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Abstract

Spiking Neural Networks (SNNs) have become the most promising method to solve ma-
chine learning-based problems due to their biological and hardware plausibility and re-
duced complexity compared to Artificial Neural Networks (ANNs). In particular, the
SNNs are the best candidate for real-time processing near the sensors, i.e., edge comput-
ing, because they can be implemented on extremely power-efficient dedicated hardware.
However, the hardware implementable training algorithms for SNNs are still too imma-
ture to compete with ANN performance on real-world applications. After performing a
comprehensive analysis of the learning techniques, this thesis work proposes an online
training for SNNs specifically designed for floating gate CMOS technology. For the case
study considered in this thesis, a simple analysis of a 3-axis accelerometer, the proposed
method has proved to achieve a comparable accuracy with an ANN for edge computing.
However, the SNN, when implemented on dedicated hardware, should be able to achieve
power dissipation orders of magnitude less than the ANN one. The simulations and the
analysis have been based on a neuromorphic chip in standard CMOS technology designed
and implemented during previous thesis works.

Keywords: Machine Learning, Spiking Neural Network, Neuromorphic CMOS Tech-
nology, Accuracy, Edge Computing





Abstract in lingua italiana

Le Reti Neurali Spiking (SNNs) sono diventate il metodo più promettente per risolvere
problemi basati sul machine learning grazie alla loro plausibilità biologica e hardware e
alla loro ridotta complessità rispetto alle Reti Neurali Artificiali (ANNs). In particolare,
gli SNN sono i migliori candidati per l’elaborazione in tempo reale vicino ai sensori, ovvero
l’edge computing, perché possono essere implementati su hardware dedicati estremamente
efficienti dal punto di vista energetico. Tuttavia, gli algoritmi di addestramento hardware
implementabili per gli SNN sono ancora troppo immaturi per competere con le prestazioni
delle ANNs sulle applicazioni del mondo reale. Dopo aver eseguito un’analisi completa
delle tecniche di apprendimento, questo lavoro di tesi propone un allenamento online per
SNN specificamente progettate per la tecnologia CMOS a gate flottante. Per il caso di
studio considerato in questa tesi, una semplice analisi di un accelerometro a 3 assi, il
metodo proposto ha dimostrato di ottenere una precisione comparabile a una ANN per
edge computing. Tuttavia, l’SNN, se implementato su hardware dedicato, dovrebbe essere
in grado di raggiungere ordini di dissipazione di potenza di grandezza inferiore a quello
dell’ANN. Le simulazioni e l’analisi sono state basate su un chip neuromorfico in tecnolo-
gia CMOS standard progettato e implementato durante i precedenti lavori di tesi.

Parole chiave: Machine Learning, Reti Neurali Spiking, Technologia CMOS neuromor-
fica, Precisione, Edge Computing
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Introduction
“I propose to consider the question, "Can machines think?" This should begin with definitions
of the meaning of the terms "machine" and "think". The definitions might be framed so as
to reflect so far as possible the normal use of the words, but this attitude is dangerous. If
the meaning of the words "machine" and "think" are to be found by examining how they
are commonly used it is difficult to escape the conclusion that the meaning and the answer
to the question, "Can machines think?" is to be sought in a statistical survey such as a
Gallup poll. But this is absurd. Instead of attempting such a definition I shall replace the
question by another, which is closely related to it and is expressed in relatively unambiguous
words. The new form of the problem can be described in terms of a game which we call the
"imitation game"”

Computing Machinery and Intelligence, Alan M. Turing, 1950

Turing was one of the first people to ever think about the real possibility of artificially
recreating the human mind. The sole understanding of the human mind is one of the
ancient questions that have always tormented philosophers and scientists. Nowadays, the
incredibly fast development of new technologies in the integrated manufactory, artificial
intelligence software and neuroscience may delude us that we are close to this milestone,
but the truth is that there is still a long way to go to achieve a real understanding. We
are still in the age of the "imitation game".

Artificial neural networks (ANN) were implemented due to the need for better perfor-
mance on many tasks that are common to human beings, such as image recognition,
video motion detection, and natural language processing. Even if, during the years, an
impressive accuracy has been achieved, an enormous bottleneck in power efficiency and
computational speed was found in Von Newmann’s architecture of the computer imple-
menting the ANN. To solve this issue, today we are facing the rapid evolution of a new
paradigm for information processing through artificial devices and circuits even more in-
spired by nature. However, even if these technologies are an attempt to emulate the
brain, the lack of information in global interaction and not-spiking signals between neu-
rons has lead to the implementation of algorithms with mixed approaches in between the
mathematical optimization and the brain inspiration.



2 | Introduction

0.1. From Von Neumann bottleneck to neuromorphic

computing

Figure 1: Transistors per chip and clock speed limited by overheating. The Moore’s Law
exponential trend is clearly visible. Figure from [57].

The rise in general usage of electronics is closely tied to an increase in the power and
miniaturization of electronic components. It has been driven by "Moore’s Law", which
was stated by Gordon Moore, co-founder of Intel Corporation, in a famous 1965 paper [37]
and then confirmed in 1975 [38]. This so-called "Moore’s Law" states that the number of
electronic components on an integrated circuit (IC) doubles every two years. This trend
has proven to be true right up to our own time, and so semiconductor manufacturers have
planned every technology node ever since. The "Law" has been revealed to be valid over
the years, but it seems that it will not see the end of the decade 2020-2030 even with
the current process innovations and design technology co-optimization (DTCO) [47]. The
high number of devices per unit surface area leads to intolerable power dissipation, which
is even worse considering the high operating frequency required for the top processors in
the market today.

Power dissipation is a key problem in modern CPUs (central processing units) and this
heat wall limits the performance of the systems to such an extent that the clock frequency
has almost plateaued in the last 15 years, moving away from the previous exponential
trend (Fig. 1). The problems for the future of processors are not only at the individual
device level, but also at the architecture level; current systems are almost all based on
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Figure 2: Representation of different physical memory. Their specifics are compared in
terms of speed, CPU cycles and storage capability. Figure from [58].

the Von Neumann architecture, in which the computing unit and the memory unit are
physically separated. This choice has proven successful as it provides a modular structure
that allows different parts of the system to be worked on independently. Nevertheless,
this approach is not suitable for the current market requirements, which have extremely
high demands on speed and memory. The main problem lies in the different performance
evolution of the CPU and memory units, with the former achieving far more speed than
the latter.

This problem is even more crucial considering that modern systems are quite complex
and based on a memory hierarchy (Fig. 2), with different levels. Near CPU is SRAM
(static random access memory), a fast volatile memory that is accessed frequently and
uses 6 FETs to store one bit, making it quite expensive and sparse. Below that is the
DRAM (dynamic random access memory), a slower, denser, and cheaper volatile memory
that can be considered a link between CPU and memory, as it is off-chip like the newest
memory. At the very bottom is mass storage, whose most used type is flash memory, a
very high density non-volatile memory that is also the slowest of the pyramid. The limit
to the efficiency of this system (also called the Von Neumann bottleneck or memory wall)
is that data must be shuttled back and forth between all these intermediate steps in order
to be computed and stored. Since most of the memory units are outside the chip and
the memory units are much slower than the CPU, this obviously has a major impact on
the performance of the system [58]. This memory wall, combined with the heat wall and
the end of Moore’s law, raises serious concerns about the challenges facing the electronics
industry in the near future, from AI to Big Data applications.

To solve these issues, new technologies able to process the data directly where they are
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Figure 3: Different aims for neuromorphic computing research. Figure from [50].

stored have emerged during the last two decades. This new way of approaching hardware
is the bio-inspired computing, which imitates the biological process happening in the
brain and replicating the neuron-synapse interaction. The possibilities with these tech-
nologies are very promising and should provide higher density integration, lower power
consumption and higher speed access [58] [50] (Fig. 3).

The simplest architecture is composed just by two elements: the neuron, the computa-
tional element and the synapse, the memory element. These two, connected together in
different ways, generate several interesting properties. Its intrinsic parallelism makes it
easier to compute operations with matrices of data, which are one of the slowest and most
power hungry tasks a CPU could compute. The plasticity, i.e. the ability to update a
stored information, is widely used in machine learning for learning and does not limit
to the processing of input data, but also to the ability to recover from mismatches and
process variability.

0.2. From biology to Artificial Neural Network

0.2.1. The biological neuron

Morphologically speaking, the neuron was first described by Santiago Ram´on [20], winner
of the Nobel prize of 1906 with Camillo Golgi for their work on the structure of the
nervous system. The simplest neuron (Fig. 4) known and closer to Ramón’s description
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Figure 4: Simplified image of a neuron. Figure from [3].

is composed of three main components. The soma is the body of the neuron which contain
the nucleus of the cell. Attached to the soma there are the dendrites that are the input
branches of the neuron, where the signals are injected. The signals from the soma are
then ejected from the terminals of a long connection called axon.

The first scientists to rigorously describe the neuron’s working principles were Hodgkin
and Huxley [23] who, by studying the squid’s nervous system, created the first mathe-
matical model in which they theorized that the information of the neuron is obtained
by the voltage drop across the cell membrane. The result of such research led scientists
to focus on the membrane voltage decomposing it into three different phases (Fig. 5).
When the neuron does not receive any external signal the membrane voltage reaches the
resting potential, a chemical equilibrium that stabilizes at -70mV in order to balance
the forces created by ion gradient concentration. An injection of neurotransmitters to
the dendrites can depolarize or hyper-polarize the cell creating respectively an excitatory
or inhibitory behavior. The so-called graded potential returns to the resting potential
if a threshold is not reached, due to the leaking channels along with the membrane and
diffusion phenomena. Otherwise, if the potential reaches the threshold, the voltage-gated
Na+ ion channels open and activate a positive feedback that pushes the voltage drop
across the membrane up to 40mV, the action potential. After a short amount of time
the potential drops to -80mV due to the opening of voltage-gated K+ ion channels. This
happens regardless of the temporal shape of the graded potential. Furthermore, once the
neuron reaches 40mV, the voltage gates become inactive for a brief period (refractory
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Figure 5: Phases of the membrane voltage. During the first millisecond the potential
is resting at -70mV. Soon after 1ms signals are being received by the dendrites and the
potential starts to grade. It is shown both the cases of threshold reaching and failing
activation due to the leakage. After trespassing the threshold at 1,5ms the action phases
starts with a depolarization and soon after polarization of the membrane. From 2,5ms to
5ms the neuron is refractory time and the voltage gates are inactive. Figure from [1].

time) where they cannot generate spiking.

The biological synapse

The connections between neurons became clear when the scientist Bernard Katz [31]
modeled the neurotransmission mechanism through the introduction of the synapse. It
connects the axon of a neuron to a dendrite of another and permits the neurotransmit-
ters to diffuse across the cleft inside the synapse vesicle and bind to receptors on the
postsynaptic neuron. The plastic memory of the neuron is expressed in the number of
neurotransmitters released for a short or long time that depending on the different activ-
ity on the synapse itself. Unfortunately, the synapse itself could not explain the learning
behavior and a more deep understanding was required.

There were some theories about learning during the years, mostly about local learning.
but there is still no clear answer to this question. Donald O. Hebb [22] was the first
to theorized that the the connections between neurons could increase or decrease their
transmission capacity depending on the ongoing activity of the neurons they were linking.
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Figure 6: Simplified image of a synapse. Figure from [4].

The biology confirmed this theory, which works on local learning, but still there is no
robust theory for the global learning of the brain and no certainty that this is the only local
learning. A mathematical model that attempted to imitate the behaviour of the neuron
to understand better the learning capability of the latter was made by F. Rosenblatt, the
perceptron [46].

0.2.2. The evolution of perceptron

Figure 7: Single layer perceptron. Figure from [3].

The perceptron (Fig. 7) can be considered the main block of an ANN and if a biological
neural network is composed just by synapses and neurons, the perceptron, as a mathe-
matical model, needs a third element which is the activation function. The information
is processed by multiplying each input number by the value of the weight and summed
in a simplistic, but similar way to the neuron. The output signal, ’z’ in Figure 7, is then
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fed to a non-linearity that is called activation function. This is done both because the
action potential of the neuron resembles a non-linearity and because, otherwise, a neural
networks could not work as universal function approximators, but would be limited by
linear functions. As it can easily be seen, the perceptron has some similarities with the
neuron, but it is definitely not as accurate model of the latter. Nevertheless, most of the
state of the art NNs are based on this model.
Over the years different structures of perceptron have been used to increase multilayer
perceptron’s capability of universal function approximators. The approaches have been of
different kind, from simply developing new kind of activation function to add probabilis-
tic activation and convolution between layers. The model that will be mostly taken into
account in this thesis is the Spiking Neural Network (SNN), closer to a real neuron, that
has a Heaviside step activation function and has the ability to retain memory of previous
inference for a certain amount of time.

0.3. Artificial intelligence and neural networks

The term "artificial intelligence" is widely used in neuromorphic computing literature, but
it has a much wither meaning. Even if this field was born inspired by the human mind,
it includes any algorithm capable of enable problem-solving from sensible information. A
portion of it is dedicated to machine learning which is the study of any algorithm that
can improve automatically through experience and by the use of data.

A lot of machine learning algorithms have been developed and proved to be useful in tasks
that are common for humans, but not for machines, such as classification and regression
problems and data reduction. One of the first and most robust machine learning algorithm
is the Support Vector Machine (SVM), widely used for classification tasks by supervised
learning. RandomForest and XGboost are other algorithms based on regression trees that
excels respectively in data classification and regression tasks.

These and others machine learning algorithms have been proved to have outstanding
performances and are widely used, but there are some tasks that cannot achieve a sufficient
accuracy with these methods. Tasks as temporal changing data/image classification and
regression are too challenging for standard machine learning and a deep learning approach
is needed.

Neural networks are the most promising deep learning architectures that have been proven
able to solve these challenging tasks with Convolutional Neural Networks (CNN) and Re-
current Neural Networks (RNN). The advantages of using neural networks are not limited
by the stationary ability of "understanding" data sometimes better than humans, but their
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Figure 8: Artificial intelligence clustering. Figure from [2].

parallelism makes them suited for being implemented directly in hardware. Standard ma-
chine learning algorithms are made to perform optimally with sequential processing, and
so their computation time and power dissipation is intrinsically linked to the computa-
tional time and power dissipation of standard computing technology. On the contrary,
neural networks require huge time and power dissipation with standard sequential pro-
cessing. Neuromorphic hardware could reduce the computational time of deep learning
by orders of magnitude, as days or dozens of hours, to single hours or even minutes, with
a proportional decrease of power dissipation. The possibility of improvement with these
technologies is enormous considering what the brain can do consuming 10−10J per action
potential versus the 25nJ per operation of digital logic [49].

0.4. Aim of the Thesis

In this Thesis work, an asynchronous CMOS-based spiking neural network [34] is taken as
a reference. A prototype of the chip with 3 neurons have been implemented by Polidori E.
[44] and Polidori C. with the scope of testing the limits of this implementation. Even if a
synaptic weight adaptation based on the Spike Time Dependent Plasticity principle was
already implemented, this unsupervised training does not exploit the full possibility of this
technology. Starting from a detailed analysis, the aim is to further expand the network into
a more complex neuronal connection and develop a supervised or reinforcement learning
for the synaptic weights.

During this thesis work the chip has been measured and analyzed. A suitable supervised
online-learning that could be implemented has been developed and simulated. The choice
of the algorithm will be explained and motivated with a review of the current the state-
of-the-art learning for Spiking Neural Networks.
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1| Learning in spiking

neuromorphic hardware

The usefulness of a neural network is mainly due to its intrinsic ability to incorporate
learning by updating the synaptic weights between pairs of neurons. Different learning
are going to be exploited since different training are required for different tasks. The
chapter develops the basic concepts to understand learning in SNN from the definition of
learning in standard ANN to the state-of-the-art training for SNN.

1.1. Inference

Mathematically speaking standard multilayer feedforward networks are capable of ap-
proximating any measurable function to any desired degree of accuracy regardless of the
activation function. This features was demostrated by K. Hornik in 1989 and stated in
the famous theorem [30]:

Theorem 1.1. For every squashing function Ψ, every r and every probability measure µ

on (Rr, Br), both ΣΠr(Ψ) and Σ(Ψ) are uniformly dense on compacta in Cr and ρµ-dense
in M r.

Σq
j=1βjG(Aj(x)), xϵR

r, βjϵR,AjϵA
r, qϵN

Σq
j=1βjΠ

lj
k=1G(Ajk(x)), xϵR

r, βjϵR,AjkϵA
r, ljϵN

Where ΣΠ is the hidden layer of a feedforward network, r the dimension of the input
space and µ the input space environment and Ψ is the activation function. A feedforward
network is a neural network that has no recurrent connection between the neurons and
where the neurons are divided in layers (Fig.1.1 a)).



12 1| Learning in spiking neuromorphic hardware

Figure 1.1: a) Multilayer perceptron, a feedforward ANN. Figure from [52]. b) Connection
between presynaptic neuron and postsynaptic neuron in ANN. Figure from [39].

The output computation of an ANN is usually appealed as inference and can be calculated
as (Reference Fig. 1.1 (b)):

xl+1
j = f(Σn

i=1w
l
ijx

l
i + bl+1

j ) (1.1)

Where l is the layer of the presynaptic neurons, l+1 the layer of the postsynaptic neurons,
j is the number of the postsynaptic neuron in the l+1, n is the number of the neuron in
the presynaptic layer l. In the equation the output of the presynaptic neurons xl

i (i =
1,2,...,n) is multiplied by the synaptic weights wl

ij that connect presynaptic neurons with
the postsynaptic neuron number j. These values are then summed together with a bias
bl+1
j , included to provide more design flexibility, and fed to a non-linear activation function
f() (Ψ in Theorem 1).

Figure 1.2: Popular activation functions.a) A sigmoid function. b) A hyperbolic tangent
function. c) A ReLu function. Figure from [39].

Popular activation functions are hyperbolic tangent function, logistic function, and rec-
tified linear unit (ReLU) (Fig.1.2).The real power of the neural networks is given by the
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non-linearity of the activation function that is the key factor to enable neural networks
to approximate any function with a moderate number of parameters.

1.2. Neural Network’s typical architectures

ANN is a versatile and adaptive machine-learning tool and as such, it has been adopted
to solve multiple and different kinds of tasks. Experimentally, different structures have
been proved to be better at solving specific tasks than others, depending on the spatial
or temporal information of the dataset or on its discrete or continuous nature.

The three main types of network topologies used in this thesis are:

• Fully Connected Neural Network: it is the simplest form of NN. Every neuron of
one layer is connected to every neuron of the forward layer. The operations involved
in computing inference are usually matrix multiplications followed by non-linearity.
Examples of networks with this structure are Multilayer Perceptron (MLP, Fig. 1.1
a), introduced in the previous section and usually trained with backpropagation
(see next section) or Radial-Basis Function (RBF). RBF networks are composed of
three layers and use radial basis functions as non-linearity of the hidden layer. Radial
basis functions are functions whose output is determined by the distance between the
input and the origin. Differently from MLP, learning in RBF networks is interpreted
as a curve-fitting (approximation) problem in a high-dimensional space.

Figure 1.3: Recurrent neural networks. a) Four neurons Hopfield neural networks.b)
Three layer neural network with recurrent hidden layer ’s’. Figure b from [21]

• Recurrent Neural Network: RNN does not only have feedforward connections
but also connections that form a directed cycle. It must be noted that the directed
cycle includes some form of time delay, i.e. it is a feedback structure and not
an algebraic loop. This kind of feedback enables the network to acquire memory
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that makes the output dependent on multiple inputs over time. Such memory is
helpful in dealing with applications where the input data have temporal or sequential
correlations.
A peculiar example of this network structure is the Hopfield network. Hopfield
networks are RNNs with binary neurons that can serve as a content-addressable
memory. Each memorized sample is stored as a local minimum of the network’s
energy function and works as an attractor of the energy function. If an input similar
to that memory sample is presented to the network, it will collapse in a state linked
to that specific attractor. Instead, temporally correlated input data are usually
classified using MLP with recurrent connections. These networks are trained with
backpropagation through time that consists of backpropagating the error through
the network unfolded over time.

Figure 1.4: Convolutional neural network scheme. Figure from [39]
.

• Convolutional Neural Network: CNN is another variation of MLP based on
filters (convolutions) that result in feature maps. Each filter is applied to all feature
maps of the previous layer, a procedure that allows finding features no matter which
map contains them. Such a method also allows the network to gather the necessary
information regarding the relative spatial arrangement of features, since the location
of features itself is not important. Furthermore, between each convolutional layer
a pooling layer, i.e. a two-dimensional filter, is needed and can consist of max
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pooling, averaging, stochastic sampling or a layer of trained neurons. Such a layer
is necessary not only to reduce the size of the feature map, but also to reduce the
impact of feature displacement and other distortions. The network’s last layers can
be a MLP or another kind of machine learning algorithms to have a more accurate
regression or classification based on the extracted features of the previous layers.
This kind of architecture has been inspired by the cat’s visual cortex and it is
suitable for image analysis, especially for the detection of objects. Such a process
works because images are stationary and features that appear in one part of the
image are as likely to appear in other parts of the image. Furthermore, CNNs are
robust to the translation of the images and can be trained with backpropagation to
be robust also to rotations.

