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Abstract

In recent years, great progress has been made in the fields of Diarization and Speech
Separation. In particular, many works have proposed new ways to exploit the shared
aspects of these tasks for the advantage of both research areas. The goal of this thesis
is to further investigate the integration of the mentioned fields. This was tackled
by training a unified Deep Neural Network to extract clean speech features, useful
towards separation as well as identification.

Our system for combined diarization and separation of speakers is composed of
three independent modules. First, a microphone array is used to profit from spatial
information in the sound signals, and a combination of direction-of-arrival estimation
and beamforming achieves a preliminary isolation of each concurrently active speaker.
The beamformed signals are then individually processed by a Deep Neural Network
that jointly produces two outputs: a set of embeddings that characterize the target
speaker, and a separation mask to be applied to the beamformed signal. Lastly,
clustering is performed on the speaker embeddings to identify the speaker related
to each embedding. The masked signals are assigned to identity-exclusive output
channels based on the identification clustering.

We designed the Neural Network with feature sharing in mind. We chose a U-Net
architecture, with the speaker embeddings being extracted from the bottleneck and
the separation masks being the result of the decoder branch. For the purpose of
validating the proposed method, as well as training the designed network, we created
a dataset of simulated conversations in reverberant rooms. Results showed excellent
diarization accuracy and significantly higher separation quality with respect to the
unprocessed beamformer signal.
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Sommario

I campi di Diarization — determinare chi ha parlato quando, in una conversazione —
e Speech Separation — isolare una voce da rumori e altre voci — hanno visto grandi
progressi negli anni recenti. In particolare, molte pubblicazioni hanno proposto nuovi
modi di sfruttare gli aspetti condivisi di queste applicazioni, avanzando entrambi i
campi di ricerca. Lo scopo di questa tesi è realizzare una completa integrazione di tali
campi. Per questo scopo, abbiamo progettato e allenato una singola rete neurale che
si occupi di ambo i compiti, estraendo dal segnale sonoro caratteristiche del parlato
utili per l’identificazione come per l’estrazione.

Il nostro sistema, che effettua simultaneamente separazione e identificazione vocale,
è composto da tre moduli indipendenti. Per prima cosa, tramite un array di microfoni,
viene stimata la direzione d’arrivo delle voci di ogni interlocutore attivo in un determi-
nato istante. Viene quindi applicato un beamformer verso ognuno di essi, compiendo
una separazione preliminare. I segnali dei beamformer sono successivamente processati
da una rete neurale, la quale produce due output: un embedding che caratterizza
l’identità dell’interlocutore, e una maschera di separazione da applicare al segnale del
beamformer per isolarne la voce. Infine, viene eseguito un clustering degli embedding
per associare ognuno alla relativa identità, e i segnali mascherati sono assegnati a
canali di output diversi in base all’identificazione.

La rete neurale è stata progettata tenendo a mente la condivisione delle feature
tra i due compiti, e per questo è stata scelta un’architettura di tipo U-Net. Gli
embedding vengono estratti dal collo di bottiglia, mentre le maschere di separazione
sono l’output del decoder. Inoltre è stato prodotto un dataset di conversazioni
simulate in stanze riverberanti, con il quale è stato allenato e testato il sistema.
I risultati mostrano efficacia di identificazione eccellente e qualità di separazione
significativamente superiore rispetto al segnale del beamformer.
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Chapter 1

Introduction

The objective of this thesis is to create a system with the capability of isolating and
enhancing the voices of different — possibly simultaneous — speakers and assigning
the isolated voices to the relative identities. This entails a couple of problems related
to speech analysis which, as we will discuss, are deeply entangled.

Speech analysis and enhancement plays an ever more central role in Signal pro-
cessing research. Microphones’ decreasing sizes and costs make it easier and easier
to embed them in all kinds of smart devices, and because of this, Human-Computer
Interaction (HCI) is now gravitating towards speech for many everyday applications.
There are countless examples of such applications: many smarthphones now offer voice
interfaces, as do some home appliances; real-time speech processing enables automatic
close-captioning and translation, transcription of any kind of meeting or conversation,
and so on. The many problems faced by these kinds of applications constitute the many
research fields of speech analysis. These can be Speech recognition (transcribing) as
well as Speaker recognition (identifying), Denoising (removing undesired disturbances)
as well as Speaker separation (separating the signals of concurrent speakers), and
many more. All of these problems, which once could only rely on specifically designed
deterministic approaches, have recently been greatly boosted by advancements in
Machine Learning (ML).
The two problems that are key to the objective of this thesis are Speaker separation
and Diarization.

The field of Speaker separation deals with isolating a voice from a mix of other
voices and/or noise. It is of great use whenever a speech signal needs to be analysed,
interpreted, and/or recorded. Some example applications are speech recognition,
meeting transcription and enhancement, hearing aids, music information retrieval,
and speech enhancement [4].
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Chapter 1. Introduction

The field of Diarization deals with determining who spoke and when. Use cases of
separation very often overlap with those of Diarization: in fact, Diarization applications
also include speaker recognition and meeting transcription, as well as speech translation
[17]. Furthermore, solutions to these two problems often rely on processing the same
features, and using the same methods.

Seeing as these fields go hand in hand, being both required in the same situations
and solved with the same tools, it is natural to investigate ways to integrate the two
tasks, in order to save time and resources.

The speech analysis research community has focused on combining these subjects in
recent times. Sarkar et al.[20] combined Diarization and Speech recognition, forgoing
an explicit audio signal isolation step in favor of a neural network that directly outputs
a transcription. Zhang et al.[30] explored the interaction of Sound dereverberation
and Speaker identification by constraining a neural network with a bottleneck layer,
subjected to a secondary loss function. Several works enhanced Speaker separation
using extracted speaker features, like Wang et al.[24] and Žmolíková et al.[31], both
of which make use of pre-enrolled speech signals pertaining to the speakers to be
isolated.

There were even some works proposed during the writing of this thesis, highlighting
the activity of this area of research: Han et al.[10] improve on Wang et al.[24] by
not requiring pre-enrolled examples, instead deriving the reference embeddings from
non-overlapped portions of the processed conversation; Zeghidour and Grangier[29]
enhance Speaker separation by performing a Speaker identification clustering step
first, and providing the results to a separation network.

While examining all these works, we singled out four recurring advantages. Each
considered work exhibits some of these advangates, but none of them combines all
four. The first consideration is that performing Speaker separation and Diarization in
a joint fashion is not only efficient in terms of processing time, but also beneficial to
the performance of both tasks. In other words, features that were extracted from a
signal for the purpose of identification can aid in separation, and vice versa. Many
propose, for example, to extract speaker embeddings meant for identification, and
provide them to a separation module. We posit that a deeper and more thorough
feature sharing would be better — more on that later. A second consideration is that
incorporating a spatial processing step — based on a microphone array — in a neural
network makes it heavily dependent on the array’s configurations and characteristics.
Keeping the spatial processing step separate from the neural network, on the other
hand, allows the network to be independent from the array and thus able to be
employed independently from hardware availability, with minimal re-training. The
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Chapter 1. Introduction

third consideration is related to a problem inherent to speaker separation. If a network
is asked to provide an output related to each speaker in a mix, the permutation of
the outputs being unpredictable is an issue during the training process. While many
works opt to tackle this permutation problem with a special Permutation Invariant
Training (PIT) regimen, some show that it is possible to instruct a network as to
which specific speakers to extract, thereby bypassing the problem entirely. The final
consideration is related to system requirements: some systems require pre-enrolled
speech recordings from the involved speakers. It is clearly advantageous for a system to
operate without such pre-existing knowledge of the operating conditions. We propose
a novel method which includes all mentioned enhancement possibilities, something no
method in our knowledge had achieved. Features of high- and low-level, related to both
the target speech and disturbances, are shared through a U-Net architecture, as will
be detailed. We process spatial information in a separate module to ensure hardware
independence. Said spatial information is leveraged to implicitly instruct a network
as to which speaker to extract for any given call, thus bypassing the permutation
problem without need for pre-enrolled data.

Our method isolates different speakers’ voices and assigns each to an output
stream related to the speaker’s identity. It revolves around a single neural network
designed to simultaneously isolate a target speaker’s voice and produce an identifying
embedding of its features. The neural network is preceded by a beamformer and
followed by a clustering module. The beamformer, based on a linear microphone array,
performs a preliminary separation. It is employed for each distinct speaker, so that
the neural network only isolates and identifies one speaker at a time. The clustering
module works on the speaker embeddings produced by the network, classifying
signals based on speaker identity. The beamformer’s independence keeps the neural
network independent from the microphone array geometry and beamforming algorithm,
allowing application on different hardware with little to no need for retraining. The
clustering module’s independence opens a possibility for more advanced clustering
procedures, which might allow real-time processing and/or operation with an unknown
number of involved speakers.

The designed neural network takes the magnitude spectrum of each beamformer
signal as input, and employs a U-Net encoder+decoder approach. It produces a
separation mask and a speaker embedding, both related to the speaker towards which
the beamformer is pointed. The encoder branch extracts the target speaker’s features
with convolutional layers of gradually decreasing sizes, followed by a series of fully-
connected layers which produce the speaker embeddings. The decoder branch uses
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Chapter 1. Introduction

skipped connections from several levels of the encoder to create a separation mask to
be applied to the beamformer spectrum.

The two network outputs, masks and embeddings, are respectively used for isolation
and diarization. To produce the isolated signals, the masks are applied to the relative
beamformer spectra, filtering out any undesired disturbance, interference, noise, or
reverb. To assign the isolated signals to the correct output channels, producing the
diarized audio stream, the speaker embeddings first go through spectral clustering
to attain the guessed identities. They are then grouped into utterances based on
contiguity, and the most prominent guessed identity of each group is picked for all
embeddings of that group, controlling the choice of the output stream for all signals
related to them.

