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1. Introduction
Service robotics often has to face dynamic and
unstructured environments, which make senso-
rial information less reliable and autonomous
decision-making harder. The incorporation of
human intelligence through teleoperation and
the design of bio-inspired components, like
bionic hands, can grant fast adaptation and ef-
fective interactions with irregular environments
[1]. Underactuated bionic hands are especially
promising thanks to their simplified driver struc-
ture and compactness.
Such devices can be intuitively controlled by
capturing the human operator’s hand motion
and mapping it to the bionic hand in such
a way to grant semantic correlation between
human and robot movements. To this end,
the mainly used hand motion capture tech-
nologies are mechanical gloves [2] and vision-
based tracking devices [3]. The former outper-
form the latter in terms of stability and robust-
ness. Indeed, optical environmental factors, self-
occlusion and self-similarities between fingers
may affect vision-based tracking performance.
However, in the case of gloves, the single fit
size, the cumbersome wearing process and uner-
gonomic structures lead to poor comfort and af-

fect the intuitiveness and transparency of the op-
eration, thus making vision-based methods com-
petitive thanks to their contactless nature.
Quantitative comparisons of wearable and
vision-based tracking methods can be a basis for
selection. Nevertheless, studies found in litera-
ture mainly address the evaluation of the accu-
racy of the motion capture system alone, with-
out considering the performance of the result-
ing teleoperation system [4]. Moreover, most
of the studies related to the development of
bionic hand teleoperation systems are oriented
to self-validation, preventing a meaningful com-
parison between different works [5]. Indeed, al-
though the tasks and metrics are widely agreed
upon (grasping task, success rate and comple-
tion time, respectively) there are no standards
to define the test.
The objective of this work was to design two
teleoperation systems to intuitively control the
same underactuated bionic hand, using a glove-
based method and vision-based technique, re-
spectively, and compare them in terms of teleop-
eration accuracy and usability. First, the bionic
hand inverse kinematics was modeled. Then,
a glove-based and a vision-based hand tracking
systems were designed to retrieve human motion
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parameters suitable to control the bionic hand.
Thus, an actuation stage to control the bionic
hand motors, based on inverse kinematics, was
developed. Lastly, 3 experiments were executed
to evaluate the two resulting teleoperation sys-
tems: (1) static accuracy evaluation of the two
overall teleoperation systems and their internal
stages (the hand tracking systems and the bionic
hand actuation controller); (2) dynamic accu-
racy evaluation of the two overall teleoperation
systems and their internal stages; (3) evaluation
of usability and user experience.

2. Methods
2.1. Bionic hand calibration
Figure 1 depicts the structure of the underactu-
ated bionic hand used in this work. Each fin-
ger is composed by 3 primary links resembling
the human finger phalanxes and connected by 3
hinge joints. Additionally, 2 transmission links
are used to apply the underactuation paradigm
by reducing the chain freedom. Each finger is
independently driven by one servo motor con-
trolled by a Pulse Width Modulation signal.

Figure 1: Bionic hand structure. Distal In-
terphalangeal joint (DIP), Proximal Interpha-
langeal joint (PIP), Metacarpophalangeal joint
(MCP), bending angle (θ).

For each finger, a bending angle θ is defined
as the angle between the current vector going
from MCP to TIP and the finger direction cor-
responding to the maximum extension pose, as
shown in Figure 1. The inverse kinematic model
of a finger is a mathematical relationship that
gives the PWM signal width, PW , of the corre-
sponding motor as a function of the finger bend-

ing angle. In this work, for each finger, a non-
linear inverse kinematic model was found in or-
der to catch the nonlinearity introduced by mo-
tor saturation, mechanical backlash, and hys-
teresis. To this end, a calibration procedure
was performed using a set of markers and an
optical sensor (NDI Optotrak Certus) to mea-
sure θ. For each finger, two nonlinear functions,
PW = fext(θ) and PW = fflex(θ), were fit-
ted on the acquired samples to model the exten-
sion (decreasing θ) and flexion (increasing θ) mo-
tions, respectively. A neural network-based fit-
ting method was employed. For each finger, the
maximum bending angle, θmax, was defined as
the one associated to the maximum PW value.

