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Abstract 

 

 

Neutral temperature district heating and cooling (NT-DHC) is a relatively new concept in the district 

heating (DH) sector. A missing aspect in current literature is the ability to model the performance of 

NT-DHC systems and draw master plans (even for traditional DH systems). Experimental data are 

scarce, preventing the development of validated models. The energy modeling for systems of this kind 

is also more complex than for conventional systems due to the multiple energy sources and the higher 

complexity of decentralized heat pumps (HPs) compared to heat exchanger substations. 

A tool is developed for the analysis of techno-economic scenarios in DHC systems. In Ospitaletto, 

Italy, the monitoring data from a NT-DHC network is employed to improve the model’s reliability. A 

knapsack algorithm is used to find transition pathways for the network expansion.  

The model can be applied to any city if the necessary heat density data is available. However, the 

approach was applied to the case study mentioned previously for simplicity. It goes beyond the State 

of the Art in that it models decentralized HPs’ substations, accounts for economic aspects that DH 

physical models do not possess and incorporates optimization for selecting the best system extension. 

A sensitivity analysis is also conducted to find out to what extent, under which energy price conditions 

and subsidies, the NT-DHC concept is competitive over individual heating and cooling (H&C) 

solutions.    

The model’s results are in alignment with qualitative expectations. The optimization algorithm 

determines which combination of potential extensions maximizes the overall economic value. The NT-

DHC solution is more convenient for dense urban zones, while air-to-water heat pumps (A/W HPs) 

are better suited to zones with low-heat density. By selecting waste heat sources at temperatures 

between 30-40°C, the SCOP of the NT-DHC solution can be enhanced compared to reversible A/W 

HPs. In the case of Ospitaletto, despite having low building heat density compared to larger cities, it 

is still possible to identify feasible scenarios. This opens the opportunity to many other cases. 

This tool has the potential impact in the DHC sector of reducing the energy demand risks, providing 
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more certainty as to which zones a network can expand to be competitive. It is targeted at energy 

planners, utilities, energy engineers, and DHC specialists since they require decision-making support 

and recommendations for replicating a new type of DHC system. This tool will enable pre-feasibility 

studies and preliminary designs to determine the opportunities and limitations of a system of this kind 

from an economic and technological perspective. 

 

Keywords:  

Neutral temperature district heating and cooling, knapsack algorithm, transition pathways, network 

expansion scenarios, energy planning  
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Abstract (IT) 

 

Il teleriscaldamento e teleraffreddamento a temperatura neutra (NT-DHC) è un concetto relativamente 

nuovo nel settore del teleriscaldamento (DH). Un aspetto mancante nella letteratura attuale è la 

capacità di modellare le prestazioni dei sistemi NT-DHC e di definire piani generali (anche per i sistemi 

DH tradizionali). I dati sperimentali sono scarsi e ciò impedisce lo sviluppo di modelli convalidati. La 

modellazione energetica per sistemi di questo tipo è inoltre più complessa rispetto ai sistemi 

convenzionali. Questo è dovuto alle molteplici fonti di energia e alla maggiore complessità delle 

pompe di calore decentralizzate (HP) rispetto alle sottostazioni di scambio termico. 

È stato sviluppato uno strumento per l'analisi degli scenari tecno-economici dei sistemi DHC. I dati di 

monitoraggio di una rete NT-DHC di Ospitaletto, in Italia, sono utilizzati per migliorare l'affidabilità 

del modello. Viene utilizzato un algoritmo knapsack per trovare percorsi di transizione per l'espansione 

della rete. 

Il modello può essere applicato a qualsiasi città se sono disponibili i dati necessari sulla densità di 

calore. Tuttavia, l'approccio è stato applicato al caso di studio citato in precedenza per semplicità. Il 

modello va oltre lo stato dell'arte in quanto modella le sottostazioni di HP decentralizzate, tiene conto 

di aspetti economici che i modelli fisici DH non possiedono e prevede l'ottimizzazione per identificare 

lo sviluppo migliore del sistema. È stata inoltre condotta un'analisi di sensibilità per scoprire in che 

misura, a quali condizioni di prezzo dell'energia e con quali sussidi, il concetto di NT-DHC è 

competitivo rispetto alle soluzioni individuali di riscaldamento e raffreddamento (H&C).   

I risultati del modello sono in linea con quanto qualitativamente atteso. L'algoritmo di ottimizzazione 

determina quale combinazione di potenziali sviluppi massimizza il valore economico complessivo. La 

soluzione NT-DHC è più conveniente per le zone urbane dense, mentre le pompe di calore aria-acqua 

(A/W HP) sono più adatte alle zone a bassa densità termica. Selezionando fonti di calore di scarto a 

temperature comprese tra 30 e 40°C, lo SCOP della soluzione NT-DHC può essere migliorato rispetto 

alle pompe di calore aria/acqua reversibili. Nel caso di Ospitaletto, nonostante la bassa densità termica 
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degli edifici rispetto a città più grandi, è ancora possibile identificare scenari fattibili. Questo apre 

l'opportunità a molti altri casi. 

Il potenziale di questo strumento nel settore DHC consiste nel ridurre i rischi legati alla domanda di 

energia, fornendo maggiori certezze su quali zone una rete può espandersi per essere competitiva. Si 

rivolge a pianificatori energetici, utility, ingegneri energetici e specialisti di DHC, che necessitano di 

un supporto decisionale e di raccomandazioni per replicare un nuovo tipo di sistema di DHC. Questo 

strumento consentirà di realizzare studi di prefattibilità e progetti preliminari per determinare le 

opportunità e i limiti di un sistema di questo tipo da un punto di vista economico e tecnologico. 

 

Parole chiave:  

Teleriscaldamento e teleraffrescamento a temperatura neutra, algoritmo knapsack, percorsi di 

transizione, scenari di sviluppo della rete, pianificazione energetica 
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𝐷𝑎𝑣𝑔 Average pipe diameter, mm 

𝐸𝑠  Waste heat availability, MW 

𝐸𝑐𝑎𝑝𝑠
 Source thermal capacity, MW 

𝐸𝑡ℎ,𝑠ℎ  Space heating demand, MWh 

𝐸%𝑠ℎ Space heating share with respect to total demand, % 

𝐸𝑡ℎ,ℎ Total heating demand, MWh/y 

𝐸𝑡ℎ,𝑐  Total cooling demand, MWh/y 

𝐸𝑙𝑜𝑠𝑠,𝑠 Total thermal losses on the supply pipe, MWh 

𝐸𝑙𝑜𝑠𝑠,𝑟 Total thermal losses on the return pipe, MWh 

𝐸𝑡ℎ,𝐻𝑃,𝑐 Annual thermal energy supplied at the condenser side of the heat pumps, 

MWh/y 

𝐸𝑡ℎ,𝐻𝑃,𝑒 Annual thermal energy carried from the network to the heat pumps evaporator, 

MWh/y 

𝐸𝑒𝑙,𝐻𝑃 Annual electric energy consumed by the heat pumps, MWh/y 

𝐸𝑡ℎ,𝑙𝑜𝑠𝑠 Annual thermal losses, MWh/y 

𝐸𝑡ℎ,WH  WH supplied to the network, MWh 

𝐸𝑒𝑙,𝑝𝑢𝑚𝑝 Annual electric energy consumed by the network pump, MWh/y 

𝑓ℎ Daily heating profile 

𝑓𝑒𝑚,𝑓𝑢𝑒𝑙  Fuel emission factor, tCO2eq/MWh 

𝑓𝑒𝑚,𝑒𝑙 Electricity emission factor, tCO2eq/MWh 
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𝐿𝑝𝑖𝑝𝑒𝑖,𝑗
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𝑅 Earth’s radius, km 
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𝑇𝑎𝑚𝑏 Ambient temperature, °C 

𝑇𝑏−ℎ𝑒𝑎𝑡 Base indoor temperature setpoint, °C 
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𝑒 Plot ratio 

𝜂𝑚 Compressor efficiency, % 

𝑣 Fluid velocity, m/s 

𝜏 Time constant 

𝜌 Water density, kg/m3 

𝑤 Effective width 

𝜙 Latitude 

𝛹 Longitude 



 

 

 

xxii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

1 

Introduction 

 

 

Climate change is one of the international community's most significant challenges, and experts claim 

to act worldwide to mitigate its effects. Anthropogenic greenhouse gas emissions (GHG) have 

increased since the pre-industrial era with more substantial increases between 2000 and 2010, despite 

a rising number of mitigation policies[1]. Electricity and heat were the largest sources of CO2 

emissions in 2019, accounting for 42% of the global total[2]. When allocating emissions from 

electricity to consuming sectors, the industry was the more significant emitter followed by buildings. 

The global energy demand for heating is expected to increase until 2030 and stabilize. In contrast, it is 

projected that the cooling demand worldwide will overtake that used in heating [3]. The awareness of 

global warming in the 1990s, creating the United Nations Framework Convention on Climate Change 

(UNFCCC) and the Kyoto protocol, created a renewed interest in district heating systems to replace 

fossil fuels with renewables and several low-temperature heat sources[4]. 

1.1 Background 

1.1.1 State of the art of the research field 

District Heating (DH) is an energy service that moves heat from available heat sources to customers 

via a piping network. A fundamental principle of DH today is to use local sources that would otherwise 

be wasted to satisfy the customers' heating needs [5]. DH technology has proven its advantages over 

individual heating and cooling (H&C) systems. There is growing recognition that it is a promising 

solution for reducing local and global emissions and lowering the primary energy consumption 

associated with H&C building demands. DHC systems, if properly managed, can contribute to 

reducing greenhouse gas emissions and, therefore, mitigating the effects of climate change.  

Traditional DH systems (TDH) operate typically at high temperatures (more than 80°C), giving rise to 
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high thermal losses and the need for costly piping insulation. Examples of traditional DH sources are 

co-generation plants, industrial waste heat, and incinerators, where heat is a by-product of other 

industrial processes [6]. The first three generations in the DH sector are characterized by the constant 

trend of lowering the network distribution temperature, using lean material components, and 

prefabrication to reduce human resources requirements. The fourth-generation DH (4GDH) concept 

and the definition of smart thermal grids were first introduced in [7]. This generation is defined as a 

technological and institutional concept that must fulfill several challenges to reach a future non-fossil 

heating and cooling supply: the ability to supply low-temperature (LT) DH for space heating (SH) and 

domestic hot water (DHW) to existing and new low-energy buildings; lowering the grid losses; 

introduce renewable energy sources (RES) and heat recycling from LT sources; and the strategic 

planning and motivation structures for the investments related to the transformation into a sustainable 

energy system. 

Neutral temperature district heating and cooling (NT-DHC) is a recent concept in the DH sector, which 

further lowers operating temperatures to a level equivalent to ambient and ground temperatures. The 

advantages are the thermal losses reduction in the distribution system, the direct exploitation of 

available ground sources (e.g., aquifer wells), urban low-temperature waste heat sources, and the 

possibility of providing heating and cooling using reversible heat pumps. This concept is aligned with 

the electrification trend in the energy sector. As of today, there is no consensus within the scientific 

community about labeling NT-DHC as part of the family of 4GDH technology or consider it as 

5GDH[4][8][9][10]. The concept does not seek to validate itself as the best available system, but rather 

to share the common strategy for decarbonizing the H&C energy system by replacing existing fossil-

based technologies. 

The European Commission has funded several research projects in the DH sector within the H2020 

framework. The FLEXYNETS project [6] was the first to investigate the strengths and weaknesses of 

this technology through numerical simulation activities and laboratory tests. These systems are 

currently being deployed in several real demonstrators within the ongoing projects D2grids [11], 

Life4HeatRecovery [4], and REWARDHeat [13]. Additional ongoing projects that highlight the effort 

of the EU in boosting the DHC sector are ReUseHeat [14], WEDISTRICT [15], Upgrade DH [16], 

COOL DH [17], among others. 

NT-DHC systems are new, and therefore models and tools are needed to study their applications. A 

missing aspect in current literature is the ability to model the performance of NT-DHC systems and 

draw master plans (even for traditional DH). Experimental data are scarce, preventing the development 

of validated models. Moreover, the energy modeling of systems of this kind is more complex than a 

conventional one, considering multiple energy sources and the higher complexity of HPs compared to 
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the heat exchangers used in conventional DH substations. 

1.1.2 Models and tools 

Several tools and models support the decision-makers in choosing H&C solutions for the built 

environment. The level of detail and focus varies according to their purpose (see Figure 1). They are 

typically used for energy planning or network design, with functions including demand forecasting, 

the integration of renewables, feasibility studies, etc. According to their geographical application, time 

resolution, and purpose, these simulation tools can be categorized into two main groups: detailed 

analyses at the building/district level and city/national energy planning [18]. 

The first category of tools focuses on load forecasting and simulation of a given system for a single-

building, local community, or single-project. They have a high temporal resolution and are more 

suitable for design purposes. Examples of this kind of tools are TRNSYS, HOMER, and ESP-r 

[19][20][21]. There are also detailed tools for DH modeling, called physical models, suitable for 

network design. They provide high accuracy but solving a very complex system can be 

computationally expensive due to the required number of variables. In addition, these models do not 

include decentralized heat pumps or economic data for planning. Therefore, they are not suitable for a 

comprehensive techno-economic comparison between energy scenarios. Some notable examples of 

these commercial tools are TERMIS, energyPRO, and COMSOF Heat[22][23][24]. 

The second category of tools has the property to simulate the operation and performance of energy 

supply and demand systems at a high level, including heating, cooling, electricity, transport, and water. 

These long-term energy planning models typically have a low time resolution and miss the details 

related to the modeling of DH aspects such as thermal losses along pipes, network pumping 

consumptions, and the performance of HPs on an hourly basis. Tools that fit in this category are 

EnergyPLAN [25], LEAP [26], Crystal City [27], and METIS [28]. 
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Figure 1. Models and tools characterization 

 

 

 

 

 

 

Models and tools

Purpose Design Energy planning

Geographical 

application

Single-building District
City/national

Temporal 

resolution

Seconds - minutes Hourly
Daily - years

Pros
High accuracy High sector-coupling resolution: heating, 

cooling, electricity, transport, water, etc.

Cons

• Computationally expensive

• Not suitable for comprehensive economic scenario analyses

• Lack of heat pumps substations modeling

• Lack of long-term planning

• Not suitable for DH specific analyses 

(network thermal losses, pumping 

consumptions).  

• Lack of heat pumps substations modeling

Examples
TRNSYS, HOMER, ESP-r TERMIS, energyPRO, and 

COMSOF Heat
EnergyPLAN and LEAP 
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1.2 Neutral temperature networks 

1.2.1 Sources 

A general classification of DH sources is presented in Figure 2. It shows the variety of sources suitable 

for direct exploitation in a DH network (70°C or more), as well as low and ultra-low sources that can 

be exploited through HPs. An estimation of the HPs COP is presented on the left when lifting the 

temperature to 60°C and 80°C. The neutral-temperature sources (NTS) that can be exploited in NT-

DHC networks (also classified as low-temperature sources in the literature [29][30][31]) based on their 

origin are presented in Table 1 and highlighted in the green box. 

 

Table 1. Neutral temperature sources classification by origin 

Environment Industrial/Service Commercial 

Water basins: 

rivers, lakes, sea (5-

18°C) 

Park areas suitable 

for aquifer wells or 

boreholes (10-

15°C) 

Industries and production 

companies 

Metal sector (e.g., foundries, metal 

product manufacturing) 

Plastic sector 

Food & beverage sector (e.g., large 

bakeries, wineries, dairies) 

Data centers and server rooms (15-

35°C) 

Sewage/wastewater (8-15°C) 

Subways (5-35°C) 

 

Supermarkets 

Shopping malls 

 

Service sector buildings (25-40 °C): 

Hospitals 

Hotels 

Large public buildings (municipality, 

schools) 

Large offices 

Restaurants 

Large laundries 

Swimming pools 

Gyms 
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Figure 2. Sources temperature levels classified in environmental, infrastructural, and commercial 

origin. It is important to note that any hydraulic break will typically add 5°C to the required temperature 

increase. Temperatures in sewage pipes are usually below 25°C but can exceed 40°C when carrying 

wastewater from industrial sites. The temperature of direct liquid cooling in data centers varies 

depending on which components of the data center are being cooled (CPUs have the highest 

temperature if cooled directly, other elements have lower temperatures). Source: Codema [32]. 

Adapted with permission. 

 

 

The author in [8] surveyed 40 neutral-temperature DH case studies (in the range of 10-35°C, they are 

cited in this paper as 5GDHC systems) located in Italy, Germany, Switzerland, The Netherlands, 

Belgium, UK, and Norway. Figure 3 shows their classification by source and temperature levels. In 

the survey, 62.5% of the systems were supplied by a single source, and half of these, were quasi-

infinite thermal sources (groundwater, seawater, and river). In the remaining cases, there are sources 

with a fixed capacity but constant throughout the year (excess heat, geo structure) or natural-based 

sources with a storage regeneration medium such as horizontal or vertical ground heat exchangers. The 

following subsections will discuss the two main NTS of interest in this study: ground source heat and 

waste heat. 

 



 

 

 

7 

 

 

 

Figure 3. Neutral-temperature DH case studies surveyed in [8] classified by source and temperature 

levels. 
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1.2.2 Ground source 

Figure 4 illustrates how geothermal energy systems can be classified by depth operation: shallow (less 

than 300 m) or deep (more than 300 m) fields, as well as by temperature operation: low enthalpy 

(horizontal and vertical ground source heat pumps (GSHPs)), medium enthalpy (district heating), and 

high enthalpy (power production fields). Medium and high enthalpy systems can be exploited in 

conventional DH. A NT-DHC system can be treated as a GSHP system on a district level, which 

utilizes other thermal energy sources. 

Figure 4. Geothermal energy systems classification according to depth operation[33]. 

 

A general classification of GSHPs systems is open and closed loop (horizontal and vertical 

circuit)[34][35][36]: 

• Open systems: The heat pump uses groundwater as a heat carrier. In an open system, 

groundwater wells extract or inject water from/to water layers underground ("aquifers"). It 

usually requires two wells to remove groundwater from an aquifer and reinject it in the same 

one where it was produced.  

• Closed systems: Heat exchangers are located underground (either horizontally or vertically). A 

heat carrier is circulated within the heat exchangers, transporting heat from the ground to the 

heat pump (or vice versa). Horizontal systems suit well in places with land availability. The 
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most common configurations in Europe are in series or parallel, while spiral boreholes are the 

most popular in the US. The optimal trench depth is of about 1.2 – 2 m[37]. In contrast, vertical 

systems are better suited in places with scarce land availability. Vertical ground heat 

exchangers are widely favored because the temperature below 15 to 20 m remains constant 

throughout the year. 

1.2.3 Waste heat sources 

Heat recycling refers to the general term for recovery of heat to be reused before released to the ambient 

temperature[4]. Excess heat, waste heat (WH), surplus heat are synonyms for the produced heat of a 

process but not utilized [38]. It is expected that DH in a renewable energy society will require less 

excess heat from CHP plants since traditional power plants will be less dominant in the electricity 

market. In contrast, the DH technology must be redesigned to allow the utilization of local, almost free 

ambient and low-temperature sources. 

The integration of WH into DH networks (DHN) is intended to increase energy efficiency, save energy, 

reduce carbon footprints, and decarbonize the energy sector[30][39]. WH complements other 

renewable energy sources (RES) such as solar thermal, geothermal, and biomass for the transition to 

more sustainable energy systems. As outlined in [39], each of these sources have advantages and 

disadvantages. As in the case of solar thermal, RES technologies are mature, highly efficient, and 

reliable, but they could also be intermittent and present a mismatch between supply and demand. Other 

technologies, such as geothermal and biomass, are safe and modular, but highly dependent on 

geographical conditions. Low-enthalpy WH sources are found in urban areas near end-users and 

provide consistent production year-round. Even so, there are still many urban sources in the literature 

that have yet to be explored[29][40]. 

WH utilization encounters several non-technical limitations. The lack of legal frameworks for 

stakeholders to be involved in WH recovery projects is a barrier, so policy upgrades are needed. In this 

sense, long-term contracts could lower the risks involved in this kind of project. WH projects are also 

adversely affected by the fact that, currently, there are monetary incentives that favor other RES and 

the efficiency of CHP solutions, making it very challenging to attract investment[4]. According to [41], 

the authors assessed the potential for WH recovery from data centers in Northern European countries 

and found that lack of transparency on the business models and getting economic benefits from the 

heat sales are among the main barriers to its adoption. Furthermore, the bureaucracy involved is also 

a limitation to advancing and replicating these projects, so easing the permitting process would be 

beneficial. 

Heat can be integrated directly in a DHN when the process that produces the heat falls within the range 
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of the supply temperature via heat exchangers (as occurs in the thermal power generation and high-

temperature industrial processes)[29]. For the integration of lower-temperature sources, however, HPs 

are required either in the production site or in the users’ substations to raise the source temperature to 

levels proper for consumers. The model focuses on the latter case. 

Several research studies have been conducted in the context of mapping and quantifying WH and RES 

that are suitable for DH systems, such as in Denmark [42][43], UK [44][45], Sweden [46], Germany 

[47], Spain [48], and Italy [49][50]. In addition, the MEMPHIS project [51]developed an international 

applicable methodology to assess WH potential. The developed platform promotes the exploration of 

spatially distributed WH sources. In summary, WH potential in the urban context can be quantified 

using a variety of methods, maps, tools, and studies, though this field is still developing. 

1.2.4 Environmental impact and opportunities 

According to Frederiksen and Werner [52], in the context of climate change and local emissions 

reduction, DH systems are an environmental opportunity for seven reasons: 

 

1. WH recycling reduces the need for primary fuels, which will often lead to lower emissions. 

An industry can recycle WH into a DH system to replace individual boilers at buildings 

that are connected to the grid. 

2. DH can introduce RES such as biomass and geothermal energy. This and the previous 

argument may contribute to the mitigation of climate change. 

3. In large scale combustion boilers, pollution equipment become more efficient and 

affordable. In contrast, small boilers do not have the proper equipment for the capture of 

particulates. 

4. DH utilities can monitor the fuel quality, something that is not necessarily of concern to 

individual homeowners. For example, in some countries, it is common practice to burn any 

type of material, including old railroad ties, timber treated with pesticides, tires, and even 

municipal solid waste. Burning such materials might harm residents. Even biomass that 

could be mistakenly considered an environmentally friendly source, if improperly 

combusted, can result in significant harmful emissions, such as polyaromatic hydrocarbons, 

which are known carcinogens. Wood and coal emissions have been linked to serious health 

problems such as respiratory and cardiovascular diseases, as well as cancer. The World 

Health Organization numbers report that indoor air pollution from fuel use for household 

energy in 2012 led to 4.3 million deaths worldwide, with six out of ten deaths occurring 

among women and girls.[53]. 
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5. DH operators can sell the byproducts of large-scale thermal plants in secondary markets, 

such as the gypsum produced in sulphuric scrubbers utilized for cement production. 