All aspects of the system were tailored to address the recurring shortcomings of
previous works. The U-Net architecture was chosen to maximize sharing of features
of high- and low-level, related to both the target speech and disturbances. The
system’s modularity ensures hardware independence and enables customization to fit
the deployment conditions. Spatial information is leveraged to bypass the permutation
problem without need for pre-enrolled data.

For the purpose of training and testing this system, we created a dataset of
simulated conversations in reverberant rooms. The dataset was created by first
simulating the RIRs of a set of rooms with different shapes and wall materials, and
subsequently employing clean speech from the datasets TIMIT[7] and LibriSpeech[16]
to generate mock conversations in the simulated rooms.

To sum up, the designed system’s benefits are manifold. The network that
can handle virtually unlimited simultaneous speakers, without encountering the
permutation problem facing many other systems. With the use of a modular structure,
each module is relatively independent and can be individually improved and/or adapted
to the available hardware or for the situation at hand. Shared neural features, at both
high and low levels and regarding both the target speech and disturbances, maximize
the mutual benefit of the handled tasks. Lastly, this system has no requirements for
previous recordings from involved speakers.

The system’s performance was evaluated separately for identification and isolation,
and showed clear improvement in quality over the beamformer’s preliminary isolation,
as well as excellent identification accuracy.

We begin by introducing the basic concepts of beamforming, neural networks,
and the state-of-the-art for the relevant tasks in Chapter 2. Chapter 3 establishes a
formulation of the contemplated problem, and presents the system that we designed
to handle it. Next, Chapter 4 describes the creation of our dataset as well as the
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Chapter 1. Introduction

process used to train and test the system, and Chapter 5 lays out the results of our
experiments. Finally, in Chapter 6 we draw some conclusions on our work, and make
some suggestions for future works.
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Chapter 2

Background and state-of-the-art

In Section 2.1, we will briefly introduce some of the techniques and methods upon
which our system is based. These techniques are split into two main subjects:

• Beamforming, the use of multiple microphones to exploit spatial features of
sound[23];

• Machine Learning (ML), the use of self-improving algorithms that automatically
learn the correct behaviour from data[8].

In Section 2.2, we present some works that tackled the subjects of our interest, briefly
introducing their basic principles, features, and shortcomings. Again, these are split
into categories, depending on which is the main focus of the work:

• Speaker separation, or isolating the sound of a speaker’s voice from other voices,
background noise, and/or reverb — also known as speaker isolation, or denois-
ing/dereverberating in the case of a lone voice;

• Speaker diarization, or determining the time intervals of activity for one or more
speakers (who spoke when);

• Integrating tasks, meaning the work offers some insights on methods and advan-
tages related to combining tasks.

Lastly, we will make some considerations on the integration of the tasks we introduced,
drawing inspiration from some of the works above.
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Chapter 2. Background and state-of-the-art 2.1. Background

(a) Linear (L) and Rectangular (R) arrays. (b) Circular (C) and Spherical (S) arrays.

Figure 2.1. Some examples of microphone array configurations[1].

2.1 Background

2.1.1 Beamforming

By combining the signals of multiple microphones placed in different positions, it
is possible to enhance or dampen sounds coming from chosen directions. Such a
set of microphones is known as a microphone array — some examples are shown in
Figure 2.1 — and the most widely applied technique for directional sound filtering
is called beamforming. In order to explain how beamforming works, we first need to
introduce some concepts regarding microphone arrays in general.

Microphone arrays

Let’s start by considering the signal received at each microphone when there is a
single sound source. The output of the mth microphone can be modeled[23] as

ym(t) = hm(t) ∗ s(t− τm) + em(t), (2.1)

where:

• s(t) is the source signal, as measured at a reference point;

• hm(t) is the impulse response from the reference point to the mth microphone’s
position;

• τm is the propagation delay between the reference point and the mth microphone;

7



Chapter 2. Background and state-of-the-art 2.1. Background

• em(t) is the additive noise at the mth microphone;

• the operator ∗ represents a convolution operation.

Let’s further simplify the problem by assuming the signal to be narrow-band1, centered
around frequency ωc. We can then represent this sinusoidal-like signal as a function
of its amplitude and phase:

S(t) = α(t)ejφ(t). (2.2)

Using the same notation, the microphone signals Equation (2.1) can be represented as

Ym(t) = Hm(ωc)S(t)e
−jωcτm + Em(t) (2.3)

where Hm(ωc) is the frequency response of the mth microphone evaluated at frequency
ωc.

Adopting a vector representation, we can derive the complete array model for a
single narrow-band source:

y(t) = a(θ)S(t) + e(t), (2.4)

where

y(t) =


Y1(t)

Y2(t)
...

YM(t)

 , a(θ) =


H1(ωc)e

−jωcτ1

H2(ωc)e
−jωcτ2

...
HM(ωc)e

−jωcτM

 , e(t) =


E1(t)

E2(t)
...

EM(t)

 . (2.5)

Let’s now consider the case of a linear mic array as shown in Figure 2.2 and a
narrow-band sound. The array is composed of M microphones in a straight line with
distance d between each of them. We will characterize the sound source by the angle θ
between its origin point and the axis perpendicular to the array. We will also assume
that the source is far enough from the array that its sound waves can be approximated
as a planar wave when they reach the microphones. Taking the first microphone of
the array as the reference point, the propagation delay of the mth microphone’s signal
w.r.t. the reference can be expressed as

τm = (m− 1)
dsin(θ)
c

, (2.6)

1Broad-band sources can be represented as a sum of narrow-band sources, and thanks to the
superposition principle, all of the (linear) solutions we find can be applied to the case of multiple
broad-band sources by simple addition.

8



Chapter 2. Background and state-of-the-art 2.1. Background

Figure 2.2. A linear microphone array.

where c ≈ 340m/s is the speed of sound. All the microphones are assumed to be
identical and omni-directional, and we are operating in ideal conditions (no reverb,
sources are stationary, . . . ) therefore we can assume H1(ωc) = H2(ωc) = · · · =
HM(ωc) = 1.

We can then simplify the propagation vector a(θ) from Equation (2.5):

a(θ) =


1

e−jωc
dsin(θ)
c

...
e−jωc

(M−1)dsin(θ)
c

 . (2.7)

The elements of this vector can be seen as samples of a complex sinusoid,

e−jωc
dsin(θ)
c

m, m = 0, 1, . . . ,M − 1 (2.8)

This makes sense, since at a given moment in time, the equally-spaced microphones
"sample" the sound wave in space. For this reason the frequency of the sinusoid above
is called spatial frequency :

ωs = ωc
dsin(θ)
c

. (2.9)

This spatial frequency depends on the sound’s DOA, and is the key to its isolation.

Beamforming

Now that we have introduced microphone arrays, we can delve into the methods for
estimating the DOA of a sound signal and/or enhancing sound signals from a specific

9



Chapter 2. Background and state-of-the-art 2.1. Background

DOA. We will only introduce the concept of non-parametric methods, a.k.a. spatial
filtering. There exist other, more advanced parametric methods like MUSIC and
ESPRIT beamformers, but this is only a basic introduction.

The general idea of spatial filtering is to combine the microphone signals linearly,
applying weights to each. The beamformer signal is

B(t) =
M∑
m=1

WmYm(t) = wHy(t), (2.10)

and from this, substituting the array signal from Equation (2.4), we can define the
"spatial response" of the beamformer (the array-plus-weights system):

B(t) = [wHa(θ)]︸ ︷︷ ︸
spatial response

S(t) +wHe(t). (2.11)

The goal is to design a spatial filter w(θ0) that enhances the signal from DOA θ0 and
dampens signals from other directions.

The most basic approach, delay-and-sum beamforming, aims to pass the signals
with DOA θ0 undistorted and attenuate all the other DOAs as much as possible. That
means solving the problem

w(θ0) = argmin
w

wHw subject to wHa(θ0) = 1, (2.12)

to which the solution is given by

w(θ0) =
a(θ0)

aH(θ0)a(θ0)
=

a(θ0)

M
. (2.13)

Because of the nature of a(θ0), this solution simply shifts the signals’ phases (delaying
them) before combining them to introduce constructive or destructive interferences —
thus the name, delay-and-sum beamformer. The delays to be applied depend on the
array geometry, the signals’ frequency(ies), and of course the desired DOA.

Figure 2.3 shows the response of a delay-and-sum beamformer to incoming signals
of different frequencies and DOAs. The microphone array considered to draw this
response is a 16-microphone linear array with 3 cm spacing between microphones, and
the beamformer is steered towards θ0 = 0.

2.1.2 Deep Neural Networks

In most cases, programming means carefully designing a set of rules that will produce
certain outputs depending on the given inputs. If a large enough quantity of examples
of desired outputs and inputs is available, it may be possible to instead design a system

10
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Figure 2.3. Frequency and spatial response of a delay-and-sum beamformer.
Created using code from [9].

that will go over that data and learn the set of rules by itself. Such systems are the
focus of Machine Learning (ML). In recent years, thanks to the increasing amounts of
available reference data, ML has proven capable of solving a great variety of problems,
often outperforming hand-designed programs and deterministic algorithms. Some
examples of these advancements will be presented in Section 2.2. There are a very
large variety of ML methods, but we will only present Deep Neural Networks (DNNs),
in particular Convolutional Neural Networks (CNNs) and some generic architecture
structures involving them.

Input

H
idden

H
idden

O
utput

Figure 2.4. The layer structure of a DNN.

