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Abstract

Nowadays, distributed and networked strategies are widely used to control modern in-
frastructures where geographically dispersed and complex engineering systems can be
regarded as "networks" of simpler interacting units.
In this thesis we will implement and test a state-of-the-art model Predictive Control-
based Distributed algorithm, named DPC. The tests will be carried out on a laboratory
experimental setup devised specifically for this work, consisting of unicycle mobile robots
virtually connected through springs and dampers, moving on a bi-dimensional plane. The
realized setup will be characterized by non-idealities typical of networked control systems,
like delays and disturbances. These undesired phenomena typically deteriorate the per-
formances of control algorithms designed specifically for nominal systems.
To overcome this problem we will present a robust networked variant of the DPC algo-
rithm, capable to deal with the delays and the disturbances affecting the experimental
setup.
These phenomena will be characterized by analyzing the used laboratory equipment, i.e.,
the E-PUCK mobile robots and the Decawave UWB positioning system. Moreover, a
specific calibration strategy for the compensation of the biases affecting the position mea-
surement will be provided. In this way, such setup can be used as a versatile benchmark
case study for development and testing of networked control strategies for multi-agent
systems.
Finally the novel, robust networked DPC algorithm will be tested, and its effectiveness
will be discussed.

Keywords: Distributed control, Networked control, Model predictive control, Labora-
tory setup





Abstract in lingua italiana

Oggigiorno, le tecniche di controllo distribuito e su rete trovano ampio utilizzo nella re-
golazione di moderni sistemi ingegneristici, dove impianti complessi e dispersi su grandi
aree geografiche possono essere visti come una rete di sottosistemi interagenti tra loro.
In questa tesi implementeremo e testeremo un algoritmo distribuito basato sul controllo
predittivo, chiamato DPC. I test verranno eseguiti su un setup sperimentale sviluppato
specificamente per questo lavoro, dove dei robot mobili a uniciclo virtualmente connessi
da molle e smorzatori saranno liberi di muoversi all’interno di un arena. Il setup realizzato
è caratterizzato da non idealità tipiche dei sistemi di controllo su rete, come ritardi e dis-
turbi di comunicazione. Questi effetti indesiderati solitamente contribuiscono a degradare
le prestazioni fornite da algoritmi di controllo sviluppati appositamente per sistemi nom-
inali.
Per superare questo problema, presenteremo una variante robusta specifica per il controllo
su rete del DPC, in grado di sormontare le problematiche introdotte dai ritardi e disturbi
che contraddistinguono il setup realizzato.
Queste non idealità verranno caratterizzate analizzando nel dettaglio i dispositivi uti-
lizzati, in particolare i robot E-PUCK e il sistema di posizionamento Decawave basato
su tecnologia a banda ultra-larga (UWB). Inoltre verrà presentata una strategia di cal-
ibrazione del sistema di posizionamento in grado di migliorare notevolmente le misure
di posizione fornite, rimuovendo gli errori di localizzazione. Il setup sperimentale così
caratterizzato, potrà essere utilizzato come una versatile piattaforma di riferimento su cui
sviluppare e testare strategie di controllo per sistemi multi agente.
Infine, la nuova variante robusta per sistemi su rete dell’algoritmo distribuito basato su
controllo predittivo verrà testata, e la sua efficacia verrà analizzata.

Parole chiave: Controllo distribuito, Controllo su rete, Controllo predittivo, Setup sper-
imentale
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1| Introduction

1.1. Distributed control

In the last decades infrastructures and engineering systems have grown widely, both in
terms of complexity and geographical dispersion, together with the needs of automation.
This has spurred the research in control to provide growing performances, in terms of
cost, savings and optimality.
The usage of the traditional centralized controllers is widespread, where a unique controller
is in charge of controlling the whole plant, taking measurements from all the sensors
deployed in the system, and compute the control actions to be sent to all the actuators.
This control strategy ensures the greatest performances achievable, since it relies on the
perfect knowledge of the system evolution, but at the cost of a high complexity and
great computational requirements, that can hugely increase together with the process
dimensions.
Modern infrastructures can be often regarded as networks of a (often large) number of
simple interacting units, e.g. natural gas treatment plants, fleet of autonomous vehicles,
data acquisition sensor networks, irrigation channels, electric grids and many more.
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Figure 1.1: Smart grid.

The advent of smart grids can be considered as an example of a paradigm shift in engineer-
ing systems and automation. Indeed, in the past, classical energy distribution systems
consisted in few large generation plants placed far from users, providing electricity to
passive loads. Nowadays, there has been a dramatic change. For instance, due to advent
of renewable technologies such as solar panels, wind turbines, etc, at the user side one can
supply energy. The opportunities are manifold, e.g., the possibility for a grid to operate
in islanded mode, or the possibility of forming clusters of microgrids, which can take the
role of a virtual power plant.

This technological change has lead to the necessity of redesigning the control and opti-
mization schemes at different levels, i.e.

• Single generation unit level: wind/solar power plants, smart homes/buildings and
industries must achieve stable operating condition and reactive power control

• Microgrid level: the microgrid, regarded as a system, must guarantee the fulfillment
of energy needs, maximize gain from local production, minimize purchase from the
grid and guarantee frequency/voltage regulation

• Aggregation level: among the many challenges, clusters of multiple microgrids,
should be able to provide active/reactive power reserves.

To meet these targets, traditional centralized control structures are not suitable, since
control is needed at different levels, where all the entities in the network must be coor-
dinated, and possibly with other entities from other grids placed at large geographical
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distances. Systems also require high flexibility, high reliability, e.g., to failure of single
agents, and high performing communication channels. To handle this complexity, a single
controller is deemed not suitable, and advanced control architectures must be used.

For all these reasons, the adoption of hierarchical, distributed and decentralized control
architectures is required.

Figure 1.2: Distributed control architecture.

For instance, decentralized and distributed control strategies are developed under the
prospective that the system can be regarded as a network of simpler units with physical
interactions among them (red arrows in Figure 1.2), each endowed with a dedicated con-
troller. This new (decomposition-based) perspective, introduces a number of advantages
with respect to classic centralized strategies. In particular, each regulator has a reduced
computational load (scalability), since it is committed to control just a small part of
the whole complex process. Also, a smaller communication burden is involved. Local
model uncertainties can be easily compensated, and controllers can be made robust to
deal with them. Moreover, distributed control schemes are versatile, since single parts
can be modified or completely changed, without requiring the re-design of the complete
system (modularity).

Decentralized structures do not require communication between local controllers, this can
result in instability of the complete process, or in unsatisfactory global performances.
On the other hand, distributed architectures require communication among controllers
(blue arrows in Figure 1.2), so that cooperation can be enforced between regulators. The
latter strategy lies in the middle ground between decentralized and centralized control
ones. In fact, it keeps the advantages coming from the use of the decomposition-based
approach but, thanks to communication, it can provide nearly optimal performances.
Highly complex communication networks can allow for performances comparable with the
one ideally provided by centralized architectures. Note that the network complexity can
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be considered as a tuning parameter, to be selected to provide satisfactory performances,
but at the same time to limit the control problem complexity.

1.2. Networked control

As discussed above, nowadays modern infrastructures and engineering systems are com-
plex. In many cases, systems are provided with a large number of sensors, actuators,
and control systems. This requires a relevant exchange of information, that would result
in a huge amount of connections between nodes, i.e. controllers, sensors and actuators.
Moreover, modern plants may be geographically dispersed among wide areas. For these
reasons, in large-scale and complex plants all the necessary information is often shared
through serial communication channels, where the nodes are connected by means of a
communication network, leading to the concept of networked control systems.

Figure 1.3: Networked control system over serial communication network.

During years a multitude of different network technologies and protocols have been intro-
duced, spanning from the CAN protocol firstly adopted in the 80’s to modern protocols
integrated through wireless communication channels.

Networked control systems have a long list of benefits. Often, the use of control networks
for communication is the only technical solution if the distances are large or the nodes
are too many. It also allows for a relevant cost reduction in terms of savings in wiring,
since a serial network consists of a unique line instead of hundreds of individual wires. It
has been estimated [11] that, as the system grows past the deadline of 100 I/O points,
the added expense of network hardware is offset by savings in wiring time. This benefit
grows exponentially as the size of the system.
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Figure 1.4: Serial communication network. (From [11])

The use of control networks allows for modularity, since connectivity is achieved by soft-
ware and it does not matter where a component of the network is physically placed.
For this reason each node can be easily installed or reconfigured, e.g. for substitution
for maintenance. Control networks also provide diagnostic capabilities, since informa-
tion about the status of single components can be shared with the network, allowing for
malfunctioning detection.

The use of serial communication channels introduces a number of benefits, but also some
challenges. For example, constraints on the amount of information that can be transmitted
per time-unit are introduced, due the limited bandwidth of the channels, which has a
major impact on the trade-off between sampling and quantization.
Also, significant delays may affect the system, which can be bounded or unbounded, and
time-varying, depending on the type of network used. Delays are due to congestions,
competition in accessing the network, and transmission time, which in turn is related to
the adopted physical link.
Also, the possibility of packet dropouts must be considered. Indeed, packets may be lost
due to errors in nodes and links, buffer overflows during congestions, too long delays, or
scheduling time.

Networked control systems must be designed to be robust with respect to all these un-
desired effects, and must be always capable to provide stability and satisfactory perfor-
mances.

1.3. Distributed and networked control systems

In Section 1.1, the advantages of distributed control architectures were described. As
discussed, distributed strategies rely on communication between controllers, which must
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allow to share information and to achieve global stability and satisfactory performances.
Since modern systems are complex and large-scale, such data often need control networks
to efficiently support their transmission, as discussed in Section 1.2.

It is possible to subdivide the resulting control system into three network layers:

• System interconnection network layer 1, considering the dynamic interactions
between subsystems

• Decision network layer 2, representing the communication among controllers

• Communication network layer 3, representing the transmission of data between
agents.

(a) (b) (c)

Figure 1.5: (a) Layer 1, (b) Layer 2, (c) Layer 3.

This leads to regard the problems of developing distributed control schemes and to cope
with network-induced communication issues as two strictly coupled ones. Distributed
and, at the same time, networked control systems guarantee all the benefits introduced
in the previous sections, but at the cost of high complexity in the design phase. In fact
interactions among subsystems, communication between controllers, and network non-
idealties must be taken into account at the same time.

1.4. Purpose of the thesis

The first objective of this work is to devise a lightweight experimental setup of reduced
dimensions where tests over the chosen algorithms could be carried out. Such setup can
be used as a versatile benchmark case study for development and testing of networked
control strategies for multi-agent systems, e.g., distributed and hierarchical approaches.
The selected case study is a multi-agent system composed by carts moving on a bi-
dimensional plane. Connections between agents can be virtually imposed by software
enforcing couplings between agents.
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The realization of such an experimental setup implied the usage of different laboratory
equipments, like the E-PUCK mobile robots and the Decawave positioning system, which
required a complete characterization. Regarding the real time positioning system, we also
developed a suitable calibration strategy.

Secondly, a distributed state-of-the-art algorithm based on Model Predictive Control
(MPC) is implemented and tested on the realized experimental setup. A complete evalu-
ation of its performances is made, in particular when network non idealties are present. A
new algorithm capable to overcome the limitations of the original version is then presented
and tested.

1.5. Structure of the thesis

The reminder of the thesis is organized as follows.

• In Chapter 2 the experimental setup developed to be a benchmark application for
several distributed and hierarchical control strategies is described. A detailed anal-
ysis of the laboratory equipment used is presented, focusing in particular on the
Decawave positioning system and the E-PUCK robots

• In Chapter 3 the disturbances and the delays affecting the experimental setup have
been characterized, and a strategy for the compensation of the biases affecting
the position measurements is presented. Furthermore, the case study in object is
discussed

• In Chapter 4 the DPC algorithm [5] is presented, and the implementation details
are discussed

• In Chapter 5 a modified version of the DPC algorithm is presented, capable to deal
with the non-idealities introduced by the adoption of a networked control system
architecture

• In Chapter 6 several simulations testing the performances of the modified version
of the DPC compared with the ones of the original version are reported

• In Chapter 7 the novel robust networked variant of the DPC algorithm is tested on
the experimental setup

• In Chapter 8 the conclusions, together with the possible future developments of this
thesis work, are discussed.





9

2| Experimental setup

In this chapter the necessary components for the realization of the real case study later
described in Section 3.3, selected in order to highlight the features of the methodological
problem addressed in this thesis, are introduced and then analyzed in details.

Figure 2.1: Experimental setup.

In particular, the experimental setup consists of two unicycle robotic agents (E-PUCK
robots) moving inside an arena of 2x2 meters. The position of the robots is obtained using
the Decawave Real Time Localization System (DRTLS) relying on the Ultra-Wide-Band
(UWB) technology. The system can greatly benefit of a distributed controller, in view of
the fact that strong interactions between the two subsystems will be virtually imposed by
software. Also, the variables will be measured through sensors prone to significant noise
and delays, which are the typical non-idealities affecting networked control systems. For
these reasons this setup perfectly fits to be a benchmark application to test distributed
and networked control algorithms.
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The distributed control philosophy, at the foundation of this work, implies that each sub-
system is endowed with its own regulator, while receiving information from its neighbors
through an appropriate communication network. In this application, due to the limited
computational power of the mobile robots, a central computer is in charge of running
the controllers (implemented as if they were indeed distributed) of all units, while also
receiving the measurements from all the sensors in the network. The host computer then
sends the control actions, computed at each sampling interval, back to the mobile robots.

The regulator of each agent is implemented in a complete independent fashion and just
the strictly necessary information is shared among local controllers, following the desired
topology of the virtual network; thus, the obtained scheme is exactly equivalent as each
subsystem is running its own controller.

The communication network is based on the Bluetooth technology [1], which is imple-
mented in a large variety of mobile robots, and is ready to use on most of the recent
computers. It is perfectly suitable for small scale indoor applications, providing satisfac-
tory performances in terms of reliability and transmission speed.

2.1. The localization system

Indoor localization is a wide area of interest. Where, along years, a large variety of
technologies have been developed in order to provide a precise position measurement in
closed spaces, such as industries and buildings.

2.1.1. Localization techniques

There exist plenty of different strategies to retrieve position measurements, like Two Way
Ranging (TWR), which relies on Time of Flight (ToF), Time Difference of Arrival (TDoA),
Received Signal Strength (RSS), Angle of Arrival (AoA), and many more.

Two way ranging is also called Time of Arrival (ToA). It relies on measuring the time
taken by the signal to travel from the transmitter to the receiver. This value is then
multiplied by the speed of light c = 3× 108 m/s to obtain the distance. To achieve that,
exact synchronization between units is necessary. For very short lengths, performances
can degenerate, since the time of flight can be really small, especially for radio frequency
technologies. Therefore, timers with great precision and synchronization accuracy are
mandatory.
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(a) (b)

Figure 2.2: (a) ToA and (b) TDoA methods

Time difference of arrival requires the definition of units used as anchors, whose position
must be fixed, in charge of detecting and locating a transmitting device. The transmitter
broadcasts signals at regular intervals. The latter are detected by the receivers, which
can measure the time of arrival; the difference in travel times from each anchor is used to
estimate the distance to each of them. The computation of the time difference eliminates
the need to know the time of transmission, unlike in TWR, so the transmitter is not
required to be in sync with the receiver. Synchronization is only required between all
anchors.

Received signal strength method uses measurements of the signal field intensity at the
receiving point. The distance of the transmitting unit can be estimated using signal
propagation models. RSS is a completely asynchronous method, but does not always
provide measurements that are sufficiently accurate to properly determine the location.

