
Neural Network Training on
Embedded Systems: a feasibility
study

Tesi di Laurea Magistrale in
Computer Science and Engineering - Ingegneria In-
formatica

Author: Davide Quarantiello

Student ID: 939618
Advisor: Prof. Giacomo Boracchi
Co-advisors: Diego Carrera
Academic Year: 2021-2022

i

Abstract

The deployment of embedded systems in an ever-growing range of application contexts
has determined a surge of interest in empowering the devices with more and more ad-
vanced, personalized Artificial Intelligence (AI) functionalities.
Current frameworks enable embedded systems to effectively perform AI inference by con-
verting pre-trained models into reference suitable for resource-constrained devices. How-
ever do not empower embedded systems with the ability to train models directly on the
device. In current solutions, the training process relies on a cloud-based paradigm. This
strategy has several drawbacks: it does not preserve data privacy, it requires a stable
connection and, moreover, since the training procedure uses the data collected from many
devices, the trained models are not tailored for the specific device. For all these reasons,
the need to empower embedded devices with training on device functionalities is clearly
emerging.
The attractiveness of the training on device is not only limited to tackle the aforemen-
tioned challenges, but can also enable more complex frameworks like Federated Learning
where several devices contribute to learn a common model. In the thesis, developed from
a collaboration with STMicroelectronics, we propose a framework which enables embed-
ded systems to effectively perform the training of neural networks on device.
The problem has been addressed from different perspectives allowing not only to design
and implement the desired framework more easily, but also to set up a feasibility study
about the neural network training on STM32 microcontrollers. Specifically starting from
a formal reorganization of backpropagation calculus using computational graphs, we de-
velop a framework which enables embedded systems to train neural networks directly on
device. Moreover we design a tool for evaluating the computational resources required for
running the training process. Finally, we set several experiments aimed to evaluate the
enhancement of models performances due to the training on device in a real use case.

Keywords: TinyML, Training On Device, Neural Network, Backpropagation, Embedded
Systems, Microcontrollers, STM32

iii

Abstract in lingua italiana

L’utilizzo dei sistemi embedded in contesti applicativi sempre più ampi ha reso necessaria
l’integrazione dell’intelligenza artificiale (IA) sui dispositivi stessi.
L’attuale progresso tecnologico consente di usare modelli basati sull’IA per effettuare
predizioni. Infatti, tramite appositi framework, è possibile convertire modelli pre-addestrati
in versioni compatibili con i sistemi embedded per essere poi utilizzate per fare inferenza.
Il principale problema di questo approccio è che i modelli risultano essere statici in quanto
non possono essere modificati dagli stessi dispositivi. Per poter addestrare nuovamente
il modello si ricorre ad un paradigma basato sul cloud, strategia che tuttavia presenta
diversi svantaggi. In primo luogo non tutela la privacy dei dati, inoltre è richiesto che i
dispositivi siano necessariamente provvisti di una connessione. Un’ulteriore criticità da
sottolineare è rappresentata dal fatto che i modelli sono addestrati utilizzando i dati rac-
colti da diversi dispositivi, per cui i modelli addestrati su tali dati possono essere non
altrettanto efficaci quando vengono impiegati su un dispositivo diverso da quelli utilizzati
per la raccolta di dati.
L’addestramento di modelli direttamente sui dispositivi embedded, senza ricorrere al cloud,
consente di risolvere tali problematiche. I modelli possono apprendere continuamente,
diventando sempre più performanti e, soprattutto, personalizzati. In questo modo ven-
gono sfruttate al massimo le potenzialità dell’ IA. Inoltre l’addestramento sul dispos-
itivo rappresenta anche una funzione abilitante per l’apprendimento distribuito, come
l’apprendimento federato, in cui diversi dispositivi contribuiscono all’apprendimento di
un modello comune.
Nella tesi, nata dalla collaborazione con STMicroelectronics, abbiamo sviluppato un
framework che consente ai sistemi embedded di addestrare reti neurali direttamente sul
dispositivo.
Abbiamo affrontato il problema da diverse prospettive, il che ci ha permesso non solo di
progettare e implementare più facilmente il framework desiderato, ma anche di impostare
uno studio di fattibilità sull’ addestramento di reti neurali sui microcontrollori STM32. In
particolare, partendo da una riorganizzazione formale della backpropagation utilizzando
grafi computazionali, abbiamo sviluppato il framework che consente ai sistemi embed-

ded di addestrare reti neurali direttamente sul dispositivo. Inoltre abbiamo progettato
uno strumento per valutare le risorse computazionali necessarie per eseguire il processo
di addestramento. Infine abbiamo condotto diversi esperimenti per valutare l’effettivo
miglioramento delle prestazioni dei modelli grazie all’addestramento sul dispositivo con-
siderando un caso d’uso reale.

Parole chiave: TinyML, Addestramento sul dispositivo, Reti Neurali, Backpropagation,
Sistemi Embedded, Microcontrollori , STM32

v

Contents

Abstract i

Abstract in lingua italiana iii

Contents v

1 Introduction 1
1.1 Artificial Intelligence on Embedded Systems 1
1.2 Training on Device . 2
1.3 Related Work . 2
1.4 Objectives and contributions . 3
1.5 Thesis structure . 4

2 Neural Network Optimization 5
2.1 One-Dimensional Gradient Descent . 5
2.2 Multivariate Gradient Descent . 7
2.3 Optimization in Deep Learning . 8

2.3.1 Batch Gradient Descent . 9
2.3.2 Stochastic Gradient Descent . 10
2.3.3 Mini-batch Gradient Descent . 10

3 Backpropagation Computation 13
3.1 Computational Graphs . 13
3.2 Chain Rule . 14
3.3 Computation Flow . 14

3.3.1 Dense Layer . 16
3.3.2 Activation Layer . 18
3.3.3 Convolutional Layer . 20
3.3.4 Pool Layer . 23

3.3.5 Global Pool Layer . 25
3.3.6 Flatten Layer . 27

4 Proposed Framework 29
4.1 Implemented Functionalities . 29
4.2 Framework Structure . 29
4.3 Assessment on STM32L4R9 . 33

5 Required Computing Resources for Training 35
5.1 Memory Footprint Estimation . 35

5.1.1 Network Parameters . 36
5.1.2 Training Samples . 37
5.1.3 Quantities computed during BP . 37
5.1.4 Memory Footprint of the Training 40

5.2 CPU Load Estimation . 43

6 Training Neural Network on device for Human Activity Recognition 47
6.1 Human Activity Recognition . 47
6.2 Proposed Experiments . 49

6.2.1 Experiment 1: window size of 5 seconds 51
6.2.2 Experiment 2: window size of 4 seconds 53
6.2.3 Experiment 3: window size of 3 seconds 56
6.2.4 Experiment 4: window size of 2 seconds 58
6.2.5 Experiment 5: window size of 1 second 61

6.3 Summary of results . 63

7 Conclusions and Future Developments 65

Bibliography 67

List of Figures 69

List of Tables 71

List of Symbols 73

Acknowledgements 75

1

1| Introduction

1.1. Artificial Intelligence on Embedded Systems

The deployment of embedded systems in an ever-growing range of application contexts
has determined a surge of interest in empower the devices with more and more intelligent,
personalized Artificial Intelligence (AI) functionalities.
Since AI algorithms are capable of extract data from unstructured information, they are
particularly useful in contexts where the embedded systems are usually employed. These
AI applications would be impractical or even impossible to deploy in a centralized cloud
due to issues related to bandwidth and privacy. With embedded AI, devices have the
ability to run AI models at the device level and then directly use the results to perform
an appropriate task.
The most critical drawback of the effective implementation of AI models on embedded
systems is that the AI algorithms are generally computationally and memory very inten-
sive, conversely embedded systems are resource-constrained devices. Thus designing a
lightweight AI models became a key aspect of accomplishing AI functionalities on embed-
ded devices. Several techniques have been proposed to reduce the size of AI models such
as model compression, pruning and quantization, however maintaining high the accuracy
of the models while applying these techniques is challenging. The field of research that
tackle these challenges is known as Tiny Machine Learning (TinyML). However, all the
solutions which are proposed, start with the assumption that the model to optimize is
already trained and it will be used by the embedded systems to perform only inference.
Current frameworks enable embedded systems to effectively perform AI inference by re-
ducing the size of pre-trained models with the aforementioned techniques. However, also
these frameworks do not provide functionalities for training the model directly on device.
The main drawback is that, once the model is deployed to the embedded systems, it be-
comes a static object that cannot be modified more. These prediction-only models work
properly if environment around the embedded systems is fairly static, however, since in
the real world an environment incessantly changes over time, the pre-trained models may
not perform well because they do not adapt to the new environmental conditions and

2 1| Introduction

become outdated.

1.2. Training on Device

In current solutions the training process relies on a centralized cloud-based paradigm: the
data collected from the devices are transmitted to the cloud where the training of the
model is performed. The trained model is then send back from the cloud to the device.
This strategy has several drawbacks: it does not preserve data privacy since possibly
sensitive data needs to be transmitted to the cloud and indefinitely stored there, it requires
high bandwidth since data must be transmitted over a stable connection. Moreover cloud-
based models are typically trained using data collected from many different devices, and
they can lose accuracy when applied to a new device whose data are never transmitted to
the cloud. For all these reasons, the need to empower embedded devices with training on
device functionalities is clearly emerging. Training on device allows the embedded systems
to train models directly on device using local data. The enablement of this functionalities
has several advantages. First of all the AI models can learn and respond to new scenarios,
learning from local data means that the resulting trained models are specifically tailored
for each devices providing more personalized AI functionalities. Another huge benefit of
training on device is that the data have not be sent to the cloud and so there is no more
need of a fast and a highly reliable connection. As a result of the processing of data offline
also the protection and the privacy of data is ensured. The attractiveness of the training
on device is not limited only to tackle the aforementioned challenges, but can also enable
more complex frameworks like Federated Learning [7] where several devices contributes
to learn a common model.
Besides the benefits, training on device has the several limitations and challenging aspects.
The main issue is the resource requirements which are more and more demanding then
the inference on device.

1.3. Related Work

Most of the solutions currently present in the literature in the field of AI functionalities
on embedded systems focus on methods aiming at optimizing and compressing models
trained on the cloud to make them suitable for embedded devices. This research area is
know as Tiny Machine Learning (TiniyML)[11].
Proprietary frameworks such as TFLite Micro from Google [5], CMSIS-NN from Arm
[9], X-CUBE-AI from ST [3] allow to effectively enable embedded systems to perform
inference by converting pre-trained models into optimized versions that can be run on

1| Introduction 3

resource-constrained environment. However these frameworks do not provide function-
alities for training the model directly on device. The research about training on device
is highly fragmented and most of the proposed solutions are related to the training of
non-deep ML models or to the implementation of specific use cases.
In [6] authors propose a method based on k-nearest neighbor (KNN), however the KNN
does not require a training procedure because it incrementally learn by simply adding the
new samples in it’s knowledge base.
In [10],[13] the focus is on the Multi Layer Perceptron (MLP). Two alternatives to BP are
proposed which are faster and computational less intensive compared to BP, but they are
specifically designed for training a MLP with a single hidden layer.
The only works on BP are [8],[12] however the proposed methods are based on Transfer
Learning and aiming at training only on the last layer of the network. Moreover in [4] the
authors propose a novel transfer learning method that reduce the BP memory require-
ments by updating only biases.

