
Executive Summary of the Thesis

The Design of a Data Lake architecture for the healthcare use case:

problems and solutions

Laurea Magistrale in Computer Science and Engineering - Ingegneria Informatica

Author: Sara Parente

Advisor: Prof. Letizia Tanca

Co-advisor: Prof. Marco Gribaudo

Academic year: 2020-2021

1. Introduction

In the last years, due to the ever increasing num-
ber of devices connected to the Internet and to
the continuous technological growth, the genera-
tion of data of any type has also increased. This
growth has given rise to the phenomenon of Big
Data. The new characteristics associated to this
data have made the need of reorganizing busi-
ness processes and the need of developing new
solutions increasingly evident. Above all, it has
emerged the need of new systems that allow to
exploit new opportunities that came with Big
Data and that allow, also, to handle the con-
stantly increasing complexity of data manage-
ment.
In the healthcare �eld the term "Big Data" is
used to describe all information generated from
the digital technologies that collect patients'
records. In the near future, physicians will have
to deal with terabytes of data. Gaining clin-
ical insight from such a large volume of data
is an impossible expectation to place upon hu-
mans. An answer to this problem is to make
Electronic Health Record not only records of
patient-physician interactions and digital med-
ical records, but also diagnostic aids. Another
important aspect is to make this huge volume

of data available and easily accessible by physi-
cians in order to make the diagnostic process
much faster.

2. Aim of the thesis

The aim of the thesis is to design a system that
can e�ciently handle healthcare Big Data. The
project involves the adoption of a Data Lake
that connects many Istituti di Ricovero e Cura a
Carattere Scienti�co 1 (IRCCS) in order to have
a central repository for all connected data and,
therefore, create a rich dataset.
The Data Lake should be the only entry point
for all types of data, which are stored in their
raw format. More in detail, the objective is to
design a system that integrates traditional data
and multimedia data. This can be achieved only
by developing an architecture that can handle
all types of data. Furthermore, the proposed
system should be scalable and it should allow
to quickly access every type of data. This can
be achieved by extracting structural, semantic
and process metadata that can make retrieving
of data easier and can help the query proccess.
Since in the healthcare domain data is very het-

1
Institute for Treatment and Research

1

Executive summary Sara Parente

erogeneous, as it spans from lab reports to ge-
nomic data, we have decided to restric our analy-
sis to medical images, e.g, x-rays, CTs and PETs.
So, the project proposes a Data Lake architec-
ture that can handle this type of data and its
metadata.

3. Overview of the proposed

architecture

The literature [7] o�ers multiple examples of
data lake architectures. These models, however,
are too generic and do not take into considera-
tions important aspects, such as data modeling
and metadata menagement. The objective of
the thesis is to de�ne a comprehensive data lake
architecture that best �ts the studied use case.
The proposed architecture aims at handling
medical Big Data coming from heterogeneous
sources in di�erent formats, including multime-
dia and, particularly, medical images. A high
level component view of the system is presented
in Fig. 1.
From Fig.1, it can be observed that we have dif-
ferent data sources external to the Data Lake.
Data is ingested from these sources by the Data
Ingestion component and is permenantely stored
in the Raw Data Storage. The Ingestion mod-
ule is also responsible for the generation of the
metadata on the ingested dataset. Then, based
on the type, data goes under di�erent kinds of
procesing. In this phase other metadata can be
generated, e.g. metadata on the processes. Data
obtained from the processing steps is then stored
in a Database. The Query Engine, instead, is the
component that executes queries against data in
that database to provide answers to the front-
end application. Lastly, the Metadata Manage-
ment System handles and stores the metadata
generated by the other components.

Data Lake architectures are usually classi�ed
in Data Pond Architectures and Zone Archi-
tectures [6]. Zone architectures assign data to
a zone according to their degree of re�nement.
Pond architectures, instead, represent the Data
Lake as a set of data ponds and each data pond
can be seen as a part of the Data Lake which
handles a speci�c type of data. For this speci�c
use case a Zone Architecture has been chosen
because data should go through di�erent levels
of re�nement and, also, there is the need to keep
a copy of data in its raw format. More in detail,
the proposed architecture is composed by four
di�erent zones: Transient Landing Zone, Raw
Zone, Stage Zone, and Sandbox. It is important
to highlight that metadata management spans
all the zones as metadata can be produced at
any stage.
In particular, the Transient Landing Zone

is represented by the Data Ingestion module
and it is the zone where data lands when ex-
tracted from the data sources and pushed to the
Data Lake. In the analyzed use case images are
collected in micro-batches and pushed into the
Transient Landing Zone. The Raw Zone com-
prises the Raw Data Storage and it is the zone
where data is stored inde�netely in its native raw
format. This zone covers a big role in the health-
care environment because it is likely that images
in raw format are used multiple times to make
di�erent kinds of analysis. The Stage Zone can
be mapped to the two modules, Image Analysis
and Other Processing and it is the zone where
data is landed for preparation and processing.
In our case, this is the layer where features are
extracted from the images. Lastly, the Sand-
box Zone corresponds to the Database com-
ponent. It is the zone where data scientists and
researchers can build analytical models, discover
associations and patterns within the data.

Figure 1: Component diagram of the Data Lake architecture.

2

Executive summary Sara Parente

3.1. Metadata Management System

As already mentioned, metadata management is
a crucial aspect of the Data Lake architecture as
it allows full exploitation of data's value. Since
metadata is still data, it needs to be managed in
a right way that allows to obtain all the possible
value from it, an important issue is the model
used to represent this metadata.
The literature proposes di�erent metadata mod-
els [5] [4] [3] [8]. These models, however, do not
suit the healthcare use case. First of all, they
mostly focus on structured and semi-structured
data. Moreover, none of them allows to describe
to which zone the data belong, which is an im-
portant aspect to understand the level of re�ne-
ment. Lastly, these models do not take into con-
sideration the level of granularity. Therefore, we
conducted further researches and found a model
that can �t the use case. Handling metAdata
maNagement in Data LakEs (HANDLE) [1] has
been developed with the intention of creating a
model that can handle all use cases. This model
can be divided into two main parts, the core
model and three extensions. The scope of the
core model is to de�ne all elements and the re-
lations that are needed to model metadata. The
extensions, instead, represent the zones, the lev-
els of granularity and the categoriazion topics.
Fig.2 describes a slightly modi�ed model of
HANDLE using an Entity Relationship schema.
The modi�cation that has been applied is the
removal of the categorization property because
it describes the context of metadata, e.g. opera-
tional, technical, business, and it does not apply
to the examined application.

Figure 2: HANDLE Entity Relationship model

The schema in Fig.2 shows that, to each piece
of data zero or more metadata can be attached.
Each one of these metadata is described by a
set of properties. The ConnectionContext at-
tribute, instead, provides a description of the

Figure 3: Example of data �ow

information contained in the metadata element.
Data is also described through a granularity in-
dicator and a zone indicator. It is important
to underline that each data has a link to the
Raw Zone also when it belongs to other zones.
For what concerns the attributes represented in
the schema, the StorageLocation gives the path
to the data element, and each property is de-
�ned through a key-value pair. The Granular-
ity Indicator entity allows to collect metadata
at di�erent levels of granularity, e.g. single im-
age, collection of images, part of an image. The
ZoneIndicator entity provides the information
about the location of a speci�c data element in-
side the Data Lake.
In [1] also a possible implementation for this
model is proposed. Since �exibility is a key as-
pect in metadata management, the authors have
opted for a NoSQL technology. In particular, the
chosen model is a graph database.

4. Data Flow

The Data �ow describes the path that system's
information take from external sources through
processes and data stores inside the Data Lake.
The Data Lake ingests data, irrespective of its
format, into a Big Data store. Metadata is de-
coupled from its data and stored independently.
Then, data goes through a series of steps that
can have either the function of processing or that
of storage.
The schema in Fig.3 represents the data �ow
for medical images. The input is a set of im-
ages in Digital Imaging and Communication in
Medicine (DICOM) format, which is the refer-

3

Executive summary Sara Parente

ence standard for what concerns medical im-
ages, along with related set of annotations in
Comma Separated Values (CSV) format. The
annotations de�ne the Region Of Interest (ROI),
i.e. the part of the image that contains impor-
tant diagnostic information, on the images and
have previoulsy been manually de�ned by radiol-
ogists. The ingested data lands in the transient
landing zone and two important actions are per-
formed, the masking of Personally Identi�able
Information (PII) and the generation of meta-
data on both single images and image collection.
Then, data is permanently stored in the Raw
Data Store. After ingestion and storage there
are all the steps that process the image and the
related data. We have developed a simple imple-
mentations of these stages to better understand
which are the inputs and the outputs of these
phases and, also, to make an assessment of re-
source requirements.

4.1. Data set

To perform this simple analysis 80 images were
taken from the ChestX-ray8 database [9]. The
images contained in this data set are chest x-
rays. The ChestX-ray8 database is composed
by 108 948 images which are frontal-view x-
ray. These images were taken from a totality of
32 717 patients. Typically the dimension of an x-
ray image are 3000x2000, but these dimensions
are a challenge for hardware computing capacity.
Therefore, in ChestX-ray8 images are extracted
from the DICOM �le and resized as 1024x1024
bitmap images. This process does not result in
losing of detail contents because intensity ranges
are rescaled using window settings stored in the
DICOM header �le.
As part of the ChestX-ray8 database, a small
number of images with pathology are provided
with hand labeled bounding boxes. In the la-
beling process only 983 images were analyzed.
For each one of these images a board-certi�ed
radiologist identi�ed the region interested by a
disease. The identi�ed ROI has then be regis-
tered in an eXtensible Markup Language (XML)
�le. If an image has more than one ROI, each
one of them is stored in a di�erent XML �le. As
previously mentioned these ROIs are provided
in a CSV �le.
In the thesis only images that have at least one
ROI were used.

4.2. Image preparation

The �rst step of this phase is the extraction of
information about the patient, the case and the
exam from the DICOM �les. This data is stored
in a relational table using MySQL.
The second step is the extraction of data con-
cerning the ROI from the CSV �le and its stor-
age in a relational table. In our case the ROI
identi�es the region from which it is possible to
identify a chest disease, e.g. pneuomonia, pneu-
mothorax, atelectasis.
The third step of this phase is the creation of
the mask. A mask is a binary image formed
by zero and non-zero values. When the mask is
applied to a grayscale image, the pixels that have
a zero value in the mask are set to zero also in
the output image. The other pixels, instead, are
unchanged. So, the mask allows to consider only
the ROI of the image. We have implemented this
task using Matlab.
The fourth, and last, step is image transforma-
tion using SimpleITK. In this step both the DI-
COM image and the mask, which is in Joint
Photographic Experts Group (JPEG) format,
are transformed into Nearly Raw Raster Data
(NRRD) format. This transformation is needed
as the following step does not accept neither DI-
COM nor JPEG formats.

4.3. Image analysis

At this stage the features are extracted from im-
ages. This analysis is performed using Pyra-
diomics. It takes as input the image and the
mask both in NRRD format and returnes an or-
dered dictionary as output. In addition to the
features, also metadata is generated in this step,
for example the version of Pyradiomics, the orig-
inal image spacing etc.

4.4. Processed data store

This stage provides the storage for both data
about patients, exams, ROIs and the features
extracted from the images. These information
are organized following a relational model. We
have choosen this type of model as data has a
rigid structure and NULL values are infrequent.

4.5. Performance monitoring

As already mentioned, the implementation of
the steps of image preparation and features ex-
traction has allowed us to quantify time of exe-

4

Executive summary Sara Parente

cution, resource usage and the amount of data
generated. This represents a big advantage as
these numbers helped us understand the require-
ments that the architecture should satisfy. The
tests have been executed using the 80 chest x-
rays taken from the ChestX-ray8 database and
their ROIs.
The Matlab function that reads the ROI from
the CSV �le, opens the image in DICOM for-
mat and creates the mask, has been executed
10 times for all the 80 images and the execution
time has been recorded. This step takes on av-
erage 3,766s, which means that the time needed
for the creation of a single mask is on average
47,07ms. For what concerns CPU utilization,
instead, the average for this step is 43,3%. An-
other important aspect is that this code does not
take advantage of the GPU.
In the following step, image analysis, features
are extracted from medical images. Taking al-
ways in consideration the 80 chest x-rays, a
total of 10 320 features are extracted which
means that for each image 129 features are com-
puted. For what concerns the execution time we
have taken advantage of the function o�ered by
Python, timeit. This function registers the exe-
cution time of a small code snippet and it takes
as inputs the code snippet we want to time and
the number of times we want to execute it. We
have called the function three times passing as
number parameter: 1, 10 and 100. From execu-
tion times, we have estimated that it takes, on
average, 202,67ms to extract features from a sin-
gle image. CPU utilization in this case is 14,4%
and it uses also the GPU with a percentage of
4,4%. During the execution of Pyradiomics we
were also able to measure memory utilization,
more in detail we have executed the code for the
80 images 10 times and register for each execu-
tion the peak memory usage. On average the
peak is 14,303 MB.
Both the step were run on a PC with 2,90 GHz
dual processors CPU.

5. Conclusion

The work presented in this thesis is at an early
stage of the process of the implementation of
a storage system for medical data. The main
objective of this work is to design an architecture
for a Data Lake that allows e�cient storing and
fast access to all types of data. In particular,

the main focus was on storage of unstructured
data, i.e. medical images, which is problematic
in traditional systems.
Taking into account the performed work, the
main next step is the complete implementation
of the system. The most interesting part of the
implementation will be certainly the metadata
management system. For this part of the system
more detailed requirements should be identi�ed
by analyzing the di�erent types of data entering
the Data Lake and their relationships.
Another important step that sould be made is
the analysis of the aspects of data security and
data quality. Data security is of great impor-
tance in the Data Lake, as it ensures legal con-
formance, alignment with business objectives,
and much more [2]. Data quality, instead, is im-
portant to ensure the data's usability and pre-
vent the data lake from turning into a data
swamp [2]. When these two aspects are in-
cluded, also their metadata should be analyzed,
e.g. security and quality classi�cation.
Another important step that should be done is
to examine how the process of masking PII can
be implemented. This process has to be deeply
analyzed as the exposure of sensitive data can
cause serious damage. It has been selected the
masking technique as it can shu�e data columns
in di�erent ways so that the masked data looks
like the original, in the format and type, but
it is no longer sensitive data. Masking is e�ec-
tive because despite it changes all the individual
data elements, it still allows to compute aggre-
gate values across an entire database, enabling
preservation of the right values within a data set.

