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Abstract

The need for a solution of very complex space missions, aimed at providing global services on a

large scale, has played a key role in the development of autonomous spacecrafts. Classical control

techniques have been surpassed in terms of autonomy by artificial intelligence methods, such as

machine learning. In particular, a promising technique known as Meta-Reinforcement learning is

recently emerging as the strongest method to solve a multitude of problems. For space applications,

it can be seen as a way through for solving complex control problems such as the guidance of a

cluster of small satellites.

This master thesis focuses on demonstrating the ability of Meta-Reinforcement learning algorithm

to accomplish a safe planar Autonomous Rendezvous, Proximity Operation and Docking (ARPOD)

manoeuvre with an under-actuated CubeSat from different starting points in a small region. Safety

considerations and uncertainties on the dynamics rise the complexity of the problem under analysis.

The promising future perspective of Meta-Reinforcement learning could enable even more complex

missions, providing to mankind the possibility to explore space in an unprecedented way.

i



Acknowledgments

This is the work that will launch me throughout a new journey. For this reason, I would like to

show gratitude to all the people that stood beside me and helped me through this path.

First of all, I would like to thank my Advisor Professor Pierluigi Di Lizia and my Co-Advisor

Michele Maestrini PhD. They guided me through all the problems I encountered in this work,

helped me with their knowledge and experience. I would like also to acknowledge the creators of

the codes that inspired me for this work, Professor Roberto Furfaro, Professor Richard Linares

and Professor Brian Gaudet. Alongside them, also the people who shared their knowledge through

internet free-courses: Professor Sergey Levine, with his CS285 online course on Reinforcement

Learning, and Professor David Silver, from Google DeepMind.

I would like also to thank my family, starting from my sister, Magi. She is the most precious person

of my life. She was, still is and will be beside me every day, that is a joyful day or a bad one. She

supported me, scolded me when needed and, even if she is younger, I can barely reach the wisdom

she possesses. I would like to thank my mother and my father. They also believed in me, in my

aspirations and my goals and put everything they could for the sake of my future. I wish to be

able to repay them one day even more , for all the sacrifices that they made for me.

I would like to thanks also my friends, starting from the one I know better than anyone, Fortunato.

After many years, he is still present in my life. We shared many things, many secrets, many

adventures and many laughs. I hope that, soon enough, he will reach his goals and become the

person he wants to be. A thanks to Salvatore, the first person I met in Milan, at the Politecnico.

This journey was unique thanks to his presence and his guidance. I sincerely hope him the best. I

would like also to thank Pietro and Simone, two important friends in my life that helped me during

these years. I shared a lot also with them and I would like to share also this.

And you, Alessia. For all you did in these days, I must thank you. Without you, probably, I

wouldn’t have made it so far. You showed me what is love, care and affection. You accepted the

true me. And so I showed you my dreams and my goals and you made it yours. I’m grateful for

having you in my life and I hope to be able to give you all that I can in our future. Love you, with

all of me.

ii



Contents

1 Introduction 1

1.1 About space rendezvous and proximity operations . . . . . . . . . . . . . . . . . . . 1

1.2 Review of state-of-the-art autonomous control techniques . . . . . . . . . . . . . . . 3

1.3 Impact and outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Autonomous Rendezvous, Proximity Operations and Docking 6

2.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Chaser Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Dynamics model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Constraints definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Deep Meta-Reinforcement Learning 14

3.1 Reinforcement Learning elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Markov Decision Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3 Deep Meta-Reinforcement learning key features . . . . . . . . . . . . . . . . . . . . . 17

3.4 Policy Gradient Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.4.1 Policy Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.4.2 Policy gradient methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.4.3 Value Function and Advantage . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.4.4 Actor-Critic algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.5 Proximal Policy Optimization (PPO) . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.5.1 Trust Region Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.5.2 Clipped Surrogate Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.5.3 KL Adaptivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.6 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4 Artificial Neural Networks 26

4.1 Feed-Forward Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.1.1 Forward pass and Backpropagation . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2 RNN: Long Short-Term Memory (LSTM) . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2.1 LSTM Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

iii



Contents

4.2.2 Forward pass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2.3 Backpropagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3 Gradient descent optimzation through Adam Optimizer . . . . . . . . . . . . . . . . 35

4.3.1 Vanilla Gradient Descent and Stochastic Gradient Descent (SGD) . . . . . . 35

4.3.2 Gradient descent optimization algorithms . . . . . . . . . . . . . . . . . . . . 36

4.3.3 Adam Optimizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5 Problem formulation through Meta-RL 39

5.1 ARPOD as a Markov Decision Process . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.1.1 State Space S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.1.2 Action Space A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.1.3 Discretization of the dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.2 Overview of the reward logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.3 Agent’s Hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6 Experiment setup and results 48

6.1 Experiment 1: Proximity Operations and Docking . . . . . . . . . . . . . . . . . . . 49

6.1.1 Reward logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.1.2 Hyperparameters and Neural Networks setup . . . . . . . . . . . . . . . . . . 54

6.1.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.2 Experiment 2: Rendezvous from 5 km . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.2.1 Reward logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.2.2 Hyperparameters and Neural Networks setup . . . . . . . . . . . . . . . . . . 62

6.2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Conclusion 69

Gaetano Calabrò iv
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Chapter 1

Introduction

”Scientists study the world as it is; engineers create the world that has never been.”

Theodore von Karman

The evolution of space industries is, currently, more and more headed towards the application of

small satellites. The growth in the small satellite ecosystem is driven by different motivations,

such as the falling costs of smallsats, enabled by the miniaturization of technology for the small

satellite platform and the deployment of relatively less expensive commercial off-the-shelf parts[1],

the ability to build large constellations for space-based services and the possibility to accomplish

complex missions such as on-orbit servicing and debris removal. As a result, small satellites are

making inroads in almost every area of space, including communication, remote sensing, technology

demonstration, science and exploration.

It is paramount to highlight that human decision-making and engineering effort are still required

to solve the complicate tasks previously mentioned, eventually leading to infeasible solutions. The

alternative is to develop techniques capable of solving complex missions autonomously.

This work dives into the reality and complexity of an autonomous solution for a rendezvous,

proximity operations and docking mission, strongly linked to on-orbit servicing and debris removal

applications. In particular, the accomplishment of these challenges requires an high degree of safety

and robustness. To cope with these objectives, this study focuses on an Autonomous Rendezvous,

Proximity Operations and Docking (ARPOD) mission for a CubeSat, solved through the application

of Meta-Reinforcement Learning. The problem objectives and safety constraints introduced reflect

the complexity for a robust, safe and efficient rendezvous and docking.

1.1 About space rendezvous and proximity operations

The idea of orbital rendezvous has its roots on the 1960s, when the U.S. National Aeronautics

and Space Administration (NASA) announced its plans for a manned spaceflight projects aimed

at proving the techniques of orbital rendezvous [2, 3]. However, orbital rendezvous became reality
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Chapter 1. Introduction

during the era of the space race between United States and Soviet Union.

The first attempt of orbital rendezvous occurred on 12 August 1962, when the Russian Vostok 4

spacecraft was launched into orbit and reached 6.5 km of distance from the Vostok 3 [4]. This

attempt ended with the drift of the spacecraft, piloted by the cosmonaut Andrian Nikolayev [5].

Similarly, the American counterpart begun to put in place its plans. The Gemini program aimed at

demonstrating several key objectives, among which the capability to rendezvous and dock in orbit

according to proper equipment and techniques [6], preferring manual control over autonomous one.

By the summer of 1965, Gemini V was piloted in a phantom rendezvous operation which became

the first astronaut-controlled maneuver in space. On December of the same year, the first-ever

orbital rendezvous between two spacecrafts occurred. The two spacecrafts, which were Gemini

VII, manned by Frank Borman and James Lovell, and Gemini VI, piloted by Walter Schirra and

Thomas Stafford, managed to get closer up to 30 cm of relative distance. Only several months later,

on 16 March 1966, the first docking between two spacecrafts, Gemini VIII and an Agena target

vehicle, occurred [7]. The choice of manual maneuvering awarded NASA, considering the ability

of astronauts to adapt to critical problems, resolving them in real time, something that, through

autonomous control, would not have been possible in those years.

By the spring of 1967, the Soviet Union set in motion the Soyuz program, able to surpass in

complexity and achievements the American Gemini program. In fact, the Russian program accomplished

the first rendezvous and docking between two robotic spaceships, the first docking of two manned

vehicles and the transfer of crew members from one spacecraft to another [4]. Furthermore, the

Soyuz vehicle was designed especially for autonomous orbital rendezvous with the possibility of

human maneuvering in case of contingencies. Even considering the great achievements of the

Soyuz program, manned operations were interrupt due to the crash of the Soyuz-1 spacecraft during

reentry, paving the way for automated missions, such as Kosmos spacecrafts. Indeed, Kosmos 186

and Kosmos 188, two unmanned and thus automated vehicles, managed to rendezvous and dock in

October 1967 [8].

The limitations due to the technical difficulties, such as the need of significant cooperation between

two manned vehicles to perform close proximity operations, and the new demands of more complex

space missions lead to the ascent of smaller spacecrafts, able to perform rendezvous and docking

manoeuvres in autonomy. To this purpose, during the 90s, the National Space Development Agency

of Japan (NASDA) designed the ETS-VII flight experiment, thus developing a new technology

able to autonomously execute close proximity operations. On 7 July 1998, ETS-VII successfully

performed the first autonomous rendezvous and docking procedure between uninhabited and robotic

spacecrafts [9]. Alongside the Japan Agency, also the American Lockheed Martin Space Systems

Company, under the commission of the U.S. Air Force Research Laboratory, joined the new trend of

small and automated space vehicles. Indeed, the XSS-11 demonstration mission aimed at developing

and verifying on-orbit guidance, navigation and control capabilities to safely and autonomously

rendezvous a microsatellite with multiple space objects [10]. It is paramount to add that the
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spacecraft was not operating in full autonomy, but could eventually interact with the ground

segment, able to select among a variety of operational modes that granted the vehicle the capacity

to respond autonomously to different scenarios.

It can be concluded that both the approaches of the U.S. and the old Soviet Union were able

to accomplish great achievements, still making evident the downsides and weaknesses of their

half-automated programs. For future rendezvous missions where ground or crew intervention is

unfeasible, traditional methods of the past must be surpassed.

1.2 Review of state-of-the-art autonomous control techniques

The rising complexity of space missions, as already mentioned in 1.1, brought to the development

of sophisticated and autonomous control techniques. To have an overview of state-of-the-art

algorithms applied for space rendezvous and proximity operations, different methods are considered

and discussed.

One of the most well-established technique is the Linear Quadratic Regulator (LQR). In [11], a

Linear Quadratic optimal control is proposed to solve a space rendezvous problem. Particularly,

in addition to minimum fuel cost, smooth rendezvous trajectory is considered as another control

goal for the rendezvous. Furthermore, in [12] a control algorithm based on a LQR combined

with Artificial Potential Fields (APF) method is developed for multiple small spacecrafts during

simultaneous close proximity operations. The algorithm is able to guarantee robust close proximity

performance and the capability to avoid collisions, while reducing the control effort. In this work,

the LQR algorithm is used as a convergence force that guides the controlled spacecrafts towards the

desired goal states. Instead, the APF-based functions act as a repulsive field, providing collision

free manoeuvres for both fixed and moving obstacles.

Linked to the classical Linear Quadratic Regulator, another common technique is the Model

Predictive Control (MPC). The key difference between predictive control and the LQR is that

the predictive control solves the optimization problem considering a receding time horizon window

whilst LQR solves the same problem within a fixed horizon. In other words, the predictive control

is able to perform real-time optimization [13]. In [14], a MPC approach is applied to spacecraft

rendezvous and proximity manoeuvring problems. It is demonstrated that various constraints

arising in these manoeuvres can be effectively handled with this approach. Particularly, these

include constraints on the thrust magnitude, the matching of the approach velocity and the velocity

of the docking port, constraints on the position of the spacecraft with respect to the docking

port. The results obtained in this work show that the MPC can be an effective feedback control

approach able to satisfy various requirements, reduce fuel consumption and provide robustness to

disturbances.
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In literature, various papers on different approaches with respect to the classical control techniques

discussed above can be found. For instance, the so-called path planning algorithms, that consist

in prescribing a set of way points for the satellite to follow, are used in [15, 16]. In the work

of Ian Garcia and Jonathan P. How, a path planning algorithm is designed for formation fliyng

spacecrafts reconfiguration manoeuvres. The Rapidly-exploring Random Trees (RRT) algorithm is

adopted and generates a trajectory consisting of a sequence of states, connected by feasible direct

trajectories. This trajectory is then passed to a smoother, used to improve its cost. In the other

paper cited, the Artificial Potential Field (APF) approach is adopted as a path planning method.