1.3. Fundamentals of Artificial Neural Network’s Learn-

ing

Learning is a process where unknown ANN parameters are adapted through continuous
process of stimulation from the environment. The way how the change of parameters
takes place determines the learning itself. The more common parameter to be taken into
account is the synaptic weight. We can express the learning as:

wl
kj(n+ 1) = wl

kj(n) + ∆wl
kj(n) (1.2)

Where in the learning step n + 1 the synaptic weight wkj(n), which is the old weight
between neuron k and j, is changed by ∆wkj(n) amount resulting in the new value of the
weight wkj(n + 1). Sometimes also bias parameters are trained during the learning, but
they can be treated as a synaptic weight parameter with its input always being one.

The variation of the weights can be determined by different learning algorithms that are
a solution to the learning problem. A problem can be solved by different algorithms,
each with its advantages and drawbacks. These algorithms can be clustered in three
learning paradigms that determine the relation of the ANN to the environment: supervised
learning, unsupervised learning and reinforcement learning.
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1.3.1. Supervised learning

Figure 1.5: Block scheme of supervised learning paradigm.

Supervised learning is the most developed type of machine-learning task using neural
networks. This paradigm is characterized by the presence of a teacher. The teacher has
knowledge of the problem in the form of precise input-output pairs. The input is fed to
the network for inference and the output of the network is compared to the respective
output of the teacher. From this comparison an error is calculated and the parameters
of the ANN are changed under the influence of the input vectors and error values. This
learning process is repeated until the network learns to imitate the teacher. After learning
is completed, the teacher is no longer required and the ANN can work without supervision.
A function L(w), which is usually referred to as loss (cost), is required to calculate the
errors. The function can be represented as a multidimensional error surface which depends
on the free parameters of the network. A point on the error surface is defined by weights
and corresponds to any configuration of the ANN. The minimization of the loss function is
mostly done through a gradient descent-based optimization or its derivatives, even though
some other standard optimization methods, such as the genetic algorithm, can be used
as well [39]. The method approximates the true loss function locally and updates the
network parameters in the opposite direction of its gradient. Equation 1.2 can be written
as:

wl
kj(n+ 1) = wl

kj(n)− η
∂L(w(n))

∂wl
kj(n)

(1.3)

Where the weight update consists of the linearized gradient multiplied by a factor η, called
learning rate. This factor is fundamental for a proper change of the weights. When the
update is too small, the linearized model matches well with the true loss function, but it
can remain stuck in local minima. On the contrary, when the changes in the parameters
are too large the true loss function behaves significantly differently from the assumed
linearized model, which results in divergence. Furthermore, even if the learning rate is
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Figure 1.6: Illustration of a one dimensional gradient descent process. The learning
process can be viewed as movement of the point down the error surface towards the
global minimum. Figure from [39].

not large enough to diverge, the weights can oscillate around a global or local minima.
Clearly, the choice of this factor is crucial for a proper learning of the network, but there
is not a precise method for this. The most common strategy is to go through an empiric
process of trial and error.

Even if there is no theoretical limit to the potentiality of learning, the gradient descent
method cannot guarantee the convergence to the global minimum. The neural network is
expected to figure out the correct function mapping by minimizing the difference between
its output and the target. However, if the network does not have enough free parameters
it cannot properly approximate the function. This case corresponds to an underfitting
of the data, since the network cannot properly fit the inputs. The opposite happens
when the network has too many degrees of freedom and fits the data, but approximates
a different function from the desired one. In both case the network performs poorly on a
test dataset. A good way to distinguish them is to look at the performance of the training
set. If the network is unable to correctly fit, also the training set it means that it has
not enough free parameters for the task and it is underfitted. If the opposite happens, we
are in the overfitting case. To avoid underfitting the simplest and more efficient solution
is to increase the size of the network, while for overfitting process can be more complex.
To solve overfitting more constraints to the learning are needed and can be done both by
acting on the dataset or by adding a regularization term to the loss function.
The process of finding the gradient with respect to each parameter of the network is called
backpropagation. This method was successfully implemented in 1986 [17] and since then
it has been widely used as a definitive method for training neural networks. The process
utilizes the chain rule used to find the derivative of a composite function in order to obtain
the gradient associated with each synaptic weight that is not directly connected to the
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output neurons. The gradient of the loss function can be expressed as:

∂L(w)

∂wl
kj

=
∂vl+1

j

∂wl
kj

∂xl+1
j

∂vl+1
j

∂L(w)

∂xl+1
j

(1.4)

where:

vl+1
j =

∑n
i=1w

l
ijx

l
i + bl+1

j

xl+1
j = f(vl+1

j )

Figure 1.7: Scheme of a simplified network with 3 layers: input layer, hidden layer and
output layer. Each layer with only one neuron

For the sake of simplicity, a trivial monodimensional example of a three layer multilayer
perceptron with a simple loss function will be considered (Fig. 1.7), in the time lapse of
a single cycle of inference and backpropagation (n will be omitted):

L(w) =
1

2n
(y − t)2

Where y = x3 is the output of the network and t is the target (desired output).
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So for the weight connecting the hidden layer to the output layer the weight update would
be:

∆w2
11 = −η ∂L(w)

∂w2
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∂v31
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Where ∂L(w)

∂v31
=

∂x3
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∂v31

∂L(w)

∂x3
1

= f ′(v31)(x
3
1−t) = δ3 is denoted in literature as the error (vector),
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which, in this case, is the error of the last layer. The calculation for the previous weight
is similar, but partially depends on the weight update of the deeper layer:

∂L(w)

∂w1
11
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∂v21
∂w1

11
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With these brief calculations, it has been shown that the gradient of the loss function
with respect to each synaptic weight matrix can be expressed, in a more compact way,
as the output of the previous layer of neurons times the error vector of the forward layer.
The error of each layer is calculated as follows:

δlj = f ′(vlj)
∑n

k=1 δ
l+1
k wl

j n number of neurons in layer l + 1

Except for the last layer that is:

δzj = f ′(vzj )ej z output layer

Historically, the sigmoid function and hyperbolic tangent function were used extensively
in neural networks. Especially, the sigmoid function was widely used because of its deriva-
tive, that can be expressed as a function of the output of the reference neuron, speeding
up the computational process. Recently in deep learning, the ReLu function and its
derivatives are predominantly used. The reasons are the further increase of computa-
tional speed, since the ReLu function can be computed as a conditional pass operation,
and because it prevents the gradient to vanish in deeper layers during backpropagation.
In fact, the sigmoid function and tangent function derivatives tend to zero at the edges,
causing the gradient to vanish in case a synaptic weight is too high or to low. It would
take a lot of iterations to further modify that specific weight. Using a ReLu function
prevents this situation to happen.
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1.3.2. Unsupervised learning

Figure 1.8: Illustration of dimensionality reduction in unsupervised training. The data
can be classified using just the dimension of the blue line. Figure from [39]

No labels for the data nor a direct reward for positive behavior are needed for the unsu-
pervised learning paradigm. If data exhibits redundancy, this method of training enables
the network to discover underlying data structures such as patterns, correlations and cat-
egories by itself. Without redundancy the input data resembles random noise, making
unsupervised learning impossible. The learning normally appears in the form of dimen-
sionality reduction (Fig. 1.8), as most natural signals have certain built-in structures.
This can be accomplished by self-organizing networks that, depending on their archi-
tecture, can infer different underlying structures and be used for different purposes. In
general, the network must learn to represent the input and must produce some output
based on the learned representation. The output can represent:

• Similarity: The network converges in a single output showing a similarity measure
between the input sample and all previous (averaged) samples.

• Principal Component Analysis (PCA): Extension of similarity measure to multi-
ple vectors, i.e. the network outputs similarities to the eigenvectors of the data
correlation matrix.

• Clustering: The network discovers the inherent groupings in the data with an indi-
cator output function.

• Prototyping: Similar to clustering except the output is a representative sample of a
cluster instead of an indicator function.



1| Learning in spiking neuromorphic hardware 21

Figure 1.9: a) Architecture of a Restricted Boltzmann Machine. b) Reference multilayer
perceptron. c) Illustration of how to autoencode the first hidden layer of a multilayer
perceptron. d) Autoencoding the second hidden layer of a multilayer perceptron.

• Coding: The output is a coded version of the input using less memory while keeping
most of the information content intact (e.g. vector quantization, data compression).

• Feature Mapping: The output neurons are arranged on a regular grid (e.g. a rect-
angular lattice) and only one may be active at any single moment.

The learning in self-organized networks can be Hebbian, where all the neurons may be
simultaneously active, or competitive, where only a single neuron in a group may be active.
Furthermore, in competitive learning, only synapses linked to the active neurons are able
to perform potentiation. Networks having the latter property are called winner-take-all
or WTA networks. Since such networks group or categorize data, they are often used for
pattern classification in computer vision or for vector quantization. Another emerging
application of unsupervised learning in neural networks is to conduct pre-training for
supervised learning, such as Restricted Boltzman Machines (RBM) and autoencoders
(Fig. 1.9). They can function as feature detectors which gets "hidden" in the hidden layer
and are not directly usable. RBMs are fully connected between layers, with bi-directional
synapses and are used to learn the probability distribution of the training set. They
are trained in a layerwise fashion by contrastive divergence (CD), which approximates a
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maximum-likelihood learning algorithm [35].

Autoencoders are structured like a feedforward network, with input (encoding) and output
(decoding) layers of the same dimension and a hidden layer with lower dimension (Fig.
1.9 c). The training is supervised-like and consists of standard backpropagation using
the input as the target vector. The network, this way, will learn to encode the data and
perform a perfect reconstruction. The encoded data can be seen as a reduction of the
input and so an extraction of its most important features. The process can be done with
each layer of a network considering the output of the previous layer the input and making
a dummy output layer for training. Such an unsupervised-learning approach is one of the
earliest techniques that helps to realize deep learning, because it is used to initialize the
synaptic weight to significative values instead of using random initialization.

1.3.3. Reinforcement learning

Figure 1.10: Illustration of reinforcement learning paradigm. The agent interacts with
the environment. x is the state of the environment, a the action of the agent and r the
reward signal. Figure from [39].

Even though the reinforcement paradigm may resemble supervised learning, in some as-
pects it is completely different. In reinforcement learning, there is no explicit supervisory
signal that instructs what the output of the neural network should be. Input-output
learning mapping is learned through the iterative process where a measure of learning
quality is maximized. The teacher does not present input-output training examples, but
only gives a grade representing a measure of learning quality. Reinforcement learning
overcomes the problem of supervised learning where training examples are required. The
learning can be performed only online i.e. in real-time and the network learns dynamically
during the exploitation phase.
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The most common task that reinforcement-learning algorithms attempt to solve (Fig.
1.10) consists of an agent interacting with its surrounding environment. At every time
step t, the agent is able to observe the states of the environment x(t) and tries to pick the
correct action a(t). A reward signal is generated accordingly to the choice. The agent will
modify its actions such that the accumulated reward it receives in the future is maximized.

Suppose that the discrete-time system the agent is interacting with can be modeled by

x(t+ 1) = f [x(t), a(t)] (1.5)

where x(t) is the k-dimensional state vector at time t, a(t) is the n-dimensional action
vector, and f [·] is the model of the system. The paradigm can be described in discrete
time as [39]:

j[x(t)] =
∞∑
k=1

γk−1r[x(t+ k)] (1.6)

where j is the reward-to-go and γ is the discount factor used to promote the reward
received soon over a long-term reward. r[x(t)] is the reward received at state of the
environment x(t).

The target of the reinforcement learning is to maximize the reward-to-go (Eq. 1.6). This
can be achieved through solving the Bellman equation [39].

j∗[x(t)] = maxa(t)(r[x(t+ 1)] + γj∗[x(t+ 1)]) (1.7)

Solving Bellman equation can be solved approximately with adaptive dynamic program-
ming (ADP) or it can be directly solved through dynamic programming, Q-learning,
Sarsa, etc [39]. If we consider playing a game as an example of supervised learning, we
can understand that it is easy to give a reward at the end of the game given the number
of moves and the outcome of the game. However when it comes to assign credits to each
move calculating a proper delayed reward is not straightforward. How to assign credits for
the ultimate reward is one of the most difficult tasks to solve in a reinforcement-learning
problem. It requires the agent to have an internal evaluating algorithm to estimate po-
tential rewards for each possible state. The most common ways are the Monte Carlo
(MC) method, where the agent averages all the rewards received starting from one state
and uses that average to approximate the expected reward, and the temporal difference
(TD) learning, where the agent uses a newer estimated value to update an old estimation
before knowing the final result. Furthermore, the rewards-to-go can be stored in look-up
tables or generated by a function approximator. The look-up table approach is easy to
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implement, but has the downside of increasing the size as the number and dimension-
ality of states increase, while a function approximator would require only to change its
parameters.

1.4. Spiking Neuron

Figure 1.11: Several mathematical model for neurons and their capability of emulating
abilities of the biological neurons.« “♯ of FLOPS” is an approximate number of floating
point operations (addition, multiplication, etc.) needed to simulate the model during a 1
ms time span». Figure from [27].

As mentioned in the previous chapter the principal aim of using neuromorphic hardware
is to reduce the power dissipation. Even if a greater portion of neural networks literature
have been about training ANN with graded values as output, a great portion of signal
processing in the brain happens through spikes. Spike coding can be more power consum-
ing than a graded, when the spike rates is too high. The brain is capable of saving power
using a sparse code [10] to process signals, i.e. not all the neurons need to be simultane-
ously active, but only a portion of them. This permits to reduce power consumption even
more than a graded network at cost of diminishing the quality of the information.

Various mathematical models of Spiking Neurons have been implemented over the years



1| Learning in spiking neuromorphic hardware 25

(Fig. 1.11), each with different features and a different degree of similarity with biological
neurons. This work focuses on learning for Leaky Integrate and Fire model, not only be-
cause it is the most used in hardware implementations [50], but also because the reference
network’s neuron [34], which is nominally a Morris-Lecar model, can be treated as a LIF
neuron under certain conditions.

1.4.1. Leaky Integrated and Fire

This neuron model was first introduced by Lapicque in 1907 [12]. It is composed by a
membrane capacitance that does not describe the action potential routine but only the
graded potential one (section 0.2.1). Such a model is more empirical than biologically
accurate and it is much easier to use during simulations and to implement in hardware.

dVmem

dt
= − 1

τmem

[(Vmem − Vrest) + IinputRleak] + Sneu(Vrest − Vth) (1.8)

Where Vmem is the membrane potential, Vrest is the value of the membrane potential at
equilibrium and its maximum value, Iinput is current injected into the neuron, Rleak is
the equivalent resistance of the membrane, which simulates the graded potential when no
spike occurs and τmem = Cmem · Rleak. Sneu = H(Vmem − Vth) is a nonlinear function of
the membrane voltage, which express an instantaneous voltage change in the membrane
potential when a spike occurs, where Vth is the threshold voltage of the neuron and H(·)
the Heaviside step function.
This model is only able to describe the tonic spiking (i.e while exited the neuron contin-
ues to fire a train of spikes), the integration and the dependence between the intensity of
current and spiking rate (Fig. 1.11). Even though, due to this simplification, the neuron
alone is not able to reproduce complex tasks, with the right training and the right archi-
tecture a network of LIF neurons can recognise temporal and spatial patterns like ANN,
but with an easier integration into chip and lower power consumption.

1.5. State of the Art training for hardware imple-

mented SNN

Different learning paradigms have been proposed during the years for training ANN. How-
ever, only one training technique has been established as enough reliable to make ANN the
essential signal processing method known nowadays, the backpropagation. Unfortunately,
this same method cannot be applied to SNN. The reason is that, even if SNN can be seen
as a particular case of RNN [18], the non-differentiability of the Heaviside function makes
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it difficult to apply the original algorithm. Biological neurons communicate by sending
discrete spikes in opposition with real-valued numbers in ANNs. Furthermore, learning
rules in the brain are most likely different from the backpropagation algorithm [8]. Since
these facts exist, the SNN research field has been focused on searching for an algorithm
close or equally powerful to backpropagation.

The more recent state-of-the-art training methods are divided between mathematical op-
timization and biological inspired algorithms. Entirely biological inspired methods have
local learning rules between layers, in agreement with measured biological data. Mathe-
matical optimization algorithms are adaptations of the backpropagation to work on SNN
or adaptation of the sensible information propagated by the network to be differentiable.
In this section both these algorithm families are discussed and compared in order to find
the one that best suits this project.

1.6. Biologically inspired learnings

As anticipated in the introduction, the brain’s synapses alter their strength through long
time potetiation (LTP) or long time depression (LTD). Since the 19th century this phe-
nomenon has been studied and, even if there is not still a complete picture of the problem,
it has been demonstrated that local interactions around the synapses activates a change
of plasticity [19]. Donald O. Hebb theorized a causal strengthening of the synapse i.e.
LTP would happen if the presynaptic spike would cause the postsynaptic spike and LTD
when the opposite occurs. The later work of Bliss and Lømo (1973) [11] showed that
high-frequency presynaptic firing drove LTP, while low frequency firing drove LTD. In
1998 the name "spike-time-dependent plasticity" (STDP) was coined by Bi and Poo [45].

Nowadays, it has been demonstrated that STDP is a multifactor rule that depends on
spike timing, synaptic cooperativity, firing rate, and postsynaptic voltage [19]. The firing
rate and depolarization requirement demands that multiple spikes are required for asso-
ciative plasticity, and cooperativity. Furthermore, STDP depends importantly on baseline
synaptic weight and on neuromodulators, which can shape it during and after spike pair-
ing (i.e. the same spike pairing causes a different change of the synaptic weight depending
on its baseline value and the amount of neuromodulators). However, depending of the
area of the brain, each factor can be a major determinant of plasticity in some cases but
a minor or negligible factor in others. At this stage of the hardware development for SNN
there is no possibility of having a network big enough to have the luxury of implementing
different learning in different parts of the network that considers some or all the previously
listed factors. More complex models exists [5], but at the moment they can only be used
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Figure 1.12: a) STDP considering joint time between spikes and firing rate at L5-L5
pyramid unitary synapses. b) Modeled multifactor STDP rule for the same synapse.
c) Correlation between cooperativity and couple of spikes with ∆t = 10ms between
presynaptic and postsynaptic spikes in distal synapses on L5 pyramidal cells. Open and
filled symbols show inputs with weak and strong cooperativity, respectively. Figures from
[19].

by software on CPU or GPU-based processors and will not be considered in this work.

1.6.1. Pair based STDP

Figure 1.13: Additive pair based STDP modification function. F is the percentage varia-
tion of the synaptic weight, while ∆t is the time of the presynaptic spike minus the time
of the postsynaptic spike. Figure from [51].

Pair-based or canonical STDP (Fig. 1.12) is probably the most known and studied bi-
ologically inspired algorithm for local learning. It is an unsupervised training based on
the time difference between a single spike of the presynaptic neuron and a single spike of
the postsynaptic neuron in a temporal window of usually 10 to 100 ms. Also referred as
Hebbian STDP, it is usually bidirectional (in time) and order-dependent, with presynap-
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tic before postsynaptic spiking driving long-term potentiation (an increase of strength,
related to causal events), and postsynaptic before presynaptic spiking driving long-term
depression (decrease of strength, related to anti-causal events). Different variations of the
algorithms have been implemented during the years, each with different features.
The additive STDP [51] can be expressed as (Fig. 1.13):

∆W (∆t) =

A+e
∆t
τ+ if ∆t > 0

−A−e
−∆t

τ− if ∆t < 0

Where ∆W (t) is the synaptic modification function, ∆t is the time difference between
presynaptic and postsynaptic spike, τ+ and τ− are two different time constants and A+ and
A− are the maximum weight change. The STDP rule has been proved to automatically
achieve a balanced, irregular-firing state in which presynaptic and postsynaptic spike
times are causally correlated over a wide range of input rates. Since presynaptic and
postsynaptic correlated activity can occur purely by chance, rather than reflecting a causal
relationship, to achieve stability is required that the integral of the synaptic modification
function ∆W (t) is negative. This means that synaptic weakening must dominate synaptic
strengthening to avoid a possible explosion of the value of the synapses. However, it must
also be noted that if the synapses become too weak to make a neuron fire the neuron is
lost and will not be able to fire anymore. Finally, a fundamental factor is the size of the
time window. As L. F. Abbott et al. write in [51]: "The size of the temporal windows over
which synaptic strengthening and weakening occur is critical in determining the effects
of STDP. It would seem highly advantageous for window sizes to be different in various
brain regions, to be modified during stages of development, and perhaps to be dynamically
adjustable over shorter time scales as well".