6. Due to the previous arguments, legislators can implement more strict emissions standards.  

7. A DH operator can continuously monitor the emissions to meet the legal standards. Legal 

demands for non-compliant large-scale equipment can be realistically enforced by 

addressing the responsibility to a professional plant manager, while this would not be 

possible for small-scale equipment owners. 

 

As stated in the first two arguments, NT-DHC networks share the same environmental benefits as DH 

systems generally, with the additional advantage that no combustion process is required, alleviating 

much of the local pollution problem. In contrast, the relevant environmental impact of the NT-DHC 

system can be attributed to its electricity use. As a result, from a life cycle perspective, the quality of 

electricity becomes crucial.  

This study used emission factors derived from the latest dataset (2017) from the Covenant of Mayors 

for Climate and Energy initiative [54]. In this database, the emission factors for local inventories vary 

depending on the country, calculation method used (standard or LCA approach), and the reference 

year. The default value for gas emissions is assumed 0.202 tCO2-eq/MWh according to the standard 

IPCC values from 2006. Electricity emission factors are updated until 2013, so it is recommended that 

users of the model check country-specific reports for more updated values. 

The impact of carbon emissions is assessed in all competing scenarios by introducing a carbon tax. 

The consensus among experts is that a uniform global carbon price should be higher than the current 

global average carbon price of $3 per ton of CO2 (for European rates see Figure 5). Global experts on 

carbon pricing compiled recommendations from 400 publications across 40 countries and found that, 

on average, they do not support the notion of freeriding; the introduction of border carbon adjustment 

(BCA) facilitates higher unilateral carbon price recommendations, and BCA facilitates higher levels 

of agreement on carbon prices[55]. 

The European Commission in July 2021 exposed its plans to make importers and non-EU 

manufacturers pay for the carbon emissions associated with the materials and goods they sell in the 

EU[56]. This tax is an integral part of a broader reset of the EU’s climate change policy. The significant 

impact will be on the cost of high-carbon inputs such as steel, cement, aluminium, chemicals, and 

electricity, after its complete implementation in January 2026. EU importers and non-EU producers of 

these inputs will be required to pay an estimated €75/ton of CO2 emissions[57]. 
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Figure 5. Carbon taxes in Europe per metric ton of CO2 as of April 2021[56]. 

1.3 Objectives and Scope of thesis work 

The project scope is to develop an innovative and reliable model for the technical, economic, and 

environmental performance of NT-DHC systems. In this context, the present work aims to achieve the 

following specific objectives:  

• To develop a new methodology for the techno-economic scenario analysis of NT-DHC systems 

and validate it on a case study.  

• To apply an optimization model to identify transition pathways for the network extension and 

its application to the case study. 

The findings from this research are intended to contribute to the planning of potential network 

expansions by identifying the transition pathways from an initial phase to a final stage. Energy 

planners, utilities, energy engineers, and DH specialists are the intended audience since they require 

decision-making support and recommendations for replicating the NT-DHC system. In Ospitaletto, 

Italy, the operation of a real network will provide valuable data to improve the model's reliability and 

verify the main energy outputs. 
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1.4 Motivations and research questions 

In the DHC sector, techno-economic assessments (TEA) are typically centered around optimal 

operation solutions to enhance existing systems. Instead, this project provides an approach for the TEA 

of developing areas where DH is not present. In addition to optimal investment allocation, this project 

will investigate the cost-effective operation of NT-DHC networks. The development of a tool for 

scenario analysis of NT-DHC based on reversible HP substations will aid in the energy planning of 

future energy systems, allowing for the identification of robust solutions. The outcome is expected to 

be used for pre-feasibility studies and preliminary design of a new type of DHC network. These 

findings will contribute to a deeper understanding of the opportunities and constraints of a system of 

this kind from a techno-economic standpoint. 

A key advantage of the proposed model is its ability to simultaneously analyze techno-economic 

energy scenarios at high temporal resolution, including HP's modeling. This feature has become 

increasingly important, given the attention towards the sector coupling potential of NT-DHC networks 

(a feature that is presently missing from current DHC tools).  

 

The research questions that drive this work are: 

• RQ1. Is it feasible to expand a NT-DHC network efficiently using available waste heat sources? 

• RQ2. Which conditions (technical, economic, environmental) make the NT-DHC solution 

more competitive than individual solutions? 

• RQ3. Is it possible to identify optimal expansion strategies, minimizing the overall costs and 

emissions (through carbon taxes)? 
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1.5 Methodology 

The research questions and primary objective of this work are addressed through the development of 

a tool that follows the methodology presented in the following Figure: 

Figure 6. Model methodology. The colors represent separate calculation blocks. The yellow box 

represents the base DHC techno-economic model. This calculation block is called iteratively in every 

extension scenario as part of the new extension and optimization model. 

 

The entire methodology is meant to be simple and approximate. It preserves the detail level of the 

original techno-economic tool that is comprised within this approach. 

The first part of the methodology outlines the possible areas where the network can expand, and the 

potential neutral-temperature sources (NTS) utilized. The spatial resolution used to analyze the NT-

DHC network scenarios corresponds to the urban scale. A Functional Unit (FU) of 1 km2 of residential 

areas was established. This choice was motivated by previous publications in which a reference area 

of this size has already been investigated [58][59]. The required input data comes from the mapping 

tool Hotmaps [60]. This tool uses a top-down statistical method to estimate the H&C demands of any 

European city zone with a spatial resolution from the hectare to the national level.  
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In the absence of information on how the built environment is organized, the model divides the FU 

into clusters with a peak thermal power not larger than the capacity of the available sources. Cluster 

analysis corresponds to an unsupervised machine learning task involving natural data grouping. Many 

clustering methods are available, and no single best clustering algorithm for all cases exists. Therefore, 

a test was carried out to find the method that provides the optimal number of clusters given a limited 

available thermal power to exploit. It was found that the Spectral Clustering method from the scikit-

learn library [61] can perform this task. This method was applied to the case of Ospitaletto, selecting 

a FU of interest from the city center (see Figure 7).  

In addition to the aggregation of residential areas into clusters, special buildings (commercial, public, 

schools, etc.) are also candidates to be connected to the network. The main distinction concerning 

residential buildings is that special buildings (SBs) exhibit different H&C profiles, both daily and 

seasonal.  

Estimating the length of a network involves both distribution and service pipes installations. The first 

category corresponds to the main backbone to connect the sources with the potential loads (inter-

distance). Through the geometrical centroid of a number of sources points (latitude and longitude 

coordinates), a Virtual Source Point (VSP) can be identified and connected to any potential candidate 

through their respective centroid. The pipe diameter corresponds to the largest pipe size, facilitating 

the network flow in peak conditions. The second network length category incorporates all the service 

pipes within the cluster's area for the heat delivery to the buildings in the cluster (intra-distance). This 

length is estimated through the theoretical framework introduced by Persson in [62]. The authors 

expressed the network length as a function of two parameters: the effective width, which is the ratio 

of the land area served by a network and its length, and the gross floor area of the buildings. These 

parameters are available in the open-source database from Hotmaps. Through the VSP, SBs are 

grouped similarly to sources, and the total network length required to connect them is the same as for 

clusters, except for the effective width approach. 

The algorithm calculates the extension feasibility to each potential candidate (clusters and SBs). This 

iterative process involves the hourly calculation of the NT-DHC performance: it considers the energy 

balance between sources and loads, and accounts for both heating and cooling supply. 
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(a) 

 

(b) 

Figure 7. (a) Spectral Clustering method applied to the case study. Inputs are latitude, longitude, and 

heat density of each city hectare. (b) Annual costs and revenues per candidate. The difference between 

the green line and the bars represents the net economic margin per year [€/y]. 



 

 

 

17 

In addition to the network extension costs, the operational costs include electricity consumptions of 

the HPs, use of WH and other NTS, network pumping consumptions, etc. The TEA of the best 

extension scenarios will depend on a value function that considers the economic margin (revenues 

from the H&C sales minus implementation costs, including CO2 emissions' taxes) and the maximum 

available capacity from NTS. The right panel of Figure 7 shows the breakdown of expenses assessed 

in each extension scenario (in this process, the techno-economic model shown in Figure 6 is called 

iteratively).  

In each extension scenario, the TEA of the NT-DHC solution is compared with the Business as Usual 

(BaU) cases. Benchmark technologies are reversible air-to-water HPs (A/W HPs) and individual gas 

boilers with split cooling units (individual H&C scenario). The feasibility of the system depends on 

the boundary conditions set by the model user, who will define the available and potential H&C 

sources, network operating conditions, energy prices, etc.  

An optimization algorithm selects the combination of extension choices that maximize the overall 

value of the portfolio after filtering out the choices that are more competitive compared to the BaU 

scenario. Investment allocation of potential extensions is a problem that can be framed as the 0-1 

knapsack problem, which restricts the number of candidates that can be included to zero or one. Given 

a set of 𝑛 candidates numbered from 1 to 𝑛, each with a weight of 𝑤𝑖(peak capacity) and a value 𝑣𝑖 

(economic benefit of providing energy to candidate 𝑖) along with maximum sources capacity 𝑊, the 

constraint∑ 𝑤𝑖𝑖 ≤ 𝑊 must be respected. Dynamic programming is the technique used to solve this 

problem, which reduces the complexity and, therefore, the running time in comparison to a brute force 

approach (O(𝑛𝑊) vs. O(2𝑛)). In this way, the model will prioritize the clusters or buildings that provide 

a higher value to the overall extension plan assuming a H&C service price equal to competing 

individual technologies.  

1.6 Novelty 

The methodology can be applied to any city zone with the proper heat density and geographical data. 

This approach goes beyond the State of the art because it includes modeling decentralized HPs’ 

substations, accounts for economic aspects that DH physical models do not possess and comprises 

optimization for selecting the best system extension. 

In the literature, the knapsack approach has been used in the past, but never for the allocation of 

investments in NT-DHC network extensions. The authors in [63] examined the preferences of 

consumers using residential smart meters. This mathematical formulation was applied to optimize the 

appliances costs to identify optimal consumption scenarios and support end-users in their decision 

making during peak hours. A model was built in [64] to optimize the DHN sources investment. In a 
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previous study [65], the authors used this framework to optimize DH delivery from high-temperature 

sources such as municipal solid waste and industrial WH. 

In contrast, in this model, the NT-DHC sources are considered a user’s choice. This is due to the 

difficulty in automatization because of the lack of information and the social aspects involved in such 

a decision process, including risks associated with the expected duration of a source, the industry type 

and age, and theoretical vs. practical energy potential. Consequently, this tool can be used to determine 

the transition pathways from an initial to a final network development and so plan long-term 

extensions. 

Table 2. Characteristics of the developed model 

Characteristics 
 

Scope Simulation and investment optimization of H&C scenarios 

Time resolution Hourly (8760 h) 

Spatial resolution 
City level. From building groups to hectare cells to clusters of 

hectares. 

Urban sources type Multi-sources: integration of ground-based with waste heat sources 

Sources availability Multi-source thermal availability profiles 

Loads typologies 
Special buildings (schools, commercial, offices, etc.) and 

residential zones are aggregated in clusters. 

Load profiles  
Specific heat load profiles in special buildings and climate-

dependent profiles for clusters 

Network temperature  Variable 

Network control 
Allows the implementation of specific operation strategies (sources' 

merit order). 

Economic database Yes (annualized energy and investment costs) 

Energy balance calculations Yes (thermal losses, pumping consumptions included) 

Network length methodology 
Effective width approach + network backbone based on the spatial 

distance between sources and loads 

Long-term energy planning Yes 

Storage modeling Yes 

Network extension optimization Yes 
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1.7 Thesis organization  

Chapter 2: Model methodology.  

The components of the optimization tool are described in detail in this chapter. This chapter describes 

the modelling of neutral-temperature sources, the data collection for loads, and clustering in the pre-

processing phase. The network model and techno-economic assessment are presented in sections 2.3 

and 2.4. Lastly, the optimization method is explained in subsection 2.4 and its application to the 

allocation of investments problem in the NT-DHC context is discussed. 

Chapter 3: Verification and validation.  

The base techno-economic tool for NT-DHC network scenario analysis is described, along with its 

first application to a FU in a Mediterranean climate. Even if the study is not extensively reported, its 

main findings have been published in the AiCARR journal [58]. The following steps focused on 

verifying the base model approach with a physical model and monitored data from a real NT-DHC 

network located in Ospitaletto, Italy, as stated in the first specific objective of this project. During this 

period, the upgrades described in Table 2 were implemented. The results were presented in the 15th 

Conference on Sustainable Development of Energy, Water and Environment Systems – SDEWES 

2020[66] and then published in [67]. The validation with experimental data was presented at the 17th 

International Symposium on District Heating and Cooling in Nottingham Trent University[68], and 

then published in[69].  

Chapter 4: Model application.  

For simplicity, in this chapter, the model is applied to the Ospitaletto case study to explore potential 

spatial extensions when considering a selected number of sources. Identification of potential ground 

and WH sources, technical and economic inputs, assumptions relating to energy prices, emission 

factors, and sensitivity analyses are discussed. 

Chapter 5: Results.  

This chapter investigates the technical and economic conditions under which NT-DHC can be 

competitive. Based on this work’s second specific objective, scenario analyses are conducted by 

comparing the former system with benchmark solutions and exploring its advantages and limitations. 
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Chapter 6: Conclusions and further work.  

To conclude, this chapter highlights the contribution of this thesis and prospective benefits of the 

proposed approach. An overview of the research questions, main findings, and conclusions, as well as 

future perspectives, are presented in this chapter. 
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2 

Model methodology 

 

 

This chapter has been partially presented in: 

 

S. Calixto,  M. Cozzini, and G. Manzolini, “Techno-economic tool for the evaluation of neutral-

temperature district heating and cooling networks and individual solutions”. Euroheat & Power 

conference, Hilton Brussels Grand Place, Brussels, Belgium, June 2022.  
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2.1 Neutral temperature sources and control 

In traditional DH systems with one central plant supplying heat, typically the supply and return 

temperatures are constant. In contrast, NT-DHC networks are designed to operate with multiple 

sources. A merit order is therefore needed to prioritize the sources with the goal of maximizing the 

efficiency of the HPs substations. This can be achieved by prioritizing the sources with the highest 

temperature available. Therefore, WH sources have always a higher priority with respect to ground 

sources. It is assumed that when WH is not available, a ground source satisfies the total load. 

The geothermal system can be designed to operate with an auxiliary heater to supply a peak load 

(bivalent system), such as a gas or biomass boiler[37]. An alternative arrangement is a monovalent 

system in which the ground source heat pump is oversized to meet the peak load and no back-up is 

necessary. It was assumed the second configuration, since in section 2.2.2 is explained that the system 

is designed to support the peak loads using the total WH thermal capacity. 

The ground heat is controllable, can be used as an auxiliary heater or cooler, and provides a fairly 

constant profile throughout the year (balancing systems). The auxiliary heaters, cooling towers, and 

the chiller have controllable schedules and thus can operate in the event of a surge in heating or cooling 

demand which cannot be met by the non-balancing systems or the ground source (Figure 8). 

Figure 8. Scheme of a NT-DHC network including WH and ground sources for heating and cooling 

applications  



 

 

 

23 

The modeling of sources is done as follows. The WH availability (𝐸𝑠) profiles are obtained from the 

input of the user in the form of a binary matrix (𝐴𝑠) that represents the hours (𝑛 = 1,… ,24) in a week 

(𝑝 = 1,… ,7) when a source is ready to deliver heat to the network. This method is appropriate for WH 

sources whose availability is constant throughout the year (refrigeration units in supermarkets, 

shopping malls, data centers, industrial waste heat, wastewater) and their thermal capacity (𝐸𝑐𝑎𝑝𝑠
) is 

known. The model accepts the input of maximum three sources. 

In contrast, sources that present a seasonal availability (service sector, metro stations) were not in the 

scope of this model, nevertheless, the model could be potentially expanded to accept hourly profiles 

of WH availability if this information is present. 

 

𝐸𝑠 = 𝐸𝑐𝑎𝑝𝑠
× 𝐴𝑠 ;   𝑠 = 1,2,3 2.1 

𝐴𝑠 = 

[
 
 
 
 
𝑎11 ⋯  𝑎1𝑗 ⋯ 𝑎1𝑝

⋮ ⋱ ⋮
𝑎𝑖1 𝑎𝑖𝑗 𝑎𝑖𝑝

⋮ ⋱ ⋮
𝑎𝑛1 ⋯ 𝑎𝑛𝑗 ⋯ 𝑎𝑛𝑝]

 
 
 
 

 

2.2 

 

After that the WH availability is set, and the sources temperatures are known, the model prioritizes the 

sources according to their temperature level as follows: 

𝑇𝑛𝑒𝑡,𝑠 = {
𝑇𝑔𝑠 𝑖𝑓 𝑇𝑠1 = 𝑇𝑠2 = 𝑇𝑠3 = 0°𝐶

𝑚𝑎𝑥(𝑇𝑠1 , 𝑇𝑠2 , 𝑇𝑠3)  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

2.3 

 

Figures below illustrate a fictitious example of a NT-DHC network operating in London, UK, served 

by two WH sources and a ground source. It is assumed that source 1 has priority over source 2 over 

the course of the entire year. The yellow area represents the electricity contribution characteristic from 

this kind of network. The weekly pattern is assumed to be constant throughout the year, regardless of 

the season's thermal demand. 
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Figure 9. Thermal energy delivery by source type 

 

 

 

 

 

  

(a) Winter (b) Spring 

  

(c) Summer (d) Fall 
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2.2 Loads analysis and clustering 

2.2.1 Heat density data and spatial resolution 

As the developed tool is intended to provide a broad methodology, it must use an open, accessible 

database. The Hotmaps project developed a free online database for the planning and mapping of 

heating and cooling systems for EU28 countries at national and local level[70]. Its small spatial 

resolution of 100 x 100 m sets the granularity level for this type of analysis. This toolbox's versatility 

allows to analyze H&C scenarios in any of the covered countries. Obtaining a more realistic 

representation at a more granular level (at the building level) would require more information than is 

currently available. Even then, retrieving or managing large amounts of data can be difficult and time-

consuming. 

Hotmaps generates raster maps with typical building stock indicators (H&C heat density, gross floor 

area, buildings volume, etc.) covering the entire EU28 building stock. The map was derived from 

aggregated values including data from the 2011 Eurostat census, land use data, the European 

Settlement Map layer, data from the Global Human Settlement project, and data from 

OpenStreetMap[71]. Online data tools were used to extrapolate and assemble data during the data 

collection process. Data was obtained from the TABULA web-tool [72] for the residential sector, and 

from the EU building database for the commercial sector. In the process of generating the Hotmaps 

default datasets, quality, completeness, accuracy, and reliability are critical factors. In this context, a 

questionnaire containing all features included in the database for the residential sector was sent to two 

experts from each country.  

 

Figure 10. Spatial view of a residential city quarter in Aalborg, Denmark. In the Hotmaps tool, 1 km2 

of FU was selected, and the total heat density was displayed. Each cell equals a hectare. 
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2.2.2 Clustering 

From a network manager perspective, there are at least three important aspects of interest when 

planning an expansion:  

 

• Exploiting cheap sources that are geographically identified, quantified the thermal potential, 

and assessed their level of priority when more than one source exists. 

• Procuring a stable H&C supply to secure the highest amount of energy sold. Long-term 

contracts with the thermal providers would allow to reduce the risks of shortage. 

• Minimizing the network length needed to connect sources with loads to reduce costs. 

 

In contrast to conventional DH thermal plants, NT-DHC systems rely on sources with limited capacity, 

sometimes less than 1 MW as in the case of supermarkets [73][30]. As a result, it is assumed that it is 

very unlikely to evaluate scenarios where a source can satisfy the H&C demands of an entire city or 

even the FU defined in this approach. Therefore, identifying the communities to be served must be 

identified such that technically these sources could provide thermal energy in peak conditions. The 

following assumptions were accounted for in this process: 

 

• The loads must be aggregated in an adjacent form: this requirement would minimize the 

distribution network piping, and therefore the costs. 

• The loads (or the aggregation of loads) thermal peak power cannot exceed the sources capacity. 

• The aggregation method should give the flexibility to modify the number of clusters and their 

size to match the source capacity constraint. As a result, the method can be adapted to as many 

contexts as possible. 

• The loads aggregation method must be computationally manageable. A test should be 

necessary to recognize whether the execution time escalates with the number of partitions. 

• Reducing the discretization level would allow to reduce the computational effort when 

managing large datasets.  

• It is not foreseen to embed a streets’ map where a network can be potentially installed. In 

contrast, the calculations of the distribution network length would follow the aggregate 

approach developed by Persson for traditional DHN[62]. Therefore, the spatial and heat density 

limitations of this method should be aligned with the selected discretization.  

 

The aggregation process can be addressed by applying a clustering algorithm: a machine learning 
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process that aggregates similar data points into the same cluster and assigns less similar points to other 

clusters. Scikit-learn [61] proposes several clustering algorithms; the following table lists the required 

parameters for the most common clustering techniques. 

A proper number or size of clusters (n, epsilon, or any other clustering parameter) depends on the 

capacity restrictions mentioned previously. A test was therefore conducted in which, iteratively, the 

number of clusters was provided to a clustering algorithm. As a result, the size of the clusters is reduced 

so that the largest cluster size does not exceed the capacity restriction.  

According to Table 3, the methods that accept the number of clusters as input are K-Means (KM) and 

Spectral Clustering (SC). Ideally, the outputs will present even cluster sizes, not necessary a flat 

geometry, and the number of clusters should be minimal to preserve the aggregate approach and speed 

up the a posteriori techno-economic evaluation. The Gaussian mixture (GM) method was also tested 

since it also allows to vary the number of elements in the cluster. 

The case of Aalborg University in Denmark, which belongs to the Life4HeatRecovery project[12], is 

used for testing purposes. A polygon of about 2 km2 was selected from the immediate vicinity, as 

shown in Figure 11. This corresponds to 86 data cells with 21.43 GWh/year total heat demand. Based 

on this example, four NT-DHC sources were identified through a spatial search and selected. It is 

assumed that a source with capacity 1.6 MW sets the cluster-size threshold. 

This preliminary comparison (see ) exhibits that even if initially the algorithms provide a similar 

solution, the GM method creates uneven clusters sizes when increasing the granularity. The 

comparison between KM and SC is less straightforward, but their differences can be explained by: 

 

• KM has the limitation of assuming spherical clusters that are separable so that the mean 

converges towards the cluster center. The clusters are expected to be of similar size, so that the 

assignment to the nearest cluster center is the correct assignment. This strong assumption might 

lead to inaccurate cluster splitting.  

• SC does not make assumptions with regards to the statistics of the clusters. 

• SC methods are easy to implement and fast for sparse datasets up to several thousand[74]. 