It is worth to say that, in this work, the path planner is combined with a reinforcement learning

algorithm. Before going into the details of machine learning algorithms applied in space rendezvous

missions, it is paramount to illustrate some drawbacks of path planning methods. In particular, due

to the fact that the trajectory and the high-level controls are computed once at the beginning of the

manoeuvre, the path obtained is followed until manoeuvre termination. Hence, for circumstances

in which it is possible to encounter moving objects, path planning algorithms may fail.

In order to surpass all the drawbacks and shortcomings of the already described techniques and

approaches, machine learning framework has been recently more and more adopted for solving

many kind of problems, including space related ones. For instance, among all the possible machine

learning algorithms, Reinforcement Learning is one of the most promising one. Reinforcement

Learning algorithms can be applied in a model-free fashion, granting an alternative road with

respect to model-based methods, that require a great comprehension of the model and its dynamics.

Particularly, in a Reinforcement learning algorithm, it is mainly needed to identify a reward logic

so that the Agent, which is the learner, can learn very complex behaviors. Hence the engineering

effort in the design of such algorithms is heavily reduced. Moreover, once the correct behavior is

learned, the implementation of the policy to follow requires low computational effort and memory,

making it possible with current small spacecrafts computing capacity.

Typically, in modern algorithms, Reinforcement Learning is combined with the capability of artificial

neural networks of approximating nonlinear functions. The so-called Deep Reinforcement Learning

is used in many fields, from Artificial Intelligence (AI) in games to more complex domains such

as the space one. Consider, for example [17], where a policy for six-degree-of-freedom docking

manoeuvres with rotating targets is developed via reinforcement learning, maximizing performances

and reducing control costs. In [18], reinforcement learning is adopted for a six-degree-of-freedom

planetary power descent and landing. The policy learned through the learning process maps the

lander’s estimated state directly to a commanded thrust for each engine, with the policy resulting

in accurate and fuel-efficient trajectories. In both works, Proximal Policy Optimization (PPO) is

used as the learning algorithm for the policy.

Reinforcement Learning techniques suffer when different tasks or different initial conditions are

considered. In other words, the learning process is heavily dependent on the initial inputs that are
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Chapter 1. Introduction

fed into the neural networks. For this reason, the next step is taken considering Meta-Reinforcement

Learning (Meta-RL). Few works can be found about the application of Meta-RL on space related

fields. For example, consider [19], where a Meta Reinforcement Learning algorithm is developed in

order to carry out multi-target missions. The same authors of [18], developed Meta-RL algorithms

for different missions, ranging from adaptive guidance and navigation [20] to rendezvous and close

proximity operations with asteroids [21]. In these works, the application of Meta-Reinforcement

Learning resulted in robust and safe solutions, with the Agent able to accomplish its mission even

considering uncertainties on the dynamics, the environment and the sensors.

In conclusion, the peculiarity of Meta-RL algorithms is their ability to learn different tasks and

remember the entire learning process, becoming an adaptive and robust technique considering the

uncertainties of sensors and of the dynamics model that is assumed.

1.3 Impact and outline

Due to the rising complexity of actual space missions, addressed to commercial applications such

as global internet service and telecommunications, or to more challenging purposes such as active

space debris removal and in-orbit satellite servicing, the need of autonomous spacecrafts, able to

operate without or at least with the minimum human control, is continually increasing.

The possibilities granted by the application of algorithms such as reinforcement learning and

meta-reinforcement learning can definitely help in the accomplishment of such missions. In particular,

thanks to the adaptivity and robustness of meta-reinforcement learning algorithms, even more

complex space missions can be successfully achieved. This work aims at showing the capacity of

meta-reinforcement learning to solve a three-degree-of-freedom rendezvous, proximity operation

and docking manoeuvre, in full autonomy.

This document is organized so that the reader can understand the mathematical framework and the

theory behind meta-reinforcement learning. In chapter 2, the Autonomous Rendezvous, Proximity

Operations and Docking (ARPOD) problem is described, considering the environmental setup, the

dynamics behind it and the constraints. In chapter 3, meta-reinforcement learning is explained,

introducing the theoretical notions needed to understand the algorithm. Afterwards, in chapter 4,

an adequate overview of Artificial Neural Networks is provided focusing on Recurrent Neural

Networks necessary for the implementation of a Meta-RL algorithm . In chapter 5, the information

of the three previous chapters are used to describe how the meta-reinforcement learning algorithm

is implemented to solve the ARPOD problem. Finally, the last chapter, chapter 6, provides the

results obtained for different test cases, concluding the entire work and showing the ability of the

Agent to learn.
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Chapter 2

Autonomous Rendezvous, Proximity

Operations and Docking

The peculiarity of reinforcement learning and, equally, meta reinforcement learning is that they are

model-free algorithms. In other words, the Agent, that will be detailed in the next chapter, is able

to learn and take actions independently from the knowledge of the problem. The only dependence

can be found on the environment, with which the Agent interacts in order to take actions. This

means that it is paramount to describe the problem in which the Agent is thrown in order to

solve it. This chapter aims at illustrating the spacecraft model and the dynamics of a planar (2D)

Autonomous Rendezvous, Proximity Operations and Docking (ARPOD) manoeuvre, adding the

constraints for a feasible, safe and reliable solution, assumed considering the problem proposed by

[22] and already dealt with via reinforcement learning by [23].

It is worth clarifying what is intended for rendezvous, proximity operations and docking before

going into the details of the problem. According to [24], the Concept of Operations of ARPOD

missions are generally divided into three main phases:

• An initial phase, named as rendezvous phase, that includes the approach of one spacecraft,

called chaser, to another one, referred to as target. Typically, this phase is considered between

10 km to 1 km of relative distance between the two spacecrafts.

• The close rendezvous phase, also known as proximity operations phase, is in the range between

1 km and 100 m. In this phase, the attitude is controlled so that the chaser docking port is

aligned with respect to the line of sight region of the Target docking port.

• The final phase is the docking phase, in which final manoeuvres are executed to engage the

docking ports. The range at which this phase begins is from 100 m to 0 m of separation.

With this in mind, the full ARPOD mission can be initialized considering an initial distance that

enters inside the rendezvous phase range.
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Chapter 2. Autonomous Rendezvous, Proximity Operations and Docking

2.1 Problem Statement

This work considers an ARPOD problem, with two spacecrafts orbiting around the Earth, and aims

at the achievement of a successful docking between the two. One of the two spacecrafts is the Target,

that, as the name suggests, is the target of the docking. It is assumed to be non-rotating during

the entire approach. The second one is the Chaser, that is controlled for the entire manoeuvre and

shall dock with the Target ensuring the safety of both spacecrafts.

In this thesis, a successful mission is achieved when the Chaser reaches less than 10 m of separation

from the target, with a maximum absolute relative velocity of 0.2 m/s and an absolute relative

angle lower than 5◦. The docking is achieved when the controlled spacecraft reaches less than 1 m

of relative distance from the Target. With respect to the work of [23], thanks to the robustness

granted by Meta-Reinforcement Learning, the chaser is still considered omniscient, which means

that it knows its relative position, velocity and attitude, but uncertainties are added on its state.

Briefly, the problem faced in this work can be summarized in three high-level objectives:

• The Chaser must remain inside the Target docking port Line of Sight (LoS) during the entire

final phase, the docking one.

• The safety of both the two spacecrafts must be ensured throughout the duration of the manoeuvre.

• The Chaser must asymptotically dock with the Target with:

||r|| ≤ 1m and |θ| ≤ 5◦ (2.1.1)

2.2 Chaser Model

As proposed by [22], the model adopted in this problem is a 6U CubeSat measuring 10 cm x 20 cm

x 30 cm, as it is pictured in Fig. 2.2.1.

According to the model described above, thrust is only possible from two thrusters assumed to be

perfectly aligned with the spacecraft body x-axis xb on both sides of the spacecraft. Furthermore,

considering the conventions depicted in Fig. 2.2.1, a positive total thrust F induces a displacement

in the positive direction of the x-body axis. The attitude is controlled only about the chaser’s z-axis

zb ≡ nrw through a reaction wheel. Lastly, the docking port of the chaser is assumed to be on the

surface with normal aligned to the x-body axis xb.

In the Table 2.2.1, inertial properties of the spacecraft model are reported. They are taken from

the proposed challenge already cited but whatever value can be used, in case of a different problem

to tackle. Furthermore, the Meta-RL is able to solve problems even for uncertain inertia properties,

not considered for the final solution proposed in this work.
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Figure 2.2.1: 6U CubeSat with thrusters (red) aligned with positive and negative x-axes, a reaction

wheel (blue) for single axis attitude control aligned with the body z-axis, and the docking port (green)

normal to the positive body x-axis. Image taken from [23].

Variable Description Value

D Reaction wheel spin axis mass moment of inertia 4.1× 10−5 kg m2

Izz Spacecraft mass moment of inertia in z-axis 5.6× 10−2 kg m2

m Spacecraft mass 12kg

Table 2.2.1: Inertia properties of the Chaser

2.3 Dynamics model

The equations of motion are obtained following the assumptions, considered in [22], that can be

found below:

Assumption 1 Both spacecrafts are rigid bodies.

Assumption 2 The mass of Earth is significantly greater than the mass of the spacecraft.

Assumption 3 The mass loss of the Chaser spacecraft is significantly smaller than the total mass

of the spacecraft.

The Assumption 1 can be applied to most modern spacecrafts as fuel slosh and moving mass are

typically not significant contributes to the dynamics of the spacecraft. According to Assumption

2, the only gravitational contribute comes from the Earth’s mass, condensed inside the universal

gravity parameter µ. Thanks to Assumption 3, the mass of the spacecraft can be assumed as

constant as propellant usage over short time intervals is negligible.

Under these assumptions, the motion of the two spacecrafts around the Earth is governed by the

following equations:

R̈j = −
µ

R3
j

Rj (2.3.1)

where j ∈ t, c are the subscripts denoting, respectively, the target and the chaser. Rj ∈ R3 is
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Chapter 2. Autonomous Rendezvous, Proximity Operations and Docking

the position vector of the spacecraft in the inertial frame, Rj is the module of the position vector,

Rj = ||Rj ||, and R̈j ∈ R3 is the acceleration of position always referred to the inertial frame. The

eq. (2.3.1) describes a stable and elliptical orbital motion of the spacecrafts around the center of

gravity of the frame, that can be identified approximately with the center of the Earth, according to

Assumption 2. In order to simplify the problem, dynamics can be linearized. Linearization requires

additional assumptions, such as the ones that follow:

Assumption 4 The target spacecraft is in a circular orbit with radius Rt

Assumption 5 The relative distance between the target and the chaser spacecrafts is significantly

smaller than the distance of the target with respect to the center of the Earth

Typically, a good number of spacecrafts revolves around the Earth in near-circular orbits. Hence,

Assumption 4 is reasonable, assuming that the target spacecraft is expected to be launched into

a circular orbit. Assumption 5 is justified by the fact that rendezvous typically happens within

distances on the order of tens of kilometers, while the the target spacecraft is in a circular orbit

with altitude fixed at 500 km.

Generally, to simplify the equations that describe a rendezvous, a non-inertial frame can be attached

to the Target, due to the fact that it is in an equilibrium orbit, which is coherent with Assumption

4. The non-inertial frame here considered is the Hill’s Frame, useful for the description of the orbit

of one body about each other [25].

The Hill’s Frame (Fig. 2.3.1) is defined by the following axes:

• eR identifies the radial direction that points outwards from the Earth’s center.

• eN for the normal direction, aligned with the angular momentum vector of the orbit, constant

and always orthogonal to the orbital plane.

• eT for the tangential direction wich completes an orthogonal coordinate system with the two

previous unitary vectors. Furthermore, for a circular orbit, eT and the inertial orbital velocity

are aligned.
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𝑹𝑐

𝑹𝑇

𝒆𝑅
𝒆𝑁

𝒆𝑇

𝒓

TARGET

CHASER

Figure 2.3.1: Hill’s reference frame in black. The positions of the chaser and the target with respect

to the inertial frame are pictured, respectively, in blue and red.

In the Hill’s frame, the relative position between the Target and the Chaser is denoted as r:

r = xeR + yeT + zeN (2.3.2)

It follows that the equation of motions can be written in a simplified form, according to the newly

introduced reference frame [26]:

ẍ− 2
√

µ
R3

T
ẏ − 3 µ

R3
T
x = 0

ÿ + 2
√

µ
R3

T
ẋ = 0

z̈ + µ
R3

T
z = 0

(2.3.3)

In addition, it can be introduced the parameter named as mean motion and defined as n =
√

µ
R3

T
,

considering that, for a circular orbit, where RT is kept constant, the mean motion remains constant

too. The linear equations of motion (2.3.3) can be decoupled into the orbital in-plane motion, in the

(eR,eT ) plane, and out-of-plane motion. Hence, in this work, only in-plane motion is considered.