DNNs learn to approximate the behaviour of some function f ∗ by a combination
of simpler functions, each of which may involve its own parameters. Each of these
chained functions is referred to as a layer. The last layer in the network is called the

11



Chapter 2. Background and state-of-the-art 2.1. Background

output layer, since its value constitutes the output of the network; previous layers
are called hidden layers, since their outputs are not shown outside of the network;
the overall length on the chain is named the depth of the network. An example of
this structure is seen in Figure 2.4. In general, layers located deeper in a network are
said to work with high-level features. Their operations are more "abstract" in nature,
being concerned with the system’s behaviour as a whole. The input layer, and in
general the more "shallow" layers, work with low-level features. They focus on the
basic details of small functions rather than complex processes. Taking as example a
picture of a building, the lowest-level features would be edges and colors; higher-level
features would be the placements of windows and shape of the roof; the highest-level
features in a complex network might represent the age or architectural style of the
building. Here we will look at some examples of functions that may be employed as
layers.

The single elements of most layers are units called artificial neurons. Their name
— which in turn gives neural networks theirs — is owed to some inspirations that these
functions take from neurobiology.

x2 w2 Σ f

Activation
function

y

Output

x1 w1

x3 w3

Weights

Bias
b

Inputs

Figure 2.5. An artificial neuron.

An artificial neuron’s output value is computed by applying a weight to each input
value, summing the results to an optional bias value, and finally applying a (usually
non-linear) activation function to the resulting value. Figure 2.5 illustrates the working
of one such neuron, which can be defined as

y = f(b+
∑
n

xnwn), (2.14)

where xn are the inputs, wn are the weights, b is the bias, f is the activation function,
and y is the neuron activation value. The activation function can be anything from a
sign function to a hyperbolic tangent: a common example is a ReLU (Rectified Linear
Unit), that lets positive elements pass undisturbed but clips negative elements to 0.
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The most basic layer in any DNN is the fully connected layer. Each element of a
fully connected layer’s output is a neuron connected to every output element of the
previous layer. However, there are more thoughtful and targeted ways to construct a
layer. We will explore some possibilities later.

Training a network

The basic concept behind the training of neural networks is relatively simple. At first,
all the parameters are set randomly. An example input is sent through the network,
and the resulting output is compared to the desired reference. The comparison between
the optimal output and the one given by the network is called loss function, cost
function, or error function, and there are many ways of computing it, depending on
the problem at hand. For example, if the desired output of the network is real-valued,
one can simply use the difference between the desired result and the predicted one;
if the desired output is supposed to fall into one of two categories, it is preferable
to compute the binary cross-entropy of the desired result and the predicted one; so
on. In any case, the next step is to compute the gradient of the error function w.r.t.
the network’s parameters. The gradient is computed through an algorithm called
back-propagation: we will not detail how it works here, what is important to know
is that the gradient is computed starting from the error value and going backwards
through the network, retracing every operation that affected the output, and making
note of every parameter’s influence on the error. All parameters are then changed
slightly, based on the respective gradients, in order to minimize the error. If we call
the error function E, the updated parameters will be:

p1 = p0 − ε
∂E

∂p
. (2.15)

where p0 are the previous parameters, ∂E
∂p

denotes the partial derivative of the error
function w.r.t. the parameters, and ε is a coefficient that may be constant, or may be
adapted through the training process. This updating process is repeated iteratively
on all data samples, until the network’s error is satisfyingly small.

Convolutional Networks

Whereas the fully connected layers described above are roughly equivalent to matrix
multiplication of inputs and parameters, convolutional layers are related to the
convolution operation. The convolution of a two-dimensional input X, using a two-
dimensional kernel K, is defined as

Y (i, j) = (X ∗K)(i, j) =
∑
m

∑
n

X(i−m, j − n)K(m,n). (2.16)
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An example of this operation is seen in Figure 2.6.
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Figure 2.6. An example of the convolution operation[13].

A convolution layer has two very notable differences w.r.t. a fully connected
layer. One is that each output element of a convolution layer only depends on a
neighbourhood — as large as the kernel — of the relative input element, instead of
depending on all input elements. The second is that all such "neighbourhoods" share
the same processing parameters, i.e. the kernel parameters. Using fewer parameters
reduces the memory requirements of the model, improves its statistical efficiency,
and requires fewer operations during both forward and backward passes. Another
effect of using the same parameters on different parts of the input is an equivariance
to translation. If the convolutional layer "responds" in a certain way to a specific
localized feature in the input, translating that feature in the input will generate the
same response, translated, in the output.

Convolution layers have a certain number of channels : this simply refers to different
kernels. Each kernel of a layer processes the input in parallel, and their results are
concatenated to form the layer output, which can thus be seen as having a number
of "channels". If a DNN employs at least one convolutional layer, it is called a
Convolutional Neural Network (CNN).

Like fully connected layers, convolution layers may be followed by a nonlinear
function. After that, however, another function is sometimes applied, called pooling. A
pooling function computes, for each element of the input, a summary of neighbouring
elements. One example is max pooling, that substitutes each element’s value for
the largest value in its vicinity. Figure 2.7 shows an example of this. This can help
stabilize the network against small translations of the input: if a feature of the input
is translated by only a few elements, the relevant pooling outputs do not change.
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Figure 2.7. An example of 2×2 pooling[14].

To summarize, a convolution "block" is usually composed of a sequence of

• convolution layer,

• non-linear function,

• pooling layer.

Figure 2.8 shows a chain of such blocks. Notice that the width and height of the layers
decreases after each pooling layer, while the number of channels in each convolution
layer increases. The decreasing width and height are a result of the pooling layers, and

I

I/
2

I/
4

Figure 2.8. A basic CNN: blocks are built from series of convolution+nonlinearity followed
by pooling.

indicate to the fact that the extracted features are decreasingly position-dependent
as they travel through the network. The increasing number of channels signals an
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increase in the number of parameters employed by the hidden layers, which makes
them more computationally powerful.

Autoencoders

The term autoencoder refers to a particular network architecture, defined by the
presence of one layer with a specific purpose. The most common way of employing an
autoencoder is creating a "bottleneck" layer, which contains far fewer elements than
the input, as shown in Figure 2.9. Autoencoders are trained to replicate the inputs in

Input

Hidden

Bottleneck

Hidden

Output

Figure 2.9. The general architecture of a bottleneck autoencoder.

the outputs, but they include a "restricted" hidden layer to prevent a simple copy
of the input as-is: depending on the restrictions, the network should only learn to
replicate inputs similar to the training data. Because it must learn which features
should be copied, it often learns useful properties of the data. The restricted layer
must learn to create a representation of the input, which is called a code. For this
reason, the first "half" of an autoencoder network (the part producing the code) is
termed encoder, and the second "half" (that turns the code back into the input) is
termed decoder. This forces the network to condense the most meaningful high-level
features of the input into the smaller feature space, and to reconstruct the whole
input starting from those features. In doing so, it must learn to both recognize and
re-create those features.

That learnt knowledge can then be applied to a variety of problems: one example
is denoising. A denoising autoencoder is not simply trained to reproduce the exact
input. Instead, the clean input is corrupted before being fed to the network, which
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means the encoder must not only recognize the input’s salient features, but tell them
apart from the noise, in order to produce a clean reconstruction.

Another example application of autoencoders is representation learning. For this
application, the autoencoder is trained with clean data, but only the encoder is of
interest: since it is effectively a smaller-space representation of the input’s features, it
can itself serve a variety of purposes, such as clustering for classification. Using an
autoencoder for this purpose can sometimes be a good alternative to hand-crafting a
complex feature extraction algorithm.

U-Nets
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Figure 2.10. A Unet DNN.

Lastly, we’ll introduce a very specific sub-type of autoencoders called U-Nets.
U-Nets are mostly composed of convolutional layers, that shrink and expand in size to
create a typical autoencoder bottleneck in the middle of the network. However, each
layer in the decoder takes as input not only the output of the immediate predecessor,
but also the output of its counterpart from the encoder.
A clear example is shown in Figure 2.10.

What this achieves is a merge of high- and low-level features. The encoder, like in
common autoencoders, is able to learn and put to use high-level features of the data.
The skipped connections between encoder and decoder allow the transmission of low-
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level, high-definition features like edges and smaller details. Of course, this method is
hardly useful for the exact-copy training of some autoencoder applications, but proves
powerful in contexts like that of denoising autoencoders. Such applications require
both a high-level understanding of the target data’s features, and high-definition
details of the input data to be preserved in the output.

2.2 State-of-the-art

We will now illustrate some state-of-the-art works in the fields of speaker separation
and diarization. Many of them integrate the tasks in some fashion, so we will pay
particular attention to how and why they do it. Finally, we will delineate our goal of
integrating the tasks at hand in a way that differs from — and improves on — all
existing works.

2.2.1 Speaker separation

In recent years, techniques for isolating or enhancing a speaker’s voice in a noisy
recording have been thoroughly dominated by DNNs. Large quantities of training
data are relatively easy to acquire (or simulate), and the flexible performance of Deep
Learning (DL) has long surpassed any other solution. That being said, the variety
of proposed systems is large. While they are all characterized by some sort of DNN,
there is great diversity in the architectures of the proposed networks, their purpose
in the systems, and their training processes. We will present here some of the most
prominent works that inspired this thesis. They are for the most part works that
employ microphone arrays in addition to DNNs, since that allows exploiting spatial
information and yields better results.

The system proposed by Yoshioka et al.[27] uses two separate DNNs in conjunction
with a beamformer. The first network — which is a hybrid of a CNN and a Recurrent
Neural Network (RNN) — takes as input the magnitude spectrum from a reference
microphone, as well as the phase differences between that same microphone and all
the others in the array, giving as output up to two masks. Each mask can be used to
isolate a different speaker’s voice from the recording, so the network can separate up
to two simultaneously active speakers. Each separation mask is applied to all array
signals, which are then used to estimate the voices’ DOAs; a beamformer is pointed
towards each found direction, and the beamformed signals are finally processed by a
second network — a more standard RNN — for additional enhancement. It should
be noted that the entire first DNN is only used to estimate the DOA and choose the
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most appropriate beamformer, and has no other influence on the output signal. The
whole system can operate in real time, with very low latency.