1.4. Objectives and contributions

From a collaboration with STMicroelectronics we propose a framework which enables
embedded systems to effectively perform the training of neural networks on device.
We have addressed the problem from different perspectives, specifically we consider the
algorithmic, the software and the applicability point of view. This re-formulation of the
problem allow us not only to design and implement the desired framework more easily,
but also to set up a feasibility study on the training on STM32 microcontrollers. The
considered perspectives indeed space from a theoretical to a practical point of view, which
are key aspect equally important, each of one presents challenging aspects to be solved.
The contribution provided by the thesis can summarized as follows:

• Algorithmic: since training methods are grounded in their algorithmic implemen-
tations, an important part for enabling training on device is making the algorithm
efficient. We propose a formal reorganization of backpropagation (BP) calculus us-
ing Computational Graphs aiming at simplify the implementation of the training
on embedded systems.

• Software: current AI frameworks for embedded devices do not support training on
device functionalities. So we design and develop a framework in C which enables
embedded devices to train arbitrary networks.

• Applicability: computing resources represents the main bottleneck for the training

4 1| Introduction

on device. We design a tool for evaluating and predicting the resource required for
running the training on a device.

The actual effectiveness of the developed framework needs to be verified empirically in a
real scenario. An additional provided contribution is related to this task.

• We propose an experimental evaluation of the personalization on a Human Activity
Recognition (HAR) use case which highlights the enhancement of model perfor-
mances due to the training on device.

Note that the implementation of the framework leverages the BP reformulation while the
estimation of required computing natural arises from the effective implementation of the
framework. Finally the experimental evaluation on a real use case is made possible by
both the developed framework and tool for the resource consumption estimation.

1.5. Thesis structure

The structure of the thesis follows the way in which the problem has been addressed.
Specifically we have that in:

• Chapter 2: the problem of training a neural network is introduced from a theoret-
ical perspective.

• Chapter 3: the re-formulation of backpropagation using computational graph is
explained.

• Chapter 4: the functionalities and logic of developed framework are described.

• Chapter 5: the process of designing the tool for evaluating the required computing
resources is described.

• Chapter 6: the experiment on the Human Activity Recognition task are proposed.

5

2| Neural Network Optimization

Most of deep learning algorithms involve optimization of some sort. Optimization refers
to the task of either minimizing or maximizing a function f(x) by altering x. Most
problems are posed in terms of minimizing f(x). The function f to minimize is called
interchangeably objective function, cost function or loss function and returns a value that
indicates how good is a deep learning algorithm. Specifically a lower value of f indicates
a better performance of the algorithm and thus we are interested into minimize it.

2.1. One-Dimensional Gradient Descent

Gradient descent in one dimension is an excellent example to explain why the Gradient
Descent algorithm is used to minimize an objective function. Consider a continuously
differentiable function f : R→ R. By applying the first-order Taylor expansion we obtain

f(x+ η) ≈ f(x) + ϵf ′(x) (2.1)

The derivative is therefore useful to optimize a function because it tells how to change
input in order to make a small improvement in the output. For example, we know that
that f(x − η sign (f ′(x))) < f(x) for small enough learning rate η. Thus we can reduce
f(x) by moving x in small steps with the opposite sign of the derivative.

x = x− ηf ′(x) (2.2)

This means that, if we iteratively apply the Eq.(2.2) the value of function f(x) might
converge to a minimum. This technique is called Gradient Descent and the progress of
optimizing f(x) over x can be plotted as follows

6 2| Neural Network Optimization

Figure 2.1: Gradient Descent applied on f(x)

The learning rate η is a hyper-parameter that determines the step size at each iteration
while moving toward a minimum of the objective function. It controls how much to change
the model in response to the estimated error each time the model weights are updated.
Since it influences to what extent newly acquired information overrides old information, it
metaphorically represents the speed at which a machine learning model learns. Choosing
the learning rate is challenging as a value too small may result in a long training process
that could get stuck, whereas a value too large may result in learning a sub-optimal set
of weights too fast or an unstable training process.

Figure 2.2: Learning rate changes the step size of the update

2| Neural Network Optimization 7

2.2. Multivariate Gradient Descent

Consider the case in which we have that x = [x1, · · · , xn]
T and so the objective function

f(x) : RN → R. Its gradient is multivariate too. Specifically It is a vector consisting of
n partial derivatives

∇f(x) =
[
∂f

∂x1

, · · · , ∂f

∂xn

]T
(2.3)

each ones indicates the rate of change of f at x with respect to the input xi. We can
reduce f(x) by moving x in small steps with the opposite sign of the gradient ∇f(x).

x = x− η∇f(x) (2.4)

Algorithm 2.1 Single step of Gradient Descent(GD)
Require: Initial parameters x

Require: Learning rate η

Require: Batch size b

1: Compute the gradient estimate: ∇f(x)
2: Apply update: x′ = x− η∇f(x)

The progress of optimizing f(x) over x can be plotted as follows.

Figure 2.3: Different steps of Gradient Descent applied on function f(x)

8 2| Neural Network Optimization

2.3. Optimization in Deep Learning

Gradient descent is used in the context of neural network optimization in order to find
the parameters θ that reduce the expected generalization of the loss function, also known
as risk.

C(θ) = E(x,y)∼pdata [L(f(x,θ), y)] (2.5)

where:

• θ are the network parameters;

• pdata is the distribution that generates data;

• L is the per-example loss function;

• f(x,θ) is the predicted output when the input is x;

• y is the target output;

In general, the Eq. (2.5) cannot be computed because the distribution pdata is unknown.
However, since we know a subset of data sampled from pdata, we can use the average value
of the losses computed on the available samples.

C(θ) ≈ C(θ) =
1

N

N∑
i=1

L(f(xi,θ), yi) (2.6)

The (2.6) is known as empirical risk and represent the objective function which we want
to minimize. Since we are approximating the risk also the result of minimization is an
approximation.

Figure 2.4: Comparison between empirical risk and risk optimization

2| Neural Network Optimization 9

For minimizing the empirical risk we assume that

∇C(θ) = ∇E(x,y)∼pdata [L(f(x,θ), y)] = E(x,y)∼pdata [∇L(f(x,θ), y)] (2.7)

Then parameters are updated as follows

θ
′
= θ − η

N

N∑
i=1

∇L(f(xi,θ), yi) (2.8)

There are three variants of Gradient Descent, which differ in how much data we use to
compute the gradient of the objective function. Depending on the amount of data, we
make a trade-off between the accuracy of the parameter update and the time it takes to
perform an update.

2.3.1. Batch Gradient Descent

In Batch Gradient Descent(BGD), all the training data is taken into consideration to take
a single step of Gradient Descent. We take the average of the gradients of all the training
examples and then use that mean gradient to update our parameters. The computational
cost for each step is O(n), where n is the number of samples. Therefore, when the training
set is very large, the time to take a single of the loss function becomes prohibitively long.
Moreover it performs redundant computations for large training set, as it recomputes
gradients for similar examples.

Algorithm 2.2 Batch Gradient Descent(BGD)
Require: Initial parameters θ

Require: Learning rate η

Require: Batch size b

1: while stopping criterion not met do
2: Compute the gradient estimate: ∇c(θ) = 1

N

∑N
i=1∇L(f(xi,θ), yi)

3: Apply update: θ′ = θ − η∇C(θ)

4: end while

Recall that the standard error of the mean estimated from n samples is given by σ√
n
, where

σ is the true standard deviation of the value of the samples. The denominator shows that
there are less than linear returns to using more examples to estimate the gradient and
thus it’s possible to reduce the number of samples used without affect the standard error
too much.

10 2| Neural Network Optimization

2.3.2. Stochastic Gradient Descent

In Stochastic Gradient Descent(SDG), we consider just one example at a time to take a
single step. Specifically at each iteration we sample an example (xi, yi) from training set
[(x1, y1), · · · , (xn, yn)] and compute the gradient ∇L(f(xi,θ), yi) on this sample. Since
we are considering just one example at a time the computational cost for each step drops
from O(n) of 4.3 to the constant O(1).

Algorithm 2.3 Stochastic Gradient Descent(SGD)
Require: Initial parameters θ

Require: Learning rate η

1: while stopping criterion not met do
2: Sample an example (xi, yi) from training set [(x1, y1), · · · , (xn, yn)].
3: Compute the gradient estimate: ∇C(θ) = ∇L(f(xi,θ), yi)

4: Apply update: θ′ = θ − η∇C(θ)

5: end while

Stochastic Gradient Descent by means of the natural variation of gradients over examples
is able to dislodge the parameters from local minima.

2.3.3. Mini-batch Gradient Descent

In Mini-batch Gradient Descent(mBGD), we consider a mini-batch of examples at a time
to take a single step. Specifically at each step we sample a mini-batch of b example from
training set [(x1, y1), · · · , (xn, yn)] with b << n and compute the gradient ∇L(f(xi,θ), yi)

on this sample. The computational cost for each step drops from O(n) of 4.3 to O(b).

Algorithm 2.4 Mini-batch Gradient Descent(mBGD)
Require: Initial parameters θ

Require: Learning rate η

Require: Batch size b

1: while stopping criterion not met do
2: Sample a mini-batch of b examples from training set [(x1, y1), · · · , (xn, yn)].
3: Compute the gradient estimate: ∇c(θ) = 1

b

∑b
i=1∇L(f(xi,θ), yi)

4: Apply update: θ′ = θ − η∇C(θ)

5: end while

It represents a good balance between BGD and SGD in terms of efficiency, robustness

2| Neural Network Optimization 11

and stochasticity that lead to escape from local minimum.

13

3| Backpropagation Computation

When we use a feedforward network to compute an output y given an input x, infor-
mation flows forward through the network. This is called forward propagation. During
training, forward propagation continues until it computes a scalar cost L(f(x,θ), y) that
in the following we will denote simply as C. The backpropagation algorithm, often called
backprop, allows the information from the cost to flow backward through the network in
order to compute the gradient of the cost with respect to the network parameters θ.

3.1. Computational Graphs

To describe the backpropagation algorithm it is helpful to use computational graph lan-
guage. Computational graph is a formalism used to express mathematical expressions by
means of a directed graph. There exist many ways of formalizing computational graphs:
here we use nodes to indicate operations, and edges to indicate variables, which may be
a scalar, matrix, or tensor.

func

input

input

input

output

Figure 3.1: A general computational graph

By means of computational graphs it is possible to break down complex functions into a
sequence of simpler operations, each one is represented by a node.