• KM assumes a flat geometry while SC algorithms do not make assumptions about the clusters’ 

shape/form. 
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Table 3. A comparison of clustering methods [61] 

Method Parameters Use case Flat geometry Metric used 

K-Means Number of 

clusters 

General-purpose, even 

cluster size, few 

clusters 

Yes Distances between 

points 

Spectral 

clustering 

Number of 

clusters 

Few clusters, even 

cluster size 

No Graph distance 

(nearest neighbor) 

Gaussian 

mixtures 

Many Good for density 

estimation 

Yes Mahalanobis 

distances to centers 

Affinity 

propagation 

Sample 

preference 

Many clusters, uneven 

cluster size 

No Graph distance 

(nearest neighbor) 

Mean-shift Bandwidth Many clusters, uneven 

cluster size 

No Distances between 

points 

Ward 

hierarchical 

clustering 

Number of 

clusters or 

distance 

threshold 

Many clusters, 

possibly connectivity 

constraints 

N/A Distances between 

points 

Agglomerative 

clustering 

Number of 

clusters or 

distance 

threshold 

Many clusters, 

possibly connectivity 

constraints 

N/A Any pairwise 

distance 

DBSCAN Neighborhood 

size 

Uneven cluster sizes, 

outlier removal 

No Distances between 

points 

OPTICS Minimum 

cluster 

membership 

Uneven cluster sizes, 

variable cluster 

density 

No Distances between 

points 

BIRCH Branching 

factor, 

threshold 

Large dataset, outlier 

removal 

N/A Euclidean distance 

between points 
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(a) (b) 

Figure 11. Application of clustering methods to a test case. (a) Selection of the bounding box for 

Aalborg University, Denmark from the Hotmaps database. (b) Train data, each cell representing a heat 

demand point. Sources nearby are displayed.     
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 Gaussian Mixture K-Means Spectral Clustering 
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Figure 12. Application of three clustering algorithms iteratively to identify the optimal configuration 

. 



 

 

 

31 

 

Figure 13. Iterative process varying the number of clusters N to find the optimal configuration. 

 

The methods were tested iteratively varying N to find the optimal configuration that leads to a 

maximum cluster size not larger than the capacity of sources 𝑊 (Figure 13). The problem was 

formulated such that given a set of thermal power data points 𝑤1,  𝑤2, … ,  𝑤𝑁 and sources capacity 𝑊, 

a clustering method was applied to find the N subsets. The outputs of this process are presented in 

Figure 14. 

Due to the advantages mentioned previously, the SC method was selected as the default algorithm as 

opposed to the KM method. Figure 14 shows that both approaches result in the same solution for this 

case. Finally, it is noteworthy that the chosen clustering method finds the optimal configuration in a 

short period of time. The iterative clustering process of the 86 cells covering about 2 km2 in this 

example was completed in only 40 seconds. 

 

 

 

 

 

 



 

 

 

32 

 

 

 

 

 

 

 

Figure 14. Clustering methods comparison and its relationship with the capacity restriction 
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2.2.3 Space heating and domestic hot water 

The space heating profile is obtained with a time dependency according to the heating degree days 

(𝐻𝐷𝐷) method. This method is commonly used in the energy literature, accounts the amount (in 

degrees) and for how long (in hours) thermal heat is required, for a given building and climate, with 

regards to the average daily outdoor temperature (𝑇𝑎𝑚𝑏)[75].  

The space heating hourly profile (𝐸𝑡ℎ,𝑠ℎ) is obtained setting a base temperature (𝑇𝑏−ℎ𝑒𝑎𝑡). The default 

value is 15°C, in line with the average European base temperature[76], however, it can be modified by 

the tool’s user. How to choose the optimal base temperature and hourly H&C profiles (𝑓ℎ) are 

discussed in the following subsection. The calculation is performed daily and distributed hourly. Then, 

for day 𝑗 and hour ℎ: 

𝐸𝑡ℎ,𝑠ℎ(𝑗, ℎ) = 𝐸%𝑠ℎ  ×
(𝑇𝑏−ℎ𝑒𝑎𝑡 − 𝑇𝑎𝑚𝑏,𝑗 )

∑ (𝑇𝑏−ℎ𝑒𝑎𝑡 − 𝑇𝑎𝑚𝑏,𝑖 )
365
𝑖=1

× 𝑓ℎ,  𝑇𝑎𝑚𝑏,𝑗 < 𝑇𝑏−ℎ𝑒𝑎𝑡 2.4 

Building energy requirements and the European climatic zone determine the energy share required for 

space heating (𝐸%𝑠ℎ). The model allows customization of this value based on the data presented in 

Table 4. The reported data is based on the results of reference single-family housing (SFH) building 

typologies built between 1945 and 1970 [77]. Building renovations affect the energy levels and 

therefore the space heating and cooling consumption, while DHW production is constant regardless of 

climate. The entire range of building typologies can be found on the iNSPiRe project [78] website. 

Unless there is a specific ambient temperature dataset available, there are four default climatic datasets, 

representative of the following European climates: 

• Stuttgart, Germany, Continental climate 

• London, United Kingdom, Oceanic climate 

• Madrid, Spain, Southern-dry climate 

• Rome, Italy, Mediterranean climate 

Domestic hot water consumption (DHW) is not weather-dependent, and its variation is almost constant 

throughout the year. Table 4 shows the annual share of consumption of DHW. The demand in each 

day is evenly spread across the year, and the hourly distribution is obtained by multiplying the daily 

needs by a random hourly profile.  

The model contains the profiles used in [67], however, the DHW profile can be customized using free 

software that uses statistical means based on user-specific requirements[79]. 
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Table 4. Heating, cooling, and domestic hot water consumption of SFHs in different European climates 

Climate  Energy 

Level 

Space 

Heating 

Space 

Cooling 

DHW Ventilation 

 [kWh/m²y] [kWh/m²y] [kWh/m²y] [kWh/m²y] [kWh/m²y] 

Northern 

Continental  

15 23,3 9,4 21,7 5,0 

 
45 45,50 6,0 21,70 5,0  
70 73,70 5,5 21,70 0,0 

Oceanic  15 10,5 9,1 21,7 4,2  
45 42,90 5,9 21,80 0,0  
70 74,80 2,7 21,80 0,0 

Southern dry  15 11,8 34,3 21,8 4,2  
45 53,30 35,9 21,80 0,0  
70 85,60 26,6 21,80 0,0 

Mediterranean  15 16,2 33,1 21,8 4,2  
25 28,1 33,1 21,8 4,2  
70 75,90 28,4 21,70 0,0 

Nordic  15 21,5 11,8 21,7 5,2  
45 51,30 7,4 21,70 5,2  
70 76,40 8,0 21,70 0,0 

Continental  15 26,3 10,9 21,7 4,5  
45 56,30 10,1 21,70 0,0  
70 68,90 10,4 21,70 0,0 

2.2.4 Cooling 

Cooling demand data in Europe is very scarce. Indeed, the only project with reliable information on 

this regard is the EcoHeatCool project [80] which created a cooling index based on the cooling degree 

days method (𝐶𝐷𝐷) to estimate the specific demands in European countries. The CDD method follows 

the same procedure as heating degree days. The calculation aims at estimating how much (in degrees), 

and for how long in days the outdoor temperature was above a certain level.  

Base temperature estimation is not a straightforward procedure due to the multitude of factors that 

affect the selection. In the literature, [29] reports that HDD and CDD have been used at a wide range 

of temperatures. In some studies, the base temperature is defined as the “basic indoor comfort” 

level[81][82][83], others define it as the outdoor balance-point temperature [84][85][86]. Additionally, 

the HDD base temperatures vary according to country-specific conditions: in Turkey, [84] assumed 

14-22 °C, in Russia, [81] assumed 18°C, in Greece, [87] assumed 10-20°C and in Europe, [76] assumed 

15.5°C. CDD, on the other hand, varies from 10°C to 28°C [75]. Though acceptable for a preliminary 

estimate, the degree day approach is less accurate for cooling, since cooling is more influenced by sun 

irradiance and other disturbances not related to outdoor temperatures. 



 

 

 

35 

The iNSPiRe project provided a more detailed methodology for estimating the specific cooling 

consumptions in seven European climates (Southern dry, Mediterranean, Southern continental, 

Oceanic, Continental, Northern continental, and Nordic).  

The results of this study show that the cooling consumption in the residential sector ranges from 4-8 

kWh/m2y in the Nordic countries, Southern dry regions present a specific consumption of 16 kWh/m2y, 

and Mediterranean zones present the highest values up to 22 kWh/m2y (assuming a base temperature 

equal to 24-25°C) [88]. However, it was found that only a fraction of the residential building stock was 

cooled, from 50% of the floor area in the Southern dry climate, 20% in the Mediterranean to 7% in the 

Southern continental climate.  

Using a cooling factor, this model calculates the total cooling demand based on the cooling/heating 

ratio for each floor square meter. According to a study simulating a three-floor residential building in 

Bolzano, Italy, specific cooling and heating loads were calculated at 12 and 128 kWh/m2y. Based on 

Ospitaletto's southern location relative to Bolzano, this ratio was adjusted according to their HDD, 

yielding a cooling factor of 10.7%[89]. The factor means that for every square meter that is heated and 

cooled, 10.7% of the total heating load corresponds to cooling. The default simulation assumes that all 

the customers connected to the network receive the H&C service. The cooling factor can then be 

extrapolated to other applications with the specific heating and cooling consumption data. 

The cooling temporal distribution is obtained similarly to the heating distribution. Figure 16 displays 

the daily profiles retrieved from [89], but they can be customized if more information is available. 
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Figure 15. Annual cooling consumption of residential buildings-simulation results and statistical 

values[78]. 

 

 

  

Figure 16. Heating and cooling daily default profiles for residential buildings[89]. 
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2.3 Network model 

The network required to connect each potential zone is calculated based on the type of sink (clusters 

or SBs). It is divided into two components: the intra-cluster distance, corresponding to the service 

pipes required to connect buildings within a cluster/group of SBs; and the inter-distance, the primary 

network backbone that connects the sources with the loads. Rather than representing the real network 

faithfully, this structure represents a reasonable simplification of the network's length. The following 

subsections provide an overview of the methods chosen for estimating the total network costs in each 

scenario. 

2.3.1 Inter-distance 

Identified the sources and their geographical coordinates, the model estimates the required network 

length to connect them. A Virtual Source Point (VSP) is found through the geometrical centroid of a 

set of s finite points. The latitude 𝜙 and longitude Ψ are found as follow: 

 

𝑉𝑆𝑃(𝜙,𝛹) = (
∑ 𝜙𝑖

𝑠
𝑖=1

𝑠
,
∑ 𝛹𝑖

𝑠
𝑖=1

𝑠
 ) 

2.5 

Thus, the total length required to connect the sources is estimated as the total sum of Euclidean 

distances between each of the sources and the VSP. This investment is considered a fixed cost equal 

in all extension scenarios, it does not depend on how distant the sources are from the sinks.  

On the contrary, the inter-distance accounts for the differences among sources and sinks. It can be 

interpreted as the main pipe that constitutes the backbone of the network. It is estimated as the 

haversine distance between the VSP and the centroid of a cluster. This method calculates the shortest 

distance between two points on a sphere using their latitudes and longitudes measured along the 

surface, it can be expressed as follows[90]: 

 

𝑑 = 2𝑅 𝑠𝑖𝑛−1√𝑠𝑖𝑛2 (
𝜙2 − 𝜙1 

2
) + cos (𝜙1)cos (𝜙2)𝑠𝑖𝑛2 (

Ψ2 − Ψ1 

2
) 

2.6 

 

Here, d is the distance between two points, with latitude and longitude (𝜙, Ψ) and R is the Earth’s 

radius. As the Earth is nearly spherical, the haversine formula provides a good approximation of the 

distance between two points of the Earth surface, with a less than 1% error on average. 
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(a) (b) 

Figure 17. Optimal district heating network configurations. (a) Connections between a centralized 

heating plant and its consumers. (b) Star-like connection method. 

 

This method likely underestimates the real backbone since it overlooks the presence of streets or paths 

in which it is not possible to lay down a network due to technical or administrative limitations. A better 

approach would be to account for the streets using the Manhattan distance, or to overlap a layer that 

contains the streets data. However, this can be compensated when considering multiple extensions. 

When the optimal extension is found, the model proposes several backbones starting from the same 

origin (the sources centroid), resulting in a star-like shape. A visual representation of this approach can 

be observed in Figure 17. On the left, the authors in [91] presented a method for optimizing the network 

connection between a central plant and end-users. In the alternative on the right, the loads are directly 

linked to the VSP. A limitation of this approach is that the techno-economic evaluation is made 

individually, and therefore, does not reflect synergies among clusters that could lead to an optimal 

solution with a minimal total network length.   

In view of the recent development of NT-DHC networks, it is challenging to forecast how the system 

will expand in space, but if one examines the evolution of conventional networks, they tend to evolve 

based on a more complex structure (as presented in Figure 18, a typical evolution in order of increasing 

complexity). However, a more accurate representation of a real network expansion in space is beyond 

the scope of this study. 
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Figure 18. Conventional DHN designs evolution. (a) a network made of three islands, (b) a coherent 

network having a tree structure, (c) a network with a ring, and (d) a meshed network[92]. 

 

2.3.2 Intra-distance 

In the conventional DH literature, the effective width approach is a common parameter defined to 

estimate the length of a DHN by knowing urbanistic parameters such as the land area and the building 

area [93][94]. Heat Roadmap Europe has extensively used this method to estimate European countries' 

network costs and DH potential. It was described by Persson and Werner in [62] and it is estimated as 

follows: 

𝑒 =
𝐴𝐵

𝐴𝐿
 

2.7 

 

𝐿 =
𝐴𝐿

𝑤
 

2.8 

 

𝑤 = 61.8 𝑒−0.15 2.9 
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where, 

𝑒= plot ratio. 

𝐴𝐵= building space area (m2). 

𝐴𝐿= land area (m2). 

𝑤= effective width (m). 

𝐿= total trench length of the distribution network (m). 

 

Based on the Hotmaps layer data, the building area (𝐴𝐵) and land area (𝐴𝐿) are known inputs, which 

allows the trench length to be estimated. The concept of effective width can be used to quickly estimate 

network investments with a minimal number of inputs; however, it is important to note the downsides 

of this approach. Based on limited empirical evidence from a small set of cases, this study 

overestimates the effective width in low density areas, and as a result, underestimates the distribution 

costs. This issue is addressed in [95], where the author provides evidence of effective width behavior 

in sparse regions using empirical data of a DHN in Denmark. In this study, it was created a grid of 

one-hectare cells, and the parameters of interest (effective width, network length, building area, land 

area) were calculated for different aggregation of cells, by combining adjacent cells.  

 

 
(a) (b) 

 

Figure 19. Effective width in distribution pipes. (a) In a 1 ha cell size, data dispersion is large, showing 

poor regression at this scale. (b) 100 ha supercell size. It is observed a clear decreasing trend of the 

effective width for large plot ratios (high-density areas). 
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It was found that this approach statistically improves when increasing the cell size, reaching a plateau 

at about 10-25 ha supercell size. The fact that small scale cell sizes lead to poor regressions is another 

reason to keep an approach as aggregated as possible. In this model, the cells are of a size between the 

two plots presented in Figure 19. 

The total costs of the distribution network are determined by the network length and the diameters of 

the network pipes (according to a pre-determined pipe configuration described in subsection 2.4.3). 

The maximum pipe diameter is determined by the maximum expected flow rate during peak conditions 

and by the constraints on the maximum velocity and pressure drop gradient accepted in the pipes. The 

designed pressure drop (Δ𝑝) is 100 Pa/m in each pipe [94], and the design speed based on the pipe 

diameter are shown in Table 20 from Appendix A.2. 

The volume flow rate (�̇�) that is exchanged between the network and the reversible heat pumps is a 

function of the energy transferred at the evaporator(𝑄𝑒𝑣𝑎𝑝)in heating or condenser (𝑄𝑐𝑜𝑛𝑑) in cooling 

mode, the heat carrier fluid density (𝜌), the specific heat of the carrier fluid (𝑐𝑝), and the temperature 

difference (Δ𝑇) along the evaporator (or condenser): 

�̇� =
𝑄𝑒𝑣𝑎𝑝(𝑐𝑜𝑛𝑑)

𝜌𝑐𝑝𝛥𝑇𝑒𝑣𝑎𝑝(𝑐𝑜𝑛𝑑)
 

2.10 

 

�̇�𝑚𝑎𝑥 = 𝑚𝑎𝑥 (�̇�ℎ + �̇�𝑐) 2.11 

where, 

𝑄𝑒𝑣𝑎𝑝(𝑐𝑜𝑛𝑑)=thermal power at the evaporator (in heating) and condenser (in 

cooling) mode [MW]. 

Δ𝑇𝑒𝑣𝑎𝑝(𝑐𝑜𝑛𝑑)= difference between the network supply and return temperature 

[K]. 

�̇�ℎ=volume flow rate in heating mode [m3/s]. 

�̇�𝑐= volume flow rate in cooling mode [m3/s]. 

 

The maximum flow rate (�̇�𝑚𝑎𝑥) carried in the network is estimated as the highest value of the sum of 

the flow rates in heating and cooling modes in a year. It is used for sizing the network pipes as follows: 
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𝐷𝑚𝑎𝑥 = (
𝑓𝐹 × 𝜌 × 𝐿 × �̇�𝑚𝑎𝑥

2

𝜋2𝛥𝑝
)

1/5

 
2.12 

 

Where 𝑓𝐹 is the Fanning factor (1/4 of the Darcy friction factor 𝑓), 𝐿 is the pipe length, and Δ𝑝 is the 

designed pressure drop [96]. A good approximation for the turbulent flow regime is given by the 

Haaland equation, which depends on the Reynolds number (Re) and the pipe roughness (𝜀): 

𝑓 = {−1.8 𝑙𝑜𝑔 ([
6.9

𝑅𝑒
] + (

𝜀/𝐷

3.7
)
1.11

)}

−2

 
2.13 

It was assumed for turbulent flow 𝑅𝑒 =106 and 𝜀 =0.1 mm as recommended value for commercial 

steel ducts. The Darcy friction factor depends on the diameter of the pipe, but since the diameter is not 

known initially, the calculation is done in two steps. It is first assumed a friction factor 𝑓𝐹 (0.02 by 

default), and it is then used to calculate the Darcy friction factor based on a fictitious pipe diameter. 

Using this new factor in the second step, the maximum diameter for the network is determined. 

Figure 20 shows the theoretical framework of inter and intra distances applied to the clusters. The 

triangles represent the clusters centroids (VSPc) which connect with the sources centroid (VSPs) 

through a backbone (red and blue lines represent the supply and return network pipes). The intra-

distance can be interpreted as a mesh network, whose length is measured using the Persson approach, 

and whose pipe size is assumed to follow a predetermined network composition.  

Figure 21 presents the total length required to connect SBs with the sources’ centroid. The intra-

distance in this case is calculated the same way as the sources’ connection: the sum of the Euclidean 

distances between each building and the VSP. 
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Figure 20. Theoretical representation of the total network length required to connect a cluster. 

 

 

 

Figure 21. Theoretical representation of the network length required to connect SBs. 
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2.3.3 Thermal losses  

The thermal losses and gains along the NT-DHC network assume a similar heat exchange of the carrier 

fluid with the ground as in closed horizontal GSHP systems. Due to the shallow depth of the network 

trench, the ground temperature is seasonally affected by the ambient temperature. The temperature of 

the ground around the network pipes (𝑇𝑔𝑠), was estimated according to a standard textbook formula 

[97][37] as a function of the time of the year t and the depth z below the ground surface: 

𝑇𝑔𝑠(𝑡) = 𝑇𝑎𝑣𝑔 − Δ𝑇𝑎𝑚𝑝  exp (−𝑧√
𝜋

𝑡𝑐𝑦𝑐 𝛼
) cos (

2𝜋

𝑡𝑐𝑦𝑐

(𝑡 − 𝑡𝑚𝑖𝑛) − 𝑧√
𝜋

𝑡𝑐𝑦𝑐 𝛼
) 2.14 

A curve that fits the data in a periodic manner is a typical problem in physics, in this case, it was 

applied a machine learning function in Python called “optimize-curve-fit” whose role is to apply non-

linear least squares to fit a function of the type 𝑇𝑎𝑚𝑏,𝑓𝑖𝑡(𝑡) = 𝑑𝑖𝑠𝑝 + 𝑎𝑚𝑝 × cos (𝑡 × 𝑤 − ∅) to some 

input data. The fitted curve then served as input for Eq. 2.14. The resulting ambient temperature fitting 

and the consequent ground curve are presented in Figure 22. 

Figure 22. An illustration of the hourly ambient temperature (blue line), corresponding fitted curve 

(purple dashed line), and ground temperature (red dashed line). In this example, the data corresponds 

to the location of the case study presented in section 3.1. 
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The overall thermal losses on the supply (𝐸𝑙𝑜𝑠𝑠,𝑠) and return (𝐸𝑙𝑜𝑠𝑠,𝑟) pipes are estimated as a function 

of the following network characteristics: pipes lengths and diameters, pipes insulation properties given 

by an average overall heat exchange coefficient (𝑈𝑎𝑣𝑔), network supply (𝑇𝑛𝑒𝑡,𝑠) and return 

temperatures (𝑇𝑛𝑒𝑡,𝑟), and ground temperature: 

𝐸𝑙𝑜𝑠𝑠,𝑠 = 𝑈𝑎𝑣𝑔 × (𝑇𝑛𝑒𝑡,𝑠 − 𝑇𝑔𝑠) 2.15 

𝐸𝑙𝑜𝑠𝑠,𝑟 = 𝑈𝑎𝑣𝑔 × (𝑇𝑛𝑒𝑡,𝑟 − 𝑇𝑔𝑠), 2.16 

𝑈𝑎𝑣𝑔 = ∑∑ 𝑈𝑝𝑖𝑝𝑒𝑖,𝑗
× 𝐿𝑝𝑖𝑝𝑒𝑖,𝑗

𝑚

𝑗=1

𝑛

𝑖=1

, 2.17 

A correction factor 𝑈𝐶𝐹 was introduced, with the aim of finding the best match with real thermal losses 

measurements. The default value before calibration is 𝑈𝐶𝐹 = 1. 

𝐸𝑡ℎ,𝑙𝑜𝑠𝑠 = 𝑈𝑎𝑣𝑔 × [(𝑇𝑛𝑒𝑡,𝑠 − 𝑇𝑔𝑠) + (𝑇𝑛𝑒𝑡,𝑟 − 𝑇𝑔𝑠)] 2.18 

𝐸𝑙𝑜𝑠𝑠,𝐶𝐹 = 𝑈𝐶𝐹 × 𝐸𝑡ℎ,𝑙𝑜𝑠𝑠 2.19 
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2.4 Techno-economic model 

2.4.1 Network heating and cooling modes 

The temperature delivered to the buildings for SH purposes (𝑇𝑆𝐻) is estimated through a climate curve. 