It is worth mentioning that, in more complex models, the equations of motion are coupled, thus

the approximation here considered is not well-suited.
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Therefore, the planar Clohessy-Wiltshire equations can be written as:

ẍ− 2nẏ − 3n2x = 0

ÿ + 2nẋ = 0
(2.3.4)

It can be noticed that all the coefficients are constant, thus an analytical solution there exists [27].

In matrix notation:
x

y

ẋ

ẏ

 =


4− 3 cosnt 0 sinnt

n
2
n(1− cosnt)

6(sinnt− nt) 1 2
n(cosnt− 1) 1

n(4 sinnt− 3nt)

3n sinnt 0 cosnt 2 sinnt

6n(cosnt− 1) 0 −2 sinnt 4 cosnt− 3



x0

y0

ẋ0

ẏ0

 (2.3.5)

Where
[
x0 y0 ẋ0 ẏ0

]T
= x0 is the translation state vector at time t = 0.

The rotational equations of motion can be obtained by the application of the conservation of

angular momentum. The only rotational degree of freedom is about the eN axis, according to the

approximations made above. The inertia of the spacecraft about the normal axis in the Hill’s frame

is given by Izz and the one of the reaction wheel results to be D. The numerical values can be

found in Table 2.2.1. The rotation of the Chaser body axis xb ≡ nC about eN ≡ zb is denoted

as θN . Since, as already stated in Sec. 2.1, the target spacecraft is not rotating, it is trivial to

define the relative rotation of the Chaser with respect to the Target, which is the angle θN . By

convention, θN is measured from the inward normal vector of the Target docking port −nT . A

graphical representation is showed in Fig. 2.3.2.

𝒆𝑅

𝒆𝑇𝒆𝑁 𝒏𝑇 −𝒏𝑇

𝒏𝐶

𝒙𝑏 𝒚𝑏

𝒛𝑏

TARGET

CHASER

𝜃𝑁

Figure 2.3.2: Convention of the attitude angle θN in the Hill’s frame (black). The docking port is

displayed in green, along with their respective normal vectors nj, for both Target (dark red) and

Chaser (dark blue).

The rotational equation of motion of the Chaser is:
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Izz θ̈N = −Dψ̇ (2.3.6)

Where ψ̇ is the acceleration given to the reaction wheel to produce a torque, required and commanded

by the control system. The eq. (2.3.6) can be solved analytically and the solution is:

θ̇N = − D
Izz
ψ̇t+ θ̇N0

θN = θ̇N t+ θN0

(2.3.7)

2.4 Constraints definition

A set of constraints is implemented to assure safety and feasibility of the trajectory, following the

guidelines for an assured satellite proximity operations, given by [22].

• Constraint 1 - Asymmetric bounded thrust (F ∈ [Fmin : Fmax]): the Chaser is under

reasonable thrust limitations. In some cases the thrust capabilites may not be equal in all

directions. In this case, due to the size and weights of a typical CubeSat, one thruster is

assumed to be twice as powerful as the other.

• Constraint 2 - Maximum reaction wheel velocity (|ψ| ≤ ψmax): referred to the physical

limitations of the attitude control actuator, the reaction wheel. In some cases, in order to

reduce overall wear [28], in it is possible to impose a maximum velocity lower than the possible

one, increasing durability of the reaction wheel.

• Constraint 3 - Maximum reaction wheel acceleration (|ψ̇| ≤ ψ̇max): As before, to prevent a

premature failure of the reaction wheel due to excessive wear, a repeated cycle of operation of

the reaction wheel at the extreme ends of positive and negative acceleration is avoided [28].

The first set of three constraints embeds the physical limitations of the actuators and the prevention

of premature failures due to excessive overload. The next set of constraints is added to enforce

limitations on the relative velocity and attitude of the Chaser, due to safety considerations.

• Constraint 4 - Recoverable relative velocity limit (|ẋ| ≤ vxmaxand|ẏ| ≤ vymax): to maintain

recoverable relative motion, the relative velocity is constrained to not exceed a maximum

threshold, allowing the actuators to arrest motion within a limited time frame. In this work,

the maximum velocity is taken as the one that the spacecraft can travel in the x or y direction

and stop within one minute, considering the available thrust. In other words:

vxmax = vymax = vmax =
Fmax
m

tstop (2.4.1)

• Constraint 5 - Bounded relative velocity limit (||v|| ≤ vdock + fs||r||/Tc): it links the speed

and the relative distance, meaning that the Chaser should not be traveling exceedingly fast

when is getting closer to the Target. This constraint can be formalized using a temporal
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requirement to avoid collisions, through the time-to-collision Tc, function of the available

thrust, spacecraft mass and separation from the Target.

Tc =

√
2m

Fmax
||r|| (2.4.2)

The relative velocity limit is thus defined, including a safety factor fs. The maximum final

velocity is constrained to respect a threshold to ensure a safe docking. In this case, from the

problem statement, it follows that: vdock = 0.2 ms−1

• Constraint 6 - Maximum angular velocity (|θ̇N | ≤ θ̇Nmax): As for the translational velocity,

also the spacecraft rotational velocity is limited, allowing to react or recover from commands

in a reasonable time frame.

• Constraint 7 -Maximum angular acceleration (|θ̈N | ≤ θ̈Nmax): excessive rotational acceleration

may cause damage to the spacecraft structure, payload or one of all the appendages and

deployables, such as solar panels, antennas and so on. To avoid these circumstances, a

constraint is introduced to the angular acceleration.

Finally, the last constraint is imposed to force the Chaser to remain inside the Line-of-Sight (LoS)

of the Target docking port sensors during the docking phase.

• Constraint 8 - Docking cone (αC ≤ αLoS): for a planar problem, it is trivial to define the

LoS. Indeed, it is the section of a disk characterized by a semi-angle αLoS with respect to the

outward normal vector of the Target docking port nT .

The safety and physical constraints are summarized in Table 2.4.1. Numerical values, assumed for

the problem faced in this work, are indicated.

# Description Expression Value

1 Asymmetric bounded thrust F ∈ [Fmin : Fmax] Fmin = −1N and Fmax = 2N

2 Maximum RW velocity |ψ| ≤ ψmax ψmax = 576.0 rad s−1

3 Maximum RW acceleration |ψ̇| ≤ ψ̇max ψ̇max = 181.3 rad s−1

4 Recoverable relative velocity limit |ẋ| ≤ vxmaxand|ẏ| ≤ vymax vmax = 10 m s−1

5 Bounded relative velocity limit ||v|| ≤ vdock + fs

√
Fmax
2m ||r|| vdock = 0.2 m s−1 and fs = 1

6 Maximum angular velocity |θ̇N | ≤ θ̇Nmax θ̇Nmax = 2 deg s−1

7 Maximum angular acceleration |θ̈N | ≤ θ̈Nmax θ̈Nmax = 1 deg s−2

8 Docking cone αC ≤ αLoS αLoS = 45◦

Table 2.4.1: Summary of the constraints and their numerical values
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Chapter 3

Deep Meta-Reinforcement Learning

Before diving into the details of Deep Meta-Reinforcement learning, it is imperative to explain how

standard Reinforcement learning works.

Reinforcement learning is, as previously mentioned in Sec. 1.2, a model-free algorithm. This means

that this kind of learning process can be applied independently from the problem that is faced.

So, one may wonder how Reinforcement learning process works. In particular, a RL learner, also

known as Agent, learns what to do through the interaction with the environment, that is peculiar

for each problem under analysis. This is possible thanks to a logic that will be explained hereafter

that rewards the Agent if the selected action is a good one. Hence, simply-put the learning process

is based on getting the best outcome from all the actions that are taken. However, the Agent is

not told which actions it should take, but it must discover which one yield the best reward.

Differently from supervised and unsupervised learning, where, respectively, the learner is trained

on a database of labelled examples provided by a knowledgeable external supervisor or tries to

find a hidden structure in a database of unlabelled data, Reinforcement learning Agent learns

“autonomously”, optimizing the reward it gets throughout the entire learning phase. It can be said

that Reinforcement learning, combined with the use of Neural Networks (deep RL), is similar to

a peculiar learning process that everyone knows: human learning. However, there are at least two

aspects of human-like learning that Deep Reinforcement learning lacks. First, deep RL requires a

massive volume of training data compared with the ability of humans to learn a wide range of tasks

even with less experience. Second, deep RL Agent is typically specialized on one restricted task

domain, whereas humans are able to adapt to changing task conditions, using the past knowledge

of similar but not equal tasks [29].

In order to meet these challenges, Deep Meta-Reinforcement learning algorithms have been developed.

The main feature is that standard deep RL techniques are used to train a particular kind of neural

networks, known as Recurrent Neural Network (RNN) in such a way that the recurrent network

is able to implement its own and autonomous RL procedure, to tackle different problems. As a

consequence, this procedure grants an adaptiveness and sample efficiency that the standard RL

procedure lacks.
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3.1 Reinforcement Learning elements

Being a Reinforcement Learning procedure, Meta-RL shares the same features of standard RL

algorithms. The main elements of a reinforcement learning system are typically the following ones:

• The environment, peculiar for any problem. It is described, for this specific case, through the

dynamics, with the equations of motion. It dictates the evolution of the states of the learner,

through the laws of the dynamics.

• The Agent, which is the learner. It is thrown into the environment to interact with it, through

a set of actions, and retrieve the evolution of its states by observations.

• The policy, that defines how the Agent behaves at a given time. In other words, it maps

the states in which the Agent currently is, by interacting with the environment, into a set of

actions to be taken. The policy is the main actor of a reinforcement learning algorithm. It is

indeed sufficient to determine the correct behavior that the Agent should follow. Typically,

policies are stochastic and defined as a probability distribution for each action.

• The reward function defines the goal a reinforcement learning problem. From the interaction

with the environment, once that an action has been selected, the Agent receives a numerical

prize, known as reward. If the action that has been selected is a “bad” one which means that

the state in which the Agent is, it is not a “good state”, the reward received is low. When

this is the case, the policy is typically changed and different actions are taken. The global

objective of a RL algorithm is to maximize the total reward, given as a sum of the rewards

accumulated throughout the entire trajectory.

• The value function is, instead, the total amount of reward, referred to a state, that the Agent

can expect to accumulate over the future, starting from that state. In other words, the value

function indicates whether starting from a certain state can grant the maximum reward in

the future.

In the framework of Reinforcement learning, a peculiar challenge that arises is the trade-off between

exploration and exploitation. In particular, the Agent, in order to obtain the highest amount of

reward, must prefer actions that it has collected during its experience and found to be effective in

producing reward. On the other hand, to discover such actions or, eventually, better ones, it has

to explore, selecting new actions. In other words, the Agent has to exploit what it already knows,

obtaining rewards, but it has also to explore in order to find better actions, though neither of the two

can be preferred or individually pursued without failing the task [30]. The exploration-exploitation

trade-off is still under analysis among mathematicians, even if some techniques to decouple them

without major drawbacks has been already developed and applied in Meta-Reinforcement learning

[31], but not considered in the context of this work.
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3.2 Markov Decision Processes

In order to fully understand the following description of the learning process of a meta-reinforcement

learning or, more generally, of a reinforcement learning-based algorithm, it is mandatory to introduce

notions about Markov Decision Processes (MDPs) [30].

A reinforcement learning task that satisfies the so-called Markov property is defined as a Markov

Decision Process. The Markov property is a characteristic of an environment of being able to

provide a complete information about the state to the Agent, without keeping track of the past

history. In short, the current information is a sufficient statistic for the future. Formally, in a more

mathematical sense:

P[St+1 | St] = P[St+1 | S1, ..., St] (3.2.1)

The above equation means that the probability to end up in the next state St+1 depends only on

the actual state St, thus the history of all the visited states is not a necessary information. The

eq. (3.2.1) can be generalized including actions and rewards.

In a Markov decision process, the timespan is discretized into time steps, t = 0, 1, 2, 3 ... .At each

time step, the Agent receives information of the environment’s state St ∈ S, where S is the so-called

State Space, that contains the set of possible states. In state St, an action At ∈ A(St) is selected,
where A(St) is the set of actions available in state St, also known as Action Space. One step later,

as a consequence of its action and the previous state, the Agent ends up in a new state St+1 and

receives a reward Rt+1 ∈ R ⊂ R. This cycle, illustrated in Fig. 3.2.1 is repeated until some end

conditions are met, defining an episode. In each episode, a sequence of states, actions and rewards

is collected and it is known as trajectory, usually in the form:

S0, A0, R1, S1, A1, R2, S2, A2, R3, S3...

