEE Transactions on, 19:620 – 628, 03 2004.

[17] C. Ordoudis, P. Pinson, J. Morales González, and M. Zugno. An Updated Version of
the IEEE RTS 24-Bus System for Electricity Market and Power System Operation
Studies. Technical University of Denmark, 2016.

[18] N. Padhy. Unit commitment-a bibliographical survey. IEEE Transactions on Power
Systems, 19(2):1196–1205, 2004.

[19] D. Palis and S. Palis. Efficient unit commitment - a modified branch-and-bound
approach. In 2016 IEEE Region 10 Conference (TENCON), pages 267–271, 2016.

[20] K. Ponomareva, D. Roman, and P. Date. An algorithm for moment-matching scenario
generation with application to financial portfolio optimisation. European Journal of
Operational Research, 240(3):678–687, 2015.

[21] M. Rimer. Master thesis in mathematics-economics. Master’s thesis, Department of
Mathematical Sciences, 2022.

[22] L. A. C. Roque. Optimization Methods for the Unit Commitment Problem in Electric
Power Systems. PhD thesis, School of Mathematics, 2014.

[23] A. Sayed, M. Ebeed, Z. Ali, A. Bedair, A. Abdel-Rahman, M. Ahmed, S. Ab-
del Aleem, A. El-Shahat, and M. Rihan. A hybrid optimization algorithm for solving



7| BIBLIOGRAPHY 39

of the unit commitment problem considering uncertainty of the load demand. Ener-
gies, 2021.

[24] P. Seljom and A. Tomasgard. Sample average approximation and stability tests
applied to energy system design. Energy Systems, 12, 02 2021.

[25] T. Shiina. Unit commitment problem with stochastic demand. Journal of Computa-
tions & Modelling, 2012.

[26] T. Shiina and J. R. Birge. Stochastic unit commitment problem. International
Transactions in Operational Research, 11, 2004. ISSN 14753995.

[27] S. Takriti, J. Birge, and E. Long. A stochastic model for the unit commitment
problem. IEEE Transactions on Power Systems, 11(3):1497–1508, 1996.

[28] B. Verweij, S. Ahmed, A. Kleywegt, G. Nemhauser, and A. Shapiro. The sample aver-
age approximation method applied to stochastic routing problems: A computational
study. Computational Optimization and Applications, 24:289–333, 02 2003.

[29] Q. Wang, J. Wang, and Y. Guan. Stochastic unit commitment with uncertain demand
response. IEEE Transactions on Power Systems, 2013.

[30] Y.-G. Xie and H.-D. Chiang. A novel solution methodology for solving large-scale
thermal unit commitment problems. Electric Power Components and Systems, 38
(14):1615–1634, 2010.

[31] P. Xiong and P. Jirutitijaroen. A stochastic optimization formulation of unit commit-
ment with reliability constraints. IEEE Transactions on Smart Grid, 4(4):2200–2208,
2013.

[32] W. Zhi, Z. Pingliang, Z. Xiao-Ping, and Z. Qinyong. A solution to the chance-
constrained two-stage stochastic program for unit commitment with wind energy
integration. IEEE Transactions on Power Systems, 31(6):4185–4196, 2016.

[33] J. Zou, S. Ahmed, and X. A. Sun. Multistage stochastic unit commitment using
stochastic dual dynamic integer programming. IEEE Transactions on Power Systems,
2019.





41

A| Appendix A - Data

Hour System Demand (MW) Hour System Demand (MW)
1 1775.835 13 2517.975
2 1669.815 14 2517.975
3 1590.3 15 2464.965
4 1563.795 16 2464.965
5 1563.795 17 2623.995
6 1590.3 18 2650.5
7 1961.37 19 2650.5
8 2279.43 20 2544.48
9 2517.975 21 2411.955
10 2544.48 22 2199.915
11 2544.48 23 1934.865
12 2517.975 24 1669.815

Table A.1: System demand

Unit PMin
g PMax

g RUp
g RDown

g TUp
g TDown

g CP
g CC

g CS
g pInitg uInitg

1 30.4 152 120 120 8 4 13.32 101 1430.4 76 1
2 30.4 152 120 120 8 4 13.32 101 1430.4 76 1
3 75 350 350 350 8 8 20.7 362 1725 0 0
4 206.85 591 240 240 12 10 20.93 618 3056.7 0 0
5 12 60 60 60 4 2 26.11 78 437 0 0
6 54.24 155 155 155 8 8 10.52 82 312 0 0
7 54.24 155 155 155 8 8 10.52 82 312 124 1
8 100 400 280 280 1 1 6.02 120 0 240 1
9 100 400 280 280 1 1 5.47 109 0 240 1
10 300 300 300 300 0 0 0 0 0 240 1
11 108.5 310 180 180 8 8 10.52 163 624 248 1
12 140 350 240 240 8 8 10.89 191 2298 280 1

