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1. Introduction
This master thesis offers an in-depth study of
loan default prediction using sophisticated ma-
chine learning models, with special emphasis on
the TabNet model. This work addresses a crit-
ical issue in the field of machine learning - the
trade-off between the high predictive power of
black-box models and the transparency and in-
terpretability offered by white-box models. It
is in this context that TabNet is analyzed, as
it successfully bridges this gap, marrying high
accuracy with interpretable outputs.
We build on the research foundations laid by
Cascarino, Moscatelli, Parlapiano, and others
[2], focusing our investigation on the perfor-
mance and interpretability of the TabNet model.
Our study undertakes a comparative analysis of
several machine learning models including Light-
GBM, XGBoost, Logit, and Random Forest.
However, the cornerstone of our work is the in-
depth exploration and critical analysis of the
TabNet model’s interpretability.
In the course of our work, we critique model-
agnostic interpretability techniques such as
SHAP values [4], highlighting their limitations
and computational cost. We argue for the ad-
vantage of TabNet’s intrinsic interpretability,
demonstrated through a detailed investigation
of TabNet’s masks - a feature importance mech-

anism that offers nuanced insights at each deci-
sion step of the model.
Our analysis uses a comprehensive suite of per-
formance metrics to show that the TabNet
model strikes an optimal balance between pre-
diction accuracy and interpretability. This in-
depth investigation of the TabNet model’s masks
provides unique insights into the complex inter-
play and influence of features at various stages
of the decision-making process, a level of under-
standing that is invaluable in intricate domains
such as credit risk management.
The thesis makes a significant contribution to
the existing body of research in loan default
prediction by providing practical insights that
will guide the financial industry towards better-
informed credit risk assessment and manage-
ment decisions. It is structured into six chapters
that cover a wide spectrum of topics, including
existing models and interpretability techniques,
a thorough dissection of the TabNet model and
its architecture, a presentation of the dataset
and preprocessing methodologies, a detailed ex-
position of the training of different models and
their results, and thorough interpretability anal-
yses for both TabNet and LightGBM. The thesis
concludes by summarizing the key findings and
suggesting potential avenues for future research.
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2. The TabNet Model
The TabNet model, proposed by Arik et al.
[1], is a ground-breaking approach to tabular
data analysis, bridging the gap between tradi-
tional machine learning methods and contem-
porary deep learning techniques. It is inspired
by transformers [5] and incorporates a unique
architecture combining learnable sparse feature
selection, attention mechanisms, and end-to-end
training to tackle structured data challenges
such as missing values, categorical variables, and
complex feature interactions.
The critical elements of the TabNet architecture
include:

1. Feature Embeddings: TabNet trans-
forms raw tabular data through an embed-
ding layer, creating a continuous represen-
tation that allows for the efficient process-
ing of both numerical and categorical vari-
ables, eliminating the need for separate pre-
processing.

2. Sequential Attention and Feature Se-
lection: At each decision step, TabNet em-
ploys an attention mechanism to focus on
the most salient features. This instance-
wise feature selection boosts the model’s in-
terpretability and learning efficiency.

3. ReLU Activation and Element-wise
Addition: Non-linearity is introduced via
a ReLU activation function, and informa-
tion from each decision step is aggregated
through element-wise addition.

4. Fully-Connected Layer (FC): The
model incorporates an FC layer to model
complex relationships and capture non-
linear patterns in the data.

5. Output Layer: The final representation is
processed through an output layer to gen-
erate the model’s predictions, based on the
specific task.

6. Autoencoder and Unsupervised
Training: The TabNet architecture
supports unsupervised training via an
autoencoder, using unlabeled data to learn
meaningful representations before fine-
tuning with supervised training on labeled
data. This two-phase training approach
improves performance and generalization,
particularly when labeled data is scarce or
noisy.

Figure 1: The Transformer Architecture

In conclusion, TabNet offers a powerful, scal-
able, and interpretable solution for processing
and analyzing structured data, demonstrating
competitive performance across various bench-
mark datasets. It represents the perfect mar-
riage of traditional and deep learning techniques
in a model designed specifically for tabular data
analysis.