(a) (b)

Figure 2.3: (a) RSS and (b) AoA methods
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Angle of arrival relies on angles instead of distances. In fact, using specific technologies,
measurement of angles with which signals are received can be obtained. The receiver
defines a line that departs from its position with such angle, where the target object is
assumed to be. The combination of several lines from several reference devices places the
target object at the intersection of these trajectories, so positioning is achieved; at least
two reference points and two angles are needed. This method does not need synchroniza-
tion, but complex and expensive hardware is required, it can be used in addition to other
strategies to provide better performances.

Some of the previously cited techniques must be used together with the multilateration
method, which combines the range measurements coming from the devices to locate the
position of the desired tag. At least distance measurements from three ’known’ points are
required, in order to solve a trilateration problem and locate without ambiguity the tag
location in 3D space.

(x− x1)
2 + (y − y1)

2 + (z − z1)
2 = d21

(x− x2)
2 + (y − y2)

2 + (z − z2)
2 = d22

(x− x3)
2 + (y − y3)

2 + (z − z3)
2 = d23

However, extending the number of available distance measurements is suggested, in order
to guarantee feasibility of the localization problem also in case of malfunctioning of some
sensors.

Figure 2.4: Trilateration.

Since measurements are affected by noise coming from multipath, scattering of the sig-
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nal, no-Line-of-Sight (nLoS) condition and synchronization shifts, it is not possible to
determine a single point as solution. Instead, a region taken as a sphere of radius ζ is
considered as the area containing the correct position.

2.1.2. Localization technologies

The Global Positioning System (GPS) is nowadays a mature technology, capable to locate
positions with an accuracy < 3 meters in Line-of-Sight (LoS) conditions. However, due
to the attenuation of GPS signals as they cross through walls, in indoor environments
the accuracy drops to < 50 meters. For this reason, different methods and technologies
have been developed to achieve indoor localization, under the name of Indoor Positioning
Systems (IPS).

A large selection of competitive solutions is available on the market, for example based
on Radio Frequency (RF), like WI-Fi (WPS), Bluetooth, Zigbee, RFID and UWB; tech-
nologies which relies on visible and infrared light (IR), based on sound, both audible and
ultrasonic, or related to magnetic fields and many more.

In the survey [2] a complete comparison is presented, where pros and cons of each tech-
nology are deeply discussed.
Vision appliances like cameras are the ones providing the best performances in terms of
positioning precision, with an accuracy < 1 cm. However, for this work such technology
is not taken into consideration, since it necessitate of a complex structure to place the
cameras in the correct position. This is in contrast with the portability objectives of the
desired experimental setup.

Figure 2.5: Accuracy of positioning technologies.

Among the other available solutions, the ones based on radio frequency can provide good
performances in terms of precision and, thanks to the strong penetrating ability of such
high working frequencies, they can better withstand nLoS conditions and transmit also
trough walls and buildings.
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In the RF field, WPS positioning is one of the most wide spread technology for indoor
localization. Using the method of fingerprinting, where a pattern of known Wi-Fi bases
with their relative strengths is matched to a database of known patterns associated with
locations; distances are obtained by comparison with current data. Such technology has
a low update rate and an accuracy < 10 meters, which is not fitted for our application.

Also Bluetooth technology is widespread and is considered a competitor to WI-FI. The
adoption of Bluetooth Low Energy (BLE), due to its availability, low cost, and very low
power consumption, allows fixed emitters to run on batteries for incredibly long time.
It relies on received signal strength indication like WPS and, for this reason, is more
likely to experience signal interference. Additionally, its working frequencies are lower
compared to other concurrent and so it has reduced penetrating ability. This solution
can provide accuracy < 1 meter and latency in the order of seconds between consecutive
measurements, that are not suited for our purposes.

The Ultra-Wide-Band (UWB) technology is a highly accurate indoor positioning system,
with high transmission rate, low transmit power and strong penetrating ability. In fact,
UWB operates with a high bandwidth over a very wide frequency spectrum between 3.1
to 10.6 GHz. Its distance-based measurement is performed via time-of-flight. Location
is computed based on how long it takes for signals to travel from one device to another,
that, compared to the RSS method adopted by similar technologies, is much more robust
to experience signal interference. This solution can provide an incredibly high accuracy
(10-50 cm), with a really small latency, that makes it the best option for application where
precision and high update rates are required. In fact, with the reduction of UWB chip
cost in recent years, it has become the first choice for indoor high-precision positioning
applications. These features perfectly fits our needs, for this reason we selected this
technology to realize the real time positioning system.
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Figure 2.6: UWB vs other positioning technologies.

2.1.3. The adopted localization system

Nowadays, several devices available on the market are equipped with UWB technology,
like Ubisense, BeSpoon, Decawave and many others. The study [9] provides a compar-
ison among the principal competitors in a nLoS environment similar to an industrial
warehouse. As a conclusion, Decawave systems give slightly better performances than
BeSpoon systems and are significantly more reliable, in terms of accuracy and outlier
content, than the Ubisense systems. Decawave sensors have found widespread use within
the scientific community, as a large number of published works use them in their experi-
mental tests. For these reasons we decided to use the MDEK1001 Development Kit from
Decawave, which allows to set up a scalable real-time localization system (RTLS) using
UWB transmissions.

Decawave UWB evaluation kit (MDEK1001) is described by the manufacturer as an
“out-of-the-box scalable RTLS network solution”. It consists of twelve DWM1001-DEV
modules, each of which can be configured as an anchor or a tag, but also more advanced
modes are supported that works as bridge to route data between the UWB network and
IP network (gateway) or a tag (listener), although they are not used in this work.
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Figure 2.7: DWM 1001-DEV module.

Devices configured as anchors are intended to be placed in fixed positions in the environ-
ment, and the nodes configured as tags are used on the mobile devices whose positions
must be detected. A tag has the ability to measure distances with respect to various
anchors; locally, each tag can calculate independently its own location, solving a trilat-
eration problem using the received distances. Each mobile unit needs to know ranges
with at least three anchors, to guarantee unambiguous positioning. The module incorpo-
rates Decawave DW1000 UWB transceiver which is used to perform the two-way ranging
exchanges among network nodes, enabling the distance computation. The TWR strat-
egy requires precise synchronization among units so, before each TWR transmission, the
DWM1001-DEV unit performs an estimation of the clock drift with respect to the net-
work time, fixed by the initiator, in order to keep the correct synchronization among the
whole network and provide satisfactory performances.

The relative large number of available units allows to set up the network in a multitude
of different ways, changing the number of anchors and tags to better fit the user needs.
The position of each tag can be access by direct connection with the desired unit, using
the USB or BLE connectivity.
The typical configuration for using the localization system is shown in Figure 2.8, where
there are eight tags and four anchors. In this way the maximum number of mobile devices
can be located; variation with more anchors can be made, in order to extend the measuring
area.
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Figure 2.8: 8 tags and 4 anchors configuration.

The DWM1001-DEV unit also allows the user to set up a node as a listener, see Figure
2.9. This advanced mode permits to gain access from a central point to a complete view
of all tags within a network. A listener is a tag with the UWB radio in passive mode (the
UWB link is used for communication but not for range measurement), and connected to a
computer via USB. This is really helpful when the number of tags present in the network
is large. A limitation of this access mode is that it can be used to detect the positions of
all tags but not their respective measured ranges.

Figure 2.9: 7 tags, 4 anchors and 1 listener configuration.

Another available configuration allows to use nodes as gateways, see Figure 2.10, to route
UWB network data over a LAN/WAN network. This can be used to extend the network
by deploying anchors over longer distances (with no upper limitation) in order to cover
larger buildings.
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Figure 2.10: 2 tags, 8 anchors and 2 gateway configuration.

In this work, configurations which consider the presence of listener and gateways are
discarded, due to the small size of the setup. Positioning information of tags are obtained
by directly accessing each device periodically. The selected working area, better described
in Section 2.2, is a square of 2x2 meters. Four anchors are placed at the corners of the
structure to guarantee correct localization, while a tag is attached on top of each mobile
robot. The complete setup is composed by 6 DWM1001-DEV modules, 4 used as anchors
and 2 used as tags.

The decawave real time localization system requires that a set of tags and anchors must be
associated with the same network (unique PANID) in order to be able to obtain location
information for all of them. One of the anchors in the network must be configured as
initiator, which is in charge of keeping the timing and synchronization of all modules in
the network. The communication and measurement bandwidth of the whole localization
network system is 150 Hz, as defined in the PANS (Positioning and Networking Stack)
protocol. This means that 750 tags can be located at a rate of 0.2 Hz sampling frequency,
150 tags at 1 Hz, or 15 tags at 10 Hz (maximum sampling frequency). The maximum
sampling period is one minute, which would theoretically allow for work with 9000 tags.
One hardware limitation set up by the manufacturer is that the master node (initiator)
can not see more than 30 anchors simultaneously: this does not mean that there can only
be 30 anchors in a network. It is possible to include more anchors if a new initiator joins
the network and is placed far enough away and outside the UWB range of the first one.
The restriction is related to the fact that each master anchor can only see a maximum of
29 regular anchors.

The PANS protocol by Decawave is a software that defines how the interactions within a
DWM1001 node network are orchestrated in order to measure ranges between nodes and
communicate information over the UWB channel. The Decawave RTLS network uses time
division multiple access (TDMA) channel access, at each instant of time, there is only
one tag-anchor pair exchanging messages to measure the round-trip time (TWR). Nodes
operate using a 100 ms long “superframe”, whose structure is shown in Figure 2.11. This
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TDMA synchronization method is very good to avoid collision, it guarantees a predictable
scalability of the system to accommodate hundreds of tags.

Figure 2.11: Superframe structure.

In each superframe there are 29 BCN slots, allocated for newer anchors to join the network,
while the slot BCN0 is reserved by the initiator, who initializes the network and keeps the
clocks of all the nodes synchronized. The 15 TWR slots are used to measure the anchor-
to-tag ranges. Each of them lasts for three milliseconds: in that interval, measurements
of ranges up to a maximum of 4 anchors are performed.
If at least three distances from anchors to a particular tag are available, then the tag
position can be privately computed by its microcontroller through the location engine
unit, which uses a trilateration algorithm extended with maximum likelihood estimation
method and a fixed moving average of the last 3 location results.
The location engine calculates the errors between the estimated positions and the real
distance and removes the positions which have high errors. It will also report a quality
factor (0-100) together with the computed coordinates.

It is important to highlight that the PANS protocol allows for the coexistence of several
networks operating in the same space. In this case, each network has a different identifier
(PANID) and the initiating anchor will cooperate to share the time slots and not interfere
with each other.

The DWM1001 module firmware provides the Application Programming Interface (API)
[4] with which a user can gain access to UWB nodes. There are four APIs available:

• C API, which allows a user to directly program in C language on the microprocessor
of the DWM1001-DEV module, and adds custom code that makes use of the existing
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API functions

• SPI API, which allows to access the module from an external host device used in
SPI master mode, the maximum SPI clock frequency is 8 MHz. It uses a Type-
Length-Value (TLV) format

• UART API, designed to communicate through a serial COM port using the UART
interface with a baud rate 115200 bps. It has two operation modes: “Generic” (TLV
format) and “Shell” mode that generates a terminal like prompt (dwm>) where
module’s information can be accessed

• BLE API, the wireless mode using Bluetooth Low Energy 4.0 (BLE) that allows
for discovering the UWB modules that make periodic BLE broadcasts. Module
information can be accessed trough their BLE characteristics (according to protocol
“Generic Attribute” - GATT of BLE), which are quite limited respect to other API
functions, e.g. accelerometer measurements are not accessible.

Figure 2.12: Decawave APIs.

In this work, since we are interested just in receiving the information about the position
of each tag, we decided to use the BLE API, which is the one that better fits our goals of
versatility for the experimental setup. In fact, it does not require any physical connection
between tags and computer.
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2.1.4. Reference localization system for calibration

As seen in [7], the sensors described in Section 2.1 are influenced by noise coming from the
external environment, such as reflections, electromagnetic field, light, and many others.
One of the objectives of this thesis will be to characterize the measurement noise affecting
the UWB sensors and to develop a strategy to compensate for the biases related to
the chosen positioning. To do the calibration, a high precision optical tracking system
will be used as reference, the OptiTrack Motion Capture System, with a sub-millimeter
positioning accuracy. This device uses reflective tags and a set of high resolution cameras
to locate objects in the established area.

OptiTrack is a real time tracking system based on infrared (IR) cameras, offering high pre-
cision, low latency, 6 Degrees of Freedom (DoF) tracking for ground and aerial robotics.
Manufacturers guarantee position errors smaller than 0.3 mm and rotational errors smaller
than 0.05° in optimal conditions, with up to 360 fps acquisition speed. It consists of a
set of cameras arranged around a selected volume, and a set of reflective markers to be
placed on the devices whose position and orientation must be detected. The OptiTrack
system located in the laboratory is equipped with twelve S250e cameras, with a resolution
of 832x832 pixels and guaranteeing a maximum sampling frequency of 250 fps.

Figure 2.13: OptiTrack setup.

Each camera captures 2D images. Thus, 2D positions are calculated by Motive (pro-
prietary software) and the overlapping position data are compared to compute the 3D
positions of each tag via triangulation. The software needs, at least, 3 markers in order
to create a valid rigid body, but it is always convenient to put some redundant marker
(4 or 5), so that if one (or more) should be lost or not exposed, the tracking would be
still valid anyway. The markers must be put together in asymmetric configurations, to
allow for the detection of the orientation (roll-pitch-yaw angles) besides of the position
(x,y,z). Markers are made of a particular reflective tape that reflects IR rays and make
the tracking possible.
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Figure 2.14: OptiTrack markers.

2.2. The arena

The choice of the positioning sensors gives us some freedom for the selection of the working
area. In fact, the Decawave positioning system can be easily extended to cover large
distances. However, for the sake of portability, we limited the region of motion to be
a square of 2x2 meters, according to the minimum requirements of spacing among each
UWB unit, as stated in [7]. The working area was confined inside a structure of wood,
joint together using hinges. In this way it can be easily taken apart and re-assembled at
occurrence.

The frame was equipped with 90° clamps, in order to keep the correct alignment between
its sides. We positioned, at the vertices of the structure, 4 pillars, in order to place the
ranging sensors to work as anchors. The latter must be placed slightly above the units
used as tags, since in this way the LoS condition is always granted and performances
increase, as specified in previous work [7].

2.3. E-PUCK robots

The carts used in our setup are unicycle mobile robots, whose dynamics is suitably lin-
earized. Among the large variety of mobile robots commercially available, we have selected
the E-PUCK robots, developed at the Swiss Federal Institute of Technology in Lausanne
(EPFL) and commercially distributed by GCtronic.
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Figure 2.15: E-PUCK robot.

The desktop-size and lightweight E-PUCK robots were developed for educational pur-
poses, equipped with a large number of sensors and actuators, and endowed with com-
munication capabilities. They are developed based on an open hardware concept, where
all documents are distributed and submitted to a license allowing everybody to freely use
them and contribute to the project.
The competitive cost makes it the best solution for projects that require a large number
of agents and, thanks to the large amount of tested units, it guarantees a good robustness
to wear.