A more efficient way to limit the synapses into a certain range is to normalize the value
of variation by multiplying the positive term with the inverse of the weight W [33]:

∆W (∆t) =

 1
W
A+e

∆t
τ+ if ∆t > 0

−A−e
−∆t

τ− if ∆t < 0

Or with an exponential term that takes into account of the weight:

∆W (∆t) =

e−WA+e
∆t
τ+ if ∆t > 0

−A−e
−∆t

τ− if ∆t < 0

This additional expression of STDP not only normalizes the variation, but also breaks the
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asymmetric learning of one agent of the neuron. When one neuron starts to gain weight,
it experiences a more difficult change to learn further. This effect enhances the learning
of the other agents and a fair distribution of synaptic values.

STDP has been proved to be able to perform competitive learning [51] [33] [9] and with
the latter algorithm also a Winner-Take-All (WTA) approach. B. Nessler, W. Mass et al.
[9] demonstrated that using a probabilistic model STDP is able to perform a "spike-based
Expectation Maximization". This means that the WTA approach converges to at least
a local optimum in the fitting of the model to the distribution of high-dimensional spike
inputs.
One of the most functional SNNs that has been recently developed is the STDP-based
spiking deep neural network (SDNN) [48]. This network has been proved to be able to
achieve and accuracy of 99.1% on Caltech face/motorbike and 82.8% on ETH-80 datasets
only using unsupervised local learning. The learning methods consist of a simplified
version of the STDP that takes into account only if the spike difference is positive or
negative and normalizes the synapse change using the value of the weight. Furthermore,
a simplified but general version of the refractory time has been implemented: a neuron
can fire only one time for each image and also the firing of a neuron inhibits the firing of all
other neurons that share the same location in different neuronal maps of the same layer.
This provides a sparse but highly informative coding, because it indicates the existence
of a particular visual feature in a specific location without redundancy.

1.6.2. Triple STDP

Experimental data

Even if pair based STDP has achieved astonishing results, it fails to reproduce some ex-
perimental data of neural cells. Sjöström et al. have demonstrated [41] that long-term
plasticity in tufted L5 neurons (situated in the visual cortex) depends jointly on firing
rate, spike timing and cooperativity among inputs. The experiments have shown that the
time window of STDP is in a range of ∆t from -50 ms to 20 ms. In this range of pair
based spike time difference, the frequency plays a dominant role. From 0.1 to 20 Hz (low
frequency) depression is predominant and does not show any frequency (Fig. 1.14 d and
f) or postsynaptic depolarization dependence (Fig. 1.14 a and c). However, potentiation
seems highly affected by frequency (Fig. 1.14 d and f) and postsynaptic depolarization
(Fig. 1.14 a and c). Furthermore, unlike spike-timing LTD, low frequency pairing of
unitary inputs and a single postsynaptic spike could not induce LTP in the absence of
preceding postsynaptic depolarization or extracellular stimulation (Fig. 1.14 b). This
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Figure 1.14: a) Synaptic change as a function of time between presynaptic and postsy-
naptic spike and the total postsynaptic depolarization. b) LTP induced with (circles) and
without (squares) extracellular stimuli with ∆t = 10 ms. "n" is the number of measure-
ments. c) Postsynaptic spikes evoked during depolarization to -45.1 mV. d) LTD as a
function of frequency. It disappears above 40 Hz. e) Synchronous firing as a function of
frequency. f) Synaptic change as a function of time between presynaptic and postsynaptic
spike and frequency. Figures from [41].

means that cooperativity from other neurons is needed at low frequency to induce LTP.
Above 20 Hz (high frequency), potentiation was more prevalent (Fig. 1.14 d). Since the
membrane potential did not quite repolarize to rest, the amount of residual depolariza-
tion increased proportional to frequency and permitted robust LTP induction. This is in
part due to the spike after-depolarization and in part due to the membrane time constant.
The magnitude of LTP is inversely correlated with the initial synaptic strength and deter-
mined jointly by the membrane potential immediately preceding the postsynaptic spike,
by the instantaneous frequency and the time difference between the spikes. Above 40 Hz,
depression did not exist at all (Fig. 1.14 d and f). It happens because the frequency
at which the net effect of these multiple pairings shifts from LTD to LTP is determined
by the width of the LTP window (∆t of 20 ms i.e. 50 Hz). This absence of LTD at
high frequency suggests that other mechanisms must contribute to maintaining stability
in the face of plasticity. Finally, synchronous firing at frequencies up to 40 Hz resulted in
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Figure 1.15: Synaptic change in triplet and quadruplet experiments. Positive time inter-
vals means that the presynaptic spike precedes the postsynaptic one. a) Synaptic change
dependence on initial synaptic strength. The Tri+ data represents –10, +10, –5, +5 and
–15, +5 ms triplets of spikes. Tri- includes +10, –10, +5, –5 and +15, –5 ms triplets.
Quadruplet experiments are a couple of paired spike -5,+5 and +5,-5 ms. Quad+ repre-
sents measurements where the time interval from the midpoint of the depression-inducing
spike pair to the midpoint of the potentiation-inducing pair is 25ms, while Quad- when it
is -25ms b) Cumulative normalized STDP ratio. c) Histogram of mean normalized STDP.
Figures from [24].

depression, whereas potentiation was obtained at 100 Hz (Fig. 1.14 e).
More interactions between spikes were provided by Wang et al. [24] (Fig 1.15). The

interaction between triplets of spikes of a hippocampal neural culture seems to suggest
that the integration of potentiation and depression processes is nonlinear and tempo-
rally asymmetric. The two processes cancel when potentiation is triggered first, while
potentiation dominates when it is triggered second (Fig 1.15 c). Furthermore, even when
depression was activated later, if the time difference between the spikes was less than
the potentiation one, the overall synaptic change would result positive. LTP was proved
again to be inversely proportional to the synaptic strength, while depression seems to be
independent (Fig 1.15 a). Even quadruplets of spikes have shown potentiation in a time
window of 70 ms, although they produce less potentiation than triplets (Fig 1.15 a and
b). Finally, the potentiation was inversely proportional to the time difference between
the depression pair and the potentiation pair.
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Learning rules

Figure 1.16: Paired STDP fails to reproduce experimental data from [41] and [24]. a)
Synaptic change as a function of frequency with ∆t = +10 ms (straight line) and ∆t =

−10 ms (dotted line). Comparison between data of [41] (black), All-to-All (blue) and
nearest-spike (red) simulations. b) Comparison in synaptic change in quadruplet protocol
from [24] (dots) and simulations (red and blue lines). ∆t between couple of spikes of 5ms.
c,d) Comparison in synaptic change in triplet protocol from [24] (black) and simulations
(red and blue). Figures from [42].

It is easy to understand that canonical pair based STDP cannot represent a fitting model
for the previous shown experimental data. It fails to show the dependence on frequency
of the pairs of spike and cannot reproduce triplets or quadruplet experiments (Fig. 1.16).
To better represent the experimental data, J. Pfister and W. Gerstner developed a model
inspired by the process of glutamate release of postsynaptic neuron whenever a presynap-
tic spike arrives [42]. Glutamate that binds to postsynaptic receptors increases when a
presynaptic spike happens and after decreases exponentially. They modeled four variables
r1, r2, o1, o2 that change according to these equations:

dr1(t)

dt
= −r1(t)

τ+
+ Spre

dr2(t)

dt
= −r2(t)

τx
+ Spre

do1(t)

dt
= −o1(t)

τ−
+ Spost

do2(t)

dt
= −o2(t)

τy
+ Spost

Where τx and τy are time constant respectively larger than τ+ and τ−. Spost and Spre are
the trains of postsynaptic and presynaptic spikes respectively. The learning rule is based
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Figure 1.17: Triplet STDP represent data from [41] and [24]. a) Synaptic change as a
function of frequency with ∆t = ±10 ms. Comparison between data of [41], All-to-All and
nearest-spike simulations. b) Comparison in synaptic change in quadruplet protocol from
[24] and simulations. ∆t between couple of spikes of 5ms. c,d)Comparison in synaptic
change in triplet protocol from [24] and simulations. The simulations in figure d have
a variance 4 times smaller than the pair protocol from experimental data. Figures from
[42].

on the previous listed variables and it is and All-to-All interaction:

w(t+ 1) = w(t)− [o1(t)(A
−
2 + A−3 r2(t− ϵ))] ∗ Spre

w(t+ 1) = w(t) + [r1(t)(A
+
2 + A+

3 o2(t− ϵ))] ∗ Spost

Where A+
2 and A−2 are experimental parameters that control the weight change for paired

spikes, while A+
3 and A−3 denote the amplitude of potentiation and depression for triplets

of spikes. All four parameters are assumed greater than or equal to zero and ϵ is an
infinitesimal positive quantity to ensure that the weight updates before r2 and o2. As it
can be easily seen, when there are only pair of spikes r2 and o2 are equal to zero and the
learning rule behaves like the canonical STDP. However, when triplets and quadruplets
of spikes or pairs of spikes above a certain frequency are presented to the network, r2 and
o2 are not zero anymore and the potentiation or depression is increased. The learning
rule has undergone the same experiments of figure 1.16 and the results approximate much
better the experimental data from [41] and [24].

Another algorithm that deserve to be mentioned is the triplet of spikes algorithm of J.
Gjorgjievaa, J. Pfister et al. [29]. Their approach considers only pairs and triplets of
spikes and expresses the weight change as a Volterra expansion of both presynaptic and
postsynaptic spike trains:
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∆W (∆t1,∆t2) =

A+
3 e
−∆t1

τ+ e
−∆t2

τy if ∆t1 ≥ 0,∆t2 ≥ 0

A−2 e
−∆t1

τ− if ∆t1 < 0

where ∆t1 = tpost − tpre denotes the time difference between a postsynaptic and a presy-
naptic spike and ∆t2 = tpost − t′post denotes the time difference between the postsynaptic
spike and the consecutive postsynaptic spike. τ+, τ− and τy are potentiation, depression
and rate time constants. It is important to note that τ− is the double of τ+ in order make
depression influence more the synaptic change than potentiation and that τy is at least 6
times higher than τ+ in order to make the training enough frequency dependent.

The algorithm seems to induce selectivity in rate-based patterns in a similar way of
the Bienenstock, Cooper and Munro (BCM) learning rule, which have been observed
in biological STDP [19] and that could explain experience-dependent cortical plasticity
such as orientation selectivity. BCM, which proposes a sliding threshold for LTP and
LTD and states that synaptic plasticity is stabilized by a dynamic adaptation of the
time-averaged postsynaptic activity, has been shown to maximize the selectivity of the
postsynaptic neuron in a permissive middle range of firing frequency, without letting the
synaptic weight explode or go null. Furthermore, this triplet STDP seems to be able to
induces selectivity also with third order correlation based patterns, differently from pair
based STDP that was only able to induce second order correlations. To validate these
simulations results there are also experimental data obtained from memristive devices in
[59].
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1.6.3. Membrane voltage based STDP

Figure 1.18: a and b represent the fitting of the model to the experimental data from
[41], while c and d represent the fitting of experimental data from [24]. a) Simulation of
the weight change with different time intervals ∆t between presynaptic and postsynaptic
spikes at a frequency of 20Hz. b) Normalized weight change at different frequency with
constant ∆t of 10ms (blue) and -10ms (red). The dots are experimental data. c) Weight
change as a function of the number of postsynaptic spikes at 50 Hz. The presynaptic
spike was paired +10 ms before the first postsynaptic spike (blue) or –10 ms after (red).
Dots are experimental data and crosses are simulations. d) Synaptic weight change with
one presynaptic spike and three postsynaptic spikes at different ∆t at 50 Hz frequency.
Dots represent experimental data and black and dashed line simulations with different
parameters. e Synaptic weight change with one presynaptic spike and three postsynaptic
spikes at different frequency. Dots represent experimental data and black and dashed line
simulations with different parameters. Figures from [15].

Previous explained training algorithms fits more and more accurately the experimental
data [41] [24] regarding the spike timing plasticity, but some data [41] shows also a de-
pendence on the postsynaptic neuron membrane potential. The algorithm developed by
C. Clopath, W. Gerstner et al. [15] seems to preserve most of the features of the previous
algorithms even if it is based on presynaptic spike arrival and postsynaptic potential i.e.
takes into account the voltage dependence. The neuron model used for the simulations
[15] is an adaptive exponential integrate-and-fire (AdEx) and thus it could lead to differ-
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ent results if a normal integrated and fire (the one used for this project) would have been
used instead. However, a working voltage dependent approach is very rare in literature
and therefore it is worth mentioning. It could be adapted to LIF neurons and be an
inspiration for a future hardware implementation.

The algorithm is based on the idea that potentiation and depression happen when the
presynaptic neuron spikes, depending on the instantaneous membrane voltage of the post-
synaptic neuron. Unfortunately, this process would retain network’s information only for
a narrow time window. It depends on the decay time of the membrane voltage, which
is usually too fast to fit the experimental data. To solve this problem two different low
pass filtered versions of the postsynaptic membrane (one for potentiation and one for
depression) along with a low pass filtered version of the presynaptic spike train have been
introduced. This way, the training algorithm’s memory of the network can be increased or
decreased at will and it is possible to create a nonlinear voltage dependence. The method
can be summarized as:

∆W = A+xi(u− θ+)+(u+ − θ−)+ − A−(u)Xi(t)(u− − θ−)+

τ−
d
dt
u−(t) = −u−(t) + u(t)

τ+
d
dt
u+(t) = −u+(t) + u(t)

τx
d
dt
xi(t) = −xi(t) +Xi(t)

A−(u) = A0−
u
2

uref

This is combined with the hard bounds Wmin ≤ W ≤ Wmax.
In the system u(t) is the postsynaptic membrane potential, u+ and u− its low pass filtered
versions for potentiation and depression respectively and xi(t) is the low pass filtered
version of the presynaptic spike train Xi(t) =

∑
n δ(t − tni ). τ+ ≃ 10ms, τ− ≃ 1s and τx

are the time constant of the low filtered variables. A+ and A− are amplitude parameters,
the first one is a constant, while the second is regulated by the control of an homeostatic
process u [56]. θ+ and θ− are threshold that regulates the activation of the STDP when
the relative version of the membrane potential crosses them. Finally, the symbol (·)+
indicate rectification, which is equivalent to the operation max(0, ·).

It can be easily noted that at low frequency LTP cannot happen if the threshold θ+ is
relatively high, while LTD can happen if θ+ is relatively low. In Figure 1.18 is shown the
ability of the algorithm to have time and frequency dependence similar to the experimental
data from [41] and triplets and quadruplets response similar to [24]. The result shows that
this method can fit the experimental data in a similar way to the triplet rule and adding
the voltage dependence, which is absent in the previous explained biologically inspired
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learning rules.

1.6.4. Shallow supervised STDP

Figure 1.19: a Simulated traces of a hidden neuron, an output neuron and the linking
synapse during supervised training from [8]. b Simulated weight development during
training. Figure from [6]. c Final state of the simulations of the second layer of synapses
from the network of [6]. Figure from [6].

Usually, biologically inspired training rule are unsupervised since there is no clear idea
of the global learning in the brain. However, B. Illing, W. Gerstner and J. Brea [8] were
able to think of an algorithm able to perform supervised training to the last layer of a
SNN in a biologically plausible way. The algorithm is based on the simple concept that
each output neuron must have a postsynaptic target trace, which represents the spiking
activity that each output neuron should have according to the input presented to the
network. Through a STDP like method, the synapses linking hidden and output layers
get increased or decreased in order to make each output neuron’s mean firing activity as
close as possible to the postsynaptic spike trace. In fact, given an input-output pair, where
the input is converted into spike trains, the network tends to converge in a state where
the firing rates of the output neurons represent the wanted targets. This training method
has been used by A. Dabbous, C. Bartolozzi et al. [6] to solve a 6 class classification
problem with a 3 layers network. The first layer is composed by 160 neurons responsible
for converting the input voltage into spike trains. The second layer is composed by 16
neurons and linked to the first by a randomly generated binary matrix (1 connected, 0
disconnected) in order to compress the input information. Since there were 6 classes, the
output layer was composed by 6 neurons that would give a binary output according to
their firing rate: output equal 1 for the neuron with the higher firing rate and 0 the others.
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The training algorithm for training the synapses connecting hidden and output was:τtr
dtri(t)

dt
= −tri(t) + A · Souti(t)

∆Wji(t) = η(tgi(t)− tri(t)) · Shidj(t)

Where i represent an output neuron, j an hidden neuron and Wji is the synaptic weight
linking the two neurons. tgi and tri are respectively the output neuron i target trace and
spike trace, with τtr the time constant of the latter. Shidj(t) and Souti are respectively
the Spike trains of the hidden neuron j and the output neuron i, η is the learning rate
and A is a constant value. The algorithm updates only when a presynaptic spike occurs
by taking into account the difference between the target trace of the postsynaptic neuron
and its spike trace.

To further increase the accuracy, an additional inhibitory layer was added to the network
during the testing phase. This layer, concatenated to the output layer, consists of 6
inhibitory neurons each of which is connected with only one output neuron. Through
lateral inhibitory connections, these neurons tend to either prevent from firing or reduce
the firing rate of the output neurons not directly connected to them. This method, similar
to the location-based inhibition of [48], increases the competition between neurons at the
output layer. With this final modification the network was able to achieve an overall
accuracy of 88.3% on a dataset of 60 samples of touch modalities. 4 out of 6 classes
achieved an accuracy of 90%, one an accuracy of 70% and one an accuracy of 100%.
These results are comparable if not even better than other machine learning approaches.

1.7. Mathematical optimization algorithms

As previously mentioned, mathematical optimization algorithms are a derivation of stan-
dard backpropagation and unlikely biological inspired algorithms are mainly of the su-
pervised and reinforcement paradigm. The hardware-friendly learning methods can be
divided in three major categories. The first and most intuitive is to translate traditional
trained "rate-based" ANN into a SNN. The second is smoothing the network model to
be continuously differentiable. It can consist of modifying the activation function with
soft non-linearity or in changing the model approach and considering the spiking proba-
bility, rate or time as the output of the neuron as valid information, instead of the single
spike itself. The third method is to use surrogate derivative to relax the non linearity
of the gradient. It can be obtained by replacing the spiking nonlinearity derivative by
the derivative of a continuously differentiable function. In this way, standard learning as
backpropagation through time and real time recurrent learning can be applied. Alter-
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natively, the surrogate gradient can be applied to the loss function itself using feedback
alignment or, more in general, random backpropagation matrices. The error can be first
backpropagated and then a surrogate loss function and its actual derivative can be locally
calculated or the gradient of the surrogate loss function can be calculated and then a
matrix can be used to backpropagate it.

1.7.1. ANN converted in SNN

Figure 1.20: a) Sigmoid function (red) approximated by AMOS cell (blue) in 8 time
steps. Figure from [13]. b) SiLu (x · sigmoid(x)) function, which contains more complex
non linearities than the ReLU function, approximated by an FS-neuron in 16 time steps.
Figure from [14].

The method of supervised training based on the conversion of an ANN into a SNN is the
most used in literature and probably the most efficient in term of accuracy when it comes
to the simulation results. It uses a pre-trained ANN by backpropagation and converts
it into a SNN that carries information through rate. By using special cells made by
recurrently connected spiking neurons like At Most One Spike (AMOS) [13] or Few-spike
(FS) neurons [14] it is also possible to recreate a rate version of some activation functions
(Figure 1.20). Unfortunately, rate based networks require a lot of spikes and consequently
more power dissipation that other methods. This fact is in opposition to the aim of this
project to implement a network with the lowest possible power dissipation and thus rate-
based networks have not been taken much in consideration. However, it is important to
denote that J. Büchel, D. R. Muir et al. have developed a training algorithm able to
fully exploit the temporal memory of LIF neurons and classify time-variant inputs with
this method [28]. Training SNN to recognise temporal non-linear sequence is not a simple
task. Usually RNN are used for this task and trained with backpropagation through time
(BPTT) by backpropagating errors thought the unrolled network and changing the weight
of the recurrent connections. In the SNN case there are no recurrent connections
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Figure 1.21: a) Schematic of the recurrent rate-based neural network with of size N̂ , with
encoding and decoding feedforward connections F̂ and D̂, trained to map c(t) into y(t)

resulting in the internal temporal representation of neural activity x̂(t). b) Schematic
of the training of ADS by using the rate-based RNN. The error is calculated from the
difference between the RNN output and the filtered and encoded ADS output. The error
is then encoded and fed back to the ADS. c) Schematic of the resulting classifier composed
by two encoding matrices, the ADS network and two decoding matrices. Figure from [28].
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because the memory of time is in the neuron itself and the only parameters that a BPTT
with a pseudo-gradient could affect are the non recurrent synapses. With only forward
synapses as variables for the algorithm, it is very difficult to make the network converge
close enough to the global minimum. This happens mainly because the gradient of the
current time step and the previous one could be in contrast with each other. A way
to control the temporal memory may be to use the synapses time constant and leakage
current, but there is not a definite algorithm to minimize a possible loss function with
these variables and thus the optimum values can be found only heuristically [36].