3. The Lending Club Dataset
The data used is derived from the Lending Club
dataset, a comprehensive source of loan data
spanning from 2007 to 2018. The dataset con-
tains over 2.2 million samples, each representing
an individual loan and characterized by 151 fea-
tures, both numerical and categorical.
This resource has been widely used in both aca-
demic and industrial contexts for credit risk as-
sessment and loan default prediction, provid-
ing a versatile platform for exploration in these
areas. However, it is not without challenges.
There is significant presence of missing data
(31.78%), requiring strategic handling during
preprocessing. Additionally, features with high
levels of missing data (over 90%) have been re-
moved to prevent introduction of noise and ex-
cessive dimensionality.
Among the numerical features, ’loan_amnt’ is
of particular interest as it represents the loan
amount for each sample. It is directly tied to a
borrower’s financial obligation and their capac-
ity to repay. The loan amount varies from as low
as $500 to as high as $40,000, with an average
value of around $15,046.93. The standard devia-
tion of approximately $9,190.25 reflects the sub-
stantial dispersion in loan amounts across bor-
rowers, see figure 2.
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Figure 2: Loan Amount Distribution

Diving deeper, the loan amount is further dis-
sected by the borrower’s grade, categorized from
A to G. The borrower’s grade is an assessment
of the borrower’s creditworthiness, with A being
the highest grade and G the lowest. Intriguingly,
the mean loan amount tends to increase as the
grade worsens. This observation underlines the
riskier nature of lower-grade borrowers, who typ-
ically face higher interest rates due to increased
credit risk, figure 3.

Figure 3: Loan Amount by Grade

In terms of feature preprocessing, the initial fo-
cus was on dealing with missing values. For
categorical features, missing values were filled
with the string ’missing’, while for numerical fea-
tures, they were replaced with -1. This preserves
the original data distribution and prevents po-
tential issues with machine learning algorithms,
which are typically not designed to handle miss-
ing data.
The dataset was further processed to avoid po-
tential data leakage, an issue that arises when in-
formation not available at the time of prediction
is inadvertently included in the training data.
Certain features that could cause such leakage
were identified and removed.

Next, high-dimensional categorical features were
also considered, which can pose challenges due
to their potential to increase model complex-
ity, contribute to overfitting, and decrease com-
putational efficiency. Noisy or misleading high
dimensional categorical features were removed
from the dataset.
Finally, the encoding of labels was addressed,
with an aim to simplify loan statuses for the
machine learning models to process more effi-
ciently. The statuses were simplified to a bi-
nary outcome: 0 for ’Fully Paid’ loans, and 1 for
’Charged Off’ and ’Default’ loans.
As a whole, this dataset, while challenging, pro-
vides a solid foundation for the construction of a
predictive model for loan defaults. Proper pre-
processing ensures robustness, efficiency, and ac-
curacy of the models developed. The preprocess-
ing also maintains the real-world applicability
and interpretability of the data.

4. Unsupervised and Super-
vised Training

In this analysis, five machine learning models -
LightGBM, XGBoost, TabNet, Random Forest,
and Logistic Regression - were trained for loan
default prediction. Performance was compared
using several metrics, such as Validation Accu-
racy, Test Accuracy, Test Precision, Test Recall,
Test F1-score, and Test AUC-ROC score.
TabNet demonstrated superior results in Val-
idation Accuracy (0.675) and Test Accuracy
(0.673), meaning it had the highest proportion
of correct predictions in both validation and test
datasets. It also scored highest in Test Precision
(0.334), indicating its predictions of loan default
are slightly more reliable than other models.
However, in terms of Test Recall, LightGBM led
with a score of 0.693, illustrating better ability in
identifying all actual positive instances. Light-
GBM and XGBoost also tied for the highest Test
F1-score (0.449), suggesting a more effective bal-
ance between precision and recall. Furthermore,
LightGBM achieved the highest Test AUC-ROC
score (0.738), a critical measure of the model’s
ability to distinguish between positive and neg-
ative classes.
While TabNet did not top all metrics, it per-
formed competitively across the board while also
offering superior interpretability, making it a
compelling choice for tasks that require both
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high performance and explainability, such as
loan default prediction. The performances of
Random Forest and Logistic Regression were
somewhat lower, especially in the Test AUC-
ROC score, indicating their lesser ability to dis-
tinguish between loan default and non-default
cases.
Overall, this study highlights the potential of
TabNet for tasks that demand both performance
and model interpretability, providing valuable
insights for those applying machine learning
models for loan default prediction.