The mechanical structure of the E-PUCK robots is simple: they are differential drive
(i.e., unicycle) vehicles, where the wheels, with a diameter of 21 mm, are actuated by two
independent stepper motors. The third contact point is directly on the robot case, but it
is irrelevant in terms of friction contribution, so it will be neglected in the development
of the mathematical model. The robot has a diameter of 75 mm, a height of 55 mm
and a weight of 150 g. Most of the weight is due to the 5 Wh LION rechargeable and
removable battery, providing 3 hours of autonomy. It is equipped with two stepper motors
with a 50:1 reduction gear, resolution of 0.13 mm that can provide a maximum rotational
speed of 1000 step/s, corresponding to a complete turn of the wheel per second, while the
maximum linear speed is about 80 mm/s.

The processor is a dsPIC30F6014A running at @64 MHz, a CPU of the Microchip family
with a 16-bit architecture, providing 16 MIPS of peak processing power. It is equipped
with 8 KB of RAM memory and 144 KB of flash memory. It has a 12 bit Analog-to-Digital
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converter (ADC), with 12 channels working at a maximum sampling frequency of 200 ksps.
This device was developed in 2005 and all the electronics is rather outdated, in view of
which the computational power is significantly limited compared with recent processors.
In view of this, since the control strategy implemented in this thesis is based on model
predictive control, the hardware is not capable to handle such heavy computations, so the
control actions were computed by a host computer and then sent to the single entities,
where the electronics just manages to actuate the motors and receive measurements. The
robot is provided of plenty of different modules to achieve connectivity, like I2C, CAN,
and also UART. One of the two available UART modules is connected to the LMX9820A
chip, which is a Bluetooth device allowing for wireless communication. This feature is
really helpful since it allows for data transmission between computer and robot and also
between robots. In fact, each device can be connected with up to 7 other E-PUCK robots,
allowing for a fundamental feature of distributed systems, where agents must communicate
together.

Figure 2.16 shows all the sensors and actuators available on the robot, together with the
connectivity ports, reset button, mode selector, and the multitude of leds distributed all
around the robot body, showing the status.
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Figure 2.16: E-PUCK connectivity, sensors and actuators.

The robot is equipped with 8 infrared proximity sensors, a 3D accelerometer, 3 omni-
directional microphones and a VGA color CMOS camera with 640x480 pixel resolution.
It has 2 stepper motors, a speaker, a classic RS232 connector and a connector to interface
it with an in-circuit debugger to program the flash memory and debug the code. It
is provided with a Bluetooth radio link, and an infrared remote control receiver. The
developers equipped the robot with a Bootloader, that allows the user to program the flash
of the microcontroller trough the Bluetooth or the serial port, this makes the programming
possible without requiring any external device.
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2.3.1. Kinematic model

Figure 2.17: E-PUCK kinematic model.

The unicycle model of the robot can be developed considering two contact points of the
wheels while neglecting the third, required only for stability but whose friction contribu-
tion can be discarded.

With reference to Figure 2.17, the kinematic model of the unicycle is


ẋ = v cosϑ

ẏ = v sinϑ

ϑ̇ = ω

Considering that in a differential drive vehicle the two wheels are actuated by different
motors, the rotational speed of the right and the left wheels (ωR and ωL, respectively) can
be different one from the other. Through simple linear transformations, it is possible to
compute the linear and angular velocities of the robot from ωR and ωL. More specifically,
defining with R the radius of the wheels, the tangential speeds vR and vL of the two
wheels can be computed as

{
vR = ωRR

vL = ωLR
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v =

vR + vL
2

= R
ωR + ωL

2

ω =
vR − vL

d
= R

ωR − ωL

d

In this thesis we decided to use just the kinematic model, while the dynamics regarding the
forces affecting the system are discarded. For example, the electro-mechanical dynamics
related to the actuators, like voltage-torque relationships of the stepper motors are not
considered.

A rigid body in planar motion has 3 degrees of freedom, the motion along the X,Y axes
and the rotation along the Z axis. The kinematics of the robot constrains certain motions:
it can’t move parallelly along the axle connecting the wheels, because it is subject to the
constraint

ẋ sinϑ− ẏ cosϑ = 0 (2.1)

The constraint in equation (2.1) is said to be non-holonomic. Since it is non-integrable,
it does not reduce the degree of freedom of the system, so any configuration is accessible
in R3. The robot can achieve any movement in that space but is constrained to move
strictly forward or to rotate. Any configuration can be reached as a composition of these
two primitive movements.

2.3.2. Feedback linearization

The model described in the previous section is nonlinear and, since these nonlinearities
significantly affect the dynamics of the system, it is important to find a way to linearize
the model without losing information. This is particularly important because predictive
control optimization problems can be formulated in a simpler way provided that the
model is linear. Therefore, we decided to apply the feedback linearization technique.
This approach, by using an internal loop, is capable to reduce the system to a model
represented by a set of simple linear integrators.
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Figure 2.18: Feedback linearization model.

The applied feedback linearization is non-singular and relies on the choice of a point P
along the centre line of the robot chassis as shown in Figure 2.18, located at arbitrary
distance ε from the axle connecting the wheels. The position of the point P can be
described as

{
xP = x+ ε cosϑ

yP = y + ε sinϑ

Differentiating with respect to time

{
ẋP = ẋ− εϑ̇ sinϑ = v cosϑ− εϑ̇ sinϑ = vxP

ẏP = ẏ + εϑ̇ cosϑ = v sinϑ+ εϑ̇ cosϑ = vyP
(2.2)

By opportunely manipulate equation (2.2), the following change of coordinates can be
obtained

v = vxP
cosϑ+ vyP sinϑ

ω =
vyP cosϑ− vxP

sinϑ

ε

(2.3)
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Figure 2.19: Feedback linearization scheme.

Thus, the model can be seen as a pair of decoupled simple linear integrators

{
ẋP = vxP

ẏP = vyP

This technique allows to obtain, from an external point-of-view, a linear mathematical
model, more suitable to develop an MPC-based regulator, avoiding to resort to the non-
linear theory. The system describes the position of the point P and differs from others
feedback linearization methods where the position of the centre of the robot is represented,
but this allows the model to be non-singular for null velocities.

This model now can be represented in state-space form, by selecting the X,Y positions of
point P as states and the velocities vxP

and vyP as inputs.
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ẏP

]
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The model is discretized assuming that inputs are applied in a sample-and-hold fashion,
leading to the discretized model



[
xP (k + 1)

yP (k + 1)

]
=

[
1 0

0 1

][
xP (k)

yP (k)

]
+

[
τ 0

0 τ

][
vxP

(k)

vyP (k)

]
[
xP (k)

yP (k)

]
=

[
1 0

0 1

][
xP (k)

yP (k)

] (2.5)

where τ is the sampling time.
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2.4. Computing hardware and software

As discussed in Section 2.3, the electronics with which the E-PUCK robots are equipped
is not capable to provide enough computational power to run a regulator based on model
predictive control. For this reason, the use of a host PC, in charge of running the con-
trollers of all the agents, is necessary. The host PC is connected using the Bluetooth radio
link, to all the E-PUCK robots in the setup, and to the Decawave tag modules placed on
all agents. The Bluetooth connection is performed using a baud rate of 115200 bps. Once
the control actions are computed by the regulator, they are sent back to the robots, that
should actuate the motors and achieve the desired positioning.

The Distributed model Predictive Controller (DPC) was implemented using MATLAB,
which is the ideal environment to implement such complex control algorithm, providing
toolboxes to deal with the Bluetooth and serial communication, performing optimization
and operating with sets.

The optimization algorithm is solved using the MATLAB toolbox Yalmip [10], which
is a free-to-use software designed to formulate and solve optimization problems. The
generation of the Robust Positively Invariant sets (RPI), necessary for the realization
of the DPC controller, which will be described in Chapter 4, requires operations among
sets, like Minkowsky sum, Pontryagin difference and many more. That is achieved using
the Multi-Parametric Toolbox 3 (MPT3) [8]. The latter is an open source, MATLAB-
based toolbox for parametric optimization, computational geometry and model predictive
control.

The E-PUCK robots are programmed using the property software MPLABX IDE, which
allows to write code both in C and assembler languages. The robot manufacturer provides
a list of libraries to handle all the sensors and actuators on the device. In Appendix A
the C code running on the E-PUCK robots is reported.
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3| Characterization of delays and
disturbances in the
experimental setup

In this chapter the characterization of delays and disturbances affecting the experimental
setup is addressed. Consider the discrete-time unicycle model of the E-PUCK robot
introduced in equation (2.5). The states xP (k) and yP (k) are both measurable, using the
measurements coming from the Decawave positioning system although with some noise
v(k). In the real setup, also the dynamics of the system are subject to a disturbance w(k),
due to the minor phenomena neglected while developing the mathematical model. The
state-space model, including these terms, can be written as



[
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]
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[
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]
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(3.1)

where the properties of w(k) and v(k) will be later characterized.

Firstly, a deep analysis of the UWB sensors is necessary. In fact, it is known from past
works [7] that the measures provided by those devices are affected by biases, and one of the
objectives of this thesis is devise a calibration strategy to compensate for them. Moreover,
a characterization of the measurement delays is required since, as we will discuss in the
following, most of the lag affecting the system comes from the positioning sensors, while
the delays related to Bluetooth transmission, processing, and actuation are negligible.

To characterize the Decawave sensors, the OptiTrack system introduced in Section 2.1.4
was used, mainly as benchmark platform to provide correct measurements, since its ac-
curacy is far better than the one of the adopted positioning system.
We used also the three axis accelerometer MMA7260QT [16] provided by NXP Semicon-
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ductor, equipped on the E-PUCK robots, with a sampling frequency of 11 kHz. It was
used to estimate the delay affecting the positioning measure, since its update frequency is
much larger than the one of the UWB sensor, which is 10 Hz. Therefore, the delay can be
estimated by comparison between data coming from the UWB sensors and the changes
in the acceleration data coming from the accelerometer.

3.1. Decawave positioning system characterization

In this section a complete characterization of the Decawave UWB sensors is devised. It
consists in the evaluation of the delays and the disturbance v(k) in equation (3.4) intro-
duced by the positioning system. Then, a strategy to compensate for the bias affecting
the measurements is introduced.

3.1.1. Delay characterization

The selected strategy to estimate the measurement delays is based on the use of data
obtained from the E-PUCK accelerometer. The mobile robots can be connected through
Bluetooth radio link with the PC; in this way information coming from all the sensors
arranged on it can be retrieved. Regarding the accelerometer, the robot manufacturer
provides a specific library to handle it, including a set of functions to send the measured
accelerations to MATLAB using the Bluetooth connectivity.

As stated above, the sampling frequency of the accelerometer is 11 kHz, which is signif-
icantly faster than the update rate Decawave sensors (10 Hz), and so it is ideal for our
purposes. Unfortunately, the Bluetooth transmission isn’t that fast and acts as bottleneck.

The delay affecting the transmission was evaluated by measuring the time interval between
two consecutive acceleration readings in the MATLAB environment. This is justified by
the fact that the code running on the E-PUCK robots was set up to send the accelerations
measurements as soon as they were available, so an update rate of 11 kHz was expected.
This was however not possible due to the transmission lag. Therefore the frequency with
which accelerations readings were obtained in the MATLAB environment provides an
estimation of the delays affecting the Bluetooth connectivity. This measure was averaged
among multiple readings, specifically 500 and 1000; the same tests were repeated multiple
times, to obtain more reliable data. In particular, regarding the Bluetooth connection,
the average delay is 10.33 ms, with a standard deviation of 6.11 ms.

This delay estimation was validated using an alternative strategy. This technique consists
of evaluating the time that it takes for data to be sent from the PC, received by the robot,
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sent back and then received by the PC. The latter is really similar to the time-of-flight
technique introduced in Chapter 2 to achieve ranging measurements. The timing was
managed by MATLAB, which started a timer when data were transmitted for the first
time and then arrested it when data were received back. This delay estimation considers
also the time taken by the microcontroller equipped on the E-PUCK robots to process
the data and then send them back. However, since the microcontroller works at high
frequency and the specific operation complexity was small, we assumed this time to be
negligible compared to the one related to data transmission. The measured time was
averaged among multiple tests and divided by 2, since it measured the time taken for
two complete Bluetooth transmissions. Results show a delay estimation compatible with
the one obtained with the first strategy. More specifically, in this way we estimated an
average delay of 15.19 ms, with a standard deviation of 8.65 ms.

In view of this result, we opted to set, for the estimation of the measurement delay, an ac-
celerometer reading frequency of 100 Hz. As shown in Figure 3.1, the acceleration readings
at 100 Hz (above), and the position measurements at 10 Hz (below) were compared.

Figure 3.1: Acceleration and position measurements.

The initial time was selected as the time instant in which the acceleration had a sudden
change, and the delay was computed by selecting the time instant in which also the
position measurement detected a variation. This test was repeated 50 times and obtained
data are shown in Table 3.1.
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test delay ms test delay ms test delay ms test delay ms test delay ms

1 20 11 23 21 20 31 24 41 24

2 15 12 28 22 30 32 15 42 22

3 23 13 22 23 19 33 25 43 26

4 22 14 19 24 17 34 23 44 18

5 27 15 16 25 15 35 18 45 25

6 25 16 22 26 22 36 15 46 22

7 21 17 17 27 24 37 24 47 26

8 21 18 15 28 16 38 23 48 18

9 11 19 24 29 24 39 24 49 25

10 14 20 16 30 16 40 19 50 16

Table 3.1: Decawave sensors delay data

We obtained an average measurement delay of 206.2 ms, with a standard deviation of 41.4
ms. This delay is far larger than the one related to data transmission, processing, and
actuation. Due to the presence of this relatively large delay, also the choice of the sampling
time for the system discretization and the design of the controllers was constrained. In
particular, it was selected to be τ = 0.2 s.

3.1.2. Disturbance characterization

The position measurements provided by the Decawave positioning system are affected by
significant noise and biases. In fact, during preliminary tests, it was discovered that bias
and variance of the tags measures completely change with respect to their position in the
experimental area, particularly when they are far from the anchors or close to a stronger
source of light, e.g., windows.
To correctly characterize this behaviour, data were acquired from several positions, uni-
formly distributed all over the whole accessible surface. We decided to take 50 sample
positions. In this way a complete mapping of the area was obtained, with sample points
spaced of ∼ 30 cm along both the X and Y axes one form the others.
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Figure 3.2: Testing points distribution.

For each testing point, a correct tag position measure has been collected using the Opti-
Track system.
Positioning measurements from the Decawave sensors were collected for each testing point.
We took 500 samples for each position. Recall that, as discussed in Chapter 2, the UWB
measurements are equipped with a quality factor ranging from 1 to 100, inducting the
estimated quality of the measure. In order to remove outliers we decided to discard
data which have a quality factor lower that 30, which can contribute to deteriorate the
performances.
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Figure 3.3: Decawave vs OptiTrack positions.

As it can be seen from Figure 3.3, the point clouds of the measurements coming from the
UWB sensors are particularly critical. Firstly note that, in the right side of the working
area (1000 < x < 2000), the measurements deteriorate due to the presence of a window.
It can be observed that, for most of the testing positions, the point clouds of the measures
are not centered in the correct position, but are non uniformly biased.

As a result, the measurements of the Decawave sensors, without any manipulation, provide
unsatisfactory performances. In fact, the average standard deviation among all the tested
points was about 54 mm for the X axis and 101 mm for the Y axis. This motivate the
need to develop a suitable compensation scheme.

Using a polynomial regression technique, it is possible to remove the biases and reduce
the variance of such measures. This consists of finding polynomial functions which are
capable to provide a good estimation of the real position xestimated(k), yestimated(k) from
the measures provided by the Decawave sensors xm(k) and ym(k).