Figure 3.2.1: Agent-environment cyclic interaction. Figure taken from [30]

Consider now a finite Markov decision process, which means that the state space S, the action-state
space R and the reward function R are all discrete and finite spaces. By including actions

and rewards on the equation (3.2.1), it is possible to define the transition probability as the the
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probability to end up in a particular state s′ ∈ S and collect a reward r ∈ R as a function only of

the current state s ∈ S and the action a ∈ A(s), associated with it .

p(s′, r | s, a) = P(St+1 = s′, Rt+1 = r | St = s,At = a) (3.2.2)

Where p(s′, r | s, a) is intended as a probability distribution for each choice of s and a (eq. (3.2.3)).

∀s ∈ S, ∀a ∈ A(s),
∑
s′∈S

∑
r∈R

p(s′, r | s, a) = 1 (3.2.3)

Given the finite MDP dynamics specified at eq. (3.2.2), it is possible to compute the marginal

probability of ending up in a state s′ starting from a state s and selecting action a. This is known

as state-transition probability and can be expressed mathematically as:

p(s′ | s, a) = P(St+1 = s′ | St = s,At = a) =
∑
r∈R

p(s′, r | s, a) (3.2.4)

And, similarly, the expected reward as a function of a state-action pair s and a can be obtained

starting from eq. (3.2.2) and evaluating the expected value of the rewards. This operation, applicable

to any finite and countable random variable, is defined as the sum of all the values assumed by the

variable weighted by their probabilities.

r(s, a) = E[R | St = s,At = a] =
∑
r∈R

r
∑
s′∈S

p(s′, r | s, a) (3.2.5)

It is worth mentioning that all the discussion above is valid only when dealing with finite Markov

decision processes. Naturally, there exist a formulation suited for continuous random variables [32],

not treated in this work.

3.3 Deep Meta-Reinforcement learning key features

After the brief overview on reinforcement learning framework, Deep Meta-Reinforcement learning

can be discussed and detailed. For the sake of clarity, from now on Deep Meta-RL will be referred

simply as Meta-RL. As already mentioned, Meta-RL Agents are able to learn different but similar

tasks. In this work, for example, the tasks that make up the training process are interrelated RL

problems, where only initial conditions are changed.

Consider now a distribution, the prior, over Markov Decision Processes (MDPs), named as D.
Meta-RL is able to learn a prior-dependent RL algorithm, in the sense that it will perform well

on average on MDPs drawn from the distribution D. Meta-RL algorithm is characterized by two

phases: training and testing. During training, the Agent, embedding a Recurrent Neural Network

(Sec. 4.2), interacts with a sequence of MDP environments, also called as tasks, through episodes.

At the beginning of a new episode, a new MDP environment m ∈ D and an initial state for this

task are sampled, while the internal state of the Agent, in terms of the pattern of activation of the
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neurons over its recurrent units, is reset. The agent then executes the action-selection strategy on

the newly generated environment for a certain number of discrete time-steps. At each time-step,

as it happens in a non-meta Reinforcement learning algorithm, an action at ∈ A is executed as a

function of the whole history Ht = {x0, a0, r1, ..., xt−1, at−1, rt, xt} of the agent interacting in the

MDP m ∈ D during the current episode. The network weights are then trained to maximize the

sum of observed rewards over all steps and episodes [29].

After the training process, the Agent’s policy is fixed, which means that the weights of the neural

network are frozen, but the activations are changing due to inputs from the environment and the

hidden state of the recurrent layers. This phase, known as testing, consists then in the evaluation of

the policy on a set of MDPs that can be drawn from the same distribution D used during training

or from a slightly modified version of that distribution. The internal state goes under reset at

the beginning of the evaluation of any new episode. Now, since the policy is fixed, the Agent is

history-dependent, due to the fact that embeds a recurrent network. Finally, when dealing with

any new MDP environment, the Agent is able to adapt and select a strategy that optimizes rewards

for that task [29].

In order to fully understand how this Agent is able to learn and adapt to new similar environments,

Artificial Neural Networks and, especially, Recurrent Neural Networks are explained in chapter 4.

3.4 Policy Gradient Methods

Any reinforcement learning or meta-reinforcement learning algorithm focuses on training an Agent,

which embeds a neural network, to learn how to take actions and accomplish predetermined

objectives. In this section, the way the Agent selects an action and learn will be discussed.

Firstly, it is necessary to specify that the Agent chosees an action according to a certain policy π.

This policy maps an observation Ot of the Agent’s environment to an action At, making the Agent

a closed-loop controller.

Different approaches have been adopted in literature. Among them, the ability to learn a parameterized

policy without consulting a value function is applied in this work. This means that the strategy

learned from the Agent is independent from the knowledge of the expected cumulative reward.

However, as it will be explained, the value function will still be used for the learning process of the

policy parameter, but not for the action selection.

3.4.1 Policy Approximation

The policy is a neural network that takes as input signal the observation Ot, coming from the

interaction with the environment, and outputs a median and standard deviation as output, in
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order to define a probability distribution. This probability is written as πθ(a | Ot = o), where θ

are the parameters of the policy neural network.

It is paramount to underline that there exists a distinction between observation and state. Indeed,

in some scenarios, the observation may contain more or less information of the state. This heavily

depends on which kind of MDP is under analysis. Typically, when a MDP is not fully observable,

this distinction between observation and state must be taken into consideration and the MDP is

defined as a Partially Observable Markov Decision Process (POMDP). In the context of this work,

however, since the chaser is assumed to be omniscient, see chapter 2, the MDP is a fully observable

one. Hence, the observation and the state are one and the same.

Going back to the definition of the policy, the probability to take a certain action a at time tm

given the environment in state s at the same time step, with parameter θ, can be written as follows:

πθ(a | s) = π(a | s, θ) = P(At = a | St = s,Θt = θ) (3.4.1)

The learning process of the policy, being itself a neural network, consists in the update of the policy

parameters θ based on the information contained in the tuples (St, At, Rt+1). Eventually, at the

end of the learning process, the policy becomes the optimal one, which is typically denoted as π∗.

3.4.2 Policy gradient methods

The learning process of the policy, parameterized in θ, consists in the optimization of an objective

function J(θ) over the parameter space.

Policy gradient methods aim at the maximization of this cost function, hence their updates approximate

gradient ascent in J . For the sake of clarity, gradient ascent differs from gradient descent only in

the sign.

θt+1 = θt + α∇̂θJ(θt) (3.4.2)

In eq. (3.4.2), α is the learning rate associated with the policy neural network and ∇̂θJ(θt) is a

stochastic estimate of the policy gradient. By applying the expectation of the estimate, the policy

gradient ∇θJ(θt) is approximated with respect to its parameters θ.

There exist different expressions for the definition of the policy gradient objective function [33]. A

trivial choice could be the expected sum of discounted rewards, that identifies the value function

V πθ,γ(s0). In this way, the optimization of the cost function results in the maximization of the

expectation or, equivalently, in the collection of the highest possible discounted reward.

J(θ) = E

[ ∞∑
t=0

γtrt

]
(3.4.3)
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However, the most commonly used gradient estimator [33] has the form:

∇θJt(θ) = Et

[ ∞∑
t=0

∇θ log πθ(at | st)Aπw(st,at)

]
(3.4.4)

In eq. (3.4.4), the gradient of the objective function consists in the expected value of the sum of

the product between the gradient of the log probability logπθ(at | st) and the estimation of the

Advantage function, detailed in Sec. 3.4.3. The use of the log probability over the probability

distribution is a common trick in machine learning [34]. In particular, when the probability

distribution is a likelihood function, the derivative of its log probability acts as a weighted gradient

with reward, that pushes more in the direction of higher reward and viceversa.

From the definition of the gradient, which is the derivative of the objective function, it can be

finally written that:

JPGt (θ) = J(θ) = Et

[ ∞∑
t=0

log πθ(at | st)Aπw(st,at)

]
(3.4.5)

The objective function expressed in eq. (3.4.5) depends on the value assumed by the advantage.

Especially, if the advantage function is positive, which means that the action selected by the Agent

resulted in a better average return than expected, the probability of selecting that action increases.

On the contrary, if the advantage is negative, the probability decreases. Even if less intuitive, this

expression of the objective function is more prone to the selection of a better policy.

3.4.3 Value Function and Advantage

The goal of the Agent during the learning process it to maximize the total expected reward.

However, since rewards are a quantification of a single state transition, the maximization of each

reward obtained could lead to a poor policy or, eventually, to the complete failure of the task.

Therefore the Agent must take into consideration not only the direct consequences of its actions

but also their long term effects. For this purpose, the value of a state is defined as the expected

value of the sum of discounted future rewards. Assuming a discounting factor γ < 1, the expression

of the state value function can be written as:

V π,γ(st) = E

[ ∞∑
τ=0

γτrt+τ

]
(3.4.6)

The value function estimates how good is a state assuming to start from that state and reach a

future one in a horizon determined by the discounting factor . In other words, it measures the

quality of a possible trajectory. The discounting factor determines how greedy the Agent should be

in the collection of high rewards. To put in another way, it quantifies how much the Agent should

prioritize the immediate reward over the long term ones.

The eq. (3.4.6) can be expressed in a recursive form, which is more convenient for practical

implementation:
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V π,γ(st) = E[rt] + γV π,γ(st+1) (3.4.7)

However, the value function does not give information on how better the outcome of a certain action

will be with respect to the prediction made at previous states. It only provides a measurement

of the expected outcome, assuming to follow the current policy. Therefore, to compare whether

the actions leads to a better or worse outcome, it is needed to introduce another function, called

advantage function.

Aπ,γ(st,at) = Qπ,γ(st,at)− V π,γ(st) (3.4.8)

where Qπ,γ(st,at) is the state-action value function, that estimates the value function starting from

state st and selecting an action at according to a policy π, thus giving a measurement of the true

value of each state. Therefore, from eq. (3.4.8) it is worse considering the value function V π,γ(st)

as the Agent’s best guess for each state, according to its current policy.

To put it simply, the advantage function is positive if the selected action leads to a trajectory with

better outcome with respect to the current policy followed by the Agent. Or, similarly, it quantifies

how much better an action is compared to the expected outcome obtained by following the current

policy.

The advantage Aπ,γ is not a quantity already determined. Therefore, it must be evaluated or,

better to say, estimated.

In literature [33], there exists numerous techniques to estimate the advantage function, such as

the Generalized Advantage Estimator. However, in this work, the advantage function is computed

differently, as the difference between the empirical return and a state value function baseline. The

equation is shown hereafter in eq. (3.4.9).

Aπw(st,at) =

[ ∞∑
τ=0

γτrt+τ

]
− V π

w (st) (3.4.9)

Where the state value function baseline V π
w (st) is obtained as output of a neural network. For this

reason, both the advantage function and the baseline depend on the parameters w of the neural

network. For the sake of clarity, the expression of the cost function used to learn the value function

V π
w is reported in eq. (3.4.10). It consists in the expected value of the squared error between the

prediction of the value function, output of the neural network, and the empirical return.

JV Ft (w) = J(w) = Et

(V π
w (st)−

( ∞∑
τ=0

γτrt+τ (st,at)

))2
 (3.4.10)
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3.4.4 Actor-Critic algorithm

The algorithm presented so far can be referred as an Actor-Critic algorithm. The Actor, which

represents the policy gradient algorithm, learns the parameterized policy while the Critic learns

and updates the value function, used to update the Actor’s policy.

Actor-Critic methods consists in a simultaneous optimization of policy and value function, that

are linked together thanks to the advantage function. As explained in [35], Actor-Critic algorithms

show good convergence and are commonly used for reinforcement learning and meta-reinforcement

learning algorithms.

As the Actor and the Critic have to learn, respectively, the policy and the value function, two neural

networks are required. The Actor neural network produces the parameterized policy πθ(a | s), while
the Critic calculates the value function, optimizing the objective function expressed in eq. (3.4.10),

which is the squared-error between the true sum of discounted rewards and the Critic’s assessment

V π
w . The rewards collected after a certain number of episodes are batched together in roll-outs and

the two networks are simultaneously updated to optimize their objective function. For the sake of

completeness, the two objective functions of the Actor and the Critic are also reported here below:

JPGt (θ) = Jt(θ) = Et [
∑∞

t=0 log πθ(at | st)Aπw(st,at)]

JV Ft (w) = Jt(w) = Et
[
(V π
w (st)− (

∑∞
τ=0 γ

τrt+τ (st,at)))
2
] (3.4.11)

In addition, gradient ascent is performed on θ and gradient descent on w. The update equations

are:
wt+1 = wt − αw∇wJ(wt)
θt+1 = θt + αθ∇θJ(θt)

(3.4.12)

Where αw and αθ are respectively the learning rates of the value function and policy neural

networks. Note that gradient descent optimization algorithms are explained in detail in Sec. 4.3.