A recurring problem that surfaces in many approaches is the permutation problem.
Let’s take for example the first network designed by Yoshioka et al.[27], as just
described. The network outputs two masks, which relate to two speakers in a mixture.
The output order of the masks is irrelevant during regular use, but requires special
handling during the network’s training process. This is usually solved using a technique
called PIT[28], which performs back-propagation based on the permutation of the
outputs which offers the smallest error.

Wang and Wang[26] employed a similar approach to Yoshioka et al.[27], by feeding
the amplitude and phase data from the array directly to a DNN that produces masks
for initial separations. The masks, trained with PIT, are then used to estimate the
DOAs and point beamformers. The beamformer signals are enhanced with a second
DNN. However, the network approach is different from Yoshioka et al.[27]’s: the array
microphones are considered two by two, and each pair’s data is processed by the DNN.
Moreover, the second network receives data from the first network’s separation in
addition to the beamformer signal. The number of speakers is assumed known in
advance, and the second processing step is applied for each source. This system only
operates offline.

Chen et al.[3] chose instead to apply the beamformers first, and process beamformed
signals with a single DNN. A fixed set of beamformers that spans 360° is active at all
times, producing B beamformed signals. Each beamformer signal is then processed by
the network, which produces E different separation masks for each beamformer signal.
N signals are then picked out of the B ∗E resulting signals, with N being the number
of speakers known in advance, by a process of magnitude spectrum correlation and
spectral clustering. The assumption is that each speaker appears as one of the first E
strongest sources in at least one of the B calculated beams. Of course, the permutation
problem is present again, because the networks output multiple separation masks,
targeting all the most energetic sources in the provided beamformer signal.

All of these systems achieve considerable isolation quality, but no identification,
which would need to be carried out separately. In Section 2.2.3 we will see several
advantages of combining identification and isolation into one system.

2.2.2 Speaker diarization

Much like speaker separation, the field of speaker diarization has also heavily shifted
towards the use of DL. This can be very clearly observed in the review of diarization
techniques provided by Park et al.[17]. The most widely used approach is that of
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using a DNN to find speaker embeddings, often called d-vectors, and use them for
clustering to identify the "owner" of each specific segment of audio. Wang et al.[25]
find these embeddings with the aid of a RNN, for example, and perform spectral
clustering with the addition of some refinement operations on the affinity matrix.

Fujita et al.[6] choose instead to incorporate both processes into one end-to-end
network, which directly outputs diarization results, to address the issue of speech
overlaps. They also introduce "self-attention layers" in their network, please refer to
their paper for details on their function.

2.2.3 Integrating tasks

The focus of our work was to integrate speaker diarization and separation in one
system in order to exploit the shared aspects of the two tasks. Finding the salient
features that characterize a speaker’s identity can aid in separating their voice from a
mixture of speech and noise, and vice versa, isolating the target voice from unrelated
sounds is key to correctly identifying the speaker. In the following sections, we will
explore works that aim at similar task integrations, and conclude by presenting our
takeaways from the examined literature.

Integrating diarization and transcription

Sarkar et al.[20] proposed a system that joins the tasks of diarization and speech
recognition (what words were spoken) rather than speech isolation. Isolation can be
seen as a step to enhance a subsequent recognition, but the clean signal may also
have many other purposes, so this system comes short of our task by only providing a
transcription of the speech. Nevertheless, it provides insight on the concept of joining
tasks, showing that a neural network can sometimes profit by being jointly trained on
two tasks rather than being split into two nets with different purposes.

Integrating identification and dereverberation

Zhang et al.[30] showed two interesting aspects regarding the dereverberation of speech.
First, by training a bottleneck-based denoising autoencoder to generate speaker-
identifying features, they note that the model can transform reverberant speech
features to a less-reverberant feature space, which offers better speaker identification
abilities. Then, they train another denoising autoencoder to turn reverberant features
into non-reverberant ones, with the expectation of improving speaker identification
by using these "cleaned" features. Finally, they propose a joint use of both these
separate networks in parallel, to achieve the best possible identification performance.
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Separation using speaker features

The system proposed by Wang et al.[24] is separated in two modules. The first
one extracts speaker embeddings from the incoming signal, compares them with an
inventory of embeddings extracted from a collection of pre-enrolled speaker signals, and
selects the embeddings related to the current speaker(s). The relevant embeddings are
passed to the second module, that generates masks to perform speech separation. This
separation module is also trained with PIT, since it outputs two masks in irrelevant
order. It is shown that providing these target-speaker-specific features aids in the
separation of the target speech.

The SpeakerBeam system by Žmolíková et al.[31] extracts a speaker’s voice from a
mixture by providing a DNN with a different, clean utterance from the target speaker
to be isolated. The permutation problem is avoided because the network only provides
one output, being instructed on which speaker to locate and isolate. The extraction
results are good, showing that the network learns to separate the different parts of
the mixture and confront them with the reference clean utterance, so as to choose the
correct parts to isolate.

Key concepts

Here we pointed out works showing that

• a neural network can profit by being jointly trained on two tasks rather than
being split into two nets with different purposes;

• by training a bottleneck layer to generate speaker-identifying features, a model
can be made to transform noisy speech features to a cleaner feature space;

• working the other way around, training a model to turn noisy features into clean
ones can improve speaker identification;

• providing target-speaker-specific features aids in the separation of the target
speech;

• a network can learn to separate the different parts of a mixture, confront them
with a clean utterance, and choose the correct parts to isolate.

We now set out to design a single bottleneck-based network that jointly provides
speech separation and speaker identification. Our goal is to fully share the speech
feature extraction process between the two tasks, considering both high- and low-level
features related to both the target and disturbances. We hope to solve the permutation
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problem by training the network to provide a single output, relative to the one speaker
that a beamformer is directly aimed towards.
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Chapter 3

Architecture

As shown in Section 2.2.3, joining the tasks of speech separation and diarization can
yield better results than performing them separately, so we set out to design a joint
system that handles both aspects in an integrated fashion. However, maintaining a
certain degree of modularity in the system has several advantages.

For example, separating the spatial processing (i.e. beamforming) in a standalone
module allows for a flexible separation system that does not depend on the array
geometry nor the beamforming algorithm used; a system that can scale with the
available hardware. Moreover, DL-based beamformers have not yet surpassed the
quality of state-of-the-art beamforming algorithms, and relying on a well-established
deterministic algorithm eases the training process for the separation network.

This chapter will define the structure of the system we designed. Starting by
defining the problem at hand in Section 3.1, we will then describe the overall layout
of the modular system in Section 3.2, going over each module’s purpose and inner
working.

The network’s architecture, and the reasoning behind it, is detailed in Section 3.2.4.
As previously stated, the network was designed to join the separation and identification
tasks, and is the core module of the system. Rather than extracting speaker embeddings
and feeding them to a separate isolation module like some works at the state-of-the-
art do, we opted to employ a single network with two outputs: a clustering-ready
embedding of the target speaker’s features, and an isolation mask to be applied to
the mixture spectrum. Both outputs are related to the speaker spotlighted by the
beamformer signal that the network takes as input.
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Figure 3.1. An example configuration of the problem. In this case there are 4 sources, 6
microphones, and a source of noise. The first speaker’s DOA θ1 is displayed.

3.1 Problem formulation

The goal of this thesis is to create a system that can process the multi-channel
microphone array recording of a conversation and produce a multi-channel recording
where each speaker’s isolated voice is assigned to a different channel based on identity.
Let’s consider a situation with N speakers scattered around a M -microphone linear
array. We will characterize each speaker n’s position w.r.t. the array by the angle θn
to the line perpendicular to the array, as in Figure 3.1. The speakers usually take
turns, but multiple speakers may also be active simultaneously for arbitrarily long
periods of time. They may change locations over the course of the conversation, but
their speech should be assigned to the identity-unique channel regardless.

Using the notation introduced in Equation (2.1), the nth speaker’s contribution to
the mth microphone recording, ym,n(t), can be calculated as

ym,n(t) = hm,n(t) ∗ sn(t− τm,n), (3.1)

where:
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• sn(t) is the nth speaker’s speech signal,

• hm,n(t) is the impulse response from the nth speaker’s position to the mth

microphone’s position,

• τm,n is the propagation delay between the nth speaker’s position and the mth

microphone’s position.

Applying the principle of superposition, the signal ym(t) recorded at each microphone
can be seen as a sum of the individual speakers’ contributions:

ym(t) =
N∑
n=1

ym,n(t) =
N∑
n=1

hm,n(t) ∗ sn(t− τm,n) + em(t), (3.2)

where em(t) is an additive noise at the mth microphone. We will refer to the array
recording using vector notation, with

y(t) =


y1(t)

y2(t)
...

yM(t)

 . (3.3)

Our system’s ideal output will then be

s(t) =


s1(t)

s2(t)
...

sN(t)

 , (3.4)

where sn(t) is speaker n’s sound signal.

3.2 System layout

Figure 3.2 shows the overall architecture of the designed system. The following sections
will detail each module’s function, which can be summarized as:

• Windowing and Overlap-add are employed to elaborate recordings in chunks;

• Speech detection and DOA evaluation are employed to determine when speakers
are active, how many, and where from;

• a separate beamformer is applied towards each active speaker, and each beam-
former produces a rough preliminary separation of the targeted speaker signal;
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Figure 3.2. General layout of the system.

• a neural network uses the beamformers’ outputs to generate speaker embeddings
for identification and spectral masks for isolation;

• clustering is performed on the resulting speaker embeddings to assign an identity
to each isolated segment, and assign it to the appropriate output channel.

3.2.1 Windowing / Overlap-add

The incoming microphone array recording is first split into overlapping segments known
as windows. We will denote this using the superscript W , for example yW (t) will refer
to a single window of the the entire recording y(t). Each segment is processed by
the system, and the resulting output segment is likewise added to the outgoing audio
stream. This technique is known as overlap-add, since the overlapping segments are
added one on top of the other to recreate the segmented signal. Our implementation
runs offline, but the entire system could be rendered capable of real-time processing
with some modifications to the clustering module (see Section 3.2.5).