The algorithm developed by J. Büchel, D. R. Muir et al. consist in an Efficient Balanced
Network (EBN), referred as Arbitrary Dynamical System (ADS) whose training is based
on the outputs of a rate-based RNN. The task is defined as mapping a d1 dimensional input
c(t) into the d2 dimensional output ŷ(t) and was firstly implemented in a non-spiking
EBN in the form of a mono layer rate-based RNN with this dynamic:τ ˙̂x(t) = Ω̂f(x̂(t)) + F̂c(t) + b+ ϵ

ŷ(t) = D̂x̂(t)

Where Ω̂ is the N̂xN̂ (N̂ is the number of neurons in the layer) matrix of recurrent
connections, ˙̂x(t) is the N̂ dimensional output array of the neurons, b is the bias, f(·) =
tanh(·) is the activation function and ϵ is a noise factor. Rate-based neurons behaves a
little different than standard perceptrons, because their output does not reset every time a
new input is injected, but it decays over time (τ is the decay time constant). Furthermore,
every time a new input is presented to the network, the new inference output is summed
to the previous decayed inference output. In this case, it was also chosen to add decoding
and encoding weight matrices D̂ and F̂ with respective dimensions N̂xd2 and d1xN̂ in
order to mach input and output dimensions with the size of the network. The decoder
weights were initialised using a standard normal distribution and the encoder as F̂ = D̂T.
BPTT or any other suitable approach can be used to train the rate network.
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Figure 1.22: a) The filtered internal ADS network dynamics are able to match the RNN
ones after the training. b) Spiking activity of the ADS network. c) Whether an input
was classified to a specific class the corresponding output signal was high (top trace),
otherwise it would remain low (bottom trace). d) and e) are the accuracy and MSE
comparison respect to quantisation noise between this method and the FORCE method,
a reservoir network, and RNN trained with standard BPTT. f) Comparison of resilience
to hardware mismatch. Figure from [28].

Once the RNN network is trained, the next step is to train the ADS network to behave
like ˙̂x(t). The network training dynamics (Fig. 1.21) can be expressed as:



V̇ = −λV + F̂Fc(t)−ΩfSneu(t) +ΩsSneu(t) + kDe(t)

Ω̇s = µr(t)(Fe(t))T

x̃ = Fr

e = x̃− x̂

Ωf = b(FD+ aI)

F = DT

Where V is the array of leaky membrane of the N spiking neurons (N = 5N̂), λ the
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leak rate, Sneu is the array of spike trains of the neurons, r the spiking output of the
ADS network, µ the learning rate, Ωs are the recurrent connections of size NxN where
the pseudo-backpropagation is performed and e is the error between the filtered spiking
output and the rate-based RNN output. F and D are feedforward weights of dimensions
N̂xN and NxN̂ needed for encoding and decoding the input and output of the network.
Furthermore, Ωf provides fast balanced feedback and a and b are more complex parameters
that have been simplified for the sake of simplicity. Finally, k is a parameter that decays
to zero over time and is needed to force the ADS network output to remain close to the
desired target dynamics until the learning is completed.

The previous explained algorithm have been simulated and compared with different train-
ing approaches. It seems to perform in similarly to other trainings in a ideal simulation,
but the peculiarity of this approach seems to be his robustness to hardware mismatch
and quantisation noise (Fig. 1.22 d), e) and f)). This would lead to a great advantage
in term of accuracy and reliability with the downside of a more complex implementation
and an increase of the synaptic connections.

1.7.2. Smoothed Spiking Neural Networks

The peculiarity of this supervised learning method is the network formulation, which en-
sures well-behaved gradients that are directly suitable for optimization. Since the neuron
model used for this work is a defined LIF neuron, these algorithms have not been consid-
ered to be implemented. However, they are widely used in literature and thus the four
major kinds will be quickly explained: soft nonlinearity, probabilistic, rate and temporal
models.

Soft nonlinearity models

The soft nonlinearity model is implemented by replacing the Heaviside’s activation func-
tion of SNN with a gated function that can be continuous or more realistically discrete.
The function provides an activation of the synapses related to the membrane voltage of
their presynaptic neuron [25]. In a discrete implementation there can be different thresh-
olds that increase the synaptic activation gradually.

Probabilistic models

The spiking activity of a neuron averaged over several samples defines its probability
density. The binary probabilistic models are based on the concept that the log-likelihood
of a spike train is a smooth quantity, which can be optimized using gradient descent. So
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when it comes to on stochastic neurons the focus is not anymore on the exact value of the
synapses, but on the spiking probability that comes from a specific presynaptic neuron
respect to the postsynaptic one. A peculiar fact about these networks is that noise can
be injected to smooth out the effect of binary nonlinearity.

Rate-coding networks

In rate-based models there is not a modification of the neuron model, but rather at the
information level, which is carried out by the spiking rate. Suprathreshold firing rate
averaged over a sufficiently large time intervals behaves as a quasi continuous function of
the input current and thus permits gradient-based optimization. Differently from stochas-
tic models, they are deterministic networks, which always emit a fixed-integer number of
spikes for a given input, with frequency as the only difference. As mentioned, these models
perform very well at the expense of low power efficiency. They require either a relatively
high firing rate or long averaging time to achieve decent accuracy and thus are not suited
for ultra-low power implementations.

Single-spike time-coding networks

The temporal-based methods do not require a modification of the neuron model. In this
case, the information is encoded in the firing time that can carry high information in short
observation windows just by using one spike. The downside is that every neuron in the
network needs to emit one spike per trial, because there is no clear gradient definition for
quiescent units. This is a trait that could be considered in contrast with power efficiency.

1.7.3. Surrogate gradients

When surrogate gradients are used there is no modification to the SNN model. There are
two ways of applying this method. The first one consists of changing the optimization
algorithms by using a virtual surrogate loss function. It approximates the gradient by
replacing weights in the backward path of the backpropagation with feedback alignments
i.e. random ones. The network would adjust its feedforward weights such that they
partially align with the random feedback matrix and thus permitting to convey useful
error information (i.e the backpropagated gradient sign and its value, which is close to
the real one). The second methodology does not change the algorithms. Instead, it
just replaces the Heaviside derivative by the derivative of a continuously differentiable
function.

A perfect example that uses both the typologies is SuperSpike [18]. This algorithm is an
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optimization procedure for time variant classification that leads the output neurons of a
SNN to spike at predefined times. In order to do so, a loss function in discrete time is
defined as:

L =
1

2

∑
n,j

(λ ∗ (Sneuj
[n]− Stg

neuj
[n]))2

Where λ is the continuous-time kernel function that defines the spikes, Sneuj
is the spike

train of the output neuron j, Stg
neuj

the target spike train for the output neuron k and ∗
the convolution symbol. Considering the error as e[n] = dL

dn
= λ ∗ (Sneuj

[n]− Stg
neuj

[n]), a
learning rule for last matrix weights can be defined as:

∆W o
ij[n] = ηej[n][σ

′(Vmemj
[n]− Vth)

dVmemj
[n]

dW o
ij

]

where W o
ij is the weight linking the last hidden layer neuron i to the output neuron j, η is

the learning rate, Vmemj
[n] is the membrane potential of the output neuron j at discrete

time n, Vth is the threshold voltage of the Heaviside activation function of the LIF neuron
while σ′(·) is its pseudo or surrogate derivative (i.e. derivative of ReLu, logistic or other
activation functions). When applied to multilayer networks, SuperSpike propagates the
error directly to deeper layers by using random backpropagation:

∆W l
ik[n] = η[

∑
j

Gijej[n]][σ
′(Vmemi

[n]− Vth)
dVmemi

[n]

dW l
ik

]

Where W l
ik is the weight linking the neuron i of the hidden layer l− 1 to the neuron k of

the hidden layer l and G is the random matrix that performs error propagation.

SuperSpike is an example of how random backpropagation can be used to propagate the
error backward, but depending on the technology and the network size this method can
result not inefficient. Random matrices can eventually be used to map the output of the
hidden layer into arrays that have the same dimension of the pseudo target. This way
each layer has its own loss function and the weight variation can be calculated locally,
like in [18]:

∆W l
i [n] = ησ′(ali[n])

dLl(Glyl[n], yl
tg
[n])

dyli[n]

Where Gl is a fixed random matrix for each layer that projects the layer l to an array of
dimension of the pseudo-target yl

tg and ali[n] is the sum of the inputs to the neuron i of
the layer l.
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1.8. Conclusion

This chapter can be considered an overview of what the most known training for SNN
consist and can be catalogued. The first part was specifically made in order to permit
the comprehension of this subject also to electronics engineers new to the field. It is
fundamental to clarify some concepts that can result confused in nowadays literature.
The second part deepens the State of the Art for the training of SNNs. Different methods
have been catalogued, explained and compared to better understand the main ideas that
led to the choice of the most common training algorithms. The choice and the algorithm
itself will be explained in the following chapters.
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artificial neural network

2.1. Introduction

After the study of possible implementations, the neuromorphic circuit proposed first by
I. Sourikopoulos et al. [26] and then modified by Mastella [34] and after that realized on
chip by Polidori E. [44] and Polidori C. [43] is analyzed in this Chapter with all the final
realizations. The Chapter also treats the PCB implemented to test the chip [44].

2.2. Chip realization

The neuromorphic chip was realized in order to gather together the bio-plausible feature
with a low power implementation. The chip (Fig. 2.1) was entirely made with CMOS
technology and is composed by three main circuits:

• The neuron. There are three neuron circuits on the chip: two predisposed as
presynaptic neurons and one as postsynaptic. Both the presynaptic neurons are
linked to the postsynaptic by a synapse. From now on the presynaptic neurons
will be addressed as presynaptic neuron 1 and presynaptic neuron 2, while the
postsynaptic one just as postsynaptic neuron.

• The synapse. Two floating-gate synapses link the presynaptic neuron 1 and presy-
naptic neuron 2 to the postsynaptic neuron. When a presynaptic neuron spikes the
relative synapse injects a current proportional to their respective weight into the
postsynaptic neuron and increases its membrane voltage. Only positive synapses
have been implemented on this chip.

• STDP circuit The Spike Time Dependent Plasticity circuit is needed to reshape
the neurons spikes to a double wave rectangular signal that enables the weight
change of the synapses. This signal is then increased to higher voltages in order to
permit the tunneling of charge through the floating gate of the synapses.
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Figure 2.1: Block scheme of the neuromorphic chip. The chip is composed by three
neurons, three STDP circuits and two synapses. The neurons have been arranged in
order to have two presynaptic neurons and one postsynaptic. The presynaptic neuron 1
and the postsynaptic neuron share all the power supply, while the presynaptic neuron 2
does not share some of the reference voltage that involves starvers current generators. An
input current can be injected in all three neurons separately. Figure from [44]

The design has been carried out exploiting the LFoundry 150nm CMOS technology. The
toolkit comprises transistors with different voltage ratings: 1.8V, 3.3V, 5V.
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2.2.1. The neuron

Figure 2.2: Circuital scheme of the designed neuron. The external input current and the
synapse current have been modeled respectively with current generators Iin and Isyn. The
membrane capacitance Cmem was chosen of about 50fF to be greater than the parasitic
capacitances at Vmem node. Figure modified from [34]

Transistors sizing

MNa Mk Mp1 Mn1 Mp2 Mn2 MS

W
L

320nm
320nm

1µm
320nm

1µm
150nm

1.76µm
350nm

320nm
150nm

320nm
640nm

320nm
1µm

Table 2.1: Sizing of the transistors of the neuron circuit in Fig. 2.2

The schematic of the neuron is reported in Fig. 2.2. The circuit takes advantages of the
physical analogy of electronics with the biology to create a very compact and efficient
spiking neuron. In order to resemble a biological neuron, the circuit needs to be able to
emulate the neuron membrane and all its states (Fig. 5): the resting state, the depolariza-
tion state, the repolarization state and the hyperpolarization state. In order to consume
as less power as possible the circuit is powered between Vdd = 0.4V and Vss = 0V and
Vdown is controlled with an external trimmer for testing. In quiet conditions, the whole
current drained was simulated to be Itot ≈ 2pA leading to a dissipated power of 800fW .
When a spike arrives the energy consumed by the whole neuron to create the designed
signal should be around 21fJ/spike. Finally, the neuron occupies an area of 74m2.
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The cell membrane is modelled as a capacitor Cmem and the potassium and sodium ionic
channels are implemented respectively by the MOS transistors MK and MNa. The neuron
dynamics are determined by the value of Vmem, which is defined by the current injected
into Cmem:

ICmem = INa − Ik + Isyn + Iin (2.1)

Depending on this equation balance the neuron can enter in a different state.

Resting state

When no current is injected into Cmem, the neuron remains in a resting state. At the
equilibrium point, the current balance in equation 2.1 becomes:

0 = INa − Ik (2.2)

This condition is met when V K
gs ≈ 0V and V Na

sg ≈ 0V . This can only happens when the
output of the first inverter VNa = Vdd, while the output of the second inverter VK = Vss.
The transistors are sized in order to reach equilibrium Vmem = Vrest ≈ 0V when Vdown =

Vss = 0V .

To calculate the exact value os Vrest and its relationship with Vdown we can consider that
with Vdd = 0.4V the MOSFETs operate in subthreshold regime:

Ip0

(
W

L

)
Na

e
Vsg

npVthr [1− e
− Vds

Vthr ] = In0

(
W

L

)
K

e
Vgs

nnVthr [1− e
− Vds

Vthr ]

since Vsg ≈ 0V :

Ip0

(
W

L

)
Na

[1− e
−Vdd−Vrest

Vthr ] = In0

(
W

L

)
K

[1− e
−Vrest−Vdown

Vthr ]

Assuming Vrest lower than 0.2V to prevent the first inverter from triggering, we have:

[1− e
−Vdd−Vrest

Vthr ] ≈ 1

So in the assumption of Vrest ≤ 0.2V :
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(
W

L

)
Na

= In0

(
W

L

)
K

[1− e
−Vmem−Vdown

Vth ]

Vrest = Vth ln

(
−
Ip0(

W
L
)Na

In0(
W
L
)K

+ 1

)
+ Vdown (2.3)
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Figure 2.3: Inverter characteristic simulated on the nodes Vmem and VNa node during
a voltage sweep between 0V and 0.4V . The intersection between the the lines shows
Vthr ≈ 0.205V . Figure from [34]

The result shows that in order to achieve a proper Vrest, Mk must be more conductive
than MNa. If this condition is met, we have Vrest ≈ Vdown during the resting state.

Depolarization state

In case a current Isyn from the synapses or a current Iin is injected, the balance between
the leakage currents of MK and MNa is broken. The extra current integrates into the
capacitance Cmem and the voltage of Vmem evolves toward a new equilibrium at higher
voltage. If the equilibrium is below the first inverter commutation voltage, the circuit
is still in stationary condition and when no more current is injected, the Vmem node will
gradually return to its resting state. However, if the Vmem value exceeds a certain Vthr

the first inverter starts to commute leading to the decrease of VNa voltage. With its gate
voltage decreasing, the transistor MNa will inject more current to the Vmem node. This
will lead to a positive feedback until Vmem reaches the supply voltage. The threshold of
the spiking neuron is the effective threshold of the first inverter. From the input-output
characteristic of the inverter in Fig. 2.3, the threshold voltage is Vthr ≈ 0.205V .

Repolarization state

While Vmem increases and VNa decreases, the second inverter charges the capacitor CK

through the transistor Mp2. Once this capacitor is charged enough the transistor MK
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Figure 2.4: Circuital scheme of the neuron and the starver bias circuit. RMS1
is a 100kΩ

resistor placed in series to MS1, which is a nMOS with the same size as MS. Figure
modified from [34]

starts to drain current out from Cmem, leading to a negative feedback. In fact, the
decreasing of Vmem would make the first inverter commute back to VNa = Vdd and the
second inverter discharge the capacitor Ck.
The time between the beginning of the charging of CK and the start of the negative
feedback determines the time width of a spike. This time interval should be as small as
possible in order to save power. It also has to be slower than the time needed by Vmem to
reach Vdd, otherwise, the spike cannot rise fully during its transient. Based on the sizing
of MNa, MK and the first inverter, a duration of the spike of Twidth ≈ 1ms was chosen.
Considering that the charging current of CK comes from MP2 and that from simulations
the critical voltage that activates the negative feedback is VKON

≈ 0.3V , the time width
of a spike can be calculated as:

Twidth =
VKON

CK

IP2

Where:
IP2 = IP0

(
W

L

)
P2

e
Vsg

npVth [1− e
−Vds

Vth ] = IPON

(
W

L

)
P2

[1− e
−Vds

Vth ]

With the approximation of Vsg ≈ Vdd and assuming Vds >> Vth, Twidth can be finally
expressed as:

Twidth =
VKON

CK

IPON
(W
L
)P2
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Hyperpolarization state

The slow discharge of CK through the NMOS MN2 is limited in current by the starver
Ms. The latter transient defines the time when the neuron cannot integrate the input
current, called refractory period. This important parameter defines the time between
spikes (Interspike Interval) generated by a neuron when the input current is constant.
The refractory period also represents the maximum frequency at which a neuron can
spike. The boundary is related to the working principle of the starver, which determines
the current integrated in CK and thus its charging time. The value of Trefr was chosen
around 6ms and can be controlled by changing the supply voltage VSTARV of the starver
(Fig. 2.4). The relationship between the refractory period and the starver current is:

Trefr =
(Vdd − VKOFF

)CK

Istarv

Where VKOFF
≈ 0.15V is the voltage that the node VK should assume in order to switch

off the transistor MK .
Considering the charging time of the capacitance, when a constant current is injected, as:

Tcharge =
VddCmem

Iin

The frequency at which a neuron can spike is:

fspike =
1

Trefr + Tcharge + Twidth

With a maximum frequency of

fspikeMAX
≈ 1

Trefr + Twidth



54 2| Description of the reference artificial neural network

2.2.2. The Synapse

Figure 2.5: Circuital scheme of the floating gate synapse composed by three PMOS tran-
sistors. At the gate of Mread is applied the signal that activates the synapse. At the
source-drain of Mtun and Vin a double square wave signal with same shape and amplitude
are applied to permit Fowler Nordheim tunneling through the floating gate. Vin and Vtun

are generated after a spike of the presynaptic neuron and of the postsynaptic neuron,
respectively. Figure modified from [34]

The synapse has the role of injecting current into the capacitance Cmem of the neuron.
It is composed by three pMOS transistors (Fig. 2.5): two of 3.3V technology (Mtun and
Mbias) and one of 1.8V technology (Mread).

When a presynaptic neuron spikes the STDP circuit generates a double square wave at Vin

while a negative pulse (the VNa signal from the presynaptic neuron, Fig. 2.4) is applied
at the gate of Mread. The pulse has a width of 1ms and it is synchronized with the
negative part of the double square wave signal. The pulse turns on Mread generating a
current square wave of similar shape as the voltage applied to Mread gate, but positive.
The current amplitude is controlled by the amount of charge stored in Mtun, which is
a PMOS transistor with drain and source short circuited that creates a floating gate.
After that, Mread turns off and and the double square wave signal is applied at Vin. If
this happens while a similar signal is applied at Vtun, a current is injected or ejected
from the floating gate according to the STDP learning rule. PMOS transistors have been
specifically employed for the floating gate to assure that each tunneling transistor would
have its own bulk to prevent charge sharing and cross talk between synapses.
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Figure 2.6: Profile of the signals PRE −HV and POST −HV . The tunneling happens
only n the dT time interval with VPRE−HV = Vprog and VPOST−HV = −Vprog (or vicev-
ersa). In all the other cases the ∆V applied to the floating gate is not enough to change
significantly its stored charge. Figure from [34]

The injection and ejection of electrons in the floating gate of Mtun is performed through
tunneling. The Fowler Nordheim tunneling [32] is a phenomenon that happens when a
relatively high voltage is applied between a potential barrier. The bands of the barrier
starts to bend and the probability of an electron to tunnel through the barrier increases
exponentially.
In this particular case the voltage barrier is represented by the oxide and can be expressed
as:

Itun = −I0WLe−
Vf
Vox = Itun0e

− V0
Vtun

Where I0 is a pre-exponential current, Vox is the voltage across the oxide, W and L

are the dimensions of the transistor, and Vf is a constant experimentally obtained that
depends on the oxide thickness.