References

[1] Rebecca Eichler, Corinna Giebler, Christoph
Gröger, Holger Schwarz, and Bernhard
Mitschang. Handle - a generic metadata
model for data lakes. In Min Song, Il-Yeol
Song, Gabriele Kotsis, A. Min Tjoa, and Is-
mail Khalil, editors, Big Data Analytics and

Knowledge Discovery, pages 73�88, Cham,
2020. Springer International Publishing.

[2] Corinna Giebler, Holger Schwarz, Bernhard
Mitschang, and Technologie und Web. The
data lake architecture framework: A founda-
tion for building a comprehensive data lake
architecture. Datenbanksysteme für Busi-

5

Executive summary Sara Parente

ness, Technologie und Web (BTW 2021) 13.�

17. September 2021 in Dresden, Deutsch-

land, page 351, 2021.

[3] Rihan Hai, Sandra Geisler, and Christoph
Quix. Constance: An intelligent data lake
system. In Proceedings of the 2016 inter-

national conference on management of data,
pages 2097�2100, 2016.

[4] Alon Y. Halevy, Flip R. Korn, Natasha Noy,
Christopher Olston, Neoklis Polyzotis, Sudip
Roy, and Steven Euijong Whang. Manag-
ing google's data lake: an overview of the
goods system. IEEE Data Eng. Bull., 39:5�
14, 2016.

[5] Christoph Quix, Rihan Hai, and Ivan Va-
tov. Gemms: A generic and extensible meta-
data management system for data lakes. In
CAiSE forum, volume 129, 2016.

[6] Franck Ravat and Yan Zhao. Data lakes:
Trends and perspectives. In International

Conference on Database and Expert Systems

Applications, pages 304�313. Springer, 2019.

[7] Pegdwendé Sawadogo and Jérôme Darmont.
On data lake architectures and metadata
management. Journal of Intelligent Infor-

mation Systems, 56(1):97�120, Jun 2020.

[8] Pegdwendé N. Sawadogo, Étienne Scholly,
Cécile Favre, Éric Ferey, Sabine Loudcher,
and Jérôme Darmont. Metadata systems
for data lakes: Models and features. In
Tatjana Welzer, Johann Eder, Vili Podgor-
elec, Robert Wrembel, Mirjana Ivanovi¢, Jo-
hann Gamper, Mikolaj Morzy, Theodoros
Tzouramanis, Jérôme Darmont, and Aida
Kami²ali¢ Lati�¢, editors, New Trends in

Databases and Information Systems, pages
440�451, Cham, 2019. Springer International
Publishing.

[9] Xiaosong Wang, Yifan Peng, Le Lu, Zhiyong
Lu, Mohammadhadi Bagheri, and Ronald
Summers. Chestx-ray8: Hospital-scale chest
x-ray database and benchmarks on weakly-
supervised classi�cation and localization of
common thorax diseases. In 2017 IEEE

Conference on Computer Vision and Pattern

Recognition(CVPR), pages 3462�3471, 2017.

6

The Design of a Data Lake

architecture for the healthcare use

case: problems and solutions

Tesi di Laurea Magistrale in

Computer Science and Engineering - Ingegneria

Informatica

Author: Sara Parente

Student ID: 928105
Advisor: Prof. Letizia Tanca
Co-advisors: Prof. Marco Gribaudo
Academic Year: 2020-2021

i

Abstract

With the growth of data volume and data heterogeneity in the healthcare domain, the

need for new types of storage systems has emerged. In particular, there is the need to

store di�erent types of data, e.g. lab reports, medical images, genomics data, in a central

repository in order to create an organized and rich dataset. Since traditional approaches

cannot satisfy these requirements, we opted for the adoption of a Data Lake. A Data Lake

is a centralized repository that allows to store structured, semi-structured, and unstruc-

tured data at any scale. However, the current Data Lake architectures do not support

the speci�c needs of healthcare data, therefore we proposed an architecture that can �t

this use case. The objective was to design a system that can e�ciently ingest, store and

process medical images, such as x-rays, CTs and PETs, as well as the metadata related to

these images. This last aspect plays a very important role in the Data Lake architcture,

as it allows full exploitation of the data value. In order to better understand the require-

ments that the architecture should satisfy, we developed a simple implementation of some

steps of the data �ow across the Data Lake. The prototype takes as input a series of

x-rays and their annotations, performs image preparation and image analysis, and �nally

stores the results in a relational database. This has allowed us to quantify both the num-

ber of features that are generally extracted from a single image and the resource usage

during these processes. Moreover, we proposed two cloud solutions that can realize the

proposed architecture: the �rst one takes advantage of services o�ered by Amazon, while

the second one uses services provided by Microsoft. Overall, our work is a step in the

right direction to implement a Data Lake that can be used in the healthcare environment

and, we believe that, by adding some extensions, a complete solution can be implemented.

Keywords: Big Data, Data Lake, Medical Images

Abstract in lingua italiana

La costante crescita del volume e dell'eterogeneità dei dati in ambito sanitario, ha fatto

emergere la necessità di nuovi tipi di storage. In particolare in questo settore vi è la

necessità di raccogliere diversi tipi di dati, come referti di analisi, dati genomici e imma-

gini mediche, in un sistema centralizzato che permetta di creare un dataset organizzato

e completo. Considerato che gli approcci tradizionali non riescono a gestire in maniera

appropriata questo tipo di problema, abbiamo optato per l'utilizzo di un Data Lake. Il

Data Lake è una repository centralizzata che permette di salvare su qualsiasi scala dati

strutturati, semi-strutturati e non strutturati. La mancata creazione di un'architettura

generale per questo tipo di sistema, ci ha indotto a proporre questo lavoro che cerca di

dare una soluzione al problema. L'obiettivo è quello di progettare un sistema che e�cace-

mente ingerisca, salvi e processi immagini mediche, come radiogra�e, PET e TAC, e che

allo stesso tempo sia in grado di gestire i metadati associati a tali immagini. Questo ultimo

aspetto va analizzato con attenzione quando si progetta il Data Lake perchè permette di

sfuttare appieno il valore dei dati. Per comprendere meglio i requisiti che l'architettura

deve soddisfare, abbiamo sviluppato una implementazione di alcune parti del Data Lake.

Più nel dettaglio, l'implementazione riceve in input una serie di radiogra�e con le relative

annotazioni, esegue gli step di preparazione, le analizza e salva i risultati di quest'ultimo

passaggio su un database relazionale. Ciò ha permesso di quanti�care sia il numero di

features che vengono estratte da una singola immagine, sia l'utilizzo delle risorse durante

questi processi. Inoltre, nella tesi vengono proposte due soluzioni cloud che sviluppano

l'architettura presentata, la prima soluzione sfrutta i servizi o�erti da Amazon, mentre la

seconda utilizza servizi forniti da Microsoft. In sintesi, questo lavoro rappresenta il primo

passo dell'implementazione di un Data Lake in ambito sanitario e con le dovute estensioni

potrà fornire una soluzione adeguata.

Parole chiave: Big Data, Data Lake, Immagini Mediche

v

Contents

Abstract i

Abstract in lingua italiana iii

Contents v

1 Introduction 1

1.1 Aim of the thesis . 2

1.2 Brief description of the work . 3

1.3 Structure of the thesis . 4

2 Theoretical background 5

2.1 Big Data . 5

2.2 Data Lake . 8

2.2.1 Data lake architectures . 9

2.2.2 Data lake challenges and problems 10

2.3 Data lake vs Data warehouse . 11

2.4 Graph database . 14

2.5 Cloud Computing . 16

2.6 State of art . 17

2.6.1 Metadata management system . 17

2.6.2 DICOM . 20

3 A general overview of the proposed Architecture 21

3.1 Overview . 22

3.1.1 Transient Landing Zone . 24

3.1.2 Raw Zone . 24

3.1.3 Stage Zone . 24

3.1.4 Sandbox . 25

3.2 Metadata Management System . 25

3.3 De�nition of Data Lake's characteristics 28

4 Design of the application 31

4.1 DICOM . 31

4.2 Technologies . 32

4.2.1 Hadoop Distributed File System . 32

4.2.2 Pyradiomics . 33

4.2.3 SimpleITK . 34

4.3 Data �ow . 34

4.3.1 Dataset . 36

4.3.2 Image preparation . 36

4.3.3 Image analysis . 38

4.3.4 Processed data store . 38

4.4 Performance monitoring . 39

4.4.1 Observations . 41

5 Cloud Solutions 43

5.1 Amazon . 43

5.2 Microsoft . 46

6 Conclusions 49

6.1 Future work . 50

Bibliography 53

List of Figures 59

List of Tables 61

List of Acronyms 63

Ringraziamenti 65

1

1| Introduction

In the last years, due to the ever increasing number of devices connected to the Internet

and to the continuous technological growth, the generation of data of any type has also

increased. This growth has given rise to the phenomenon of Big Data. The new charac-

teristics associated to this data have made the need of reorganizing business processes and

the need of developing new solutions increasingly evident. Above all, it has emerged the

need of new systems that allow to exploit new opportunities that came with Big Data and

that allow, also, to handle the constantly increasing complexity of data management. So,

in order to satisfy these needs, new scalable and e�cient architecture have been designed.

The new frameworks born to store and analyze Big Data are mainly based on parallel

architectures.

The framework that is currently most used for Big Data storage and management is

the Data Lake. However, this type of systems cannot be used without de�ning an ap-

propriate structure, and governance policies. Without these cautions, there is the risk of

losing the value of the data as its volume grows. If this happens, the Data Lake becomes

a Data Swamp and access to data is no longer e�cient, nor e�ective.

Figure 1.1: Di�erence between a Data Lake and a Data Swamp [10]

2 1| Introduction

In the healthcare �eld the term "Big Data" is used to describe all information generated

from the digital technologies that collect patients' records. E�ective use of Big Data in

Healthcare is enabled by the development and deployment of machine learning and arti-

�cial intelligence approaches [12]. Machine learning and arti�cial inteligence algorithms

make it possible to unravel the patterns, associations, correlations and causations in com-

plex, unstructured and non-normalized datasets that the Big Data era brings. This allows

to perform analysis on datasets as varied as sequences of images or narratives, i.e. patient

records, and bringing all these datasets together to generate prediction models, such as

response of a patient to a treatment.

In the near future, physicians will have to deal with terabytes of data. Gaining clini-

cal insight from such a large volume of data is an impossible expectation to place upon

humans. An answer to this problem is to make Electronic Health Record not only records

of patient-physician interactions and digital medical records, but also diagnostic aids. An-

other important aspect is to make this huge volume of data available and easily accessible

by physicians in order to make the diagnostic process much faster.

1.1. Aim of the thesis

The aim of the thesis is to design a system that can e�ciently handle healthcare Big Data.

The project involves the adoption of a Data Lake that connects many Istituti di Ricovero

e Cura a Carattere Scienti�co 1 (IRCCS) in order to have a central repository for all

connected data and, therefore, create a rich dataset. The Data Lake should be the only

entry point for all types of data, which are stored in their raw format. More in detail, the

objective is to design a system that integrates traditional data and multimedia data, this

can be achieved only by developing an architecture that can handle all types of data. The

system should also allow users to write queries that use both traditional and multimedia

data. Then, results coming from all types of involved data have to be merged to return

a unique result. For example, given a medical image there could be the need to look for

images similar to it and to �lter these images on patients information such as age and sex.

The proposed system should be scalable, and it should allow to quickly access every type

of data. This can be achieved by extracting structural, semantic and process metadata

that can make data retrieval easier and can help query processing.

1Institute for Treatment and Research

1| Introduction 3

Since in the healthcare domain data is very heterogeneous, as it spans from lab reports

to genomic data, we have decided to restric our analysis to medical images, e.g, x-rays,

CTs and PETs. So, the project proposes a Data Lake architecture that can handle this

type of data and its metadata. Another important aspect analyzed in the thesis is the

identi�cation of features that can properly represent medical images. The step of feature

extraction is really important as it allows to apply machine learning and arti�cial intelli-

gence algorithms on the images. This phase requires a careful analysis of resource usage

as it is the most demanding step in the elaboration of images.

1.2. Brief description of the work

The focus of the thesis was to design a storage system that can appropriately handle

medical data and, in particular, medical images. First of all, we have identi�ed the best

solution for the use case under exam, which is a Data Lake. Then, we have proceeded

with the design of the architecture to implement the Data Lake, as the literature does not

o�er a general framework to implement this type of storage yet. More in detail, we have

identi�ed the components needed to extract, load and trasform data, and in this phase

the focus was on the modules needed for storing and analyzing medical images.

Another important aspect to consider in this step was metadata management as, if it

is not well de�ned, it can compromise the functioning of the entire system. The next

step has been the study of the data �ow inside the Data Lake, and for this purpose we

implemented of some parts of the �ow. This implementation has allowed us to better

understand the inputs and outputs of the main components of the architecture and also

to quantify resource usage during the phases of image preparation and feature extraction.

Thanks to resource usage analysis we were able to fully understand the requirements for

the architecture.

Lastly, a brief research on the major cloud service providers has been carried out. Among

all available providers, two have been identi�ed as the ones that o�er services that best �t

the use case under exam: Microsoft and Amazon. For each company, we made a research

aimed to identify the needed services and to provide a complete solution for the storage

of medical images.

4 1| Introduction

1.3. Structure of the thesis

This document is structured as follows:

� Chapter 2 presents the background of the work, explaining the context in which

the case under exam is placed. In particular, the concept of Big Data is introduced

and, then, two integration-oriented storage paradigms are presented: Data Lakes

and Data Warehouses. In this chapter we also made a comparison of the two, in

order to better explain the points that have been analyzed in the selection of the

type of system. Then, graph databases are bie�y introduced as they are used for

metadata management and, also, the concept of cloud computing is described as

it is a relevant topic when talking about Big Data storage. The last part of the

chapter discusses the state of art that is relevant for our work.

� Chapter 3 shows the proposed architecture for the Data Lake. First of all the choice

of the Data Lake has been explained. Then, the architecture is presented and a

more detailed description of the Data Lake zones is provided. Lastly, we explain

and de�ne the aspects that have to be considered in the design of the Data Lake.

� Chapter 4 �rst provides a more detailed description of the main technlogies proposed

for the implementation of the Data Lake. Then, it analyzes the data �ow that crosses

the system.

� Chapter 5 presents the two cloud solutions. The �rst one uses services provided by

Amazon and the second one exploits services o�ered by Microsoft.