The polynomials are of the type



3| Characterization of delays and disturbances in the experimental setup 37

xestimated(k) = C0 + C1xm(k) + C2ym(k) + C3x
2
m(k) + C4y

2
m(k) + C5xm(k)ym(k) + ...

yestimated(k) = D0 +D1ym(k) +D2xm(k) +D3y
2
m(k) +D4x

2
m(k) +D5ym(k)xm(k) + ...

(3.2)

We collected 500 samples of the X and Y coordinates for 50 tested points, thus we could
define a system composed by (50 x 500)-pairs of equations like the ones in (3.2), that is a
over-determined system, whose solution can be approximated thanks to the Least Squares
(LS) algorithm.

Considering for example the measurement in the X direction, let ϑ be the parameter
vector and let φ(k) be the regressor vector

ϑ =
[
C0 C1 C2 C3 C4 ...

]T
φ(k) =

[
1 xm(k) ym(k) x2

m(k) y2m(k) xm(k)ym(k) ...
]T

The least squares algorithm consists of minimizing the sum of the squares of the residuals.
The cost function considering all the available data can be written as

Jx =
25000∑
k=1

∥∥xOptiTrack(k)− φ(k)Tϑ
∥∥2

=
∥∥XOptiTrack − F Tϑ

∥∥2

where

XOptiTrack =
[
xOptiTrack(1) xOptiTrack(2) xOptiTrack(3) ... xOptiTrack(N)

]T
and

F =
[
φ(1) φ(2) φ(3) ... φ(N)

]
The optimal parameter vector ϑ, minimizing the sum of the residual Jx is

ϑmin = (FF T )FXOptiTrack

Multiple tests were carried out, starting from simpler polynomials e.g. first order, up to
far more complex ones.

In data fitting, one of the challenges consists of selecting the model level of complexity
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which properly characterizes the existing relationships between dependent and indepen-
dent variables.
The adopted criterion used to detect a suitable complexity level consisted of checking the
evolution the cost function as the complexity increases.
As it can be seen in Figure 3.4, the estimation quality of xestimated(k) and yestimated(k)

increases significantly as the complexity raises. We opted to choose the model indicated
with 23, which is a good compromise between model complexity and estimation quality.

Figure 3.4: Evolution of the cost functions.

The calibration algorithm allows to improve the tracking performances, both in terms of
bias, which is completely removed, and in terms of variance, which is significantly reduced
with respect to the original measurements shown in Figure 3.3.
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Figure 3.5: Estimated vs OptiTrack positions.

The disturbances affecting the manipulated data can then be characterized, the mean
values of the estimations, averaged among 500 samples for each tested position, is close
to zero (10−7 mm precisely). As it can be seen from Figure 3.5, the point clouds of the
manipulated data have a smaller dispersion if compared to the original measurements.
The standard deviation is 29 mm along the X axis and 24 mm along the Y axis. It results
in a covariance matrix R of the disturbance v(k) equal to

R =

[
845 360

360 566

]

From tests it was observed that this disturbance v(k) is bounded. It can be confined in
the set V, selected as an hyperrectangle which limits are{

vx(k) ∈ [−95; 90]

vy(k) ∈ [−75; 80]
(3.3)

3.2. E-Puck robot disturbance characterization

In this section the procedure to achieve a characterization of the disturbance w(k) acting
on the unicycle model of the E-PUCK robot is described, this was possible thanks to the
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usage of the OptiTrack system. This disturbance is influenced by many factors, including
the following.

• Errors coming from the missing use of a dynamical model, e.g., the electro-mechanical
interactions, friction, and other unmodeled dynamics

• Errors related to the wheel sliding phenomena.

For the identification of the disturbance w(k), dynamic tests have been performed. In
particular, the mobile robot was required to move at constant speed along different tra-
jectories. Tests were performed in open loop: trough the MATLAB environment, it was
possible to send information to the E-PUCK robot, concerning the linear speeds along
the X and Y axes that must be actuated, in order to track linear segments.

We decided to perform multiple experiments. In the tests the robot was oriented along
the Y direction (ϑ = π

2
), along the X direction (ϑ = 0), and along the diagonals (ϑ = ±π

4
)

of the arena. Each test was repeated two times, one with the robot moving forward and
then moving backward. The robot was forced to move at constant linear speed of 80
mm/s.

Considering the feedback linearization applied at the E-PUCK robot (equation (2.3)), the
inputs that must be given to the robot were the linear velocities of the point P, along the
X and Y axis. For the first two experiments where the robot had to move along the Y
direction

{
vxP

= 0

vyP = 80
−→


v = 80 sin

π

2
= 80

ω =
80 cos π

2

ε
= 0

For the second pair of experiments, where the robot had to move along the X direction,
with ϑ = 0 and ϑ = −π

{
vxP

= 80

vyP = 0
−→

v = 80 cos 0 = 80

ω = −80 sin 0

ε
= 0

In the last two experiments the robot had to move always forward, but along the two
diagonals of the arena, so with ϑ = ±π

4
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{
vxP

= 40

vyP = 40
−→


v = 40 cos

π

4
40 sin

π

4
= 80

ω =
40cosπ

4
− 40 sin π

4

ε
= 0

We changed the initial position of the robot during each tests, to retrieve data distributed
among the complete reachable area.

In Figure 3.6 the described testing trajectories are illustrated. All the reported data was
obtained with the OptiTrack positioning system.

Figure 3.6: Linear testing trajectories.

The tests were performed in open loop and, as expected, the motion of the robot was
affected by drifts, as it can be seen in Figure 3.6, by effect of the disturbance w(k).

It is possible to rewrite the model described in equation (3.4) in the compact way

{
xepuck(k + 1) = Aepuckxepuck(k) +Bepuckuepuck(k) + w(k)

xepuck(k) = Cepuckxepuck(k) + v(k)
(3.4)

where

xepuck(k) =

[
xP

yP

]
, uepuck(k) =

[
vxP

vyP

]
,w(k) =

[
wx(k)

wy(k)

]
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and

Aepuck =

[
1 0

0 1

]
, Bepuck =

[
τ 0

0 τ

]
, Cepuck =

[
1 0

0 1

]

The one step ahead predictor based on the knowledge of the system at time instant k can
be written as

x̂epuck(k + 1|k) = Aepuckxepuck(k) +Bepuckuepuck(k)

Thus, the disturbance w(k) can be estimated at each time instant as

w(k) = xOptiTrack(k + 1)− x̂epuck(k + 1|k) (3.5)

This evaluation of the disturbance is related to the value of the selected sampling time.
Due to the presence of the delay associated to the positions acquisition with the Decawave
sensors, we decided to set the sampling time τ = 0.2 s.

Figures 3.7 and 3.8 show the evolution of the disturbance along the X and Y directions,
computed according to equation (3.5).

Figure 3.7: Disturbance w along the X direction.
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Figure 3.8: Disturbance w along the Y direction.

The disturbance mean along both the directions is equal to zero, while the covariance
matrix Q is computed according to

Q =
1

N

N∑
i=1

(w − w̄)(w − w̄)T

where w̄ = 0, obtaining

Q =

[
0.4205 −0.0015

−0.0015 0.4207

]

Note that the off-diagonal terms are much smaller compared to the diagonal ones, which
represent the variance of the noise along the X and Y directions.
From tests it was observed that this disturbance is bounded. It can be confined in the set
W, selected as an hyperrectangle which limits are{

wx(k) ∈ [−2; 2]

wy(k) ∈ [−2; 2]
(3.6)

The results can be plotted on histograms, where the affinity with a Gaussian distribution
can clearly be noticed. Thus we can make the approximation that the system is subject
to Gaussian noise with zero mean.
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Figure 3.9: Disturbance w along the X direction.

Figure 3.10: Disturbance w along the Y direction.

By comparing the covariance matrices Q and R, we can notice that the noise affecting
the measurements is very large if compared to the one affecting the states.

3.3. The case study

In this thesis work we want to test and develop distributed algorithms applicable to
systems composed of different subsystems, physically coupled between each others. Since
the E-PUCK robots presented in the previous chapter are notable examples of independent
agents, we opted to create a virtual connection between different robots. In particular,
the setup defined in this thesis will be able to behave as a system, composed of two carts,
moving in the 2D plane and connected through a spring and a damper.
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Figure 3.11: 2D Carts-Spring-Damper system.

Considering the scheme depicted in Figure 3.11, the kinematic model of the system can
be easily devised

ẍ1 =
1

m1

((
kel(l − l0) +

h

l
((x2 − x1)(ẋ2 − ẋ1) + (y2 − y1)(ẏ2 − ẏ1))

) (x2 − x1)

l
+ F1,x

)
ÿ1 =

1

m1

((
kel(l − l0) +

h

l
((x2 − x1)(ẋ2 − ẋ1) + (y2 − y1)(ẏ2 − ẏ1))

)y2 − y1)

l
+ F1,y

)
ẍ2 =

1

m2

((
−kel(l − l0)−

h

l
((x2 − x1)(ẋ2 − ẋ1) + (y2 − y1)(ẏ2 − ẏ1))

) (x2 − x1)

l
+ F2,x

)
ÿ2 =

1

m2

((
−kel(l − l0)−

h

l
((x2 − x1)(ẋ2 − ẋ1) + (y2 − y1)(ẏ2 − ẏ1))

) (y2 − y1)

l
+ F2,y

)
(3.7)

where l =
√
(x2 − x1)2 + (y2 − y1)2 and Fi,j is the external force vector applied to sub-

system i along direction j.

Here the coordinate along the X axis of the first and the second carts are represented with
x1 and x2, respectively. The same notation is used for the coordinate along the Y axis
y1 and y2. The equilibrium elongation of the spring is denoted as l0, while the current
elongation is indicated as l. Letter kel is used to denote the spring constant, while the
friction constant is denoted with letter h. m1 and m2 are the masses of the two carts. All
the quantities are represented according to the International System of units (SI).

The model used in the following is a linearized one, obtained around the following equi-
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librium point x̄1 = 0, x̄2 = l0 cos
π

4

ȳ1 = 0, ȳ2 = l0 sin
π

4

Defining



δx1 = x1 − x̄1

δx2 = x2 − x̄2

δy1 = y1 − ȳ1

δy2 = y2 − ȳ2



δẋ1 = ẋ1 − ˙̄x1

δẋ2 = ẋ2 − ˙̄x2

δẏ1 = ẏ1 − ˙̄y1

δẏ2 = ẏ2 − ˙̄y2



δẍ1 = ẍ1 − ¨̄x1

δẍ2 = ẍ2 − ¨̄x2

δÿ1 = ÿ1 − ¨̄y1

δÿ2 = ÿ2 − ¨̄y2

the linearized model can be written as

δẍ1 =
1

m1

(
−1

2
kδx1 +

1

2
kδx2 −

1

2
kδy1 +

1

2
kδy2 −

1

2
hδẋ1 +

1

2
hδẋ2 −

1

2
hδẏ1 +

1

2
hδẏ2 + F1,x

)
δÿ1 =

1

m1

(
−1

2
kδx1 +

1

2
kδx2 −

1

2
kδy1 +

1

2
kδy2 −

1

2
hδẋ1 +

1

2
hδẋ2 −

1

2
hδẏ1 +

1

2
hδẏ2 + F1,y

)
δẍ2 =

1

m2

(
+
1

2
kδx1 −

1

2
kδx2 +

1

2
kδy1 −

1

2
kδy2 +

1

2
hδẋ1 −

1

2
hδẋ2 +

1

2
hδẏ1 −

1

2
hδẏ2 + F2,x

)
δÿ2 =

1

m2

(
+
1

2
kδx1 −

1

2
kδx2 +

1

2
kδy1 −

1

2
kδy2 +

1

2
hδẋ1 −

1

2
hδẋ2 +

1

2
hδẏ1 −

1

2
hδẏ2 + F2,y

)
(3.8)

The system in (3.7) can be rewritten in state-space form as follows

ẋ = Acx+Bcu

y = Ccx+Dcu
(3.9)

where

x =



δx1

δẋ1

δy1

δẏ1

δx2

δẋ2

δy2

δẏ2


, u =


F1,x

F1,y

F2,x

F2,y
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3.3.1. Partitioned models

The state-space model can be partitioned in 2 low-order interconnected non overlapping
subsystems, each one corresponding to a cart. Consistently, it is possible to rewrite
the state space model (3.9) decomposing the state vector x, the input vector u, and
consequently the system matrices in a non-overlapping way. For subsystem 1:

˙δx1

¨δx1

˙δy1
¨δy1

 =


0 1 0 0

− 1
2m1

k − 1
2m1

h − 1
2m1

k − 1
2m1

h

0 0 0 1

− 1
2m1

k − 1
2m1

h − 1
2m1

k − 1
2m1

h


︸ ︷︷ ︸

Ac
11


δx1

δẋ1

δy1

δẏ1

+


0 0
1
m1

0

0 0

0 1
m1


︸ ︷︷ ︸

Bc
11

[
F1,x

F1,y

]

+


0 0 0 0
1

2m1
k 1

2m1
h 1

2m1
k 1

2m1
h

0 0 0 0
1

2m1
k 1

2m1
h 1

2m1
k 1

2m1
h


︸ ︷︷ ︸

Ac
12


δx2

δẋ2

δy2

δẏ2

+


0 0

0 0

0 0

0 0


︸ ︷︷ ︸

Bc
12

[
F2,x

F2,y

]
(3.10)

By defining for i = 1, 2 x[i] =
[
δxi δẋi δyi δẏi

]T
and u[i] =

[
Fi,x Fi,y

]T
, the model

can be rewritten as

ẋ[1] = Ac
11x

[1] +Bc
11u

[1] + Ac
12x

[2] +Bc
12u

[2]

The same reasoning is used to derive also the state-space model of the second subsystem.

ẋ[2] = Ac
22x

[2] +Bc
22u

[2] + Ac
21x

[1] +Bc
21u

[1]

The discrete-time system is obtained by applying the approximated Mixed Euler-Zero-
Order-Hold (ME-ZOH) discretization method [6]. It is capable to maintain the sparse
zero-nonzero pattern of the system (zero-nonzero matrices Aij, Bij), which is lost when
the exact ZOH, Backward Euler, or bilinear transformations are used.
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The ME-ZOH discretization method consists of setting

Ad
ii = eA

c
iiτ

Ad
ij =

∫ τ

0

eA
c
iiτ dτ Ac

ij i ̸= j

Bd
ij =

∫ τ

0

eA
c
iiτ dτ Bc

ij ∀i, j

where τ is the sampling time.
In this way we obtain

x[i](k + 1) = Ad
iix

[i](k) +Bd
iiu

[i](k) +
∑
j∈Ni

Ad
ijx

[j](k) +Bd
iju

[j](k) (3.11)

The complete, linear, discrete-time model, composed by the two subsystems (carts) can
then be devised

x(k + 1) = Adx(k) + Bdu(k) (3.12)

where

x =

[
x[1]

x[2]

]
, u =

[
u[1]

u[2]

]
and

Ad =

[
Ad

11 Ad
12

Ad
21 Ad

22

]
, Bd =

[
Bd

11 Bd
12

Bd
21 Bd

22

]
From now on, the superscript d representing the discrete-time notation will be omitted
for brevity of representation.

3.3.2. Definition of the virtual connection between the E-PUCK

robots

As specified in Chapter 1, for simplicity and to allow for more versatility, the experimental
setup consists of two unicycle robots not physically connected the one with the other. In
order to make these systems behave according to equation (3.10), the feedback-linearized
unicycles are virtually connected through a spring and a damper. To obtain the virtual
connection it is necessary to modify the input vector of the unicycle model.