3.2.2 Speech detection and DOA evaluation

Each array segment yW (t) is analyzed with a combination of speech activity detection
and DOA estimation. Our experiments relied on oracle prediction for both, with the
confidence that state-of-the-art deterministic algorithms — such as MUSIC for DOA
estimation and a simple DNN for speech activity detection — can handle both tasks
reliably in reasonable conditions.
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Speech activity detection, as the name implies, determines whether the given
segment contains speech, as well as the number Na of concurrently active speakers.
Note that Na does not correspond to the total number N of speakers involved in the
conversation. The segment is ignored if no speech is detected, otherwise the DOA
estimation determines the location of each active speaker.

The result is a list of directions

θ1, θ2, . . . , θNa (3.5)

of all speakers active during the given segment. Each of these directions is then
processed separately by the next module, the beamformer.

3.2.3 Beamforming

The beamforming module takes the target direction θn provided by the DOA module
and picks the best choice out of a set of pre-computed delay-and-sum beamformers
(see Equation (2.13)). The choice is made by finding the beamformer pointed in the
direction closest to the required θn. The chosen beamformer filters hBn (t) are then
applied to the microphone array segment yW (t), producing the signal bWn (t):

bWn (t) =
1

M

M∑
m=1

hBm,n(t) ∗ yWm (t). (3.6)

The beamforming filters hB(t) are the time-domain counterpart to the beamforming
weights w introduced in Equation (2.10), and are thus applied through convolution
instead of multiplication.

3.2.4 Neural network

The beamformer signal bWn (t) is transformed with a Short Time Fourier Transform
(STFT) obtaining the spectrum BW

n (f, t). The magnitude spectrum, |BW
n (f, t)|, is

used as input for the neural network, which returns a speaker embedding %n and a
separation mask MW

n (f, t). The beamformer signal spectrum is then multiplied by
the separation mask, obtaining the spectrum of the isolated target speech

Sn(f, t) = BW
n (f, t)Mn(f, t). (3.7)

This spectrum is anti-transformed to sWn (t) and sent to the channel selection module,
together with the relative embedding %n, to be assigned to the correct output channel.
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Figure 3.3. The proposed network. A larger version of the image can be found in the
appendix, as Figure 1.

Network architecture

Figure 3.3 shows an overview of the proposed network.
The basic architecture of the network is a U-Net: as introduced in Section 2.1.2, this
means that the network is divided in two parts. The first half (the encoder) takes the
magnitude spectrum |BW

n (f, t)| and applies a series of convolution layers of decreasing
width and increasing depth (number of channels), ending with a pair of fully-connected
layers that provides the speaker embedding %n. The second half (the decoder) of the
network takes intermediate results — commonly referred to as skipped connections —
from various layers in the encoder, and applies a series of transpose-convolution layers
of increasing width and decreasing depth, providing the separation mask MW

n (f, t).
This can be seen as a reversal of the encoder’s process.

Both parts are mostly composed of double convolution blocks defined as:

1. 3×3 convolution with 1×1 padding,

2. batch normalization,

3. ReLU;

4. 3×3 convolution with 1×1 padding,

5. batch normalization,
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6. ReLU.

The encoder alternates this block with pooling layers, repeating both five times:

1. double convolution, 2×2 pooling;

2. double convolution, 2×2 pooling;

3. double convolution, 2×2 pooling;

4. double convolution, 2×2 pooling;

5. double convolution, 2×∞ pooling1;

6. flattening to one dimension, fully-connected layer, batch normalization, PReLU2;

7. fully-connected layer, element-wise normalization.

The final fully-connected layer, being the output layer for the speaker embedding
%, features no batch normalization nor non-linearity, and its outputs are instead
normalized individually.
The decoder alternates convolution blocks and transpose-convolution layers with 2×2
kernel and 2×2 stride, which double the dimensionality along both axis, inverting the
pooling operation. In the decoder, each block takes as input a concatenation of the
previous block’s output and the corresponding skipped connection of the same size
(refer to Figure 3.3). The decoder’s blocks are:

1. fully-connected layer, batch normalization, PReLU, un-flattening to 3 dimen-
sions3;

2. double convolution, transpose-convolution;

3. double convolution, transpose-convolution;

4. double convolution, transpose-convolution;

5. double convolution, transpose-convolution;

6. double convolution, sigmoid activation function.

In the last convolution block, the second convolution layer only has one channel, and
the closing non-linearity is a sigmoid instead of the usual ReLU. This is used as the
output layer for the separation mask MW

n (f, t).
1The last pooling layer, denotes as 2×∞, reduces the dimensionality down to only one sample

along the time axis, and by the normal factor of 2 along the frequency axis.
2Parametric ReLU: PReLU(x) = max(0, x) + a ∗min(0, x), with a being a learnable parameter.
3The linear output is first folded into two dimensions (channels and frequency), then repeated

along the time dimension, replicating the shape that enters the last pooling layer.
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Goal of the architecture

The goal of this single-network architecture is to fully share the speech feature
extraction process between the two branches, with a focus on the inclusion of both
high- and low-level features. By extracting speaker embeddings and feeding the
correct one to a separate isolation module, the shared features would be exclusively
related to the target speaker, and only high-level. Only sharing features related to the
target speakers means that the isolation module would need to learn to differentiate
between the target speech’s features and those of disturbances. On top of that, only
sharing high-level features means that the isolation module would also need to learn
to translate them into low-level features in order to include their information in the
output. All of this is redundant, because the identification module must already have
learned to separate noise and different speech features to "locate" the target speaker
in the mix, extracting both high- and low-level features throughout the process. We
believe that sharing features of all levels would avoid redundant re-learning; moreover,
allowing back-propagation from both cost functions should strengthen the shared
aspects of the problem, improving training and ensuring a better merge of the tasks.

Training losses

The loss function used to train the network is a weighted sum of a loss function related
to the masks and one related to the embeddings. We will detail both here, starting
with the masks.

The training objective for the separation masks is the Ideal Ratio Mask (IRM),
which is defined as

IRMn(f, t) =

√
|SWn (f, t)|2

|SWn (f, t)|2 + |NW (f, t)|2 (3.8)

where |SWn (f, t)|2 is the desired clean signal’s energy and |NW (f, t)|2 is the collective
disturbance’s energy (other speakers, ambient noise, white noise, . . . ). Figure 3.4
shows two examples of IRMs with the respective beamformer spectra and clean speech
spectra. The signal spectra are presented here in log scale for readability, but the
network operates in linear scale. IRM time-frequency bins range in values from 0 to 1,
with smaller values removing spectral components from the masked signal, and high
values letting them through. In Figure 3.4a, which only displays a speaker overlap
with no reverb, it is apparent that the leftmost (earlier in time) part of the spectrum
is identical between the beamformer spectrum and the clean, isolated speech. This is
reflected by the IRM retaining only high values in that area. In the rightmost (later
in time) part of the spectrum, the beamformer presents additional spectral features
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(a) Beamformer spectrum, IRM, and clean speech spectrum in a situation with
a partial overlap and no reverb.
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(b) Beamformer spectrum, IRM, and clean speech spectrum in a situation with reverb and no
overlaps.

Figure 3.4. Two examples of IRM. Overlaps and reverb are usually both present, here they
were considered separately for clarity.
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compared to the clean speech. These features pertain to a secondary speaker, and
the IRM removes them by taking on low values in the appropriate time-frequency
bins. Thoroughly analysing Figure 3.4b, which displays a situation with reverb but
no speaker overlaps, proves trickier. Suffice it to say that once again, low-valued bins
in the mask dampen the undesired spectral features. Reverb and speaker overlaps
are presented here separately for the sake of illustrating the IRM’s behaviours, but of
course reverb is always somewhat present, as is background noise.

Returning to the matter of network loss functions, the objective IRM is compared
to the network output using the self-adjusting smooth L1 loss introduced by Fu et
al.[5]. The common smooth L1 loss is defined as

Lsmooth(x) =

0.5x
2

β
, if |x| < β

|x| − 0.5β, otherwise
(3.9)

where x is the difference between the predicted value and the reference ground-truth
(in this case, the network output and the ideal IRM respectively), and β is a scalable
parameter. Fu et al.[5]’s method adjusts the β parameter during training, based on
the running statistics of the absolute loss. Please refer to their paper for further
details.

The loss function for embeddings is a standard triplet loss[22] defined as

Ltriplet(%A,%P ,%N) = max(0, ||%A − %P ||2 − ||%A − %N ||2 + α), (3.10)

where α is a margin value and %A,%P ,%N are the embeddings of, respectively, an
anchor input A, a positive input P of the same identity as A, and a negative input N
of a different identity from A. This means that for every input-output pair, the output
is compared to two outputs from different inputs, one being a different utterance from
the same speaker and the other being an utterance from a different speaker. For the
triplet selection approach, see Section 4.2.2.

To sum up, the network is provided with triplets of beamformer spectra

|BW
A (f, t)|, |BW

P (f, t)|, |BW
N (f, t)| (3.11)

and the relative ideal isolation masks

IRMA(f, t), IRMP (f, t), IRMN(f, t); (3.12)

it produces a triplet of embeddings

%A,%P ,%N (3.13)
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and one of masks
MW

A (f, t),MW
P (f, t),MW

N (f, t). (3.14)

The total training loss is given by:

Ltotal = weLtriplet(%A,%P ,%N) + wm
∑

n=A,P,N

∑
f,t

Lsmooth(M
W
n (f, t)− IRMn(f, t)),

(3.15)
where we, wm are weights applied to each term.