This method assumes that the required SH level is in direct relation with the outdoor temperature 

(𝑇𝑎𝑚𝑏). This temperature is bounded within a minimum (𝑇𝑚𝑖𝑛,𝑖) and maximum (𝑇𝑚𝑎𝑥,𝑖) desired 

temperature that are reached based on a minimum (𝑇𝑚𝑖𝑛,𝑜) and maximum (𝑇𝑚𝑎𝑥,𝑜) outdoor 

temperatures. The climate curve is represented as: 

𝑇𝑆𝐻(𝑇𝑎𝑚𝑏) = {

𝑇𝑚𝑎𝑥,𝑖         𝑖𝑓 𝑇𝑎𝑚𝑏 ≤ 𝑇𝑚𝑖𝑛,𝑜 ,

𝑇𝑚𝑖𝑛,𝑖        𝑖𝑓 𝑇𝑎𝑚𝑏 ≥ 𝑇𝑚𝑎𝑥,𝑜 ,

𝑚 × 𝑇𝑎𝑚𝑏 + 𝑏  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 
2.20 

 

𝑚 =
𝑇𝑚𝑎𝑥,𝑖 − 𝑇𝑚𝑖𝑛,𝑖

𝑇𝑚𝑖𝑛,𝑜 − 𝑇𝑚𝑎𝑥,𝑜
 

2.21 

 

𝑏 = −𝑚 × 𝑇𝑚𝑖𝑛,𝑜 + 𝑇𝑚𝑎𝑥,𝑜 2.22 

Figure 23 displays the SH setpoints of four theoretical users in a NT-DHC network. The dashed red 

line represents the proportional interpolation of these values based on the amount of thermal power 

used by each user. The temperature required for domestic hot water (𝑇𝐷𝐻𝑊) was set to 55°C by default.  

The network users’ temperature requirements follow the same annual share of DHW and SH as that 

presented in section 2.2.3. In addition, the SH requirements follow the HDD distribution profile. 

Accordingly, applying the climate curve and the previous assumptions results in a curve whose 

monthly average pattern is shown in Figure 24. This curve should be viewed only as a representation 

of a particular case. Adaptations should be made to its application to other analyses according to 

climatic conditions influencing the energy share required for SH (𝐸%𝑠ℎ), ambient temperature (𝑇𝑎𝑚𝑏) 

and building setpoints (𝑇𝑚𝑖𝑛,𝑖 and 𝑇𝑚𝑎𝑥,𝑖). 
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Figure 23. Climate curve implemented in the model. The red dashed line represents the temperature 

delivered to the buildings for space heating purposes. 

 

Figure 24. Monthly average HP condenser outlet temperature for the SH and DHW preparation. 
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2.4.2 NTDHC substation modeling 

The HPs located on the users’ substations work in parallel, with a variable operation depending on the 

load conditions. They are modelled in an aggregate manner, since the application of this tool is to be 

able to reproduce fast estimations of potential new DH extensions with a larger number of users, under 

conditions where H&C are supplied by the same network. Thus, equation 2.23 was selected from the 

literature [98] to represent a simplified physical understanding of the HPs pool performance. In heating 

mode, this COP function depends on the average temperature leaving the HPs’ evaporators (𝑇𝑒,𝑜), 

whose values vary depending on the available sources’ temperatures; and on the required temperature 

delivered to the users at the outlet of the HPs’condensers (𝑇𝑐,𝑜). In addition, a correction factor (𝜂𝐶𝐹) 

was included in this formula, to account for phenomenological inefficiencies of the modelled system 

due to other physical events beyond the scope of this analysis: 

𝐶𝑂𝑃 = 1 − 𝜂𝑚 + 𝜂𝑚 × 𝐶𝑂𝑃𝐶  2.23  

𝐶𝑂𝑃𝐶 =
𝑇𝑐

𝑇𝑐 − 𝑇𝑒
 

2.24 

𝑇𝑐(𝑒) = 𝑇𝑐,𝑜(𝑒,𝑜) ± 𝛥𝑇𝐻𝑋 2.25 

𝐶𝑂𝑃𝐶𝐹 = 𝜂𝐶𝐹 × 𝐶𝑂𝑃 2.26 

𝐸𝐸𝑅 = 𝐶𝑂𝑃 − 1 2.27 

𝐶𝑂𝑃𝐶 corresponds to the Carnot COP, a function of the condenser 𝑇𝑐 and evaporator 𝑇𝑒 refrigerant 

temperatures. These variables were determined through the external fluid outlet temperatures at the 

evaporator and at the condenser (𝑇𝑒,𝑜 and 𝑇𝑐,𝑜, respectively), adjusted by a temperature drop at the HP 

condenser and evaporator heat exchangers (Δ𝑇𝐻𝑋), assumed to be the same in both cases (Figure 25).  

The compressor efficiency 𝜂𝑚 varies due to multiple factors such as the HPs model, size, and operating 

conditions. It was possible to retrieve both 𝜂𝑚 and Δ𝑇𝐻𝑋 from the suppliers’ machine datasheets by 

fitting equations 2.23  to 2.26 yielding the values of 53% and 2.15 K, respectively. Other effects – like 

thermal losses in substation pipes and buffers, pumping consumptions on the users’ side, differences 

between datasheet and real HP performances, losses due to HP on/offs, climatic curve inaccuracies, 

and measurement uncertainty – are comprised in the aforementioned 𝜂𝐶𝐹 factor. In the absence of 
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further information (e.g., a specific calibration, see below), the default value 𝜂𝐶𝐹 = 1 is used.  

HPs operate in the opposite direction during cooling, with the condenser serving as a heat rejector on 

the network side of the HP (Figure 25b). EER (energy efficiency ratio) is the summer's coefficient of 

performance, obtained by applying 2.27). During the summer season, the temperature on the user side 

is set to the maximum outlet temperature of 10°C. This constraint is based on the typical limits of W/W 

HPs used in residential applications[99]). In heating mode, the HPs outlet evaporator limits are 4°C 

and 18°C (although water-glycol mixtures could allow temperatures below zero), while temperatures 

as high as 60°C on the condenser outlet could make these HPs suitable for providing heat to 

conventional heating terminals such as radiators (Figure 26).  

  

 

 

 

(a) 

 

(b) 

Figure 25. NT-DHC substation scheme. (a) Heating mode (b) Cooling mode 
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Figure 26. Operating limits of a residential W/W HP used at the EURAC laboratory (nominal heating 

power of 25-30 kW). The diagram shows the operating limits assuming a 𝛥T of 5K on the evaporator 

and condenser[99]. 

2.4.3 NT-DHC economic assessment 

As opposed to the levelized cost of heat (LCOH) method commonly used in the DH literature for 

scenario analyses [30][100][101][102], the NT-DHC system can provide simultaneous heating and 

cooling through the same network, making the comparison among extension projects less 

straightforward. For this reason, the evaluation of total net present value (NPV) of each network 

extension is used as the economic indicator to measure the feasibility of a NT-DHC project.  

The NT-DHC NPV is the present value of the future cashflows from the H&C sales of the NT-DHC 

operation at a required rate of return (𝑟) compared to its initial investment. It is equivalent as 

calculating the return on investment (ROI). Converting all the future sales into today’s euros and 

comparing with the initial investment, this indicator allows to decide whether a project is worthwhile 

or not.  

The discount rate is company-specific, since it depends on how the funding is obtained. Generally, it 

is based on investors' expectations of return, or borrowing costs. The default rate of return in this 

assessment is assumed to be 3% unless otherwise specified. In the DHC sector, the most common 

business models are those owned completely by public entities, which accounts for the low rate[103]. 

In selecting this business model, the primary motivation is to ensure a positive impact that goes beyond 
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economic, but also social and environmental. This includes situations in which the economic 

profitability would not be enough to attract private capital despite its positive externalities. 

Alternatively, the payback time (PBT) and internal rate of return (IRR) are common financial 

indicators when comparing projects. The advantage of NPV is that it accounts for the time value of 

money, it is additive (the total NPV of multiple projects is the sum of the corresponding NPVs), and it 

constitutes a fast and easy metric to compare an initial investment against the present value of the 

expected returns. In practice, this indicator is calculated for each potential extension scenario as 

follows: 

𝑁𝑃𝑉(𝑟,𝑁) = ∑
(𝑝ℎ𝑒𝑎𝑡 × 𝐸𝑡ℎ,ℎ + 𝑝𝑐𝑜𝑜𝑙 × 𝐸𝑡ℎ,𝑐) × 𝑓𝑖𝑛𝑐 + 𝐶𝑓𝑖𝑥 − 𝐶𝑁𝑇−𝐷𝐻𝐶

(1 + 𝑟)𝑛

𝑁

𝑛=1

− 𝐼𝑁𝑇−𝐷𝐻𝐶  
2.28 

 

where, 

𝑝ℎ𝑒𝑎𝑡 , 𝑝𝑐𝑜𝑜𝑙= price of heating and cooling service sold through the NT-DHC network 

(€/MWh).  

𝐸𝑡ℎ,ℎ, 𝐸𝑡ℎ,𝑐= heating and cooling energy delivered to the network users (MWh/y). 

𝑓𝑖𝑛𝑐= incentive factor over the energy price sold through the NT-DHC network (i.e., a factor 

of 1.2 would represent a 20% subsidy from a public entity. The default value is set to 1). 

𝐶𝑓𝑖𝑥= fixed operation and maintenance fee. 

𝐶𝑁𝑇−𝐷𝐻𝐶 =total annual costs of NT-DHC operation. 

𝐼𝑁𝑇−𝐷𝐻𝐶 =NT-DHC investments (€). 

 

The operating costs of a NT-DHC solution (𝐶𝑁𝑇−𝐷𝐻𝐶) is subdivided into three components: operational 

expenses (𝑂𝑃𝐸𝑋), fixed operating and maintenance costs of reversible HPs (𝑂𝑀), and carbon emission 

costs (𝐶𝑡𝑎𝑥).  

𝐶𝑁𝑇−𝐷𝐻𝐶 = 𝑂𝑃𝐸𝑋 + 𝑂𝑀 + 𝐶𝑡𝑎𝑥 2.29 

𝑂𝑃𝐸𝑋 include all the expenses incurred by the network manager: variable costs of operating 

technologies such as electricity used by the HPs, auxiliary systems if any (auxiliary heater, chiller, or 

cooling tower), pumping consumptions and WH sources. WH recovery is assumed to be free in the 

default simulation, however, the model assigns a cost to this item for the user to explore different 

business models:  
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𝑂𝑃𝐸𝑋 = 𝐸𝑒𝑙,𝐻𝑃 × 𝑝𝑒𝑙,𝑖𝑛𝑑 + ∑𝐸𝑡ℎ,𝑊𝐻 × 𝑝𝑊𝐻 + ∑𝐸𝑡ℎ,𝑎𝑢𝑥,𝑗 ×
𝑝𝑓𝑢𝑒𝑙,𝑗

 𝜂𝑡𝑒𝑐ℎ
 2.30 

 

𝑂𝑀 are fixed operating costs incurred by the HPs substations. Equipment costs include all costs 

independent of the operation of the heating system, such as service agreements, spare parts, and 

insurance. Figure 27 shows the curve implemented in the model to estimate these costs. It was obtained 

by fitting the HPs data from the Danish Energy Agency database [104]. 

𝐶𝑡𝑎𝑥 are carbon emissions costs. Based on the assumption that future use of heating systems will be 

taxed, the final customer is expected to pay this cost directly or indirectly based on the estimated 

emissions: 

𝐶𝑡𝑎𝑥 = 𝑐𝑡𝑎𝑥 × 𝑓𝑒𝑚,𝑒𝑙 × 𝐸𝑒𝑙,𝐻𝑃 2.31 

 

where, 

𝐸𝑒𝑙,𝐻𝑃 =HPs electricity consumption in H&C modes (MWh). 

𝑝𝑒𝑙,ind =industrial electricity price (€/MWh). 

𝐸𝑡ℎ,WH = WH supplied to the network (MWh). 

𝑝𝑊𝐻 = WH price (€/MWh). 

𝐸𝑡ℎ,aux,j = thermal energy produced/rejected to/from the network by auxiliary system 𝑗 

(MWh). 

𝑝𝑓𝑢𝑒𝑙,𝑗 =fuel price used by auxiliary system 𝑗 (€/MWh). 

 𝜂𝑡𝑒𝑐ℎ= efficiency of the auxiliary system ( 𝑀𝑊𝑡ℎ/𝑀𝑊𝑓𝑢𝑒𝑙). 

𝑐𝑡𝑎𝑥 =carbon tax (€/t CO2) 

𝑓𝑒𝑚,el = Electricity emission factor, tCO2/MWh 
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Figure 27. Fixed O&M costs of reversible HPs. 

 

The investment in the NT-DHC solution (𝐼𝑁𝑇−𝐷𝐻𝐶) consists of investment in the network (𝐼𝑛𝑒𝑡), 

investments in reversible HPs substations (𝐼𝐻𝑃𝑠), and investments in heat recovery on the production 

sites (𝐼𝑠𝑟𝑐𝑠): 

 

𝐼𝑁𝑇−𝐷𝐻𝐶 = 𝐼𝑛𝑒𝑡 + 𝐼𝐻𝑃𝑠 + 𝐼𝑠𝑟𝑐𝑠  2.32 

 

Investment in the network (𝐼𝑛𝑒𝑡) is based on its length, diameter, and material costs. The distribution 

pipes conforming the intra-distance are made up of six categories of pipes of varying diameters. The 

fraction of each kind is scaled according to the maximum pipe diameter found in the network and is 

set according to standard network configurations[94]. However, these values can be customized if 

more information is available. 

To estimate the network piping cost, the FLEXYNETS project's costs database of network pipes is 

used. Prices were retrieved from a Danish manufacturer of DH pipes for three types of pipes (called 

SERIES 1, SERIES 2, and SERIES 3, respectively). Installation prices, on the other hand, are 

determined by Swedish experience in groundwork. The network pipe composition, default scaling 
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factors, and piping prices are shown in Appendix A.2. 

In addition, the investment in the network backbone (𝐼𝐵) assumes the maximum pipe diameter 

required. About 55% of the total network cost is expected to come from the backbone, which is sized 

according to the peak conditions. 

 

𝐼𝑛𝑒𝑡  = (∑𝐿𝑝𝑖𝑝𝑒(𝐷𝑖,) × 𝑝𝑝𝑖𝑝𝑒

6

𝑖=1

) + 𝐼𝐵 
2.33 

𝐷𝑖 = √𝑆𝐹𝑖 × 𝐷𝑚𝑎𝑥
2  2.34 

𝐿𝑝𝑖𝑝𝑒 (𝐷𝑖) = 𝑑𝑖𝑛𝑡𝑟𝑎 ∗ 𝐿𝑠ℎ𝑎𝑟𝑒(𝐷𝑖) 2.35 

𝑝𝑝𝑖𝑝𝑒(𝑚, 𝑑𝑖𝑠𝑡) = 𝑝𝑝𝑖𝑝𝑒,𝑚 + 𝑝𝑖𝑛𝑠,𝑑𝑖𝑠𝑡 2.36 

where, 

𝐷𝑖 = average pipe diameter (mm) of category 𝑖 (𝑖 = 1,… ,6). 

𝑆𝐹𝑖 =scaling factor related to pipe category 𝑖. 

𝐷𝑚𝑎𝑥 = maximum pipe diameter (mm). 

𝐿𝑝𝑖𝑝𝑒 = pipe length (m). 

𝑑𝑖𝑛𝑡𝑟𝑎 =total length composing the network intra distance (m). 

𝐿𝑠ℎ𝑎𝑟𝑒,𝑑𝑖,𝑎𝑣𝑔
= fraction of the network of category 𝑖 with diameter 𝐷𝑖,𝑎𝑣𝑔. 

𝑝𝑝𝑖𝑝𝑒 = total piping costs (€/m). 

𝑝𝑝𝑖𝑝𝑒,𝑚= piping costs with average diameter 𝐷𝑖  and material 𝑚 (€/m). 

𝑝𝑖𝑛𝑠,𝑑𝑖𝑠𝑡=piping installation costs with diameter 𝐷𝑖 in a new or existing district (€/m). 

 

The specific investment in reversible heat pumps 𝐼𝑛𝑣𝐻𝑃𝑠 was calculated using fitting data from the 

Danish Energy Agency database as presented in Figure 28 (red line). Rather, the blue line was retrieved 

from the FLEXYNETS database and obtained by applying a discount factor. It assumed that the HPs 

costs in Italy are slightly lower than the Danish case. The total investment is calculated as a function 

of the installed capacity (𝑄𝑚𝑎𝑥,𝐻𝑃). In [94] two alternative methods are described. In the first, the user 

specifies the peak electric power absorbed by a single building's HP, and then calculates the cumulated 
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peak power by multiplying the single HP by the number of buildings. In this model, however, the 

number of buildings is unknown. Therefore, the second method was chosen. The second method 

consists of calculating the peak electric power absorbed by the HPs in H&C modes and applying a 

user-defined safety factor (𝑆𝐹) for oversizing and diversity factor (𝐷𝐹) as shown in equation: 

 

𝐼𝐻𝑃𝑠 = 𝐼𝑛𝑣𝐻𝑃𝑠 × 𝑄𝑚𝑎𝑥,𝐻𝑃 2.37 

𝑄𝑚𝑎𝑥,𝐻𝑃 = 𝑚𝑎𝑥 (
𝐸𝑡ℎ,ℎ(𝑡)

𝐶𝑂𝑃
+

𝐸𝑡ℎ,𝑐(𝑡)

𝐸𝐸𝑅
) ×  

𝑆𝐹

𝐷𝐹
 

2.38 

 

 

Figure 28. Reversible HPs specific investments [104] 
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2.4.4 Individual solutions costs 

In this study, the primary motivation in choosing technologies to benchmark is to compare with the 

most common H&C systems in the residential market, and to compare with a similar distributed 

technology based on HPs, however, one that does not require a network for delivery. The following 

scenarios are investigated: 

 

• Individual systems scenario: Heat demand is met by individual gas boilers and cooling demand 

by individual split units. Also studied in [99][58]. 

• A/W HPs scenario: H&C demand supplied by means of reversible air to water heat pumps 

(A/W HPs) 

 

The gas boiler costs data comes from the Danish Energy Agency catalogue (DEA)[104]. This 

catalogue contains data from EU28 countries. As an alternative to gas boilers, it is also possible to 

select another technology from the following list if the user is interested in exploring another option: 

 

• Heat pump air-to-air, air-to-water and brine-to-water 

• Electric heating 

• Bio-oil boiler 

• Oil boiler 

• Biomass boiler automatic and manual 

• Wood stove 

• Solar heating 

 

The technology data is based on the type of building (single-family house or apartment building) and 

the renovation status (new or existing). There are four time horizons: 2015, 2020, 2030, and 2050. 

In this model, the user must manually select these values, so that the factors (𝑘1𝑖𝑛𝑣, 𝑘2𝑖𝑛𝑣, 

𝑘1𝑓𝑖𝑥𝑒𝑑𝑂𝑀
, 𝑘2𝑓𝑖𝑥𝑒𝑑𝑂𝑀

) for each technology can be determined. Table 21 from Appendix A.3 shows the 

filtered data available for gas boilers, assuming the costs for an existing apartment building (MFH) 

and 2020 reference year. 

The total costs of an individual heating system consist of four components: the annualized capital 

expenditures (𝐶𝐴𝑃𝐸𝑋𝑖𝑛𝑑), the fixed operating and maintenance costs (𝑂𝑀𝑖𝑛𝑑), the variable operational 

expenses (𝑂𝑃𝑖𝑛𝑑) and the carbon emissions costs (𝐶𝑡𝑎𝑥,𝑖𝑛𝑑): 
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𝐶𝑖𝑛𝑑 = 𝐶𝐴𝑃𝐸𝑋𝑖𝑛𝑑 + 𝑂𝑀𝑖𝑛𝑑 + 𝑂𝑃𝑖𝑛𝑑 + 𝐶𝑡𝑎𝑥,𝑖𝑛𝑑  2.39 

𝐶𝐴𝑃𝐸𝑋𝑖𝑛𝑑 correspond to the investment in the heating system, and 𝑂𝑀𝑖𝑛𝑑 covers all costs not directly 

related to the operation of the system, including maintenance, service agreements, spare parts, and 

insurance, if any. Both are functions of the maximum thermal peak of the heated area under evaluation 

(𝑄𝑚𝑎𝑥,𝑖𝑛𝑑). Based on the hourly thermal heating demand (𝐸𝑡ℎ), technology efficiency ( 𝜂𝑡𝑒𝑐ℎ), and an 

oversizing factor (𝑆𝐹), the latter is calculated as follows: 

𝑄𝑚𝑎𝑥,𝑖𝑛𝑑 = 𝑚𝑎𝑥 (
𝐸𝑡ℎ

 𝜂𝑡𝑒𝑐ℎ
) ×  𝑆𝐹 2.40 

𝐶𝐴𝑃𝐸𝑋𝑖𝑛𝑑 = 𝑘1𝑖𝑛𝑣 ×  𝑄𝑚𝑎𝑥,𝑖𝑛𝑑
1+𝑘2𝑖𝑛𝑣 × 𝛼𝑟,𝑙 2.41 

𝑂𝑀𝑖𝑛𝑑 = 𝑘1𝑓𝑖𝑥𝑒𝑑𝑂𝑀
×  𝑄𝑚𝑎𝑥,𝑖𝑛𝑑

1+𝑘2𝑓𝑖𝑥𝑒𝑑𝑂𝑀  2.42 

where, 

 

𝑘1𝑖𝑛𝑣= constant factor for the investment costs. 

𝑘2𝑖𝑛𝑣= exponent for the investment costs. 

𝑘1𝑓𝑖𝑥𝑒𝑑𝑂𝑀
= constant factor for the fixed operating and maintenance costs. 

𝑘2𝑓𝑖𝑥𝑒𝑑𝑂𝑀
= exponent for the fixed operating and maintenance costs. 

𝛼𝑟,𝑙= annualization factor, function of interest rate 𝑟 and technology lifetime 𝑙. 