The tunneling current is induced from the bulk to the floating gate node or viceversa if a
high potential difference is applied across the oxide of Mtun. In fact, a forward tunneling
current I←−tun flows from the gate to the bulk if the difference Vin−Vtun is positive. Viceversa,
a backward tunneling current I−→tun is injected from the bulk to the Vfg node if Vin − Vtun

is negative. By applying high voltages between Vin and Vtun, the charge can be stored or
removed in the floating gate, altering the Vfg voltage and thus changing the current Iout.
The weight of the synapses is the charge integrated into Vmem of the postsynaptic neuron
during a single spike.
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Figure 2.7: Simulated ∆Vfg at a function of ∆T = TPRE−HV − TPOST−HV . The doube
square wave signals have 7ms width and 4.5V amplitude. Figure from [34]

If we consider both of forward and backward currents, the charge stored in the floating
gate can be expressed as:

∆Qfg = −CT∆Vfg =

∫
∆T

(I←−tun − I−→tun)dt =

∫
∆T

[I←−tun0
e
− V0

Vin
Cin
CT

+Vfg−Vtun − I−→tun0
e
− V0

−Vin
Cin
CT

−Vfg+Vtun ]dt

Where ∆T it the time length of the applied difference i.e. ∆T = TPRE−HV − TPOST−HV

and CT is the equivalent capacitance seen at the Vfg node.
In order to be able to inject enough charge two high voltage double square wave signals
are applied at the ends of the floating gate (Fig. 2.6). The typical upper and lower value
of the signals are Vprog = 4.5V and −Vprog = −4.5V in order to able to apply ±9V at
the oxide of Mtun. These signals, generated by the STDP circuit, have their own ±4.5V

voltage supplies and thus the current injected into all the floating gates can be changed
just by changing those two power supplies. The simulated voltage change of the Vfg node
as a function of the time difference between the pre and post spike is shown in Fig. 2.7.

2.2.3. The Spike-Time Dependent Plasticity circuit

In order to generate the HV double square wave signals (Fig. 2.6) a proper circuit has
been designed (Fig. 2.8). It was called STDP circuit and it is composed of three main
blocks: the timing circuit, the voltage shifters and the 5V MOSs.
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Figure 2.8: STDP circuit scheme. The timing circuit generates the shape of V down_1.8,
V up_1.8 and V temp_1.8 signals. The voltage shifters extends the voltage range of these
signals in order to be suitable to control the HV MOS and generate the HV signals. Figure
from [44]

The timing circuit

The timing circuit, shown in Fig. 2.9, creates the proper timing distance to drive the
5V MOSs from the VNa signal. The voltages of the signals go from 0V -0.4V supplies to
0V -1.8V supplies.
The first stage is composed by a couple of inverters in cascade that regenerates the VNa

signal of the neuron and reshape it in a rectangular fashion. This signal is then processed
by two NOR gates and one AND gate. Furthermore, one of the AND inputs and one of
the NOR inputs is slowed down by a starver inverter (Fig. 2.10) in order to control the
time shape of the signals by changing their biases.

Figure 2.9: Timing circuit scheme. The first stages are two inverters in cascade which
regenerate the VNa and then extend it from 0V − 0.4V to 0V − 0.8V . After that, some
logic ports reshape the signal into V down_0.4 and V up_0.4 signals. Finally, these signals
get shifted to 0V − 1.8V range with two standard inverters and enter the output NOR
gate. Figure from [44]
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Figure 2.10: Circuital scheme of the starvers. a) The starver inverter before the first NOR
generates a limitation in the rising edge, in order to slow it down by a time interval D2
(referred as Tup in the next chapter). b) the starver inverter before the AND gate limits
the falling edge by a D1 delay (referred as Tdown in the next chapter).

The voltage shifters

The voltage shifters (Fig. 2.11) stretch the signals coming from the timing circuit to higher
voltages. Depending on the signal involved, they can extend the range up to 0V -4.5V and
-4.5V -0V , maintaining the correct delays imposed by the timing circuit. Furthermore, an
output path (Fig. 2.20) have been designed for the ID signals (Figure 2.11 b) of all the
neurons. These signals share the same time lengths of the HV signals and thus can be
used to check the STDP circuit functioning.
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Figure 2.11: a) Circuit schematic of the voltage shifters b) Signals before and after the
voltage shifters. Figure b from [44]

The high voltage MOSes

The output stage uses an NMOS and a PMOS to selectively connect the output node
to +4.5V or to -4.5V (Fig. 2.12). The transistors are controlled by the three signals
generated by the voltage shifters. By controlling the gate and sources of this circuit we
can obtain the shape we found useful in 2.2.2 subsection. In LFoundry technology, the
chosen nmos5v0rvt and pmos5v0rvt are able to withstand voltages up to 6V of Vgd, Vgs
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and Vds.

Figure 2.12: HV MOSes configuration. The UP , DOWN and ID signals pilots the
generation of the HV signals.

2.2.4. Neuron interface circuits

Figure 2.13: a) Circuit schematic of the current mirror. The trandiode is connected
through a 50kΩ resistor to an external pin of the chip. b) Circuit schematic of the
buffers. Figure b from [44]

In order to controll and interface with every single neuron, dedicated circuits have been
designed.

The first one is a current mirror (Fig. 2.13 a) working in the subthreshold regime that
serves as a current generator. Each neuron has its own current mirror that can be driven
by an external signal generator. The mirror ratio is such that the current injected into
the neuron is reduced by a factor 24 in order to increase the control of Vmem. To help in
reducing further the current an external 50GΩ resistor is placed on the PCB test board.
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The second circuit integrated in the chip is a buffer designed to read the Vmem of the
neurons (Fig. 2.13 b). These three buffers are fundamental to keep low the equivalent ca-
pacitance at Cmem node which is responsible for the integration. The buffers are composed
by a CMOS OTA and a high impedance output compensated through a nulling resistor
Rn and a Miller capacitance Cc. The Rbias is connected to an external pin, where a spe-
cific voltage is given. Furthermore, the voltage supplies of the buffers have been decided
starting from the voltages already needed by the chip: Vdd = 1.8V and Vss = −3.3V .

2.3. PCB layout

Figure 2.14: Block scheme of the neuromorphic chip pins and connections. The connec-
tions of the chip are used to provide power supplies, input signals and output signals.
Figure modified from [44]

In order to interface with the chip, a test PCB have been developed. The design has been
done using Altium program and then fabricated by Millenium Dataware. The PCB test
board is designed to:

• give the proper input signals to the chip. V IN1, V IN2, V IN_POST are
externally imposed voltages that bias the current mirrors and provide the current
to the CMOS neurons;

• provide the proper power supplies. Pos_Ref and Neg_Ref are the main
power supplies of the board that provide the right bias of all the components. +4.5V

and −4.5V are the power supplies that directly bias the HV MOSs in the STDP
circuit. A dedicated bias was chosen in order to directly affect the tunneling and
the STDP characteristic;
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Figure 2.15: Circuit schematic of the path that leads from the voltage applied by the
pulser to the generation of the current injected into the neuron.

• read the output signals. V OUT_MEM1, V OUT_MEM2 and V OUT_POST

are the output voltage signals of the three output buffers. They are needed to show
the membrane voltage of the neurons. ID_BUF_PRE1, ID_BUF_PRE2 and
ID_BUF_POST show the ID signals of the timing circuits. The possibility of
measuring these signals will be beneficial to verify the correct functioning of the
timing circuit.

2.3.1. Input path

In order to charge externally the capacitance Cmem of each neuron the chip includes three
current generators. However, the needed current to cope with the time requirements of
the neurons is in the order of pA. To have such a small currents, the BNCs designated to
provide the input signals (V IN1, V IN2, V IN_POST ) have been placed in series with
a 50GΩ resistor and then to the current mirror described in the previous section (Fig.
2.15). A 10pF capacitance has been also added to filter out unwanted high frequency
signals coming from the external voltage generators. The resulting RC low pass filter has
a fixed pole at 0.3Hz which increases in frequency if a current is injected into the mirror.
In fact, the current would decrease the equivalent resistance of the transdiode and change
the pole.

In case of DC current, the resulting current injected into the neuron would be:

Iin =
0.4V − Vds − Vin

24 · 50GΩ

Where Vds of the transdiode is ≈ 200mV
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Figure 2.16: Circuit schematic of the path that leads from the trimmer to the bias of
the starvers. The circuit comprises a resistive partition with 1kΩ resistors and a Bourns
3224X trimmer, a 50GΩ resistor to reduce the current, a 10pF decoupling capacitor close
to the pad of the neuromorphic chip and a 22µF capacitor for an RC LPF. The adopted
trimmers are featured by a maximum of 10kΩ resistance. Figure modified from [44]

2.3.2. The starvers regulators

The starver configuration has been used widely during the design of the chip. In fact, by
changing its bias it is possible to slow down or speed up an inverter commutation. To have
the possibility of changing the transient time of the starver inverters, their bias has been
implemented tunable through trimmers. The trimmers can generate a reference current
by tuning the voltage drop across a 50GΩ resistor from 0.15V to 1.65V . The current is
then injected into a current mirror that biases the starvers (Fig. 2.16) with a range from
3pA to 33pA.

There are 6 trimmers that control the starvers: STARV , STARV P , STARV _TIMING,
STARV _PRE2, STARV P_PRE2, STARV _TIMING_PRE2 (Fig. 2.17). The first
three biases the presynaptic neuron 1 and the postsynaptic neuron, while the latter three
are dedicated to bias the presynaptic neuron 2. This choice allowed separate measure-
ments and timings during the testing phase. STARV and STARV _PRE2 determines
the refractory periods. STARV P and STARV P_PRE2 control the time length of
the positive voltage of the HV signals. Finally, STARV _TIMING and STARV _
TIMING_PRE2 determines the time length of the negative voltage of the HV signals
(Fig. 2.17).
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Figure 2.17: Circuital scheme showing the starvers that share the same current mirrors.
Figure from [44]

2.3.3. The power supplies

The power supplies needed by the neuromorphic chip are eleven in total and can be
categorized into three different kinds:

• Tunable power supply. 0.8V , 1.8V , 1.8V _dig, 0.4V , V down, V down2, −3.3V

and V ref_buffer are power supplies that needed to be tunable, therefore a trimmer
performing a resistive voltage divider between 0 and 1.8V has been involved for each
of them. Furthermore, a 22µF capacitor is set in a RC low pass filter configuration
followed by a buffer and a 50Ω resistance at its output directly connected to the
chip (Fig. 2.18 a).

• Fixed power supply. The BCN of -4.5V and 4.5V power supplies are just con-
nected to the pin of the chip through a low pass filter composed by a 500Ω resistance
and a 22µF capacitor.

• Hybrid. The voltage supply of the synapses V DD_SY N has a nominal value of
0.4V, but the possibility of tuning it has been taken into account if necessary during
the test phase. For this purpose, a trimmer has been inserted to change the voltage
if needed, otherwise a simple connection to the external generator (properly filtered)
imposes the required voltage (Fig. 2.18 b).
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Figure 2.18: Circuital scheme of the power supplies chain from the external voltage gen-
erator to the pin. a) The tunable approach comprises a trimmer Bourns 3224X, 1KΩ

resistors, a 22µF capacitor, one of the opamp included in OPA4141AID package, a 50Ω

resistor. b) Hybrid approach to generate the synapse supply voltage. Figures from [44]

As mentioned before, the BNC connectors of Pos_Ref and Neg_Ref bring the external
reference voltages to the board. Then they are linked to four LDO regulators which
generate all the lower voltage required. From the power supplies four supply voltages
have been generated (Fig. 2.19 a):

• 1.8V . Generated from the positive power supply, this voltage is the positive reference
voltage of all the trimmers in the PCB that also biases the 1.8V pin of the chip.
The positive regulator used is the LM1117MP1.8 [53] with a 22µF input and 10µF

output capacitances (Fig. 2.19 b).

• 1.8V_DIG. This voltage is the positive reference voltage of the digital buffer and
the digital 1.8V pin of the chip. The positive regulator used is the same as for the
1.8V supply: LM1117MP1.8 LDO with a 22µF input and 10µF output capacitances
(Fig. 2.19 b).

• 5V . This voltage, generated from the positive power supply, biases the OPAMPs.
The positive regulator used is the MC78M05ABDT [40] with a 3.3µF input capac-
itance (Fig. 2.19 c).

• –3.3V. Generated from the negative power supply, it is used as negative power
supply of all the buffers mounted on the PCB, negative reference of some of the
trimmers on the board and the –3.3V power supply of the neuromorphic chip. The
negative regulator used is the UCC384DP-ADJG4 placed in the same configuration
as Fig. 2.19 d. It has been chosen R1 = 200kΩ and R2 = 120kΩ in order to satisfy
the relationship Vout = −1.25V (1 + R1

R2
). The capacitor C1 = 20pF is placed to

cancel the pole introduced by R1 and the parasitic capacitance at V OUT node.
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Figure 2.19: a) Schematic blocks of hierarchical organization of the power supplies. The
ramification reduces the number of external power supplies needed. Figure from [44]. b)
Circuit schematic of the positive LDO of 1.8V and 1.8V _DIG power supplies. Figure
modified from [53] c) Circuit schematic of the positive LDO of 5V power supply. Figure
modified from [40] d). Circuit schematic of the negative LDO of −3.3V power supply.
Figure from [54]

2.3.4. Output path

Two kinds of signals have been chosen as output of the chip in order to test it: the Vmem

and the ID signals. The first one is needed to check the correct functioning of the neuron,
while the second is needed to have proper information on the timing circuit functioning
and thus to check on the HV signals and the STDP.

V OUT_MEM1, V OUT_MEM2 and V OUT_POST can be monitored through the
output buffers already implemented on the neuromorphic chip, therefore a simple connec-
tion from the output pins to the BNC connectors is done.

For what concern ID_BUF_PRE1, ID_BUF_PRE2 and ID_BUF_POST , which
are double-waves rectangular voltage spanning from 0V to 1.8V , two CMOS digital
buffers on chip provided by LFoundry and another digital buffer as IC on the PCB have
been chosen to boost the signal (Fig. 2.20). The buffer mounted on the PCB is the
SN74LVC3G17DCTRE4 [55], which performs the Boolean function Y = A, following a
non-inverting Schmitt trigger logic. The power supplies determine the high and low logic
levels and are taken accordingly to transmit the digital ID signal: 0V and 1.8V.
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Figure 2.20: Schematic blocks of the output path for the ID signals. Two LFoundry digital
buffers are integrated at the ID node, followed by another digital buffer put in cascade
on the PCB. The oscilloscope then reads the output signal through a BNC connector.
Figure from [44]
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3.1. Introduction

The neuromorphic chip described in the previous chapter has been fabricated and mounted
on its PCB for testing. Different experiments have been carried through to validate the
performance of this implementation with its relative advantages and problems.

3.2. Measurement setup

Figure 3.1: Configuration of the PCB connections used to test the chip.

The PCB used for testing the chip was built with a total of twelve BNC: three for input
signals, five for power supplies and six for output signals.
The pulser used to inject current into the neurons is the 33522A series Waveform generator
by Agilent. It only has two outputs and the experiments have been done only with a
maximum of two neurons at the same time. The most common configuration was a
presynaptic neuron measured with the postsynaptic one, while the input of the other
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presynaptic neuron was biased in order to do not inject any current.
To power up the board the ROHDE & SCHWARZ DC power supply was used. The
BNC inputs involved were the POS_REF and NEG_REF .
To bias the dedicated power supply of the STDP circuits and the input of one of the
presynaptic neurons the HF2LI Lock-in Amplifier by Zurich Instruments was used. Its
AUX outputs have been put in manual mode in order to be easily controlled by a console.
Finally, the HDO6054A-MS oscilloscope by TELEDYNE LECROY was used to record
the measurements.

3.3. Chip damaging factors

Before entering in the details of the measurements, it is important to highlight some prob-
lems that occurred during the process. In fact, the chip was more fragile than expected
and sensitive to low voltage differences. As a consequence the chip has been changed up
to six times during the measurement process.

The first problem encountered resulted in having a static Vmem ≈ 100mV in the postsy-
naptic neuron that was higher than the applied Vdown ≈ 0V . The solution found to lower
the Vmem was to decrease Vdown ≈ −75mV and thus increase the leakage current flowing
through the transistor MK . This approach caused the decrease of Vmem ≈ 0V , but did not
answer the question of how the Vmem stationary value could be so much higher than Vdown.
The cause of the extra leakage injected in the Vmem node was found when experiments
on the synapse were performed. In fact, it did not matter how much charge was stored
into the floating gate of any of the synapses through STDP, they were not able to inject
any additional current to the Vmem node. The formulated hypothesis was that, since a
Vsyn ≈ 0V was forced during the starting of the chip, when the first postsynaptic neuron
spiked a voltage difference of 0.4V was applied between Vmem and Vsyn. This voltage
difference caused the Mbias and Mread pMOSes junctions of both synapses to go in direct
mode. This would have caused a current relative low, but apparently high enough to
damage the transistors. To validate this hypothesis different voltages were applied to the
Vsyn node and it was observed that the Vmem voltage would increase or decrease propor-
tionally. Furthermore, after the bonding of the other chips on the PCB, the Vsyn voltage
forced was at ≈ 200mV instead of ≈ 0V , always resulting in the correct functioning of
the synapses.

The second problem encountered during the measurements involved, again, some of the
Vmem voltages, which were stuck around 0V . This time, there was not a correlation
between the neurons as in the previous case, because it happened once to the presynaptic
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1 neuron and the next time to both the postsynaptic neuron and the presynaptic neuron
2. The measurements showed also a signal superimposed at the ≈ 0V bias. From the
undulating shape of the signal and its frequency of ≈ 50Hz was deduced that the node
must have been in a floating state. However, the ID signals seemed to work fine. When
a current was injected into the neuron they would commute just like they would have
done if the neuron was spiking. This would have been impossible if Vmem was floating
and thus it was further deducted that the cause of the faulty signal could only have been
the breaking of the analog buffer on the chip. In fact, the output nodes of the OPAMPs
are directly connected with the BNCs, which in those occasions have been re-soldered.
To validate this hypothesis other soldering tests have been performed and the resulting
behaviour of the amplifier outputs was similar: floating at some voltage, with a 50Hz

sinusoid superimposed. Probably, the soldering caused some electrostatic shock that was
enough to pierce through the oxide of the Miller capacitance, causing the Vout node to
remain floating.

The third problem encountered during the measurement involved the function of the
presynaptic neuron 2. During the measurement of the last two chips the Vmem node
was stuck at 0.4V forcing its synapse to remain opened. This fact kept the postsynaptic
neuron spiking at the higher possible frequency that its refractory period permitted. In the
attempt to recover at least the postsynaptic neuron, the Vdown of the presynaptic neuron
2 was lowered up to −0.5V in order to fully open the MK transistor. The response was
that Vmem would come back to its normal resting state where Vmem ≈ Vdown. An increase
of Vdown would have been followed by Vmem up to ≈ 0.2V , which is the spiking threshold.
However if the positive feedback was started the Vmem would get stuck again at 0.4V .
This time the hypothesis was that during the bonding or the starting of the PCB the MS1

nMOS broke causing the shutting down of MS and thus impeding the negative feedback
to bring back Vmem to ≈ Vdown.

3.4. Two neuron comparison

As stated in the previous chapter, the presynaptic neuron 1 and the postsynaptic neuron
shares the same power supplies and starvers’ current mirrors. Those neurons, excluding
the synaptic connection, are nominally the same and thus perfect to be compared in order
to understand the limits of this technology, dependent on the process variability.
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PCB voltage configuration

Refractory period LHV signal HHV signal STDP

VSTARV_TIMING 250 mV VAR 250 mV 250 mV

VSTARVP_PRE2 550 mV 550 mV 550 mV 550 mV

STARV_PRE2 0 V 0 V 0 V 0 V

VSTARV_TIMING
_PRE2

900 mV 900 mV 900 V 900 mV

VSTARVP 630 mV 630 mV VAR 630 mV

VSTARV VAR 300 mV 300 mV 300 mV

VDOWN2 -20 mV -20 mV -20 mV -20 mV

0.4V 400 mV 400 mV 400 mV 400 mV

VDOWN -20 mV -20 mV -20 mV -20 mV

VREF_BUF 1 V 1 V 1 V 1 V

VDD_SYN 200 mV 200 mV 200 mV 200 mV

0.8V 800 mV 800 mV 800 mV 800 mV

+4.5V 0 V 0 V 0 V 4.5 V

-4.5V 0 V 0 V 0 V -4.5 V

POS_REF 7.3 V 7.3 V 7.3 V 7.3 V

NEG_REF -4.2 V -4.2 V -4.2 V -4.2 V

Table 3.1: PCB configurations used to perform measurements. The first three measure-
ment focuses on the variations between the presynaptic neuron 1 and the postsynaptic
neuron, thus each neuron has been individually measured. During these measurements
V STARV , STARV _TIMING and STARV P have been respectively varied, while all
the other voltages have been kept the same. The fourth measurement was needed to
understand the effective characteristic of the STDP with two neurons working simultane-
ously.

3.4.1. Refractory period dynamic

The refractory period is a fundamental feature of a spiking neuron. It defines the maxi-
mum frequency that a neuron can spike and its maximum speed of operation. However,
not only the characteristic of the refractory period of a single neuron is important. It is
fundamental to understand the effect of the process variability on the refractory period of
all the neurons of a possible network. It is also important to understand if the frequency
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Figure 3.2: a) Trefr characteristic of presynaptic neuron 1 and the postsynaptic neuron
as compared to the variation of V STARV voltage. The voltage range is from 30mV to
990mV with 4 measurements performed after each 30mV . Black lines are the interpolated
curves. b) Measurement example with V STARV voltage equal to 300mV .

range is wide enough to perform training based on rate or spiking probability and to un-
derstand what is the operational speed that should be imposed to the network to prevent
unexpected spiking.