� Chapter 6 concludes the whole thesis. It provides a brief recap of the work that has

been done. In this chapter we also discuss possible future works.

5

2| Theoretical background

This chapter provides the theoretical foundations required to understand the content of

the thesis. More in detail, Section 2.1 presents the concept of Big Data by introducing the

5Vs, Section 2.2 introduces the concept of Data Lake and, Section 2.3 makes a comparison

between the Data Lake and the Data Warehouse. Section 2.4 describes graph databases

and Section 2.5 brie�y introduces the concept of Cloud Computing. Finally, Section 2.6

discusses the state of the art relevant for our work.

2.1. Big Data

The literature gives di�erent de�nition of Big Data [48]. Microsoft de�nes Big Data as

"the process of applying serious computing power � the latest in machine learning and

arti�cial intelligence � to seriously massive and often highly complex sets of information"

[39]. From this de�nition it is clear that the boundary between data and Big Data is

not well de�ned. De�ning a limit in terms of concrete storage space or computing power

is not an easy task, since these aspects can vary based on the use case and, also, the

fast evolution of available technologies continuosly moves the boundaries of Big Data.

The Gartner Group, instead, de�nes Big Data as "Big data is high-volume, high-velocity

and/or high-variety information assets that demand cost-e�ective, innovative forms of

information processing that enable enhanced insight, decision making, and process au-

tomation" [3].

Gartner's de�nition introduces the concept of the 3Vs which represents three characteris-

tics that are usually adopted to describe Big Data.

� Volume refers to the size of Big Data. The name "Big Data" itself is related to

a size which is enormous. The rapid increase of volume is the consequence of an

increasingly connected world where new data sources continuously proliferate.

� Velocity refers to the speed at which the data is generated. In the Big Data era,

data can be created and passed on in real time or near real time. This term can

6 2| Theoretical background

also refer to the di�erent speed at which di�erent types of data can be generated.

As a consequence of this aspect, it is essential to handle in the appropriate way the

ingestion phase and the division of the workload.

� Variety refers to the nature of data that can be structured, semi-structured and

unstructured. Structured data is usually data de�ned through a schema, this is

the easiest type of data to handle. Semi-structured data is semi-organized data,

it doesn't conform to the formal structure of data. Data that does not have a

structure is unstructured, this type of data cannot be used right away, but usually

some processing is needed. However, variety can also refers to the presence of

heterogeneous sources.

More recently, two more characteristics have been added to the three original ones.

� Veracity refers to the possible lack of quality, i.e., integrity, credibility or accuracy

in the data. This term was �rst used by IBM to highlight that when dealing with

Big Data there is always a certain level of uncertainty. So data should always be

checked for accurancy before using it for business insights.

� Value refers to how useful data is in the decision making process. This is where

data analytics comes into play. Without appropriate analytics it is not possible to

extract the value out of the Big Data.

Over the years more characteristics were introduced: Viscosity describes the level of cor-

relation in the data, Volatility refers to data durability, Variability addresses the inconsis-

tencies in the data �ow and Validity is the ability to �nd hidden relationships. However,

the �ve main characteristics of Big Data are the ones presented above.

From these characteristics it can be deduced that Big Data has a big potential, but

it involves also big challenges [45] (see Figure 2.1).

Data challenges are related to the characteristics of the data itself, i.e. data volume,

veracity, variety, vlocity, value.

Process challenges are related to the new techniques required to handle Big Data.

This process is composed by di�erent steps:

� acquisition and storage of new data: the �rst challenge of big data is the storage.

This because traditional approaches are usually not suitable for this type of data.

� Data cleansing: extraction and cleaning of data from a pool of large scale unstruc-

2| Theoretical background 7

tured data can be very challenging.

� Aggregation and integration: with Big Data, data is available in large volumes and

is modeled using di�erent representations. This aspect introduces the challenge

of integrating these data sources in order to extract knowledge and support the

decision making process.

� Data analysis and modelling: once data has been integrated the next step is the

analysis and modelling of Big Data. Although both Big Data systems and traditional

Data Warehouses have the same goal of delivering business value by analyzing data,

the di�erence is in the analytics and in the organization of data. The old ways of

data modelling can no longer be used because of the unprecedented need of storage

capacity and computing power.

� Data Interpretation: is the step that makes data understandable for �nal users. The

growth of unstructured data has a�ected the way people process and interpret this

raw data.

Management challenges are related to the aspects of privacy, security and governance.

� Privacy: with Big Data how to preserve the privacy has become one of the most

important challenges. There is an increasing fear of inappropriate use of personal

data especially when combining data from multiple sources [35].

� Security: this type of challenges is related to the distributed nature of Big Data

that makes the data more vurnerable to attack.

� Data Governance includes all processes and technologies needed to manage and

protect data assets in order to guarantee correct, complete, secure and discoverable

data. It is an important aspect as it helps maintain the value of data as a key

organizational aspect.

Figure 2.1: Big Data Challenges [45]

8 2| Theoretical background

2.2. Data Lake

As previously explained, Big Data has created a lot of concerns about how to store it and

protecting it. As an answer the concept of Data Lake has been introduced. In [31] the

Data Lake is de�ned as "a logical view of all data sources or dataset, in their raw format,

available and accessible by data scientist or statistician to �nd new insight.

� A data lake is governed by a metadata sources index to guarantee the data quality.

� A data lake is controlled by rules, tools and processes to guarantee the data gover-

nance.

� A data lake is limited to data scientist or data statistician access to guarantee data

security, data privacy and compliance.

� A data lake access all type of data.

� A data Lake has a logical and physical design"

The Data Lake can be seen as a central repository where data is stored without a prede-

�ned schema.

From the de�nition of the Data Lake it is evident that this type of systems can e�ciently

handle Big Data. Metadata helps exploiting data's value, data variety is preserved as the

Data Lake access all type of data and the rules, tools and processes that guarantee the

data governance help managing veracity.

There are di�erent bene�ts that come with the adoption of a Data Lake:

� Data is stored in native format, the Data Lake removes the need for data

modeling at the time of ingestion. This step can be done when exploring data for

analytics.

� Scalability, it can e�ectiely handle the growing amount of data.

� Schema �exibility, the Data Lake applies the schema on read paradigm which

creates the schema only when reading the data. Since it's not necessary to de�ne

the schema before storing the data, bringing new data sources in is much easier.

� Advanced analytics, unlike traditional approaches, a data lake excels at utiliz-

ing the availability of large volumes data along with deep learning algorithms to

recognize items of interest that will power real-time decision analytics.

2| Theoretical background 9

� Ingestion from di�erent sources, it can ingest multi-structured and massive

datasets from disparate sources. This means that the Data Lake can store literally

any type of data such as multimedia, binary, XML, logs, and so on.

2.2.1. Data lake architectures

The literature classi�es Data Lake architectures into Pond architectures and Zone archi-

tectures [23].

Pond architecture, in [29] the Data Lake is represented as a set of data ponds. Each

data pond can be seen as a part of the Data Lake which handles a speci�c type of data.

In [29] �ve data ponds have been identi�ed:

� Raw Data Pond handles newly ingested data, i.e. raw data. It represents a transit

zone as data is then conditioned and passed to another pond. This pond is not

associated with any metadata system.

� Analog Data Pond contains data characterized by a very high frequency of mea-

surements, e.g. log �les, IoT data.

� Application Data Pond is the pond dedicated to data generated by software appli-

cations. So, this data is usually structured data coming from Relational Database

Management Systems (RDBMS). In this pond data is integrated, transformed and

prepared for analysis.

� Textual Data Pond handles unstructured, textual data.

� Archival Data Pond comprises data that is not actively used, but may be needed

in the future. The data contained in this pond may be generated by the analog,

textual or application pond.

Figure 2.2: Pond architecture schema [42]

10 2| Theoretical background

Zone architecture assigns data to a zone according to its degree of re�nement. For

example, in [24] six zones have been identi�ed:

� Landing zone, is the �rst zone of the Data Lake. Data can come into the Data Lake

in batches or streams.

� Raw zone is the zone where data is kept in its raw format. The data will live here

until it is operationalized.

� Harmonized Zone: data is passed to this zone in a demand-based manner. When

data passes to this zone it is not deleted from the raw zone, the harmonized zone

contains a copy of the data. In this zone data coming from di�erent sources is

integrated in a common schema regardless of its structure.

� Distilled Zone increases the e�ciency of following analysis by preparing the data

accordingly. It is the �rst zone that divides data based on the use cases.

� Explorative Zone represents the place where data scientists can explore and analyze

data. If results of applied analysis need to be stored, they can be sent back to the

distilled zone.

� Delivery Zone, contains small subsets of data which are tailored to speci�c applica-

tions. The main di�erence between this zone and the explorative zone is that the

delivery zone supports users with little knowledge on data analytics.

However, this is just an example of a zone architecture. This type of architectures can

have di�erent numbers of zones and the also the characteristics of each zone may di�er.

The main di�erence bewteen the two architectures is that in the pond architecture raw

data is deleted when transferred to other ponds. In the zone one, instead, a copy of the

data is kept in each zone. This may represent a drawback because multiple copies of data

are availble in the system and this can generate di�culties in menaging data lineage.

2.2.2. Data lake challenges and problems

Despite all the bene�ts, Data Lakes are still not much utilized. This is because there are

still many challenges and research gaps [22].

� Data Lake architecture: at the moment no generally accepted architecture is

available. This makes it necessary to investigate and compare the existing alterna-

tives to extract similarities. Moreover, only the conceptual organization of data in

zones or ponds is analyzed, there is no architecture that includes also the modeling

2| Theoretical background 11

aspect or the infrastructure one.

� Data Lake governance: the new requirements of �exibility and open access come

into con�ict with traditional governance approaches, i.e. Data Warehouses. There-

fore, the necessity of a comprehensive governance concept which should take into

consideration all di�erent types of data has emerged.

� Comprehensive strategy: there is also a lack for what concerns the compre-

hensive design and the realization strategy. The strategy should consider interde-

pendencies between di�erent data lake aspects, such as data lake architecture and

data lake modeling, and should combine all aspects into one comprehensive and

systematic data lake concept.

2.3. Data lake vs Data warehouse

The reader may wonder why we have opted for a data lake instead of more traditional

approaches. So, in this section the concept of data warehouse is brie�y introduced and,

then, the main di�erences between this type of storage and the data lake are presented

in Table 2.1.

Data Warehouses are not a new concept, they were developed in the late 1980s and

evolved over time. The Gartner Group de�nes the Data Warehouse as "a storage archi-

tecture designed to hold data extracted from transaction systems, operational data stores

and external sources. The warehouse then combines that data in an aggregate, summary

form suitable for enterprisewide data analysis and reporting for prede�ned business needs"

[4]. The four main characteristics of a data warehouse are:

� Subject-oriented, it usually provides information on a topic, e.g. sales, inventory,

promotion, rather than company operations.

� Time-variant, the time horizon is signi�cantly longer than the time horizon of an

operational system.

� Non volatile, meaning that data in this type of system are accessed and loaded,

but not frequently updated.

� Integrated, data coming from heterogeneous sources are converted into a uni�ed

schema.

12 2| Theoretical background

The Data Warehouse can be seen has a 3-tier architecture:

� Bottom tier is usually composed by a data warehouse server, normally a relational

database system, which collects, cleanses, and transforms data from multiple data

sources through Extract-Transform-Load (ETL) processes.

� Middle tier consists of an On-Line Analytical Processing (OLAP) server which en-

ables fast query speeds.

� Top tier is composed by a front-end user interface or a reporting tool, which enables

end users to conduct ad-hoc data analysis on their business data.

As mentioned above the Data Warehouse is an OLAP system. This type of systems

is suited to perform multidimensional analysis at high speeds on large volumes of data.

OLAP systems are usually prefered when where is the need to run data mining alghoritms,

intelligence applications and complex analytical calculations. They are also used for busi-

ness reporting functions.

Since On-Line Transaction Processing (OLTP) systems and OLAP systems satisfy di�er-

ent requirements, two di�erent data models are needed. The Entity-Relationship model,

used to represent OLTP applications, is not su�cient to represent multidimensional data.

To solve this problem another conceptual model was developed. The data cube is the

model used to conceptualize data in the data warehouse [17]. The cube is composed

by cells that represent a measure based on a set of dimensions. It is thus important to

introduce the basic concepts on which data warehouses are built.

� Fact represents a business measure. It is a concept which is relevant for decisional

processes.

� Measure represents a numerical property of the fact.

� Dimension describes �who, what, when, how, and why� associated with the event

[15].

The operations that are usually performed on a data cube are:

� roll-up, aggregates data at a higher level;

� drill-down, de-aggregates data at a lower level;

� slice and dice, apply selections and projections which are used to reduce data di-

mensionality;

� ranking, sorts data based on a prede�ned criteria.

2| Theoretical background 13

� pivoting, selects two dimensions to re-aggregate data.

In a nutshell, the Data Warehouse stores data that is needed for business and analytics

and this data is stored following a unique model.

After this introduction to data warehouses, it is more evident that this type of systems

di�er, under many aspects, from Data Lakes. Table 2.1 summarizies the main di�erences.

Data Lake Data Warehouse

Storage All data is stored irrespective of

the structure. Data is kept in

its raw form and is only modi�ed

when it is used.

Data is cleansed and transformed

at the moment of extraction.

Data In-

gestion

Ingests all types of data, i.e. struc-

tured, semi-structured and un-

structured

Stores structured data in a prede-

�ned schema.

Data

Timeline

It can store data as long as there is

enough space. In this way it stores

not only data that is being used,

but also data that may be needed

in future.

ETL processes makes it impossi-

ble to store data that is not being

used.

Type of

users

It is generally used by users

that perform in-depth analysis, i.e.

data scientists

Since it is structured and easy to

use, it is a good �t for operational

users.

Processing

Time

Since users can access data before

it has been cleaned, modi�ed or

structured, it is possible to get fast

results.

It allows to query data with pre-

de�ned schema. Changes to data

structure require more time.

Schema The schema is de�ned after data

has been ingested. This makes in-

gestion simpler, but the e�ort re-

quired in the processing phase is

higher.

The schema is de�ned before inges-

tion. So, at ingestion time more ef-

fort is required, but it o�ers better

performance and integration in the

processing phase.

Processes Data Lake usually uses Extract-

Load-Transform (ELT) processes.

It generally uses ETL processes.

14 2| Theoretical background

Data

Modi�ca-

tion

Since there is no prede�ned struc-

ture data access and modi�cation

are easier. Moreover, data modi�-

cations can be applied quickly.