3.5 Proximal Policy Optimization (PPO)

As stated in Sec. 3.3, Meta-RL aims at learning a prior-dependent RL algorithm, with the prior

being a distribution over MDPs. Reinforcement learning algorithms have an intrinsic pathology.

In particular, the fact that generated data used for training are themselves dependent on the

current policy causes instability in the learning process. In other words, as the Agent learns, the

data distribution over observations and rewards constantly changes. If the policy update is too

large, the policy network could be brought into a region of the parameters space that corresponds

eventually to a very poor policy. As a consequence, the next training dataset, collected following the

current bad policy, would trap the policy network in that region, causing it to never recover again

and follow a completely wrong policy. This can be translated in the Agent losing its understanding
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of the environment.

This can be solved simply by limiting the updates size of the policy.

3.5.1 Trust Region Method

Trust Region Policy Optimization (TRPO) [36] algorithm follows this approach. It implements a

“surrogate” constrained objective function.

JTRPOt (θ) = Et
[
πθ(at, st)

πθold(at, st)
Aπw(st,at)

]
(3.5.1)

The constraint is introduced through the so-called Kullback-Leibler divergence, which is a measure

of the difference between two probability distributions. The constraint, formalized in eq. (3.5.2),

obliges the policy update to do not move far away from the current policy.

Et[KL[πθold(. | st), πθ(. | st)]] ≤ ζ (3.5.2)

In both equations, the term πθold refers to the old vector of policy parameters. It is then clear that

now the update between two consecutive steps of the policy network parameters is reduced in size.

The TRPO algorithm aims at maximizing the new surrogate objective, that differs from the

objective function in eq. (3.4.5) for the term πθ(at,st)
πθold (at,st)

. This ratio is the probability of an action

occurring following the new policy πθ divided by the probability of the same action to occur

under the old policy. The maximization of the new objective function can be translated into

the maximization of this ratio of probabilities for a given action and of the associated advantage

function. The effects of this optimization can be understood with an example. Imagine to select an

action that leads to a terrible result. For this reason, the probability to take this action in the new

policy should be lower with respect to the previous policy, thus the ratio becomes lower than 1.

The advantage function, at the same time, will be negative for a non convenient action. Therefore,

maximizing the objective function JTRPOt (θ) will produce the least negative product between the

ratio and advantage and, as a consequence, will reduce the probability to retake the same action

according to the new policy.

3.5.2 Clipped Surrogate Objective

The TRPO algorithm is very complex to implement. For this reason, in [37] an algorithm inspired to

the Trust Region Methods has been developed. The Proximal Policy Optimization (PPO) inherits

some of the benefit of the TRPO, but in a much simpler version to implement. A new objective

function is introduced in the PPO algorithm: it is the expectation of the minimum between two

terms, where the first one is the ratio-advantage product, as in the TRPO surrogate objective

function, and the second one is a truncated version of the policy ratio obtained by a clipping

operation.

JPPOt (θ) = Et
[
min(rt(θ)A

π
w,t, clip(rt(θ), 1− ϵ, 1 + ϵ)Aπw,t)

]
(3.5.3)
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where rt(θ) is the ratio between the new and old policy at time step t and ϵ is an hyperparameter.

The selection of the minimum term heavily depends on the sign assumed by the advantage function.

If, for example, the advantage function is positive, the optimization tends to increase the probability

under the new policy to take the action with positive advantage. However the clipping parameter ϵ

limits the change in probability. The same happens if the advantage function is negative but with

the opposite result.

Figure 3.5.1: Plots showing a single time step of the clipped surrogate function LCLIP =

JPPO behavior with respect to the probability ratio r for positive advantages (left) and negative

advantages(right). The red circle on each plot shows the starting point of the optimization, i.e.

r = 1. Image taken from [37]

3.5.3 KL Adaptivity

In addition to the clipped surrogate objective, this work consider the Kullback-Leibler (KL) divergence

in the policy optimization algorithm. Differently from [37], where the KL divergence is also

introduced in the objective function as a penalty term, here it is considered as a control term

for the clipping parameter, as done in [20]. This technique, named servo-kl controls the value of ϵ

comparing the actual KL divergence with a target one, set as a hyperparameter.

The KL-divergence is computed in an approximate and biased form, used by [38] and reported in

eq. (3.5.4).

KL[πθ, πθold ] =
1

2
(logπθ − logπθold) (3.5.4)

Then, after selecting a maximum and minimum value for ϵ and a target KL divergence, the control

procedure is as follows:

ϵ = min(ϵmax, 1.5ϵ) if KLt <
KLtarget

2

ϵ = max(ϵmin,
ϵ
1.5) if KLt > 2Kltarget

(3.5.5)
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At the same time also the learning rate of the policy neural nets are modified to keep the KL

divergence near the target one.

3.6 Algorithm

This final section tries to put together all the notions and methods discussed throughout this

chapter. For the sake of clarity, the whole algorithm is presented hereafter.

Algorithm 1 PPO algorithm in Meta-RL

1: Initialization of neural network parameters θ and w

2: Initialization of the scalers

3: for episode = 1, 2, ..., E do

4: Reset the environment

5: Generate new environment

6: while not done do

7: Sample at from πθ(at | st) ▷ Select action

8: st+1; rt+1; done← Env(st;at) ▷ Interaction with the environment

9: Store the roll-outs

10: Update the scaler

11: for epoch = 1,2, ..., K do

12: Unroll the recurrent layer of each network ▷ Forward pass

13: Compute V π
w and Aπw

14: Compute Actor objective function JPPOt

15: Compute Critic objective function JV Ft
16: Perform a gradient ascent on the Actor parameters θ

17: Perform a gradient descent on the Critic parameters w

18: Adjust clipping parameter and learning rates to target a KL divergence
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Artificial Neural Networks

Artificial Neural Networks (ANNs) are a powerful tool to approximate complex, non-linear functions

without any knowledge of the function itself, but only based on input and output data. Because of

their wide range of applications, ANNs are commonly used in deep machine learning.

Artificial Neural Networks are a machine learning algorithm that tries to replicate the structure

of the human brain. It consists in millions of neurons, connected one to each other through the

synapses. Similarly, Artificial Neural Networks are made up of interconnected units, commonly

known as neurons, capable of exchanging and processing information and grouped into layers. In

deep learning, a variety of neural networks has been developed, with different structures and thus

different properties. In this work two types of ANNs are considered, in particular:

• Feed-Forward Neural Network (FFNN), where input data is processed only in the forward

direction.

• Recurrent Neural Network (RNN), needed for any Meta-RL algorithm. In particular, a

recurrent connection on the hidden units is added with respect to FFNN. This allows the

network to propagate data from earlier events to current processing steps, building so a

memory of time series events.

4.1 Feed-Forward Neural Networks

In Feed-Forward Neural Networks (FFNNs), sets of neurons are organised in layers, where each

neuron computes a weighted sum of its inputs. Input neurons take signals from the environment

and the output ones provide signals to the environment. In between them, there exist multiple

layers of neurons, called hidden neurons.

Feed-forward neural networks are loop-free and fully connected. In other words, each neuron

provides an input to each other neuron in the following layer, only in the forward direction. An

example of a FFNN is the single-layer perceptron network. This kind of neural network consists of

a set of input neurons, defined as the input layer, and a set of output neurons, defined as output
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layer. In this case, since no layers are present between the input and the output, the neurons

of the two layers are directly connected between each other. This means that the outputs of the

input-layer are sent to the neurons of the output layer, passing through the connections, known as

arcs. The weights are applied to the arcs that connect input and output layers.

If several layers are added between the input and output ones, the neural network becomes a

multilayer forward connected network. Here, the input and output layers are connected via at least

one hidden layer, built from sets of hidden neurons [39]. In figure Fig. 4.1.1 a FFNN is sketched,

with two hidden layers and one input and output layers.
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Figure 4.1.1: Graphical representation of a Feed Forward Neural Network with an input layer of

n-neurons (dark blue), two hidden layers of j-neurons and k-neurons respectively (dark grey) and

an output layer of m-neurons (dark red). Taken from [23].

4.1.1 Forward pass and Backpropagation

Neurons are semi-linear units that are represented by scalar values named activations, detoned by

a. The activations are the results of a non-linear function σ, defined as activation function, that

receives as an input a weighted sum computed from a weight matrix w and a bias matrix b. Each

connection between neurons, the arcs, is characterized by a weight [23].

The forward pass consists in the computation of the neurons’ activation of layer l, using as inputs

the activations of the previous layer l − 1. Mathematically:

pl = wlal−1 + bl

al = σ(pl)
(4.1.1)

Where p is the weighted sum and it is defined as preactivation. For what regards the activation

function σ, it must be a non-linear function, in order to correctly approximate a non-linear function.

Typically, the most used activation functions are sigmoid functions, such for example tanh, or the
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Rectified Linear Unit (ReLU).

For the sake of clarity, eq. (4.1.1) is written referred to each layer. In order to better describe the

forward pass, it could be useful to write the previous equation referred to each neuron r per layer

l. In particular:

plr =
∑

sw
l
rsa

l−1
s + blr

alr = σ(plr)
(4.1.2)

Considering now that the ultimate goal of a generic reinforcement learning algorithm is to optimize

a cost function. The training of a neural network consists in the update of the network parameter to

better describe the non-linear function. Before doing so, it is necessary to understand how changing

these parameters in a network influences the cost function mentioned before. This is what is called

backpropagation.

Assume a case of single training example of a Feed Forward Neural Network, made of L layers,

with an objective function J . The goal of backpropagation is to determine the sensitivity of the

objective function J with respect to the network’s parameters. In other words, backpropagation

consists in computing partial derivatives of the cost function with respect to weights and biases.

In particular, backpropagation, as the name suggests, starts from the outputs and moves back

through the network. In layer notation only, consider the last layer, characterised by the activation

aL and preactivation pL. Applying the chain rule and equations eq. (4.1.1):

∂J

∂pL
=

∂J

∂aL
∂aL

∂pL
=

∂J

∂aL
σ

′
(pL) (4.1.3)

According to eq. (4.1.3), the the rate of change of the objective function with respect to the

preactivation of neurons is influenced by the rate of change of the activation function σ
′
(pL) and

the sensitivity of the cost function to the neuron output, the activation function aL.

Now, propagating backwards to the input layer, it is possible to evaluate the sensitivity of the

objective function to small changes in the network parameters. Hence, for an arbitrary layer l:

∂J

∂pl
=

∂J

∂pl+1

∂pl+1

∂al
∂al

∂pl
=

∂J

∂pl+1
wl+1σ

′
(pl) (4.1.4)

And finally, considering eq. (4.1.1) and differentiating the cost function for the weights and biases:

∂J

∂wl
=

∂J

∂pl
∂pl

∂wl
=

∂J

∂pl
al−1 (4.1.5)

∂J

∂bl
=

∂J

∂pl
∂pl

∂bl
=

∂J

∂pl
(4.1.6)

The same equations can be derived at the scale of each neuron. Starting from eq. (4.1.2) and

applying the chain rule, a set of equations similar to the ones above is obtained. However, the
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derivation will not be explicitly written. Therefore, the rate of change of the cost function with

respect to an arbitrary neuron r in the generic layer l is:

∂J

∂plr
=
∑
s

∂J

∂pl+1
s

wl+1
sr σ

′
(plr) (4.1.7)

The sensitivity of the objective function to changes in the weights and biases, in neuron scale, is:

∂J

∂wlrs
=
∂J

∂plr
al−1
s (4.1.8)

∂J

∂bl
=
∂J

∂plr
(4.1.9)

4.2 RNN: Long Short-Term Memory (LSTM)

As already mentioned in chapter 4, Recurrent Neural Networks (RNN) are needed for any meta-rl

algorithm. In principle, recurrent networks can use their feedback connections to store representations

of recent input events in form of activations, where these feedback connections are possible due

to an inner loop that allows the information to persist. Looking at Fig. 4.2.1, the yellow block,

representing a portion of a neural network A, receives as input xt and outputs a value ht. The loop

allows information to be passed from one step of the network to the next. For a clear view of how

data is exchanges, suppose to unfold the loop obtaining a sequence of multiple copies of the same

network, each passing information to a successor, such as in Fig. 4.2.2.

Figure 4.2.1: Inner loop of a Recurrent Neural Network
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Figure 4.2.2: Unrolled Recurrent Neural Network

One of the major drawbacks of a standard Recurrent Neural Network is directly linked with their

property of memorizing and exchanging information. In particular, during training of the network,

which is different from the case of a FFNN, it is needed to propagate information through the

recurrent connections in-between steps. Without going into much details of the learning techniques

of standard recurrent networks, the most common learning algorithm is he backpropagation through

time (BPTT) [39]. In BPTT, the network is unfolded in time to construct a Feed-Forward Neural

Network and standard backpropagation is executed. However, a problem arises. The calculated

gradients and the signal error that flow backward in time tend to blow up or vanish. These

phenomena are called exploding and vanishing gradients problem, respectively, and are analysed

and discussed in [40].