 

 𝑂𝑃𝑖𝑛𝑑 correspond to the energy costs (based on an energy price 𝑝𝑓𝑢𝑒𝑙) associated with running the 

technology: 

 

𝑂𝑃𝑖𝑛𝑑 = 𝑝𝑓𝑢𝑒𝑙 ×
𝐸𝑡ℎ

 𝜂𝑡𝑒𝑐ℎ
 

2.43 

 

𝐶𝑡𝑎𝑥,𝑖𝑛𝑑 are carbon emissions costs. Based on the assumption that future use of fossil-based heating 

systems will be taxed, the final customer is expected to pay this cost directly or indirectly based on the 

estimated emissions: 
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𝐶𝑡𝑎𝑥,𝑖𝑛𝑑 = 𝑐𝑡𝑎𝑥 × 𝑓𝑒𝑚,𝑓𝑢𝑒𝑙 ×
𝐸𝑡ℎ

𝜂𝑡𝑒𝑐ℎ
 

2.44 

 

Even if the 𝐶𝐴𝑃𝐸𝑋𝑖𝑛𝑑 is underestimated by considering the aggregated thermal peak load, this should 

not affect the total individual heating costs since this is mainly driven by the energy costs (𝑂𝑃𝑖𝑛𝑑) as 

shown in Table 5. The levelized cost of heat (LCOH) was calculated as 𝐶𝑖𝑛𝑑/𝐸𝑡ℎ for three loads with 

different thermal peak, using the default data (factors for Italy, from Table 21). It was assumed a gas 

price of 100 €/MWh: 

Table 5. Individual heating (gas boilers) cost structure example 

Cluster Heat demand  Thermal peak  𝑪𝑨𝑷𝑬𝑿𝒊𝒏𝒅 𝑶𝑴𝒊𝒏𝒅 𝑶𝑷𝒊𝒏𝒅 𝑪𝒕𝒂𝒙,𝒊𝒏𝒅 LCOH  

 [MWh] [MW] [%] [%] [%] [%] [€/MWh] 

1 1560 1.29 1.48 0.54 85 13 117.5 

2 555 0.27 2.73 1.16 83.5 12.6 119.5 

3 2741 1.33 1.41 0.42 85.2 12.9 117.3 

 

The total costs of cooling technologies are divided into four components similar to those for heating 

technologies; the annualized capital expenditures (𝐶𝐴𝑃𝐸𝑋𝑖𝑛𝑑,𝑐), the fixed operating and maintenance 

costs (𝑂𝑀𝑖𝑛𝑑,𝑐), the variable operational expenses (𝑂𝑃𝑖𝑛𝑑,𝑐) and the carbon emissions costs (𝐶𝑡𝑎𝑥,𝑖𝑛𝑑,𝑐): 

 

𝐶𝑖𝑛𝑑,𝑐 = 𝐶𝐴𝑃𝐸𝑋𝑖𝑛𝑑,𝑐 + 𝑂𝑀𝑖𝑛𝑑,𝑐 + 𝑂𝑃𝑖𝑛𝑑,𝑐 + 𝐶𝑡𝑎𝑥,𝑖𝑛𝑑,𝑐  2.45 

In contrast with the method previously used for the 𝐶𝐴𝑃𝐸𝑋𝑖𝑛𝑑 and 𝑂𝑀𝑖𝑛𝑑 of heating systems, the same 

database provides the specific investment costs and fixed operating and maintenance cost factors (both 

expressed in €/kW) of the following cooling systems: 

 

• Small split units (<5 kW) 

• Big split units (>5 kW) 

• Medium chillers (A/W) (<400 kW) 

• Large chillers (A/W) (>400 kW) 

• Medium chillers (W/W) (<400 kW) 

• Large chillers (W/W) (>400 kW) 
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Using this information, 𝐶𝐴𝑃𝐸𝑋𝑖𝑛𝑑,𝑐   and 𝑂𝑀𝑖𝑛𝑑,𝑐are calculated as a function of the cumulative cooling 

capacity (𝑄𝑚𝑎𝑥,𝑐). The 𝐸𝐸𝑅 is estimated based on equation 2.27. In the cooling case, it is assumed that 

𝑇𝑒,𝑜 is the expected cooling temperature delivered on the building side (set at 10°C but customizable), 

and 𝑇𝑐 corresponds to the ambient temperature: 

 

𝐶𝐴𝑃𝐸𝑋𝑖𝑛𝑑,𝑐 = 𝐼𝑛𝑣𝑐𝑜𝑜𝑙 × 𝑄𝑚𝑎𝑥,𝑐 × 𝛼𝑖,𝑙  2.46 

𝑂𝑀𝑖𝑛𝑑,𝑐 = 𝑂𝑀𝑐𝑜𝑜𝑙 × 𝑄𝑚𝑎𝑥,𝑐  2.47 

𝑄𝑚𝑎𝑥,𝑐 = 𝑚𝑎𝑥 (
𝐸𝑡ℎ,𝑐

𝐸𝐸𝑅
) ×  

𝑆𝐹

𝐷𝐹
 

2.48 

where, 

 

𝐼𝑛𝑣𝑐𝑜𝑜𝑙= specific investment in cooling machines (€/kW). 

𝑂𝑀𝑐𝑜𝑜𝑙 =fixed operating and maintenance cost factor (€/kW). 

𝑄𝑚𝑎𝑥,𝑐= cumulative cooling capacity (kW). 

𝐸𝐸𝑅= cooling efficiency. 

𝑆𝐹= safety factor for oversizing. 

𝐷𝐹= diversity factor. This factor considers that the highest sum of powers 

coincidentally delivered by the machines of a system is still lower than the sum of 

the installed powers of the devices unless there is a perfect simultaneity in their 

operation. This diversity factor is set to 0.34 in [94]; however, the model user can 

modify it.  

𝛼𝑟,𝑙= annualization factor, function of interest rate 𝑟 and technology lifetime 𝑙. 
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Figure 29. Scheme for the competing air-sourced solution 

 

𝑂𝑃𝑖𝑛𝑑,𝑐 correspond to the electricity costs (based on the residential electricity price 𝑝𝑒𝑙,𝑟𝑒𝑠) associated 

with running the cooling technology: 

𝑂𝑃𝑖𝑛𝑑,𝑐 = 𝑝𝑒𝑙,𝑟𝑒𝑠 ×
𝐸𝑡ℎ,𝑐

𝐸𝐸𝑅
 

2.49 

The carbon emission costs (𝐶𝑡𝑎𝑥,𝑖𝑛𝑑,𝑐) of this competing solution are directly related to the emissions 

associated with the electricity production, so the costs are calculated as follows: 

𝐶𝑡𝑎𝑥,𝑖𝑛𝑑,𝑐 = 𝑐𝑡𝑎𝑥 × 𝑓𝑒𝑚,𝑒𝑙 ×
𝐸𝑡ℎ,𝑐

𝐸𝐸𝑅
 

2.50 

Finally, the costs associated with the competing solution of reversible A/W HPs are composed by the 

annualized capital expenditures (𝐶𝐴𝑃𝐸𝑋𝑖𝑛𝑑,𝐴𝑊), the fixed operating and maintenance costs 

(𝑂𝑀𝑖𝑛𝑑,𝐴𝑊), the variable operational expenses (𝑂𝑃𝑖𝑛𝑑,𝐴𝑊) and the carbon emissions costs 

(𝐶𝑡𝑎𝑥,𝑖𝑛𝑑,𝐴𝑊): 

𝐶𝑖𝑛𝑑,𝐴𝑊 = 𝐶𝐴𝑃𝐸𝑋𝑖𝑛𝑑,𝐴𝑊 + 𝑂𝑀𝑖𝑛𝑑,𝐴𝑊 + 𝑂𝑃𝑖𝑛𝑑,𝐴𝑊 + 𝐶𝑡𝑎𝑥,𝑖𝑛𝑑,𝐴𝑊 2.51 

 

𝐶𝐴𝑃𝐸𝑋𝑖𝑛𝑑,𝐴𝑊 correspond to the annualized investment costs in reversible A/W HPs (𝐼𝑖𝑛𝑑,𝐴𝑊), which 

is estimated applying equations 2.37 and 2.38. The COP and EER of A/W HPs are calculated using 

the same method as the NT-DHC substation described in subsection 2.4.2. However, in H&C modes, 
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the inlet temperature to the HP is the ambient temperature instead of the network temperature. It is 

assumed the same cost curve presented in Figure 28, unless more information is available. 

 

𝐶𝐴𝑃𝐸𝑋𝑖𝑛𝑑,𝐴𝑊 = 𝐼𝑖𝑛𝑑,𝐴𝑊 × 𝛼𝑟,𝑙 2.52 

 

𝑂𝑀𝑖𝑛𝑑,𝐴𝑊is assumed to be calculated analogously to the NT-DHC system. A residential price for 

electricity (𝑝𝑒𝑙,𝑟𝑒𝑠) is assumed similarly to individual cooling units: 

 

𝑂𝑃𝑖𝑛𝑑,𝐴𝑊 = 𝑝𝑒𝑙,𝑟𝑒𝑠 × (
𝐸𝑡ℎ,ℎ

𝐶𝑂𝑃𝐴𝑊
+

𝐸𝑡ℎ,𝑐

𝐸𝐸𝑅𝐴𝑊
) 

2.53 

 

The carbon emission costs associated with the operation of A/W HPs (𝐶𝑡𝑎𝑥,𝐴𝑊) are based on the 

electricity used, hence this emission factor is used: 

 

𝐶𝑡𝑎𝑥,𝐴𝑊 = 𝑐𝑡𝑎𝑥 × 𝑓𝑒𝑚,𝑒𝑙 × (
𝐸𝑡ℎ,ℎ

𝐶𝑂𝑃𝐴𝑊
+

𝐸𝑡ℎ,𝑐

𝐸𝐸𝑅𝐴𝑊
) 

2.54 
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2.5 Optimization 

2.5.1 Knapsack approach 

The knapsack approach is a direct way to explain how investment decisions can be made in potential 

network extensions with a limited number of WH sources and loads each with a maximum thermal 

power (MW) to be covered and an economic value (the NPV estimated in € as described in subsection 

2.4.3). This is the most common version of the knapsack problem, called the 0-1 knapsack. Its 

application dates back to 1896 and has been considered for over a century[105].  

The adaptation of the knapsack problem to this case consists of 𝑛 items, each with a weight 𝑤 and 

value 𝑣. The objective is to identify a subset of the 𝑛 items that maximize the overall value of the 

knapsack: 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ∑𝑣𝑖

𝑛

𝑖=1

𝑥𝑖   ,  𝑛 𝑖𝑡𝑒𝑚𝑠 

The total weight of the 𝑛 items (or total thermal power) cannot exceed the capacity 𝑊 (or maximum 

WH potential expressed in MW): 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑𝑤𝑖

𝑛

𝑖=1

𝑥𝑖 ≤ 𝑊   

The candidates to be incorporated into the knapsack are either included or excluded: 

 𝑥𝑖 ∈ {0,1} 

Evaluation will be limited to those items that add value to the overall knapsack (only those extensions 

whose NPV has a positive outcome): 

𝑣𝑖 ≥ 0(𝑖 = 1,… , 𝑛) 

Finally, based on the clustering process described in subsection 2.2.2, the items must be smaller than 

the knapsack to avoid trivial solutions: 

𝑤𝑖 < 𝑊(𝑖 = 1,… , 𝑛) 

The knapsack problem is considered to be NP and a hard optimization problem [106]. A trivial attempt 

to solve it would be to make an exhaustive search of all 2n possible subsets of 𝑛 items. A brute force 
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approach to solving this problem would require more than 30 years if 60 items are considered, 

assuming that a computer runs 1 billion vectors per second. This is because when increasing the 

number of items by one, the number of possible combinations doubles. 

In 1952, however, Bellman was the first that introduced the dynamic programming approach to solve 

the 0-1 knapsack problem [107]. Using dynamic programming, each of the smaller subproblems is 

solved once, and the results are recorded in a table, rather than solving overlapping subproblems 

repeatedly. This table is then used to solve the original problem. The classical dynamic programming 

approach works bottom-up [108]. 

Dynamic programming obtains a better running time compared to a brute force approach (also called 

naïve algorithm) since its time complexity is O(nW) vs. O(2n)[109]. The pseudo-code of the algorithm 

is presented in Figure 30. 

Figure 30. Pseudo-code of the dynamic programming algorithm to solve the 0-1 knapsack 

problem[106] 

The computational effort to solve the network extension problem depends on the number of periods 

selected and the number of items to optimize. Figure 31 shows an example with three consecutive 

knapsack problems solved in steps. The evaluation of the NPV of each item is linear (the current non-

optimized version of the techno-economic model takes 0.2 s). After the value of each item has been 

calculated, the average time to solve a knapsack problem is 0.05 s. Appendix A.4 contains the Python 
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script [110] which was adapted for this application.  

Finally, it is worth noting that this approach fits well with NPV as a KPI choice to measure value. In 

the knapsack approach, the optimal selection is determined by exploring the cumulative benefits of a 

group of projects. Other economic indicators that are not absolute value measures, such as the IRR, 

cannot be summed to represent the value of a portfolio of projects.  Alternatively, this could be viewed 

as a limitation of the model since this approach tends to prioritize large clusters with larger absolute 

economic margins, whereas other economic indicators such as IRR may provide additional information 

on the relative benefit of individual investments ( it may exist that a small investment creates a higher 

relative return as opposed to a large investment). 

 

 

Figure 31. Three extension scenarios formulated as consecutive knapsack problems. The algorithm, 

given a total capacity, identifies the best subset of loads that can join the system in a first step. By 

considering the remaining loads, a second subset is identified that can optimally join the network. The 

process can be repeated as many times as necessary. 
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2.6 Conclusion 

In this chapter, it is presented in detail a new methodology for the TEA of NT-DHC systems and the 

identification of future spatial expansion scenarios. The model simulations are executed with an hourly 

resolution, allows the integration of multiple WH sources, thermal availability, and temperature. The 

network control allows the implementation of specific operation strategies based on sources’ merit 

order. 

In the beginning of the chapter, spatial and heat density inputs are presented through an open-source 

mapping tool. A discussion is held about the key aspects to consider when planning a network 

expansion, and how this leads to load aggregation through clustering. A comparison of clustering 

algorithms is presented, and a test was conducted to find the most suitable for this type of application. 

The network model proposes two types of network components: the intra-cluster distance, 

corresponding to the service pipes required to connect buildings within a cluster/group of SBs; and the 

inter-distance, the primary network backbone that connects the sources with the loads. In this 

framework, the first category is calculated using literature-supported methods, whereas the second 

(star-like approach) is a novel addition to the whole methodology. Hydraulic and network sizing 

calculations are supported by previous research in the DHC sector. 

This method allows for a comprehensive TEA suitable for scenario analysis through its cost database. 

It is presented the main equations for estimating energy and investment costs of both NT-DHC and 

H&C benchmark solutions. 

By the end of the chapter, a knapsack approach is proposed for solving the optimal expansion problem 

of a NT-DHC system. A mathematical formulation of the 0-1 knapsack problem in the DHC context 

is provided. The computational advantages are discussed and its limitations. 

Consequently, this approach extends the State of the Art by modeling the performance of a network 

system based on decentralized HP substations, as well as incorporating economic factors that are not 

considered in DH physical models and optimizing the selection of the best system extension. 
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3 

Verification and calibration 

 

This chapter has been presented in the following publications: 

 

M. Cozzini, S. Calixto, S. Buffa, and R. Fedrizzi, “Reti di teleriscaldamento e teleraffrescamento 

basate su pompe di calore decentralizzate,” AICARR J., vol. 60[58]. 

 

M. Cozzini, R. Fedrizzi, S. Calixto, and G. Manzolini, “Modelling of an Existing Neutral Temperature 

District Heating Network: Detailed and Approximated Approaches,” presented at the Sustainable 

Development of Energy, Waterand  Environment  Systems, Cologne, Germany, 2020[66]. 

 

S. Calixto, M. Cozzini, and G. Manzolini, “Modelling of an Existing Neutral Temperature District 

Heating Network: Detailed and Approximate Approaches,” Energies, vol. 14, no. 2, Art. no. 2, Jan. 

2021[67]. 

 

S. Calixto, C. Köseoğlu, M. Cozzini, and G. Manzolini, “Monitoring and aggregate modelling of an 

existing neutral temperature district heating network,” presented at the The 17th International 

Symposium on District Heating and Cooling, Nottingham Trent University, Nottingham, United 

Kingdom, Sep. 2021.[68]. 

 

S. Calixto, C. Köseoğlu, M. Cozzini, and G. Manzolini, “Monitoring and aggregate modelling of an 

existing neutral temperature district heating network,” Energy Rep., vol. 7, pp. 140–149, Oct. 2021[69] 
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This chapter will focus on the base TEA model for NT-DHC network scenario analysis (represented 

as a yellow box in Figure 6). It is based on the approach of an Excel tool developed within the 

FLEXYNETS project [94]: the tool's objective was to carry out feasibility studies on implementing 

the NT-DHC concept under different scenarios. The model has a lumped parameter approach: all the 

network users are considered a single aggregated load. A single representative day per month time-

slicing is used for all profiles. The thermal sources consist of only WH plants. This feature was a 

limitation when introducing multiple thermal sources/sinks with different temperature levels in the 

study of the intra-week synergies that affect the performance of an NT-DHC network.  

It was first used for the scenario analyses related to implementing a NT-DHC that provides H&C 

services to a FU located in a typical Mediterranean area (Rome climate was chosen as a reference) 

with different availability levels of neutral-temperature WH. A parametric analysis was carried out to 

compare the conditions in which the performance of a DH system of this kind is more competitive than 

a traditional network and individual solutions. The results show an economic margin for the 

applicability of NT-DHC solutions, with an important role played by cooling [58]. 

The base model approach (also called “lumped model”) was verified with a physical model and 

monitored data from a real NT-DHC network located in Ospitaletto, Italy, as stated in the first specific 

objective of this project. The results were presented in [66] and then published in [67]. Some upgrades 

to the initial model consisted of implementing an average climatic curve to estimate temperature levels 

required for SH on the buildings' side (as described in subsection 2.4.1) and a more accurate system 

Coefficient of Performance (COP) function (see subsection 2.4.2). 

The validation with experimental data was presented in [68], and then published in [69]. By the end of 

this chapter, an improved version of the initial aggregate model had been translated into Python, and 

the upgrades described in Table 2 had been implemented.  
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3.1 Case study 

The NT-DHC network in Ospitaletto, Italy, began operating in the fall of 2018. It extracts heat from 

two sources (industrial WH and aquifer wells at about 25 °C and 15 °C, respectively). The users are 

mainly schools, all endowed with HPs substations, which raise the temperature to 55 °C, with 

variations depending on the balance between space heating (SH) and sanitary hot water (SHW) 

production. The network extends around 2 km, built with primarily non-insulated pipes, a simple tree 

structure, and a conventional 2-pipe system. The layout is shown in Figure 32a, along with the location 

of the users and sources (industrial waste heat and aquifer wells corresponds to source 1 and 2, 

respectively). In this approximate model, the aggregated thermal load of all the network users is shown 

in Figure 32b (with a pattern of 24 h for each month). 

The four users correspond to rather different sizes, with thermal powers (on the condenser side of the 

HPs) in the range of 300-800 kWth. With the operating temperatures, the COP is expected to be around 

4-5. The thermal power on the network side (i.e., at the HP evaporators) is correspondingly lower than 

the power on the user side.  

The aggregated hourly load profile (sum of the four users) shown in Figure 32b served as input for the 

physical model. This profile was estimated as follows: 

  

(a) (b) 

Figure 32. (a) Network outline. The red markers display the sources, and the blue markers the users. 

Distances are measured from source s1. s = sources and u = users. (b) Aggregated load profile of all 

the network users for 1 year (2019) with a time resolution of one single day per month. 
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• Monthly consumptions were known from (approximately) weekly readings available at each 

user for year 2019. 

• Single day consumptions were then estimated by distributing monthly consumptions 

proportionally to heating degree days, which in turn were calculated from the ambient 

temperature data retrieved by a nearby weather station. 

• Hourly consumptions were finally obtained by assuming fixed patterns for space heating (SH) 

and sanitary hot water (SHW). The SH pattern was built by averaging the available high-

frequency data measured in a few winter days. Sanitary hot water (SWH) consumptions, 

assumed basically constant daily throughout the year, were estimated from summer weeks, 

with a random pattern in the interval 06:00-23:00. 

  

(a) (b) 

Figure 33. Aggregated user load profiles (condenser side of HPs). (a) Aggregated hourly load profile 

for 1 year (2019); (b) Aggregated hourly profile for a typical winter day (16 January 2019). Solid line: 

overall load; dashed line: SHW only. 

The second source, operating when waste heat is not available, is provided by aquifer wells, pumping 

ground water in an open loop from a depth of about 40 m. The supply temperature is mostly constant 

throughout the year and equal to 15 °C (corresponding to the average ambient temperature, as seasonal 

fluctuations do not affect the ground at this depth). 

The temperature of the ground around pipes (𝑇𝑔𝑠), which is important to calculate the network heat 

losses, was calculated as described in subsection 1.2.2. Whenever 𝑧 ≠ 0, an exponential decay factor 

and a delay term appear in equation 2.14, both depending on the ground thermal diffusivity 𝛼, which 
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is here assumed to be 7 × 10-7 m2/s[37]. The network pipes are at a depth of about 1 m and the 

corresponding calculated ground temperature is represented by the black solid line in. One can 

recognize the smaller amplitude and the delay (depending on ground capacity) with respect to the 

approximated surface temperature (as seen in Figure 22). Due to the exponential term, oscillations 

quickly decrease with depth, converging towards 𝑇𝑔𝑠 ≃ 𝑇𝑎𝑣𝑔.  

The thermal losses were estimated as described in subsection 1.2.2. The supply-return network 

temperature was assumed to be at a constant 5 °C difference. As the network geometry and pipes 

characteristics were known, all the material properties were obtained from data sheets.  

The model also includes economic inputs (e.g., investment costs, energy prices, interest rates), which 

are however not discussed here. 

The model main outputs provide: 

 

• HP electricity consumptions 

• Thermal energy delivered by the network (on the evaporator side of the HPs) 

• Thermal losses 

• Pumping consumptions 

• CO2 emissions 

 

For this analysis, several default options of the original model were modified according to the input 

list provided above. Moreover, the COP function and the formula for pumping consumptions were 

updated.  

3.2 Verification with a physical model 

The physical model used here was developed by EURAC within the LIFE4HeatRecovery project. It is 

coded in Octave (preserving compatibility with MATLAB), and it describes the hydraulic and thermal 

dynamics of the network. The network geometry is implemented as a graph, with vertices positioned 

according to Figure 32a. Hydraulic boundary conditions are provided by flow rates at user vertices 

(which are calculated from the user load profiles assuming a constant supply-return temperature 

difference of 5 °C, controlled by regulating valves at HP substations) and by the pressure at a reference 

vertex. Thermal boundary conditions are provided by source temperatures. The hydraulic part is solved 

independently from the thermal part by using Kirchhoff laws at network nodes. The relation between 

pressure losses Δ𝑝 and flow rate 𝐹 is assumed to be of the type 
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𝛥𝑝 ∝ 𝐹𝑛 3.1 

while pump control basically assumes a fixed pressure difference. The solution of the thermal part 

depends instead on the hydraulic solution, as it uses a one-dimensional heat transfer equation which 

depends on velocity (and neglects thermal diffusion), namely [111] 

(𝜕𝑡 + 𝑣𝜕𝑥) 𝑇 = −
𝑇 − 𝑇𝑔𝑠

𝜏
 3.2 

where 𝑇 is the fluid temperature, 𝑇𝑔𝑠 is the ground temperature around the pipes, 𝑣 is the fluid velocity, 

and 𝜏 is a time constant. The latter is related to the overall pipe heat loss coefficient 𝑈 (which can be 

found in pipe data sheets or can be calculated with standard formulas on the basis of pipe geometric 

data and material thermal conductivities) by 𝜏 = 𝜌 𝑐𝑝 𝜋 (𝐷 2⁄ )2/𝑈, where 𝐷 is the pipe diameter and 

𝜌 and 𝑐𝑝 are respectively the water density and specific heat. Solution of Eq. 3.2 can be written as 

𝑇(𝑡, 𝑥) = 𝑇𝑔𝑠 + [𝑇 (𝑡0, 𝑥 − ∫ 𝑣(𝑡′) 𝑑𝑡′
𝑡

𝑡0

) − 𝑇𝑔𝑠] 𝑒−(𝑡−𝑡0)/𝜏 3.3 

where 𝑡0 is some initial time. Exploiting this semi-analytical solution, the outlet temperature of a pipe 

section can be calculated as a function of the inlet temperature at previous times. In practice, this was 

implemented by coding in MATLAB the analogous of the Modelica spatialDistribution() 

function[112]. 