The prede�ned structure makes

data manipulation more di�cult

and more time consuming.

Table 2.1: Di�erences between Data Lake and Data Warehouse.

However, despite all the di�erences, the Data Lake and the Data Warehouse are often

used toghether. Usually, the data warehouse is built on top of the data lake, as shown in

Fig.2.3.

Figure 2.3: Schema of a system in which both a data lake and a data warehouse are used

As depicted in Fig.2.3, this type of systems are usually composed by a number of di�erent

data sources which produce data. This data is ingested by the data lake that acts as a

staging area for the data warehouse. Then, there is the data warehouse that contains data

in a structured form. The structure depends on the type of analysis that is performed.

Finally there are all the tools that allow to do analytics, it is important to underline that

these tools allow users to visualize data structured in the data warehouse.

2.4. Graph database

Traditional database systems for storage have been based on the relational model. These

are widely known as SQL databases named after the language they were queried by

[30]. However, with the constant growth of volume and heteogeneity of data, relational

databases proved their powerless, as they are not �exible and scalable enough to manage

this data. To overcome these problems a new kind of databases has been introduced,

NoSQL databases. The term "NoSQL" was �rst coined by Carlo Strozzi in 1998 to name

2| Theoretical background 15

his lightweight, open-source relational database that did not expose the standard SQL

interface [21]. The term was later reintroduced by Eric Evans in 2009 to label the emer-

gence of a growing number of nonrelational, distributed data stores that often did not

attempt to provide atomicity, consistency, isolation and durability guarantees that are

key attributes of classic relational database systems [21]. Recently, the term has assumed

another meaning, "Not Only SQL", which underlines that for some use cases the relational

model is not the best solution, but for many other cases this model is still the best option.

The main characterististics of NoSQL databases are [41]:

� Flexibility: since this type of databases is schema-less, adding and removing entities

and relationships is easier.

� Scalability: NoSQL databases deal with billions of entities by scaling horizontally,

i.e. adding resources when needed.

� Availability: since data is replicated on many nodes, it is always available.

� Fault-tolerance: NoSQL databases are generally distributed over multiple nodes. In

this way if one node fails, the data that was stored on that node can still be obtained

from other nodes thanks to replication.

Graph databases are a type of NoSQL databases. Formally, a graph is a collection of

nodes and the relationships that connect them. Graphs represent entities as nodes and the

ways in which those entities relate to the world as relationships [40]. The most popular

form of graph model is the labeled property graph which has the following characteristics

[40]:

� it contains nodes and relationships.

� Nodes have properties which are represented as key-value pairs.

� Nodes can be labeled with one or more labels which help grouping nodes.

� Relationships are directed, and always have a start node and an end node.

� Relationships can have properties.

In contrast to other database management systems where connections between entities

have to be inferred using mechanisms like foreign keys, in graph databases relationships

represent the core of the model. These relationships allow data in the store to be linked

together directly and, in many cases, retrieved with one operation. In this way querying

relationships is fast because they are permanently stored in the database.

16 2| Theoretical background

Figure 2.4: Representation of the elements that compose a graph database [5]

Fig. 2.4 shows a simple representation of a graph database. The circles represent the nodes

and the arrows represent connections. It is important to underline that links between

nodes have a direction. Also, both nodes and relationships are described through a set of

properties which are key-value pairs and are shown between curly brackets.

2.5. Cloud Computing

The exponential growth of data volumes has made cloud computing essential. In order

to analyze this huge amount of data it is essential to rely on Cloud Computing. NIST

de�nes cloud computing as "a model for enabling ubiquitous, convenient, on-demand net-

work access to a shared pool of con�gurable computing resources (e.g., networks, servers,

storage, applications, and services) that can be rapidly provisioned and released with min-

imal management e�ort or service provider interaction" [33]. So, cloud computing can be

seen as a series of technologies enabling data to be processed using resources distributed

over the network. Usually, providers of these services charge the user of a cost which is

proportional to the use of the service. All o�ered infrastructures are managed in a way

that is transparent to the user that does not have to install anything.

The main bene�ts of cloud computing are:

� Costs: this is one of the main bene�ts of cloud computing. It helps saving substantial

capital cost as it does not need any physical hardware investments. Also, there is

no more the need of trained personnel to maintain the hardware, the buying and

managing of equipment is entirely done by the cloud service provider.

� Scalability: the cloud substantially reduces the problem of sizing the Big Data

environment. Thanks to the elasticity of cloud computing there is no longer the need

of over-provisioning to cope with peak loads. The possibility of scaling resources

allows to have the right number of components needed for a speci�c task. In this

2| Theoretical background 17

way there is the certainty of always having the su�cient number of resources and

at the same time there is no longer the issue of underutilized resources.

� Reliability: this is one of the biggest bene�ts of Cloud hosting. The cloud reduces

backup costs and increases ease of recovery in the case the system is a�ected by a

fault. This is possible because data is replicated inside the provider's network.

� High speed: another important aspect is how quickly a Big Data infrastructure can

be deployed. In particular the service known as Infrastructure-As-Code allows to

de�ne an infrastructure by simply writing some code.

� Collaboration: by using cloud computing collaboration becomes easier. It is possible

to work on a project from di�erent locations as cloud computing allows access from

everywhere.

� Unlimited store capacity: in the cloud storage capacity is almost limitless. It is

always possible to extend the storage capacity and the costs are pretty low.

Summing up, cloud computing allows to develop a complete and fault tolerant infras-

tructure in really short times. In addition, infrastuctures based on cloud computing are

extremely �exible and scalable and can grow dynamically to accomodate speci�c needs.

The combination of cloud computing and Big Data brings many advantages inside the

organization. First of all, the high speed in data processing allows organizations to per-

form real time analysis. This type of analysis makes the decision making process much

faster and more accurate. Another big advantage resides in the adoption of the cloud

storage server which is the central component that stores all data. By storing data in this

server there is no more the issue of managing security and privacy aspects as generally

the provider and the client sign a Service Level Agreement that guarantees a certain level

of security.

2.6. State of art

2.6.1. Metadata management system

The literature proposes di�erent metadata models. One of this is the Generic and Exten-

sible Metadata Management System (GEMMS) which extracts metadata from the sources

and manages the structural and semantical information in an extensible metamodel [37].

In particular, GEMMS extracts data and metadata from heterogeneous sources, stores

this metadata in an extensible metamodel, enables the annotation of the metadata with

18 2| Theoretical background

semantic information, and provides basic querying support. In GEMMS data is repre-

sented as key-value pairs, and it is possible to attach to each key-value pair annotations

that are usually represented as a Uni�ed Resource Identi�er (URI) pointing to an ontol-

ogy element. The architecture is composed by the Media Type Detector which identi�es

the type of �les that compose the dataset, the Extractor that creates a speci�c instance

of the Praser and the Parser that analyzes the internal structure of the dataset and it

extracts metadata. It is importnat to highlight that the Parser is built for a speci�c type

of �le and, therefore, when a new type of �le is detected it is necessary to create a new

parser that can handle the new type.

Another proposed model is GOODS [27], an architecture developed by Google to man-

age metadata inside the Data Lake. In this case the catalog contains metadata created

from datasets that are combined with those generated by production pipelines and those

generated by the analysis of the dataset content. This metadata allows to infer relations

between datasets and provide a uni�ed view of the Data Lake to users and services. Inside

the catalog, related datasets can be grouped into clusters that become �rst-class entities

to which other metadata is associated. Since comparing each pair of datasets is not a

scalable solution, GOODS works in post-hoc mode and it discovers relationships between

datasets by analyzing the signals of the underlying infrastructure. Relationships between

datasets can be inferred from already extracted metadata regarding, for example, the

structure and the provenance. The discovered relationships are stored in a knowledge

graph.

Constance [26] is another architecture for metadata management. There are two main

components in its architecture, as shown in Fig.2.5. The �rst one is the Structural Meta-

data Discovery which extracts structural metadata, and the second one is the Semantic

Metadata Matching which extracts semantic metadata. The produced output is a graph

that represents metadata elements and their relationships.

In particular, Constance:

� extracts metadata and stores them in an extensible and �exible model

� makes annotations on the dataset with semantic information

� provides a graphical interface that allows to monitor the metadata management

process

2| Theoretical background 19

Figure 2.5: Constance Architecture [26]

MEtadata for DAta Lakes (MEDAL) [44] uses the concepts of hypergraph, nested graph

and attributed graph to reprent metadata. Each object is described by a hypernode which

contains various elements such as properties, versions and so on. These hypernodes can

be linked. This model classi�es metadata into:

� intra-object metadata represent those characteristics that are associated with a sin-

gle object of the Data Lake. In particular, MEDAL considers representations, ver-

sions, transformations and attributes, such as the origin of the object, as character-

istics.

� Inter-object metadata describe relationships between objects. There are two main

types of links: the similarity link expresses the level of likeness between objects and

the parenthood link is used to keep track of lineage information.

� Global metadata are pieces of data that o�er a context layer which can be useful

during data processing and analysis. This metadata is not related to a speci�c

object, but it usually describes the entire Data Lake.

20 2| Theoretical background

2.6.1.1. HANDLE

However interesting, the models described above do not suit the healthcare use case.

First of all, they mostly focus on structured and semi-structured data. Moreover, none of

them allows to describe to which zone the data belong, which is an important aspect to

understand the level of re�nement. Lastly, these models do not take into consideration

the level of granularity, with the exception of MEDAL that allows to de�ne two levels of

granularity. We conclude that none of these methods is �exible enough for the examined

use case.

Therefore, we conducted further researches and found a model that can �t the use case.

Handling metAdata maNagement in Data LakEs (HANDLE) [18] has been developed

with the intention of creating a model that can handle all use cases. As this is the chosen

model for our use case a more detailed description is given in Chapter 3 when the entire

data lake architecture is presented.

2.6.2. DICOM

The medical images that are ingested into the Data Lake from Picture Archiving and Com-

munication Systems (PACS) are in the Digital Imaging and Communication in Medicine

(DICOM) format. The DICOM speci�es a non proprietary data interchange protocol,

digital image format, and �le structure for biomedical images and image-related infor-

mation [13]. It represents the reference standard for what concerns medical images. It

has been developed to facilitate the interoperability between software and equipment of

di�erent vendors. DICOM de�nes the rules for communication, visualization and storage

of medical information.

21

3| A general overview of the

proposed Architecture

The literature [42] o�ers multiple examples of data lake architectures. These models, how-

ever, are too generic and do not take into considerations important aspects, such as data

modeling and metadata menagement. The objective of the thesis is to de�ne a compre-

hensive data lake architecture that best �ts the studied use case. First, we explain when

it is right to choose a Data Lake. Then, Section 3.1 presents an overview of the proposed

architecture. Sections 3.1.1, 3.1.2, 3.1.3, 3.1.4 analyze the zones that compose the Data

Lake. The Metadata Management System is explained in Section 3.2. Finally, Section

3.3 presents the aspects that have to be de�ned in order to design a comprehensive data

lake.

In order to explain why the Data Lake has been selected, it is necessary to understand

the limitations of the Data Warehouse that make it a non-feasible solution for the studied

use case.

� The valuable data about the patients and medications is digitized and saved as

Electronic Health Records which represent medical records of patients. This type

of information comprises structured, semi-structured and unstructured data.

� Data Warehouses cannot address the issues related to scalability. To pull the data

into it for further processing, data should go through the procedure of data prepro-

cessing namely ETL. ETL processes are costly in terms of time.

� To provide the best solutions, data from diverse sources needs to be analyzed, but

Data Warehouses cannot handle data from multiple sources e�ectively.

For the above mentioned reasons it is evident that the Data Warehouse does not represent

a valid solution. Therefore, it has been opted for a Data Lake solution.

22 3| A general overview of the proposed Architecture

A Data Lake provides a uni�ed location for all relevant data generated by the healthcare

system, serving as repository for structured data drawn from traditional databases and

unstructured data, such as patient images, lab reports, pathology, genomics and clinical

notes.

Before diving into the proposed architecture, some important considerations should be

made.

� The Data Lake paradigm is still very vague, therefore appropriate architectures and

data governance techniques need to be de�ned, otherwise the Data Lake could easily

became a Data Swamp.

� Consequently one of the �rst objectives is the de�nition of a metadata management

system. In particular, the model chosen for storing the metadata should be �exible

and scalable.

3.1. Overview

As already mentioned, the study is related to healthcare, with particular focus on medical

images. Therefore, the proposed architecture aims at handling medical big data coming

from heterogeneous sources in di�erent formats, including multimedia. A high level com-

ponent view of the system is presented in Fig. 3.1.

Figure 3.1: Component diagram of the Data Lake architecture

From Fig. 3.1, it can be observed that we have di�erent data sources external to the Data

Lake. Data is ingested from these sources by the Data Ingestion component and it is

permenantely stored in the Raw Data Storage. The Ingestion module is also responsible

for the generation of the metadata on the ingested dataset. Then, based on the type,

3| A general overview of the proposed Architecture 23

data goes under di�erent kinds of procesing. In this phase other metadata can be gen-

erated, e.g. metadata on the processes. Data obtained from the processing steps is then

stored in a Database. The Query Engine, instead, is the component that executes queries

against data in that database to provide answers to the front-end application. Lastly, the

Metadata Management System handles and stores the metadata generated by the other

components.

As mentioned in Section 2.2.1 Data Lake architectures are usually classi�ed in Data Pond

Architectures and Zone Architectures [38]. For this speci�c use case a Zone Architecture

has been chosen because data should go through di�erent levels of re�nement and, also,

there is the need to keep data in raw format. In the architecture presented in Fig.3.1 four

di�erent zones can be identi�ed:

� Transient Landing Zone, which is represented by the Data Ingestion module.

� Raw Zone, that comprises the Raw Data Storage.

� Stage Zone, which can be mapped to the two modules, Image Analysis and Other

Processing.

� Sandbox, corresponds to the Database component.

It is important to highlight that metadata management spans all the zones as metadata

can be produced at any stage. Two more aspects that span all zones are data quality,

privacy, and security which are not represented here because they are out of the scope of

this work.

Figure 3.2: Data Lake's Zone

24 3| A general overview of the proposed Architecture

3.1.1. Transient Landing Zone

The Transient Landing Zone is the zone where data lands when extracted from the data

sources and pushed to the Data Lake. Unlike ETL, usually, the Data Lake ingests data in

raw format without applying expensive transformations. At this stage the �rst metadata

is extracted and saved into a uni�ed model.