Consider, for example, the motion of the feedback linearized E-PUCK robot 1 on the
X direction, i.e. vxP 1 = ẋP1. The term vP , which is the E-PUCK robot input, will be
assigned according to the following equation, derived from (3.7)
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v̇xP 1 =
1

m1

((
k(l − l0) +

h

l
((xP2 − xP1)(vxP 2 − vxP 1)

+ (yP2 − yP1)(vyP 2 − vyP 1))
)(xP2 − xP1)

l
+ F1,x

) (3.13)

A similar procedure must be carried out for all the velocity vectors and for all the agents.
The new modified inputs for the mobile robots are F1,x, F1,y, F2,x, F2,y, as clear from Figure
3.12. In this way the experimental setup will mimic the behaviour of the desired case study
with carts connected trough a spring and a damper.

Figure 3.12: Subsystems division.
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4.1. Model predictive control

Starting from the 80’s, Model Predictive Control (MPC) has became one of the most
widely used control methods in industry, specifically in the process manufacturing sector.
Nowadays it is by far the most popular advanced control method, adopted in all the main
automation companies. This control technique was developed to deal with multivariable
systems, to cope with constraints on the process variables and time varying reference
signals.

This method is optimal. In fact, it consists in transforming the control synthesis problem
into an optimization one, where a finite-horizon problem is solved online. In the past
years it was used just with processes characterized by slow dynamics, such as chemical
or petrochemical plants, since the online optimization of high-dimensional problems was
quite time demanding. Nowadays, due to the evolution of the electronics, this is no more
a limitation and also processes with faster dynamics can benefit from the usage of this
control method.
This technique is usually used with linear models or empirical ones (impulse/step re-
sponse), to have a reasonable level of complexity, but extensions that handle also non
linear models exist.
The main difference with respect to other control approaches is the possibility to take
into consideration also constraints on the process variables. This means that the working
point of plants can be set close the operating limits, maximizing the economical profit.

MPC-based regulators rely on the knowing of the dynamical model of the system, in order
to compute the future evolution of the controlled variables as a function of the control
inputs. The input sequence is computed minimizing a cost function under state, input
and output constraints.
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Figure 4.1: Model predictive control architecture.

The optimal input sequence, computed by minimizing a constrained cost function, is
defined over a finite-horizon (tr), from the actual time instant (t) to the end of the horizon
(t + tr). In model predictive control, just the first element of the optimal sequence is
applied to the real process (û(t)). At the next time instant (t + 1), a new optimization
problem, defined over a shifted finite horizon t + tr + 1 is solved. Thus, a new optimal
input sequence is obtained, of which just the first element will be actuated (û(t+ 1)).

This technique relies on the Receding Horizon (RH) principle, in Figure 4.2, which permits
to obtain a time invariant control law.

Figure 4.2: Receding horizon principle. from [13]
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4.2. Introduction to distributed predictive control

In the following sections the selected distributed model predictive control strategy is
deeply described and the fundamental implementation details are discussed.

The adopted state-of-the-art algorithm, named Distributed Predictive Control (DPC)
[5], was specifically developed for nominal, linear discrete-time systems. It is a non-
cooperative, non-iterative algorithm, where a neighbor-to-neighbor communication net-
work and partial structural information are necessary.

Within the wide set of distributed MPC algorithms proposed in the literature, a classi-
fication can be made depending on the needed information exchange protocol (i.e. non-
iterative or iterative algorithms), on the type of cost function which is optimized (i.e.
cooperative or non-cooperative algorithms), and on the topology of the transmission
network. The selected algorithm is non-iterative, i.e., some information is transmitted
(and received) by the local regulators only once within each sampling time. It is non-
cooperative, i.e., each local regulator minimizes a local performance index. Further details
on the classification adopted can be found in [15].

This algorithm relies on the fact that, at each sampling time, each subsystem sends to
its neighbors (i.e. the subsystems which actually affect its dynamics and the ones which
share one’s constraints) some information about its future reference trajectory. It requires
a limited transmission of information: in fact, each subsystem needs to know the reference
trajectories just of its neighbors and it does not necessitate to know their dynamical model.

The DPC algorithm handles state and input constraints and, under the assumption of
existence of a suitable decentralized auxiliary control law, convergence of the closed loop
control system is proven, see [5]. The control algorithm is state-feedback, so the states of
each subsystem must be available or estimated.

4.3. The system and the constraints

Recall the case study discussed in Section 3.3, represented with the discrete-time, linear
model (3.12).

x(k + 1) = Ax(k) + Bu(k)

The model can be partitioned into 2 low-order interconnected non overlapping subsystems,
where the i-th subsystem (with i = 1, 2) model is depicted in equation (3.11).
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In general we write, for all i

x[i](k + 1) = Aiix
[i](k) +Biiu

[i](k) +
∑
j∈Ni

Aijx
[j](k) +Biju

[j](k)

Equations (3.12) and (3.11) are here reported for sake of clarity, without the superscript
d (denoting the discrete time matrices) for conciseness of notation.

The matrices Aij with i ̸= j define the dynamic coupling terms between agents and the
matrices Bij with i ̸= j define the influence of the j -th subsystem input, on the i -th
subsystem state. We denote with Ni the set containing the dynamic neighbors of the i -th
subsystem, where a subsystem j is defined as a dynamic neighbor of subsystem i if and
only the state and/or the input of j affect the dynamics of subsystem i (i.e. iff Aij ̸= 0

or Bij ̸= 0).
In our framework, we have just two subsystems. It follows that each one is a dynamic
neighbor of the other. In fact matrices A12 and A21 are different from zero, while matrices
B12 and B21 are equal to zero.

As discussed before, the development of the DPC algorithm relies on the fulfillment of
the assumption on decentralized stability.

Assumption 1. There exists a block-diagonal matrix Kaux =

[
Kaux

1 0

0 Kaux
2

]
, with

Kaux
i ∈ R2×4, i = 1, 2 such that:

(i) F = A + BKaux is Schur.
(ii) Fii = (Aii +BiiK

aux
i ) is Schur, i = 1, 2.

A suitable control gain matrix Kaux is obtained solving the following Linear Matrix In-
equality (LMI) problem, which allows to properly select the structure of the gain matrix.
The closed loop system matrix F is Schur if and only if there exists a symmetric matrix
P > 0 such that (A + BKaux)P (A + BKaux)T − P < 0.
This inequality is not linear in its unknowns, P and Kaux, but by defining L = KauxP , it
can be reformulated as:[

P − APAT − ALTBT − BLAT BL

LTBT P

]
> 0

which is linear in P and L.
By imposing to matrix L to have the same structure of the desired gain matrix, and
to matrix P to have a block-diagonal structure (can be easily achieved using YALMIP
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[10]). The block-diagonal gain matrix satisfying Assumption 1, can be obtained as Kaux =

LP−1.

It is possible to define, for each subsystem, the sets Xi and Ui, as convex neighborhoods
of the origin, where the i -th state and input vectors are confined. x[i](k) ∈ Xi ⊆ R4 and
u[i](k) ∈ Ui ⊆ R2.

These sets are defined according to the physical limitations of the experimental setup.
Such as the dimension of the arena, which limits the range of the X and Y coordinates
reachable by the robot. Also, we should consider the saturation of the E-PUCK robot
velocities and accelerations, described in Section 2.3.
The origin of the global reference system has been set at the center of the arena, so that
the constraints on the X and Y coordinates are symmetric on both axis and limited in
module at 1000 mm. The maximal velocity of the agents is constrained to be 80 mm/s.
The constraint on the acceleration, whose upper bound is 800 mm/s2, is defined in terms
of maximum achievable force. In fact, recalling the weight of the mobile robots, 200 g, and
the force expression F = ma, the maximum force that can be generated can be computed,
i.e., 160 mN.
From now on all the quantities related to distances will be expressed in mm, the velocities
in mm/s and mN will be used for the forces.



δx[i] ∈ [−1000, 1000]

δy[i] ∈ [−1000, 1000]

δẋ[i] ∈ [−80, 80]

δẏ[i] ∈ [−80, 80]

{
Fi,X ∈ [−160, 160]

Fi,Y ∈ [−160, 160]

4.4. The control law and the reference trajectories

The DPC algorithm requires that, at any time instant k, each subsystem transmits to its
neighbor its future state and input reference trajectories x̃[i](k + h) and ũ[i](k + h), h =

0, 1, ..., N − 1 respectively, predicted over the whole prediction horizon N . While doing
that, the distributed predictive control algorithm guarantees that the actual i -th subsys-
tem trajectory lies in a specified time-invariant neighborhood of the reference one, i.e.
x[i](k) ∈ x̃[i](k)⊕ Ei and u[i](k) ∈ ũ[i](k)⊕ Ui, where 0 ∈ Ei and 0 ∈ Ui.
In this way equation (3.11), recalling that matrices Bij are equal to zero, can be rewritten
as

x[i](k + 1) = Aiix
[i](k) +Biiu

[i](k) +
∑
j∈Ni

Aijx̃
[j](k) +w[i](k) (4.1)
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The term
w[i](k) =

∑
j∈Ni

(
Aij

(
x[j](k)− x̃[j](k)

))
∈ Wi

is a bounded disturbance to be rejected, where Wi =
⊕

j∈Ni
AijEj. Also, the term∑

j∈Ni
Aijx̃

[j](k) can be interpreted as an input, known in advance over the prediction
horizon h = 0, ..., N − 1.
The symbol ⊕ denotes the Minkowski sum, defined as A⊕B := {a+ b|a ∈ A, b ∈ B}, and⊕M

i=1Ai = A1 ⊕ ...⊕ AM .

For each subsystem, a robust MPC problem for constrained linear systems subject to
bounded disturbance must be solved, as the one stated in [12]. The nominal model of the
i -th subsystem is

x̂[i](k + 1) = Aiix̂
[i](k) +Biiû

[i](k) +
∑
j∈Ni

Aijx̃
[j](k) (4.2)

and the control law for k ≥ 0, is given by

u[i](k) = û[i](k) +Kaux
i

(
x[i](k)− x̂[i](k)

)
(4.3)

where Kaux
i satisfies Assumption 1.

Letting z[i](k) =
(
x[i](k)− x̂[i](k)

)
, from (4.1) and (4.3) we obtain

z[i](k + 1) = Fiiz
[i](k) +w[i](k) (4.4)

Since w[i](k) is bounded and Fii is Schur, there exists a Robust Positively Invariant (RPI)
set Zi for (4.4) such that, for all z[i](k) ∈ Zi, then z[i](k + 1) ∈ Zi.

The computation of the minimal RPI sets Zi is performed as discussed in [14].
Specifically the i -th minimal RPi set Z0

i is given by

Z0
i =

∞⊕
k=0

F k
iiWi

In general, it is not possible to obtain an explicit characterization of Z0
i , and also Z0

i may
not be a polytope even if Wi is a polytope, see [14]. However, if Wi is a neighbor of the
origin, (as in this application), given a scalar δ > 0, there exist αi ∈ R, si ∈ I such that
the set
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Zi = (1− αi)
−1

si−1⊕
k=0

F k
iiWi

is an outer δ-approximation of the minimal RPI set for (4.4) which, in turn, is a polytopic
RPI set. In this work, we selected the parameters α1 = α2 = 0.01. This is a good trade-off
between computational burden and approximation quality of the RPI sets.

4.5. Optimization problem

Given Zi, it is possible to define the neighborhoods of the origin Ei and U1, such that
Ei ⊕Zi ⊆ Ei and Ui ⊕Kaux

i Zi ⊆ Ui, respectively. At any time instant k, given the future
reference trajectories x̃[j](k + h) and ũ[j](k + h), h = 0, ..., N − 1, j ∈ Ni, it is possible to
solve the following i-DPC problem

min
x̂[i](k),û[i](k:k+N−1)

V N
i

(
x̂[i](k), û[i](k : k +N − 1)

)
V N
i =

N−1∑
h=0

li
(
x̂[i](k + h), û[i](k + h)

)
+ V F

i

(
x̂[i](k +N)

) (4.5)

subject to (4.2) and, for h = 0, ..., N − 1,

x[i](k)− x̂[i](k) ∈ Zi

x̂[i](k + h)− x̃[i](k + h) ∈ Ei

û[i](k + h)− ũ[i](k + h) ∈ Ui

x̂[i](k + h) ∈ X̂i ⊆ Xi ⊖ Zi

û[i](k + h) ∈ Ûi ⊆ Ui ⊖Kaux
i Zi

(4.6)

(4.7)

(4.8)

(4.9)

(4.10)

and to the terminal constraint

x[i](k +N) ∈ X̂F
i (4.11)

X̂F
i is a nominal subsystem terminal set, whose properties will be later specified.

The symbol ⊖ denotes the Pontryagin difference, defined as A⊖B := {a|a+b ∈ A,∀b ∈ B}.

At time k, let the pair x̂[i](k|k), û[i](k : k+N−1|k) be the solution to the i -DPC problem
and define by û[i](k|k) the input to the nominal system (4.2). Then, according to (4.3),
the input to the system (3.11) is

u[i](k) = û[i](k|k) +Kaux
i

(
x[i](k)− x̂[i](k|k)

)
(4.12)
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The optimization problem for the i -th subsystem is referred to the nominal model (4.2),
whose initial state x̂[i](k|k) is also an argument of the optimization.
In (4.5), the final cost V F

i is selected to guarantee suitable decreasing properties of the
cost function.
The main assumption regarding the definition of the terminal set X̂F and the final cost
V F
i is stated below.

Assumption 2. Letting X̂ =
∏2

i=1 X̂i, Û =
∏2

i=1 Ûi and X̂F =
∏2

i=1 X̂F
i , it holds that:

(i) X̂F ⊆ X̂ is an invariant set for x̂+ = (A + BKaux)x̂;
(ii) û = Kauxx̂ ∈ Û for any x̂ ∈ X̂F ;
(iii) for all x̂ ∈ X̂F and, for a given constant κ,

V F (x̂+)− V F (x̂) ≤ −(1− κ)l(x̂, û) (4.13)

where V F (x̂+) =
∑2

i=1 V
F
i (x̂[i]) and l(x̂, û) =

∑2
i=1 li(x̂

[i], û[i]).

The stage and final costs li(x̂
[i], û[i]) and V F

i (x̂[i]), according to suggestions in [5] are
selected as follows, in order to satisfy point (iii) of Assumption 2.

V F
i (x̂[i]) =

∥∥x̂[i]
∥∥2

P 0
i

li(x̂
[i], û[i]) =

∥∥x̂[i]
∥∥2

Q0
i
+
∥∥û[i]

∥∥2

R0
i

(4.14)

Considering the state feedback control law û = Kauxx̂, and recalling that x̂+ = Fx̂ =

(A + BKaux)x, equation (4.13) can be rewritten as follows

P 0 − (A + BKaux)TP 0(A + BKaux)− (Q0 + KauxT

R0Kaux)(1 + κ) > 0 (4.15)

where

P 0 =

[
P 0
1 0

0 P 0
2

]
, Q0 =

[
Q0

1 0

0 Q0
2

]
and R0 =

[
R0

1 0

0 R0
2

]

Equation (4.15) is an LMI in the unknown P 0, that has been solved using Yalmip. Ma-
trices Q0

i and R0
i are tuning parameters, that influence the dynamics of the closed loop

system. In particular, larger matrices Q0
i the more reactive the controllers, while larger

matrices R0
i will result in less stressful controllers on the control variables.