2.2. Glove-based motion tracking
In the glove-based tracking method, an exoskele-
ton glove endowed with five potentiometers was
employed. Each sensor is connected to the first
phalanx of the corresponding finger and can be
used to retrieve the flexion angle φ of the pha-
lanx normalized for its range φmax (Figure 2).

Figure 2: Definition of flexion angle: minimum
(a) and maximum (b) flexion poses allowed by
the glove.

The glove readout is sent to a computer run-
ning Ubuntu 16.04 and Robot Operating system
(ROS) Kinetic via USB cable. For each finger,
the ROS network samples the signal S of the cor-
responding potentiometer at 40Hz and extracts
the normalized flexion angle φ̂ as follows:

φ̂ =
φ

φmax
= 1− S − 500

2000
(1)

A real time linear Kalman Filter, which adopts
a discrete-time state space representation of the
finger motion, is employed to smooth φ̂ and im-
prove the robustness of the control. The im-
plementation details can be found in a previous
work about sensor fusion control [6].
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2.3. Vision-based motion tracking
In the vision-based method, a Leap Motion Con-
troller (LMC) is utilized to retrieve two infrared
stereo images of the bare hand, that are then
sent via USB cable to a computer that runs the
Leap Motion Service (LMS), Ubuntu 16.04, and
ROS Kinetic. The LMS reconstructs the 3D co-
ordinates of the human hand joints and finger-
tips with respect to an absolute reference system
{LMC}, as illustrated in Figure 3. Moreover, it
provides the parameters describing a local ref-
erence frame {HH} attached to the hand. The
ROS network samples the LMS output data at
40Hz and transforms joints and fingertip coor-
dinates to {HH}. Then, it computes the fin-
ger bending angle β defined by the projection of
the MCP-to-fingertip vector on the flexion plane
P , fixed to the hand frame, with respect to the
vector belonging to P that represents the mini-
mum bending pose, as shown in Figure 3. Such
angle is mainly influenced by MCP flexion, like
the bionic hand finger bending angle θ, and it is
minimally influenced by MCP abduction, which
is not present in the bionic hand MCP joints. P,
the minimum bending pose and the maximum
bending pose, which ultimately defines the max-
imum bending angle βmax, are measured during
a calibration phase when the system starts.

Figure 3: Leap Motion readout and bending an-
gle computation.

Then, β is normalized for βmax to obtain a di-
mensionless variable β̂:

β̂ =
β

βmax
(2)

Lastly, a real time linear Kalman filter is used to

smooth the value of β̂ and improve the robust-
ness of the control. The approach is the same as
the one applied in the glove-based system case.

2.4. Teleoperation control
The two developed hand tracking stages are used
to implement two distinct teleoperation systems
to control the bionic hand. In both cases,
for each finger, the normalized angle measured
by the tracking system (φ̂ for the glove-based
method and β̂ for the vision-based method) is
multiplied for the bending angle range, θmax, of
the corresponding bionic hand finger, thus ob-
taining the desired bending angle θ:

θ =

{
φ̂ · θmax (glove-based system)

β̂ · θmax (vision-based system)
(3)

Then, an actuation control stage applies the in-
verse kinematic model of the bionic hand fin-
ger, described in Section 2.1. The two functions
constituting the model, fflex(θ) and fext(θ), are
used according to the current direction of mo-
tion. Calling θk, PWk and dk the desired bend-
ing angle, the pulse width of the motor control
signal and the motion direction, respectively, at
time k, the following algorithm is applied:

PWk =

{
fflex(θk) , if dk = flex

fext(θk) , if dk = ext
(4)

2.5. Experimental evaluation
Static accuracy assessment A calibration
procedure was performed on each developed
teleoperation system to evaluate their static ac-
curacy, In particular, while a human operator
was controlling the bionic hand, a set of markers
and the NDI optical sensor were used to measure
the bending angle θ of the bionic hand index fin-
ger and, at the same time, the ground truth of
the flexion angle, φreal, and the bending angle,
βreal, of the human index finger. φreal, φ̂ and θ
were recorded for the glove-based system, βreal,
β̂ and θ were measured for the vision-based sys-
tem. A preprocessing step was needed to nor-
malize the acquired φreal, βreal and θ samples
for the respective ranges, thus obtaining φ̂real,
β̂real and θ̂:

φ̂real =
φreal

φreal,max − φreal,min
(5)
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β̂real =
βreal

βreal,max − βreal,min
(6)

θ̂ =
θ

θmax
(7)

While θmax was known from Section 2.1, the
angle limits of φreal and βreal were unknown,
therefore, they were estimated. In particular,
a set of calibration cycles of the tracking stage
were obtained by coupling the measured sam-
ples of φreal and φ̂, for the glove-based method,
and the samples of βreal and β̂, for the vision-
based method. The linear function that best fits
such cycles was computed through least-squares
linear regression. The angle values that accord-
ing to the linear model correspond to the mini-
mum and the maximum tracking system readout
were considered as the limits of the angle. After
normalization, the resulting data-set contained
samples of the input-output static characteris-
tics listed below and represented in Figure 4,
which should ideally give output equal to input:
• Overall teleoperation system:
θ̂ = gtele,1(φ̂real) , θ̂ = gtele,2(β̂real)

• Hand motion tracking system:
φ̂ = gtrack,1(φ̂real) , β̂ = gtrack,2(β̂real)

• Actuation control system (independent
from the tracking system used):
θ̂ = gact,1(φ̂) = gact,2(β̂)

For each characteristic, g(x), the best approxi-
mating mathematical function was found by fit-
ting polynomials on the corresponding acquired
samples through nonlinear least-squares regres-
sion. In particular, the samples related to flexion
motions were fitted separately from the ones re-
lated to extension motions, thus obtaining two
functions, f(x) and e(x), which model flexion
and extension, respectively:

g(x) =

{
f(x) , for flexion

e(x) , for extension
(8)

Figure 5 reports a result example. Then, for
each characteristic g(x), two metrics were com-
puted, which assess the accuracy of the corre-
sponding system:
• Nonlinearity, that is the maximum distance

between the real characteristic and the ideal
one (output equal to input):

NL = max ||g(x)− x|| (9)

• Hysteresis, that is the maximum distance
between the two hysteretic curves.

Hys = max ||f(x)− e(x)|| (10)

Figure 4: Input-output characteristics scheme.

Dynamic accuracy assessment In the dy-
namic experiment, the human operator had to
continuously move his index finger in such a way
that the corresponding flexion or bending angle
varied sinusoidally. Such motion was mapped
to the bionic hand using the implemented sys-
tems. The optical system used for the static
assessment was employed to measured the same
variables at 40Hz, and the same angle normal-
ization was performed on the acquired signals.
The input and output signals of the overall sys-
tem, the tracking stage and the actuation con-
troller stage were paired and synchronized, as
shown by the result example reported by Fig-
ure 6. The distance between the synchronized
signals was extracted as a metric of dynamic ac-
curacy, computed as root mean square error:

RMSE =

√√√√ 1

N

N∑
i=1

(xi − yi)
2 (11)

where N is the number of samples, xi and yi
are the ith samples of the two signals respec-
tively. The experiment was repeated in six dif-
ferent conditions, each one characterized by a
different amplitude or frequency of the flexion
or bending angle signal in order to explore the
accuracy dependency on such parameters.

Usability assessment To evaluate and com-
pare the feasibility of the two implemented sys-
tems and assess the user experience, a third ex-
periment was executed. 6 users performed a
grasp task on 4 objects requiring different grasp-
ing postures that can be divided into two groups:
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power grasp and precision grasp. While the
bionic hand was fixed to a table, the user had
to bring one object to it using the left hand and
then make it grasp such object using one of the
developed systems. Once the user was confident
enough, he/she had to leave the object to the
bionic hand and hold it for 5 seconds. If the ob-
ject fell or touched the palm (only when a pre-
cision grasp was required), the trial was deemed
a failure, otherwise it was a success. Each user
performed 6 trials for each object with both the
glove and vision tracking methods. The success
rate of all the trials was measured. Furthermore,
after using each system, each user was asked to
complete a NASA TLX questionnaire to assess
the workload perceived during the task.