In the use case we analyzed, medical images come from PACS, which is a medical imaging

system used primarily in healthcare organizations to securely store and transmit electronic

images and clinical reports. These images are collected in micro-batches and pushed into

the Transient Landing Zone. In addition to metadata generation, which will be widely dis-

cussed in Chapter 4, in this layer the masking of Personally Identi�able Information (PII)

is performed. As already mentioned, this last aspect is out of our scope here.

3.1.2. Raw Zone

The Raw Zone is the zone where data is stored inde�netely in its native raw format. The

most important property of this zone is that it is considered as "the single source of truth"

as it keeps the data in its original form. It is usually implemented as a �le based storage

with a well de�ned organization of �les and directories. This last point is crucial because

an unorganized storage transforms the Data Lake into a Swamp.

This zone covers a big role in the healthcare environment because it is likely that im-

ages in raw format are used multiple times to make di�erent kinds of analysis.

3.1.3. Stage Zone

The Stage Zone is where data is landed for preparation and processing. This zone contains

tools that provide some increased value over the pure raw data of the Raw Zone. The key

aspect of this layer is that applies transformations that are needed by data scientists in

order to make sense out of the data. The new data generated by this stage are organized

following the model that best suits the subsequent analysis processes.

In Fig.3.1 the Stage Zone is composed by two modules, the "Image Analysis" module

and the "Other Processing" module. This is to highlight that the main focus of this work

is on medical images. In particular, in this layer some features are extracted from the

images, as it will be better explained in the next chapter. In this processing phase new

metadata is generated regarding the extracted features and the applied transformations.

3| A general overview of the proposed Architecture 25

3.1.4. Sandbox

The Sandbox is the zone where data scientists and researchers can build analytical mod-

els, discover associations and patterns within the data. In the healthcare case this zone is

the zone where researchers can access data. Results produced in this zone can be brought

back to the raw zone for later re-use.

For example, in the context of medical image analysis, the features extracted in the

Stage Zone are mined to extract classi�cation patterns and clustering criteria.

3.2. Metadata Management System

As said in the previous sections, metadata management is a crucial aspect of the Data

Lake architecture as it allows full exploitation of data's value. Metadata is usually used to

further explain all aspects of the data such as structure, meaning of the content, quality,

lifecycle and many others. Since metadata is still data, it needs to be managed in a right

way that allows to obtain all the possible value from it. An important issue is the model

used to represent this metadata. A good model should allow to manage all metadata

management use cases, from use cases speci�c to the considered application to the lineage

information. In order to support any metadata management use case, the model must be

very �exible in its ability to assimilate metadata [18]. Therefore, the requirement that it

has to satisfy is modeling the metadata as �exible as possible. In order to achieve this

�exibility, the model should meet the following conditions:

� Metadata can be stored in the form of objects, properties and relationships.

� The number of metadata object for each use case is unlimited.

� Each metadata element can have an arbitrary number of properties.

� Metadata objects can be linked.

As already mentioned in Section 2.6.1.1, HANDLE is the chosen model to represent

metadata in the healthcare environment. This model can be divided into two main parts,

the core model and three extensions. The scope of the core model is to de�ne all elements

and the relations that are needed to model metadata. The extensions, instead, represent

the zones, the levels of granularity and the categoriazion topics. The model ful�lls four

important requirements for metadata management:

1. propose a model that is as �exible as possible

26 3| A general overview of the proposed Architecture

2. introduce the concept of zones

3. introduce the concept of levels of granularity

4. incorporate categorization using labels

Fig.3.3 describes a slightly modi�ed model of HANDLE using an Entity Relationship

schema. The modi�cation that has been applied is the removal of the categorization

property because it describes the context of metadata, e.g. operational, technical, busi-

ness, and it does not apply to the examined application.

Figure 3.3: HANDLE Entity Relationship model

The schema in Fig.3.3 shows that, to each piece of data zero or more metadata can be

attached. Each one of these metadata is described by a set of properties. The Connec-

tionContext attribute, instead, provides a description of the information contained in the

metadata element. Data is also described through a granularity indicator and a zone

indicator. It is important to underline that each data has a link to the Raw Zone also

when it belongs to other zones as the Raw Zone always stores a copy of the data. For

what concerns the attributes represented in the schema, the StorageLocation gives the

path to the data element, and each property is de�ned through a key-value pair.

The Granularity Indicator entity allows to collect metadata at di�erent levels of gran-

ularity. Of course, these levels depend on the structure of the data. In the examined use

case, there are mainly two types of data, unstructured and structured data. For what

concerns structured data, it is relational data and therefore the granularity levels are two,

table and tuple. For the images, i.e. unstructured data, the levels are the entire image,

the Region Of Interest (ROI) and the collection of images.

3| A general overview of the proposed Architecture 27

The ZoneIndicator entity provides the information about the location of a speci�c data el-

ement inside the Data Lake. The Raw Zone entity is designed to be the central ZoneIndi-

cator, as data that is stored in any of the other zones will have a corresponding data

element in the raw zone, making the raw zone the most stable reference [18]. The zone

attribute can be simply a string that represents the name of the zone or it can be an

enumeration. As previously said, in the examined use case the zones are four, Transient

Landing, Raw, Stage and Sandbox.

In [18] also a possible implementation for this model is proposed. Since �exibility is

a key aspect in metadata management, the authors have opted for a NoSQL technology.

In particular, the chosen model is a graph database. This for two main reasons:

� On of the main characteristics that a metadata model must have is �exibility. Graph

databases do not have a prede�ned schema and this makes them much more �exible

than relational databases.

� In many use cases metadata are strictly correlated with each others and graph

database can e�ciently handle many relations.

In Fig.3.4 a simple example of a graph database modeled following HANDLE is presented.

As said in previous sections, images are ingested in mini-batches and these batches are

represented as an Image Collection with associated metadata. Then, for each one of

the images in the batch other metadata, speci�c of the single image, is generated. It is

important to highlight that both the zone and the granularity level are represented.

Figure 3.4: Example of a graph database for metadata management

28 3| A general overview of the proposed Architecture

3.3. De�nition of Data Lake's characteristics

So far, no foundamental data lake architecture has been de�ned in the literature yet, and

this makes it di�cult to design and implement this kind of storage. While the literature

o�ers data lake architectures [28] [43] [38] that are too generic to be implemented, the

commercial products o�er only few of the features that would be needed. Most papers

only de�ne data ingestion, data organization and data storage and leave out other impor-

tant aspects such as metadata management and data modeling.

The Data Lake Architecture Framework [25] is presented as a high-level guide for building

a comprehensive data lake. This framework de�nes nine aspects that should be de�ned

in order to design a complete data lake.

Figure 3.5: Aspects of the Data Lake Architecture Framework [25]

In our work we concentrate on seven aspects out of the nine proposed, as Data Security

& Privacy and Data Quality are out of the scope of the thesis.

The �rst aspect to analyze is the infrastructure which considers all concepts related

to the physical creation of the Data Lake: both storage systems and needed tools are

determined, also the choice between on-premise and the cloud is part of this activity. In

the healthcare case we have chosen the following storage systems:

� Hadoop Distributed File System for the raw images

� MySQL for the features extracted from images and for other information such as

patients generalities, exams types and case studies.

� The Neo4j graph-based system for metadata management.

For what concerns the tools, we chose:

� Matlab for image preparation.

� SimpleITK for image transformation

3| A general overview of the proposed Architecture 29

� Pyradiomics for features extraction.

For what concerns the choice between implementing the system on-premise or implement-

ing it on the cloud, the cloud has been selected.

The second aspect is data storage which analyzes the types of tools and system used for

the storage and processing of the data. It is important to highlight that, in contrast to the

infrastructure aspect, in this case no speci�c tools are selected, but only the categories,

e.g. �le system, relational database, NoSQL database. So, in the analyzed use case a

�le system is used to store medical images, relational databases are used for extracted

features and data about patients, exams and cases and a NoSQL database is used for

metadata management.

The third aspect to be analyzed is data �ow. In general, it focuses on the architec-

ture and interaction to support the two ways in which data moves inside the Data Lake:

streaming data and batch data. As already mentioned, in this work we consider data that

comes in mini-batches.

The fourth aspect is data modeling. It analyzes how the di�erent types of data are

modeled inside the Data Lake. The goal of this step is to explain the types of data

present in the Data Lake, highlight the relationships between data, illustate how these

data can be grouped, and organize attributes and formats. Basically, data modeling con-

cerns the representation of the structure and the content of the data, it analyzes how to

store and access them. In this case images are kept in their raw format, while features,

information about patients, exams and cases, are modeled using the relation model.

The �fth aspect to consider is data organization. This aspect describes the concep-

tual structure of the Data Lake. This is a crucial step as it strongly a�ects the other

aspects: it in�eunces the data modeling because, if for example a zone architecture is

chosen, usually the zones have standardized data models, meaning that all data in the

zone are modeled following speci�c rules; it also in�uences the data storage aspect, as

each data model requires a di�erent type of storage. As already explained the chosen

organization is a four-zone architecture.

The sixth aspect is data processes. It considers all concepts related to data move-

ment and data processing. In [25], data processes are classi�ed in the two categories of

processes for data lifecycle management and processes for data pipelining. Data lifecycle

30 3| A general overview of the proposed Architecture

management processes handle data from the creation to its release. Data pipelining pro-

cesses, instead, focus on ingestion, processing and movement of data. An example of data

pipelining processes is the Extract-Transform-Load process. In the examined use case,

data processes are data pipeling processes used to describe how the data moves from one

zone to another. In particular, the type of these processes is Extract-Load-Transform, as

data is transformed after being ingested in the Data Lake.

The seventh and last aspect analyzed in this work is metadata management. As

already argued in previous sections, this is a critical aspect as a well designed metadata

management will prevent the Data Lake from becaming a data swamp. [25] divides this

aspect into two sub-aspects: metadata as enabler and metadata as a feature, the �rst one

de�ned as the metadata that describes, for example, the zone of data or when data was

created. The latter, instead, describes the additional functionalities that metadata can

provide, for example semantics. This classi�cation however does not �t the healthcare

use case as these two categories are not speci�c enough for the metadata that we have

identi�ed, so another classi�cation for metadata has been considered [14]:

� metadata on input dataset describes the characteristics of the entire dataset, e.g.

number of instances, number of attributes, dimension of the dataset.

� Lineage metadata can be seen as metadata that describes the steps used to derive

a speci�c piece of data

� De�nitional metadata is that metadata related to the meaning of data. Taxonomies,

integration schemas and vocabularies belong to this category.

31

4| Design of the application

In this chapter we explain the technologies proposed in Section 3.3, and give a better

description of the data �ow. In particular, Section 4.1 provides a brief explanation of

the format of medical images. Section 4.2 presents the technologies proposed for the use

case, Section 4.3 explains the data �ow of the Data Lake and gives a brief overview of the

dataset used for feature extraction.

4.1. DICOM

As already mentioned in Section 2.6.2 medical images are usually in DICOM format. The

abstraction used by DICOM to model information and services is based on the object-

oriented paradigm. The �rst concept is the concept of Information Object De�nition

(IOD) which speci�es information related to real world objects. It represents a class of

objects that share the same characteristics. Each IOD is composed by a set of entities,

e.g. patient, image, acquisition system. Despite the multitude of available entities, the

base entities of the DICOM model are four:

� Patient, includes personal data of the patient, e.g. name, birth date, sex.

� Case, comprises the characteristics and the modality of the exam, e.g. description,

comments, date.

� Series, each exam is described by a collection of images, e.g. number, date, time,

operator's name. A series is associated with exactly one case.

� Image, attributes of the pixels that compose the image, e.g. number, type, patient

orientation.

Each IOD can be identi�ed by a Unique IDenti�er (UID) which is a unique code. The

IOD is formed by a set of data elements, and each data element is composed by:

� a tag which identi�es the attribute.

� The Value Representation describes the type and the value of the attribute. It is

32 4| Design of the application

Figure 4.1: Structure of a Data Element [9]

represented by a code composed of two caharacters, e.g. US for "Unsigned Short",

CS for "Coded String".

� Value length is the number of bytes needed to represent the value.

� Value �eld is the actual value of the data element.

When a diagnostic exam is performed, a series of bi-dimensional representations are pro-

duced; these correspond to the transversal sections of the anatomic region scanned by the

acquisition machine. Each DICOM �le is composed by one or more images and informa-

tion concerning the patient, the exam, the image dimensions etc. All this information is

structured following the abstarctions described above. The �le format has also an header

that precedes the data. This header is composed by a 128 byte preamble followed by a

4-byte pre�x. The scope of the header is to facilitate access to both images and other

data of the DICOM �le.

4.2. Technologies

4.2.1. Hadoop Distributed File System

Hadoop Distributed File System (HDFS) is a �le system developed to guarantee reliability

and scalability [36]. It can handle both structured and unstructured data and manage

huge volumes. The idea behind HDFS is to consider hardware failures as usual events

and not exceptions. Depending on the needs, an HDFS instance can be composed by

thousands of nodes and, therefore, it is impossible to think that at a given time instant

there isn't an available node. Its most important characteristic is the portability across

heterogeneous software and hardware platforms. Another main advantage is that it helps

to reduce network congestion and improves system performance as it moves computation

4| Design of the application 33

near the storage.

The architecture of the �le system is a master-slave architecture. In each cluster there is a

single master, called NameNode and a variable number of slaves which are called DataN-

ode. The NameNode handles access requests to the �les. It is responsible for opening,

closing and renaming of directories. DataNodes manage creation, deletion and replication

of data. DataNodes are coordinated by the NameNode.

4.2.2. Pyradiomics

Pyradiomics is an open-source Python package used for the extraction of feature from

medical images [7]. It supports feature extraction for both 2D and 3D images and it

allows to compute single values for a ROI or to generate features maps. It currently

supports seven classes of features:

� �rst-order statistics describe the distribution of pixel intesities in the ROI through

commonly basic metrics.

� Shape: this group of features contains descriptors of the 2D or 3D size and shape

of the ROI. It does not depend on the gray-level intensity distribution of the ROI.

� Grey Level Co-occurrence Matrix (GLCM) is a matrix of size NgxNg where Ng is the

number of discrete intensity levels in the image. The GLCM functions characterize

the texture of an image by calculating how often pairs of pixel with speci�c values

and in a speci�ed spatial relationship occur in an image.

� Gray Level Run Length Matrix (GLRLM) represents gray level runs. Gray level

runs can be de�ned as the number of consecutive pixel that have the same gray

level value.