Metric LGBM XGB TNet RF Logit
Val. Acc. 0.660 0.660 0.675 0.654 0.663
Test Acc. 0.660 0.661 0.673 0.653 0.663
Test Prec. 0.332 0.333 0.334 0.323 0.329
Test Rec. 0.693 0.691 0.641 0.668 0.656
Test F1 0.449 0.449 0.439 0.435 0.438

Test AUC 0.738 0.737 0.723 0.659 0.660

Table 1: Metrics for LGBM, XGB, TabNet, RF, and Logit

5. Interpreting Predictive
Model Decisions

In this study, we dissected the mechanisms be-
hind the decisions of a predictive model for loan
repayment. We evaluated two distinct method-
ologies for this purpose: SHAP values and Tab-
Net Masks. Their application provided insights
into the feature importance and influence on the
model’s decision-making process.

5.1. Global Interpretability
The global interpretability analysis provides an
all-encompassing view of the feature importance
in the prediction process of the model. While
usually this is achieved by measuring the extent
to which variations in the input features’ values
impact the model’s output, TabNet has a unique
advantage when it comes to interpretability. Its
attention mechanism allows us to track which
features the model is focusing on at each decision
step, providing transparency into the model’s in-
ternal workings. The mask values, ranging from
0 to 1, indicate the degree of attention given
to each feature at each decision step. In this
context, we investigate the global importance of
features in the TabNet model, trained on the
Lending Club dataset. The aggregate feature

importance is shown in figure 4

Figure 4: Features Global Importance

5.2. Case Studies and Important Fea-
tures

Our analysis involved three individual borrow-
ers, each with unique financial profiles and loan
repayment predictions. The decision-making
model considered a multitude of features, which
varied in their influence over the predicted out-
come.
For the first borrower, the model anticipated a
loan default. In figure 5 we can see the tabnet
masks associated with him.

Figure 5: Borrower 1 masks at Each Decision
Step

Key contributors to this prediction were their
high-risk grade (G3) and short employment his-
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tory. The second borrower, with the highest
grade (A1) and a loan purpose of credit card
consolidation, was predicted to fully repay the
loan. This was likely due to the lower risk as-
sociated with their grade and responsible credit
behavior. Finally, the third borrower was also
expected to fully repay their loan. Despite their
middle-risk grade (C5), other features such as a
solid FICO score and responsible financial be-
havior suggested a lower risk.

5.3. SHAP Values Methodology
SHAP values, Lundberg 2017[3], based on prin-
ciples from cooperative game theory, ensures
a balanced allocation of feature importance
by considering all possible feature combina-
tions. This comprehensive approach is applica-
ble across a variety of models, providing consis-
tent and fair interpretations.
Mathematically, the Shapley value for a feature
i is defined as:

ϕi(f) =
∑

S⊆N\{i}
|S|!(|N |−|S|−1)!

|N |! (f(S ∪ {i})− f(S)), (1)

Where, f represents the prediction function, N
denotes the set of all features, and S is any sub-
set of N excluding feature i. The cardinalities of
S and N are represented by |S| and |N | respec-
tively. The Shapley value ϕi(f) calculates the
average marginal contribution of feature i over
all possible subsets of features, summing up the
differences in the prediction function’s output
when feature i is included and excluded from
each subset.
The exact computation of SHAP values is a non-
trivial task. The SHAP explanation model sim-
plified input mapping is then given as:

f(hx(z
0)) = E[f(z)|zS ], (2)

Where, f is the function that the SHAP values
aim to explain, hx is a simplified input mapping
function, z0 represents the simplified version of
the instance, E[f(z)|zS ] represents the expected
value of f(z) given the features in the set S, zS
represents the values of features in the set S and
S is a subset of all features.
However, there are a few limitations. SHAP val-
ues assume the independence of features, which
might not hold true in real-world scenarios,
where correlations between features often exist.
In addition, it can be computationally intensive,

particularly with large feature spaces, which can
pose challenges in real-time systems where com-
putational speed is crucial. Moreover, by fo-
cusing on the average contribution of a feature,
it doesn’t explicitly account for feature inter-
actions, potentially obscuring complex decision-
making processes.