3.2.5 Clustering and channel selection

After the whole recording has been processed, spectral clustering[15] is applied to
the speaker embeddings %. The process of spectral clustering can be decomposed as
follows:

1. calculate the affinity matrix A, by computing the Euclidean distance between
each pair of embeddings %a,%b;

2. calculate the Laplacian L of A;

3. calculate the first k eigenvectors (the eigenvectors corresponding to the k smallest
eigenvalues) of L;

4. consider the matrix formed by the calculated eigenvectors (each row defines the
features of an embedding);

5. apply clustering based on these features.

For the last step, we used K-Means clustering. K-Means partitions all embeddings
into N clusters by locating N cluster centroids, where each centroid is the mean of
the features of embeddings pertaining to that centroid’s cluster. This is done by
starting with N random centroids, and iteratively alternating between re-calculating
the centroid positions as means of the clusters and re-assigning embeddings to the
nearest centroid, until assignments no longer change.

The clustering results assign an identity to each processed segment, and according
to this assignment the isolated segments sWn (t) are overlap-added to the outgoing
audio stream. Thus is finally achieved the objective, the s(t) signal introduced in
Section 3.1.

For our experiments, the total number of speakers present was assumed known in
advance, but a different clustering approach may guess the appropriate number of
clusters on its own. Just as well, a different clustering approach may allow processing
of the embeddings as they come, thus enabling real-time operation of the whole
system.
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Utterance-aware clustering

The first and last segments of each utterance, where overlaps may be present and/or
the target speech may only take up a small fraction of the segment, are troublesome
for the feature extraction and thus for the clustering accuracy. To compensate for this,
we considered the DOA and speaker change information found by the DOA module,
estimating which utterance contained each segment. We then grouped embeddings
by utterance, and for each utterance we observed the prevailing cluster over all its
embeddings, taking it as the true cluster for the whole utterance. The results in
Chapter 5 present both the clustering accuracy of lone embeddings, and that of
utterance-grouped embeddings, showing much higher performance for the latter.
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Experimental setup

This chapter will outline the training and testing process used in our experiments,
starting with the construction of a dataset of simulated microphone array recordings
of conversations in reverberant rooms in Section 4.1. Then, Section 4.2.1 will detail
how the dataset was used differently during training and testing, Section 4.2.2 will
explain how training batches were assembled, and Section 4.2.3 will list the training
parameters and settings. Section 4.3 will describe the metrics used for evaluation.

4.1 Dataset

The simulated conversation dataset was constructed in two steps. First, a RIR dataset
was produced by simulating a set of rooms with different shapes and wall absorption
coefficients. Then, the simulated RIRs were used in conjunction with clean speech
from the TIMIT[7] and LibriSpeech[16] datasets to create simulated conversations,
with varying amounts of overlap between speakers and different numbers of total
involved identities.

4.1.1 Room simulation

The simulated rooms were exclusively constructed with irregular geometry, in particular
parallel walls were avoided to prevent reflection artefacts in the image-source-based
acoustic engine, pyroomacoustics[21]. In each room, we considered a 16-microphone
linear array, with 3 cm spacing between microphones, and several possible source
positions around the array. Sources were placed on only one side of the linear array, in
a 180◦ spread (±90◦ of the line perpendicular to the array), at 15◦ intervals. Distances
from sources to the array were multiples of 1m, and more were added in larger rooms
that allowed it. RIRs were simulated between every source-microphone pair. The
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array positions were individually picked for each room geometry, in order to ensure a
variety of arrangements — flush to a wall, in the middle of a room, by a corner, etc.
Figure 4.1 shows two of the room geometries, and one RIR from each.

0 500 1000 1500 2000 2500
samples (fs 16kHz)

Room Impulse Response

0 1000 2000 3000 4000 5000 6000 7000 8000
samples (fs 16kHz)

Room Impulse Response

Figure 4.1. Two examples of simulated room shapes and a RIR from each. Crosses denote
the positions of microphones, other shapes represent possible sources.

For each room geometry and arrangement, four sets of RIRs were simulated, with
four different levels of reverb. For one group (no reverb), direct RIR were simulated,
forgoing reverb entirely. The other three groups used wall materials taken from
pyroomacoustics’ materials database[21]. Their characteristic absorption coefficients
for different frequency bands are detailed in Table 4.1.

Over the four different materials, and the six different room geometries, the
obtained T601 values ranged from 0.05 s to 0.5 s.

1The time it takes for a sound to decay by 60dB, a common measure for reverberation time.[12]
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Material Absorption coefficients
(group) 125 Hz 250 Hz 500 Hz 1 kHz 2 kHz 4 kHz 8 kHz

wooden_lining
0.27 0.23 0.22 0.15 0.10 0.07 0.06

(low damping)
curtains_cotton_0.5

0.3 0.45 0.65 0.56 0.59 0.71 0.71
(std damping)

curtains_fabric_folded
0.12 0.60 0.98 1.00 1.00 1.00 1.00

(high damping)

Table 4.1. Different wall materials’ absorption coefficients.

4.1.2 Conversation simulation

To create the simulated conversations, the clean utterance datasets — TIMIT and
LibriSpeech — were first scanned, retrieving all identities and their corresponding
utterances. Utt.s from the original partition of LibriSpeech named train-clean-100
and the original partition of TIMIT named TRAIN were used to create the training
simulations, while utt.s from the original partition of LibriSpeech named test-clean and
the original partition of TIMIT named TEST were used for the testing simulations.
Table 4.2 reports the total number of diverse utterances considered for training and
testing simulations. Keep in mind that each utterance was employed several times in
different conversation conditions.

LibriSpeech TIMIT Total

Training
train-clean-100 TRAIN
28 539 utt.s 4 620 utt.s 33 159 utt.s

Testing
test-clean TEST
2 620 utt.s 1 680 utt.s 4 300 utt.s

Table 4.2. Utterance counts for the different dataset partitions.

The following simulation process was repeated several times for each possible
combination of

• room shape,

• wall material,

• number of involved identities (3, 5, or 7),

• white noise energy level, and

37



Chapter 4. Experimental setup 4.1. Dataset

• overlap amounts.

The noise energy level was one of SNRdb = 10, 20, . . . , 90, 100,∞. White noise was
only added to training simulations, and not testing simulations. As for the amount
of overlap, several different ranges were defined. By "range" we mean the possible
range for the delay between any two consecutive utterances, which could be positive
(silence) or negative (overlap). Furthermore, some simulations were created with a
constant overlap of two speakers, and some with three.

Iteratively, random utterances were assigned to random positions, convolved with
the appropriate RIRs, and added to the simulated array recording in a consecutive
fashion, with a random delay between each. A series of checks ensured that

• no two utterances from the same identity were ever played simultaneously,

• the amount of overlap or silence between consecutive utterances never strayed
outside of the desired range,

• simultaneous speakers were never less than 0.3 rad apart w.r.t. the microphone
array,

• all identities had at least one turn speaking, and all utterances were picked
fairly.

We also took care to include each identity in at least one simulation. This process
was repeated until the simulation reached the desired length — 120 s for training
simulations, 30 s for testing simulations. With the simulated array recording ready, a
different white noise signal was added to each channel of it, with the desired energy
level.

For each simulation, two multi-channel recordings were produced: the simulation of
the microphone array recording, with reverberant overlapped speech, and the "target"
recording with each identity’s clean speech isolated in a different channel. The clean
recording was produced by employing a direct, reverb-free RIR between the sound
source and a reference microphone, in order to maintain a similar propagation delay
as that of the array simulation.

The resulting training dataset contains 121 463 utterances from 3 374 simulations,
for a total of 258 hours of speech. The testing dataset contains 432 simulations, or 2.2
hours of conversations. Everything was done using a sampling rate of Fs = 16 kHz.

Figure 4.2 shows the percentages of the training data that represent a lone speaker,
a 2-speaker overlap, or a 3-speaker overlap. Part of the data contains silence: this is
because the beginnings and ends of utterances are padded with a second of silence.
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Silence:
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3 speakers:
20.0%

Figure 4.2. Percentages of the training data representing a lone speaker, a 2-speaker overlap,
or a 3-speaker overlap.

This is done in order to ensure the network doesn’t only train on segments from
the middle of an utterance, which contain speech throughout, but also experiences
segments from utterance boundaries, in which speech only fills part of the segment.

4.2 System setup and training

In this section we will first detail the general setup of the system used for training
and testing, then the process and data used to train the network, and finally the
parameters we used for the network implementation.

4.2.1 Windowing, beamforming, and clustering

Testing setup

The overall system setup, used for testing, processes conversation recordings by first
dividing them in one-second-long segments. Rather than exactly one second, segments
were cut at 16384 samples or 1.024 s in order to make the sample count divisible by
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the STFT window length, 1024. Segments are advanced with a hop size of 4094, or
1/4 of a segment, for an overlap of 75%. Each segment is processed individually.

Using oracle prediction (i.e. consulting the dataset annotation), the system deter-
mines how many speakers are active within the segment, and their directions. For each
located speaker, the appropriate beamformer is applied, and the beamformer’s output
is transformed with a STFT using a window length of 1024 samples i.e. 64ms, a hop
size of 256 samples i.e. 16ms, and a Hamming windowing function. The resulting
spectrum is fed to the neural network, producing the relative mask and embedding;
the mask is applied to the spectrum and the isolated signal is reverse-transformed.
The segment’s temporal location, speaker embedding, and isolated signal are appended
to a list, proceeding until the whole recording is processed.

After this is done, the embeddings are clustered using a SciKit[18] implementation
of spectral clustering, and the resulting identities are also stored in the same list
entries. All isolated signal segments are finally filtered with a Hamming window, and
overlap-added at the appropriate temporal location, to the channel dictated by the
assigned identity.

Training setup

During the training process, only the DNN was involved, to decrease the computational
load. The training data was prepared in advance, each training utterance being cut
into segments and processed by the appropriate beamformer just like it would during
testing. Section 4.2.2 will detail the construction process for the training batches.