� Gray Level Size Zone (GLSZM) describes grey level zones of an image. A gray

level zone represents the number of connected pixels that share the same gray level

intensity.

� Grey Level Dependence Matrix (GLDM) computes gray level dependencies in an

image.

� Neighbouring Gray Tone Di�erence Matrix (NGTDM) asseses the di�erence be-

tween a gray value and the average gray value of its neighbours within a given

distance.

The extracted features are returned in an ordered dictionary. In addition to the features

34 4| Design of the application

the result also contains some additional information about the extraction such as the

version of Pyradiomics, original image spacing etc.

Moreover, Pyradiomics is implemented in a modular way. The Featureextractor module

is the central one and provides the extraction pipeline as well as it handles interaction

with other modules. The feature classes are, instead, implemented in separate modules.

4.2.3. SimpleITK

SimpleITK is a programming interface to the algorithms and data structures of the Insight

Toolkit (ITK). It can be integrated with multiple programming languages among which

Python and, therefore, it can be used in conjunction with Pyradiomics. In SimpleITK

images are multi-dimensional and can be labelmap, scalar or complex value. The region

in physical space occupied by the image is de�ned by:

� Origin, indicates the location in the world coordinate system of the voxel with all

zeros indexes.

� Spacing is the distance between pixels along all dimensions.

� Size represents the number of pixels for each dimension.

� Direction cosine matrix descibes the direction of the axes corresponding to the

matrix column.

In the examined use case, SimpleITK is used to transform the DICOM images into the

Nearly Raw Raster Data (NRRD) format, as Pyradiomics does not take DICOM format

as input.

4.3. Data �ow

As already explained in Chapter 3 the data �ow analyzes the way in which data moves

inside the Data Lake. Data �ow describes the path that system's information take from

external sources through processes and data stores. The Data Lake ingests data, irre-

spective of its format, into a big data store [46]. Metadata is decoupled from its data and

stored independently. Then, data goes through a series of steps that can have either the

function of processing or that of storage.

4| Design of the application 35

Figure 4.2: Example of data �ow

The schema in Fig.4.2 represents the data �ow of the use case analyzed in this thesis.

The input is a set of images in DICOM format along with related set of annotations in

Comma-Separated Values (CSV) format. The annotations de�ne the ROI of the images

and have previoulsy been manually de�ned by radiologists. As already said, the ingested

data lands in the transient landing zone. In this step two important actions are per-

formed, the masking of PII and the generation of metadata on both single images and

image collection. Then, data is permanently stored in the Raw Data Store.

After ingestion and storage there are all the steps that process the image and the re-

lated data. In Fig.4.2, this part is highlighted as it represents the steps that are explained

in the remaining part of the chapter. Also, we have developed a simple implementation

of these stages to better understand which are the inputs and the outputs of these phases

and, also, to make an assessment of resource requirements.

36 4| Design of the application

4.3.1. Dataset

To perform this simple analysis 80 images were taken from the ChestX-ray8 database

[47]. The images contained in this dataset are chest x-rays. This because this type of

exam is one of the most commonly accessible radiological examinations for screening and

diagnosis of many lung diseases.

The ChestX-ray8 database is composed by 108 948 images which are frontal-view x-ray.

These images were taken from a totality of 32 717 patients. Typically the dimension of an

x-ray image are 3000x2000, but these dimensions are a challenge for hardware computing

capacity. Therefore, in ChestX-ray8 images are extracted from the DICOM �le and resized

as 1024x1024 bitmap images. This process does not result in losing of detail contents be-

cause intensity ranges are rescaled using window settings stored in the DICOM header �le.

As part of the ChestX-ray8 database, a small number of images with pathology are

provided with hand labeled bounding boxes. In the labeling process only 983 images

were analyzed. For each one of these images a board-certi�ed radiologist identi�ed the

region interested by a disease. The identi�ed ROI has then be registered in an eXtensible

Markup Language (XML) �le. If an image has more than one ROI, each one of them

is stored in a di�erent XML �le. As previously mentioned these ROIs are provided in a

CSV �le.

In the thesis only images that have at least one ROI were used.

4.3.2. Image preparation

The �rst step of this phase is the extraction of information about the patient, the case and

the exam from the DICOM �les. This data is stored in a relational table using MySQL.

More in detail, the information extracted in this phase are:

� Data about the image

� width

� height

� modality, e.g. sx, dx, frontal

� Data about the patient

� patientID

4| Design of the application 37

� age

� sex

� Data about the exam

� body part

� exam description

The second step is the extraction of data concerning the ROI from the CSV �le and its

storage in a relational table. In our case the ROI identi�es the region from which it is

possible to identify a chest disease, e.g. pneuomonia, pneumothorax, atelectasis. For each

ROI the following attributes are entered:

� the reference to the image

� the x-coordinate of the origin

� the y-coordinate of the origin

� width

� height

The third step of this phase is the creation of the mask. A mask is a binary image formed

by zero and non-zero values. When the mask is applied to a grayscale image, the pixels

that have a zero value in the mask are set to zero also in the output image. The other

pixels, instead, are unchanged. So, the mask allows to consider only the ROI of the image.

This task is accomplished using Matlab which provides a function to generate the mask:

roipoly(I, c, r); (4.1)

This function allows to de�ne a polygonal region of interest on the image and it returns

a binary image that represents the mask. In function (4.1), I represents the input image,

c is the vector of the x-coordinates of the vertices of the ROI and r is the vector of the

y-coordinates of the vertices of the ROI.

The fourth, and last, step is image transformation using SimpleITK. In this step both the

DICOM image and the mask, which is in Joint Photographic Experts Group (JPEG) for-

mat, are transformed into NRRD format. This transformation is needed as Pyradiomics

does not accept neither DICOM nor JPEG formats.

38 4| Design of the application

It is important to highlight that images obtained in this step are not permanently stored

in the Data Lake, i.e. in the Raw Zone. This decision was made for two main reasons,

�rst when an image is reprocessed it is unlikely that the reprocessing is performed on the

same image, usually some transformations are applied. The second reason is that storing

the produced image can be more expensive than re-run the process that has generated it.

4.3.3. Image analysis

At this stage the features are extracted from images. This analysis is performed using

Pyradiomics. It takes as input the image and the mask both in NRRD format and

returnes an ordered dictionary as output. In the simple implementation developed for

this we computed the following classes of features: �rst order, shape, GLCM, GLRLM,

GLSZM, GLDM and NGTDM. The di�erent modules for the extraction of the mentioned

classes of features are executed one at the time to facilitate the insertion of features in

the relational database. Also in this stage metadata is generated, for example the version

of Pyradiomics, the original image spacing etc.

4.3.4. Processed data store

This stage provides the storage for both data about patients, exams, ROIs and the features

extracted from the images. These information are organized following a relational model.

We have choosen this type of model as data has a rigid structure and NULL values are

infrequent. This part has been implemented using MySQL.

Figure 4.3: Entity-Relation diagram

Summing up, each image is related to a patient and is taken for a speci�c exam. Then, an

image has one or more ROI associated to it. On the ROIs feature extraction algorithms

are applied and the aforementioned features are extracted: �rst order, shape, GLCM,

4| Design of the application 39

GLRLM, GLSZM, GLDM and NGTDM. In Fig.4.3 the attributes on the entities are not

shown as the high number of attributes would have made the image not readable.

4.4. Performance monitoring

As already mentioned, the implementation of the steps of image preparation and features

extraction has allowed us to quantify time of execution, resource usage and the amount of

data generated. This represents a big advantage as these numbers helped us understand

the requirements that the architecture should satisfy. The tests have been executed using

the 80 chest x-rays taken from the ChestX-ray8 database and their ROIs.

The step of image preparation was implemented in Matlab and it creates the masks

of the images. The function that reads the ROI from the CSV �le, opens the image in

DICOM format and creates the mask, has been executed 10 times for all the 80 images

and the execution time has been recorded, as shown in Table 4.1. This step takes on

average 3,766s, which means that the time needed for the creation of a single mask is on

average 47,07ms. For what concerns Central Processing Unit (CPU) utilization, instead,

the average for this step is 43,3%. Another important aspect is that this code does not

take advantage of the Graphics Processing Unit (GPU).

Execution time

1 3,595s

2 4,026s

3 3,785s

4 3,474s

5 4,011s

6 3,545s

7 3,762s

8 3,848s

9 3,595s

10 4,018s

Table 4.1: Execution times of image preparation step.

The following step, image analysis, is instead implemented in Pyradiomics. In this phase

features are extracted from medical images. Taking always in consideration the 80 chest

x-rays, a total of 10 320 features are extracted which means that for each image 129

40 4| Design of the application

features are computed. More in detail, the number of features extracted for each class is:

� �rst order: 19 features

� shape: 10 features

� GLCM: 24 features

� GLRLM: 16 features

� GLSZM: 16 features

� GLDM: 14 features

� NGTDM: 5 features

The remaining 35 features represent metadata such as the version of Pradiomics, the

version of Numpy, image original dimensionality and many others.

For what concerns the execution time we have taken advantage of the function o�ered by

Python, timeit. This function registers the execution time of a small code snippet and it

takes as inputs the code snippet we want to time and the number of times we want to

execute the speci�ed code. We have called the function three times passing as number

parameter: 1, 10 and 100. The results are presented in Table 4.2.

Number of times Execution time

1 15,805s

10 159,379s

100 1 691,373s

Table 4.2: Execution times of image analysis step.

From execution times presented in Table 4.2, we have estimated that it takes, on average,

202,67ms to extract features from a single image. CPU utilization in this case is 14,4%

and it uses also the GPU with a percentage of 4,4%. During the execution of Pyradiomics

we were also able to measure memory utilization, more in detail we have executed the

code for the 80 images 10 times and register for each execution the peak memory usage.

On average the peak is 14,303 MB.

Both the step were run on a PC with 2,90 GHz dual processors CPU.

4| Design of the application 41

4.4.1. Observations

The �rst thing to observe from collected data is that the number of features extracted

from an image is always constant. This rigid structure justi�es the choice of using a

relational database to store features.

Looking at CPU utilization, the values �t in the range of normal CPU usage. There

is, however, a pretty high di�erence between the value registered in the image prepara-

tion phase and the value registered in the image analysis step. This di�erence is probably

due to the fact that Pyradiomics uses also the GPU while Matlab does not.

Also for what concerns the execution times there is a quite high di�erence between the

step of mask creation and the step of features extraction. Even though the time needed

for processing an image in Pyradiomics is not really high, when feature extraction is per-

formed on a large number of images execution time can reach pretty high values. This

is the case, for example, of running the code 100 times for the 80 images that has taken

about 28 minutes. So, this phase could probably bene�t from a more powerful system.

43

5| Cloud Solutions

As already mentioned in Chapter 2 cloud computing is a big support for handling Big

Data. The market o�ers many commercial solutions to govern the Data Lake, basically

all the big computer companies provide some services that help in the implementation of

the Data Lake in the cloud. In fact, for the use case of this thesis, two solutions have been

identi�ed as possible implementation of medical image storing in the cloud. The �rst one,

explained in section 5.1, takes advantage of the services o�ered by Amazon. The second

one, presented in section 5.2, uses services provided by Microsoft.

5.1. Amazon

Amazon provides a series of cloud computing services known as Amazon Web Services

(AWS). AWS is a platform of web services that o�ers solutions for computing, storing,

and networking at di�erent levels of abstarction [49]. These web services are accessible

via the Internet and can be used by both machines and humans through a User Interface.

Of course, these services are designed to work toghether, in this way a user can replicate

its existing local network setup or can design a new architecture from scrap. The cost

model applied by Amazon for these services is pay per use.

In [20] an architecture that uses AWS to apply Arti�cial Intelligence alghoritms to medical

images is presented. Some modi�cations have been applied to the mentioned architecture

to accomodate the needs of the analyzed use case. The overall solution is presented in

Fig. 5.1

44 5| Cloud Solutions

Figure 5.1: Cloud solution that uses services provided by AWS

The components used in Figure 5.1 are:

� AWS Storage Gateway is a hybrid storage service that enables on-premises ap-

plications to seamlessly use AWS cloud storage [32]. Applications connect to this

service through a virtual machine or hardware gateway appliance using storage pro-

tocols. The gateway then connects to the storage services. AWS Storage Gateway

provides an optimized data transfer mechanism with bandwidth management, au-

tomated network resilience and e�cient data transfer.

� AWS S3 is a secure, durable, and extremely low-cost storage service for data archiv-

ing and long-term backup [32]. It is an object storage and it provides management

features so that access to data can be optimized, organized, and con�gured in order

to meet speci�c business, organizational, and compliance requirements. Amazon

S3 o�ers multiple storage classes designed for di�erent use cases. For example, for

frequently accessed data it o�ers S3 standard, for infrequently accessed data S3 One

Zone-IA is available and to store data at the lowest costs there is S3 Glacier.

� AWS Lambda is a serverless computing service that allows you to run code without

provisioning or managing servers, create a cluster sizing logic based on workloads,

maintain event integrations or manage runtime environments [6]. It executes code

5| Cloud Solutions 45

for any type of application without having to worry about administration manage-

ment. The user simply uploads the code and Lambda automatically assigns the

processing power and executes the code according to the request or incoming events

for any tra�c scale.

� Amazon Elastic Container Service is a fully managed container orchestration

service that helps you easily deploy, manage, and scale containerized applications

[2]. With Amazon Elastic Container Service there is no more the need to install the

container orchestration software, scale clusters or schedule execution

� Amazon Redshift is a fully managed, petabyte-scale data warehouse service in

the cloud [8]. It allows to execute queries that come from or are directed to the data

lake. With Amazon Redshift, it is possible to easily instantiate a cluster of nodes

on which data is uploaded. Other important features are that it o�ers fast query

performance and it executes query written in SQL.

� Amazon Neptune is a fast, reliable, fully-managed graph database service that

makes it easy to build and run applications that work with highly connected datasets

[32]. It o�ers a high performance graph database engine that can e�ectively manage

billions of relationships and allows to query the graph with very low latency. Ama-

zon Neptune is fully-managed, in this way the user no longer has to worry about

database management tasks as hardware provisioning, software patching, setup,

con�guration, or backups.

The solution proposed in Fig.5.1 takes into consideration both medical images and Elec-

tonic Health Records for completeness, but the main focus is on the processing and storage

of the images.