The main inputs of the detailed model correspond to the list provided for the approximate model, 

though they of course need to be more detailed. In particular: 

 

• A load profile for each single user needs to be provided. 

• All profiles are included as full hourly profiles. 

 

Indeed, while the detailed model can in principle be run with any time step, for this analysis simulations 

were carried out with an hourly time step for a full year (i.e., 24 h × 365 = 8760 h). Flow rates, 

pressures, and temperatures are available at each vertex at any time step. 

The comparisons could only be carried out on the aggregated values and at monthly level, given that 

these are the spatial and temporary scales of the approximate model. The overall thermal consumptions 

on the user side are clearly the same for both models, as these are inputs. However, differences can be 

expected in the overall electric consumptions of the HPs (due to different detail levels in the calculation 
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of the network and user temperatures) and consequently on the network heat flows. Moreover, 

significant differences could exist for thermal losses and pumping consumptions, given the very 

simplified assumptions used in the approximate model. 

Integrating energies monthly, it is possible to get the consumptions used for the comparison. Electric 

and evaporator energies for the HPs are shown in Figure 34. These are crucial quantities for this type 

of networks, where the operating consumptions of HPs provide a major contribution to costs and 

carbon emissions (through electricity). One can see that the two models are in reasonable agreement. 

The COP function used in the two cases is the same, however the network-side and user-side 

temperatures are different: 

• Network-side temperature: the approximate model uses a constant temperature given by the 

weighted average of the source temperatures, while the detailed model uses the temperature 

derived from the propagation of the time-dependent source temperatures along the pipes 

(considering all thermal losses).  

• User-side temperature: the approximate model uses an average climatic curve, while the 

detailed model uses the actual climatic curves of the single users. 

 

 

 

 

(a) (b) 

Figure 34. Aggregated monthly energy balances for user substations. The blue curve (right axis) in 

both figures represents the percentual difference of the approximate model with respect to the detailed 

model. (a) Electric consumptions of HPs.; (b) Heat absorbed from the network (i.e., at HP condenser).  

 

The energy delivered on the HP condenser side, assuming an adiabatic system, is the sum between the 

HP electric consumptions and the heat absorbed on the evaporator (i.e., network) side. Taking the ratio 

between the condenser side heat and the HP electricity, one can get an average COP. This is reported 
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in Figure 35a. One can see that the approximate model estimates a higher COP than the detailed model. 

This is mainly due to the higher temperature assumed at the evaporator side. 

Concerning thermal losses, the predictions of the two models are reported in Figure 35b. The 

approximate estimate is typically higher than the detailed one. A major difference appears in summer. 

Here the approximate model estimates the presence of significant thermal gains, as the ground 

temperature can be higher than the network temperature, especially when waste heat is not available. 

The approximate model calculates gains and losses based on this temperature difference, regardless of 

the network operation. In the detailed model, losses and gains are calculated considering the network 

operation: during the long summer periods without significant demand, in the detailed model the 

network temperature reaches equilibrium with the ground temperature and no further heat exchange 

occurs. On the other hand, during winter the thermal losses predicted by the two models show similar 

values, showing that the general network structure assumed by the approximate model reasonably 

applies to this case. Similar conclusions can be reached based on pumping consumptions, where the 

predictions of the approximate model are about 50 % higher than the detailed model. 

 

  

(a) (b) 

Figure 35. a) Monthly values for HP COP; (b) Network thermal losses 

 

Regarding the overall yearly performance of the network, one has the results reported in Table 6. Here, 

it is observed the seasonal COP (SCOP), corresponding to the average HP COP, the yearly thermal 

energy supplied at the condenser side of the HPs (𝐸𝑡ℎ,𝐻𝑃,𝑐), corresponding to the user consumptions 

provided as an input, the yearly thermal energy at the evaporator side (𝐸𝑡ℎ,𝐻𝑃,𝑒), corresponding to the 

energy delivered by the network at user substations, the yearly electric energy consumed by HPs 

(𝐸𝑒𝑙,𝐻𝑃), the network thermal losses (𝐸𝑡ℎ,𝑙𝑜𝑠𝑠), the electricity consumptions for network pumping 
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(𝐸𝑒𝑙,𝑝𝑢𝑚𝑝), and, finally, the carbon emissions calculated from overall electric consumptions (𝐸𝑒𝑙,𝐻𝑃 +

𝐸𝑒𝑙,𝑝𝑢𝑚𝑝) multiplied by an emission factor of 0.327 tCO2/MWhel, estimated for the production mix of 

the Italian electric grid in Ref.[113]. 

Table 6. Yearly performances and energy balances for the two considered models 

Quantity Unit Approximate model Detailed model 

SCOP arb.u. 5.0 4.5 

𝐸𝑡ℎ,𝐻𝑃,𝑐 MWh/y 1558 1559 

𝐸𝑡ℎ,𝐻𝑃,𝑒 MWh/y 1249 1206 

𝐸𝑒𝑙,𝐻𝑃 MWh/y 309 350 

𝐸𝑡ℎ,𝑙𝑜𝑠𝑠 MWh/y 1045 816 

𝐸𝑒𝑙,𝑝𝑢𝑚𝑝 MWh/y 38 20 

CO2 t/y 113 121 

 

In this work, models provided results in reasonable agreement: a 15% difference in the overall 

electricity consumed by the HPs (Figure 36). According to the approximate and detailed models, the 

estimated thermal losses to the ground were 46% and 40%, respectively, due to uninsulated pipes. 

According to both models, the pumping consumptions were 2% of the total thermal energy delivered 

at the HPs' evaporators.  

  

 
 

(a) (b) 

Figure 36. Aggregated monthly energy balances for user substations result from comparing the 

approximate (APP) and detailed (DET) models. (a) Electric consumptions of HPs; the blue curve 
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represents the percentual difference between the two models. (b) Monthly consumption retrieved from 

quasi bi-weekly data made in 2019. Monthly users' demand and HP electricity consumptions are 

measured at the condenser side of the HP. Curves show the cumulative energy. 

As mentioned above, HP electric consumption, heat absorbed by HPs from the network, and average 

COP are all closely linked, and discrepancies between the two models are explained by the different 

temperature values. The detailed model also does not consider some effects: substations are very 

simplified and transient effects in the operation of multiple HPs are not considered. 

Thermal losses results (without calibration) are very strong even at such low temperatures, due to the 

use of non-insulated pipes. The detailed model indicates that 40 % of the heat injected into the network 

(via waste heat and aquifer wells) is lost in the ground (46 % according to the approximate model, 

considering a compensation between gains and losses occurring at different times of the year). In the 

network considered, waste heat is abundant and free: choosing non-insulated pipes can reduce 

investment costs without affecting operating costs. In other cases, however, it might be more 

convenient to use pre-insulated pipes (possibly with the thinnest thicknesses available). 

Both models estimated relatively low pumping consumption despite a temperature difference of only 

5°C between supply and return. According to the detailed model, the electric energy needed for 

pumping is about 1.7% of the thermal energy delivered at the HP evaporators (or about 1.0 % of the 

thermal energy injected at the sources), whereas according to the approximate model is almost twice 

as high. This is related to the sizing of pipes diameters. The discrepancy between the two models is 

rather high in this case. Additionally, improvements would be needed for the detailed model, which is 

currently neglecting some losses (e.g., head losses at pipe geometric changes), resulting in a likely 

underestimation of the actual values. 

Carbon dioxide emissions are directly related to electric consumption in this case. In fact, this is the 

only non-renewable energy source in this type of network. To properly estimate the sustainability of 

this type of district systems most attention should be devoted to the proper modeling of HPs and to the 

proper calculation of network and users' temperatures, to obtain an accurate estimation of COP. 

Finally, it is useful to report about the numerical performance of the two approaches. While the 

execution of the approximate model is basically immediate, the detailed model requires about 30 min 

to solve the considered network (about 50 vertices) for a full year with hourly time steps on a standard 

laptop with a quad-core CPU. This reveals the differences between the two kinds of models: while 

intermediate approximation levels could be chosen, a detailed model would be impractical for 

parametric analysis or optimization, where the model needs to be solved for hundreds or thousands of 

times. 
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3.3 Calibration with experimental data 

The model was then translated into Python to improve its flexibility. The lumped approach was 

preserved, but time-slicing was abandoned, upscaling the time analysis at an hourly level for an entire 

year. This also allowed the introduction of a simplified storage modeling, whose satisfactory 

implementation was previously prevented by the discontinuities created by time slicing, even though 

not required for this case study. Figure 37 shows some representative results (not reported in [67]) for 

a slight variation of the current Ospitaletto case, assuming cooling is included. 

Following the cross-verification in [67] of the approximate and detailed models, real data validation 

was undertaken. The utility that runs the Ospitaletto network made available weekly/biweekly data for 

2019 (Figure 38) and hourly data for 2020. Hourly data for 2020 also included specific measurements 

(temperatures and flow rates at different points of the network). Unfortunately, due to the Covid-19 

emergency, the overall operation of 2020 is far from being representative (schools were closed from 

early March until the reopening in September). Hence, to analyze the overall network performance a 

mixed approach was used: the yearly performance analysis was based on 2019 data, while the detailed 

analysis of single aspects (e.g., daily profiles and thermal losses) was carried out using selected 2020 

data. 

 

(a) 
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(b) 

Figure 37. Model outputs corresponding to the energy balance estimated in a scenario for the 

Ospitaletto network. (a) One representative winter week. (b) One summer week, including space 

cooling and heating for SHW. 

 

 

 

(a) (b) 

Figure 38. a) Estimated monthly consumption from quasi-biweekly measurements in 2019. Users' 

monthly thermal demand and HP electricity consumptions are measured at the HP's condenser side. 

(b) Monthly thermal demand by user. 
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Data from 2020 was used to carry out a more detailed analysis, in which different temperature 

conditions in the network are shown in Figure 39. These conditions highly depend on the sources' 

availability. The most common situation in this case study occurs when source 1 (𝑠1) is active (refer 

to Figure 32 for positions). The peak is at about 25°C. The supply temperature on position 𝑠2 (where 

the pumping station and the aquifer wells are located) has a peak at about 23°C, and the return 

temperature in the same position has a peak at 18°C. On the weekends, the network is tempered to a 

15°C supply and 11°C return levels when the industry is off. Finally, Figure 39c shows the overall 

temperature distributions at the pumping station (for all source cases). The supply-return temperature 

difference is of the order of 5 K, in reasonable agreement with the expected HP control. 

 

 

(a) 

 

(b) 
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(c) 

Figure 39. Temperature distribution in different points of the network for different operating 

conditions. (a) Distribution when source 𝑠1 is active; (b) Distribution when source 𝑠2 is active; (c) 

Overall distribution at the pumping station. January-March 2020 data. 

 

To understand the consumers' consumption behavior, it is worthwhile to differentiate summer and 

winter operation, since this corresponds to the difference between SHW and SH operating conditions, 

respectively. HPs are modeled according to a climatic curve, so their COP is influenced by the ambient 

temperature and the type of demand. Figure 40a shows the typical distribution of SHW throughout the 

day. The profiles correspond to a few days of May 2020 (18th-23rd). During the night, all users have a 

much lower consumption (zero for Users 1-3 and schools only). From 06:00 to 23:00, a random pattern 

can be observed instead. The observed order of magnitude of SHW is expected to hold for most of the 

year, so it is possible to estimate the SH demand by subtracting the estimated SHW from the overall 

measured consumption. Figure 40b analyses SH demand and their relationship with heating degree 

days (HDD): A linear relationship is observed (hourly data are used for the period January-March 

2020, so any errors associated with the SHW estimate are of less significance). This result suggests 

that a reasonable interpolation of the weekly/biweekly data of 2019 at a daily level can be done based 

on HDD. A typical daily SH profile can also be retrieved using the 2020 hourly data for interpolation 

at an hourly level. 
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(a) (b) 

Figure 40.(a) Sanitary hot water profile of all the users. (b) Linear regression between thermal energy 

and heating degree days.   

 

The analysis of the 2020 data was used to interpolate 2019 data at an hourly level. Heat demands, 

measured in the user substations condenser side (𝐸𝑡ℎ,𝑡𝑜𝑡,ℎ,𝑢𝑖
), are the sum of the heat used for SHW 

preparation (𝐸𝑡ℎ,𝑆𝐻𝑊,ℎ,𝑢𝑖
)  and SH (𝐸𝑡ℎ,𝑆𝐻,ℎ,𝑢𝑖

). In summary, assuming that the daily total heat demand 

for SH is proportional to HDD (𝐶𝑢𝑠𝑒𝑟𝑖
 ~𝐸𝑡ℎ,𝑆𝐻,𝑑,𝑢𝑖

/𝐻𝐷𝐷), a proportionality constant (𝐶𝑢𝑖
) is estimated 

from linear regression applied to HDD and daily SH demand bas on data collected from Jan 2020 to 

Nov 2020. As a result, it was possible to estimate the daily SH heat demand for 2019, which is then 

distributed according to the users' hourly relative profiles as shown in Figure 41. Using the data 

collected between February 2020 and March 2020, relative profiles are generated, assuming the 

schools are operating normally and have not been affected by Covid-19 related measures. 

 

 

Figure 41. February-March 2020 user profiles data 
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The determination of the ground temperature was done as explained in subsection 1.2.2. In this 

description of the ground behavior, the ground responds in daily or seasonal temperature cycles. 

Thermal losses on the entire network were modeled as a function of pipe lengths and diameters, pipe 

insulation properties given by an average overall heat exchange coefficient, network supply and return 

temperatures, and ground temperature. The supply-return network temperature difference (∆𝑇𝑒𝑣𝑎𝑝) 

was assumed to be at a constant 5 K due to the heat pumps’ control settings, however, a sensitivity 

analysis in the range from 3-5°C was performed in alignment with the monitoring values (Figure 39). 

As the geometry of the network and the characteristics of the pipes were known, the properties of the 

materials could be sourced from the datasheets. As with the COP estimate, a correction factor 𝑈𝐶𝐹 was 

introduced to find the best match with actual thermal losses. 

Actual network thermal losses (𝐸𝑡ℎ,𝑙𝑜𝑠𝑠,𝑛𝑡𝑤) were estimated by the difference between the total source 

thermal energy (𝐸𝑡ℎ,𝑊𝐻 + 𝐸𝑡ℎ,𝑔) and the total thermal energy delivered to the evaporator side of user 

substations’ HPs (𝐸𝑡ℎ,𝐻𝑃,𝑒). This was estimated from the difference between the thermal energy 

delivered on the HP condenser side (𝐸𝑡ℎ,𝐻𝑃,𝑐) and the HP electricity consumption (𝐸𝑒𝑙,𝐻𝑃), assuming 

an adiabatic system. The efficiency (𝜂𝑛𝑡𝑤) was then estimated as the ratio between the delivered energy 

to the users 𝐸𝑡ℎ,𝐻𝑃,𝑒  and the total energy produced (𝐸𝑡ℎ,𝑊𝐻 + 𝐸𝑡ℎ,𝐺). The timeframe considered was 

between Jan 22nd -31st of 2020, which was the only period of available data with all the necessary 

measurements. 

3.3.1 Key performance indicators 

Experimental data was typically collected on a biweekly basis, so key performance indicators (KPIs) 

were selected for comparison by integrating energy data on a monthly and annual basis. The energy 

carried by the network to the HPs evaporator side (Eth,HP,e), assuming an adiabatic system, was 

estimated as the difference between the heat delivered to the users (Eth,HP,c) and the HPs electric 

consumptions (Eel,HP). In addition, the seasonal COP (SCOP) is calculated as the ratio between the 

annual thermal energy on the condenser side and the yearly electric energy consumed at the user 

substation (SCOP = Eth,HP,c/ Eel,HP), this represents the performance of HPs only. SPF, on the other 

hand, measures the overall efficiency of the system. This includes the electricity used by the HPs and 

the pumps in the network (Eel,pump). Finally, Eel,pump  was estimated as a function of the network flow 

rates and the pump capacity in each of the network circuits (primary and secondary loops, and the 

aquifer wells circuit). Additionally to the yearly analysis, evaluating these indicators monthly allowed 

us to evaluate the seasonality effects.  
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The correction factor 𝜂𝐶𝐹 was evaluated to find the best fit with the experimental data. Several 

simulations were performed, and the modeled parameters were compared according to two metrics: an 

accuracy metric with respect to the SCOP, represented by equation 3.4), and the mean squared error 

(MSE) of the monthly COP estimates of the model according to equation 3.5); where 𝑓𝑖(𝐶𝑂𝑃) is a 

vector of residuals, 𝑚(𝐶𝑂𝑃𝑖) is the COP predicted by the model in month 𝑖, and 𝐶𝑂𝑃𝑖 is the observed 

value. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑆𝐶𝑂𝑃𝑟𝑒𝑎𝑙 − 𝑆𝐶𝑂𝑃𝑐𝑜𝑟𝑟) 𝑆𝐶𝑂𝑃𝑟𝑒𝑎𝑙⁄  3.4 

𝑀𝑆𝐸 =
1

𝑁
∑ 𝑓𝑖(𝐶𝑂𝑃)2

𝑁

𝑖=1

 
3.5 

𝑓𝑖(𝐶𝑂𝑃) = 𝑚(𝐶𝑂𝑃𝑖) − 𝐶𝑂𝑃𝑖 3.6 

 

3.3.2 Sensitivity analysis and calibration 

This analysis did not include temperature data from the user's substations on the network side. 

However, monitoring data at the pumping station could be used to estimate them. The most relevant 

case is when source 𝑠1 is active (since this occurs for more than 80 % of the time), where the estimate 

yields 𝑇𝑠1 = 22°C and ∆𝑇𝑒𝑣𝑎𝑝 = 4°C for the temperature at the HP inlet and the supply-return 

temperature difference, respectively. When these conditions apply, the hourly COP values are 

distributed in the range 4-5.6 (Figure 42). The best performance is obtained in climatic conditions 

where the outdoor air is in the range 7-20°C and when the maximum temperature supplied to the users 

is below 50°C. 𝑇𝑠1 and ∆𝑇𝑒𝑣𝑎𝑝, have a degree of uncertainty, so a sensitivity analysis was performed 

using these values, varying  𝑇𝑠1between 18 and 22°C and ∆𝑇𝑒𝑣𝑎𝑝 between 3 and 5°C. The hourly COP 

values barely change because of these changes, namely less than 5%. 
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(a) (b) 

Figure 42. COP performance map. The colors represent hourly values in the range of the color bars. 

(a) Effect of the climatic curve implemented in the model. (b)Climate influence in the COP. The points 

in dark blue indicate better performance in the spring and autumn seasons. 

 

The period from January 22nd to January 31st was used to validate the thermal loss calculation. The 

total measured losses in this period were 26 MWh, significantly lower (37 %) than the uncalibrated 

model prediction based on nominal values. Therefore, a corresponding correction factor was 

introduced. This large discrepancy is related to a shortcoming in the "default" calculations: the thermal 

losses are estimated assuming an undisturbed ground temperature at the pipe wall. This approach is 

appropriate when it comes to insulated pipes (where the insulation represents most of the thermal 

resistance) and is also applicable to district heating models, but it fails when it comes to non-insulated 

plastic pipes. The observed 𝑈𝐶𝐹 corresponds with the point at which the undisturbed ground 

temperature is reached at about 0.25 m from the pipe wall (this corresponds to assuming that an 

effective ground insulation layer of 0.25 m is present around uninsulated pipes). 

The experimental data was aggregated in a monthly basis, to compare with the predicted COP and 

SPF. Table 7 presents the model’s accuracy and the MSE when using different correction factors (𝜂𝐶𝐹) 

according to equation 2.26. The best fit is obtained for 𝜂𝐶𝐹= 75%. This means that the overall 

substation inefficiencies are on the order of 25%. While a 15% of performance loss can be expected, 

this is a relatively high correction, which might be due to the existing substations’ performance and 

the various approximations of the model. 
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Table 7. Sensitivity analysis of COP correction factor 

𝜼𝑪𝑭 SCOP Accuracy (%) MSE 

74 3.57 1.43 0.00268 

75 3.62 0.0499 3.26×10-6 

76 3.67 1.33 0.00232 

 

  
 

Figure 43. COP and SPF outputs before and after applying the correction factor that best fits the 

experimental data. 

Table 8. Annual performance and energy balances comparison 

Quantity Unit Model Monitoring Data %Diff 

Eth,HP,c MWh/y 1557.63 

𝑇𝑆1
 °C 20 22 24.28±1.9  

𝑇𝑎𝑞  °C 15.33 14.67±0.14 3.79 - 55 

SCOP arb. u. 3.61 3.64 3.62 0.27 - 0.55 

SPF arb. u. 3.16 3.17 3.11 1.61 - 2.57 

Eth,HP,e MWh/y 1125.94 1127.61 1128.9 0.11 - 0.26 

Eel,HP MWh/y 431.69 427.54 433.5 0.42 - 1.37 

Eel,pump MWh/y 49.66 50.47 65.2 22.59 - 23.83 
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3.4 Conclusion  

The TEA model validation and calibration are discussed in this chapter. It is built on the lumped 

approach of the Excel tool developed during the FLEXYNETS project. In an initial stage, a parametric 

analysis was carried out in a theoretical FU in a Mediterranean climate to assess the performance of a 

NT-DHC system using different shares of WH. The results show economic advantages of the network 

solution with an important role of cooling. 

At the beginning of this chapter, it was introduced the case study of the NT-DHC network in 

Ospitaletto, Italy. The lumped model and the physical model (also called “detailed”) are described, 

and the main technical results are compared. Due to the lump model's spatial and temporal scales, 

comparisons could only be performed on aggregated values and at the monthly level. 

It was concluded that the models provided results in reasonable agreement: a 15% difference in the 

overall electricity consumed by the HPs. According to the approximate and detailed models, the 

estimated thermal losses to the ground were 46% and 40%, respectively, due to uninsulated pipes. 

According to both models, the pumping consumptions were 2% of the total thermal energy delivered 

at the HPs' evaporators. Electric consumption of decentralized HPs, heat absorbed by the HPs from 

the network, and average COP are all closely linked, and discrepancies between the two models are 

explained by the different temperature values.  