To understand these limitations a measurement of the Vmem of the presynaptic neuron
1 and the postsynaptic neuron have been performed through the outputs of the board
V OUT_MEM1 and V OUT_POST . The PCB configuration is listed in table 3.1. At
the input of V in2 was applied a constant voltage of 400mV in order to prevent any
current injection, while a constant bias of −1.5V was applied at V in1 and V in post. The
refractory period (Trefr) has been considered the time difference between the moments
when, after a spike, Vmem drops lower than 4mV from its resting state and when it rises
to 4mV again (Fig. 3.2 b). 4mV has been chosen because it is 1% of the spike peak
(400mV ).

The acquired data (Fig. 3.2 a) show a significant variability of the refractory periods.
In fact, the refractory period of the presynaptic neuron 1 is almost the double of the
refractory period of the postsynaptic neuron, no matter the bias. The cause could be
the high variability of the transistor Ms when it is biased in subthreshold regime. In
fact, both the MS transistor of the presynaptic neuron 1 and the postsynaptic neuron are
biased by the same MS1. Because of this variability it has been necessary to implement
an algorithm resilient to the variation of the refractory period.
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3.4.2. HV signals characteristic

Figure 3.3: a) Tdown characteristic of presynaptic neuron 1 and postsynaptic neuron as
compared to the variation of V STARV _TIMING voltage. The voltage range is from
30mV to 1.62V with 4 measurements performed after each 30mV . Black lines are the
interpolated curves. b) Tup characteristic of presynaptic neuron 1 and the postsynaptic
neuron as compared to the variation of V STARV P voltage. The voltage range is from
30mV to 600mV with 4 measurements performed after each 30mV .

STARV _TIMING and STARV P trimmers determines the time shape of the HV double
square wave signals that inject and eject charge into the floating gate of the synapses.
These voltages bias the starvers which control the time lengths of the negative and positive
voltages of the HV signals. The real relationship between the trimmers voltage and these
time length is needed to understand the best possible bias voltage for an efficient STDP
and its limits.

Unfortunately, there is not a direct access to the HV signals, but instead an output path
to the main signals that pilot the 5V MOSs have been provided (Fig. 2.20). The signals
in question are the ID signals (Fig. 2.12), which can be sensed from the BNC outputs
ID buf PRE1 and ID buf POST . The PCB configuration during the measurement is
listed in table 3.1 (HHV and LHV columns). At the V in2 input was applied a constant
voltage of 400mV in order to prevent any current injection, while voltage pulses of −1.5V

with 400mV baseline and ≈ 40ms duration were applied at V in1 and V in post. The
stationary state of an ID signal is at 1.8V until a spike occurs. When this happens it
commutes to 0V for a time Tlow that corresponds to the time length of the negative voltage
of its respective HV signal. Then it commutes back to 1.8V for ≈ 150ns and after that
it commutes again to 0V for a period of time Tup that corresponds to the time length of
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Figure 3.4: a) ID buf PRE1 and ID buf POST signals when and STARV P = 650mV .
b) V out PRE1 and V out post signals when and STARV P = 650mV . In both the
measurements STARV _TIMING = 250mV .

the positive voltage of its respective HV signal. Finally, it returns to its resting state of
1.8V (Fig. 3.4 a).

The acquired data show a huge difference between the Tdown characteristics of the two
neurons (Fig. 3.3 a), while Tup has less variability. The Tdown of the presynaptic neuron
1 is almost the double of the Tdown of the postsynaptic neuron, no matter the bias. This
result resembles the measurements of the refractory period. However, Tdown measurements
show much higher jitters, which increases proportionally to the applied voltage. For what
concern the Tup measurements it is clear that PMOS starvers have much less variability.
Furthermore, Figure 3.5 c suggests the presence of a telegraphic noise, which produces
two Tdown levels.

Moreover, to better understand the jitters of Tdown and Tup more than 1000 measurements
have been performed on the ID signals with the bias chosen for the STDP characteristic
measurement (section 3.5). From this measurements the effective probability distribution
of these time length have been extracted and reported (Fig. 3.5). The analysis shows
that the variance of the time lengths is σ ≈ 1ms, with some outliers of 4ms and 2.5ms in
the Tup distributions. The effect of these jitters will appear in the STDP characteristic,
however the variance is not high enough to compromise the effectiveness of the learning.
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Figure 3.5: a) Probability distribution of Tdown of the presynaptic neuron 1. b) Proba-
bility distribution of Tup of the presynaptic neuron 1. c) Probability distribution of Tdown

of the postsynaptic neuron. d) Probability distribution of Tup of the postsynaptic neu-
ron. All the measurements have been performed with STARV _TIMING = 250 and
STARV P = 630.

3.5. STDP characteristic

The previously chosen method to train the network is the pair based Spike Time Depen-
dence Plasticity. This training method belongs to the unsupervised paradigm and can
perform competitive learning and a Winner-Take-All approach. Furthermore, during the
thesis work of Mastella [34] the simulations on the neurons and synapses showed clearly
the ability of this technology to develop competitive learning.

To understand if it was possible to implement a bigger network with this kind of training,
measurements to trace the effective STDP characteristic have been performed. The PCB
has been configured as it is listed in table 3.1 (STDP column) and at the V in2 input
was applied a constant voltage of 400mV in order to prevent any current injection. The
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Figure 3.6: a) Expected STDP simulated in [34]. ∆W is the floating gate voltage. b)
STDP characteristic acquired from measurements. The ∆t range is from −50ms to 68ms

with 3 measurements performed after each 2ms. The black line represents the interpolated
curve. c) Measurement example with ∆t = 10ms (effective spike delay).

STARV _TIMING and STARV P voltages have been specifically chosen to have Tdown

of the postsynaptic neuron and Tup of the presynaptic neuron 1 equal to ≈ 20ms to ensure
biological plausibility. To measure the effectiveness of the STDP, a voltage pulse of −1.5V

with 400mV baseline and ≈ 40ms duration was applied at V in post, while at V in1 were
applied two of this pulses. The first impulse fed to V in2 was synchronized with different
delays (1ns precision) with the one fed to V in post. The second pulse was used to trigger
the synapse linking the presynaptic neuron 1 and the postsynaptic neuron to measure
its weight change. The initial strength of the synaptic weight was set to ≈ 50mV (i.e.
the voltage increase of Vmem of the postsynaptic neuron when the presynaptic neuron 1
spikes) and its value was restored every time a new measurement was performed. Both
V out Pre1 and V out post were measured 3 times for each different delay (Fig 3.6 c).
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The resulting STDP characteristic (Fig 3.6 b), a part from the high jitters probably caused
by the ID signals jitters, resemble the previously simulated characteristic. This measure
have effectively validated the correct functioning of all the blocks of the chip, since all
necessary to implement the STDP. However, respect to the simulated one (Fig. 3.6 a) the
STDP characteristic is shifted in time of ≈ 20ms. This effect, probably due to the high
variability of Tdown and Tup, must not be underestimated, since it makes the algorithm
treat causal spike pairs, up to ∆t ≈ 20ms, as anti-causal. With this characteristic it would
be impossible to perform competitive learning. In fact, the pair STDP learning (subsection
1.6.1) performs a WTA learning that increases the synaptic weights of the presynaptic
neurons that contribute most at the spiking of the postsynaptic neurons (i.e. causal
relationship). The measured STDP would address as anti-causal the presynaptic neurons
that contributes most at the spiking of the postsynaptic neurons (0ms < ∆T < 20ms) and
thus would penalize those synapses and support more the synapses linking presynaptic
neurons that contribute less at the spiking of the postsynaptic neurons (∆t < 40ms).
To correct the STDP characteristic the layout of the chip must be adjusted in order to
have less variability between the neurons. More specifically, it must be reduced the mean
variability of the Tup and Tdown time lengths, since the noise jitter itself does not really
alter the learning.

3.6. Power consumption estimations

As previously explained, the major advantage of this technology is the high power effi-
ciency. To estimate the power dissipation of the neuromorphic chip, another board have
been assembled with the only difference of having the 0.4V power supply and the 0.8V

power supply disconnected from the LDOs. Those power supplies have been directly con-
nected to a semiconductor parameter analyzer in charge of providing the required voltage
and measure expected low currents. Furthermore, the presynaptic neuron 2 was selected,
instead of the presynaptic neuron 1, because of the possibility of synchronizing its spiking
activity with the postsynaptic neuron one. In fact, their starvers are biased by different
trimmers and thus it is possible to overcome the variability problem.

The measurements have been performed by configuring the trimmers and applying a
constant bias to both V in2 and V in post in order to make the presynaptic neuron 2 and
the postsynaptic neuron spike at ≈ 91Hz, i.e. 1 spike each ≈ 11.1ms (Fig. 3.7 b). At the
input V in2 was also applied a constant voltage of 400mV in order to prevent any current
injection as was done in the previous measurements. With the parameter 0.4V and 0.8V

voltages were forced and their absorbed currents measured.
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Figure 3.7: a) Measurement of the current required by the neurons and a portion of the
timing circuit. When the neurons starts spiking there is a visible increase of the current
required by the two power supplies (up pointing arrows). When the neurons stop spiking
the current decreases by the same amount (down pointing arrows). b) Measurement
example of the V out signals when the neurons have been turned on.

The resulting measurement (Fig. 3.7 a) clearly shows the effective power dissipation
of the neurons (0.4V ) and a portion of the timing circuit (0.8V ). When the current is
injected into the neurons there is a visible increase by both the currents required by the
0.4V and 0.8V supplies. The current drained by the core circuits of the two neurons
is ≈ 100pA. From this value, the real power consumption of a single neuron can be
estimated as Power = 0.4V · 50pA = 20pW and the real energy consumption for a
spike Espike = 20pW ·11.1ms/spike = 222fJ (overestimation, because it includes also the
power dissipation of the neurons input current mirrors, that would require ≈ 40pA of input
current each wit a power dissipation of ≈ 16pW each). These results are still an order
of magnitude greater than the simulated one [34], but still impressive since a biological
neuron consumes 100pJ per action potential and 10fJ per synaptic transmission [49].
Furthermore, it has been discovered that a portion of the timing circuit alone consumes
one order of magnitude more than the neuron circuit. This was not really expected since
it is just composed by some digital logic ports, however is not a big issue, since the circuit
would be turned on only during learning.
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4.1. Introduction

As shown in the previous chapter, the process variability alters considerably the timing
shape of the HV signals resulting in the fault of the STDP, which could not even recognize
the causality of the spikes. However, even if the STDP would have worked fine, the fact
that the chosen training algorithm is an unsupervised learning only based on the time
and causality of the local spikes limits the network capability of understanding the input
data and generating a proper prepossessing or classification.

In order to still manage to use this incredibly low power dissipation technology another
training algorithm has been thought and will be presented in this chapter. A supervised
learning was preferred because of the purpose of performing real time classification.

4.2. The datasets

Two different datasets and different network sizes have been used to train the network.
The first dataframe is a dummy and very simple dataset, based on colors, that have been
used to understand and test more easily the algorithm. The second is the effective dataset
used to evaluate the performance of the training algorithm.

4.2.1. Binary color dataset

The dummy dataframe is composed by the bits that determine a simple batch of 8 colors
(Table 4.1). The task to perform on this dataset is to train the SNN to be able to classify
the colors between two classes: cold colors and hot colors. This dataframe has been used
to start testing the algorithm mainly because at the beginning of the testing phase the
effective dataset was not available yet. However, every version of the algorithm was first
tested with this dataset because of its simplicity and reduced size. In fact, it helped
to debug more easily the code and to catch errors in the algorithm that would prevent
convergence.



82 4| Results and simulations

Color dataset

White Blue Red Cyan Lime Magenta Yellow Black

Blue 0 1 0 1 0 1 0 1

Green 0 0 0 1 1 0 1 1

Red 0 0 1 0 0 1 1 1

Cold x x x x

Hot x x x x

Table 4.1: The color dataset used to test and understand the working principle of the
training algorithm.

4.2.2. Binary HAR dataset

HAR dataset description

Axis 1 Axis 2 Axis 3

Count 1630564 1630564 1630564

Mean 0.123 -0.020 0.347

Std 0.732 0.638 0.559

Min -4.000 -5.391 -4.000

25% -0.438 -0.375 0.000

50% 0.180 0.000 0.406

75% 0.562 0.266 0.828

Max 4.000 5.812 4.266

Table 4.2: In the table are listed statistical value representing the data acquired from
each of the accelerometers. They represent: the number of samples, the mean value,
the standard deviation, the minimum value, the percentiles at 25%, 50%, 75% and the
maximum value.

The effective dataset consists of approximately 1.600.000 raw data samples (Table. 4.2)
coming from a 3-axis accelerometer installed on a phone. The dataset is provided by
STMicroelectronics in arbitrary unit. They represent the instantaneous accelerations
measured by the accelerometers and have been labelled into two different classes: still
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Figure 4.1: a) Shallow ANN. It is composed by three layers: 3-3-2. The first two layers uses
the ReLu as activation function, while the last one uses the logistic function. Furthermore,
only the last layer uses a bias. b) Graph of the accuracy achieved by the network during
each epoch. c) Graph of the Loss function per epoch.

and walk. The idea behind it is to be able to identify if a person is walking or staying
still only by using the output of the accelerometers and a neural network.

As a reference It was also provided a fully connected Shallow ANN (Fig. 4.1 a)compatible
with an implementation on phones and is implemented on a microcontroller. The network
is a three layers feedforward network (3-3-2). The first two neuron layers uses the ReLu
activation function, while the last one uses the sigmoid function (i.e. logistic function).
The network has been trained with about 100.000 samples to speed up the training process.
Furthermore, no Features Engineering operation was performed on the dataset but only
basic data pre-processing operations (like centering and variance normalization). The
ANN achieves an accuracy close to 80% both on the training set and on the test set (Fig.
4.1 b, c).

4.3. The learning algorithm

The choice of the algorithm is the result of a long study of the state of the art spiking
neural networks training combined with the need of having efficient results that could be
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obtained in reasonable time. Furthermore, the algorithm should have been compatible
with our technology or adapted to it.

The need of fast results and the high variability of the technology have suggested the im-
plementation of an online learning. This way, the design of the dedicated hardware would
have been limited to the acquisition-writing chain, without needing of more sophisticated
hardware. Furthermore, it was decided to uncouple learning an inference. This way, the
network could have been designed accordingly to the task and programmed only once.

The second step to determine the final choice has been to decide if it was better to use
a mathematical optimization algorithm or keep going with a biologically inspired one.
Since the objective was to obtain practical and accurate results and since it was already
decided that the implementation would have been online, it was set that a mathematical
optimization algorithm would suit better the circumstances. In fact, after the choice of
an online learning the only constraint was to keep a low power dissipation of the infer-
ence, which did not change much if the learning is biologically inspired or mathematical
optimizations. Because of that, it was established that a mathematical optimization one
would have been better, since they have, on average, an higher accuracy.

4.3.1. Reference algorithm

For the algorithm choice the standards ANN converted into SNN techniques were dis-
carded from the beginning, because of their high spiking rates and the need of rate-based
neurons. The algorithm developed by J. Büchel, D. R. Muir et al. [28] was taken into
account, however, the strength of the latter algorithm is the ability of recognizing time-
variant data, which was useless for this task and would have just added complexity to the
layout of the hardware implemented network because of the needed recurrent connections.
Since also the Smoothed SNN techniques requires to change the neuron model the choice
fell on the surrogate gradient method. The decreed algorithm was originally developed
by A. Renner, A. Sornborger et al. [7]. It is a mathematical optimization supervised
training belonging to the family of surrogate gradient learnings. It was preferred because
the algorithm encourages only the neurons strictly necessary to stimulate the right out-
put neurons, without the need of making the neurons responsible to inhibit all the others
output neurons to spike.

This method have been applied to a four layer SNN (x = 3 − h1 = 4 − h2 = 3 − o = 2),
whose functioning can be described as follows:

o = f(W3f(W2f(W1x)))
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f(x) = H(x− Vth)

H(x) =

0 if x < 0

1 if x ≥ 0

Where x is a binary input array, o the binary output array, W1 (4x3), W2 (3x4) and
W3 (2x3) are the three synaptic weight matrices, f(·) is the spiking activation function
and Vth = 200mV . The network was trained with the targets t using the loss function
L = 1

2
∥o − t∥2. It is also important to denote that differently from standard procedure,

the pseudo backpropagation was performed after each inference.

The algorithm in question is:

d3 = (o− t) ◦ f ′(W3h2)

d2 = sgn(W T
3 d3) ◦ f ′(W2h1)

d1 = sgn(W T
2 d2) ◦ f ′(W1x)

∂L

∂Wl

= dl(al−1)
T

W new
l = W old

l − η
∂L

∂Wl

l = 1, 2, 3 (4.1)

Where t is the two elements binary target array (one for each class), dl are the back-
ward propagated local gradients (same sizes as the weight matrices), which represent the
amount by which the loss changes when the activity of a neuron changes. ◦ represent
the elementwise product between vectors, sgn(x) is the sign function, and al denotes the
activation of the layer l (1 if a spike occurred, 0 otherwise) i.e. f(Wlal−1) with a0 = x,
a1 = h1 = f(W1x), a2 = h2, a3 = o. The only hyperparameter of the algorithm is the
learning rate η. Finally, f ′(·) is the pseudo derivative of the activation function. The
latter was selected as:

fsurrogate(x) = min(max(x, 0), 1)

I.e. a truncated ReLu function between 0 and 1, whose derivative can be calculated as:

f ′(x) = H(x)−H(x− 1)

This pseudoderivative was the one originally chosen in [7] because of its simple hardware
implementation. It have been decided to keep it, in order to test the effectiveness of the
algorithm as it was originally thought.

This method recalls the backpropagation, however the weight change is forced to happen
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only when spikes occur. With no spiking neurons the weight could not be updated and
thus the network would not be able to learn. In fact, after the inference, the algorithm
understands the path of spiking neurons that caused the output neurons to spike. By
comparing this knowledge with the wanted target, it is able to calculate the sign of
the weight update (only the weight between two neuron that spiked are considered) to
approach the network convergence. After that, the weight gets updated accordingly to
the pseudo derivative and the input of the involved neurons. If the backpropagated
surrogate gradient is negative, the corresponding weights would be reduced, while the
corresponding weights would be increased if the surrogate gradient is positive. This way,
the loss function calculated after the next inference would result reduced and the network
would have moved closer to the global minimum, i.e convergence.

The algorithm was implemented on Intel’s Loihi [16] by A. Renner, A. Sornborger et
al. in a three layer SNN (400-400-10) [7] and was able to achieve a 95.7% accuracy on
the MNIST test dataset. This is comparable with the performance of other shallow,
stochastic gradient descent (SGD) trained multilayer perceptron models without addi-
tional allowances. However, this impressive result was achieved with a network size of
810 neurons and a total of 164000 synaptic connection. Sizes which are far behold the
capability of our technology. This is the reason why the number of neurons synapses have
been reduced for our implementation. However, this reduction of the sizes of the network
trained with the HAR dataset have resulted in the total non-convergence of the network.
In the next section the emerged problematic will be discussed and the actuated solutions
explained.

4.4. Simulation models

To evaluate the effectiveness of the algorithm different conditions have been simulated. All
the simulations of the SNNs have been performed on MatLab with the same neuron and
synapse models. During the simulations the algorithm itself has been modified, together
with the input encoding. On the contrary, the reference ANN has been simulated by
python code using standard tools (TensorFlow).

4.4.1. Neuron and synapse models

The neurons of the simulated spiking neural networks are LIF neurons that behaves in
a similar way to the ones on the chip. They have a simulated capacitance with a linear
discharge time of −0.0541V/s, approximated from the measurements data. When a spike
occurred an amount of current would be injected into the simulated capacitance causing
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the increase of its relative Vmem. After crossing a threshold of 200mV a spike would occur
and the capacitance would reset. Furthermore, to simulate the refractory period, for a
certain amount of time (usually 10ms) the capacitance is forced to stay at 0V (the chosen
value for Vrest ≈ Vdown). The current injected into the capacitance can be positive or
negative depending on the synaptic weight.
The synaptic weight chosen was the change of the membrane voltage of the postsynaptic
neuron given by a single spike.

4.4.2. Input encoding

Rate coding

Since the used model has memory, to make the pseudo backpropagation work the input
current was kept flowing until the input neurons would spike multiple times. To do so, it
was chosen to encode the dataframes with a sort of rate coding.
For what concern the Color dataframe, the idea was that when a 1 was presented to an
input neuron, the latter would have spiked once each 20ms (i.e. the maximum spiking
frequency), while when a 0 was presented, it would have taken 80ms (i.e 1

4
of the maxi-

mum spiking frequency). The input was presented for 200ms to the network in order to
have at least 2 spikes when the input data was 0.
For what concern the HAR dataframe, positive and negative data were separated and fed
to different neurons. After applying the module operation, it was set a range from 20ms

per spike for the highest absolute value of the dataset to 400ms per spike for the lowest
absolute value. The input was presented for 10s to the network, before evaluating the
result of the inference.
This encoding showed some results, however during the various tests with the HAR
dataframe it was found that this encoding is not really compatible with the neuron model
and the learning algorithm. When the frequency range is too wide, the algorithm and the
network fail to distinguish the different inputs.