Obviously, there is a binding between the cloud solution and the architecture proposed

in Chapter 3. The Transient Landing Zone is represented by AWS Storage Gateway,

the Raw Zone corresponds to AWS S3, the Stage Zone can be mapped to Amazon Elas-

tic Container, the Sandbox Zone corresponds to Amazon Redshift and, then, Metadata

Management is handled by Amazon Neptune. The AWS Lambda, instead, has the role of

triggering the image analysis algorithms when a speci�c number of new images are avail-

ble in AWS S3. It is also important to underline that the solution was designed basing on

the choices made in section 3.3 where the tools and technologies used in the Data Lake

have been selected.

46 5| Cloud Solutions

5.2. Microsoft

Cloud services o�ered by Microsoft can be found on the Azure platform. Basically, Azure

is a public cloud computing with solutions including Software as a Service, Platform as a

Service and Infrastructure as a Service. These services are used for analytics, virtual com-

puting, storage, networking and many others. To support cloud applications and data,

Windows Azure has �ve types of components [16]. The �rst type of components are those

used for storage that allow to store binary and structured data in the cloud. Then, there

are computing components which run application in the cloud. The third category is fab-

ric controller that deploys, manages, and monitors applications, it also handles updates

to system software throughout the platform. The fourth category is the Content Delivery

Network which speeds up global access to binary data in Windows Azure storage, this is

possible because Azure maintains cached copies of that data around the world. Lastly,

there are connect components that allow to create connections between on-premises com-

puters and Windows Azure applications.

The proposed architecture is a slightly modi�ed version of the solution proposed in [1].

Figure 5.2: Cloud solution that uses services provided by Azure

5| Cloud Solutions 47

The components used in Figure 5.2 are:

� Azure Data Factory is a cloud service for ETL or ELT processes and for data

integration processes. It is composed by a series of interconnected systems that

provide an end-to-end platform. With Azure Data Factory it is possible to create

and manage work�ows based on data that can come from di�erent archiving systems.

� Azure Data Lake is a set of capabilities dedicated to big data analytics [11]. It

provides a low-cost, tiered storage with high availability and, also, disaster recov-

ery capabilities. It is designed to service multiple petabytes of information while

sustaining hundreds of gigabits of throughput. An important aspect of Azure Data

Lake is the hierarchical namespace, it allows to organize objects and �les into a

hierarchy of directories that makes data access more e�cient. In this way, opera-

tions such as renaming or deleting of a directory, become single atomic metadata

operations.

� Azure Synapse Analytics is an analysis service that accelerates the time needed

to get detailed information about data warehouses and big data systems. It is

composed by the best technologies for integration data pipelines and for ELT and

ETL processes. It also allows to explore, prepare, manage and distibute data for

machine learning algorithms.

� Azure Machine Learning provides an interactive visual workspace to easily build,

test and iterate predictive analysis models [34]. It does not require any program-

ming, algorithms can be built by visually connecting datasets and modules. How-

ever, if a needed functionality is not availble, it can be implemented in Azure Ma-

chine Learning by writing Python or R code.

� SQL DataWarehouse is a cloud based, scale-out database capable of processing

massive volumes of data, both relational and nonrelational [19]. A big advantage

of SQL DataWarehouse is that it supports many di�erent programming languages,

tools and frameworks, including non-Microsoft software. It is based on SQL Server

relational database engine and it easily integrates with the other tools that compose

the system. It is composed by a Control node, di�erent Compute nodes, Storage and

a service called Data Movement Service which manages the data movement between

the nodes. The Control node manages and optimizes queries and coordinates data

movement and computation required to run parallel queries. The Compute nodes

are, instead, SQL databases that store the data and process queries. So, when new

data is inserted, it is distributed to these nodes and when it is requested these nodes

run queries in parallel. After processing, each compute node returns its results to

48 5| Cloud Solutions

the control node that aggregates these results and produce the �nal result.

� Azure CosmoDB can be described as a database service based on multiple models,

with transparent scaling features that replicate organizational data. It is a NoSQL

database with really low latency and automatic scalability. As a fully managed

service, with Azure Cosmos DB users no longer have to worry about database ad-

ministration tasks, the service itself manages all the tasks such as the updating and

patching of applications. Also, it handles capacity management with cost-e�ective

automatic scalability and serverless options that meet application needs in terms of

capacity.

As in the case of the solution using AWS, also in this case there is a mapping between the

cloud solution and the architecture proposed in Chapter 3. The Transient Landing Zone

is represented by Azure Data Factory, the Raw Zone corresponds to Azure Data Lake, the

Stage Zone can be mapped to both Azure Synapse Analytics and Azure Machine Learning,

the Sandbox Zone corresponds to SQL DataWarehouse and then Metadata Management

is handled by Azure CosmoDB. In particular, Azure Synapse can take unstrctured data,

such as medical images, and can feed these data into machine learning algorithms.

49

6| Conclusions

The work presented in this thesis is at an early stage of the process of the implementation

of a storage system for medical data. The main objective of this work is to design an

architecture for a Data Lake that allows e�cient storing and fast access to all types of

data. In particular, the main focus was on storage of unstructured data, i.e. medical

images, which is problematic in traditional systems.

The �rst step of the process has been the analysis of the types and formats of the sys-

tem's input. More in detail, the scope of this phase was to understand the various types

of medical images, how they are structured and what type of analysis is made on this data.

Once these aspects were clear, the next step has been the design of an architecture,

as a reference architecture does not yet exist for Data Lakes. First of all, it has been

selected a zone architecture because it better satis�es the needs of this speci�c use case.

Then, the components needed for the various stages of data processing and storage have

been identi�ed. Once the list of components was complete, the connections between these

components have been analyzed. During this phase particular attention has been paid to

the metadata management system as its design is crucial for the correct functioning of

the whole system. In particular, �rst the various types of data have been re-analyzed to

understand what kind of metadata could be generated and then a solution to model this

metadata has been searched. Among the di�erent metadata management systems o�ered

by the literature, HANDLE [18] has been identi�ed as the one that best �ts the use case

under exam. So, the model proposed in [18] has been studied and small modi�cations

have been applied to adapt it to the healthcare use case.

The following step was to analyze the di�erent aspects that characterize the Data Lake.

This is an important phase in the design process because it de�nes all the features that

should be studied in order to develop a complete Data Lake. In this stage the main tools

and technology for processing and storage of data were picked.

50 6| Conclusions

The next step was to better understand the data �ow inside the Data Lake. For this

scope the speci�c case of images was analyzed. More in detail, it has been considered

the case in which the inputs are represented by a set of medical images and a CSV �le

that contains the ROIs of the images. To better understand the steps of the data �ow, a

simple implementation of the main phases was developed. This demo takes as input 80

x-rays of the chest and their ROIs. Then, it extracts from the DICOM �le information

related to patients, exams and cases and from the CSV the ROIs. Data extracted in this

phase are stored in relational tables. After that, Matlab was used to create the masks

of the images based on the ROIs. Next, both images and masks are converted using

SimpleITK into NRRD �le as the following step requires this type of data. Once x-rays

and their masks are in NRRD format, they can be passed to the module that extracts

features from images which was implemented using Pyradiomics. The features extracted

by Pyradiomics are also stored in relational tables.

The �nal step of this project was to identify cloud solutions that can be used to im-

plement this system. Among all cloud providers, two have been identi�ed as the ones

that o�er services that best �t the healthcare case, Amazon and Microsoft. Therefore,

researches have been carried out two identify for both provider the set of services that

could be used to develop the Data Lake and two solutions have been presented.

In summary, the Data Lake has been identi�ed as the best solution for the problem

under exam. A high level view of the architecture of the system has been proposed and

the requirements that this architecture should staisfy have been identi�ed. Lastly, two

posible cloud solutions have been described.

6.1. Future work

Taking into account the performed work, the main next step is the complete implementa-

tion of the system. Ideally this implementation will take advantage of cloud services and,

therefore, it will realize one of the solutions proposed in Chapter 5. The most interesting

part of the implementation will be certainly the metadata management system. For this

part of the system more detailed requirements should be identi�ed by analyzing the dif-

ferent types of data entering the Data Lake and their relationships.

Another important step that sould be made is the analysis of the aspects of data se-

curity and data quality. Data security is of great importance in the Data Lake, as it

ensures legal conformance, alignment with business objectives, and much more [25]. Data

6| Conclusions 51

quality, instead, is important to ensure the data's usability and prevent the data lake from

turning into a data swamp [25]. When these two aspects are included, also their metadata

should be analyzed, e.g. security and quality classi�cation. However, these aspects are

conceptual aspects and many tools are already available to manage them.

Another important step that should be done is to examine how the process of mask-

ing PII can be implemented. This process has to be deeply analyzed as the exposure of

sensitive data can cause serious damage. It has been selected the masking technique as it

can shu�e data columns in di�erent ways so that the masked data looks like the original,

in the format and type, but it is no longer sensitive data. Masking is e�ective because

despite it changes all the individual data elements, it still allows to compute aggregate

values across an entire database, enabling preservation of the right values within a dataset.

53

Bibliography

[1] Approfondimenti clinici con microsoft cloud for healthcare. URL https:

//docs.microsoft.com/it-it/azure/architecture/example-scenario/

mch-health/medical-data-insights.

[2] Amazon elastic container service. URL https://www.amazonaws.cn/en/ecs/.

[3] Gartner glossary - big data, . URL https://www.gartner.com/en/

information-technology/glossary/big-data.

[4] Gartner glossary - data warehouse, . URL https://www.gartner.com/en/

information-technology/glossary/data-warehouse.

[5] The property graph model of graph databases. URL https://subscription.

packtpub.com/book/big_data_and_business_intelligence/9781786466143/1/

ch01lvl1sec12/the-property-graph-model-of-graph-databases.

[6] Aws lambda. URL https://aws.amazon.com/it/lambda/.

[7] Welcome to pyradiomics documentation! URL https://pyradiomics.

readthedocs.io/en/latest/.

[8] Caratteristiche di amazon redshift. URL https://aws.amazon.com/it/redshift/

features/?nc=sn&loc=2&dn=1.

[9] 7 - the data set, 2013. URL http://dicom.nema.org/dicom/2013/output/chtml/

part05/chapter_7.html.

[10] Getting rescued from the data swamp, July 2019. URL https://www.getlore.io/

blog/getting-rescued-from-the-data-swamp.

[11] Introduction to azure data lake storage gen2, 2021. URL https://docs.microsoft.

com/en-us/azure/storage/blobs/data-lake-storage-introduction.

[12] R. Agrawal and S. Prabakaran. Big data in digital healthcare: lessons learnt and

recommendations for general practice. Heredity, 124(4):525�534, 2020.

https://docs.microsoft.com/it-it/azure/architecture/example-scenario/mch-health/medical-data-insights
https://docs.microsoft.com/it-it/azure/architecture/example-scenario/mch-health/medical-data-insights
https://docs.microsoft.com/it-it/azure/architecture/example-scenario/mch-health/medical-data-insights
https://www.amazonaws.cn/en/ecs/
https://www.gartner.com/en/information-technology/glossary/big-data
https://www.gartner.com/en/information-technology/glossary/big-data
https://www.gartner.com/en/information-technology/glossary/data-warehouse
https://www.gartner.com/en/information-technology/glossary/data-warehouse
https://subscription.packtpub.com/book/big_data_and_business_intelligence/9781786466143/1/ch01lvl1sec12/the-property-graph-model-of-graph-databases
https://subscription.packtpub.com/book/big_data_and_business_intelligence/9781786466143/1/ch01lvl1sec12/the-property-graph-model-of-graph-databases
https://subscription.packtpub.com/book/big_data_and_business_intelligence/9781786466143/1/ch01lvl1sec12/the-property-graph-model-of-graph-databases
https://aws.amazon.com/it/lambda/
https://pyradiomics.readthedocs.io/en/latest/
https://pyradiomics.readthedocs.io/en/latest/
https://aws.amazon.com/it/redshift/features/?nc=sn&loc=2&dn=1
https://aws.amazon.com/it/redshift/features/?nc=sn&loc=2&dn=1
http://dicom.nema.org/dicom/2013/output/chtml/part05/chapter_7.html
http://dicom.nema.org/dicom/2013/output/chtml/part05/chapter_7.html
https://www.getlore.io/blog/getting-rescued-from-the-data-swamp
https://www.getlore.io/blog/getting-rescued-from-the-data-swamp
https://docs.microsoft.com/en-us/azure/storage/blobs/data-lake-storage-introduction
https://docs.microsoft.com/en-us/azure/storage/blobs/data-lake-storage-introduction

54 | Bibliography

[13] W. D. Bidgood Jr, S. C. Horii, F. W. Prior, and D. E. Van Syckle. Understanding

and using dicom, the data interchange standard for biomedical imaging. Journal of

the American Medical Informatics Association, 4(3):199�212, 1997.

[14] B. Bilalli, A. Abelló, T. Aluja-Banet, and R. Wrembel. Towards intelligent data

analysis: The metadata challenge. In IoTBD, pages 331�338, 2016.

[15] Brandyli. Data warehouse: Facts, dimensions, and star

schema, 2020. URL https://medium.com/@brandyli1103/

data-warehouse-facts-dimensions-and-star-schema-6181c64ae51a.

[16] D. Chappell. Introducing windows azure. Technical report, David Chappell and

Associates, 2010. URL https://www.idt-inc.com/wp-content/uploads/sites/

4755/2017/05/IntroducingWindowsAzureFinal_5_5_2011_9_55_46_AM.pdf.

[17] A. Datta and H. Thomas. The cube data model: a conceptual model and al-

gebra for on-line analytical processing in data warehouses1a related paper intro-

ducing this model was presented at the workshop on information and technology

(wits), atlanta, ga, december 1997.1. Decision Support Systems, 27(3):289�301,

1999. ISSN 0167-9236. doi: https://doi.org/10.1016/S0167-9236(99)00052-4. URL

https://www.sciencedirect.com/science/article/pii/S0167923699000524.

[18] R. Eichler, C. Giebler, C. Gröger, H. Schwarz, and B. Mitschang. Handle - a generic

metadata model for data lakes. In M. Song, I.-Y. Song, G. Kotsis, A. M. Tjoa, and

I. Khalil, editors, Big Data Analytics and Knowledge Discovery, pages 73�88, Cham,

2020. Springer International Publishing. ISBN 978-3-030-59065-9.

[19] P. J. Ferreira, A. de Almeida, and J. Bernardino. Data warehousing in the cloud:

Amazon redshift vs microsoft azure sql. In KDIR, 2017.