Finally, the computational performance of both models was also reported. The lumped model can be 

executed immediately, while the detailed model takes about 30 min to solve the whole network (about 

50 vertices) for an entire year with an hourly time step. The difference between the two types of models 

is evident: whereas intermediate approximation levels can be chosen, a detailed model is impractical 

for parametric analysis or optimization. 

The second part of the chapter discusses the calibration of an upgraded lumped model with 

experimental data: the characteristics described in Table 2 had been implemented in Python. An 

integrated approach was used to analyze the overall network performance: 2019 data were used for the 

annual analysis, while selected 2020 data were used for the detailed analysis (e.g., daily profiles and 

thermal losses).  

The network relies on source temperatures between 15 and 25 °C and exhibits an SPF of 3.11. Large 

parts of the network pipes are not insulated, resulting in thermal losses of about 30%. Electric pumping 

consumptions are of the order of 4 % of the users’ thermal consumptions. The lumped model provides 

proper order of magnitudes for these values even using simplified default estimates. However, for a 

good agreement (a few percent of the difference in the most important indicators), two simple 

phenomenological coefficients must be calibrated.  
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Based on this analysis, we concluded that a lumped approach seems appropriate for such a simple 

network (most deviations can be explained by physical details unrelated to individual differences). A 

lumped model offers a quick tool for scenario analysis (the model includes costs estimates as well), a 

needed application for this innovative NT-DHC network strongly coupling electrical and thermal 

consumptions. 
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4 

Model application 

 

Chapters 4 and 5 have been partially presented in: 

 

S. Calixto,  M. Cozzini, and G. Manzolini, “Techno-economic tool for the evaluation of neutral-

temperature district heating and cooling networks and individual solutions”. Euroheat & Power 

conference, Hilton Brussels Grand Place, Brussels, Belgium, June 2022.  
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The model can be applied to any city if the proper heat density data is available. However, the approach 

was applied to the case study mentioned above for simplicity. The parameters required and 

assumptions in a default simulation for the Ospitaletto case study are detailed in the following 

subsections. The results are susceptible to these inputs; therefore, careful data collection must be 

executed a priori, and well-justified assumptions are required to perform a sensitivity analysis in the 

most critical variables. 

4.1 Sources selection 

The first step is to identify the potentially exploitable sources. In the following Figure, a survey is 

presented. Sources of different types (WH of twenty industrial sites, six supermarkets, and six parks), 

temperature level, estimated thermal capacity, and location were identified within the municipality’s 

boundaries. The three groups of sources that were selected based on temperature availability and 

proximity among them are presented in Table 9. 

 

 

Figure 44. Neutral temperature sources survey in the Ospitaletto municipality. The red markers 

represent the location of industrial sites. 
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It is assumed that the sites with industrial waste heat have a higher exploitation priority since their 

operating schedule is typically stable and continuous. Moreover, their temperature level is superior to 

the ground sources and therefore beneficial towards the performance of the NT-DHC system.  

Table 9. Sources characteristics and grouping selection 

Source Category Capacity Temperature Group 
  [MW] [°C]  

Baden Powell Park Park 1.14 15 G1 

Steel plant Industry 1.58 22 G1 

SABAF Industry 6 25 G2 

Piazza Mercato Park 12.3 15 G2 

Carrefour Supermarket 0.1 18 G3 

Ori Martin Industry 15 25 G3 

Manzoni Park Park 3.15 15 G3 

 

4.2 Loads 

Heat density data of residential buildings at the hectare level is the smallest data unit retrieved from 

the online Hotmaps database [60]. An arbitrary FU of 1 km2 from the Ospitaletto municipality was 

selected, as presented in Figure 45. The total heat demand is 35.726 MWh/y, with a peak demand of 

17.28 MW.  

The Spectral Clustering method from scikit-learn [61] is applied iteratively. Starting from one big 

cluster and increasing the granularity of the FU, the algorithm provides an output when a configuration 

is found where the largest cluster does not exceed the sources’ capacity limit (see section 2.2.2 for 

more details). This threshold should be set taking into consideration the industrial sources’ capacity in 

each group because their stable schedules and constant heat supplies are critical to network operation. 

It is observed in Table 9 that this limit comes from the smallest industrial waste heat plant available of 

1.58 MW, giving a configuration as shown in Figure 45. WH sources such as supermarkets, small 

shops, bakeries, among others, should be considered complementary sources to meet the total load, but 

not for sizing. Parks or other ground source sites are assumed to be auxiliary systems to meet the 

demand durig weekends and other times when WH plants are unavailable (see Figure 8). 
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(a) 

 

(b) 

Figure 45. (a) Clusters and source groups’ locations are symbolized in different colors. G1 in orange, 

G2 in black, and G3 in purple. The blue marker represents the centroid of SBs. (b) Heat density map 

of the clusters ranging from 555 to 2840 MWh/y. 
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4.3 Technical, economic, and environmental inputs 

4.3.1 Energy prices 

The energy prices vary considerably depending on the type of customer (residential or non-residential) 

and taxation. According to Eurostat data, the residential electricity price in Italy during the second 

semester of 2020 was 0.215 €/kWh (0.15 €/kWh corresponding to taxes and other costs)[114]. On the 

other hand, the non-residential electricity price was 0.15 and 0.175 €/kWh without and with taxes, 

respectively.  

Italy's average residential gas price has fluctuated between 0.060 to 0.080 €/kWh from 2018 to 2021, 

excluding taxes. The total gas price, including taxes and levies, varied from 0.07 to 0.095 €/kWh in 

the same period. The comparison of energy prices with and without taxes among European countries 

is shown in Figure 46. 
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Figure 46. Energy prices with and without taxes in EU countries. Source: Eurostat [114]. 

 

Table 10 summarizes the assumptions used for a default simulation. The first assumption is that NT-

DHC systems would benefit from no taxes on electricity. In contrast, the competing solutions of 

individual boilers are compared at the residential gas price, including taxes and levies, and split cooling 

units and A/W HPs operate under residential electric pricing. Finally, H&C sales assume a maximum 

heat price equal to the competing solution price (gas boilers).  

These assumptions are made since the network operator may benefit from a pricing scheme that 

residential users may not have access to. In the default scenario, it is expected that OPEX from the 

NT-DHC scenario, and possibly a good SCOP/SEER will provide an advantage over the OPEX of 

individual gas boilers and A/W HPs. Assumed H&C pricing aims at assessing feasibility by comparing 

at least the most common and current technologies. If it is possible to find feasible solutions at this 

energy pricing level, this does not limit other business cases that the energy analyst could consider. 
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Table 10. Energy prices selected for a reference scenario (€/kWh)  

Variable Value Description 

Gas 0.100 Residential price in Italy, including taxes. 

Electricity, non-R 0.150 Non-residential price in Italy, excluding taxes, 

based on 2020 data.  

Electricity, R 0.200 Residential price in Italy, including taxes. 

Heating 0.100 Assumed equal to gas price. 

Cooling 0.100 Network services are assumed to be equal for H&C. 

4.3.2 Emission factors 

In the default simulation, the selected electricity and natural gas values for the Italian case are presented 

in Table 11. The 2020 edition of emission factors in the electrical Italian grid and the main European 

countries from the Institute of Research and Environmental Protection (ISPRA for its Italian acronym) 

provides a more up-to-date value for the electricity emission factor[115]. In this report, 0.281 

tCO2/MWh corresponds to electricity consumption emissions (the equivalent of the reported values 

from [54] using a standard method) for the reference year of 2018:  

Table 11. Emission factors used in the default simulation (tCO2-eq/MWh) 

Energy carrier Value Description 

Electricity 0.281 2018 reference year (ISPRA,2020) 

Natural gas 0.202 Standard method (IPCC-2006) 

4.3.3 Techno-economic inputs 

A series of technical inputs for a default simulation are presented in the following table, based on the 

current operating conditions of the network located in Ospitaletto [69]. Detailed information about 

their application can be found in subsection 1.2.2 for the estimation of ground temperature and heat 

losses,  subsection 2.2.3 for the application of DHW and SH temperature setpoints, subsection 2.4.2 

for NT-DHC substations modeling, and 2.4.3 techno-economic assessment. 
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Table 12. Techno-economic inputs used in the default simulation 

Parameter Value Description 

𝑇𝐷𝐻𝑊 55 DHW temperature (°C) 

𝑇𝑚𝑎𝑥,𝑖 55.66 Maximum indoor SH temperature delivered to the buildings (°C) 

𝑇𝑚𝑖𝑛,𝑖  46.77 Minimum indoor SH temperature delivered to the buildings (°C) 

𝑧 1.3 Network pipes depth (m) 

𝜂𝑚 53 HPs compressor efficiency (%) 

Δ𝑇𝑒𝑣𝑎𝑝 4 Supply-return network temperature difference 

𝐶𝑂𝑃𝐶𝐹 1 Correction factor applied to the COP formula 

𝑈𝐶𝐹 1 Correction factor applied to the thermal losses’ formula 

𝑖 3 Discount rate of the project (%) 

𝑓𝑑𝑖𝑠𝑐,𝑖𝑛𝑣 1 Subsidy to the total NT-DHC investments (discount factor from 0-1) 

𝑓𝑖𝑛𝑐 1 Incentive factor for the heat delivered through the NTDHC network (i.e., a 

factor of 1.2 would represent a 20% subsidy from a public entity). 

𝑐𝑡𝑎𝑥 75 Carbon tax (€/tCO2). 
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4.4 Sensitivity analyses 

This study requires a sensitivity analysis to answer the research questions presented in subsection 1.4: 

 

• RQ1. Is it feasible to expand a NT-DHC network efficiently using available waste heat sources? 

The feasibility of the NT-DHC solution should be examined depending on when groups of WH 

sources become available. Thus, the expansion results will be examined if the phasing of sources 

is changed (see Figure 31) from the default phasing shown in Table 9 (from G1, G2, G3 to G3, G2, 

G1). 

 

• RQ2. Which conditions (technical, economic, environmental) make the NT-DHC solution 

more competitive than individual solutions?  

Three factors will be analyzed to assess the competitiveness of the NT-DHC concept against 

conventional H&C solutions (individual gas boilers and split units or reversible A/W HPs): energy 

price conditions, electric grid environmental performance, and cooling penetration scenarios. Table 

13 presents future scenarios that could occur in the electricity and gas markets. The renewability 

of the Italian grid and how does this impact the solution compared with individual solutions is 

analyzed through the cases presented in Table 14. Finally, a comparison with individual H&C 

solutions will be performed according to the cooling scenarios presented in Table 15. 

 

• RQ3. Is it possible to identify optimal expansion strategies, minimizing the overall costs and 

emissions (through carbon taxes)? 

In addition to assessing the effects of energy market pricing on optimal expansion strategies and 

costs, sections 5.2 and 5.3 will analyze the effects of source temperature (and therefore network) 

conditions and the renewable energy potential of electricity. 
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Table 13. Energy prices scenarios. Favorable cases for the NT-DHC  

Variable Value Description 

Electricity, non-R 0.10 €/kWh (-33% of reference) Subsidy to the NT-DHC energy 

cost component 

Electricity, non-R 0.20 €/kWh (+33% of reference) Electricity price increase for the 

non-residential sector 

Electricity, R 

Electricity, non-R 

0.30 €/kWh and 0.225 €/kWh 

(+50% of reference) 

Electricity price increase 

(residential and non-residential) 

Electricity, R 0.20 €/kWh   Residential customers' price 

remains stable or becomes 

cheaper 

Gas 0.15 €/kWh (+50% of reference) Residential gas price increase 

Gas 0.10 €/kWh Residential gas price remains 

stable 

Table 14. Sensitivity analysis of electric grid renewability 

Variable Value Description 

Electricity emission 

factor 

 0.141(-50% of current factor) Optimistic case. A high share of 

renewables in the Italian electric 

grid 

 0.483(2005 Italian electricity 

factor) 

Pessimistic case. A grid with a low 

share of renewables. 

 

As mentioned in the introduction, global heating energy demand is projected to increase until 2030, 

then stabilize. However, it is predicted that cooling demand will overtake heating demand worldwide. 

Using 2020 as a baseline, cooling accounts for 10.6% of the heating demand in the default simulation. 

However, future cooling scenarios with increased demand are worth investigating. In 2030, assuming 
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that cooling demand increases by 10% a year, this exponential growth translates into a cooling factor 

of 27.6%. This represents a net increase of 17% with respect to the 2020 value, or an annual increase 

of roughly 1.7%. If the exponential growth stabilizes and then increases linearly with the same order 

of magnitude (17% every 10 years), at this rate, cooling penetration could reach over 50% by 2050. 

The following table summarizes the future cooling scenarios that will be considered: 

 Table 15. Cooling scenarios 

Case Description Cooling factor (%) 

2020 Current cooling demand 0.106 

2030 An exponential growth in the cooling demand of 10% per year 0.275 

2050 A linear growth starting from 2030 with an approximate rate of 

1.7%.  

0.60 
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5 

Results 

 

 

This chapter will be publicly available at: 

 

Deliverable D.1. “Impact scenarios at the three demonstration networks”. LIFE4HeatRecovery project. 

http://www.life4heatrecovery.eu/en/ 
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5.1 Default simulation 

This approach provides a phasing schedule of sources and loads according to the expected thermal 

capacity to be utilized and the number of periods selected. In the default simulation, it is assumed that 

three groups of sources become available in the order shown in Table 9 and represented geographically 

in Figure 45a. 

In Figure 47, it is shown that the model first estimates the NPV of each potential extension project. 

The clusters with a higher NPV appear in red on the heatmap, while the less economically attractive 

ones appear in yellow. The markers correspond to the locations of sources in group G1. The model 

then finds the optimal subset of clusters that, combined, adds the highest value to the portfolio, without 

exceeding the thermal capacity threshold (Figure 47b).  

 
2 

(a) 
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(b) 

Figure 47. The first optimal extension considers the available thermal power of 1.6 MW. (a) The 

calculated NPV for each cluster. (b) The cost-benefit analysis. 

 

This first iteration of the model prioritizes cluster 10 (the one with the highest NPV). Cluster 1, despite 

its marginal economic convenience, is chosen because it meets the 1.6 MW capacity restriction, while 

other more attractive zones have thermal peak demand that exceeds the source limit (see Figure 50a).  

In the second iteration, the model recalculates the NPV of the remaining candidates (excluding the 

selected zones from the previous scenario), considering there are 6 MW of WH capacity available. 

Figure 48 shows the markers representing the locations of sources in group G2 (from Table 9), as well 

as the heatmap of the calculated NPV of each cluster. The model selects the zones shown in Figure 

50b based on the best compromise between economic value and peak capacity. 
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Figure 48. (a) Heatmap representing the NPV of each cluster in the second network extension. (b) 

Cost-benefit analysis. The first axis represents the NPV of each extension scenario, while the second 

represents the peak power required by each candidate. The dotted line indicates the maximum capacity 

that can be exploited from the WH plants (6 MW in this scenario). 

 

In the third iteration, the model determines the NPV of the remaining loads, including the SBs shown 

in Figure 49. As a result of the high thermal capacity in this step, all the feasible candidates can be 

served by the NT-DHC system. Finally, the process ends if the algorithm cannot reach a better scenario 

than the BaU case or if the NT-DHC fully covers the FU. Figure 50 presents the transition pathways 
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for the NT-DHC system expansion based on default values. Zones located on the southern part of the 

FU are not connected to the network for two reasons: not only clusters 13, 14 and 17 generate revenues 

not sufficient to offset the high network connection costs (Figure 49), clusters 13 and 14 can use 

reversible A/W HPs at a lower cost than the NT-DHC solution (Figure 51). 
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Figure 49. The optimal extension when 15 MW of thermal heat becomes available in the third phase. 

Clusters 13, 14, and 17 produce unfeasible scenarios, mainly because the revenues from the H&C sales 

are insufficient to cover the costs of the network to connect with the sources in group G3. 
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(a) (b) (c) 

Figure 50. NT-DHC network extension tool applied to the case study. (a) The first optimal extension 

considers the available thermal power of 1.6 MW. (b) This second iteration assumes 6MW of waste 

heat is available. (c) The optimal extension when 15 MW of thermal heat becomes available at a later 

stage.  

 

 

(a) 
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(b) 

Figure 51. (a) Cost breakdown for NT-DHC. Red denotes an unfeasible scenario (higher costs than 

revenues). (b) Costs comparison among H&C alternatives. In Cluster 13, 14, and 17, A/W HPs are 

positioned as a superior solution over NT-DHC due to their lower cost. 

 

In  

Figure 52, a different phasing schedule is tested when varying the order in which the sources become 

available. The 15 MW WH plant in this example is assumed to be the first to be utilized, followed by 

the 6 MW WH plant in the second group, and finally the 1.6 MW plant in the third group. It is observed 

that at the end of the planning, the entire FU is covered under these conditions. In the beginning, there 

is higher availability of WH supply, so more clusters can join the network. The first iteration prioritizes 

the clusters near the sources, at the top of the FU.  

It is worth noting that the southern clusters 1, 13, 14, and 17 are unfeasible in the first iteration since 

the H&C sales are not sufficient to offset the high network connection costs of these sources located 

in the north. Furthermore, in this scenario, A/W HPs are a better option for these clusters (see Figure 

53). In the second iteration, NPV is recalculated considering sources from G2, and clusters 4, 13, 14, 

and 17 are found to maximize the overall value. As cluster 1 is the only one left and near the sources 

from G3, the algorithm provides a feasible extension scenario. 
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(a) (b) (c) 

 

Figure 52. NT-DHC network extension tool applied to the case study. (a) The first optimal extension 

considers the available thermal power of 15 MW. (b) This second iteration assumes 6MW of waste 

heat is available. (c) The optimal extension when 1.6 MW of thermal heat becomes available at a later 

stage. 
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(a) 
 

(b) 
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(c) 

Figure 53. This scenario assumes 15 MW of thermal capacity in the first extension step. (a) Breakdown 

of costs and revenues in the NT-DHC system scenario. (b) NPV of each extension under these 

conditions. (c) A comparison of the NT-DHC system and alternative H&C solutions. Red panels 

indicate the scenarios in which AW HPs are a better choice. 

 

In contrast to traditional DH business models, this type of network involves a variety of stakeholders 

(industry, service sector infrastructure, supermarkets, shopping centers, etc.). As shown in the previous 

example, the tool is flexible when it comes to scheduling WH plants and grouping them 

geographically. Due to the significant capital ties involved in DH investments, this feature becomes 

relevant in designing and testing various possibilities, reducing risks.  

 

 

5.2 Energy price scenarios 

The sensitivity analysis of increasing the default electricity price for non-residential customers by 33% 

(0.2 €/kWh from 0.15 €/kWh) shows an increase in the number of non-feasible extension scenarios 

(up to 45% in the first iteration). As a result, the NT-DHC functional unit coverage is reduced from 

92.38% to 81.65% under these conditions (see Figure 54).  
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(a) 
 

(b) 

Figure 54. Optimal extension results after a 33% increase in the electricity price for the non-residential 

sector. (a) Final extension covering 81.65% of the FU. (b) Red panels represent unfeasible scenarios 

in the first extension step. 
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The maximum electricity price that a feasible scenario would yield is 0.35 €/kWh, based on an average 

SCOP of 4.68 for the highest performing HPs. If the SCOP of the HPs is reduced by 25% (as found in 

the study presented in [69], and also presented in subsection 3.3.2), this value drops to 0.265 €/kWh 

(Figure 55). This situation arises when SABAF, the primary waste heat provider from the second 

group, provides 1436 MWh/y of heat to a nearby area (covering only 3.85% of the total FU heat 

demand).  

 

 

 

Figure 55. The maximum non-residential electricity price scenario yields a total extension of 3.85% of 

the total heat demand. 
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The best scenario for the NT-DHC solution occurs when subsidizing the energy costs by 33%, i.e., the 

electricity for non-residential customers is 0.1 €/kWh. The system can cover up to 95.47% of the total 

FU demand (see Figure 56). Because the network costs dominate in clusters 14 and 17, and the energy 

costs reduction is insufficient to justify the investment, the extension solutions generated by them are 

unfeasible. The price for non-residential customers, if the goal is to cover the entire FU, should be 

about 0.4 €/kWh (if all other costs remain constant and the phasing of WH plants remains unchanged).   

 

 

Figure 56. Subsidy on the non-residential electricity price scenario. 95.47% of the FU is covered under 

this condition.  



 

 

 

113 

Regarding the difference between decentralized HP technologies employing a network and individual 

A/W HP technologies, it is observed that the electricity costs are always higher for A/W HPs as 

compared to W/W HPs employed in the NT-DHC solution. Due to the favorable conditions of the 

source temperature during the heating season, the SCOP is higher for the latter case. Moreover, it was 

assumed that the NT-DHC solution could benefit from a non-residential electricity price that is 25% 

lower compared to the residential electricity used by the A/W HPs. A/W HPs always have higher 

installation and maintenance costs than networks. Even if both scenarios assume the same cost data, a 

worse SCOP implies a larger installed capacity. In contrast, the network costs of the NT-DHC solution 

are a disadvantage, especially in areas where heat is low in density. Minor items such as carbon taxes 

and electricity for cooling do not significantly impact the overall difference. 

If the electricity price goes up by 50% (0.225 €/kWh for non-residential users and 0.30 €/kWh for 

residential users, respectively), the NT-DHC is always cheaper than A/W HPs and individual H&C 

systems, as shown in Figure 57(a). The NT-DHC solution offers a more significant advantage for larger 

clusters. However, even though the A/W HPs solution is less convenient for clusters 13 and 14 than 

the results in Figure 51, the NT-DHC solution's feasibility is compromised by the higher operating 

costs (Figure 57(b)). 

On the contrary, if the residential electricity price is lowered below 0.20 €/kWh, NT-DHC becomes 

less competitive against A/W HPs, as observed in Table 16. In this table, the winning NT-DHC 

scenarios are quantified in each of the three extension steps (S1, S2 and S3). 1 means that 100% of the 

scenarios find NT-DHC the best solution compared to the individual H&C solutions, and 0 means the 

opposite. Combined with Table 17, these results show that the electricity market affects the 

competitiveness of H&C solutions. It is a fact that electricity-based solutions should be backed by a 

stable, secure, and affordable energy supply. Electricity, like many other resources, is traded in global 

markets as a commodity. Consequently, it can be subject to a high volatility for several reasons, from 

market signals, political conflicts, to pure speculation. In order to reduce the risks and vulnerability of 

global markets, which can ultimately affect the final consumers, it is crucial to create mechanisms to 

decouple from these effects. By diversifying the sources of electricity production and investing in local 

RES, this can be accomplished. To understand the mechanisms that may lead to favouring one solution 

over another, there needs to be a further analysis of the factors causing decoupling between residential 

and non-residential electricity pricing. The analysis of these factors, which can vary according to the 

market, taxation, country regulations, company agreements, etc., is outside the scope of this study. 
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(a) 

 

(b) 

Figure 57. (a) A 50% increase in electricity prices shows how the NT-DHC solution outperforms the 

benchmark technologies. (b) The increase in the energy price and its impact on the NT-DHC solution. 
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Table 16. Pricing conditions where the NT-DHC solution is more competitive than individual H&C 

scenarios. The colors represent the probability of a winning scenario based on the pricing conditions. 