14 3| Backpropagation Computation

3.2. Chain Rule

The chain rule is used to compute the derivatives of functions formed by composing
other functions whose derivatives are known. Backpropagation widely exploits the chain
rule, with a specific order of operations which can be effectively represented using a
computational graph. Let x be a real number, and let f and g both be functions from
real numbers to real numbers. Suppose that y = g(x) and z = f(y) = f(g(x)) := F (x).
Then the chain rule states that:

dz

dx
=

dz

dy

dy

dx
. (3.1)

Obviously the composition of functions can be formalized also by means of a computa-
tional graph as:

g f
x y z

Figure 3.2: Computational graph of function F (x)

as well as the chain rule:

dy
dx

dz
dy

dz
dx

dz
dy

Figure 3.3: Computational graph of chain rule applied to the function F (x)

The chain rule can be generalized beyond the scalar case. Let x ∈ Rm and y ∈ Rn, let g

maps from Rm to Rn, and let f maps from Rn to R, then the generalized chain rule states
that:

∂z

∂xi

=
∑
j

∂z

∂yj

∂yj
∂xi

. (3.2)

3.3. Computation Flow

Let us now consider a generic layer l belonging to the neural network we want to train.
The computational graph represented below highlights the computation performed during

3| Backpropagation Computation 15

the forward pass: The dashed edges denote variables used only by the current layer l,
while straight edges are variables that traverse the network. The input x comes from the
previous layer l − 1 and it is combined with the weights w and biases b of the layer l by
means of a function f , which depends on the type of layer (convolutional, linear, etc.).
The result a of this computation is then propagated as input to the next layer l + 1.

f

w

b

x

a

Figure 3.4: Computational graph of the forward pass computation in a parametric layer

Note that, in a neural networks, there are also non parametric layers, namely layers for
which weights and biases are not defined. Examples of these layers are pool layers, flatten,
and activation layers, which we treat as standalone layers in this document. For these
layers the computational graph can be simplified as follows.

f
x a

Figure 3.5: Computational graph of the forwars pass computation in a non-parametric
layer

Similarly to the forward pass, we can exploit computational graphs also to represent
computations performed during the backward pass. The computational graph for back-
propagation through a parametric layer is represented in the above figure. Differently
from the forward pass where we have multiple inputs to the function f , in backward pass
we have multiple outputs. These outputs are actually the results of different computations
that however, to simplify the notation, we encompass in one single node. The so called
error ∂C

∂a
, coming from layer l + 1, is the input of the node which computes the so called

local gradients ∂f
∂w

,∂f
∂b

,∂f
∂x

, namely the partial derivatives of the node function with respect
to the inputs. The outputs of the node are respectively the gradient with respect to the
weights ∂C

∂w
, the gradient with respect to the biases ∂C

∂b
and the new error ∂C

∂x
which is

16 3| Backpropagation Computation

backward propagated to the layer l−1. Since we are dealing with two variables defined as
error, to avoid misunderstandings, we refer to ∂C

∂a
as downstream error, since comes from

backward, and ∂C
∂x

as upstream error, since goes upward.

∂f
∂w

∂f
∂b

∂f
∂x

∂C
∂w

∂C
∂b

∂C
∂x

∂C
∂a

Figure 3.6: Computational graph of the backward pass computation in a parametric layer

Like in the case of the forward pass, for non parametric layers the computational graph
of backpropagation can be simplified as follows.

∂f
∂x

∂C
∂x

∂C
∂a

Figure 3.7: Computational graph of the backward pass computation in a non-parametric
layer

Once the overall working flow of backpropagation is introduced, let us now go deeper
into details of the computation. Indeed, depending on the type of layer, the specific
computation as well as the dimension of variables involved in the process change. In
the following we describe the specific backpropagation computation for the most common
type of layers.

3.3.1. Dense Layer

Let us consider a dense layer l of M units and assume that the previous layer l − 1 has
N units, namely:

Forward Pass

• Input x ∈ RN

3| Backpropagation Computation 17

• Weights w ∈ RN×M

• Biases b ∈ RM

• Output a ∈ RM .

In dense layers, the layer function f is defined as:

a = f(x,w,b) = wT · x+ b (3.3)

Backward pass

• Downstream error ∂C
∂a
∈ RM

• Gradients wrt weights ∂C
∂w
∈ RN×M

• Gradients wrt biases ∂C
∂b
∈ RM

• Upstream error ∂C
∂x
∈ RN

• Local gradients wrt weights ∂f
∂w
∈ RM×N×M

• Local gradients wrt biases ∂f
∂b
∈ RM×M

• Local gradients wrt input ∂f
∂x
∈ RM×N

In order to compute the gradients of the cost C with respect to network parameters w,b

as long as the upstream error ∂C
∂x

, generalized chain rule of Eq.(3.2) is exploited.

∂C

∂w
=

M∑
i=1

∂C

∂ai

∂fi
∂w

(3.4)

∂C

∂b
=

M∑
i=1

∂C

∂ai

∂fi
∂b

(3.5)

∂C

∂x
=

M∑
i=1

∂C

∂ai

∂fi
∂x

(3.6)

The downstream error ∂C
∂a

is assumed to be known from computations of layer l+1, thus
we have only to compute the local gradients. We start to consider the partial derivative
of f with respect to single variable as follows:

∂fi
∂wnm

=
∂

∂wnm

N∑
j=1

wjixj + bi =
N∑
j=1

δjiδmixj = δmixn (3.7)

18 3| Backpropagation Computation

where δi,j denotes the Kronecker delta such that δi,j = 1 if i = j and δi,j = 0 otherwise.
In Eq.(3.7) we remove the sum over j since the product goes to zero for all j different
from i.

∂fi
∂bm

= δim (3.8)

∂fi
∂xn

=
∂

∂xn

N∑
j=1

wjixj + bi =
N∑
j=1

wjiδjn = wni (3.9)

Once the formulae to compute local gradients are derived, it is possible to use them to
compute gradients for the network parameters and upstream error.

∂C

∂wnm

=
M∑
i=1

∂C

∂ai
δimxn =

∂C

∂am
xn (3.10)

Similarly we can derive the gradient with respect to the (m)-th bias and the (n)-th
upstream errora s follows:

∂C

∂bm
=

M∑
i=1

∂C

∂ai
δim =

∂C

∂am
(3.11)

∂C

∂xn

=
M∑
i=1

∂C

∂ai
wni =

∂C

∂ai
wn (3.12)

Without loss of generality we can extend the (3.10)-(3.12) to the general case:

∂C

∂w
= x ·

(
∂C

∂a

)T

(3.13)

∂C

∂b
=

∂C

∂a
(3.14)

∂C

∂x
= w · ∂C

∂a
(3.15)

Note that the use of transpose it is used for justify for a dimension.

3.3.2. Activation Layer

Let us consider an activation layer l of M units, namely:

Forward Pass

• Input x ∈ RM

3| Backpropagation Computation 19

• Output a ∈ RM .

The computation depends on the type of activation function f . Here we consider the
ReLU and the Softmax cases. The ReLU is an element-wise function (namely, the i-
component of the output ai depends only on the i-component of the input xi) defined
as:

ai = f(xi)

xi if xi > 0

0 otherwise.
(3.16)

The Softmax on the contrary is not an element-wise function (namely, the i-component
of the output ai depends on the whole input vector x) defined as:

ai = f(x) =
exi∑M
i=1 e

xi

. (3.17)

Observe that the Softmax is a rather special case as activation functions commonly used
are actually defined element-wise.

Backward Pass

• Downstream error ∂C
∂x
∈ RM

• Upstream error ∂C
∂x
∈ RM

• Local gradients wrt input ∂f
∂x
∈ RM×M

Let f be th ReLU activation function defined as in Eq.(3.16). The upstream error ∂C
∂x

can
be computed element-wise exploiting the chain rule:

∂C

∂xm

=
M∑
i=1

∂C

∂ai

∂fi
∂xm

. (3.18)

The downstream error ∂C
∂a

is assumed to be known from computations of layer l+1, while
the local gradient is computed as:

∂fi
∂xm

=

1 if am > 0

0 otherwise.
(3.19)

Let now f be the Softmax activation function defined as in Eq.(3.17). Typically, this
activation function is employed only in combination with the Categorical Cross-Entropy
loss function in multi-class classification tasks. In this case, it can be demonstrated that

20 3| Backpropagation Computation

the computation of the upstream error can be simplified to:

∂C

∂x
= a− t (3.20)

where t is a one hot encoded vector for the labels, so that
∑

i ti = 1, and tm+
∑

i ̸=m ti = 1.

3.3.3. Convolutional Layer

Let us consider a one dimension convolutional layer defined by the following hyperparam-
eters: the kernel size K, the number of filters F , the number of input channels C and the
of input units M .

Forward Pass

• Input x ∈ RC×M

• Weights w ∈ RF×C×K

• Biases b ∈ RF

• Output a ∈ RF×(M−K+1).

In convolutional layers the layer function f is defined as:

a = f(x,w,b) = conv(x,w) + b. (3.21)

In particular the (j,m)-th element of the output a is defined as:

ajm =
C∑
c=1

K∑
k=1

xc,m+k−1wjck + bj (3.22)

Note that in (3.22) we treated convolution as cross-correlation.

Backward Pass

• Downstream error ∂C
∂a
∈ RF×(M−K+1)

• Gradients wrt weights ∂C
∂w
∈ RF×C×K

• Gradients wrt biases ∂C
∂b
∈ RF

• Upstream error ∂C
∂x
∈ RC×M)

• Local gradients wrt weights ∂f
∂w
∈ RF×(M−K+1)×N×M×F×C×K

3| Backpropagation Computation 21

• Local gradients wrt biases ∂f
∂b
∈ RF×(M−K+1)×M×F

• Local gradients wrt input ∂f
∂x
∈ RF×(M−K+1)×N×C×M

According to the generalized chain rule, the gradients with respect to the network param-
eters and the upstream error can be computed as:

∂C

∂w
=

F∑
j=1

M−K+1∑
m=1

∂C

∂ajm

∂fjm
∂w

(3.23)

∂C

∂b
=

F∑
j=1

M−K+1∑
m=1

∂C

∂ajm

∂fjm
∂b

(3.24)

∂C

∂x
=

F∑
j=1

M−K+1∑
m=1

∂C

∂ajm

∂fjm
∂x

(3.25)

Again, since the downstream error is known, in order to perform computations in Eq.(3.23)-
(3.25) we just have to compute the local gradients. Considering the derivative of f with
respect to element-wise variables, we have that the (j,m)-th local gradient with respect
to the (i, n)-th input is given by:

∂fjm
∂xin

=
∂

∂xin

(
C∑
c=1

K∑
k=1

xc,m+k−1wj,c,k + bj

)

=
C∑
c=1

K∑
k=1

δi,cδn,m+k−1wj,c,k

=
K∑
k=1

δn,m+k−1wj,i,k

(3.26)

(3.27)

(3.28)

where δi,j denotes the Kronecker delta such that δi,j = 1 if i = j and δi,j = 0 otherwise. In
Eq.(3.27) we remove the sum over c since the product goes to zero for all c different from
i. Note that also the index of the weights change accordingly. Similarly we can derive the
(j,m)-th local gradient with respect to the (j, i, n)-th weight as follows:

22 3| Backpropagation Computation

∂fjm
∂wqin

=
∂

∂wqin

(
C∑
c=1

K∑
k=1

xc,m+k−1wj,c,k + bj

)

=
C∑
c=1

K∑
k=1

δq,jδi,cδn,kxc,m+k−1

=
K∑
k=1

δq,jδn,kxi,m+k−1

= δq,jxi,m+n−1,

(3.29)

(3.30)

(3.31)

(3.32)

Since the product goes to zero for all c different from i and for all n different from k we
can remove the two summation. Note that again the index of x changes accordingly. The
computation of the (j,m)-th local gradient with respect to the (j)-th bias is more simple:

∂fjm
∂bq

=
∂

∂bq

(
C∑
c=1

K∑
k=1

xc,m+k−1wj,c,k + bj

)
= δq,j (3.33)

Once we have computed local gradients, we can first compute global gradients and the
upstream error for element-wise variables and then generalize them as vectors as follows:

∂C

∂xin

=
F∑

j=1

M−K+1∑
m=1

∂C

∂ajm

∂fjm
∂xin

=
F∑

j=1

M−K+1∑
m=1

∂C

∂ajm

K∑
n=1

δn,m+k−1wjik

=
F∑

j=1

K∑
k=1

∂C

∂aj,n−k+1

wjik

(3.34)

(3.35)

(3.36)

The product goes to zero for all values of n except for n = m+ k − 1 which expressed in
terms of m is m = n−k+1. So we can remove the sum over m and change the index of a
accordingly. Note that the last Equation coincides the full convolution of the downstream
error with the flipped kernel. So we can re-write it as:

∂C

∂x
= conv

(
∂C

∂a
, flip(w), full

)
(3.37)

3| Backpropagation Computation 23

Similarly the gradients with respect to the parameters can be computed as:

∂C

∂wqin

=
F∑

j=1

M−K+1∑
m=1

∂C

∂ajm

∂fjm
∂wqin

=
F∑

j=1

M−K+1∑
m=1

∂C

∂ajm
δq,jxi,m+n−1

=
M−K+1∑
m=1

∂C

∂aqm
xi,m+n−1

(3.38)

(3.39)

(3.40)

The summation over j is removed since the product goes to zero for all j different from q

and the index of a is changed accordingly. Note that the last Equation is the convolution
of the downstream error with the input. So we can re-write is as:

∂C

∂w
= conv

(
∂C

∂a
,x

)
(3.41)

For the biases the computation is more simple:

∂C

∂bq
=

F∑
j=1

M−K+1∑
m=1

∂C

∂ajm

∂fjm
∂bq

=
F∑

j=1

M−K+1∑
m=1

∂C

∂ajm
δq,j

=
M−K+1∑
m=1

∂C

∂aq,m

(3.42)

(3.43)

(3.44)

Again the summation over j is removed since the product goes to zero for all j different
from q and the index of a is changed accordingly.

3.3.4. Pool Layer

Let us consider a pool layer with stride p, therefore we have:

Forward Pass

• Input x ∈ RF×N

• Output a ∈ RF×(N/p)

24 3| Backpropagation Computation

The computation f depends on the considered type of pool function. A popular pool
function is the Average Pool which calculates the average value for each patch of the
input, which for one dimensional case is:

ajm = f(x) =
1

p

p∑
i=0

xji (3.45)

Figure 3.8: Forward Pass of Average Pool layer

Backward Pass

• Downstream error ∂C
∂a
∈ RF×(N/p)

• Upstream error ∂C
∂x
∈ RF×N

Regardless to the considered pool function, pool layers perform a down-sampling opera-
tion. On the contrary, in the backward pass the inverse computation in performed. Let
us consider again the Average Pool, than in the backward pass we have:

∂C

∂xin

=
1

p

∂C

∂aij
with j = [0, · · · , p] (3.46)

3| Backpropagation Computation 25

Figure 3.9: Backward Pass of Average Pool layer

3.3.5. Global Pool Layer

Let us consider a global pool layer, therefore we have:

Forward Pass

• Input vx ∈ RF×N

• Output va ∈ RF

In this case the layer function f is defined as:

aj = f(x) =
1

N

N∑
i=0

xji (3.47)

26 3| Backpropagation Computation

Figure 3.10: Forward Pass of Global Average Pool layer

Backward Pass

• Downstream error ∂C
∂x
∈ RF

• Upstream error ∂C
∂x
∈ RF×N

∂C

∂xij

=
1

N

∂C

∂ain
with n = [0, · · · , N] (3.48)

Figure 3.11: Backward Pass of Global Average Pool layer

3| Backpropagation Computation 27

3.3.6. Flatten Layer

Considering a Flatten layer, we can state that:

Forward Pass

• Input x ∈ RF×N

• Output a ∈ RF ·N

In this case, the layer function f acts a vectorization of the input, which consists in a
linear transformation that converts matrices into column vectors, namely:

a = f(x) = vec(x) (3.49)

Specifically, the vectorization of the input matrix x is the vector obtained by stacking x

column-wise.

Figure 3.12: Forward Pass of Flatten layer

Backward Pass

• Downstream error ∂C
∂x
∈ RF ·N

• Upstream error ∂C
∂x
∈ RF×N

28 3| Backpropagation Computation

In the backward pass the inverse operation is performed.

∂C

∂x
= vec−1(

∂C

∂a
). (3.50)

Figure 3.13: Backward Pass of Flatten layer

29

4| Proposed Framework

4.1. Implemented Functionalities

Once the formulation of backpropagation is re-framed using computational graph which
provide a more algorithmic view of the entire procedure, we proceed to the development
of a framework in C with should satisfied the following functionalities:

• Define the topology of the network,

• Initialize network parameters randomly or with a specific configuration,

• Train the network using Mini-batch gradient descent,

• Freeze layers making them non trainable,

• Evaluate the performances of network.

4.2. Framework Structure

In order to decoupling the complexity of the problem different modules are created each
one addresses different task, specifically we have implemented

• Network Module responsible of the network creation and initialization.

• Training Module responsible of overall training procedure.

• Forward Module responsible to perform the forward pass.

• Backward Module responsible to perform the backward pass.

• Evaluation Module responsible of the evaluate the performances network.

Specifically the network is defined by means of the network module, in which different
functions allows the creation of the different layer of the network. Each layer is repre-
sented as structure that holds relevant information like the parameters, the activation
and the gradients of such layer. Once the network is defined, each layer can automatically
retrieve its activations or its gradients by invoking forward or backward modules which

30 4| Proposed Framework

implements the explicit expression provided in the Chapter 3 for each type of layer con-
sidered.
The overall training procedure is handled by the training module which allows to specify
several custom training hyper-parameters such as the number of epochs, the learning rate
and the batch-size.

Figure 4.1: Modules of proposed framework

Algorithm 4.1 Training algorithm
Require: Network N
Require: Training data D
Require: Batch Size bs

Require: Number of Epochs ne

Require: Learning rate lr

1: for all epoch e in epochs ne do
2: for all batch b in training data D do
3: for all sample s in batch b do
4: forward(N , d)
5: backward(N , d)
6: end for
7: update(N)

8: end for
9: end for

The logic of the training module is summarized in the above pseudo code. Once a neural
network is created and the different training hyper-parameters are defined, the algorithm

4| Proposed Framework 31

iterate over training samples in the batch and perform forward and backward passes.
During the different iterations the gradients computed for each sample of the batch are
accumulated and then averaged when the update is performed. The training module rely
on forward module and backward module which are called each time a new samples is
presented to the network. The core of the training algorithm is encapsulated in forward
and backward module, whose logic is very similar and is summarized in the following
pseudo codes.

Algorithm 4.2 Forward algorithm
Require: Network N
Require: Training sample s

1: for all layer l of network starting from the first do
2: if layer.type == Convolutional then
3: forward conv(l, s)
4: end if
5: if layer.type == Average Pool then
6: forward avgpool(l)
7: end if
8: if layer.type == Global Average Pool then
9: forward gap(l)

10: end if
11: if layer.type == Flatten then
12: forward flatten(l)
13: end if
14: if layer.type == Dense then
15: forward dense(l, s)
16: end if
17: end for

As we can see the forward module iterate over the layers of the network and based on
the type of the layer during the single step of the iteration the specific function which
compute the activations of the layer is invoked. Since Convolutional and Dense layers
may be the first layer of the network must have access to the values of the sample s.

32 4| Proposed Framework

Algorithm 4.3 Backward algorithm
Require: Network l

Require: Training sample s

1: for all layer l of network starting from the last do
2: if layer l is trainable then
3: if layer.type == Convolutional then
4: backward conv(l,s)
5: end if
6: if layer.type == Average Pool then
7: backward avgpool(l)
8: end if
9: if layer.type == Global Average Pool then

10: backward gap(l)
11: end if
12: if layer.type == Flatten then
13: backward flatten(l)
14: end if
15: if layer.type == Dense then
16: backward dense(l,s)
17: end if
18: end if
19: else
20: break
21: end for

Similarly the backward module iterate over the layers of the network and, based on the
type of the layer during the single step of the iteration, the specific function and for com-
pute the error and eventually to compute the gradient is invoked. The loop is break when
a non trainable layer is encountered.

The proposed framework is written without the support of specific libraries and in a
way that it can also be run on micro-controllers (MCUs). The only constraint regards
the computations to be performed in floating point, which require a Floating Point Unit
(FPU) to be performed.

4| Proposed Framework 33

4.3. Assessment on STM32L4R9

The target platform for validating the developed framework is the STM32L4R9 [1],
an ultra-low-power MCU produced by ST-Microelectronics with an ARM Cortex-M4
core and 640 KB of sRAM. The firmware is compiled and flashed on the device using
STM32CubeIDE [2] then it is tested on the baseline of TensorFlow.
Specifically several NN are trained on PC using TensorFlow starting from a given ini-
tialization. The same training procedure is then reproduced on the STM32L4R9 using
the developed framework. For each of considered models, the parameters at end of the
training procedure performed respectively by TensorFlow and the developed framework
were the same. Moreover a more rigorous approach has been followed to check the effec-
tiveness of the training procedure on the device: for each pass of gradient descent and for
each layer of the network, the computed gradients have been compared with respect to
the TensorFlow baseline.
The considered NN for the validation of the developed framework is made up by two
Convolutional1D layers with ReLU intervaled by AveragePool1D layer a GlobalAverage-
Pool1D and two Dense layer with ReLU and Softmax respectively. The different NN differ
from each other in the number of filters and kernel size in Convolutional layers as well as
in the number of units in Dense layers and the input size.
The training procedure on STM32L4R9 has also been monitored in terms of memory foot-
print and execution time. For training all layers of a CNN with around 10000 parameters
and an input sample of size (20,3) the execution time is 0.23 seconds per samples and
the estimated memory footprint is 97 KB while for a fine-tuning of two last layers of the
same model the execution time is 0.003 seconds per samples and the estimated memory
footprint is of 65KB.