[20] G. Fu, U. Ratan, and E. Bas. Building a medical image search platform on

aws, Oct 2020. URL https://aws.amazon.com/it/blogs/machine-learning/

building-a-medical-image-search-platform-on-aws/.

[21] S. George. Nosql�not only sql. International Journal of Enterprise Computing and

Business Systems, 2(2), 2013.

[22] C. Giebler, C. Gröger, E. Hoos, H. Schwarz, and B. Mitschang. Leveraging the

Data Lake - Current State and Challenges. In Proceedings of the 21st International

Conference on Big Data Analytics and Knowledge Discovery (DaWaK 2019), 2019.

doi: 10.1007/978-3-030-27520-4_13.

[23] C. Giebler, C. Gröger, E. Hoos, H. Schwarz, and B. Mitschang. Leveraging the data

https://medium.com/@brandyli1103/data-warehouse-facts-dimensions-and-star-schema-6181c64ae51a
https://medium.com/@brandyli1103/data-warehouse-facts-dimensions-and-star-schema-6181c64ae51a
https://www.idt-inc.com/wp-content/uploads/sites/4755/2017/05/IntroducingWindowsAzureFinal_5_5_2011_9_55_46_AM.pdf
https://www.idt-inc.com/wp-content/uploads/sites/4755/2017/05/IntroducingWindowsAzureFinal_5_5_2011_9_55_46_AM.pdf
https://www.sciencedirect.com/science/article/pii/S0167923699000524
https://aws.amazon.com/it/blogs/machine-learning/building-a-medical-image-search-platform-on-aws/
https://aws.amazon.com/it/blogs/machine-learning/building-a-medical-image-search-platform-on-aws/

| Bibliography 55

lake: Current state and challenges. In C. Ordonez, I.-Y. Song, G. Anderst-Kotsis,

A. M. Tjoa, and I. Khalil, editors, Big Data Analytics and Knowledge Discovery,

pages 179�188, Cham, 2019. Springer International Publishing. ISBN 978-3-030-

27520-4.

[24] C. Giebler, C. Gröger, E. Hoos, H. Schwarz, and B. Mitschang. A zone reference

model for enterprise-grade data lake management. In 2020 IEEE 24th International

Enterprise Distributed Object Computing Conference (EDOC), pages 57�66, 2020.

doi: 10.1109/EDOC49727.2020.00017.

[25] C. Giebler, H. Schwarz, B. Mitschang, and T. und Web. The data lake architec-

ture framework: A foundation for building a comprehensive data lake architecture.

Datenbanksysteme für Business, Technologie und Web (BTW 2021) 13.�17. Septem-

ber 2021 in Dresden, Deutschland, page 351, 2021.

[26] R. Hai, S. Geisler, and C. Quix. Constance: An intelligent data lake system. In

Proceedings of the 2016 international conference on management of data, pages 2097�

2100, 2016.

[27] A. Y. Halevy, F. R. Korn, N. Noy, C. Olston, N. Polyzotis, S. Roy, and S. E. Whang.

Managing google's data lake: an overview of the goods system. IEEE Data Eng.

Bull., 39:5�14, 2016.

[28] B. Inmon. Data Lake Architecture: Designing the Data Lake and avoiding the garbage

dump. Technics publications, 2016.

[29] B. Inmon. Data Lake Architecture: Designing the Data Lake and Avoiding the

Garbage Dump. Technics Publications, LLC, Denville, NJ, USA, 1st edition, 2016.

ISBN 1634621174.

[30] K. Kline, D. Kline, and B. Hunt. SQL in a nutshell: a desktop quick reference guide.

" O'Reilly Media, Inc.", 2008.

[31] C. Madera and A. Laurent. The next information architecture evolution: The data

lake wave. In Proceedings of the 8th International Conference on Management of

Digital EcoSystems, MEDES, page 174�180, New York, NY, USA, 2016. Association

for Computing Machinery. ISBN 9781450342674. doi: 10.1145/3012071.3012077.

URL https://doi.org/10.1145/3012071.3012077.

[32] S. Mathew. Overview of amazon web services aws whitepaper. Technical report, Ama-

zon, 2021. URL https://d1.awsstatic.com/whitepapers/aws-overview.pdf.

https://doi.org/10.1145/3012071.3012077
https://d1.awsstatic.com/whitepapers/aws-overview.pdf

56 | Bibliography

[33] P. M. Mell and T. Grance. Sp 800-145. the nist de�nition of cloud computing.

Technical report, Gaithersburg, MD, USA, 2011.

[34] S. Mund. Microsoft Azure Machine Learning explore predictive analytics using step-

by-step tutorials and build models to make prediction in a ji�y with a few mouse

clicks. Packt Publ, Birmingham-Mumbai, June 2015. ISBN 978-1-78439-079-2.

[35] T. Nasser and R. Tariq. Big data challenges. J Comput Eng Inf Technol 4: 3. doi:

http://dx. doi. org/10.4172/2324, 9307(2), 2015.

[36] A. Oussous, F.-Z. Benjelloun, A. A. Lahcen, and S. Belfkih. Big data technologies:

A survey. Journal of King Saud University-Computer and Information Sciences, 30

(4):431�448, 2018.

[37] C. Quix, R. Hai, and I. Vatov. Gemms: A generic and extensible metadata manage-

ment system for data lakes. In CAiSE forum, volume 129, 2016.

[38] F. Ravat and Y. Zhao. Data lakes: Trends and perspectives. In International Confer-

ence on Database and Expert Systems Applications, pages 304�313. Springer, 2019.

[39] W. REDMOND. The big bang: How the big data explosion is chang-

ing the world, 2013. URL https://news.microsoft.com/2013/02/11/

the-big-bang-how-the-big-data-explosion-is-changing-the-world/.

[40] I. Robinson, J. Webber, and E. Eifrem. Graph databases: new opportunities for

connected data. " O'Reilly Media, Inc.", 2015.

[41] B. SADEG and C. DUVALLET. To have an idea on nosql databases. International

Journal of Computer (IJC), 35(1):1�18, Sep. 2019. URL https://ijcjournal.org/

index.php/InternationalJournalOfComputer/article/view/1465.

[42] P. Sawadogo and J. Darmont. On data lake architectures and metadata manage-

ment. Journal of Intelligent Information Systems, 56(1):97�120, Jun 2020. ISSN

1573-7675. doi: 10.1007/s10844-020-00608-7. URL http://dx.doi.org/10.1007/

s10844-020-00608-7.

[43] P. N. Sawadogo and J. Darmont. On data lake architectures and metadata man-

agement. J. Intell. Inf. Syst., 56(1):97�120, 2021. doi: 10.1007/s10844-020-00608-7.

URL https://doi.org/10.1007/s10844-020-00608-7.

[44] P. N. Sawadogo, É. Scholly, C. Favre, É. Ferey, S. Loudcher, and J. Darmont. Meta-

data systems for data lakes: Models and features. In T. Welzer, J. Eder, V. Pod-

gorelec, R. Wrembel, M. Ivanovi¢, J. Gamper, M. Morzy, T. Tzouramanis, J. Dar-

https://news.microsoft.com/2013/02/11/the-big-bang-how-the-big-data-explosion-is-changing-the-world/
https://news.microsoft.com/2013/02/11/the-big-bang-how-the-big-data-explosion-is-changing-the-world/
https://ijcjournal.org/index.php/InternationalJournalOfComputer/article/view/1465
https://ijcjournal.org/index.php/InternationalJournalOfComputer/article/view/1465
http://dx.doi.org/10.1007/s10844-020-00608-7
http://dx.doi.org/10.1007/s10844-020-00608-7
https://doi.org/10.1007/s10844-020-00608-7

6| BIBLIOGRAPHY 57

mont, and A. Kami²ali¢ Lati�¢, editors, New Trends in Databases and Information

Systems, pages 440�451, Cham, 2019. Springer International Publishing. ISBN 978-

3-030-30278-8.

[45] U. Sivarajah, M. M. Kamal, Z. Irani, and V. Weerakkody. Critical analysis of big

data challenges and analytical methods. Journal of Business Research, 70:263�286,

2017. ISSN 0148-2963. doi: https://doi.org/10.1016/j.jbusres.2016.08.001. URL

https://www.sciencedirect.com/science/article/pii/S014829631630488X.

[46] B. Stein and A. Morrison. The enterprise data lake: Better integration and deeper

analytics. PwC Technology Forecast: Rethinking integration, 1(1-9):18, 2014.

[47] X. Wang, Y. Peng, L. Lu, Z. Lu, M. Bagheri, and R. Summers. Chestx-ray8: Hospital-

scale chest x-ray database and benchmarks on weakly-supervised classi�cation and

localization of common thorax diseases. In 2017 IEEE Conference on Computer

Vision and Pattern Recognition(CVPR), pages 3462�3471, 2017.

[48] J. S. Ward and A. Barker. Unde�ned by data: A survey of big data de�nitions.

ArXiv, abs/1309.5821, 2013.

[49] A. Wittig and M. Wittig. Amazon Web Services in Action. Manning Publications

Co., USA, 1st edition, 2015. ISBN 1617292885.

https://www.sciencedirect.com/science/article/pii/S014829631630488X

59

List of Figures

1.1 Di�erence between a Data Lake and a Data Swamp [10] 1

2.1 Big Data Challenges [45] . 7

2.2 Pond architecture schema [42] . 9

2.3 Schema of a system in which both a data lake and a data warehouse are used 14

2.4 Representation of the elements that compose a graph database [5] 16

2.5 Constance Architecture [26] . 19

3.1 Component diagram of the Data Lake architecture 22

3.2 Data Lake's Zone . 23

3.3 HANDLE Entity Relationship model . 26

3.4 Example of a graph database for metadata management 27

3.5 Aspects of the Data Lake Architecture Framework [25] 28

4.1 Structure of a Data Element [9] . 32

4.2 Example of data �ow . 35

4.3 Entity-Relation diagram . 38

5.1 Cloud solution that uses services provided by AWS 44

5.2 Cloud solution that uses services provided by Azure 46

61

List of Tables

2.1 Di�erences between Data Lake and Data Warehouse. 14

4.1 Execution times of image preparation step. 39

4.2 Execution times of image analysis step. 40

63

List of Acronyms

AWS Amazon Web Services

CPU Central Processing Unit

CSV Comma-Separated Values

DICOM Digital Imaging and Communication in Medicine

ELT Extract-Load-Transform

ETL Extract-Transform-Load

GLCM Grey Level Co-occurrence Matrix

GLDM Grey Level Dependence Matrix

GLRLM Gray Level Run Length Matrix

GLSZM Gray Level Size Zone

GPU Graphics Processing Unit

HANDLE Handling metAdata maNagement in Data LakEs

64 | List of Acronyms

HDFS Hadoop Distributed File System

IOD Information Object De�nition

JPEG Joint Photographic Experts Group

NGTDM Neighbouring Gray Tone Di�erence Matrix

NRRD Nearly Raw Raster Data

OLAP On-Line Analytical Processing

OLTP On-Line Transaction Processing

PACS Picture Archiving and Communication Systems

PII Personally Identi�able Information

ROI Region Of Interest

UID Unique IDenti�er

65

Ringraziamenti

Giunta alla �ne del mio percorso di studi, vorrei ringraziare tutte le persone che mi

sono state accanto e mi hanno supportato durante questi anni e, soprattutto, nell'ultimo

periodo.

Inizio, quindi, ringraziando la Prof.ssa Letizia Tanca e il Prof. Marco Gribaudo per la

disponibilità, per il supporto e per i preziosi consigli che mi hanno fornito durante questi

mesi di lavoro.

Vorrei proseguire ringraziando i miei fedeli compagni del Poli: Fede, Gio, Michi, Rullo,

Manu, Jack, Fra e Pigo. Senza di voi questo percorso non sarebbe stato lo stesso, grazie

per le innumerevoli partite a carte e gli altrettanti ca�è che hanno reso le giornate al Poli

un po' meno pesanti. Grazie per i viaggi, gli aperitivi, i sushi, le giornate a Gardaland, le

grigliate e tutti gli altri mille momenti che abbiamo condiviso. Grazie per avermi sempre

aiutata quando mi sono trovata in di�coltà e per avermi incoraggiata nei momenti in

cui pensavo di non potercela fare. Quando ripenserò a questi anni sicuramente il primo

pensiero andrà a voi. Vorrei potervi ringraziare singolarmente ma, purtroppo, lo spazio è

limitato. Permettetemi, però, di fare un ringraziamento speciale alla Fede che è stata la

mia spalla lungo tutto il percorso, nonchè la migliore compagna di partite a scopa.

Non posso poi non ringraziare Sara perchè ormai sono undici anni che ci supportiamo a

vicenda. Grazie per avermi sempre sostenuta con tutti i messaggi pre-esame e post-esame.

Vorrei proseguire ringraziando Filippo che mi è sempre stato vicino durante questi anni

spronandomi a non mollare mai e regalandomi attimi di spensieratezza con le cene al sushi

o al messicano.

In�ne il ringraziamento più grande va alla mia famiglia, in particolare ai miei genitori senza

i quali non avrei mai potuto intraprendere questo percorso e a mia sorella che ha sempre

creduto in me. Grazie per avermi constantemente supportata, per avermi incoraggiata nei

momenti di sconforto e per aver condiviso con me la gioia di ogni traguardo raggiunto.

	Introduction
	Aim of the thesis
	=255 Overview of the proposed architecture
	Metadata Management System

	Data Flow
	Data set
	Image preparation
	Image analysis
	Processed data store
	Performance monitoring

	Conclusion
	Abstract
	Abstract in lingua italiana
	Contents
	Introduction
	Aim of the thesis
	Brief description of the work
	Structure of the thesis

	Theoretical background
	Big Data
	Data Lake
	Data lake architectures
	Data lake challenges and problems

	Data lake vs Data warehouse
	Graph database
	Cloud Computing
	State of art
	Metadata management system
	DICOM

	A general overview of the proposed Architecture
	Overview
	Transient Landing Zone
	Raw Zone
	Stage Zone
	Sandbox

	Metadata Management System
	Definition of Data Lake's characteristics

	Design of the application
	DICOM
	Technologies
	Hadoop Distributed File System
	Pyradiomics
	SimpleITK

	Data flow
	Dataset
	Image preparation
	Image analysis
	Processed data store

	Performance monitoring
	Observations

	Cloud Solutions
	Amazon
	Microsoft

	Conclusions
	Future work

	Bibliography
	List of Figures
	List of Tables
	List of Acronyms
	Ringraziamenti