5.4. TabNet Masks Methodology
TabNet Masks, on the other hand, assigns fea-
ture importance at each decision step within the
TabNet model. This approach provides a gran-
ular understanding of how features interact and
influence predictions at different stages of the
process.
The aggregate decision contribution at the ith

decision step for the bth sample, denoted as ηb[i],
is computed by applying the formula:

ηb[i] =

Nd∑
c=1

ReLU(db,c[i]), (3)

In this formula, the Rectified Linear Unit
(ReLU) activation function is used, defined as
ReLU(x) = max(0, x). This function is applied
on the decision step output db,c[i], contributing
to the aggregate value ηb[i].
The aggregate feature importance mask is pro-
posed in the paper as a way to weigh the rela-
tive importance of each feature in the decision-
making process. The formula is given as:

Magg−b,j =

∑Nsteps

i=1 ηb[i]Mb,j [i]∑D
j=1

∑Nsteps

i=1 ηb[i]Mb,j [i]
, (4)

In this formula, Magg−b,j symbolizes the aggre-
gate feature importance mask for the jth feature
of the bth sample. The term ηb[i] is the aggregate
decision contribution at the ith decision step for
the bth sample, as we defined earlier. The sym-
bol Mb,j [i] represents the feature selection mask
for the jth feature of the bth sample at the ith de-
cision step. Finally, D signifies the total count of
features, while Nsteps corresponds to the overall
number of decision steps.
Finally, to obtain a global feature importance
measure, we sum the aggregate feature impor-
tance masks across all samples and normalize by
1000. This gives a measure that reflects the aver-
age importance of each feature across all samples
in the dataset, thereby providing a global view
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of feature importance. The formula for this is
given as:

Gj =
1

1000

Nsamples∑
b=1

Magg−b,j , (5)

where Gj is the importance of feature j globally.
Magg−b,j represents how much feature j matters
in sample b. Nsamples is the total count of sam-
ples.
Unlike SHAP values, TabNet Masks can reveal
the complex interactions and sequential impor-
tance of features, contributing to a richer under-
standing of the decision-making process. This
capability is especially useful in intricate do-
mains such as credit risk, where understanding
the sequence and interaction of feature impor-
tance can provide crucial insights.

6. Conclusion
This thesis presents an in-depth study into the
application of TabNet, a highly interpretable
machine learning model, in predicting loan de-
faults. It demonstrates that TabNet not only
competes well against other models in terms of
Validation Accuracy, Test Accuracy, and Test
Precision but also provides a balanced compro-
mise between performance and interpretability.
Of particular note is its superior precision, which
reduces the risk of costly false positives preva-
lent in financial applications.
The study delves into a comprehensive anal-
ysis of TabNet masks, attributing feature im-
portance at each decision step, thereby offer-
ing a more nuanced understanding of the pre-
diction process. This is a significant devia-
tion from traditional methods like SHAP val-
ues, enhancing understanding of feature interac-
tion and decision-making processes. The study
reveals that TabNet’s focus on interpretability
doesn’t impede performance but rather facili-
tates it.
The research recommends future exploration of
TabNet in related financial tasks like credit
card or mortgage default predictions, which
could provide new challenges and opportuni-
ties. It also suggests an examination of Tab-
Net’s performance across diverse geographies
and economies, to uncover potential variations
and expand its uses.
The development of advanced and interpretable

models like TabNet holds potential to transform
the financial industry by providing a clearer un-
derstanding of credit risks. The study further
encourages research into more efficient methods
for high interpretability and better handling of
imbalanced datasets, both being current chal-
lenges in the field.
In sum, the thesis illuminates the promise of
TabNet as an interpretable and high-performing
model for loan default prediction, contributing
to the ongoing discourse on balancing perfor-
mance and interpretability in machine learning.
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