Dataset splits

Simulations for testing and for training were produced separately, using different
utterances as introduced in Section 4.1.2, and with additional preparation for the
training data as was just mentioned. Among the training data, seven identities
were selected for validation, and all segments related to them were removed from
the rest. These were used to monitor the training process, never being used for
back-propagation.

4.2.2 Training batch construction

Mini-batches

As already mentioned, the training simulations were prepared in advance, with each
utterance being divided in segments and processed by a beamformer. To create the
training batch, the prepared training dataset was shuffled and preliminarily divided
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in groups of 32. Then, mini-batches were built as follows. For each segment of a
group two more segments are selected. The first shares the same identity of the
anchor segment, while the second one contains speech from a different, randomly
picked, identity. During the training phase, the complete mini-batch is considered
for the computation of the masking loss Lsmooth, while only a selection of triplets is
considered in the computation of the embedding loss Ltriplet. The selection process of
these triplets is detailed in the following section.

Triplet selection

The triplet loss (see Equation (3.10)) works by comparing data points, as the name
suggests, in groups of three. As Schroff et al.[22] explain, generating all possible triplets
in the dataset would results in many triplets with small error (i.e. the embeddings of
same-identity segments are already close and that of the different-identity segment
is farther). These "easy" triplets would not contribute to the training, and result in
slower convergence if included in the training data, so selecting the right triplets —
ones that are hard enough to improve the model — is paramount.

For this purpose, we used an online semi-hard triplet selection approach, meaning
that triplets were selected during training, within each mini-batch. The approach
works as follows:

1. all elements of the mini-batch pass through the network for the forward-pass,
generating their embeddings;

2. all possible anchor-positive-negative triplets in the mini-batch are located, and
their loss values evaluated;

3. triplets are selected for the backward-pass if their negative embedding is close
to the anchor embedding (within a margin), and yet farther from it than the
positive embedding.

This is where the mini-batch generation approach described above comes into play.
It ensures that each mini-batch contains at least b viable triplets for the triplet loss
(where b is the batch size reported in Section 4.2.3), while also ensuring that every
segment in the dataset is considered at least once in every epoch. Given the number
of identities in the dataset, if mini-batches were generated with no regard for triplets,
they would have a very low chance of presenting any same-identity pairs at all, let
alone enough of them to make a meaningful choice of triplets.
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4.2.3 Training parameters

To complete the overview of our training process, here we will detail all settings and
parameters that were used to obtain the results presented in Chapter 5.

The size of the spectra used as inputs for the network, and of course the masks
output by the network, are 513× 64 (frequency×time bins). The embeddings were
given a dimensionality of 64, and the margin for the online triplet loss was 1.

The first convolution block of the network has 64 channels, with the following
steps having 128, 256, 512, and 256 again. Each layer’s dimensions can be found in
the appendix’s Figure 1. As a further experiment, a more light-weight network was
trained starting with only 16 channels in the top blocks, and descending to 32, 65,
128, and 256. The performance comparison can be seen in Chapter 5.

The two terms of the loss — mask and embedding — were weighted equally:

we = wm = 1. (4.1)

Training was carried out with an Adam optimization algorithm and a learning rate of
0.01, for 10 epochs, with mini-batches of 32× 3 (32 triplets, see Section 4.2.2).

4.3 Evaluation metrics

Since the system performs two different tasks, the metrics will reflect that: we will
be using separate metrics to evaluate the diarization correctness and the perceived
quality of the masked signal.

4.3.1 Identification performance

To evaluate diarization, we compute the Diarization Error Rate (DER)[2]. DER is the
de facto standard metric for evaluating and comparing speaker diarization systems,
defined as follows:

DER =
false alarm+missed detection+ confusion

total
(4.2)

where false alarm is the duration of non-speech incorrectly classified as speech, missed
detection is the duration of speech incorrectly classified as non-speech, confusion is
the duration of speaker confusion (intervals assigned to the incorrect identity), and
total is the total duration of speech in the reference annotation. All durations are
usually measured in seconds, but being a ratio, this metric is independent from the
unit used to measure conversation and overlaps.
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We will show both the DER based on the utterance-aware clustering approach
mentioned in Section 3.2.5, and the "naive" DER based directly on the embeddings.
This metric is meant to evaluate the performance of embeddings-based identification of
segments, and not the accuracy of segmentation in locating speaker changes. For that
reason, the annotation used as ground truth was created by assigning each segment to
the true speakers active during it, rather than exactly annotating the start and end of
each utterance.

4.3.2 Separation performance

For the assessment of the quality/intelligibility of the mask-isolated signal, we compute
two different metrics. We start with the well-known metric PESQ[19]. PESQ was
developed to assess speech quality as perceived by a user of a telecommunications
system, and can be seen as an objective voice quality testing metric. It compares the
signal to be evaluated, in this case the mask-isolated beamformer signal, with a clean
reference, in this case the clean speech from the original dataset. Please refer to the
original publication for the exact definition.

We also consider the Word Error Rate (WER), using a speech recognition algorithm
included in Sphinx[11]. In particular, the output signals of the network are fed to
the speech-to-text agent and the resulting transcriptions are compared with the
ground-truth from the original speech dataset.

The WER is defined as:

WER =
S +D + I

N
(4.3)

where S is the number of substitutions (words that were misinterpreted as the wrong
word), D is the number of deletions (words that were omitted entirely), I is the number
of insertions (words that do not appear in the reference transcription, and did not
substitute any word), and N is the number of words in the reference transcription.
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Results

Having illustrated the system’s architecture, the approach used for training and testing
it, and the metrics used to evaluate its performance, here are the results obtained in
our tests.

Section 5.1 details the average metrics values over all of our testing data, which
is comprised of several simulations with different room geometries, wall materials,
numbers of involved speakers, and overlap times, as detailed in Section 4.1.2. Some
of these parameters showed no influence on the system’s performance (i.e. room
geometry and number of involved speakers), while significant differences can be seen
when grouping the testing data based on wall material (Section 5.2) or overlap times
(Section 5.3).

In all results, the signal used to evaluate both PESQ and WER was the one based
on utterance-aware clustering, and not the one that used "naive" clustering.

5.1 General results

DER performance

Figure 5.1 shows the Diarization Error Rate. It is evaluated based on both a simple
spectral clustering of the network’s embeddings, and the utterance-aware clustering
approach mentioned in Chapter 3. Since the DER is fundamentally the percentage
of signal that was incorrectly assigned, the objective is reducing it to zero. It is
then obvious that the utterance-aware approach, achieving a DER under 0.01, is a
tremendous improvement over the clustering of isolated embeddings, which performs
a 0.24 DER.
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Figure 5.1. Diarization Error Rate measured over all testing data.
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Figure 5.2. PESQ measured over all testing data.

PESQ performance

Figure 5.2 shows the PESQ grade, calculated w.r.t. the clean signal from the original
dataset. It is evaluated for the raw beamformer signal, and for the network-isolated
speech signal. PESQ values range from 1 to 5, with 1 being an incomprehensibly
corrupted signal, and 5 a perfect transmission. The system performance of 2.39 is far
from perfect, but still much higher than the beamformer’s 1.87.

WER performance

Figure 5.3 shows the Word Error Rate. It is evaluated for the beamformer signal, the
network-isolated speech, and the clean signal from the original dataset. Like the DER,
the WER is fundamentally the percentage of error, and the objective is reducing it to
zero. For this metric, we include the performance of the objective signal, which serves
as reference for the maximum possible performance from the system. This would have
been pointless for DER and PESQ, since the reference would of course have scored 0
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Figure 5.3. Word Error Rate measured over all testing data.

and 5 respectively, but when an automatic speech recognition algorithm is applied
even the reference produces imperfect transcriptions with an average score of 0.31.
With that in mind, the system’s score of 0.56 is a considerable improvement on the
beamformer’s 0.77.

Spectrum examples

Figure 5.4 shows a pair of comparisons between a beamformer signal, the signal
isolated by the network’s mask, and the reference clean speech signal. In the first
comparison, there are no overlaps between speakers, only reverb. The network clearly
reduces the effects of reverb greatly when compared to the beamformer. In the second
comparison there is a severe overlap of speakers, in addition to the reverb. the network
successfully recognizes all parts of the spectrum related to the target speaker and
those related to disturbances, greatly enhancing the clean speech signal.

Figure 5.5 shows three comparisons between objective IRMs and the relative masks
produced by the network. The first comparison only includes reverb, with no speaker
overlaps. The second includes overlaps, but no reverb, and the third includes both.
In all situation, it is apparent that the network is successful in distinguishing between
the features of the targeted speaker and those of disturbances.

5.2 Reverb-specific results

For the following evaluations, the testing data was divided in four groups based on the
wall absorption coefficients used in the room simulations. That is the only criterion in
the division of these groups — each of them contains simulations spanning different
room geometries (and thus T60 values), overlap amounts, and so on. At the end of
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Figure 5.4. Comparison between ground-truth clean speech signals and signals isolated by
the network’s output masks.
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Figure 5.5. Comparison between ground-truth IRMs and the predictions made by the net-
work.
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the section we will make some considerations on the relation of wall materials and T60
values. One group (no reverb) consists of simulations that exclusively used direct RIR,
thus introducing no reverb. The other three groups are based on the wall materials as
detailed in Table 4.1.
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Figure 5.6. Diarization Error Rate for different wall materials.