3. Results and Discussion
3.1. Accuracy evaluation
Overall teleoperation accuracy The result-
ing static characteristic of the overall teleop-
eraion systems are represented in Figure 5. Ta-
ble 1 reports the RMSE of the samples from the
flexion and extension curves, the non-linearity
and the hysteresis metrics.

Figure 5: Static characteristics of the overall
glove-based and the vision-based teleoperation
systems and fitted samples.

RMSE NL Hys
f e

Glove 0.023 0.027 11.1% 14.6%
Vision 0.056 0.061 20.0% 27.0%

Table 1: Goodness of fitting and error metrics
of the two teleoperation systems. f : flexion; e:
extension; NL: nonlinearity; Hys: hysteresis.

The glove-based system is characterized by a
linear region from 25% to 60% of the flexion
level range, overlapped to the ideal character-
istic. Non-linearity and hysteresis are signif-
icantly present only outside this region, how-
ever, the respective metrics are acceptable. In
the vision-based system, instead, the ideal char-
acteristic runs from end to end of the hys-
teretic cycle and is completely detached from the
two curves, implying that non-linearity exists
throughout the range. Non-linearity and hys-
teresis are significantly worse than in the glove
system case. Fitting results, represented by the
RMSE, are poorer too, hinting at lower behavior
predictability, repeatability and precision.

Figure 6: Dynamic accuracy comparison.

In the dynamic trials, the RMSE values mea-
sured for the glove system are lower in all six
conditions, confirming the higher accuracy of
such method. Indeed, as shown by the exam-
ple in Figure 6, the glove-based system shows
better-overlapped signals and less pronounced
missed peaks. Moreover, the vision-based sys-
tem performs worse for slow and small move-
ments, indicating that it is less suitable for fine
and delicate operations.

Tracking accuracy The resulting static char-
acteristics of the tracking systems are very sim-
ilar to the ones of the overall teleoperation sys-
tems. The main differences consist of a slightly
lower dispersion around the curves and a lower
hysteresis in the lower part of the human range.
The vision-based tracking method gives signif-
icantly worse accuracy metrics for both static
and dynamic scenarios with respect to the glove-
based one. Since the actuation control stage is
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the same for both systems, the lower accuracy of
the vision-based teleoperation method is solely
due to the worse accuracy of its tracking stage.
Furthermore, given that in both the developed
teleoperation systems the processing on the sen-
sor data is reduced to the minimum, such worse
performance can be attributable to the limited
accuracy of the Leap Motion device in estimat-
ing joints position, implying a reduced applica-
bility of such technology for being used, with
simple data processing, to control bionic hands
for fine and precise tasks.

Actuation control accuracy Lastly, the
static characteristic of the actuation control sys-
tem displays an excellent superimposition to
ideal behavior over 20% of the range, with low
sample dispersion. Below such region, non-
linearity and hysteresis reach 4.1% and 7.4% of
the range, which are not relevant values (about
5° and 9° respectively). Furthermore, in all
six dynamic situations, the resulting robot path
closely follows the desired one, and RMSE is low.
The good performance of the actuation control
system is confirmed also by the high similarity
between the results of the overall teleoperation
and the ones related to motion tracking alone.
As a result, the inverse kinematic model result-
ing from finger motion calibration, if applied
through a suitable algorithm, provides generally
accurate and reliable actuation control system.

3.2. Usability evaluation
All the participants succeeded in performing all
four grasp tasks using both the developed sys-
tems. The success rate is high in both cases,
in particular, it is 98.6% for the glove-based
method and 96.5% for the vision-based method.
According to a Fisher’s exact test, there is no
evidence to claim a significant statistical differ-
ence between the two values. Table 2 reports
the results from the questionnaire in terms of
the average (µ) and the standard deviation (σ)
of the perceived workload components. The to-
tal workload is the sum of the average work-
load components and it is practically the same
in the two systems. However, in the case of
the glove, on average, the global effort is per-
ceived as higher, and performance is perceived
as higher too. Free user feedback is in line with
such result: users felt the glove was better per-

forming but, at the same time, less comfortable,
causing greater effort. Therefore, the inaccuracy
issue of the vision-based method does not com-
promise the teleoperation control, nevertheless,
it influences the perceived performance. As re-
gards the glove-based method, user’s comfort is
a critical issue.