In this application they have been both selected as identity matrices of proper dimensions.

Denoting by x̂[i](k + h|k) the state trajectory of system (4.2) stemming from x̂[i](k|k)
and û[i](k : k + N − 1|k), at time k it is also possible to compute x̂[i](k + N |k) and
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Kaux
i x̂[i](k + N |k). In DPC, these values incrementally define the trajectories of the

reference state and input variables to be used at the next time instant k + 1, that are

x̃[i](k +N) = x̂[i](k +N |k), ũ[i](k +N) = Kaux
i x̂[i](k +N |k)

Convergence results are proved thanks to the definition of the sets of admissible initial
conditions x(0) = (x[1](0),x[2](0))T ∈ XN and of initial reference trajectories
x̃[j](0 : N − 1), ũ[j](0 : N − 1) ∈ X̃x(0) for all j ∈ Ni, for their definition see [5].

4.6. Remarks on the set definitions

Once the RPI sets for equation (4.4) have been computed, it is necessary to define the
sets Ei fulfilling the following main assumption.

Assumption 3. Given the sets Ei,Ui, and the RPI sets Zi for equation (4.4), there exists
a real positive constant ρ̄E > 0 such that Zi ⊕B

(2)
ρ̄E (0) ⊆ Ui for all i = 1, 2.

B
(2)
ρ̄E (0) is a ball of radius ρ̄E > 0 centered at the origin in the R2 space.

The selection of proper polytopic sets Ei in order to fulfill Assumption 3, is carried out
considering that they can be equivalently represented in one of the following ways:

Ei = {Ei ∈ R4|Ei = Ξidi where ∥di∥∞ ≤ li}

= {Ei ∈ R4|fT
i,rEi ≤ li for all r}

where di ∈ R4, Ξi ∈ R4×4, fi,r ∈ R4 and r = 1, ..., 8; for i = 1, 2.

The constants li appearing in both the equivalent definitions, can be regarded as scaling
factors.
Matrices Ξi and vectors fi,r have been selected in order to obtain hyperrectangles shapes
for the polyhedra Ei.
For the computation of the scaling factors li, for which Assumption 3 is satisfied, it is
necessary to define

(T
(k)
i )T =


fT
i,1
...

fT
i,8

F k
ii
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and the matrix MP ∈ R2×2 whose entries µP
ij are

µP
ii = −1, i = 1, 2

µP
ij =

∞∑
k=0

(∥∥∥(T (k)
i )TAijΞj

∥∥∥
∞
+
∥∥∥(T (k)

i )TBijK
aux
j Ξj

∥∥∥
∞

)
, i, j = 1, 2 with i ̸= j

In our framework, with the selection made of the gain matrix Kaux (fulfilling Assumption
1), and since matrix MP is Hurwitz, then there exist values of li, i = 1, 2 such that
Assumption 3 is satisfied for a sufficiently small value of δ. The constants li are selected
as the entries of the strictly positive vector l satisfying MP l < 0, obtained solving an LMI
problem with Yalmip.

The sets Ei have been selected as hyperrectangles. This choice leads to sets Wi =⊕
j∈Ni

AijEj which are characterized by equality constraints. This is limiting the per-
formances of the controllers, since the RPI sets generated would allow stabilization just of
points that fulfill these constraints, i.e., equal displacement among the X,Y axes. For this
reason we decided to take larger sets Wi, as hyperrectangles containing the

⊕
j∈Ni

AijEj.
For the computation of the RPI sets Zi we decided to use the MPT3 toolbox [8], which al-
lows operations among polyhedra, and to carry out the development depicted previously,
as in [14].

Once the RPI sets for (4.4) have been specified, then the sets Ei can be selected as any
polytope satisfying Ei ⊕Zi ⊆ Ei, and the sets Ui as any polytope satisfying Ui = Kaux

i Ei.
The constraint sets X̂i, Ûi are defined as X̂i ⊆ Xi⊖Zi and Ûi ⊆ Ui⊖Kaux

i Zi respectively,
as stated in the definition of the constraints (4.9) and (4.10).
The sets X̂F

i are obtained by suitably scaling the sets Zi by a common factor, which should
be sufficiently small to not violate points (i) and (ii) of Assumption 2, so X̂F

i ⊆ X̂i and
Kaux

i X̂F
i ⊆ Ûi.

4.7. Definition of the initial reference trajectories

It is also necessary to define the initial reference trajectories, since they strongly affect
the initial feasibility. Note that feasibility can be guaranteed by setting a sufficiently long
prediction horizon N and large sets Ei. In this work, the choice of a suitable value for
N , and the definition of the initial reference trajectories is obtained using the following
algorithm
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Algorithm 4.1 Initial reference trajectories definition and choice of the prediction horizon
N

1: For each subsystem i, at time instant k = 0, set N = 1, x̃(i)(0) = x(i)(0) and a
feasible value of ũ(i)(0) = Kaux

i x(i)(0).
2: while x̃(i)(N − 1) /∈ X̂F

i do
3: Solve the i-DPC problem (4.5), subject to constraints (4.6)-(4.10) and additional

constraints (4.9) and (4.10) for h = N .
4: Set the reference state and input, at time N, as x̃(i)(N) = x̂(i)(N |0) and ũ(i)(N) =

Kaux
i x̂(i)(N |0), respectively.

5: Transmit x̃(i)(N) and ũ(i)(N) and receive x̃(j)(N) and ũ(j)(N) from the neighbors
j ∈ Ni.

6: set N = N + 1.
7: end while

Once the initial reference trajectories, the sets, and the cost function have been defined in
order to fulfill the previously cited assumptions, it is possible to state the main Theorem.
Theorem. Let Assumptions 1-3 be satisfied and let Ei and Ui be neighborhoods of the
origin satisfying Ei ⊕ Zi ⊆ Ei and Ui ⊕ Kaux

i Zi ⊆ Ui. Then, for any initial reference
trajectories in X̃x(0), the trajectory x(k), starting from any initial condition x(0) ∈ XN ,
asymptotically converges to the origin.

4.8. Numerical implementation of the DPC algorithm

We decided to formulate the complete set of i-DPC problems as a unique (centralized)
optimization one. In fact, as already mentioned, we are using just a host PC to run all the
controllers. The regulators of the two carts have been implemented together in centralized
fashion, formulating the complete DPC problem in order to preserve the division among
the i -th controllers. In this way, solving the complete (centralized) scheme, is exactly
equivalent to solve, the single i -th DPC problems in parallel.

This optimization problem can be solved using the function quadprog provided by MAT-
LAB. To achieve that, it is required to reformulate the i-th problem (4.5), according to
the case study model of the i-th subsystem (3.11).

The nominal model with which the i-DPC problem is referred to (4.2), can be rewritten
in a centralized fashion as

x̂(k + 1) = ADx̂(k) + Bû(k) + ANDx̃(k) (4.16)
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where AD =

[
A11 0

0 A22

]
, and AND =

[
0 A12

A21 0

]
.

Since the optimization problem (4.5) is defined over the whole prediction horizon N , it is
possible to rewrite equation (4.16) as



x̂(0)

x̂(1)

x̂(2)
...

x̂(N)


︸ ︷︷ ︸

x̂

=



I

AD

A2
D
...

AN
D


︸ ︷︷ ︸

AD

x̂(0|0) +



0 0 . . . . . . 0

B 0 . . . . . . 0

ADB B 0 . . . 0
... . . . . . . . . . 0
... . . . . . . . . . 0

AN−1
D B AN−2

D B . . . ADB B


︸ ︷︷ ︸

B


û(0)

û(1)
...

û(N − 1)


︸ ︷︷ ︸

û

+



0 0 . . . . . . 0

AND 0 . . . . . . 0

ADAND AND 0 . . . 0
... . . . . . . . . . 0
... . . . . . . . . . 0

AN−1
D AND AN−2

D AND . . . ADAND AND


︸ ︷︷ ︸

AND


x̃(0)

x̃(1)
...

x̃(N − 1)


︸ ︷︷ ︸

x̃

This in compact form, can be rewritten as

x̂ = ADx̂(0|0) +Bû +ANDx̃

According to equation (4.12), the control action for subsystem (3.11) is computed based
on the input sequence û[i] (defined over the whole prediction horizon) and on its current
state x̂(0|0).

For this reason the optimization variable is defined as χ =

[
x̂(0|0)

û

]
, and

x̂ =
[
AD B

]
︸ ︷︷ ︸

Aχ

χ+ANDx̃ (4.17)

According to the selected stage and final cost (4.14), the optimization problem (4.5) can
be reformulated, and the associated cost function Ji−DPC to be minimized is
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Ji−DPC =
N−1∑
k=0

(∥∥x̂[i](k)
∥∥2

Q0
i
+
∥∥û[i](k)

∥∥2

R0
i

)
+
∥∥x̂[i](N)

∥∥2

P 0
i

(4.18)

Recalling that the MATLAB function quadprog is capable to find a vector η that minimizes
a quadratic function in the form Jquadprog =

1
2

(
ηTHη + fTη

)
.

The cost function (4.18), can be rearranged in centralized fashion, according to (4.17),
neglecting the terms that do not depend on the optimization variable χ.

JDPC = χT
(
AT

χQ
0Aχ +

[
0

I

]
R0

[
0 I

])
︸ ︷︷ ︸

H

χ+ 2x̃AT
NDQ

0AND︸ ︷︷ ︸
f

χ

The constraints (4.6)-(4.11) must be expressed in the form Hineqη ≤ bineq and with respect
to the optimization variable χ.

The constraint (4.6), defining Z =
∏2

i=1 Zi, and HZ ∈ R16×8, bZ ∈ R16×1 as the matrices
of the half-space representation (H-representation) {z ∈ Z|HZz ≤ bZ}, can be expressed
as

x(0)− x̂(0) ∈ Z −→
[
−HZ 0

]
χ ≤ bZ −HZx(0)

The constraints (4.7), defining E =
∏2

i=1Ei, and HE ∈ R16×8, bE ∈ R16×1 as the matrices
of the H-representation {e ∈ E|HEe ≤ bE}, can be expressed as



x̂(0)− x̃(0) ∈ E

x̂(1)− x̃(1) ∈ E

...

x̂(N − 1)− x̃(N − 1) ∈ E

−→



ĤE 0 . . . . . . 0

0 ĤE 0 . . . 0
... . . . . . . . . . 0
... . . . . . . ĤE 0

0 . . . . . . 0 0


︸ ︷︷ ︸

HE

x̂ ≤



b̂E

b̂E
...
b̂E

0


︸ ︷︷ ︸
BE

+HE

[
x̃
0

]

−→ HEAχχ ≤ BE +HE

[
x̃
0

]
−HEANDx̃

The constraints (4.8), defining U =
∏2

i=1 Ui, and HU ∈ R8×4, bU ∈ R8×1 as the matrices
of the H-representation {u ∈ U |HUu ≤ bU}, can be expressed as
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û(0)− ũ(0) ∈ U

û(1)− ũ(1) ∈ U

...

û(N − 1)− ũ(N − 1) ∈ U

−→



HU 0 . . . . . . 0

0 HU 0 . . . 0
... . . . . . . . . . 0
... . . . . . . . . . 0

0 . . . . . . 0 HU


︸ ︷︷ ︸

HU

û ≤


bU

bU
...
bU


︸ ︷︷ ︸
BU

+HU ũ

−→ HU

[
0 I

]
χ ≤ BU +HU ũ

The constraints (4.9) and (4.11), defining ĤX ∈ R16×8, b̂X ∈ R16×1 as the matrices of the
H-representation {x ∈ X̂|ĤXx ≤ b̂X}, and ĤXF ∈ R16×8, b̂XF ∈ R16×1 as the matrices of
the H-representation {x ∈ X̂F |ĤXFx ≤ b̂XF}, can be expressed as



x̂(0) ∈ X̂

x̂(1) ∈ X̂
...

x̂(N − 1) ∈ X̂

x̂(N) ∈ X̂F

−→



ĤX 0 . . . . . . 0

0 ĤX 0 . . . 0
... . . . . . . . . . 0

0 . . . 0 ĤX 0

0 . . . . . . 0 ĤXF


︸ ︷︷ ︸

HX

x̂ ≤



b̂X

b̂X
...
b̂X

b̂XF


︸ ︷︷ ︸

BX

−→
HXAχχ ≤ BX

−HXANDx̃

The constraints (4.10), defining ĤU ∈ R8×4, b̂U ∈ R8×1 as the matrices of the H-representation
{u ∈ Û|ĤUu ≤ b̂U}, can be expressed as



û(0) ∈ Û

û(1) ∈ Û
...

û(N − 1) ∈ Û

−→



ĤU 0 . . . . . . 0

0 ĤU 0 . . . 0
... . . . . . . . . . 0

0 . . . 0
. . . 0

0 . . . . . . 0 ĤU


︸ ︷︷ ︸

HÛ

û ≤


b̂U

b̂U
...
b̂U


︸ ︷︷ ︸
BÛ

−→ HÛ

[
0 I

]
χ ≤ BÛ
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5| Robust distributed predictive
control with delay
compensation

In Chapter 3 a complete characterization of the experimental setup introduced in Chap-
ter 2 was carried out. We have shown that the laboratory equipment employed in this
work introduces non negligible delays. The latter are mainly related to the position data
acquisition operation executed by the Decawave real time positioning system.
Moreover, also the disturbance w(k) affecting the state of the unicycle linearized model,
and the noise v(k) affecting the calibrated position measures, produce non negligible ef-
fects. They must be considered in the development of the controllers.

The distributed predictive control algorithm, introduced in Chapter 4, has been developed
referring to the model in equation (4.1), which does not consider the presence of delays and
external disturbances affecting the system. For these reasons, a robust networked version
of DPC is developed, capable to deal with the non-idealties affecting the experimental
setup, and to provide global stability together with satisfactory performances.

5.1. Compensation of the delay with predictions

As discussed in Section 3.1.1, the Decawave sensors used in this work introduce an average
measurement delay of 206.2 ms, with a standard deviation of 41.4 ms. Due to the presence
of this delay, we selected the sampling time τ to be 0.2 s, which is equal to the average
value of the delay affecting the system.
This choice entails that the measurement of the E-PUCK robot actual position obtained
at time instant k, arrives at the controllers with approximately a 1-step delay, at time
instant k + 1.

As DPC is a state feedback control strategy, the computation of the correct control action
(4.12) is done under the assumption that the actual state x[i](k) (3.10), is available at
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time instant k.
Recall that

x[i](k) =
[
δxi(k) δẋi(k) δyi(k) δẏi(k)

]T
=

[
xPi(k) vxPi

(k) yPi(k) vyPi
(k)

]T
The Decawave sensors provide the measures of the robot position (δxi(k), δyi(k)), while
the velocities (δẋi(k), δẏi(k)) are available since they correspond with the inputs to the
feedback-linearized robots, see (2.5). The latter are given without delay and without
uncertainty, since they are directly computed by the regulators. On the other hand, the
positions are received by the controller with a 1-step delay and noise v(k).

This means that the control action u[i](k), computed by the regulators at the actual time
instant k as in equation (4.12), will not be based on the actual position measurement
(δxi(k), δyi(k)). Instead, the measure of the position taken by the unicycle robot at the
past time instant (δxi(k− 1), δyi(k− 1)) will be used for computing a suitable prediction.