Figure 5.6 shows the Diarization Error Rate based on simple clustering and on
utterance-aware clustering. Just like for the general results, the utterance-aware
approach is a colossal improvement over the naive clustering. As for the relationship
with reverb levels, both approaches seem to suffer in situations with lower reverb
damping, going from 0.19 to 0.29 with the naive approach, and from 0.002 to 0.011

with the utterance-aware approach.
Figure 5.7 shows the PESQ grade for the beamformer signal and for the network-

isolated speech. Both suffer in low-damping situations, but the system always out-
performs the beamformer. Something to note is that the beamformer abruptly drops
in performance in situations with any reverb at all, dropping off from the reverb-
free score of 2.97 to 1.7 even for the high-damping scenarios. The system, on the
other hand, drops off performance more gradually, going under 2.0 only with the
introduction of stronger reverb. The reason for the beamformer’s behaviour is a lack
of directionality in the beamformer’s response. As Figure 2.3 showed, the main lobe
in the beamformer’s response is narrow for high frequencies, but gets progressively
wider for lower frequencies, eventually failing to provide any directionality for near-
0-frequency signals. Furthermore, all considered material coefficients (reported in
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Figure 5.7. PESQ for different wall materials.

Table 4.1) offer relatively low damping in the low frequencies, even ones that achieve
"perfect" damping in the high frequencies.
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Figure 5.8. Word Error Rate for different wall materials.

Figure 5.8 shows the Word Error Rate for the beamformer signal, the network-
isolated speech, and the clean signal from the original dataset. The clean signal’s
performance is obviously unaffected by the simulation settings, being 0.31 in all cases.
The beamformer and the system, as we saw for the previous results, suffer from
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the presence of strong reverb. This time the beamformer does not show an abrupt
improvement in the no-reverb scenarios, instead showing poor performance in most
situations, from 0.62 to 0.9. The system, on the other hand, gets rather close to the
ideal performance when reverb is low or absent (0.46, 0.42) and quickly drops off
when stronger reverb is introduced, reaching 0.74.

The system clearly benefits from high-damping environments, for both identifi-
cation and isolation. It is important to note that the same distinction cannot be
made when grouping the testing data by room geometry, nor by T60. In fact, the
test results for T60-based groups (which are not reported here) did not show any
correlation between T60 and system performance, for any evaluation metric. The
performance’s independence from room geometry and T60 suggests that the system is
more susceptible to the reverb’s behaviour in different frequency bands, rather than
simple reverb duration.

5.3 Overlap-specific results

For this set of evaluations, the testing data was divided in four groups based on the
amount of overlaps present in simulations. One group of simulations was created with
"realistic" overlaps, meaning that the delay between each pair of consecutive utterances
was randomly chosen between −0.1 s and 1.0 s, with negative delay meaning overlap
and positive delay meaning silence between speakers. Another group of simulations
used more "severe" overlaps, with delays being randomly chosen between −1.0 s and
1.0 s. The third group of simulations is characterized by constant overlap of two
speakers, with virtually no time spent with fewer or more than that, and the fourth
group does the same with three speakers.

It should be noted that, while our simulation setup considers at most three
simultaneous speakers, the number of simultaneous speakers the system can manage is
virtually unlimited. With the DNN only aiming at isolating the one speaker that the
beamformer is aimed towards, permutation of the network outputs is not a problem
as it is in systems that isolate all speakers "at once". The bottleneck for maximum
simultaneous speaker capacity falls instead on the DOA module’s ability to locate all
sources accurately, the beamformer’s ability to dampen all non-targeted sources, and
the training data experienced by the network.

Figure 5.9 shows the Diarization Error Rate based on simple clustering and on
utterance-aware clustering. Once again, the utterance-aware approach is hardly
comparable to the naive clustering. This time, both approaches show a little less
dependence to the different conditions. The utterance-aware approach goes from 0.004
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Figure 5.9. Diarization Error Rate for different overlap times.

to 0.011 when overlaps increase, but stays relatively still at 0.01 when the overlaps
involve three speakers instead of two. The naive approach moves similarly up and
down, seemingly unaffected by the amount of overlap introduced.
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Figure 5.10. PESQ for different overlap times.

Figure 5.10 shows the PESQ grade for the beamformer signal and for the network-
isolated speech. This time the difference between two-speaker and three-speaker
scenarios is apparent, but still not as significant as the difference with more "realistic"
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scenarios. Both the beamformer and the system are affected equally, dropping
respectively from 2.45, 2.28 to 1.54, 1.29 and from 2.98, 2.81 to 2.11, 1.73.
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Figure 5.11. Word Error Rate for different overlap times.

Figure 5.11 shows the Word Error Rate for the beamformer signal, the network-
isolated speech, and the clean signal from the original dataset. The clean signal’s
performance is only shown to vary a little because the different groups of simulations
include different utterances. The beamformer performance substantially drops in the
presence of overlaps, reaching highs of 0.87 and 0.91 with two and three speakers
present. The system, as always, outperforms the beamformer. It shows some weakness
to overlaps, although not as much as it does to bad reverb conditions.

For both identification and isolation, the dependence on overlap amounts seems
to be less severe than that on reverb conditions. The DER went from 0.002 to 0.011

at the change of reverb, from 0.004 to 0.011 at the change of overlaps; PESQ went
from 3.32 to 1.74 at the change of reverb, from 2.98 to 1.73 at the change of overlaps;
WER went from 0.42 to 0.74 at the change of reverb, from 0.45 to 0.66 at the change
of overlaps.

5.4 Lightweight system

As anticipated in Section 4.2.3, a secondary network with fewer parameters was trained
and tested. Figure 5.12 shows the performance comparison between that light-weight
network and the full one. The beamformer and clean signal performances are obviously
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unchanged, being independent from the network. The DER, with the utterance-aware
approach, went from 0.008 up to 0.011; PESQ went down from 2.39 to 2.31; WER
went up from 0.56 to 0.59.
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Figure 5.12. Performance comparison between full system and lightweight variant.

While there is a small drop in performance for the smaller network, it is clearly
a good substitution if computational power is scarce. Future works could further
investigate how fewer-parameters versions of the system behave in different conditions,
including with different array setups and beamforming algorithms as well as different
room and conversation characteristics.
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Conclusions and future work

6.1 Conclusions

The focus of research in the fields of Diarization and Speech Separation is quickly
shifting towards the integration of the two tasks for the advantage of both. For this
reason, in this thesis we explored a novel approach for the integration of said tasks,
by designing a system that simultaneously isolates different speakers’ voices from a
mix and assigns each to a channel based on the speaker’s identity. For the purpose of
training the designed system, we also produced a dataset of simulated conversations
in reverberant rooms.

The proposed system is based on a beamformer for preliminary separation, and a
DNN for identification and for the final separation. The relative independence of these
two modules allows each to be improved or customized individually. The beamformer
is based on a linear microphone array and a delay-and-sum algorithm, producing a
set of signals targeting each concurrent speaker. Each of these signals is then handled
by the custom-designed DNN.

The neural network takes a STFT of the partially-separated speaker as input, and
employs a U-Net approach to handle both identification and further separation. The
Encoder branch of the network gradually reduces the data in size, extracting features
that finally produce speaker embeddings to be used for clustering, for identification.
The Decoder branch of the network takes several skipped connections from the Encoder
branch — both low- and high-level features. It produces an isolation mask to be
applied to the input spectrum, exploiting the information about which features are
related to the target speaker and which to disturbances.

Identification of the speaker embeddings is carried out by first performing Spectral
clustering, and subsequently grouping the results based on the utterance of origin (with
utterances being located based on the detected DOA and speaker change detection).
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The groups of clustering results are analyzed and the most prominent guess is selected
for each utterance. The system’s final output is created by applying the isolation
masks to the beamformer signals, and recording the resulting isolated signals to the
identity-specific output channels based on the results of the embedding clustering.

The dataset was created in two steps. First, acoustic simulation software was
employed to generate the RIRs of a set of rooms with different geometries and wall
materials, considering a linear microphone array and several sound sources around
it. Next, clean utterances from the datasets LibriSpeech and TIMIT were used to
simulate conversations in the generated rooms, with different amounts of overlap
between speakers and number of speakers involved in each conversation.

The designed system’s performance was evaluted separately for identification
accuracy — using DER — and isolation intelligibility — using PESQ and WER.
Testing results show a clear improvement in quality over the simple beamformer
approach, and excellent identification accuracy. Targeted testing also shows that the
system has some weakness to excessive overlaps between speakers, and/or excessively
reverberant environments. Finally, additional testing showed that a light-weight
version of the network employing fewer parameters only slightly reduces performance,
making it an acceptable substitute for quick-and-dirty use cases.

6.2 Future work

In this thesis we deliberately focused on the design of the DNN and employed very
basic methods for DOA estimation, beamforming, and clustering. This decision was
taken knowing that the modular architecture would allow for independent improvement
of those parts. The following are some possibilities for future work.

• A different microphone array geometry, such as a circular array, would enable
360° coverage instead of just 180°.

• A more advanced beamforming technique, such as the Capon method, might
improve the preliminary speaker separation.

• If the network’s input included phase information (in particular phase differences
between microphones) instead of just magnitude, it might aid the network in
separating different sources.

• Including ambient noise and non-vocal disturbances in the network’s training
dataset might improve its robustness and versatility.
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• As shown by Wang et al.[25], the results of spectral clustering can be improved
through a series of refinement operations. In our case, these operations may be
extended to include a DOA-aware step, or in some other capacity, information
related to the utterance limits, as we employed for the utterance-aware clustering
approach.

• Additionally, with a sufficiently adaptive clustering approach, it would be possible
to operate the system in real time with latency proportional to the time segment
fed to the network, and/or let the system guess the number of involved identities.
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Acronyms

HCI Human-Computer Interaction

DOA Direction Of Arrival

DL Deep Learning

ML Machine Learning

PIT Permutation Invariant Training

RNN Recurrent Neural Network

DNN Deep Neural Network

DNNs Deep Neural Networks

CNN Convolutional Neural Network

CNNs Convolutional Neural Networks

RIR Room Impulse Response

DER Diarization Error Rate

WER Word Error Rate

STFT Short Time Fourier Transform

PESQ Perceptual evaluation of speech quality

IRM Ideal Ratio Mask
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