35

5| Required Computing

Resources for Training

Since the target platforms for code development are STM32 devices, which are MPUs
and so a resource-constrained devices, it is necessary to perform a feasibility analysis on
the required computing resources for running the back-propagation algorithm.
The analysis is based on the estimation of memory footprint and CPU load which are the
most critical computing resource to take in consideration.

5.1. Memory Footprint Estimation

The word footprint refers to the extent of physical dimensions that an object occupies,
giving a sense of its size. In this sense memory footprint refers to the amount of main
memory which a program occupies while it is running.
Our objective is to figure out how much memory requires the program which implement
neural network training. Although it represent only an estimation (the real memory
footprint depends on a lot of other factors) anyhow the data processed by the algorithm
will be the heaviest source of memory requirements. Once we know the total amount of
data involved in the network training, we can easily retrieve the related memory footprint
by simply multiplying the total amount by the number of bits used to store the single
datum, namely bit precision.
Note that the memory footprint estimation is useful not only to check the feasibility of
training a given neural network on a specific device, but also is used to know the exact
quantity of memory that we have to reserve in order store data involved in the training
process, since memory, in the developed framework, is statically allocated. There are tree
types of data processed by the training algorithm:

• Network parameters,

• Training samples,

• Quantities computed during BP.

36 5| Required Computing Resources for Training

5.1.1. Network Parameters

The first source of memory footprint are the network parameters, namely weights w and
biases b, which is used both in forward/backward passes and during the update phase of
parameters themselves. These data are employed beyond the training phase, indeed they
are needed for inference. For this motivation it’s reasonable consider them as a source of
memory footprint not mandatory linked to the training itself.

In the table below are reported the formulae for computing the number of parameters for
the different parametric layers of a network.

Layer w b

Dense M ·N N

Conv1D F · C ·K F

Table 5.1: Memory footprint of the network parameters

Where:

• M is the number of neurons in the previous layer,

• N is the number of neurons in the current layer,

• F is the number of filters in the current,

• C is the number of filters in the previous layer,

• K is the kernel size.

The overall footprint is the sum of the total numbers of parameters multiplied by bit
precision B.

For having a more clear idea on what is the memory impact of the network parameters let’s
consider a practical example. In the table below the columns w and b report the quantity
of values to store, while the column Footprint reports the related memory footprint to
store such values.

5| Required Computing Resources for Training 37

Layer Output Shape w b Footprint

Input(20,3) (20,3) - - -

Conv1D(F=32,K=3) (18,32) 288 32 1 KB

AvgPool1D() (9,32) - - -

Conv1D(F=64,K=3) (7,64) 6144 64 24 KB

AvgPool1D() (3,64) - - -

GlobalAvgPool1D() (64) - - -

Dense(50) (50) 3200 50 12 KB

Dense(6) (6) 300 6 1 KB

TOTAL - 9932 124 39 KB

Table 5.2: Example of the memory footprint of network parameters

The parameters are threaded as single precision floating point thus B will be of 32 bit.

5.1.2. Training Samples

The second source of memory footprint is the data used for training the network.
Usually we do not have to load on memory the whole dataset, assuming that the network
is trained with a mini-batch approach, it is reasonable to assume that on the memory
is loaded a single batch of data at time. Training samples can be employed not only in
the training procedure, indeed they could be used for testing purposes and during the
inference.
The related memory footprint will be B · bs · |S| where bs is the batch size and |S| is the
zie of the single sample.

For having a more clear idea let’s consider a pratical example. With batch size of 32 and
an input sample of shape (20, 3) stored with single precision floating point, the footprint
of a single batch will be 6 KB.

5.1.3. Quantities computed during BP

The last source of memory footprint is related to the quantities computed during BP and
it is the one that requires more memory.
We know that backpropagation consist in two step, the forward pass in which activations

38 5| Required Computing Resources for Training

are computed and the backward pass in which errors are backpropagated and gradients
with respect to parameters are computed. Note that all of these variables must be stored
on memory for the whole training process. The activations must be on memory because
it used in the backward pass which start from the last layer and iteratively goes back till
the first one, when the related activations are used. Analogously the gradients must be
on memory since they are accumulated as the input in the batch are processed, then they
are averaged when the update phase is performed. Moreover since on MCU the memory
is not allocated dynamically, also errors must be on always memory. Thus the memory
footprint for data produced during backpropagation is the sum of the size of these vari-
ables multiplied by bit precision.

In the table below are reported the formulae for computing the size of these variables for
the different layers of a network.

Layer a ∂C
∂w

∂C
∂b

∂C
∂x

Dense N M ·N N M

Conv1D F · (M −K + 1) F · C ·K F C ·M
Flatten F ·M - - F ·M
GloabalAvgPool1D F - - F ·M
AvgPool1D F ·M

p
- - F ·M

Table 5.3: Memory footprint of quantities computed during BP

Where:

• M is the width oh the previous layer,

• N is the width of the current layer,

• F is the number of filters in the current layer

• C is the number of filters in the previous layer,

• K is the kernel size,

• p is the stride of the average pooling layer.

All parametric layers are usually followed by an activation layer, which apply an activa-
tion function element wise. Since the size of the two layers is the same, in the developed
framework the output values of parametric layer will be overwritten by the output of fol-
lowing activation layer. Under this consideration for evaluating the footprint we consider

5| Required Computing Resources for Training 39

these two layer merged.

For having a more clear idea on what is the memory impact of the quantities processed
during backpropagation let’s estimate the footprint of the example network.

Layer Output Shape a ∂C
∂w

∂C
∂b

∂C
∂x

Footprint

Input(20,3) (20,3) - - - - -
Conv1D(32,3) (18,32) 576 288 32 576 6 KB
AvgPool1D(2) (9,32) 288 - - 288 2 KB

Conv1D(64,3) (7,64) 448 6144 64 448 28 KB

AvgPool1D(2) (3,64) 192 - - 192 2 KB

GlobalAvgPool1D() (64) 64 - - 64 1 KB

Dense(50) (50) 50 3200 50 50 13 KB

Dense(6) (6) 6 300 6 6 1 KB

TOTAL - 1664 9932 124 1664 53 KB

Table 5.4: Example of memory footprint of quantities computed during BP

Also in this case we assume that all values are stored as single-precision floating point
and so with a bit resolution of 32 bit.
It’s important to emphasize that the gradients and the errors are produced only for train-
able layers. If one or more layers of the network are freezed, the training for that layers
is not performed and thus the related gradients and errors are not computed nor stored
on memory. As a consequence also the related activations, which needed no more, can be
forgotten.
In the developed framework, instead of allocating the memory for storing all the acti-
vations of freezed layers, it is implemented a method which uses a smaller portion of
memory which acts as a over-writable buffer with a further enhancement of memory foot-
print. Specifically the size of the buffer correspond to the size of the greatest activations
of freezed layers multiplied by two.

In the table below is shown the footprint of the example network with all layers freezed
except for the last two Dense layers.

40 5| Required Computing Resources for Training

Layer Output Shape a ∂C
∂w

∂C
∂b

∂C
∂x

Footprint

Input(20,3) (20,3) - - - - -
Conv1D(F=32,K=3) - - - - - -
AvgPool1D(p=2) (9,32) - - - - -

Conv1D(F=64,K=3) (7,64) 448 - - - 4 KB*

AvgPool1D(p=2) (3,64) - - - - -

GlobalAvgPool1D() (64) - - - -

Dense(50) (50) 50 3200 50 50 13 KB

Dense(6) (6) 6 300 6 6 1 KB

TOTAL - 952 3500 56 56 18 KB

Table 5.5: Example of memory footprint of quantities computed during BP with all layers
freezed except for the last two

Note that 4 KB* refers to the footprint of the buffer in which activations of freezed layers
are stored.

5.1.4. Memory Footprint of the Training

Once it is showed how compute the memory footprint for the different types of data
involved in the training of a network, highlighting also the case in which some layers are
freezed, we show the procedure to compute the overall footprint estimation.

5| Required Computing Resources for Training 41

Algorithm 5.1 BP Memory Footprint Estimation
Require: Network N
Require: Input Size I
Require: Batch Size bs

Require: Bit Precision B
1: Parameters Size: par ← 0

2: Training Data Size: data← bs · I
3: Activations Size: act← 0

4: Gradients Weights Size: wGrad← 0

5: Gradients Biases Size: bGrad← 0

6: Gradients Input Size: xGrad← 0

7: Greatest Activations Size: max← 0

8: Memory Footprint: mF ← 0

9: for all layer ℓ in N do
10: if ℓ is trainable then
11: act← act+ dim(aℓ)

12: if ℓ is parametric layer then
13: par ← par + dim(wℓ) + dim(bℓ)

14: wGrad← wGrad+ dim(wℓ)

15: bGrad← bGrad+ dim(bℓ)

16: end if
17: xGrad← xGrad+ dim(xℓ)

18: end if
19: if ℓ is non-trainable then
20: if dim(aℓ) > max then
21: max← dim(aℓ)

22: end if
23: if ℓ is parametric layer then
24: par ← par + dim(wℓ) + dim(bℓ)

25: end if
26: end if
27: end for
28: mF ← B · (par + data+ act+ wGrad+ bGrad+ xGrad+max)

29: return Memory Footprint mF

The Algo. 5.1 traverse the network layer by layer and compute the dimensions (dim) of
all data processed by the training process in the considered layer both during forward and

42 5| Required Computing Resources for Training

backward passes. The dimensions are cumulated while the network is traversed, and then
multiplied by bit precision.

In the following tables we summarize the memory footprint of the whole training process
of the previous examples:

Layer Output Shape w b a ∂C
∂w

∂C
∂b

∂C
∂x

Footprint

Input(32,20,3) (20,3) - - - - - - 6 KB
Conv1D(32,3) (18,32) 288 32 576 288 32 576 7 KB
AvgPool1D(2) (9,32) - - 288 - - 288 2 KB

Conv1D(64,3) (7,64) 6144 64 448 6144 64 448 52 KB

AvgPool1D(2) (3,64) - - 192 - - 192 2 KB

GlobalAvgPool1D() (64) - - 64 - - 64 1 KB

Dense(50) (50) 3200 60 50 3200 50 50 24 KB

Dense(6) (6) 300 6 6 300 6 6 2 KB

TOTAL - 9932 124 1664 9932 124 1664 98 KB

Table 5.6: Example of memory footprint for the whole training process

Layer Output Shape w b a ∂C
∂w

∂C
∂b

∂C
∂x

Footprint

Input(32,20,3) (20,3) - - - - - - 6 KB
Conv1D(32,3) (18,32) 288 32 - - - - 1 KB
AvgPool1D(2) (9,32) - - - - - - 2 KB

Conv1D(64,3) (7,64) 6144 64 448 - - - 28 KB

AvgPool1D(2) (3,64) - - - - - - -

GlobalAvgPool1D() (64) - - - - - - -

Dense(50) (50) 3200 60 50 3200 50 50 24 KB

Dense(6) (6) 300 6 6 300 6 6 2 KB

TOTAL - 9932 124 1664 3500 56 56 63 KB

Table 5.7: Example of memory footprint for the whole training process with all layer
freezed except for dense

5| Required Computing Resources for Training 43

5.2. CPU Load Estimation

In order to figure out how expensive is the implemented training procedure a rough es-
timate which consist in counting the the total number of operations performed by the
algorithm is proposed. Specifically the operations considered are that performed in for-
ward and in backward pass, as well as in parameters’ update phase. The number and the
type of operations performed depend on the type of layer considered.Since operation are
performed using floating point numbers we refer to them as Floating Point Operations
(FLOPs)

Given a Dense Layer we have that:

• The activations in (3.3) perform two computation, the first is matrix-vector product
which counts N multiplications and N − 1 additions for each of M row, the second
is a vector-vector sum which counts M addition. The total number of operation is
2 ·M ·N +M .