Index Glove Vision
µ σ µ σ

Mental demand 8.4 5.6 7.9 6.1
Physical demand 7.1 4.8 7.2 5.7
Temporal demand 3.1 3.7 3.8 4.8

Performance 3.5 2.1 5.9 4.1
Effort 12 5.9 9.5 2.4

Frustration 4.7 4 3.5 4.2
Total workload 38.8/100 37.8/100

Table 2: User study: average (µ) and stan-
dard deviation (σ) of the workload indexes, total
workload (sum of the average workload indexes).

4. Conclusions
In this work, two teleoperation systems were de-
veloped to intuitively control the same underac-
tuated bionic hand, based on the motion capture
of the human hand through a wearable mechan-
ical glove and vision-based tracking device, re-
spectively. Both proved to be able to effectively
perform both power and precision grasp tasks
successfully. However, the vision-based system
revealed a significantly lower accuracy than the
glove-based one, which is due to the limited ac-
curacy of the vision tracking method in estimat-
ing joints position, implying a reduced applica-
bility for completing fine and precise tasks. Such
worse accuracy does not compromise grasp task
success but has a negative influence on the user’s
perception of performance. The glove-based so-
lution, instead, reduced user comfort by imped-
ing natural movements, thus, although wear-
able devices are more accurate than vision-based
ones, their use may be limited if the user’s com-
fort is important for the application. Future re-
search may focus on three aspects: (1) the design
of a sensorized glove that improves the user com-
fort; (2) the employment of sensor fusion tech-
niques to improve the accuracy performance of
the vision-based method; (3) the realization of a
comprehensive hand-arm teleoperation system.

6



Executive summary Massimiliano Poletti

References
[1] Rui Li, Hongyu Wang, and Zhenyu Liu.

Survey on mapping human hand motion to
robotic hands for teleoperation. IEEE Trans-
actions on Circuits and Systems for Video
Technology, 2021.

[2] Manuel Caeiro-Rodríguez, Iván Otero-
González, Fernando A Mikic-Fonte, and
Martín Llamas-Nistal. A systematic review
of commercial smart gloves: Current status
and applications. Sensors, 21(8):2667, 2021.

[3] Rui Li, Zhenyu Liu, and Jianrong Tan. A
survey on 3d hand pose estimation: Cam-
eras, methods, and datasets. Pattern Recog-
nition, 93:251–272, 2019.

[4] C Mizera, T Delrieu, V Weistroffer, C An-
driot, A Decatoire, and J-P Gazeau. Eval-
uation of hand-tracking systems in tele-
operation and virtual dexterous manipula-
tion. IEEE Sensors Journal, 20(3):1642–
1655, 2019.

[5] Ankur Handa, Karl Van Wyk, Wei Yang,
Jacky Liang, Yu-Wei Chao, Qian Wan,
Stan Birchfield, and Nathan Ratliff. Dexpi-
lot: Vision-based teleoperation of dexterous
robotic hand-arm system. In IEEE Interna-
tional Conference on Robotics and Automa-
tion, pages 9164–9170, 2020.

[6] Hang Su, Junhao Zhang, Junling Fu,
Salih Ertug Ovur, Wen Qi, Guoxin Li, Ying-
bai Hu, and Zhijun Li. Sensor fusion-based
anthropomorphic control of under-actuated
bionic hand in dynamic environment. In
IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS), pages
2722–2727. IEEE, 2021.

7


	Introduction
	Methods
	Bionic hand calibration
	Glove-based motion tracking
	Vision-based motion tracking
	Teleoperation control
	Experimental evaluation

	Results and Discussion
	Accuracy evaluation
	Usability evaluation

	Conclusions