To overcome these error back-flow problems, a particular kind of recurrent neural network is adopted

in this work. In particular, the so-called Long Short-Term Memory (LSTM) solves these problems.

These gradient-based neural networks are able to learn long-term dependencies, meaning that they

are able to store relevant information and forget unnecessary data.

Before illustrating how the gradient is backpropagated in a LSTM, it is imperative to explain its

architecture.

4.2.1 LSTM Architecture

LSTMs have a chain-like structure of repeating modules, as for any RNN, but the module has a

particular structure. It consists of three parts and each part performs an individual function. As

it can be seen in Fig. 4.2.3, the first part chooses whether the information coming from previous

timestamp is relevant and thus to be remembered or it can be forgotten. This part is known as

Forget gate. The second part, instead, is used by the cell to learn new information from the inputs,

and it is referred to as Input gate. Finally, the third part is the Output gate, that passes updated

information from the current timestamp to the next one. Similarly to a standard RNN, an LSTM

has also hidden state, represented in the figure by Ht−1, for the previous timestamp hidden state,

and Ht for the current one. In addition to that, LSTM have a cell state, indicated in the figure as
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Ct−1 and Ct. The name of this kind of recurrent networks comes exactly from the role played by

these two states: the hidden state is known as Short term memory and the cell state as Long term

memory.

LSTM

1 2 3
𝐶𝑡−1 𝐶𝑡

𝐻𝑡𝐻𝑡−1

Pass updated
information

Forget irrelevant
information

Add or update new 
information

Figure 4.2.3: Common subdivision of an LSTM module into three main parts, respectively the Forget

gate, the Input gate and the Output gate. Each of them plays a particular and unique role.

It may be useful to break down the architecture of the LSTM, having an detailed description of

the information flow through each gate.

Information is carried by the cell state, that passes through each of the three gates. Indeed, the

ability of the LSTM to remove or add information to the cell state relies upon the role played by

each gate. A common representation of a LSTM module is showed in Fig. 4.2.4, where the cell

state is represented by the horizontal line running through the top of the block. In the same figure,

gates can be recognized as the composition of a sigmoid neural network layer and a pointwise

multiplication operation. The output of the sigmoid layer is a number between 0 and 1. This

enables the LSTM to decide whether let information pass through the gates or forget it.
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𝐶𝑡

𝐻𝑡−1 𝐻𝑡

𝐶𝑡−1

𝐻𝑡

𝑓𝑡
𝑖𝑡

ሚ𝐶𝑡

𝑜𝑡

Figure 4.2.4: Inner operations of an LSTM, such as pointwise operations (grey ellipses) and neural

network layers (orange boxes). As before, Ct and Ht are, respectively, the cell state and the hidden

state.

4.2.2 Forward pass

For understanding how the forward pass is executed in a LSTM, it is now convenient to break down

also the operations made by each gate to the cell state, the hidden state and the input xt.

• Forget gate. It is made by the first sigmoid layer and a pointwise multiplication, and decides

what information can be ignored Fig. 4.2.5. It receives as inputs the hidden state of the

previous time-step Ht−1 and the input from the environment xt. It then outputs a number

between 0 and 1, thanks to the sigmoid layer, for each number in the cell state Ct−1. In other

words, if the information is worth to be remembered, the output is 1. Viceversa, if this is not

the case, the output is 0. Mathematically, the operation made by the forget gate is:

ft = σ(Wf [Ht−1, xt] + bf ) (4.2.1)

where Wf and bf are the weight and bias associated with the sigmoid neural network layer.
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Chapter 4. Artificial Neural Networks

s

𝑥𝑡

𝐻𝑡−1

𝑓𝑡

Figure 4.2.5: Forget gate of a LSTM

• Input gate. It decides what new information will be stored in the cell state. In the input

gate two main operations are executed. First, the hidden state Ht−1 and the external input

xt flow through a sigmoid layer which determines the values to update. Next, a tanh layer

creates a vector of values, C̃t, to be eventually added to the state. From the combination of

the two outputs from the sigmoid and tanh layers, it is possible to generate an update to the

cell state. The operations it and C̃t, made in this gate, can be seen in eq. (4.2.2), where Wi

and bi are weight and bias associated with the sigmoid layer, while WC and bC are the ones

associated with the tanh layer. A graphical representation is shown in Fig. 4.2.6.

it = σ(Wi[Ht−1, xt] + bi)

C̃t = tanh(WC [Ht−1, xt] + bC)
(4.2.2)

s tanh

𝑥𝑡

𝐻𝑡−1

𝑖𝑡

ሚ𝐶𝑡

Figure 4.2.6: Input gate of a LSTM

Thanks the outputs of the input gate and forget gate, it is now possible to update the old cell state

cell Ct−1 into the new cell state Ct. The update is performed as indicated in eq. (4.2.3) and shown

in Fig. 4.2.7.
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Ct = ftCt−1 + itC̃t (4.2.3)

In particular, from eq. (4.2.3), it can be seen that the old cell state is multiplied by the output of

the forget gate. This means that part of the information is discarded. Then, a new update, scaled

by the output of the sigmoid layer in the input gate, is added to the modified old cell state. As a

result, the new cell state Ct is computed.

x +

x

𝐶𝑡𝐶𝑡−1

𝑓𝑡
𝑖𝑡

ሚ𝐶𝑡

Figure 4.2.7: Update process of the cell state of the previous time-step, Ct−1.

• Output gate. It provides a filtered version of the cell state as output. First, a sigmoid

layer decides what parts of the cell state will enter in the outputs of the gate. Before the

multiplication with the sigmoid layer output, the updated cell state passes through a tanh

layer, that clips the cell state values between −1 and 1. The procedure is formalized in

eq. (4.2.4), where Wo and bo are the biases associated with the sigmoid layer in the output

gate. In Fig. 4.2.8, the flow of the information is illustrated. A new hidden state exits from

the output gate and it will be fed into a new memory cell.

ot = σ(Wo[ht−1, xt] + bo)

ht = ot tanh(Ct)
(4.2.4)
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Figure 4.2.8: Output gate of a LSTM.

4.2.3 Backpropagation

The backpropagation of a LSTM is not straightforward as in the case of the Feed-Forward Neural

Networks, due to the complex interaction of its layers. Nevertheless the approach still consists in

the identification of the dependencies and the application of the chain rule, obtaining the sensitivity

of a cost function J with respect to the weights and biases.

4.3 Gradient descent optimzation through Adam Optimizer

The gradient of the cost function obtained through backpropagation needs to be optimized in last

phase of the learning process of the neural networks, for both FNN and LSTM. In this work, Adam

Optimizer is selected as the algorithm of gradient descent optimization. However, as explained

from the creators of this algorithm in [41], an adequate and brief overview of other gradient descent

algorithms [42] is needed to fully understand how Adam Optimizer works.

4.3.1 Vanilla Gradient Descent and Stochastic Gradient Descent (SGD)

Gradient descent is a technique aimed at the minimization of an objective function J(θ), parameterized

by model parameters θ. These parameters are updated in the opposite direction of the gradient of

the objective function ∇θJ(θ) with a step size η called learning rate. This process, that ends when

the gradient becomes null, leads eventually to a local optimal solution based on the batch of data

used for the evaluation of the gradient.

The most common gradient descent method is the so-called Batch Gradient Descent or Vanilla

Gradient Descent. The entire dataset is used as a batch for the descent, as expressed in eq. (4.3.1).

Typically, this method is slow and does not allow the update of the dasatet with new information,

thus it can be distinguished as an offline method. In the context of a reinforcement learning
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algorithm, its use is not acceptable.

θ = θ − η∇θJ(θ) (4.3.1)

On the other hand, Stochastic Gradient Descent (SGD) is a variation of the Vanilla Gradient

Descent, well-suited for neural network approximation. In particular, the update of the parameters

is not performed for the entire dataset as before, but for randomly selected data point xi and label

yi:

θ = θ − η∇θJ(θ;xi; yi) (4.3.2)

Compared to Batch gradient descent, that performs redundant computations in case of large

datasets, SGD executes one update at a time. Therefore, it is usually much faster and can be

used to learn online. However, the use of single data for the updates increases the variance and

leads to a fluctuating objective function, that allows a better exploration of the domain at the cost

of worst performances in terms of convergence to the exact minimum.

By mixing the two previous methods, Mini-batch gradient can achieve a more stable convergence

to the local minima and a very efficient computation of the gradients. In particular, it performs an

update for every mini-batch of n training examples:

θ = θ − η∇θJ(θ;xi:i+n; yi:i+n) (4.3.3)

Typically, mini-batch gradient descent is one of the most chosen algorithm for the training of a

neural network. Furthermore, when dealing with mini-batch gradient descent, it is common to use

the term SGD to refer to this method.

4.3.2 Gradient descent optimization algorithms

Stochastic gradient descent suffers when dealing with surfaces that shows a higher steepness in

one dimension than in another [43], often called as ravines. This areas are usually close to the

local optima. The SGD tends to oscillate across the slope of the ravine without making particular

process on the descent. To face this issue, adding a momentum term [44] dampens the oscillations

and accelerates the descent in the relevant direction, towards the local optimum. In particular,

this is achieved by adding a fraction γ of the update vector of the past mini-batch to the current

update vector. In other words:

vt = γvt−1 + η∇θJ(θ)
θ = θ − vt

(4.3.4)

The eq. (4.3.4) can be explained as follows. The momentum term increases for those dimensions

whose gradients point always in the same direction and, instead, reduces the updates of those

dimensions whose gradients often change direction. As a consequence, the convergence is faster

and the fluctuation are reduced. The momentum-based methods, however, do not take into
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consideration the shape of the surface and, while multiple parameters are being updated, the

learning rate remains fixed and common for each parameter.

To cope with these limitations, an adaptive algorithm has been developed. Known as Adagrad

[45], this algorithm adapts the learning rate to the parameters, performing larger updates for rare

parameters and smaller updates for more frequent ones. Thus, the learning rate is increased when

infrequent parameters occur and it is reduced for those parameters that appear more frequently.

As a result, this algorithm is well-suited for dealing with sparse datasets.

According to the Adagrad method, the gradient of the objective function J(θ) can be expressed

singularly for each parameter θi, at time step t as:

gt,i = ∇θtJ(θt,i) (4.3.5)

Consequently, the SGD update for the i− th parameter at each time step t results in:

θt+1,i = θt,i − ηgt,i (4.3.6)

In eq. (4.3.6), the learning rate η is adjusted at every time step t for each parameter θi, based on

the past gradients computed for the same parameter. Hence:

η = η√
Gt,ii+ϵ

θt+1,i = θt,i − η√
Gt,ii+ϵ

× gt,i
(4.3.7)

Where, Gt is a diagonal matrix where each diagonal element (i, i) is the sum of the square of the

gradients, computed with respect to all parameters θ up to the current time step t. The other

term in the expression of the learning rate update, is ϵ, a smoothing term that avoids zero on the

denominator.

The main benefit of Adagrad is the peculiar property of automatically adjust the learning rate.

However, in order to do so, the update of η requires to accumulate squared gradients in the

denominator. This causes a gradually increasing sum on the denominator itself that tends to

shrink the learning rate, which eventually becomes infinitesimally small. As a consequence, the

algorithm is no longer able to learn and no more updates are performed.

There exist different algorithms that solve this flaw. One of them is worth mentioning, due to the

connection with the Adam Optimizer. The RMSprop is an unpublished, adaptive learning rate

method [46]. It is inspired to another algorithm, called Adadelta [47], that restricts the window of

accumulated past gradients to a fixed size. Differently from Adagrad, the sum of these gradients

is recursively defined as a decaying average of all past squared gradients eq. (4.3.8). The same

approach is followed in the RMSprop algorithm.
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E[g2]t = γE[g2]t−1 + (1− γ)g2
t

θt+1 = θt − η√
E[gt+ϵ

gt
(4.3.8)

In particular, in the RMSprop the value suggested for γ is 0.9.