Table A.2: Generator’s data
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B| Appendix B - Results UCPSD

|G| |S| σDemand Time Z
8 100 5% 1 2,203,440
10 100 5% 2 678,569
12 100 5% 8 564,418
14 100 5% 18 540,570
16 100 5% 36 539,908
8 100 10% 1 2,242,761
10 100 10% 3 762,676
12 100 10% 9 572,360
14 100 10% 16 587,885
16 100 10% 38 586,089
8 100 15% 1 2,319,552
10 100 15% 3 882,280
12 100 15% 7 597,553
14 100 15% 17 602,254
16 100 15% 36 602,254
8 200 5% 2 2,198,768
10 200 5% 4 674,408
12 200 5% 20 559,009
14 200 5% 31 539,720
16 200 5% 38 539,720
8 200 10% 2 2,232,878
10 200 10% 5 755,916
12 200 10% 23 571,754
14 200 10% 21 558,197
16 200 10% 34 558,905
8 200 15% 2 2,303,245
10 200 15% 5 874,568
12 200 15% 19 596,980
14 200 15% 18 602,614

Table B.1: Extensive formulation of the Unit Commitment Problem with Sotchastic De-
mand solved with Cplex
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|G| |S| σDemand Time Z
16 200 15% 32 602,614
8 500 5% 8 2,200,298
10 500 5% 34 676,866
12 500 5% 196 559,659
14 500 5% 241 540,761
16 500 5% 249 540,943
8 500 10% 10 2,235,065
10 500 10% 36 758,889
12 500 10% 134 575,035
14 500 10% 263 559,473
16 500 10% 246 559,473
8 500 15% 8 2,307,842
10 500 15% 39 875,684
12 500 15% 92 597,867
14 500 15% 114 604,168
16 500 15% 220 603,594
8 1000 5% 17 2,197,701
10 1000 5% 88 675,366
12 1000 5% 223 561,830
14 1000 5% 460 539,526
16 1000 5% 540 540,850
8 1000 10% 16 2,229,627
10 1000 10% 78 757,813
12 1000 10% 163 574,014
14 1000 10% 454 558,290
16 1000 10% 493 559,661
8 1000 15% 18 2,300,809
10 1000 15% 110 875,243
12 1000 15% 158 595,276
14 1000 15% 299 605,571
16 1000 15% 545 602,281
8 2000 5% 40 2,197,201
10 2000 5% 219 675,291
12 2000 5% 1079 562,335
14 2000 5% 3315 546,894
16 2000 5% 4443 540,817
8 2000 10% 65 2,228,151
10 2000 10% 276 756,418
12 2000 10% 722 573,613
14 2000 10% 1568 557,178

Table B.1: Extensive formulation of the Unit Commitment Problem with Stochastic De-
mand solved with Cplex (continue)
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|G| |S| sigma_D Time Z
16 2000 10% 2174 559,524
8 2000 15% 39 2,297,702
10 2000 15% 394 872,772
12 2000 15% 764 596,404
14 2000 15% 804 601,401
16 2000 15% 1508 602,216
8 3000 5% 54 2,195,641
10 3000 5% 444 674,973
12 3000 5% 1566 562,175
14 3000 5% 3322 554,052
16 3000 5% - -
8 3000 10% 96 2,225,908
10 3000 10% 578 756,481
12 3000 10% 1717 573,444
14 3000 10% 2635 555,849
16 3000 10% - -
8 3000 15% 85 2,294,859
10 3000 15% 1101 873,435
12 3000 15% 1032 594,624
14 3000 15% 2431 600,293
16 3000 15% - -

Table B.1: Extensive formulation of the Unit Commitment Problem with Sotchastic De-
mand solved with Cplex (continue)
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C| Appendix C - Results SAA

The following tables presents the results of the experiments with the Sample Average Ap-
proximation method using M = 30 samples per run for |G| ∈ {2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24}
with σDemand ∈ {0.05, 0.1, 0.15} and N ∈ {50, 100, 150, 200}
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