LSB coding

To solve these issues a new encoding based on ranges was thought. Similar to how an ADC
works, the input range is divided into intervals (LSB) based on the number of wanted
bits. Each interval is associated with a neuron that produces a spike each 20ms when
the input is included in its interval. As it was done before, the input would be presented
to the network for a certain amount of time (multiple of 20ms) until the evaluation and
training of the network was completed. As an example, we consider input data in the
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range between -5 and 11 and a 3-bit coding. For this case 8 input neurons would be
needed to encode the data and the LSB would be of 2. If, for example, the input of the
network would be equal to 0.90, i.e 3 LSB, it would make the 3rd neuron spike. By using
this encoding, the spiking frequency could be adjusted to be almost the same for all the
input neurons. In fact, with a low enough refractory period, the only factor determining
the spiking frequency of the input neurons would be the input current, which can easily
be tuned.

4.4.3. Accuracy and MSE calculation

To evaluate the performance of the neural network it was decided to use the accuracy and
mean squared error. Both these metrics are used to evaluate how much of the dataset
is rightly catalogued by the network. The accuracy was calculated independently of the
algorithm variations, while the MSE would be calculated in different ways depending on
when the pseudo backpropagation was performed.

The output layer of all the simulated networks was composed by 2 neurons, each one
representative of one of the dataset classes. When a new data is presented to the network,
the input neurons would keep spiking for a certain amount of time. This, through the
inference of the network, would also generate the output neurons to spike. The output
neuron that happens to spike more frequently during this period would be considered as
output = 1, while all the other output neurons would be considered as output = 0. After
the whole set data is presented to the network the accuracy is then calculated as:

accuracy =
Nright

Ntot

Where Nright is the number of right classified data, while Ntot the number of data in the
evaluated set.

The other parameter chosen to understand the convergence of the network is the MSE.
Two different MSE have been calculated, based on when the pseudo backpropagation was
performed. The first one was used when the error was updated after 20ms, i.e. at the
maximum neuron frequency (with both coding). It was calculated as:

MSEper_cyc =
1

2

Ntot∑
i=1

ncyc∑
k=1

∥oi,k − ti∥2

Ntotncyc

Where ncyc is calculated as the updating time of the error (20ms) divided by the inference
time selected for one input data, which is also the number of times a spike would have
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occurred in a neuron that was spiking at maximum frequency. It was chosen to use the
squared norm of error to obtain a scalar value, because the considered error is a vector.

The second method of calculating the MSE does not have any dependence on the number
of times a spike would have occurred in a neuron that was spiking at maximum frequency.
It is introduced because in the latter version of the algorithm the meaningful information
for the backpropagation of the error was if a neuron spiked more than a certain number
of times, instead of if the neuron spiked at all. In fact, instead of updating the error every
20ms, the error was updated after every evaluation (inference) of one input data. The
second MSE was calculated as:

MSE =
1

2

Ntot∑
i=1

∥othi − ti∥2

Ntot

(4.2)

Where othi is a two element vector, whose elements are 1 if their equivalent output neurons
have spiked more than a selected amount of time and 0 otherwise.

4.5. Algorithm simulations and development

The process of understanding the classification capability of the chosen algorithm and its
further development happened in different phases, that will be explained in a temporal
order. This way, it should result simpler to understand the thinking process behind it,
which is affected by the knowledge and resources of that specific phase.

4.5.1. Simulations to understand the algorithm

The first phase was dedicated to understand how the training was performed and how to
actually make the network learn. The dataset used for these experiments was the Color
dataframe for its simplicity.
With the previously explained neuron and synapse models (subsection 4.4.1) a four layer
network (3-4-2-2) has been implemented. This arrangement was chosen both to see if
problems of vanishing gradients would occur and to try to increase the network accuracy
by increasing the input dimensionality with the second layer. During the training, the
input data were encoded with the rate coding (subsection 4.4.2) listed in table 4.3. The
order of the input data was randomly chosen and the same input was presented to the
network for 200ms. During this period, the spiking activity of the output neurons were
monitored and every 20ms the error and equivalent weight updates were calculated with
the algorithm previously described (subsection 4.3.1). After a batch of 8 data (the whole
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inputs and outputs of 3-4-2-2 network

Input 1 Input 2 Input 3 Hot Cold

White 50 mV 50 mV 50 mV 0 1

Blue 50 mV 50 mV 200 mV 0 1

Red 50 mV 200 mV 50 mV 1 0

Cyan 50 mV 200 mV 200 mV 0 1

Lime 200 mV 50 mV 50 mV 1 0

Magenta 200 mV 50 mV 200 mV 1 0

Yellow 200 mV 200 mV 50 mV 1 0

Black 200 mV 200 mV 200 mV 0 1

Table 4.3: The table lists the voltage increase of the Vmem voltage of the three input
neurons each 20ms and the desired spiking activity of the output neurons for the color
dataframe.

dataset), the weight updates would be summed and normalized by the number of presented
inputs before applying the effective weight update:

W new
l = W old

l − η

Ntot

Ntot∑
k=1

(
∂L

∂Wl

)k

where Ntot = 8.

Unexpectedly, even if different learning rates from 0.001 to 1 have been used, the network
was not able to reach convergence on the dataset (Fig. 4.2 a). In order to solve this
issue and inspired by [28], the pseudo activation function (truncated ReLu) used for
backpropagating the error was changed with an hyperbolic tangent function:

f(x) =
1

Vth

tanh(
x

Vth

− Vth)

Whose derivative is:
f(x) = 1− tanh2(

x

Vth

− Vth)

Where Vth = 200mV .

With this modification the network was finally able to converge. The tanh derivative (Fig.
4.2 d) approximates much better the derivative of a spiking neuron (δ function) respect
to the derivative of the ReLu function (Fig. 4.2 c). In fact, the new smoother derivative
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Figure 4.2: a) Accuracy and MSE of the (3-4-2-2) network trained with ReLu as pseudo
activation function. The algorithm is unable to properly approximate the real gradient
and thus cannot achieve convergence. b) Accuracy and MSE of the (3-4-2-2) network
trained with tanh as pseudo activation function. c) Truncated Relu derivative. d) tanh
derivative.

permits to have a smoother gradient, which approximates better the real gradient. An-
other important modification was the weight initialization. In [7] the weight matrices were
initialized by sampling them from a Gaussian distribution with mean of 0 and a standard
deviation of 1/

√
2/(Nfanin +Nfanout), where Nfanin denotes the number of neurons of the

presynaptic layer and Nfanout the number of neurons of the postsynaptic layer. However,
as previously mentioned, the algorithm needs spikes to backpropagate the error. Without
spikes in the network, the weight update would always be ∂L∂Wl = 0. Moreover, by
centering the distribution of weight initialization in 0 and without a big variance, the
probability of spiking is really low. Since the simulated network has much smaller size
than the one in [7], a portion of neurons that could not spike from the beginning was lost
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Figure 4.3: a) 6-4-3-2 network evaluation. It is clear that the network is unable to fit the
training set. b) 48-21-11-2 network evaluation.

and could not be recovered. To overcome this issue, the synaptic weight initialization has
been sampled from a random distribution still centered in 0, but with 1.1Vth variance.
This new weight initialization granted that almost all the neuron could spike after all the
different inputs were propagated through the network (inference).

However even with these modifications, the convergence of the network (Fig. 4.2 b) was
achieved in a very irregular way and with 300 cycles i.e. 1min of training time. This
was still a poor performance if taken into account the simplicity and reduced size of the
dataframe.

4.5.2. Simulation with HAR dataframe

Since the HAR dataset happens to have both positive and negative values it was thought
to use the first three input neurons to encode the positive values and the latter three
input neurons to encode the negative ones. After that a portion of 100.000 data equally
distributed between the two classes were randomly chosen from the 1600000 available.
This dataframe was further divided into a training set (80%) and a test set (20%). The
data were also converted into currents to be fed to the input neurons and were normalized
in order that the maximum possible input would increase Vmem by 200mV , i.e. make the
neuron spike (rate coding, previously introduced in subsection 4.4.2). A 6-4-3-2 was sim-
ulated and trained in the exact same way of the 3-4-3-2 network, with the only difference
of this new training set and the new pseudo derivative. However, once again the network
was not able to converge (Fig. 4.3 a) even if a wide range of numbers were used for the
learning rate.
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Figure 4.4: 48-21-11-2 network feedforward connections. The neuron clusters connected
by straight lines are fully connected.

The solution of this problem consisted of changing the input encoding. Apparently the
wide range of rates could not be understood by a non rate based algorithm. The new
coding was the LSB coding explained in subsection 4.4.2. In order to cope with the new
size of the dataset, i.e. 16 neurons for each axis input data, the network size was modified
into 48-21-11-2. The sizes of the hidden layers have been chosen odd in order to break
the network symmetry and force different and complimentary connections between the
layers i.e force different feature extraction. Moreover, it has been chosen to use the first
hidden layer to reduce the input size. In fact, the input layer is not fully connected to the
first hidden layer, but the input neurons corresponding to each axis are only connected
to 7 neurons of the hidden layers (Fig. 4.4). The order of the input data was randomly
chosen and the same input was presented to the network for 120ms this time, i.e. the time
equivalent of 6 input neuron spikes, because it was the lowest evaluation time that still
permitted to achieve convergence. During this period, the spiking activity of the output
neurons was monitored and each 20ms the error and equivalent weight updates would
be calculated (output = 1 if there was a spike, 0 otherwise). This time, inspired by the
Shallow ANN, a batch of 1000 data was chosen. The weight updates would be summed
and normalized by Nbatch = 1000 and then performed :

W new
l = W old

l − η

Nbatch

Nbatch∑
k=1

(
∂L

∂Wl

)k

Finally, the network has proven able to fit the data and achieve convergence (Fig. 4.3
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b). The final accuracy of 80% means that the network was not able to achieve the global
minimum. However, since also the Shallow Net could not pass the 80% accuracy (Fig. 4.1
b), it means that probably the instantaneous acceleration alone is not enough to achieve
a better classification accuracy. Furthermore, this version of the network was able to
converge in less than 10 training cycles, which is a huge improvement compared to the
previous versions.

4.5.3. Algorithm with memory adaptation

The algorithm previously explained (subsection 4.3.1) was thought for a SNN without
memory, and thus theoretically a network can learn with its LIF neurons spiking only one
time per inference and without retain memory of the past. It is intuitive that a network
without memory would achieve lower performance that a network with memory of the
same size. Since our neuron model has memory, it has been decided to further adapt the
algorithm to our model by imposing the need of multiple spikes from a single neuron to
identify the backwards path that lead to the right classification. The training algorithm
used this time is the following:

dth3 = (o− t) ◦ f ′(W3h
th
2 )

dth2 = sgn(W T
3 d

th
3 ) ◦ f ′(W2h

th
1 )

dth1 = sgn(W T
2 d

th
2 ) ◦ f ′(W1x

th)

∂L

∂Wl

= dthl (a
th
l−1)

T

W new
l = W old

l − η
∂L

∂Wl

l = 1, 2, 3 (4.3)

Where t is the two elements binary target array (one for each class), dthl are the surrogate
backward propagated local gradients (same sizes as the weight matrices), which represent
the amount by which the loss changes when the activity of a neuron changes in a certain
amount of time. ◦ represent the elementwise product between vectors, sgn(x) is the sign
function, and athl is a vector in which the elements denote if the neurons in the layer l were
activated, i.e. f(Wlal−1) with a0 = x, a1 = h1 = f(W1x), a2 = h2, a3 = o, following this
rule: al(k) = 1 if the k-neuron of the layer l was activated more than Nth times when the
same data is presented ncyc times to the network, while al(k) = 0 if the k-neuron of the
layer l was activated less than Nth times when the same data is presented ncyc times to
the network. The hyperparameter of the algorithm is the learning rate η. Furthermore,



4| Results and simulations 95

Figure 4.5: a) Evaluation of 48-21-11-2 network trained with the new algorithm adapted
to force the use of memory. The network almost instantly converges to the minima. b)
Evaluation of 48-21-11-2 network trained with the new algorithm adapted for force the
use of memory. After reaching a local minima, the network jumps out to reach another
local minima.

f ′(·) is the pseudo derivative of the activation function tanh(x/Vth − Vth):

f(x) = 1− tanh2(
x

Vth

− Vth)

This approach can be considered a mixed approach of the surrogate loss function and
surrogate derivative.

Another 48-21-11-2 have been simulated and trained with the HAR dataset encoded with
the LSB encoding. The order of the input data was randomly chosen and the same input
was presented to the network for 220ms, i.e. the time equivalent of 11 input neuron spikes.
The Nth chosen to trigger the backpropagation is three spikes. Furthermore, differently
from the previous simulations, the MSE have been calculated with the second method
expressed in equation 4.2.

The modified algorithm seems to perform in a similar way to the previous one, a part from
the fact that sometimes it seems to be able to jump from a local minimum to another. In
fact, from the accuracy graph (Fig. 4.5 b) it can be noted that at around 30 epochs the
accuracy drops significantly, to recover again around 230 epochs.

4.6. Shallow ANN and SNN comparison
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4.6.1. Accuracy comparison

The fact that the initialization of weight matrices of a NN and the order of the input
presented to the network are random processes makes also the process of reaching the
minimum of the loss function random. To cope with this issue and properly evaluate
the performance of the algorithm to train the SNN, multiple networks have been trained
with the same sizes and same learning rate for both the training algorithms mentioned
in the previous section (subsection 4.5.2 and 4.5.3). The final accuracy on both training
set and test set achieved after 300 training epochs have been compared. Furthermore,
the performances of the algorithms have also been compared also with the final accuracy
achieved by the Shallow ANN previously mentioned (subsection 4.1).

The Shallow ANN have been trained with the Adam optimizer on a binary crossentropy
loss function with a batch size of 1000 data for 500 epochs. This process has been repeated
for 500 times with the original HAR dataset and 500 with a 4bit quantized version of it
(similar to the LSB encoding) to evaluate the effect of the quantization of the dataset.
The resulting accuracy variability obtained on the test sets (Fig 4.6 a and b) shows not
much difference in the distributions, since they are both centered around 78% accuracy
and have the same variability. The only visible effect is that the probability of achieving
accuracy greater than 83% for a network trained with the quantized dataset is lower than
the one of a network trained with the original dataset. The maximum accuracy achieved
with the original dataset is 83.8%, while with the quantized dataset it is 84.2%.

The SNN have been trained 70 times with the normal version of the algorithm (subsection
4.5.2) and 70 times with its memory adapted version (subsection 4.5.3). The variability
distributions of both test and training sets (Fig 4.6 c, d, e and f) show higher reliability
of the first version, although it tends to overfit the training set. The memory adapted
version of the algorithm, instead, can achieve higher accuracy overall on the test set at
the expense of having an higher probability of failing to fit the dataset. However failing
sometimes to fit the dataset is normal for ANN as it can be seen that also the Shallow
ANN has the same behaviour ((Fig 4.6 a and b)). The maximum accuracy achieved by
the normal algorithm on the test set is 73.5%, while it is 79.1% for the memory adapted
algorithm.
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Figure 4.6: a) Probability distribution of the accuracy achieved by the Shallow ANN after
being trained 500 times with the original HAR dataset. Accuracy calculated on the test
set. b) Probability distribution of the accuracy achieved by the Shallow ANN after being
trained 500 times with the quantized HAR dataset. Accuracy calculated on the test set.
c) Probability distribution of the accuracy achieved by the SNN after being trained 70
times with the normal algorithm. Accuracy calculated on the training set. d) Probability
distribution of the accuracy achieved by the SNN after being trained 70 times with the
normal algorithm. Accuracy calculated on the test set. e) Probability distribution of the
accuracy achieved by the SNN after being trained 70 times with the memory adapted
algorithm. Accuracy calculated on the training set. f) Probability distribution of the
accuracy achieved by the SNN after being trained 70 times with the memory adapted
algorithm. Accuracy calculated on the test set.
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4.6.2. Power consumption comparison

From the simulation results and the measurements, it has been possible to estimate the
power dissipation of a SNN trained with the previous algorithms in standard CMOS
technology during inference. The simulations show that a 48-21-11-2 SNN trained with
the normal algorithm spikes on an average mean of 37 times to catalogue an input data,
with a minimum of 24 and a maximum of 48 spikes. A SNN of the same size trained
with the memory adapted version of the algorithm spikes on average 58 total times to
catalogue an input data, with a minimum of 46 and a maximum of 75 spikes. Considering
the worst case scenario of 75 spikes occurring simultaneously during inference, the total
power dissipated by the network to catalogue an input data would be of Pneurons =

75 · 20pW = 1.5nW (high overestimation, considering that not all the neuron spikes at
the same time and considering the power overestimation in section 3.6) and an energy
consumption of Eneurons = 75 · 222fJ = 16.65pJ (high overestimation, see section 3.6 for
power evaluation). It has not been possible to measure the exact power dissipation of
a synapse, however it is possible to estimate its value by comparing the data obtained
form the measurements with the data obtained from the technology simulations [34]. In
its thesis work Mastella [34] estimated the neuron of dissipating Pneuron = 800fW and
Eneuron = 21fJ/spike while estimated the maximum synapse of dissipating Psynapse =

3.28pW/spike and Esynapse = 1.65fJ/spike. The estimated power dissipation of the
synapse is one order of magnitude more than the neuron, while the energy dissipation is
one order of magnitude less. If these proportions are compared with the measurements
it can be estimated a real power dissipation of the synapse of Psynapse ≈ 50pW/spike

and an energy consumption of Esynapse ≈ 22, 2fJ/spike. If it is considered that in the
worst simulated scenario of 75 total spikes the input neurons spiked 33 times, the hidden
layer 1 neurons spiked 20 times, the hidden layer 2 neurons spiked 17 times and the
output neurons spiked 5 times, it can be estimated a total dissipation of Psynapses =

(33·7+20·11+17·2)50pW = 24, 3nW (overestimation, considering that not all the neuron
spikes at the same time) and Esynapses = (33·7+20·11+17·2)22fJ = 10, 67pJ . This would
lead to the estimation of a total dissipation of Pinference = 1.5nW + 24, 3nW ≈ 26nW

and Einference = 16, 65pJ + 10, 67pJ = 27.32pJ .

Since the start of art commercial solution (LSM6DSOX by ST) based on a dedicated
machine learning core, consumes Pmicro = 1.8V · 4uA for the same classification task, it
can be concluded that the simulated SNN implemented in standard CMOS technology
would dissipate 2 orders of magnitude less. Furthermore, this SNN, differently from a
microcontroller, would consume energy only during inference, since without spikes the
power consumption of the network is practically negligible.
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perspective

The aim of this thesis work was to develop a suitable supervised online-learning that
could be implemented on an analog spiking neural network with floating gate synapses in
Standard CMOS technology and able to achieve state of the art performance.

The first part of the thesis was focused on understanding the limitations of the previously
designed neuromorphic chip of a CMOS-based spiking neural network. The prototype chip
presented three neurons and two synapses and was designed to learn through Spike Timing
Dependent Plasticity. The technology revealed to be extremely power efficient (Pneuron ≈
20W/spike, Eneuron ≈ 222fJ/spike, Psynapse ≈ 50pW/spike, Esynapse ≈ 22, 2fJ/spike)
and to effectively be able to perform learning with the floating gate synapses. However,
the design driven by low power consumption and area occupation resulted to have a
greater variability than expected. This huge variability may prevent learning with the
STDP rule because the network could not be able to recognize the causality of the spikes.
Nevertheless, even if the STDP would have worked fine, the fact that the previously chosen
training algorithm was an unsupervised learning only based on the time and causality of
the local spikes, limits the network capability of understanding the input data and to
generate a proper prepossessing or classification.

In the second part of the thesis, it was studied, looking at the state of the art, a better
training algorithm solution for this technology. The design was driven by the will of having
efficient results that could be obtained in reasonable time without increasing the power
dissipation. The choice fell on a supervised mathematical optimization algorithm based
on the surrogate gradient technique. The algorithm, originally hardware implemented for
the Loihi neuromorphic chip, has been converted into an online learning, because of the
possible problems that could emerge from the high variability of the technology. Further-
more, since the original algorithm was thought for a SNN without memory, it has been
further adapted to fully exploit the memory of the designed neurons. The modification
consisted in using multiple spikes from a single neuron to identify the backwards path
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that leads to the right classification.