4.3.3 Adam Optimizer

Adaptive Moment Estimation, also known as Adam[41] is an algorithm that computes adaptive

learning rates for each parameter, as done by Adagrad and RMSprop. However, in addition to

storing a decaying average of past squared gradients vt, Adam algorithm keeps track of a decaying

average of past gradients mt, similar to momentum:

mt = β1mt−1 + (1− β1)gt
vt = β2vt−1 + (1− β2)g2

t

(4.3.9)

In eq. (4.3.9), β1 and β2 are the decaying rates applied at the estimates of the first moment mt,

the mean, and the second moment vt, the variance, of the gradients, respectively. In [41], when

the two estimates of the moments of the gradients are initialized as zeros, they are biased towards

zero. A solution is proposed by the authors of [41] to counteract these biases. In particular, it is

possible to correct the two estimates computing a bias-corrected version as follows:

m̂t = mt

1−βt
1

v̂t = vt

1−βt
2

(4.3.10)

These bias-corrected versions are then used to update the parameters as it is done in Adagrad or

RMSprop. Adam update rule then results in:

θt+1 = θt −
η√

v̂t + ϵ
m̂t (4.3.11)

It is worth adding that the decaying rates are set to default as 0.9 and 0.999, as suggested by the

authors of [41]. The same is applied for the smoothing hyperparameter ϵ, which is taken as 10−8.

The only hyperparameter to manually select is the learning rate, that will be specified in chapter 5.
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Problem formulation through

Meta-RL

In the previous three chapters, the problem formulation (chapter 2) and the mathematical framework

(chapter 3, chapter 4) have been set up. This chapter tries to join the contents discussed previously,

focusing on the implementation of the Meta-Reinforcement learning algorithm, strongly inspired by

[20] and taking into consideration [23] for the adaptation of the Autonomous Rendezvous Proximity

Operation and Docking problem as a Markov Decision Process. In particular, the state space,

action space and the discretization of the dynamics are taken from [23]. The reward function

implemented to teach the Agent is described in a proper section. The last section points out the

Agent’s hyperparameters manually selected for this work. The chapter 6 will specify more the

reward function and the hyperparameters for each case considered in this work.

5.1 ARPOD as a Markov Decision Process

Markov Decision Processes are defined in Sec. 3.2. Recalling the notation used previously, the state

space S and the action space A of the ARPOD problem seen as a Markov Decision Process are

specified hereafter.

5.1.1 State Space S

For the ARPOD problem to be considered as a MDP, the Agent’s state has to satisfy the Markov

Property, discussed in Sec. 3.2. This means that the transition to the successive state has to

be function only of the present state and action. In other words, the state of the Agent must

contain enough information for the satisfaction of this requirement, without providing unnecessary

information that would end up slowing the learning process.

The dynamics of the Chaser Sec. 2.3, which represents the Agent in this application of Meta-RL to

the ARPOD problem, can be fully described by its position, velocity, attitude and angular velocity.

Hence, the state can be formalized as:
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St =
[
xt, yt, ẋt, ẏt, θNt , θ̇Nt

]
(5.1.1)

As done in [23], for an efficient backprogation [48], the state variables given as input to the neural

networks are scaled. The scalers considered in this work are inspired from [20] and they are

evaluated considering the mean and the variance of each state variable. In particular, the following

scaling is adopted:

sf = 1√
var(si)

+ 0.1
3

x̃i = sf (xi − µ(si))
(5.1.2)

Where sf is the scaling factor, var(si) is the variance of each state variable si and µ(si) is its mean

value.

Therefore, the Chaser state St fed as input for the neural networks learning process is denoted as

S̃t.

S̃t =
[
x̃t, ỹt, ˜̇xt, ˜̇yt, θ̃Nt ,

˜̇
θNt

]
(5.1.3)

5.1.2 Action Space A

Before illustrating the action space considered for the solution of this problem, it is imperative to

recall that the Markov decision process requires, in this case, a discrete-time model. For this reason

a new assumption is added to the previous ones, made in Sec. 2.3.

Assumption 6 Actions from the actuators are instantaneous impulses that are provided at the

beginning of each time step

In this work, as done in [23], the actions that the Chaser can execute consist in a velocity impulse

∆V , given through the thruster, and a commanded acceleration ψ̇ to the reaction wheel, that are

given as outputs from the Actor neural network. Furthermore, the Actor network uses a tanh

activation function in the second last layer, which clips the mean of each distribution outputted

between −1 and 1. However, the standard deviation of the distribution could bring these values

out of the range. For this purpose, the outputs are clipped again to enter inside the range.

Denoting now the real Actor neural network outputs as ∆̃V ∈ [−1; 1] and ˜̇ψ ∈ [−1; 1]. The output

of the Actor network can be formalized as:

Ãt =
[
∆̃V t,

˜̇
ψt

]
(5.1.4)

In [23], a convenient strategy is adopted to ease the learning process. In particular, the action

space A is restricted through the definition of lower and upper boundaries, decreasing its size

and reducing the computational time. Moreover, the restricted action subspace results to be time
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dependent and defined at each state. In this work, the same strategy is followed.

In the action space, two more subspaces can be identified and distinguished: the reaction wheel

acceleration space and the thruster impulse space. It is worth mentioning that these two subspaces

are not two separate entities. In particular, due to the dynamics of the problem, they are linked

in the following way: at each time step t the reaction wheel commands an acceleration impulse to

change the attitude of the Chaser and then, with the new orientation, the thruster gives a velocity

impulse that brings the Chaser in a new position.

Reaction Wheel Acceleration Space

The reaction wheel uniquely controls the attitude of the Chaser. Recalling that it is necessary to

respect the attitude constraints formalized in Sec. 2.4, Table 2.4.1, the reaction wheel action space

is directly affected by them. Their impact on the commanded acceleration can be determined using

the solution of the attitude dynamics equation 2.3.7. The Table 5.1.1 formalizes the constraints

that the reaction wheel action has to satisfy.

# Description Expression

2 Maximum RW velocity |ψ̇t| ≤ ψmax−ψt

tstep

3 Maximum RW acceleration |ψ̇t| ≤ ψ̇max
6 Maximum angular velocity |ψ̇t| ≤ − Izz

D

θ̇Nmax−θ̇Nt
tstep

7 Maximum angular acceleration |ψ̇t| ≤ − Izz
D θ̈Nmax

Table 5.1.1: Attitude and reaction wheel constraints referred to the commanded acceleration

Where tstep is the length of the time step t. Through the constraints, it is now possible to restrict the

reaction wheel action space. Indeed, taking into account the most strict constraints, the maximum

and minimum accepted values of the commanded acceleration can be computed. Consequently, the

upper and lower boundaries of the reaction wheel action space at time step t,
[
ψ̇INFt , ψ̇SUPt

]
are

determined.

The effective commanded acceleration, given the clipped output of the Actor network and the

boundaries to respect, results to be:

ψ̇t =
˜̇
ψt
ψ̇SUPt − ψ̇INFt

2
+
ψ̇SUPt + ψ̇INFt

2
(5.1.5)

Thruster Impulse Space

The same approach followed in the case of the reaction wheel action space is applied to the thruster

action space. Recalling the constraints on the velocity and on the thruster itself, #1, #4 and #5

in Table 2.4.1, it is necessary to formalize them such that the upper and lower boundaries of the
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thruster action space can be determined.

As done previously, the dynamics equations can be used for this purpose. The matrix notation of

the Clohessy-Wiltshire equations [26], reported eq. (2.3.4), is used to ease the explanation.

rt+1 = [Φrr(tstep]rt + [Φrv(tstep)]vt

vt+1 = [Φvr(tstep]rt + [Φvv(tstep)]vt
(5.1.6)

From the constraints on the velocity, the limit velocity can be computed. In particular, at each time

step t, the initial velocity ||vt+∆vt|| and the velocity of the next state ||vt+1|| must be inside the

acceptable velocity ranges expressed in constraints #4 and #5. For what concerns the recoverable

relative velocity limit (#4), as done in [23], a stricter constraint is enforced : ||v|| ≤ vmax. Note

that the constraint #4 could be eventually relaxed, being it applied to the components of the

velocity vector.

The velocity limit applied to the initial velocity can be temporally computed as the minimum

velocity between the limiting ones imposed in constraints #4 and #5

vLIM,temp
t = min

(
vmax, vdock + fs

√
Fmax
2m
||rt||

)
(5.1.7)

It can be noted that constraint #5 imposes a limit velocity that depends on the relative distance.

As explained before, since the velocity limit must be applied also to the relative velocity of the

next state, vt+1, it follows that a prediction of the relative distance reached at the next step, rt+1

is needed. Hence, it can be useful to determine the smallest relative distance that can be reached

starting from the current position, assuming to have already changed the attitude through the

reaction wheel.

To compute rt+1 through the planar CW equations, eq. (5.1.6), the knowledge of the relative

velocity at time t is necessary. Since it cannot be computed from the evaluation of the velocity

impulse given at time t, which is still unknown, it can be guessed as done in [23]. Considering now

the guessed velocity as vt ∈ {−vLIM,temp
t ; 0; vLIM,temp

t }, the first equation of the matrix form of

the planar CW equations can be solved to find the approximated smallest relative distance that

can be reached, rMIN
t+1 . Therefore, the smallest bounded relative velocity limit at time step t+ 1 is

quantified.

vMAX
t+1 = vdock + fs

√
Fmax
2m

rMIN
t+1 (5.1.8)

The still missing velocity limit is the one that must be respected at time step t. Nevertheless, by

using the CW equations and the knowledge of the position at time step t, rt, and of the velocity

limit at next time step, vMAX
t+1 , vMAX

t can be determined.

Altogether, the final velocity limit at time step t is formalized as follows.
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Chapter 5. Problem formulation through Meta-RL

vLIMt = min(vLIM,temp
t , vMAX

t ) (5.1.9)

For what concerns constraint #1, it can be easily formalized considering the relation between the

thrust and the velocity impulse, that is:

∆vt =
Ft
m
tstep (5.1.10)

Hence, the velocity impulse constraint is in the form:

∆vt = [∆vtmin,∆vtmax] (5.1.11)

At this point it is trivial to define the boundaries of the thruster impulse space at a given time

step. In particular:

∆vSUPt = min(∆vtmax, v
LIM
t − vt)

∆vINFt = max(∆vtmin,−vLIMt − vt)
(5.1.12)

Finally, the effective velocity impulse, given the clipped output of the Actor network and the

boundaries to respect, results to be:

∆vt = ∆̃vt
∆vSUPt −∆vINFt

2
+

∆vSUPt +∆vINFt

2
(5.1.13)

As noted by [23], the constraint on the actuator limit and the constraints on the Chaser velocity

are formalized separately. It may happen that respecting one of the two types of constraints

results in the non-compliance of the other one. This happens when the impulse constrained by

the upper velocity limit vLIMt is lower than the action space lower bound ∆vINFt or the opposite

case. Physically, this implies that the needed velocity impulse to remain inside the acceptable

range of velocity and so fulfill the constraints overcomes the physical capacity of the thrusters.

In this circumstance, the thruster velocity impulse is set to its physical limitation sacrificing the

compliance of the relative velocity constraint.

5.1.3 Discretization of the dynamics

The dynamics problem introduced in Sec. 2.3 is illustrated in continuous form. In this section,

the dynamics is discretized in a recursively form, which means that the state in any time step is

computed from the state at previous step. For this reason, as it was introduced in Sec. 3.4.3, the

Agent must take into account not only the direct consequence of the action it selects but also its
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long-term effects. Without going into much detail, it can be said that executing an action without

considering the future effects of it could eventually lead the Agent to completely disruptive states,

that would result in failing the entire mission.

To discretize the dynamics, let’s assume that the state St at time step t is known, thus it is possible

to compute the successive state St+1. In addition, the initial condition of the state S0 is selected

manually from the user. Starting from the simpler attitude dynamics equations of the Chaser, the

recursive and discretized form results in:

θ̇Nt+1 = − D
Izz
ψ̇ttstep + θ̇Nt

θNt+1 = θ̇Nt+1tstep + θNt

(5.1.14)

Where ψ̇t is the instantaneous acceleration of the reaction wheel.

The instantaneous velocity impulse of the thruster ∆vt can be translated into the velocity at time

step t as follows.

vxt = ẋt + sin(θNt+1)∆vt

vyt = ẏt − cos(θNt+1)∆vt
(5.1.15)

Lastly, the discretized translation dynamics equations, in matrix notation, are formalized through

the analytical solution of the CW equations eq. (2.3.5).


xt+1

yt+1

ẋt+1

ẏt+1

 =


4− 3 cosntstep 0

sinntstep
n

2
n(1− cosntstep)

6(sinntstep − ntstep) 1 2
n(cosntstep − 1) 1

n(4 sinntstep − 3ntstep)

3n sinntstep 0 cosntstep 2 sinntstep

6n(cosntstep − 1) 0 −2 sinntstep 4 cosntstep − 3



xt

yt

vxt
vyt

 (5.1.16)

The discrete dynamics equations and the constraints show a dependence from the time step length

tstep. Specifically, decreasing or increasing the size of the time step affects the frequency of control

actions, leading to a less or more precise control. Simultaneously, this also affects the time needed

to reach the Target and so the number of actions to be taken. In this work, as it is done in [23], the

time step length is reduced as the Chaser gets closer to the Target, implying that the control gets

more precise as the gap between the two spacecraft decreases. The logic with which the length of

the time step is reduced can be found in Table 5.1.2.