• The gradients in (3.13) is a vector-vector outer product which counts M ·N multi-
plications.

• The gradients in (3.15) is matrix-vector product which counts M multiplications
and M − 1 additions for each of N row. The total number of operation is 2 ·M ·N .

Given an Activation Layer we have that:

• The activations as ReLU in (3.16) perform an element wise computation which
counts one comparison for each element for a total of M comparison, if we consider
instead the Softmax in (3.17) for each element are performed one exponential for
the numerator, M exponential and M−1 sum for the denominator plus the division
between numerator and denominator, for each of M row are performed 2M operation
for a total of 2 ·M2 operations.

• The gradients in case we use ReLU in (3.19) counts one comparison for each element
for a total of M comparison if we use Softmax in (3.20) it is performed a vector-
vector subtraction for a total of M operation

Given a Convolutional Layer we have that:

• The single activation in (3.22) counts CK multiplication (C − 1) · (K − 1) addition
plus one addition. The computation repeated F · (M − K + 1) times. The total
number of operations is 2 · F · C ·K ·M .

44 5| Required Computing Resources for Training

• The single partial derivative in (3.36) counts F ·K multiplication (F − 1) · (K − 1)

addition. The computation repeated C · N times. The total number of operations
is 2 · F · C ·N ·K.

• The single partial derivative in (3.40) counts M − K + 1 multiplication M − K

addition. The computation repeated F ·C ·K times. The total number of operations
is 2 · F · C ·M ·K.

• The single partial derivative in (3.44) counts M − K + 1 multiplication M − K

addition. The computation repeated F times. The total number of operations is
2 · F ·M .

Given a Average Pooling Layer we have that:

• The single activation in (3.45) counts one multiplication and p − 1 addition. The
computation repeated F ⌊M/p⌋ times for a total of F ·M operations.

• The single error in (3.46) counts one multiplication. The computation is repeated
F ·N times.

Given a Global Average Pooling Layer we have that:

• The single activation in (3.47) counts one multiplication and M − 1 addition. The
computation repeated F times for a total of FM operations.

• The single error in (3.48) counts one multiplication. The computation is repeated
F times.

In the following table are summarized the FLOPs for each layer of a network.

Layer a ∂C
∂w

∂C
∂b

∂C
∂x

Dense 2 ·M ·N +M M ·N - 2 ·M ·N
Act M or 2 ·M2 - - M

Conv1D 2F · C ·K ·M 2 · F · C ·K ·N 2 · F ·M 2 · F · C ·K ·M
AvgPool1D F ·M - - F ·N
GlobalAvgPool1DF ·M - - F

Table 5.8: FLOPs count per layer

So considering the example network we have:

5| Required Computing Resources for Training 45

a ∂C
∂w

∂C
∂b

∂C
∂x

FLOPs

Input(20,3) - - - - -
Conv1D(F=32,K=3) 11520 10368 1280 11520 34688

AvgPool1d(p=2) 576 - - 288 846

Conv1D(F=64,K=3) 110592 86000 1152 110592 300000

AvgPool1D(p=2) 448 - - 192 640

GlobalAvgPool1D() 128 - - 64 200

Dense(50) 6464 3200 - 6400 1600

Dense(6) 612 300 - 600 1500

TOTAL 130952 100124 2432 199656 360732

Table 5.9: Example of FLOPs count of a network

As we can notice the computation performed in convolutional layers are the most expensive
in terms of FLOPs.
By freezing all layers of the network except for the last two, the number of FLOPs can
be reduced.

a ∂C
∂w

∂C
∂b

∂C
∂x

FLOPs

Input(20,3) - - - - -
Conv1D(F=32,K=3) 11520 - - - 11520

AvgPool1d(p=2) 576 - - - 576

Conv1D(F=64,k=3) 110592 - - - 110592

AvgPool1D(p=2) 448 - - - 448

GlobalAvgPool1D() 128 - - - 128

Dense(50) 6464 3200 - 6400 1600

Dense(6) 612 300 - 600 1500

TOTAL 130952 3500 - 7000 141452

Table 5.10: Example of FLOPs count of a network with all layers freezed except for last
two

47

6| Training Neural Network on
device for Human Activity
Recognition

Once the framework to perform training on device has been developed and assessed on a
real device, we want to highlight the benefits that the training on device can bring.
We prove, by means of several experiments, that by training a pre-trained model using
data that are never seen during the training, the pre-trained model adapts to the new
data and improves its performances. This task is known as personalization.
The experimental evaluation is performed in a simulated environment and validated on
the HAR use case.
Note that the objective of the proposed experiments is not addressed to achieve the state
of art performances in HAR nor to investigate on best personalization strategies. The
experiments are conducted in order to highlight the enhancements provided by training
on device functionalities, which also enable the personalization of a pre-trained model.

6.1. Human Activity Recognition

HAR is the problem of predicting the activity performed by a person based on sensor
data. A large number of sensors’ type can be used to perform motion tracking, recently
particular attention is given to wearable sensors, such as accelerometer, gyroscope and
magnetometer. This type of sensors can be integrated into embedded systems which,
once are attached to a body part of a person, they can be used to monitor the movements
performed. Specifically one of the most used sensor in HAR, is the acceleromenter, which
measures the acceleration of the movements along the tree axis x, y and z as shown in
the image below.

48 6| Training Neural Network on device for Human Activity Recognition

Figure 6.1: Example of the accelerometer raw data related to the Jogging activity

The choice of this use case is perfectly suitable for our task since, in order to track human
motion, embedded systems are commonly used, moreover to perform the recognition of
activities, which are typically subject-dependent due to the user’s physical characteris-
tics, a model personalized on the specific subject movement is more effective then a model
trained with the data collected from different subjects. Moreover in this use case the data
available for the training on device is possibly very limited, and certainly not enough
to train a full model from scratch. The sensed data could be instead enough to further
enhanced the performances of a pre-trained model By means of personalization.
In HAR, Deep Learning (DL) methods, in particular CNNs, achieve state-of-the-art re-
sults. The benefit of using CNNs is that they can learn from the data directly, with no
requirement of an expert-driven approach for extract features from data.
The use of CNN, however, requires that raw sensor data must be prepared in a specific
manner in order to fit a model. Usually the preparation consists in the split of the data
sequences into subs-sequences called windows, each of them is associated with an activity.

6| Training Neural Network on device for Human Activity Recognition 49

6.2. Proposed Experiments

In the proposed experiments we use a CNN, made up by the following layers: Con-
volutional 1D with 32 filters and a kernel size of 3 with ReLU, Avgerage Pooling 1D,
Convolutional 1D of 64 filters and a kernel size of 3 with ReLU, Avgerage Pooling 1D ,
Global Avgerage Pooling 1D, Dense of 50 units with ReLU, Dense of 6 units with Softmax.
Raw accelerometer data is framed into windows of a given input size before training the
network. We consider widows that space from 1 to 5 second which correspond to the
following input sizes: (100,3),(80,3),(60,3),(40,3),(20,3) each of which is evaluated in a
specific experiment.
Thanks to the Global Avgerage Pooling, the variation of input size does not affects the
number of total network parameters which, for each experiment, are initialized with the
same configuration.
Two strategies of personalization are taken into account: the first approach consists in
the train of all layers in the pre-trained model, we refer to it as full train and the second
strategy consists in the train of two last layers of the same model, we refer to it as partial
train. Moreover different input size are taken into account. The size of the input data
affects the overall memory footprint. By considering different input size it is possible to
assess how effective is the personalization of simpler models whose train is supported also
by device with very limited memory.
The dataset considered for the experiments is the Wireless Data Mining (WISDM) [14] in
which six activities are taken into account: walking, jogging, ascending stairs, descending
stairs, sitting, and standing. The WISDM dataset is generated by 36 subjects and the
data is collected using a 3-axial accelerometer at 20HZ. The graph below shown the class
distribution of the raw-data.

50 6| Training Neural Network on device for Human Activity Recognition

Figure 6.2: Class distribution of WISDM dataset

As can be noticed the classes distribution is highly unbalanced.

The working flow of each experiment can be summarized as follows:

• The neural network is preliminary trained for 100 epochs with a learning rate of
0.01 and a batch size of 32 on the data of all users except one. In this step the
pre-trained model is generated.

• The data of the excluded user, which represents the local data used for personalize
the pre-trained model, is splitted in two parts, one used for the train and one used
for the test.

• The pre-trained model is evaluated on the local test data.

• The pre-trained model is then personalized over the local train data by re-training
the full model for 10 epochs with a learning rate of 0.01 and a batch size of 32.
Then the resulting model is evaluated on local test data.

• The pre-trained model is personalized over local train data by fine-tuning of the last
two layers for 10 epochs with a learning rate of 0.01 and batch size of 32. Then the
resulting model is evaluated on the local test data.

Since the pre-trained model is personalized for a specific user and in the WISDM dataset
we have 36 users, we perform the personalization for each of them and then we aggregate

6| Training Neural Network on device for Human Activity Recognition 51

performances of each model into a unique representative estimation. Specifically the
considered metrics, due to the umbalancess of class distributions in WISDM dataset are
Precision, Recall and F1. We compute these metrics for each class and then we perform
a weighted average which considers the number of instances of each class.
Although the experimental evaluation is performed in a simulated environment, each
single experiment is designed to run also on real devices. For each experiment an analysis
of memory footprint related to the training process of the considered model is performed.
In the following sections we report the results of each experiment.

6.2.1. Experiment 1: window size of 5 seconds

In the Experiment 1 we segment raw data with a window size of 5 seconds, corresponding
to an input size for the model of (100,3). The model is preliminary trained and then
evaluated on test data reporting the following results:

Metrics No train

Precision 0.8454
Recall 0.8245
F1 0.8323

Table 6.1: Evaluation of pre-trained model of Experiment 1

As can be noticed the pre-trained model has not highly generalization capabilities due
to the class imbalances of the dataset. This is confirmed by the confusion matrix of the
pre-trained model’s predictions on the test data.

52 6| Training Neural Network on device for Human Activity Recognition

Figure 6.3: Confusion matrix of pre-trained model of Experiment 1

By means of personalization, however, the performances of the pre-trained model are
significantly enhanced.

Figure 6.4: Training of the pre-trainied model of Experiment 1 on local data

The above figure shows how the accuracy of the pre-model increases while it is trained
with the two personalization approaches. The graph on the left refers to the full training
personalization approach, while the graph on the right the partial training. The latter
approach, although starts with an higher accuracy, is more prone to over-fitting. Once
the re-training of the pre-trained is performed the resulting models have been evaluated.