 Individual H&C 

NT-DHC 

Electricity 

price 

[€/kWh] 

0.150 0.20 0.30 

 S1 S2 S3 S1 S2 S3 S1 S2 S3 

0.10 0.90 0.83 0.75 1 1 0.83 1 1 1 

0.15 0.5 0.79 0.54 1 0.94 0.75 1 1 1 

0.225 0 0 0 0.45 0.79 0.54 1 0.95 0.77 

 

Table 17. Percentage of the FU demand covered after three extensions under different electricity 

pricing scenarios 

% FU demand 

vs. electricity 

pricing scenarios  

Individual H&C 

NT-DHC 

[€/kWh] 0.15 0.20 0.30 

0.10 92.38 95.47 95.47 

0.15 81.65 92.38 92.38 

0.225 0 81.65 85.83 

 

Since the NT-DHC solution has network costs (and not explicitly quantified administrative costs) that 

individual solutions lack, its competitiveness largely depends on favorable conditions leading to lower 

operating costs. In this regard, the HPs in the network solution must perform at their highest level. The 

factors that may reduce the HPs’ performance must be monitored; this includes systemic inefficiencies 

brought about by the HP's on/off cycles, thermal losses in substation pipes and buffers, and differences 

between datasheet and actual HP's performance [68]. 
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Finally, Figure 58 and Figure 59 illustrate how the temperature of the leading waste heat source, and 

therefore the network, impacts the HPs SCOP and SEER. A compromise between a high efficiency in 

heating and cooling modes is achieved at a temperature of 27-30°C. Nevertheless, higher temperatures 

are desirable for a network that primarily supplies heating.  

 

(a) 

 

(b) 

Figure 58. (a) Network temperature conditions and their impact on the theoretical network HPs 

performance (SCOP and SEER).(b) Theoretical performance was reduced by 25% due to 

operational inefficiencies independent from the source temperature. 
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Figure 59. Impact in the total annualized costs based on different network operating temperatures. The 

size of the bubble represents the cluster peak power. Increasing the network temperature leads to 

maximum savings in larger clusters. 

 

Concerning gas prices, the reference simulation always shows an economic advantage compared to 

the individual H&C solution (the costs are on average 2.2 times higher than the NT-DHC costs). If the 

gas price goes up 50%, the costs difference becomes almost three times. 

 

5.3 Emission factors 

A reduction in the renewable energy potential of electricity barely affects the techno-economic 

feasibility of the network extension. As a result, a scenario with a high share of renewables on the 

electricity grid (a reduction of 50% of the 2018 emissions) could save only 2.22 - 3.07% of the total 

costs. On the other hand, a grid based on emission levels from 2005 in Italy shows a maximum cost 

increase of 4.43%. Due to the electricity used by the HPs, the overall costs could have been even lower 

since these scenarios assume the network manager needs to pay a carbon tax of 75 €/tCO2 (relatively 

high taxation compared to the current European situation). 
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Figure 60. Total costs variation concerning the default emission factor. Results of the first extension 

scenario. 

Table 18. Minimum and maximum costs variation in all extension scenarios.  

Extension 

scenario 

Electricity emission factor 

0.141 tCO2/MWh 0.483 tCO2/MWh 

 Min var (%) Max var (%) Min var (%) Max var (%) 

1 -3,07 -2,6 3,74 4,43 

2 -3,20 -2,67 3,84 4,62 

3 -3,06 -2,22 3,2 4,42 

 

Figure 61 illustrates the relationship between heating demand and CO2 emissions in all the extensions. 

According to the top figure, carbon emissions associated with electricity increase with the clusters’ 

size. The distances between sources and sinks vary in each extension, affecting the total costs. The 

figure at the bottom displays the difference in the total CO2 emissions based on the selected electricity 

emission factor. Most significant variations occur in larger clusters; for example, the largest cluster 

exhibits a 49.8% emissions reduction (115 tCO2 savings) using an electricity emission factor half that 

of today, and a 71.8% increase (166 tCO2 more) when using a factor representative of the 2005 electric 

grid. 
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(a) 

 

(b) 

Figure 61. Total annualized costs vs. annual emissions. (a) All extension scenarios. The bubble size 

represents the candidates' peak power (MW). (b) First extension scenario with different electricity 

emission factors. 
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5.4 Cooling scenarios 

In Figure 62, the NT-DHC system costs are compared with the A/W HPs solution in the first default 

extension. The orange bars illustrate how the overall cost of both solutions increases as cooling 

penetration increases. In both the 2020 and 2050 scenarios, it is observed that the former is less costly 

than the latter. It is possible to see from Figure 63 that due to a higher cooling penetration, the NT-

DHC solution has a higher advantage when compared to traditional gas boilers combined with 

conventional cooling units.  Figure 64 shows that a different transition pathway results from the cooling 

scenario of 2050 as compared to the transition pathway obtained in Figure 56. Due to the cumulative 

cooling sales under these cooling conditions, clusters 2 and 13 combined result in a more attractive 

investment option than cluster 12 alone in the second iteration. 

It can be concluded that the NT-DHC solution in general benefits from a greater cooling penetration. 

Nevertheless, this factor alone does not justify investing in low heat density areas. Those areas are best 

suited to A/W HPs, as shown in the previous scenarios. 

 

 

 

 

 

(a) (b) 
 

Figure 62. Cooling scenarios. NT-DHC costs are shown at the top, while A/W HPs costs are shown at 

the bottom. (a) 2020 scenario (b) 2050 scenario 
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(a) 

 

(b) 

Figure 63. Comparison of the NT-DHC solution vs. individual H&C under different cooling 

penetration scenarios (a) 2020 scenario (b) 2050 scenario 
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Figure 64. Final extension covering 95.47 % of the FU in the cooling scenario 2050. 
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6 

Conclusions and further work 

 

 

This study presents a methodology for analyzing scenarios and identifying spatial expansions of a 

novel type of district heating network. The application to a case study has been conducted to evaluate 

the system's competitiveness against conventional heating and cooling systems. In this chapter, the 

motivations of this dissertation and the goals it aimed to achieve are summarized, along with the main 

contributions and results, followed by future research and perspectives.  

Motivations and objectives 

NT-DHC is one of the most recent types of DH networks, and therefore it is important to study their 

applications with tools and models. As of today, the ability to model NT-DHC systems and create 

master plans is very limited even for traditional high-temperature networks (TDH). Techno-economic 

assessments (TEAs) in the DHC sector are typically focused on optimizing existing systems. Instead, 

this project offers an approach to TEA in areas where DH is not present, or the conditions are limited 

for the development of TDH. 

 

This dissertation aimed to develop a reliable methodology for assessing NT-DHC systems' technical, 

economic, and environmental performance. Specifically, the following objectives were proposed: 

• To develop a new methodology for the techno-economic scenario analysis of NT-DHC systems 

and validate it on a case study.  

• To apply an optimization model to identify transition pathways for the network extension and 

its application to the case study. 
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Main contributions and results 

Chapter 2: Model methodology 

In this chapter, it is presented in detail a new methodology for the TEA of NT-DHC systems and the 

identification of future spatial expansion scenarios to neighboring areas. The model simulations are 

executed with an hourly resolution, allows the integration of multiple WH sources, thermal availability, 

and temperature. The network control allows the implementation of specific operation strategies based 

on sources’ merit order. A knapsack approach is proposed for solving the optimal expansion problem 

of a NT-DHC system. A mathematical formulation of the 0-1 knapsack problem in the DHC context 

is provided. The computational advantages are discussed and its limitations. 

As a result, this comprehensive methodology extends the State of the Art by modeling the performance 

of a network system based on decentralized HP substations, as well as incorporating economic factors 

that are not considered in DH physical models and optimizing the selection of the best system 

extension. 

 

Chapter 3: Verification and calibration 

The chapter focuses on the core DH model validation and calibration. It is built on the lumped approach 

of the Excel tool developed during the FLEXYNETS project. In an initial stage, a parametric analysis 

was carried out in a theoretical FU in a Mediterranean climate to assess the performance of a NT-DHC 

system using different shares of WH. The results show economic advantages of the network solution 

with an important role of cooling. 

The case study of the NT-DHC network in Ospitaletto, Italy is presented. The lumped model and the 

physical model (also called “detailed”) are described, and the main technical results are compared. It 

was concluded that the models provided results in reasonable agreement: a 15% difference in the 

overall electricity consumed by the HPs. According to the approximate and detailed models, the 

estimated thermal losses to the ground were 46% and 40%, respectively, due to uninsulated pipes. 

According to both models, the pumping consumptions were 2% of the total thermal energy delivered 

at the HPs' evaporators. Electric consumption of decentralized HPs, heat absorbed by the HPs from 

the network, and average COP are all closely linked. 

Finally, the computational performance of both models was also reported. The lumped model can be 

executed immediately, while the detailed model takes about 30 min to solve the whole network (about 

50 vertices) for an entire year with an hourly time step. The difference between the two types of models 

is evident: whereas intermediate approximation levels can be chosen, a detailed model is impractical 
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for parametric analysis or optimization. 

The second part of the chapter discusses the calibration of an upgraded lumped model with 

experimental data: the characteristics described in Table 2 had been implemented in Python.  

The network relies on source temperatures between 15 and 25 °C and exhibits an SPF of 3.11. Large 

parts of the network pipes are not insulated, resulting in thermal losses of about 30%. Electric pumping 

consumptions are of the order of 4 % of the users’ thermal consumptions. The lumped model provides 

proper order of magnitudes for these values even using simplified default estimates. However, for a 

good agreement (a few percent of the difference in the most important indicators), two simple 

phenomenological coefficients must be calibrated.  

Based on this analysis, it was concluded that a lumped approach seems appropriate for such a simple 

network (most deviations can be explained by physical details unrelated to individual differences). A 

lumped model offers a quick tool for scenario analysis, a needed application for this innovative NT-

DHC network strongly coupling electrical and thermal consumptions. 

 

Chapters 4 and 5: Model application and results 

Despite the broadness of the proposed method, the approach was applied to the Ospitaletto case study 

for simplicity. The essential inputs required for a default simulation are presented in Chapter 4: sources 

and heat density data, techno-economic and environmental parameters, as well as assumptions. A 

sensitivity analysis is carried out to answer the research questions presented in subsection 1.4. The 

results from Chapter 5 highlight the following: 

 

Is it feasible to expand a NT-DHC network efficiently using available waste heat sources? 

The results of applying the model to the case study indicate that NT-DHC systems can be feasibly 

expanded based on the current WH availability in the city, and are more suitable in dense urban areas, 

whereas A/W HP systems may be more competitive in low-heat density areas. Nevertheless, in the 

case of Ospitaletto, despite having low building heat density compared to larger cities, it is still possible 

to identify feasible scenarios. This opens the opportunity to many other cases. 

 

Which conditions (technical, economic, environmental) make the NT-DHC solution more 

competitive than individual solutions? 

Since the NT-DHC solution has network costs (and not explicitly quantified administrative costs) that 

individual solutions lack, its competitiveness largely depends on favorable conditions leading to lower 
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operating costs. In this regard, the HPs in the network solution must perform at their highest level. By 

selecting waste heat sources at a 30-40°C temperature range, the SCOP of the NT-DHC solution can 

be enhanced over A/W HPs. 

The electricity market affects the competitiveness of H&C solutions. To reduce the risks and 

vulnerability of global markets, it is imperative to create mechanisms to decouple from these effects. 

This can be accomplished by diversifying the sources of electricity production and investing in local 

RES.  

 

Is it possible to identify optimal expansion strategies, minimizing the overall costs and emissions 

(through carbon taxes)? 

The optimal expansion strategy is highly susceptible to the selected boundary conditions. It was 

observed from the application of the method to the case study that the expansion strategy changes 

drastically when varying the order in which the WH sources become available. The tool allows for a 

detailed analysis of the boundary conditions that make the NT-DHC solution competitive against 

individual H&C technologies, as well as the assessment of different business models and the 

exploration of the break-even points.  

 

Future research and perspectives 

Future research could apply this methodology to other locations with higher heat density zones or other 

climatic conditions (with more significant cooling requirements). Despite that the focus of this research 

was the study of NT-DHC technology, it is worth investigating under which conditions (besides the 

source availability) it is proven to be an advantage over 4GDH (where the HPs are located at the 

sources rather than the user substations and the network temperature remains high). Finally, this 

framework could be refined further to study the effects of introducing different kinds of storages and, 

therefore, analyze the system's resilience to sources' fluctuations. (e.g., shutdown of industrial plants 

supplying WH) and maximize low-grade heat recovery. 

The presented model has the potential impact in the DHC sector of reducing the energy demand risks, 

providing more certainty by identifying the zones where to expand a network to be competitive. This 

tool is expected to be used for pre-feasibility studies and preliminary design of a new type of DHC 

network, contributing to a deeper understanding of the opportunities and constraints of a system of this 

kind from a techno-economic standpoint. 
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A.1 Spectral Clustering algorithm application to the Aalborg University 

case.  
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A.2 Network costs 

Table 19. Network composition and scaling factors  

Pipe category Length [%] Scaling factor 

Cat.1 43% 0,025 

Cat.2 24% 0,043 

Cat.3 18% 0,109 

Cat.4 8% 0,244 

Cat.5 4% 0,665 

Cat.6 3% 1,0 

Table 20. Piping costs data from different diameters and insulation classes (FLEXYNETS tool). 

Pipe diameter 

[mm] 

Max 

speed 
Piping costs [€/m] 

Installation costs [€/m] 

Di DN [m/s] SERIES

1 

SERIES 

2 

SERIES 

3 

Existing 

district 

New 

district 

26,90 20 1,00 19,45 24,03 28,60 44,84 24,08 

33,70 25 1,00 24,82 30,23 35,65 57,62 32,45 

42,40 32 1,00 31,68 38,17 44,67 87,50 49,10 

48,30 40 1,00 38,53 44,73 50,93 98,20 55,05 

60,30 50 1,50 46,67 54,14 61,60 137,18 76,80 

76,10 65 1,50 53,07 68,12 83,16 181,15 101,36 

88,90 80 1,50 68,53 79,60 90,67 218,48 122,25 

114,30 100 1,50 90,27 104,84 119,40 297,27 167,16 

129,16 125 1,50 105,87 121,60 137,33 355,30 199,89 

144,40 150 1,50 147,27 171,04 194,80 416,82 235,39 

204,21 200 2,00 273,00 317,04 361,07 526,58 299,11 

223,70 250 2,00 358,07 411,17 464,27 628,34 359,75 

270,92 300 2,50 451,80 501,97 552,13 694,59 400,96 

281,49 350 2,75 498,07 567,03 636,00 742,27 431,42 

406,40 400 3,00 544,33 632,10 719,87 787,23 462,14 

457,00 450,00 3,00 617,43 716,98 816,54 826,94 490,32 

508,00 500,00 3,00 690,53 801,87 913,20 874,81 526,98 

609,60 600,00 3,00 904,59 1068,71 1232,82 966,45 607,57 

711,20 700,00 3,00 1185,01 1424,66 1664,31 1038,51 677,86 

812,80 800,00 3,00 1552,36 1899,59 2246,82 1125,65 763,15 
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A.3 Individual solutions cost data 

Table 21. Factors used to estimate investment and O&M costs of each individual technology. Gas 

boiler cost data, apartment reference building, year 2020. 

Country lifetime  𝜼𝒕𝒆𝒄𝒉 𝒌𝟏𝒊𝒏𝒗 𝒌𝟐𝒊𝒏𝒗 𝒌𝟏𝒇𝒊𝒙𝒆𝒅𝑶𝑴
 𝒌𝟐𝒇𝒊𝒙𝒆𝒅𝑶𝑴

 

Austria 25 1.02 718 -0.428 76 -0.64 

Belgium 25 1.02 801 -0.428 75 -0.64 

Bulgaria 25 1.02 550 -0.428 44 -0.64 

Croatia 25 1.02 644 -0.428 56 -0.64 

Cyprus 25 1.02 802 -0.428 62 -0.64 

Czech Republic 25 1.02 623 -0.428 53 -0.64 

Denmark 25 1.02 877 -0.428 85 -0.64 

Estonia 25 1.02 646 -0.428 61 -0.64 

Finland 25 1.02 815 -0.428 78 -0.64 

France 25 1.02 797 -0.428 71 -0.64 

Germany 25 1.02 753 -0.428 69 -0.64 

Greece 25 1.02 637 -0.428 63 -0.64 

Hungary 25 1.02 581 -0.428 48 -0.64 

Ireland 25 1.02 738 -0.428 70 -0.64 

Italy 25 1.02 777 -0.428 74 -0.64 

Latvia 25 1.02 587 -0.428 58 -0.64 

Lithuania 25 1.02 622 -0.428 56 -0.64 

Luxembourg 25 1.02 812 -0.428 78 -0.64 

Malta 25 1.02 888 -0.428 72 -0.64 

Netherlands 25 1.02 762 -0.428 75 -0.64 

Poland 25 1.02 513 -0.428 44 -0.64 

Portugal 25 1.02 779 -0.428 65 -0.64 

Romania 25 1.02 605 -0.428 48 -0.64 

Slovakia 25 1.02 630 -0.428 56 -0.64 

Slovenia 25 1.02 690 -0.428 62 -0.64 

Spain 25 1.02 727 -0.428 69 -0.64 

Sweden 25 1.02 887 -0.428 83 -0.64 

United Kingdom 25 1.02 741 -0.428 72 -0.64 
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A.4 Knapsack problem/dynamic programming/Python script [110] 

 

"""  
Given weights and values of n items, put these items in a knapsack of  
 capacity W to get the maximum total value in the knapsack. 

 

Note that only the integer weights 0-1 knapsack problem is solvable  
 using dynamic programming.  
"""  
 

  

 
  

def MF_knapsack(i, wt, val, j):  
    """  
    This code involves the concept of memory functions. Here we solve the subproblems  
    which are needed unlike the below example  
    F is a 2D array with -1s filled up  
    """  
    global F  # a global dp table for knapsack  
    if F[i][j] < 0:  
        if j < wt[i - 1]:  
            val = MF_knapsack(i - 1, wt, val, j)  
        else:  
            val = max(  
                MF_knapsack(i - 1, wt, val, j),  
                MF_knapsack(i - 1, wt, val, j - wt[i - 1]) + val[i - 1],  
            )  
        F[i][j] = val  
    return F[i][j]  
 

  

 
  

def knapsack(W, wt, val, n):  
    dp = [[0 for i in range(W + 1)] for j in range(n + 1)]  
 

  

    for i in range(1, n + 1):  
        for w in range(1, W + 1):  
            if wt[i - 1] <= w:  
                dp[i][w] = max(val[i - 1] + dp[i - 1][w - wt[i - 1]], dp[i - 1][w])  
            else:  
                dp[i][w] = dp[i - 1][w]  
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    return dp[n][W], dp  
 

  

 
  

def knapsack_with_example_solution(W: int, wt: list, val: list):  
    """  
    Solves the integer weights knapsack problem returns one of  
    the several possible optimal subsets. 

 

    Parameters  
    --------- 

 

    W: int, the total maximum weight for the given knapsack problem.  
    wt: list, the vector of weights for all items where wt[i] is the weight  
    of the i-th item.  
    val: list, the vector of values for all items where val[i] is the value  
    of the i-th item 

 

    Returns  
    -------  
    optimal_val: float, the optimal value for the given knapsack problem  
    example_optional_set: set, the indices of one of the optimal subsets  
    which gave rise to the optimal value. 

 

    Examples  
    -------  
    >>> knapsack_with_example_solution(10, [1, 3, 5, 2], [10, 20, 100, 22])  
    (142, {2, 3, 4})  
    >>> knapsack_with_example_solution(6, [4, 3, 2, 3], [3, 2, 4, 4])  
    (8, {3, 4})  
    >>> knapsack_with_example_solution(6, [4, 3, 2, 3], [3, 2, 4])  
    Traceback (most recent call last):  
        ...  
    ValueError: The number of weights must be the same as the number of values.  
    But got 4 weights and 3 values  
    """  
    if not (isinstance(wt, (list, tuple)) and isinstance(val, (list, tuple))):  
        raise ValueError(  
            "Both the weights and values vectors must be either lists or tuples"  
        )  
 

  

    num_items = len(wt)  
    if num_items != len(val):  
        raise ValueError(  
            "The number of weights must be the " 
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            "same as the number of values.\nBut "  
            f"got {num_items} weights and {len(val)} values"  
        )  
    for i in range(num_items):  
        if not isinstance(wt[i], int):  
            raise TypeError(  
                "All weights must be integers but "  
                f"got weight of type {type(wt[i])} at index {i}"  
            )  
 

  

    optimal_val, dp_table = knapsack(W, wt, val, num_items)  
    example_optional_set = set()  
    _construct_solution(dp_table, wt, num_items, W, example_optional_set)  
 

  

    return optimal_val, example_optional_set  
 

  

 
  

def _construct_solution(dp: list, wt: list, i: int, j: int, optimal_set: set):  
    """  
    Recursively reconstructs one of the optimal subsets given  
    a filled DP table and the vector of weights 

 

    Parameters  
    --------- 

 

    dp: list of list, the table of a solved integer weight dynamic programming problem 
 

    wt: list or tuple, the vector of weights of the items  
    i: int, the index of the  item under consideration  
    j: int, the current possible maximum weight  
    optimal_set: set, the optimal subset so far. This gets modified by the function. 

 

    Returns  
    -------  
    None 

 

    """  
    # for the current item i at a maximum weight j to be part of an optimal subset,  
    # the optimal value at (i, j) must be greater than the optimal value at (i-1, j).  
    # where i - 1 means considering only the previous items at the given maximum weight  
    if i > 0 and j > 0:  
        if dp[i - 1][j] == dp[i][j]:  
            _construct_solution(dp, wt, i - 1, j, optimal_set)  
        else:  
            optimal_set.add(i) 
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            _construct_solution(dp, wt, i - 1, j - wt[i - 1], optimal_set)  
 

  

 
  

if __name__ == "__main__":  
    """  
    Adding test case for knapsack  
    """  
    val = [3, 2, 4, 4]  
    wt = [4, 3, 2, 3]  
    n = 4  
    w = 6  
    F = [[0] * (w + 1)] + [[0] + [-1 for i in range(w + 1)] for j in range(n + 1)]  
    optimal_solution, _ = knapsack(w, wt, val, n)  
    print(optimal_solution)  
    print(MF_knapsack(n, wt, val, w))  # switched the n and w  
 

  

    # testing the dynamic programming problem with example  
    # the optimal subset for the above example are items 3 and 4  
    optimal_solution, optimal_subset = knapsack_with_example_solution(w, wt, val)  
    assert optimal_solution == 8  
    assert optimal_subset == {3, 4}  
    print("optimal_value = ", optimal_solution)  
    print("An optimal subset corresponding to the optimal value", optimal_subset) 
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