Recall the feedback-linearized model of the E-PUCK robot (3.4)

{
xepuck(k + 1) = Aepuckxepuck(k) +Bepuckuepuck(k) + w(k)

xmeasured
epuck (k) = Cepuckxepuck(k) + v(k)

(5.1)

where

xepuck =

[
xP

yP

]
, uepuck =

[
vxP

vyP

]

It is possible to develop the one-step ahead predictor which, given the past state (position
measures from decawave sensor) and the past control action, is capable to estimate the
current state of the robot, i.e., its actual position.

The one-step ahead predictor related to the nominal model of the unicycle robot (2.5)
can be written as

xpredicted
epuck (k) = Aepuckxmeasured

epuck (k − 1) +Bepuckuepuck(k − 1)

The information used for the computation of the control action at each time step is

x̄[i] =
[
xpredicted
P i vxPi

ypredictedP i vyPi

]T
(5.2)
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Note that

x[i](k)− x̄[i](k) =P
(
Aepuckxepuck,i(k − 1) +Bepuckuepuck,i(k − 1) + w[i](k − 1)

− Aepuckxmeasured
epuck,i (k − 1)−Bepuckuepuck,i(k − 1)

)
=P

(
−Aepuckv[i](k − 1) + w[i](k − 1)

) (5.3)

where

P =


1 0

0 0

0 1

0 0



5.2. The model, the predictions and constraint defi-

nition

The algorithm developed in Chapter 4 will be now reformulated considering the issues
derived from the presence of disturbances and delays.

As shown in Section 5.1, the presence of delays can be compensated thanks to the use
of predictions, whose effect is that noisy predictions x̄[i](k) need to be considered at the
place of data x[i](k).
The algorithm must simply be restructured to cope with uncertainties due to prediction
errors and model perturbations.

Under the assumption that the "virtual connections" between subsystems are defined in
an ideal way, we rewrite the model equations as follows

x[i](k + 1) = Aiix
[i](k) +Biiu

[i](k) +
∑
j∈Ni

Aijx
[j](k) +w

[i]
P (k) (5.4)

In our setup, we derive the perturbation w
[i]
P (k) from the perturbation w(k) characterizing

the E-PUCK motion, i.e.

w
[i]
P (k) = Pw[i](k)
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As done in Chapter 4, we rewrite (5.4) as

x[i](k + 1) =Aiix
[i](k) +Biiu

[i](k) +
∑
j∈Ni

Aijx̃
[j](k) +w

[i]
P (k)

+
∑
j∈Ni

(
Aij(x

[j](k)− x̃[j](k))
) (5.5)

As stated in Section 5.1, the available measurement of x[i](k) is indeed x̄[i](k), where,
according to 5.3

e(k) = x[i](k)− x̄[i](k) = P
(
w[i](k − 1)− Aepuckv[i](k − 1)

)
(5.6)

The control law is generated using the available datum x̄[i](k), i.e.

u[i](k) = û[i](k) +Kaux
i

(
x̄[i](k)− x̂[i](k)

)
(5.7)

The terms û[i](k) and x̂[i](k) are, as in Chapter 4, the input and the state, respectively,
of the nominal model (4.2), whose equation is here reported for clarity.

x̂[i](k + 1) = Aiix̂
[i](k) +Biiû

[i](k) +
∑
j∈Ni

Aijx̃
[j](k)

Using (5.4),(4.2), we can write

x̄[i](k + 1)− x̂[i](k + 1) = x̄[i](k + 1)− x[i](k + 1) + x[i](k + 1)− x̂[i](k + 1)

=P
(
Aepuckv[i](k)− w[i](k)

)
+ Aii

(
x[i](k)− x̂[i](k)

)
+BiiK

aux
i

(
x̄[i](k)− x̂[i](k)

)
+w

[i]
P (k)

+
∑
j∈Ni

Aij

(
x[j](k)− x̃[j](k)

)
=
(
Aii +BiiK

aux
i

)(
x̄[i](k)− x̂[i](k)

)
+ Aii

(
x[i](k)− x̄[i](k)

)
+

∑
j∈Ni

Aij

(
x[j](k)− x̃[j](k)

)
+ P

(
Aepuckv[i](k)

)
=

(
Aii +BiiK

aux
i

)(
x̄[i](k)− x̂[i](k)

)
+ w̄[i](k)

(5.8)

where
w̄[i](k) =Aii

(
w[i](k − 1)− Aepuckv[i](k − 1)

)
+ P

(
Aepuckv[i](k)

)
+

∑
j∈Ni

Aij

(
x[j](k)− x̃[j](k)

)
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Under the assumption that we can constrain

x[i](k)− x̃[i](k) ∈ Ei

u[i](k)− ũ[i](k) ∈ Ui

(5.9)

(5.10)

then w̄[i](k) ∈ W̄i, where

W̄i = AiiW⊕ Aii(−AepuckV)⊕ P (AepuckV)⊕
⊕
j∈Ni

AijEj

where W and V are the sets containing the disturbances w[i](k) and v[i](k), selected as
hyperrectangles with bounds imposed according to (3.6),(3.3).

The RPI sets Zi can be defined for the system (5.8) guaranteeing that, if x̄[i](k)−x̂[i](k) ∈
Zi, then x̄[i](k + h)− x̂[i](k + h) ∈ Zi, ∀h = 1, 2, ..., N .

At this point, to constrain (5.9), we need to enforce, for all:

x[i](k)− x̃[i](k) = x[i](k)− x̄[i](k) + x̄[i](k)− x̂[i](k) + x̂[i](k)− x̃[i](k) ∈ Ei

Since x[i](k)−x̄[i](k) ∈ P
(
W⊕(−AepuckV)

)
and x̄[i](k)−x̂[i](k) ∈ Zi, (5.9) can be enforced

by imposing x̂[i](k)− x̃[i](k) ∈ Ei, where

P
(
W⊕ (−AepuckV)

)
⊕ Zi ⊕ Ei ⊆ Ei

Also, recall that

u[i](k)− ũ[i](k) =u[i](k)− û[i](k) + û[i](k)− ũ[i](k)

Kaux
i (x̄[i](k)− x̂[i](k)) + û[i](k)− ũ[i](k)

Therefore, (5.10) can be imposed by enforcing û[i](k)−ũ[i](k) ∈ Ui, provided that Kaux
i Zi⊕

Ui ⊆ Ui.

Finally, it is worth noting that, to impose x[i](k) ∈ Xi we need to enforce

x[i](k) + x̂[i](k)− x̂[i](k)− x̄[i](k) + x̄[i](k) ⊆ x̂[i](k)⊕ Zi ⊕ P
(
W⊕ (−AepuckV)

)
⊆ Xi

Also, to impose u[i](k) ∈ Ui we need to enforce

u[i](k) + û[i](k)− û[i](k) ⊆ û[i](k)⊕Kaux
i Zi ⊆ Ui
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5.3. The optimization problem

Under the changes defined above, the i -DPC problem defined in Section 4.5 must be
reformulated as follows

min
x̂[i](k),û[i](k:k+N−1)

V N
i

(
x̂[i](k), û[i](k : k +N − 1)

)
V N
i =

N−1∑
h=0

li
(
x̂[i](k + h), û[i](k + h)

)
+ V F

i

(
x̂[i](k +N)

) (5.11)

subject to, for all h = 0, ..., N − 1,

x̄[i](k)− x̂[i](k) ∈ Zi

x̂[i](k + h)− x̃[i](k + h) ∈ Ei

û[i](k + h)− ũ[i](k + h) ∈ Ui

x̂[i](k + h) ∈ X̂i ⊆ Xi ⊖
(
Zi ⊕ P

(
W⊕ (−AepuckV)

))
û[i](k + h) ∈ Ûi ⊆ Ui ⊖Kaux

i Zi

and to the terminal constraint

x̂[i](k +N) ∈ X̂F
i (5.12)
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In this chapter the results of a number of different simulations are reported.
Tests have been performed on the simulated model of the case study discussed in Section
3.3, in order to prove the capability of the algorithms introduced in the previous chapters
to deal with communication delays and disturbances.
In the following, a visible evidence of the benefits of the DPC algorithm extended with
the modifications discussed in Chapter 5 is presented.

The simulations have been carried out using the MATLAB/SIMULINK environment, ex-
tended with the usage of the TrueTime toolbox [3], which is a simulator of real-time
control systems. TrueTime facilitates co-simulation of controller task execution in real-
time kernels, network transmissions, and continuous plant dynamics. This toolbox makes
it possible to obtain model simulations of networked control systems, by dislocating sen-
sors, controllers and actuators, and simulate their connection through a desired network.
A long list of different networks can be implemented, like Ethernet, CAN, TDMA, FDMA,
Round Robin, Switched Ethernet, FlexRay and PROFINET, together with the wireless
ones, like WLAN and ZigBee.
Here, TrueTime is used to simulate the delay affecting the system by realizing a ficti-
tious network which has similar properties with respect to the ones characterizing our
experimental setup. This is achieved by properly scheduling the tasks between sensors,
controllers and actuators, managing the controller code execution timing.
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Figure 6.1: TrueTime implementation of the networked control system.

In Chapter 3 we carried out the characterization of the disturbances: we stated that the
delays associated to the Bluetooth transmission and actuation of the control action are
negligible compared to the ones related to the position data acquisition.
Accordingly, we decided to model the networked control system, with the actuators co-
located with the controllers, neglecting the fact that the control actions are not computed
directly by the E-PUCK robots. Instead, the sensors have been modeled as standalone
blocks, sending the measurements trough a simulated network.
The simulated communication network has been implemented as one relying on the wire-
less WLAN technology (the most similar to the Bluetooth technology, among the available
ones), opportunely tuned to provide the desired delay. The network has been customized
to realize a stochastic delay, distributed according to the Gaussian distribution with mean
of 206.2 ms, and a standard deviation of 41.4 ms.
The controller and actuator block, where the DPC algorithm has been implemented trough
a MATLAB function, is activated by the kernel when a datum is received from the sensor
block. In this way the real experimental setup can be simulated and different tests, with
and without delays and disturbances, can be performed.

We aim to test the performances of the original DPC algorithm discussed in Chapter 4
and the ones of the robust networked DPC algorithm introduced in Chapter 5, applied
to the system discussed in Section 3.3.
We expect that the modified version of the DPC algorithm, in presence of delays and
disturbances affecting the system, will provide far better performances compared to the
original version. To illustrate that, here are reported a series of tests executed using the
original version of the algorithm, showing its limitations when non-idealties coming from
the network have a significant role. Then the performances of the novel variant of the
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DPC algorithm are reported, for comparison.

In the simulations reported below, it is assumed that the agents are in an initial position

far from the set point, i.e., xequilibria =
[
0 0 0 0 240 0 −240 0

]T
.

Moreover, it is assumed that the initial velocities of the carts among both the directions
(vxPi

(0), vyPi
(0)) are equal to zero.

The controllers must stabilize the positions of the carts in a neighborhood of the equilib-
rium position, satisfying all the constraints related to speeds and accelerations.

6.1. Nominal system, using the original DPC algo-

rithm

Firstly, we decided to check the performances of the original algorithm applied to the nom-
inal system, assuming that the position data acquisition is ideal, and does not introduce
delays and disturbances.

Figure 6.2: 2D tracking.

In Figure 6.2 the stabilization of the carts positions at the equilibria in the 2D plane is
reported.
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Figure 6.3: X,Y coordinate tracking.

In Figure 6.3 the position tracking along both the X and Y directions are shown.
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Figure 6.4: Control inputs.

In Figure 6.4 the computed control inputs, in terms of forces and velocities, are reported.

As it can be seen from the results reported in the figures above, it is clear that the original
DPC algorithm can correctly stabilize the position of the carts at the equilibria.
This test proves the effectiveness of the DPC algorithm [5] applied to nominal systems,
where delays and disturbances are not present. In fact, the regulation is perfect, without
the presence of overshoots and oscillations.
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6.2. System with delays, using the original DPC al-

gorithm

In this simulation we decided to test the performances of the original DPC algorithm
applied to the system considering the presence of the 1-step delay in the acquisition of
the position measurement, characterized in Section 3.1.1.
For this test, the existence of the disturbances is not considered, to focus just on the
deterioration of the performances associated with the presence of the delays.

Figure 6.5: 2D tracking.

In Figure 6.5 the stabilization of the carts positions at the equilibria in the 2D plane is
reported.
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Figure 6.6: X,Y coordinate tracking.

In Figure 6.6 the position tracking along both the X and Y directions are shown.
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Figure 6.7: Control inputs.

In Figure 6.7 the computed control inputs, in terms of forces and velocities, are illustrated.

The results reported in the figures above show that the original DPC algorithm can
stabilize the position of the carts around the equilibrium position.
However, if compared to the previous test in Section 6.1, there are significant oscillations
in the tracking of the positions for both carts. Moreover, the steady state condition (null
velocities) is reached with a longer settling time compared to the previous test (stated
that the initial perturbation is equal among the simulation).
The results are justified by the fact that the original DPC algorithm was not developed
to deal with systems affected by delays. In fact, their presence deteriorate the tracking
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performances which, depending on the desired requirements, may not be satisfactory.
This enforce the necessity to extend the algorithm with the modification discussed in
Chapter 5.

6.3. System with delays and disturbances w(k) and

v(k), using the original DPC algorithm

In this simulation we decided to test the performances of the original DPC algorithm
applied to the system considering the presence of the noise w(k) affecting the E-PUCK
robots state, and the noise v(k) affecting the position measurement, together with the
presence of the 1-step delay introduced by the Decawave sensors.
The disturbances are realized according to the characterization accomplished in Chapter
3.

Figure 6.8: 2D tracking.

In Figure 6.8 the stabilization of the carts positions at the equilibria in the 2D plane is
reported.
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Figure 6.9: X,Y coordinate tracking.

In Figure 6.9 the position tracking along both the X and Y directions are shown.
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Figure 6.10: Control inputs.

In Figure 6.10 the computed control inputs, in terms of forces and velocities, are illus-
trated.

The results reported in the figures above show that the original DPC algorithm can
stabilize the position of the carts at the equilibria, despite the presence of the disturbances
and the delays. However, similarly to the test reported in Section 6.2, the performances
deteriorate. In fact, the presence of overshoots and oscillations in the tracking of the
reference positions results in a longer settling time.

In order to provide results closer to the ones obtained from test 6.1 also in presence of
non-idealties, we need to use the robust networked DPC scheme discussed in Chapter 5.
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6.4. System with delays and disturbances w(k) and

v(k), using the robust networked DPC algorithm

In this simulation we tested the performances of the modified DPC algorithm presented
in Chapter 5 applied to the system introduced in Section 3.3, considering the presence
of the disturbance w(k) affecting the E-PUCK robots state, the noise v(k) affecting the
position measurement, and the 1-step delay introduced by the Decawave sensors.
This simulation is performed in the same conditions as the one reported in Section 6.3.
In this way, it is possible to make a comparison between the performances provided by
the two DPC algorithms.

Figure 6.11: 2D tracking.

In Figure 6.11 the stabilization of the carts positions at the equilibria in the 2D plane is
reported.
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Figure 6.12: X,Y coordinate tracking.

In Figure 6.12 the position tracking along both the X and Y directions are shown.
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Figure 6.13: Control inputs.

In Figure 6.13 the computed control inputs, in terms of forces and velocities, are reported.

The results of this simulation show that the novel version of the DPC algorithm is capable
to stabilize the E-PUCK robots position in a neighborhood of the equilibria.
Comparing the results in Figure 6.12 with the ones reported in Figure 6.9, it is clearly
visible that overshoots and oscillations introduced by the usage of the original strategy
to control the system replica, vanish with the adoption of the novel, robust networked
version of the DPC algorithm.
The performances obtained in the simulation here reported are similar to the one shown
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in test 6.1, where the algorithm [5] is applied to the nominal system.