6| Training Neural Network on device for Human Activity Recognition 53

Figure 6.5: Confusion matrix of personalized models of Experiment 1

Metrics Full Partial

Precision 0.9718 0.9630
Recall 0.9715 0.9634
F1 0.9716 0.9631

Table 6.2: Evaluation of personalized models of Experiment 1

As we can notice the full re-training of the model reach better results. The re-training
of the proposed models with the two personalization approaches requires the following
amount of memory:

• Networks parameters: 39 KB

• Training samples in a batch: 38 KB

• Quantities processed by BP Full training: 112 KB

• Quantities processed by BP Partial training: 38 KB

So the full training approach requires a total of 189 KB while the partial training 115 KB.

6.2.2. Experiment 2: window size of 4 seconds

In the Experiment 2 we segment raw data with a window size of 4 seconds, corresponding
to an input size for the model of (80,3). The model is preliminary trained and then
evaluated on test data reporting the following results:

54 6| Training Neural Network on device for Human Activity Recognition

Metrics No train

Precision 0.8605
Recall 0.8453
F1 0.8511

Table 6.3: Evaluation of pre-trained model of Experiment 2

As can be noticed the pre-trained model has not highly generalization capabilities due
to the class imbalances of the dataset. This is confirmed by the confusion matrix of the
pre-trained model’s predictions on the test data.

Figure 6.6: Confusion matrix of pre-trained model of Experiment 2

By means of personalization, however, the performances of the pre-trained model are
significantly enhanced.

6| Training Neural Network on device for Human Activity Recognition 55

Figure 6.7: Training of the pre-trainied model of Experiment 2 on local data

The above figure shows how the accuracy of the pre-model increases while it is trained
with the two personalization approaches. The graph on the left refers to the full training
personalization approach, while the graph on the right the partial training. The latter
approach, although starts with an higher accuracy, is more prone to over-fitting. Once
the re-training of the pre-trained is performed the resulting models have been evaluated.

Figure 6.8: Confusion matrix of personalized models of Experiment 2

Metrics Full Partial

Precision 0.9770 0.9753
Recall 0.9770 0.9753
F1 0.9770 0.9753

Table 6.4: Evaluation of personalized models of Experiment 2

56 6| Training Neural Network on device for Human Activity Recognition

As we can notice the full re-training of the model reach better results. The re-training
of the proposed models with the two personalization approaches requires the following
amount of memory:

• Networks parameters: 39 KB

• Training samples in a batch: 29 KB

• Quantities processed by BP Full training: 97 KB

• Quantities processed by BP Partial training: 34 KB

So the first approach requires a total of 165 KB while the second of 102KB.

6.2.3. Experiment 3: window size of 3 seconds

In the Experiment 3 we segment raw data with a window size of 3 seconds, corresponding
to an input size for the model of (60,3). The model is preliminary trained and then
evaluated on test data reporting the following results:

Metrics No train

Precision 0.8425
Recall 0.8292
F1 0.8341

Table 6.5: Evaluation of pre-trained model of Experiment 3

As can be seen the pre-trained model has not highly generalization capabilities due to
the class imbalances of the dataset. This is confirmed by the confusion matrix of the
pre-trained model’s predictions on the test data.

6| Training Neural Network on device for Human Activity Recognition 57

Figure 6.9: Confusion matrix of pre-trained model of Experiment 3

By means of personalization, however, the performances of the pre-trained model are
significantly enhanced.

Figure 6.10: Training of the pre-trainied model of Experiment 3 on local data

The above figure shows how the accuracy of the pre-model increases while it is trained
with the two personalization approaches. The graph on the left refers to the full training
personalization approach, while the graph on the right the partial training. Once the
re-training of the pre-trained is performed the resulting models have been evaluated.

58 6| Training Neural Network on device for Human Activity Recognition

Figure 6.11: Confusion matrix of personalized models of Experiment 3

Metrics Full Partial

Precision 0.9718 0.9736
Recall 0.9718 0.9736
F1 0.9718 0.9736

Table 6.6: Evaluation of personalized models of Experiment 3

As we can notice the partial re-training of the model reach better results. The re-training
of the proposed models with the two personalization approaches requires the following
amount of memory:

• Networks parameters: 29 KB

• Training samples in a batch: 20 KB

• Quantities processed by BP Full training: 82 KB

• Quantities processed by BP Partial training: 14 KB

So the first approach requires a total of 131 KB while the second of 91 KB.

6.2.4. Experiment 4: window size of 2 seconds

In the Experiment 4 we segment raw data with a window size of 2 seconds, corresponding
to an input size for the model of (40,3). The model is preliminary trained and then
evaluated on test data reporting the following results:

6| Training Neural Network on device for Human Activity Recognition 59

Metrics No train

Precision 0.8332
Recall 0.7918
F1 0.8056

Table 6.7: Evaluation of pre-trained model of Experiment 4

As can be seen the pre-trained model has not highly generalization capabilities due to
the class imbalances of the dataset. This is confirmed by the confusion matrix of the
pre-trained model’s predictions on the test data.

Figure 6.12: Confusion matrix of pre-trained model of Experiment 4

Figure 6.13: Training of the pre-trainied model of Experiment 4 on local data

The above figure shows how the accuracy of the pre-model increases while it is trained

60 6| Training Neural Network on device for Human Activity Recognition

with the two personalization approaches. The graph on the left refers to the full training
personalization approach, while the graph on the right the partial training. Once the
re-training of the pre-trained is performed the resulting models have been evaluated.

Figure 6.14: Confusion matrix of personalized models of Experiment 4

Metrics Full Partial

Precision 0.9780 0.9669
Recall 0.9781 0.9674
F1 0.9780 0.9677

Table 6.8: Evaluation of personalized models of Experiment 4

As we can notice the full re-training of the model reach better results. The re-training
of the proposed models with the two personalization approaches requires the following
amount of memory:

• Networks parameters: 39 KB

• Training samples in a batch: 16 KB

• Quantities processed by BP Full training: 67 KB

• Quantities processed by BP Partial training: 24 KB

So the first approach requires a total of 122 KB while the second of 79 KB.

6| Training Neural Network on device for Human Activity Recognition 61

6.2.5. Experiment 5: window size of 1 second

In the Experiment 5 we segment raw data with a window size of 1 second, corresponding
to an input size for the model of (20,3). The model is preliminary trained and then
evaluated on test data reporting the following results:

Metrics No train

Precision 0.7987
Recall 0.7835
F1 0.7885

Table 6.9: Evaluation of pre-trained model of Experiment 5

As can be seen the pre-trained model has not highly generalization capabilities due to
the class imbalances of the dataset. This is confirmed by the confusion matrix of the
pre-trained model’s predictions on the test data.

Figure 6.15: Confusion matrix of pre-trained model of Experiment 5

By means of personalization, however, the performances of the pre-trained model are
significantly enhanced.

62 6| Training Neural Network on device for Human Activity Recognition

Figure 6.16: Training of the pre-trainied model of Experiment 5 on local data

The above figure shows how the accuracy of the pre-model increases while it is trained
with the two personalization approaches. The graph on the left refers to the full training
personalization approach, while the graph on the right the partial training. Once the
re-training of the pre-trained is performed the resulting models have been evaluated.

Figure 6.17: Confusion matrix of personalized models of Experiment 5

Metrics Full Partial

Precision 0.9637 0.9663
Recall 0.9635 0.9666
F1 0.9636 0.9665

Table 6.10: Evaluation of personalized models of Experiment 5

6| Training Neural Network on device for Human Activity Recognition 63

As we can notice the partial re-training of the model reach better results. The re-training
of the proposed models with the two personalization approaches requires the following
amount of memory:

• Networks parameters: 39 KB

• Training samples in a batch: 6 KB

• Quantities processed by BP Full training: 52 KB

• Quantities processed by BP Partial training: 18 KB

So the first approach requires a total of 97 KB while the second of 63 KB.

6.3. Summary of results

In the following tables are summarized the memory footprint of each considered models
and the accuracy of the models evaluated on test data before and after the personalization.

Input
shape

Full Partial

(100,3) 189KB 115KB

(80,3) 165KB 102KB

(60,3) 131KB 91KB

(40,3) 122KB 79KB

(20,3) 97KB 63KB

Table 6.11: BP Memory Footprint

As showed in Table 6.11 the input size has a great impact on the memory footprint.
The train of only the two last layer of the network reduce significantly the memory re-
quired such that the footprint of partial train of the model with the bigger input shape is
comparable with the footprint of the full train of the model with the smaller input shape.

64 6| Training Neural Network on device for Human Activity Recognition

Input
shape

No train Full Partial

(100,3) 0.8245 0.9715 0.9634

(80,3) 0.8453 0.9770 0.9754

(60,3) 0.8292 0.9718 0.9736

(40,3) 0.7918 0.9780 0.9673

(20,3) 0.7835 0.9635 0.9666

Table 6.12: F1 of the proposed model

The results in Table 6.12, which reports the F-beta scores of the models, indicate that
the personalization of the pre-trained model on local data significantly improves it’s per-
formances. Even if the pre-trained model does not have an high generalization capability
by re-training it on device the model achieves very good results.

65

7| Conclusions and Future

Developments

The work done in the thesis show that is possible to empower embedded systems with
training on device functionalities. The developed framework is featured with the flexibil-
ity to perform the training on the device of arbitrary neural networks, provided that the
computational resources of the empowered device is sufficient to run the training process.
In this regards a tool for predicting the required computational resources for the training
on device has been developed. Different experiment on personalization of a pre-trained
model on HAR use case show the enhancement which can be obtained thanks to training
on device. Indeed the results of experiments show that the accuracy of the model increases
and the pre-trained model adapts to new data and improves its performance over time.

There are tree main future directions in which this work can go.
The first is related to an extension of the functionalities provided by the framework itself,
such as the support of more types of layers and the possibility to use other optimizers.
The second future direction is related to the application of optimization and compression
techniques in order to reduce the amount of memory required to run training on-device.
The last one is the FL which provides a means to train models in a distributed scenario
without sharing the local training data.
Moreover from a STMicroelectronics perspective a future work will be the integration of
training on device functionalities in the STM32Cube software ecosystem.

67

Bibliography

[1] Stm32l4 - arm cortex-m4 ultra-low-power mcus. URL https://www.st.com/en/

microcontrollers-microprocessors/stm32l4-series.html.

[2] Integrated development environment for stm32 products. URL https://www.st.

com/en/development-tools/stm32cubeide.html.

[3] X-cube-ai - ai expansion pack for stm32cubemx. URL https://www.st.com/en/

embedded-software/x-cube-ai.html.

[4] H. Cai, C. Gan, L. Zhu, and S. Han. Tiny transfer learning: Towards memory-
efficient on-device learning. CoRR, abs/2007.11622, 2020. URL https://arxiv.

org/abs/2007.11622.