The last part of this work consisted in training SNN simulated according to the data
acquired from the previously designed chip. With an accurate choice of the input encoding
(16 neurons for each input), random distribution to sample the weight initialization and
the hyperparameter tuning the simulated networks were able to achieve performance
comparable with ANNs. Furthermore, it has been estimated the dissipation of a plausible
implementation of the network, which resulted to be three orders of magnitude less than
the current algorithms implemented on a microcontroller for the same classification task.

The future perspective of this project would be to find a way to implement the acquisition-
writing chain to read the neuron activity, and the synaptic weight. For what concerns
the neuron activity it would be best to implement a counter on chip able to be turned on
during inference and off once the learning is completed. Instead, the programming of the
synaptic weight could be performed with a number of high voltage pulses proportional to
the weight change.
Furthermore, a proper layout technique for this architecture should be investigated. The
chip already showed capacitance coupling that can only worsen with the increase of the
network size. An increase of these factors or the generation of resistive paths can result
detrimental, considering the low currents and low voltages employed.
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A.1. MatLab code

A.1.1. LSB coding

clear; close

% % Preprocessing parameters %

divisions = 16;

reduced_data.axis = csvread("x_test.csv"); %read csv file containing the dataset

reduced_data.labels = csvread("y_test.csv"); %read csv file containing the dataset classes

spiking_data.axis = [];

folder_save = "̈; %path for saving the encoded dataset

for i = 1:3

eval("max_"+ num2str(i) +" = max(reduced_data.axis(:,i));");

eval("min_"+ num2str(i) +" = min(reduced_data.axis(:,i));");

eval("division_"+ num2str(i) +" = (1:1:divisions)*((max_"+ num2str(i) +"-min_"+
num2str(i) +")/divisions) + min_"+ num2str(i) +";");

eval("division_"+ num2str(i) +" = cat(2,min_"+ num2str(i) +",division_"+ num2str(i)
+");");

end

spiking_data.axis = [];

for i = 1:divisions
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temp_1 = (reduced_data.axis(:,1) >= division_1(i)).*(reduced_data.axis(:,1) < divi-
sion_1(i+1));

temp_2 = (reduced_data.axis(:,2) >= division_2(i)).*(reduced_data.axis(:,2) < divi-
sion_2(i+1));

temp_3 = (reduced_data.axis(:,3) >= division_3(i)).*(reduced_data.axis(:,3) < divi-
sion_3(i+1));

spiking_data.axis = cat(2,spiking_data.axis,temp_1,temp_2,temp_3);

end

spiking_data.labels = cat(2,reduced_data.labels,not(reduced_data.labels)).’;

save(folder_save+"test_spiking_data.mat","spiking_data"); % save LSB coded data

A.1.2. Network training with normal algorithm

clear;close;

%% Network parameters %random_initialization = 1;
dt = 80e-3; %[sec]
threshold = 0.2; %[V]
neuron_for_layer = [48,21,11,2];
current_sinking_time = 79.99e-3; %[sec]
max_weigth = 0.4; %[V]
max_epoch = 500;
epoch_break_point_0 = 25;

batch_size = 500;
learning_rate = 0.4;
num_train_cyc = 6; %number of consecutive training for each input
mse_min = 0.3; %mse to be achieved to stop the loop
slope = -0.0541; %slope of the leakage

reload_network = 0; %choose the netwok you want to keep training

num_layer = length(neuron_for_layer);

%designed folder were the previously LSB encoded data are stored
folder = "̈;
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folder_network = folder+"networks̈;
folder_parameters = folder+"network_parameters̈;

%% Loading input data %

load(folder+"spiking_data.mat");

num_max_input = length(spiking_data.axis(:,1));
spiking_data.axis = spiking_data.axis/max(max(spiking_data.axis))*(threshold);

for i = 1:num_layer eval("layer"+num2str(i)+".spike = zeros(neuron_for_layer(i),1)*nan;");
eval("layer"+num2str(i)+".capacitance = zeros(neuron_for_layer(i),1);");
eval("layer"+num2str(i)+".last_activation = ones(neuron_for_layer(i),1)*
current_sinking_time;")
end

%eliminating unused connections between input layer and first hidden layer

num_l1 = neuron_for_layer(1);
num_l2 = neuron_for_layer(2);
w_cancel = ones(num_l2,num_l1);

w_cancel(1:num_l2/3,num_l1/3+1:end) = zeros(num_l2/3,num_l1/3*2);
w_cancel(num_l2/3+1:num_l2/3*2,num_l1/3*2+1:end) = zeros(num_l2/3,num_l1/3);
w_cancel(num_l2/3+1:end,1:num_l1/3) = zeros(num_l2/3*2,num_l1/3);
w_cancel(num_l2/3*2+1:end,num_l1/3+1:num_l1/3*2) = zeros(num_l2/3,num_l1/3);

%% Initializing weigth %

if random_initialization == 1
for i = 1:num_layer-1 eval("w"+num2str(i)+" = randn("+num2str(neuron_for_layer(i+1))+",
"+num2str(neuron_for_layer(i))+")*threshold*1.1;");
end
end w1 = w1.*w_cancel;

%% Loading network if needed %

if reload_network >0

load(folder_parameters+"net_parameters_"+num2str(reload_network)+".mat");

dt = net_parameters.dt;
threshold = net_parameters.threshold;
neuron_for_layer = net_parameters.neuron_for_layer;
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current_sinking_time = net_parameters.current_sinking_time;
max_weigth = net_parameters.max_weigth;
learning_rate = net_parameters.learning_rate;
num_train_cyc = net_parameters.num_train_cyc;
mse_min = net_parameters.mse_min;
num_layer = length(neuron_for_layer);

load(folder_network+"network_"+num2str(reload_network)+".mat");

for i = 1:num_layer -1

eval("w"+num2str(i)+" = network.w"+num2str(i)+";");

end

end

%% Initializing counters %

if reload_network <=0 mse_errors = []; accuracy = []; else mse_errors = network.mse_errors;
accuracy = network.accuracy; end

%% Starting_training %

epoch_break_point = epoch_break_point_0;

for epoch = 1:1:max_epoch

%% resetting parameters %%loss function = mean squared error, at first cycle mse in
unknown mse = 0; de_dw1 = 0; de_dw2 = 0; de_dw3 = 0;

% counter of right classiifications of the network right_counter = 0;

%% Inference %

num_batch = 0;

for num_input = randperm(num_max_input)

output = layer4.spike*0;
num_batch = num_batch + 1;

for num_train = 1:num_train_cyc

input = spiking_data.axis(num_input,:)’;
layer1.capacitance = layer1.capacitance + input;
layer1 = trigger_layer(layer1,threshold,dt,slope);
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layer2 = inference(w1,layer1,layer2,current_sinking_time);
layer2 = trigger_layer(layer2,threshold,dt,slope);

layer3 = inference(w2,layer2,layer3,current_sinking_time);
layer3 = trigger_layer(layer3,threshold,dt,slope);

layer4 = inference(w3,layer3,layer4,current_sinking_time);
layer4 = trigger_layer(layer4,threshold,dt,slope);

%% Backpropagation %

e = spiking_data.labels(:,num_input) - layer4.spike;
d3 = e.*tanh_prime(w3*layer3.spike,threshold);
de_dw3 = de_dw3 + d3*(layer3.spike.’);

d2 = sign(w3.’*d3).*tanh_prime(w2*layer2.spike,threshold);
%calculating de/dw as d_l(a_(l-1))Tandsumminghispreviousvalue

de_dw2 = de_dw2 + d2 ∗ (layer2.spike.′);

d1 = sign(w2.’*d2).*tanh_prime(w1*layer1.spike,threshold);
de_dw1 = de_dw1 + d1*(layer1.spike.’);

%% Parameters update %

mse = mse + sum((e).(2))/2;

output = output + layer4.spike;

end

%% resetting capacitance %

layer1.capacitance = layer1.capacitance*0;
layer2.capacitance = layer2.capacitance*0;
layer3.capacitance = layer3.capacitance*0;
layer4.capacitance = layer4.capacitance*0;

%% Evaluating if there are more pulses on the right or wrong output %

right = sum(output.*spiking_data.labels(:,num_input));
wrong = sum(output.*flip(spiking_data.labels(:,num_input)));

if right > wrong
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right_counter = right_counter + 1;

end

if num_batch == batch_size
%dividing de/dw for the number of cycles obtaining the mean
de_dw1 = de_dw1/(batch_size*num_train_cyc);
%weigth update
w1 = w1 + learning_rate*de_dw1.*w_cancel;
de_dw2 = de_dw2/(batch_size*num_train_cyc);
w2 = w2 + learning_rate*de_dw2;
de_dw3 = de_dw3/(batch_size*num_train_cyc);
w3 = w3 + learning_rate*de_dw3;

num_batch = 0;

de_dw1 = 0;
de_dw2 = 0;
de_dw3 = 0;

end

end

accuracy = cat(1,accuracy,right_counter/num_max_input);
mse = mse/(num_max_input*num_train_cyc);
mse_errors = cat(1,mse_errors,mse);

if max(accuracy) == right_counter/num_max_input

network.w1 = w1;
network.w2 = w2;
network.w3 = w3;
network.mse_errors = mse_errors;
network.accuracy = accuracy;

end

if (mse<mse_min) (accuracy(end)==1)
disp("Leaning sucessfull");
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break
end

end

figure(1)
plot(mse_errors,"Color","b");
hold on;
plot(accuracy,"Color","r");
legend("mse error","accuracy");

%% Save data %

num_network = length(dir(folder_network)) - 1;

net_parameters.dt = dt;
net_parameters.threshold = threshold;
net_parameters.neuron_for_layer = neuron_for_layer;
net_parameters.current_sinking_time = current_sinking_time;
net_parameters.max_weigth = max_weigth;
net_parameters.learning_rate = learning_rate;
net_parameters.num_train_cyc = num_train_cyc;
net_parameters.mse_min = mse_min;
save(folder_parameters+"net_parameters_"+num2str(num_network)+".mat",
"net_parameters");
save(folder_network+"network_"+num2str(num_network)+".mat","network");

num_network = length(dir(folder_network)) - 1;

network.w1 = w1;
network.w2 = w2;
network.w3 = w3;
network.mse_errors = mse_errors;
network.accuracy = accuracy;
save(folder_network+"network_"+num2str(num_network)+".mat","network");
save(folder_parameters+"net_parameters_"+num2str(num_network)+".mat",
"net_parameters");

function layer_post_pre_spike = inference(w,layer_pre,layer_post,current_sinking_time)

infer = w*layer_pre.spike;
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update = double(layer_post.last_activation>=current_sinking_time);
infer = infer.*update;

layer_post_pre_spike.capacitance = infer + layer_post.capacitance;
layer_post_pre_spike.last_activation = layer_post.last_activation;
layer_post_pre_spike.spike = layer_post.spike;

end

function layer_update = trigger_layer(layer,threshold,dt,slope)

layer.last_activation = layer.last_activation + dt;
layer.capacitance = layer.capacitance + slope*dt;
layer.capacitance = layer.capacitance.*double(layer.capacitance>0);
spike_negat = double(layer.capacitance<threshold);
layer_update.capacitance = layer.capacitance.*spike_negat;
layer_update.last_activation = layer.last_activation.*spike_negat;

layer_update.spike = double(layer.capacitance>=threshold);

end

%derivative of the tanh
function f_prime = tanh_prime(vector,threshold)

f_prime = 1-tanh(vector/threshold-threshold).2;

end

function f = heaviside(vector,threshold) %heaviside function

f = double(vector>=threshold);

end

%surrogate heaviside derivative function. Derivate of min(max(vector,0),max_weigth)
function f_prime = pseudo_heaviside_prime(vector,max_weigth,threshold)

f_prime = heaviside(vector,threshold) - heaviside(vector-max_weigth,threshold);

end
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A.1.3. Network training with memory adapted algorithm

clear;close;
%% Network parameters %
random_initialization = 1;
dt = 80e-3;%[sec]
threshold = 0.2;%[V]
neuron_for_layer = [48,21,11,2];
current_sinking_time = 79.99e-3;%[sec]
max_weigth = 0.4; %[V]
max_epoch = 200;
epoch_break_point_0 = 25;

batch_size = 1000;
learning_rate = 0.5;
num_train_cyc = 11; %number of consecutive training for each input
threshold_spike = 3; %number of spike to get a 1 in backpropagation
mse_min = 0.1; %mse to be achieved to stop the loop
slope = -0.0541; %slope of the leakage

reload_network = 0;%choose the netwok you want to keep training

num_layer = length(neuron_for_layer);

folder = "̈;
folder_network = folder+"networks̈;
folder_parameters = folder+"network_parameters̈;

%% Loading input data %

load(folder+"spiking_data.mat");

num_max_input = length(spiking_data.axis(:,1));
spiking_data.axis = spiking_data.axis/max(max(spiking_data.axis))*(threshold);

for i = 1:num_layer
eval("layer"+num2str(i)+".spike = zeros(neuron_for_layer(i),1)*nan;");
eval("layer"+num2str(i)+".capacitance = zeros(neuron_for_layer(i),1);");
eval("layer"+num2str(i)+".last_activation =
ones(neuron_for_layer(i),1)*current_sinking_time;")
eval("layer"+num2str(i)+"_memory_spike = zeros(neuron_for_layer(i),1)*nan;");
end
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%eliminating unused synaptic connections between input layer and first hidden layer
num_l1 = neuron_for_layer(1);
num_l2 = neuron_for_layer(2);
w_cancel = ones(num_l2,num_l1);

w_cancel(1:num_l2/3,num_l1/3+1:end) = zeros(num_l2/3,num_l1/3*2);
w_cancel(num_l2/3+1:num_l2/3*2,num_l1/3*2+1:end) = zeros(num_l2/3,num_l1/3);
w_cancel(num_l2/3+1:end,1:num_l1/3) = zeros(num_l2/3*2,num_l1/3);
w_cancel(num_l2/3*2+1:end,num_l1/3+1:num_l1/3*2) = zeros(num_l2/3,num_l1/3);
%% Initializing weight %

if random_initialization == 1
for i = 1:num_layer-1
eval("w"+num2str(i)+" = randn("+num2str(neuron_for_layer(i+1))+",
"+num2str(neuron_for_layer(i))+")*threshold*1.1;");
end
end w1 = w1.*w_cancel;

%% Loading network if needed %

if reload_network >0

load(folder_parameters+"net_parameters_"+num2str(reload_network)+".mat");

dt = net_parameters.dt;
threshold = net_parameters.threshold;
neuron_for_layer = net_parameters.neuron_for_layer;
current_sinking_time = net_parameters.current_sinking_time;
max_weigth = net_parameters.max_weigth;
learning_rate = net_parameters.learning_rate;
num_train_cyc = net_parameters.num_train_cyc;
mse_min = net_parameters.mse_min;
num_layer = length(neuron_for_layer);

load(folder_network+"network_"+num2str(reload_network)+".mat");

for i = 1:num_layer -1

eval("w"+num2str(i)+" = network.w"+num2str(i)+";");

end

end
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%% Initializing counters %

if reload_network <=0
mse_errors = [];
accuracy = [];
else
mse_errors = network.mse_errors;
accuracy = network.accuracy;
end

%% Starting_training %

epoch_break_point = epoch_break_point_0;

for epoch = 1:1:max_epoch

%% resetting parameters %

mse = 0; %loss function = mean squared error, at first cycle mse in unknown
de_dw1 = 0;
de_dw2 = 0;
de_dw3 = 0;

right_counter = 0; % counter of right classifications of the network

%% Inference %

num_batch = 0;

for num_input = randperm(num_max_input)

output = layer4.spike*0; num_batch = num_batch + 1;

for num_train = 1:num_train_cyc

input = spiking_data.axis(num_input,:)’;

layer1.capacitance = layer1.capacitance + input;
layer1 = trigger_layer(layer1,threshold,dt,slope);

layer1_memory_spike = layer1_memory_spike + layer1.spike;

layer2 = inference(w1,layer1,layer2,current_sinking_time);
layer2 = trigger_layer(layer2,threshold,dt,slope);

layer2_memory_spike = layer2_memory_spike + layer2.spike;
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layer3 = inference(w2,layer2,layer3,current_sinking_time);
layer3 = trigger_layer(layer3,threshold,dt,slope);

layer3_memory_spike = layer3_memory_spike + layer3.spike;

layer4 = inference(w3,layer3,layer4,current_sinking_time);
layer4 = trigger_layer(layer4,threshold,dt,slope);

layer4_memory_spike = layer4_memory_spike + layer4.spike;

%% Parameters update %

output = output + layer4.spike;

end

%% Backpropagation %

layer1_memory_spike = layer1_memory_spike>=threshold_spike;
layer2_memory_spike = layer2_memory_spike>=threshold_spike;
layer3_memory_spike = layer3_memory_spike>=threshold_spike;
layer4_memory_spike = layer4_memory_spike>=threshold_spike;

e = spiking_data.labels(:,num_input) - layer4_memory_spike;

d3 = e.*tanh_prime(w3*layer3_memory_spike,threshold);
de_dw3 = de_dw3 + d3*(layer3_memory_spike.’);

d2 = sign(w3.’*d3).*tanh_prime(w2*layer2_memory_spike,threshold);
%calculatind de/dw as d_l(a_(l-1))Tandsumminghispreviousvalue

de_dw2 = de_dw2 + d2 ∗ (layer2_memory_spike.′);

d1 = sign(w2.’*d2).*tanh_prime(w1*layer1_memory_spike,threshold);
de_dw1 = de_dw1 + d1*(layer1_memory_spike.’);

mse = mse + sum((e).(2))/2;

%% resetting capacitance %

layer1.capacitance = layer1.capacitance*0;
layer2.capacitance = layer2.capacitance*0;
layer3.capacitance = layer3.capacitance*0;
layer4.capacitance = layer4.capacitance*0;

%% Evaluating if there are more pulses on the right or wrong output %
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right = sum(output.*spiking_data.labels(:,num_input));
wrong = sum(output.*flip(spiking_data.labels(:,num_input)));

if right > wrong

right_counter = right_counter + 1;

end

if num_batch == batch_size

%dividing de/dw for the number of cycles obtaining the mean
de_dw1 = de_dw1/(batch_size);
%weigth update
w1 = w1 + learning_rate*de_dw1.*w_cancel;
de_dw2 = de_dw2/(batch_size);
w2 = w2 + learning_rate*de_dw2;
de_dw3 = de_dw3/(batch_size);
w3 = w3 + learning_rate*de_dw3;

num_batch = 0;

de_dw1 = 0;
de_dw2 = 0;
de_dw3 = 0;

end

end

accuracy = cat(1,accuracy,right_counter/num_max_input);
mse = mse/(num_max_input*num_train_cyc);
mse_errors = cat(1,mse_errors,mse);

if max(accuracy) == right_counter/num_max_input

network.w1 = w1;
network.w2 = w2;
network.w3 = w3;
network.mse_errors = mse_errors;
network.accuracy = accuracy;

end

if (mse<mse_min) (accuracy(end)==1)
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disp("Leaning sucessfull");
break
end

end

figure(1)
plot(mse_errors,"Color","b");
hold on;
plot(accuracy,"Color","r");
legend("mse error","accuracy");

%% Save data %

num_network = length(dir(folder_network)) - 1;

net_parameters.dt = dt;
net_parameters.threshold = threshold;
net_parameters.neuron_for_layer = neuron_for_layer;
net_parameters.current_sinking_time = current_sinking_time;
net_parameters.max_weigth = max_weigth;
net_parameters.learning_rate = learning_rate;
net_parameters.num_train_cyc = num_train_cyc;
net_parameters.mse_min = mse_min;
save(folder_parameters+"net_parameters_"+num2str(num_network)+".mat","net_parameters");
save(folder_network+"network_"+num2str(num_network)+".mat","network");

num_network = length(dir(folder_network)) - 1;

network.w1 = w1;
network.w2 = w2;
network.w3 = w3;
network.mse_errors = mse_errors;
network.accuracy = accuracy;
save(folder_network+"network_"+num2str(num_network)+".mat","network");
save(folder_parameters+"net_parameters_"+num2str(num_network)+".mat","net_parameters");

function layer_post_pre_spike = inference(w,layer_pre,layer_post,current_sinking_time)

infer = w*layer_pre.spike;
update = double(layer_post.last_activation>=current_sinking_time);
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infer = infer.*update;

layer_post_pre_spike.capacitance = infer + layer_post.capacitance;
layer_post_pre_spike.last_activation = layer_post.last_activation;
layer_post_pre_spike.spike = layer_post.spike;

end

function layer_update = trigger_layer(layer,threshold,dt,slope)

layer.last_activation = layer.last_activation + dt;
layer.capacitance = layer.capacitance + slope*dt;
layer.capacitance = layer.capacitance.*double(layer.capacitance>0);
spike_negat = double(layer.capacitance<threshold);
layer_update.capacitance = layer.capacitance.*spike_negat;
layer_update.last_activation = layer.last_activation.*spike_negat;

layer_update.spike = double(layer.capacitance>=threshold);

end

%derivative of the tanh
function f_prime = tanh_prime(vector,threshold)

f_prime = 1-tanh(vector/threshold-threshold).2;

end
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