The usage of the predictor described in Chapter 5 allows to mitigate for the effects of the
delay related to the position data acquisition, guaranteeing better performances.
In fact, the elimination of overshoots and oscillations provides results that are satisfactory
for most of the applications. Moreover, it results in a shorter settling time.

6.5. Robust networked DPC algorithm applied to path

tracking

A final simulation aims to show the capability of robust networked DPC to make the carts
follow a certain path, stabilizing the position of the agents in several different configura-
tions which are far from the equilibria. In fact, by slightly modifying the algorithm, it is
possible to have the carts follow a desired trajectory.

It is sufficient to modify the stage and final costs li(x̂
[i], û[i]) and V F

i (x̂[i]) of the cost
function introduced in (5.11).
They must be redefined considering the new goal position of the i-th subsystem, defined
as x

[i]
goal.

V F
i (x̂[i]) =

∥∥∥x̂[i] − x
[i]
goal

∥∥∥2

P 0
i

li(x̂
[i], û[i]) =

∥∥∥x̂[i] − x
[i]
goal

∥∥∥2

Q0
i

+
∥∥û[i]

∥∥2

R0
i

Moreover, the constraint related to the final position (5.12) must be redefined, since the
final state x̂[i](k +N)− x

[i]
goal must lie inside the terminal set X̂F

i .

x̂[i](k +N)− x
[i]
goal ∈ X̂F

i



86 6| Simulations

Figure 6.14: Path tracking.

The results reported in Figure 6.14 show that the robust networked DPC algorithm is
capable to stabilize the positions of the carts in configurations which are different from
the equilibria.
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7| Experimental results

In this chapter we report the experimental results validating robust networked DPC ap-
plied to our experimental setup.
Indeed, tests have been carried out on the real experimental setup described in Chapter
2, where the position measures are provided by the Decawave sensors, and the carts are
represented by the E-PUCK robots virtually connected through a spring and a damper.

The experimental results here reported aim to show the ability of the modified version
of the algorithm discussed in Chapter 5 to regulate the positions of the E-PUCK robots
to the equilibria, regardless of the presence of delays and disturbances introduced by the
usage of a networked control system architecture.

During the execution of the tests on the experimental setup, the limitation of the devised
configuration emerged.
In fact, as discussed in Section 2.2, the arena has been placed directly on the ground, since
its dimensions do not allow to locate it on a desk. This solution is really practical and allow
for portability of the setup, but necessitates to have a flat floor, without irregularities.
Otherwise, the tiny wheels of the robot can start sliding, and the robot can stop its motion
for few instants.
This problem has been encountered many times in the realization of the tests on the
experimental setup, because, as can be seen in Figure 2.1, the floor of the laboratory is
not completely flat.

During the characterization of the noise affecting the E-PUCK robot state (Section 3.2),
this phenomena does not appear to be relevant. In fact, during the realization of linear
segments, it never happens that the E-PUCK robot completely stops. For this reason it
was assumed that the laboratory floor surface was suited for our purposes.
Unfortunately, in the experimental validation phase, we noticed that when the robots
begin rotating to reach the goal position, the wheels often start sliding when they run
into some irregularity of the floor.
This issue can be seen as an additional disturbance affecting the system, which contributes
compromising the execution of the tests when the original algorithm was used. In fact,
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the RPI sets computed for the control strategy [5], developed for nominal models not
considering the presence of disturbances, are smaller if compared to the ones of the novel
version of the algorithm (as discussed in Section 5.2).
Therefore, the presence of the delays and the disturbances, together with the other non-
idealities affecting the experimental setup (mainly the sliding of the wheels phenomena
previously described), result in the fact that the controllers couldn’t provide an online
solution without violating the constraints.
Consequently, the optimization problem, solved using the quadprog MATLAB function,
lost its feasibility, and the controllers failed their task to conduct the robots to the equi-
librium position.
For this reason, we cannot report successful tests where the controllers developed using
the original version of the algorithm discussed in Chapter 4 correctly regulate the position
of the E-PUCK robots in a neighborhood of the equilibria.

The robust networked DPC algorithm, instead, proved its effectiveness in these conditions,
when delays and disturbances have a significant relevance on the system.
Several tests have been performed, assuming that an initial perturbation has been applied
to the system, where the robots were placed in a position which was different from the
equilibrium one. Moreover, similar to the simulations reported in the previous chapter,
it was assumed that the initial velocities of the robots vxPi

(0) and vyPi
(0) were equal to

zero.

Here we report two tests, showing the ability of the modified DPC algorithm to regulate
the positions of the robots at the equilibria, starting from different positions and robot
orientations, located in the reachable area inside the arena.
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7.1. Experimental test with robots starting from op-

posite positions

Firstly, we report the test where the carts have been placed at the limits of the arena,
oriented facing each other (ϑ1 = π/2 and ϑ2 = 0).

Figure 7.1: 2D tracking.

In Figures 7.1 the stabilization of the carts positions at the equilibria in the 2D plane is
reported.
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Figure 7.2: X,Y coordinate tracking.

In Figure 7.2 the position tracking along both the X and Y directions are shown.
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Figure 7.3: Control inputs.

In Figure 7.3 the computed control inputs, in terms of forces and velocities, are reported.
Some comments are provided in Section 7.3.
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7.2. Experimental test with robots starting from ad-

jacent positions

In this test we report the regulation of the robots positions in a neighborhood of the
equilibria, starting from the limits of the arena, with the robots oriented facing the same
direction (ϑ1 = 0 and ϑ2 = 0).

Figure 7.4: 2D tracking.

Figure 7.5: Experimental test.
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In Figure 7.4 and 7.5 the stabilization of the carts positions at the equilibria in the 2D
plane is reported.

Figure 7.6: X,Y coordinate tracking.

In Figure 7.6 the position tracking along both the X and Y directions are shown.



94 7| Experimental results

Figure 7.7: Control inputs.

In Figure 7.7 the computed control inputs, in terms of forces and velocities, are reported.
Some comments are provided in Section 7.3.
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7.3. Considerations on the experimental results

The results of the tests reported in sections 7.1 and 7.2 show performances which are
similar to the expected ones obtained in the simulation described in section 6.4.
In fact, the robust networked DPC algorithm is capable to correctly regulate the posi-
tion of the robots at the equilibria, respecting the constraints on the velocities and the
accelerations, despite the presence of delays and disturbances.

As expected, there were no oscillations and overshoots in the tracking of the X,Y coordi-
nates as it can be seen in Figures 7.2 and 7.6.
However, from Figures 7.3 and 7.7, the effects of the sliding of the wheels phenomena,
previously discussed, can be noticed. In fact, the spikes in the control inputs (forces and
velocities) were related to the time instants when the robot got stuck for few moments
in some irregularity of the floor. Nonetheless, this was not a problem and the robust
controllers were always capable to find a feasible solution, thanks to the large RPI sets
defined in Section 5.2.

These results validate the expected performances obtained in simulation, and show the
suitability of the modification made to the DPC algorithm discussed in Chapter 5.
In particular, these tests witness the fact that the original algorithm, developed for nomi-
nal models, was not capable to control the real system in presence of non-idealties typical
of networked control system. On the other hand, the variant presented in this thesis has
proven to be perfectly capable to deal with delays and disturbances, providing satisfactory
performances.
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developments

In this thesis we developed a lightweight experimental setup subject to non-idealties simi-
lar to the ones introduced by the adoption of networked control architectures. This setup
can be used as benchmark for testing hierarchical and distributed control strategies in
multi-agent networked applications.
The used laboratory equipment has been analyzed in details and a complete characteri-
zation of the noises and delays introduced by each device has been completed. Moreover,
a calibration strategy improving the measurements provided by the real time positioning
system set up by Decawave UWB sensors is presented.

A state-of-the-art distributed model predictive control strategy, named DPC [5], has been
implemented and tested on the multi-agent case study, composed by carts moving on a
bi-dimensional plane, virtually connected by springs and dampers.
Several simulations have been carried out, considering the presence of noises and delays
compatible with the ones characterizing the real experimental setup. The outcomes of
these tests show the deterioration of the regulation performances when network non-
idealities are present. In particular, we noticed that undesired phenomena like overshoots
and oscillations arise.

To overcome such limitation, we developed a new, robust, and networked version of the
DPC algorithm, capable to deal with delays and disturbances. In particular, we equipped
the controller with a predictor, to compensate for the effects of the delays. Moreover,
the robust positive invariant sets constraining the optimization variables have been re-
designed to consider the presence of the noise w(k) affecting the system state, the noise
v(k) affecting the measures, and the error due to the predictions computed to compensate
for the delay.
The effectiveness of the novel algorithm has been first tested in simulation. The results
show that overshoots and oscillations in the regulation of the carts positions in a neigh-
borhood of the equilibria, vanish with the adoption of the robust and networked version
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of the DPC algorithm.

Finally, the results obtained in simulation were validated in tests on the experimental
setup consisting of carts virtually connected by springs and dampers. The carts are rep-
resented by E-PUCK unicycle robots and their position is obtained by UWB positioning
sensors. Connections between robots have been virtually imposed by software, enforcing
couplings between agents.
Experimental tests confirmed the results obtained in simulation, witnessing that the orig-
inal algorithm was not suitable to deal with network-induced non-idealities. At the same
time, they show that the robust networked DPC algorithm here presented was capable to
provide good performances also in presence of delays and disturbances.

Possible future developments of this work can focus on improving the experimental setup,
e.g., by using a larger number of agents.

In this work we mainly focused on the delays related to the position measurements acqui-
sition, since they were much larger than the ones related to the Bluetooth transmission
between robots. However, it is well known that in real networked applications, delays in
the communication between subsystems can become significant, and can alter the perfor-
mances of the regulators.
For this reason, future work can consider to account also for these non-idealities by eval-
uating the effects that they introduce.

Moreover, in this work we developed a variant of the DPC algorithm that perfectly fits
the developed experimental setup, considering the presence of the 1-step delay in data
acquisition and the necessity to introduce a 1-step ahead predictor. A potential future
work can aspire to devise a more general version of the proposed algorithm, which is
possibly capable to handle the presence of multi-step delays, possibly acting also on the
communication channels between agents.
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C code running on the E-PUCK robots, implementing the feedback linearization.

1 #include "xc.h"
2 #include "e_epuck_ports.h"
3 #include "e_init_port.h"
4 #include "e_led.h"
5 #include "e_motors.h"
6 #include "e_uart_char.h"
7 #include "matlab.h"
8 #include "utility.h"
9 #include "e_acc.h"

10 #include "e_ad_conv.h"
11 #include <stdlib.h>
12 #include <string.h>
13 #include <ctype.h>
14 #include <stdio.h>
15 #include <math.h>
16 #include <time.h>
17

18 //define constants with global visibility
19 #define PI 3.14159265358979f
20 #define STEPSTO2PI 1300
21 #define T_SPEED 300
22

23 //define the timing to be in seconds
24 #ifdef CLOCKS_PER_SEC
25 #undef CLOCKS_PER_SEC
26 #endif
27 #define CLOCKS_PER_SEC FCY
28

29 int main(void)
30 {
31 // variables definition
32 int selector; //selector position
33 time_t timer1; //timing variable
34 char car; //variable to get new data from MATLAB
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35 int dato[4];
36 int speedl; //speed of the left wheel in step/s
37 int speedr; //speed of the right wheel in step/s
38 long i;
39 float ecall = 1.0f; //distance epsilon of point P for the feedback linearization
40 float E = 5.2f;
41 float R = 2.05f;
42 float kk = 500.0f/PI; // step/rad
43 float vR;
44 float vL;
45 float wR;
46 float wL;
47 float w;
48 float vxp=0.0f, vyp=0.0f, v = 0.0f, theta = 0.0f;
49 int x, y, z;
50 TypeAccRaw ACC; // accelerations
51 float tau = 0.01f; //internal sampling time
52

53 //initialization of the input/output ports, the UART module, the motors, and accelerometer
54 e_init_port();
55 e_init_uart1();
56 e_init_motors();
57 e_set_speed_left(0);
58 e_set_speed_right(0);
59 e_init_ad_scan(ALL_ADC);
60 e_acc_calibr();
61

62 selector=getselector(); //selector position reading
63 //selector in position zero allows for programming (waiting loop)
64 if(selector==0){
65 while(1);
66 }
67

68 //selector in position different from zero will start the code execution,
69 //the UART is cleaned and LED7 confirm the correctness of the set-up
70 LED7 = 1;
71 int flag = 0;
72

73 //starting of the infinite loop cycle. The micro-controller wait that a command is
74 //received from the serial port and if it is equal to "v", it will interpret the
75 //following four data as: linear velocities along the two axis (vxp,vyp), linear speed (v)
76 //and angle (theta) of the robot
77 while(1){
78 time(&timer1);
79 e_getchar_uart1(&car);
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80

81 //we must send from MATLAB the char 'v' followed by four integers
82 if (car=='v'){
83 while(e_receive_int_from_matlab(dato,4)==0);
84 LED4=0;
85 //data must be divided by 1000, to be consistent with the MATLAB script
86 vxp = dato[0]/1000.0f;
87 vyp = dato[1]/1000.0f;
88 //v = dato[2]/1000.0f;//not necessary for the adopted feedback linearization
89 theta = dato[3]/1000.0f;
90 car = '\0';
91 flag = 1;
92 }//Closing of the if related to command 'v'
93

94 //normal loop computing the feedback linearization, actuating the motors and
95 //sending the accelerations
96 while(!e_ischar_uart1()) {
97 timer1=time(NULL);
98

99 //if the linear speed is close to zero, set it to 0.001
100 if (v >= 0.0f && v < 0.001f)
101 v = 0.001f;
102 if (v <= 0.0f && v > -0.001f)
103 v = -0.001f;
104

105 //implementation of the non-singular feedback linearization
106 v = vxp*cos(theta)+vyp*sin(theta);
107 w = (1/ecall)*(vyp*cos(theta)-vxp*sin(theta));
108 theta = theta + tau*w; //update of the angle theta
109

110 //speed of the wheels
111 vR = v + E * w / 2.0f;
112 vL = v - E * w / 2.0f;
113 //angular speeds
114 wL = vL / R;
115 wR = vR / R;
116 //velocities in step/s
117 speedl = floor(kk * wL);
118 speedr = floor(kk * wR);
119 //saturation of the velocities
120 if (speedl>1000) speedl = 1000;
121 if (speedl<-1000) speedl =-1000;
122 if (speedr>1000) speedr = 1000;
123 if (speedr<-1000) speedr =-1000;
124

125 //acceleration reading
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126 ACC = e_read_acc_xyz();
127 x = ACC.acc_x;
128 y = ACC.acc_y;
129 z = ACC.acc_z;
130 //accelerations data are sent through the serial port
131 char vectorACC[20]={0};
132 sprintf(vectorACC,"a:%d:%d:%d:\n",x,y,z);
133 e_send_uart1_char(vectorACC,strlen(vectorACC));
134 while(e_uart1_sending()) ;
135

136 //actuation of the motors
137 e_set_speed_left(speedl);
138 e_set_speed_right(speedr);
139

140 for(i=0;i<30000;i++){
141 asm("nop");
142 }
143 //management of the timing in seconds
144 while(((difftime (time(NULL),timer1))/(float)CLOCKS_PER_SEC) < tau) {
145 if (flag == 1) {
146 LED4=1;
147 flag=0;
148 }}}
149 }//end of the infinite loop
150 }//end of the main
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