[5] R. David, J. Duke, A. Jain, V. J. Reddi, N. Jeffries, J. Li, N. Kreeger, I. Nappier,
M. Natraj, S. Regev, R. Rhodes, T. Wang, and P. Warden. Tensorflow lite micro:
Embedded machine learning on tinyml systems. CoRR, abs/2010.08678, 2020. URL
https://arxiv.org/abs/2010.08678.

[6] S. Disabato and M. Roveri. Incremental on-device tiny machine learning. In Proceed-
ings of the 2nd International Workshop on Challenges in Artificial Intelligence and
Machine Learning for Internet of Things, AIChallengeIoT ’20, page 7–13, New York,
NY, USA, 2020. Association for Computing Machinery. ISBN 9781450381345. doi:
10.1145/3417313.3429378. URL https://doi.org/10.1145/3417313.3429378.

[7] P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. N. Bhagoji, K. A.
Bonawitz, Z. Charles, G. Cormode, R. Cummings, R. G. L. D’Oliveira, S. E.
Rouayheb, D. Evans, J. Gardner, Z. Garrett, A. Gascón, B. Ghazi, P. B. Gibbons,
M. Gruteser, Z. Harchaoui, C. He, L. He, Z. Huo, B. Hutchinson, J. Hsu, M. Jaggi,
T. Javidi, G. Joshi, M. Khodak, J. Konečný, A. Korolova, F. Koushanfar, S. Koyejo,
T. Lepoint, Y. Liu, P. Mittal, M. Mohri, R. Nock, A. Özgür, R. Pagh, M. Raykova,
H. Qi, D. Ramage, R. Raskar, D. Song, W. Song, S. U. Stich, Z. Sun, A. T. Suresh,
F. Tramèr, P. Vepakomma, J. Wang, L. Xiong, Z. Xu, Q. Yang, F. X. Yu, H. Yu, and

https://www.st.com/en/microcontrollers-microprocessors/stm32l4-series.html
https://www.st.com/en/microcontrollers-microprocessors/stm32l4-series.html
https://www.st.com/en/development-tools/stm32cubeide.html
https://www.st.com/en/development-tools/stm32cubeide.html
https://www.st.com/en/embedded-software/x-cube-ai.html
https://www.st.com/en/embedded-software/x-cube-ai.html
https://arxiv.org/abs/2007.11622
https://arxiv.org/abs/2007.11622
https://arxiv.org/abs/2010.08678
https://doi.org/10.1145/3417313.3429378

68 7| BIBLIOGRAPHY

S. Zhao. Advances and open problems in federated learning. CoRR, abs/1912.04977,
2019. URL http://arxiv.org/abs/1912.04977.

[8] K. Kopparapu and E. Lin. Tinyfedtl: Federated transfer learning on tiny devices.
CoRR, abs/2110.01107, 2021. URL https://arxiv.org/abs/2110.01107.

[9] L. Lai, N. Suda, and V. Chandra. CMSIS-NN: efficient neural network kernels for
arm cortex-m cpus. CoRR, abs/1801.06601, 2018. URL http://arxiv.org/abs/

1801.06601.

[10] H. Matsutani, M. Tsukada, and M. Kondo. On-device learning: A neural network
based field-trainable edge ai, 2022. URL https://arxiv.org/abs/2203.01077.

[11] V. Rajapakse, I. Karunanayake, and N. Ahmed. Intelligence at the extreme edge: A
survey on reformable tinyml, 2022. URL https://arxiv.org/abs/2204.00827.

[12] H. Ren, D. Anicic, and T. A. Runkler. Tinyol: Tinyml with online-learning on mi-
crocontrollers. CoRR, abs/2103.08295, 2021. URL https://arxiv.org/abs/2103.

08295.

[13] M. Tsukada, M. Kondo, and H. Matsutani. A neural network based on-device learning
anomaly detector for edge devices. CoRR, abs/1907.10147, 2019. URL http://

arxiv.org/abs/1907.10147.

[14] G. M. Weiss, J. W. Lockhart, T. T. Pulickal, P. T. McHugh, I. H. Ronan, and J. L.
Timko. Actitracker: A smartphone-based activity recognition system for improving
health and well-being. In 2016 IEEE International Conference on Data Science and
Advanced Analytics (DSAA), pages 682–688, 2016. doi: 10.1109/DSAA.2016.89.

http://arxiv.org/abs/1912.04977
https://arxiv.org/abs/2110.01107
http://arxiv.org/abs/1801.06601
http://arxiv.org/abs/1801.06601
https://arxiv.org/abs/2203.01077
https://arxiv.org/abs/2204.00827
https://arxiv.org/abs/2103.08295
https://arxiv.org/abs/2103.08295
http://arxiv.org/abs/1907.10147
http://arxiv.org/abs/1907.10147

69

List of Figures

2.1 Gradient Descent applied on f(x) . 6
2.2 Learning rate changes the step size of the update 6
2.3 Different steps of Gradient Descent applied on function f(x) 7
2.4 Comparison between empirical risk and risk optimization 8

3.1 A general computational graph . 13
3.2 Computational graph of function F (x) . 14
3.3 Computational graph of chain rule applied to the function F (x) 14
3.4 Computational graph of the forward pass computation in a parametric layer 15
3.5 Computational graph of the forwars pass computation in a non-parametric

layer . 15
3.6 Computational graph of the backward pass computation in a parametric

layer . 16
3.7 Computational graph of the backward pass computation in a non-parametric

layer . 16
3.8 Forward Pass of Average Pool layer . 24
3.9 Backward Pass of Average Pool layer . 25
3.10 Forward Pass of Global Average Pool layer 26
3.11 Backward Pass of Global Average Pool layer 26
3.12 Forward Pass of Flatten layer . 27
3.13 Backward Pass of Flatten layer . 28

4.1 Modules of proposed framework . 30

6.1 Example of the accelerometer raw data related to the Jogging activity . . 48
6.2 Class distribution of WISDM dataset . 50
6.3 Confusion matrix of pre-trained model of Experiment 1 52
6.4 Training of the pre-trainied model of Experiment 1 on local data 52
6.5 Confusion matrix of personalized models of Experiment 1 53
6.6 Confusion matrix of pre-trained model of Experiment 2 54
6.7 Training of the pre-trainied model of Experiment 2 on local data 55

70 | List of Figures

6.8 Confusion matrix of personalized models of Experiment 2 55
6.9 Confusion matrix of pre-trained model of Experiment 3 57
6.10 Training of the pre-trainied model of Experiment 3 on local data 57
6.11 Confusion matrix of personalized models of Experiment 3 58
6.12 Confusion matrix of pre-trained model of Experiment 4 59
6.13 Training of the pre-trainied model of Experiment 4 on local data 59
6.14 Confusion matrix of personalized models of Experiment 4 60
6.15 Confusion matrix of pre-trained model of Experiment 5 61
6.16 Training of the pre-trainied model of Experiment 5 on local data 62
6.17 Confusion matrix of personalized models of Experiment 5 62

71

List of Tables

5.1 Memory footprint of the network parameters 36
5.2 Example of the memory footprint of network parameters 37
5.3 Memory footprint of quantities computed during BP 38
5.4 Example of memory footprint of quantities computed during BP 39
5.5 Example of memory footprint of quantities computed during BP with all

layers freezed except for the last two . 40
5.6 Example of memory footprint for the whole training process 42
5.7 Example of memory footprint for the whole training process with all layer

freezed except for dense . 42
5.8 FLOPs count per layer . 44
5.9 Example of FLOPs count of a network . 45
5.10 Example of FLOPs count of a network with all layers freezed except for

last two . 45

6.1 Evaluation of pre-trained model of Experiment 1 51
6.2 Evaluation of personalized models of Experiment 1 53
6.3 Evaluation of pre-trained model of Experiment 2 54
6.4 Evaluation of personalized models of Experiment 2 55
6.5 Evaluation of pre-trained model of Experiment 3 56
6.6 Evaluation of personalized models of Experiment 3 58
6.7 Evaluation of pre-trained model of Experiment 4 59
6.8 Evaluation of personalized models of Experiment 4 60
6.9 Evaluation of pre-trained model of Experiment 5 61
6.10 Evaluation of personalized models of Experiment 5 62
6.11 BP Memory Footprint . 63
6.12 F1 of the proposed model . 64

73

List of Symbols

Variable Description

N neural network

θ neural network parameters

w weights

b biases

x input

a activations

L loss function

C(θ) risk

C(θ) empirical risk
∂f
∂w

local gradient of weights
∂f
∂b

local gradient of biases
∂f
∂x

local gradient of input
∂C
∂w

gradient of weights
∂C
∂b

local gradient of biases
∂C
∂a

downstream error
∂C
∂a

upstream error

75

Acknowledgements

I would first like to thank my thesis advisor Giacomo Boracchi for offering me the oppor-
tunity to get in touch with STMicroelectornics and for providing support and guidance
throughout this project.
I would like to express my deepest gratitude to the members of the technical staff of the
company: Beatrice, Diego and Pasqualina and for my internships’ colleague Elisabetta.
Their passionate participation in every step of the project and their continuous feedback
have been fundamentals for the work.
I’m extremely grateful to my parents Marialusia and Vincenzo, my sister Elisa and my
grandmother who have supported me and offered deep insight into the study.
I am gratefully indebted to Carla, she provides me with unconditional support and contin-
uous encouragement throughout my years of study and through the process of researching
and writing this thesis.
I would like to extend my sincere thanks to my classmates Amedeo and Francesco with
whom I shared my enthusiasm and passions during the time spent at the University.
Lastly, I’d like to mention my best friends Cristian, Davide, Erica, Laura, Mattia, Simone
and Stefano who have always been present during the course of my studies.

	Abstract
	Abstract in lingua italiana
	Contents
	Introduction
	Artificial Intelligence on Embedded Systems
	Training on Device
	Related Work
	Objectives and contributions
	Thesis structure

	Neural Network Optimization
	One-Dimensional Gradient Descent
	Multivariate Gradient Descent
	Optimization in Deep Learning
	Batch Gradient Descent
	Stochastic Gradient Descent
	Mini-batch Gradient Descent

	Backpropagation Computation
	Computational Graphs
	Chain Rule
	Computation Flow
	Dense Layer
	Activation Layer
	Convolutional Layer
	Pool Layer
	Global Pool Layer
	Flatten Layer

	Proposed Framework
	Implemented Functionalities
	Framework Structure
	Assessment on STM32L4R9

	Required Computing Resources for Training
	Memory Footprint Estimation
	Network Parameters
	Training Samples
	Quantities computed during BP
	Memory Footprint of the Training

	CPU Load Estimation

	Training Neural Network on device for Human Activity Recognition
	Human Activity Recognition
	Proposed Experiments
	Experiment 1: window size of 5 seconds
	Experiment 2: window size of 4 seconds
	Experiment 3: window size of 3 seconds
	Experiment 4: window size of 2 seconds
	Experiment 5: window size of 1 second

	Summary of results

	Conclusions and Future Developments
	Bibliography
	List of Figures
	List of Tables
	List of Symbols
	Acknowledgements