Condition tstep size

rt > 100 m 10 s

100 m ≥ rt > 10 m 5 s

10 m ≥ rt > 5 m 3 s

5 m ≥ rt 1 s

Table 5.1.2: Time step size reduction logic as a function of the relative distance
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5.2 Overview of the reward logic

To properly teach the Agent which state should be preferred and which one should be avoided, a

reward logic must be defined. In Reinforcement learning, and so in Meta-Reinforcement learning,

the reward function allows the Agent to learn “good” actions and reach “good” states. To better

understand what is the scope of the reward assignment, imagine to train a dog. The dog learns

to execute commands as the trainer rewards it with a treat. This very simple and everyday life

example can be compared to what happens in a generic reinforcement learning algorithm.

However, the selection of a reward function that suggests the Agent how to behave is not a trivial

matter. Choosing, for example, an ambiguous or faulty reward logic may lead to completely wrong

or too poor solutions of the problem.

A common technique is to define the so-called shaping reward function, that typically is a potential

function over the state that provides guidance to the Agent, improving so the learning [49].

A different type of rewards are the sparse rewards, that consist in positive or negative bonuses,

assigned as integer numbers when some conditions are met. However, sparse rewards do not give

hints to the Agent and do not improve the learning process if used as the main reward assignment

function. This can be explained by the fact that the Agent explores randomly, executing random

actions until it gets non null or, eventually, positive rewards. A problem may arise: the sequence

of actions that were rewarded positively may be very long and some of those actions could be

useless in the assignment of the reward. In other words, not all the actions, if a proper shaping

reward function is not introduced, are useful in getting positive rewards. For example, consider

the case where a bonus is assigned as a sparse reward when a certain distance from the Target is

reached. Assume that the reward logic only relies on the sparse rewards. The Agent may end up

going back and forth around the “checkpoint” distance, accumulating positive rewards. As it can

be imagined, this behavior is not acceptable. This issue is known as credit assignment problem [50].

In this work, the reward function is taken as the sum of two contributions: the shaping rewards

Rshapet and the sparse rewards Rsparset .

Rt = Rshapet +Rsparset (5.2.1)

The way the two types of rewards are defined for the ARPOD problem is discussed in chapter 6

for each case analysed.

5.3 Agent’s Hyperparameters

Reinforcement learning based algorithms can be applied to any sort of environment that respects

the Markov property, being them model-free algorithms. Indeed, as opposed to the environment

that is peculiar and unique for any problem that is studied, the Agent is a general entity that can

be thrown in many different environments with minor changes. It is still important to define the
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parameters, usually referred to as hyperparameters to distinguish them from the neural networks’

parameters, that build up the Agent and its learning process.

In this section, the hyperparameters that have been introduced throughout chapter 3, are recalled

and explained in much detail. The PPO algorithm, discussed in Sec. 3.6, consists in two main

steps. First, after the environment generation, a batch of trajectories or, equivalently roll-outs, is

stored and then the policy is updated. Each trajectory, that contains sequence of states, rewards

and actions, is associated with a single episode. During training, in particular in the forward

pass, the policy and value function recurrent layers are unrolled for multiple time steps. After

each update, the clipping parameter, used in the PPO algorithm, is adjusted in order to target

a KL divergence between the old and new policies. In this work, as done in [20], the degree of

exploration is automatically adjusted during the learning process. This is possible because the log

probabilities, needed for the evaluation of the Actor objective function are computed using the

exploration variance, output of the Actor neural network.

The hyperparameters associated with the PPO algorithm and the experience collection are the

following ones.

• Horizon: it is the number of trajectories that are stored before the update of the policy. A

large horizon grants more stable updates.

• Epoch: it corresponds to the number of times that the learning algorithm will work through

the entire training dataset. Decreasing the number of epochs, grants more stable updates but

slows down the learning.

• Recurrent steps: the number of time steps for which the recurrent layers of the neural

networks are unrolled. Unrolling the recurrent layers for more time steps results in a policy

that can capture longer temporal dependencies.

• γ: the discounting factor that controls the greediness of the Agent. With a small value of γ,

immediate rewards are preferred over long term ones.

• ϵ: the clipping parameter, that sets the threshold of divergence between the old and new

policies during update.

• KL target: a target KL divergence. It is used to dynamically adjust the learning rates of

the neural networks and the clipping parameter ϵ.

The last set of hyperparameters regards the two artificial neural networks of the Agent.

• Number of layers: it is the number of hidden layers in between the input and output layers.

Typically, more layers are needed when facing complex problems.

• hidden neurons: it is the number of neurons in the hidden layers.
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• learning rate: it influences the size of the updates in the policy and value function. The

higher is the learning rate, the faster but more unstable the learning process becomes.

All the hyperparameters must be selected manually. Typically, even if some guidelines are present

in literature or in existing projects, the best way to properly select these parameters is through a

trial and error procedure.
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Experiment setup and results

This chapter focuses on clarifying how the experiments are set up and on the analysis of the

results that are obtained. In particular, the implementation in the Meta-Reinforcement learning

framework of the ARPOD problem, already introduced in chapter 5, is detailed and specified for

every experiment that has been conducted. For any case that is considered, the reward logic, the

hyperparameters and the initial and terminal conditions are defined.

It is worth to recap the problem that this work focuses on. A Meta-Reinforcement learning

algorithm has to demonstrate its adaptability and robustness in the computation of different

trajectories, assuming uncertainties on the dynamics and on the model of the Chaser spacecraft.

These trajectories must allow the Chaser to approach a Target spacecraft and dock with it always

fulfilling the constraints that have been formalized in Sec. 2.4. As a rule of thumb, a rendezvous

trajectory can be divided into three main phases. An initial rendezvous phase from 10 km to 1 km,

where the Chaser is expected to get closer to the Target. Then, the proximity operation phase,

between 1 km and 100 m, in which the Chaser must approach the Target respecting the docking

cone constraint for a safe approach. And finally, the docking phase, where the Chaser has to slow

down enough to respect the velocity constraints and allow the docking with the Target.

In this work, two cases have been considered. The first experiment focuses on demonstrating

the ability of the Meta-RL Agent to adapt to large uncertainties in the dynamics, ensuring the

accomplishment of the rendezvous starting from 1 km of relative distance. The second and last

case considers an initial relative distance of 5 km, thus proving the ability and, eventually, the

limitations of the implemented Meta-RL Agent to resolve more complex rendezvous missions.

The simulations are executed using Python and Pytorch on a ASUS ROG GL552VW personal

computer, with an Intel Core i7-6700 HQ CPU, a NVIDIA GeForce GTX 960M and 16 GB of

RAM. For the sake of clarity, the experiments did not use GPU acceleration but relied entirely on

the CPU. For this reason, simulations took at least 6 hours of calculations.
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6.1 Experiment 1: Proximity Operations and Docking

The first experiment regards the accomplishment of Proximity Operations and Docking phases.

The Chaser, subjected to strict constraints for a safe docking, starts the operation phase at 1 km

oriented towards the Target. The initial configuration taken into account is the so-called V-bar

configuration, according to which the Chaser initial position is along the tangential direction of the

Hill’s frame Fig. 6.1.1. In addition, the relative translation and angular velocity are null.

𝒆𝑅

𝒆𝑇𝒏𝑇

TARGET

CHASER

R-bar

V- bar

Figure 6.1.1: Not to scale V-bar configuration. The Chaser approaches the Target along the

tangential direction of the Hill’s frame.

S0 = [0, 1000, 0, 0, 0, 0]

However, uncertainties are considered on the initial state of the Chaser to demonstrate the strength

of a Meta-RL Agent to solve different tasks. The initial state is generated for each episode,

considering a normal distribution of values assumed by each of the state variables, excluding the

angular velocity. At each episode, from the distribution, a random value is picked and used to

generate the initial conditions, or, equivalently, the environment. The maximum and minimum

values that can be assumed by each of the uncertain state variables are reported in Table 6.1.1.
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State variables Uncertainty range Min value Max value

x0 [−50;+50] m −50 m 50 m

y0 [−50;+50] m −950 m 1050 m

vx0 [−10−5; 10−5] m s−1 −10−5 m s−1 10−5 m s−1

vy0 [−10−5; 10−5] m s−1 −10−5 m s−1 10−5 m s−1

θ0 [−5;+5] deg −5 deg +5 deg

Table 6.1.1: Maximum and minimum values assumed by the uncertain state variables: relative

position, translation velocity and orientation.

6.1.1 Reward logic

The reward logic introduced in Sec. 5.2 is now specified in order to be applied in this first experiment.

As mentioned before, two kinds of reward assignment techniques are used: shaping rewards and

sparse rewards, that will be treated separately.

Shaping rewards

The shaping rewards are used to provide hints to the Agent on the correct behavior to follow in

order to reach the Target. Since both the attitude and the relative distance must be controlled, two

contributions are identified for the shaping reward function: a shaping reward associated with the

distance and a shaping reward related to the attitude. For the first case, in this work, an Artificial

Potential Field [16] is placed in correspondence of the Target position, that coincides with the

origin of the Hill’s frame. In particular, the value of the potential, that depends on the square of

the relative distance from the fictitious attractor, is used inside the reward function.

The potential field is written as:

U(rt) =
1

2
katt||rt||2 (6.1.1)

Where katt is the attraction coefficient and is set to 10. The artificial potential, as it can be seen

in eq. (6.1.1), increases as the square of the module of the relative distance. It means that, as the

Chaser get closer to the Target, this value tends to become null. For this reason, the shaping reward

based on this potential field is written in the following form, expressed in eq. (6.1.2). The Fig. 6.1.2

illustrates the behavior of the shaping reward function as a function of the relative distance between

the Chaser and the Target.

Rshape,1t = −α1(Ũt − 1) (6.1.2)
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Figure 6.1.2: Shaping reward as a function of the relative distance. The minus sign on the relative

distance is useful for a better understanding of the curve.

In eq. (6.1.2), α1 is a numerical coefficient, fixed at a value of 10. The term Ũt is the normalized

artificial potential. Indeed, due to the high values that the potential could assume, since it is

calculated as the square of the relative distance, a normalization with respect to the potential at

the nominal initial relative distance is performed.

Ũt = Ut
U1000

U1000 = 1
2katt(1000)

2

(6.1.3)

It can be noted that the function expressed in eq. (6.1.2) and illustrated in Fig. 6.1.2 increases up

to a value of 10 when the distance is reduced to 0. It only becomes negative as the Chaser moves

away from its initial position. For this reason, a penalty must be added to prevent the Chaser to

get closer to the Target and move away from it without reaching distances greater than 1000 m.

The other contribution to the definition of the shaping reward comes from the need of controlling

the attitude as the Chaser approaches the Target. In this work, the same function adopted in

[23] is in part considered. The shaping reward associated with the attitude control then takes the

following form.

Rshape,2t = α2
5− |θNt |

180
(6.1.4)

Where α2 is a numerical coefficient that changes with respect to the distance according to the logic

expressed in 6.1.5, and θNt is the attitude angle wrapped between −180 and 180 degrees.

Gaetano Calabrò 51
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α2 = 0 if ||rt|| > 100m

α2 = 20 if ||rt|| ≤ 100m

α2 = 50 if ||rt|| ≤ 10m

(6.1.5)

The attitude shaping reward is positive as the attitude angle is lower than 5 deg. Moreover, the

penalization on the attitude become more and more important as the distance is reduced, due to

the logic that is described above. It can be also noted that, the maximum positive value for the

above reward function is less than 10, which is instead the maximum positive score that can be

provided from the position reward function. This condition must be always verified in order to avoid

behaviors of the Agent where it prioritizes the attitude control over the approach. Altogether, the

shaping reward is given by:

Rshapet = Rshape,1t +Rshape,2t (6.1.6)

Sparse rewards

Sparse rewards are instead very useful to provide bonus or penalties for good or bad behaviors,

respectively. Typically, the assignment of positive rewards (bonuses) can increase the stability of

the learning process while the penalties guarantee that bad behaviors are avoided.

In this work, bonuses are given when the Agent reaches some milestones or respects some constraints.

On the contrary, penalties, that are negative rewards, suggest the Agent to avoid the exploration

of poor parts of the state space.

All bonuses and penalties are listed below, along with the explanation of the conditions that must

be met in order to receive them.

• If the Chaser reaches 500 m, it receives a bonus. The bonus is nullified if the Chaser tends

to move away and return to 500 m.

• If the Chaser reaches 100 m, the Agent receives a bonus. The bonus is nullified if the Chaser

returns to further distances and goes back in the range of the docking phase.

• If the Chaser reaches 50 m, the Agent receives a bonus. The bonus is nullified if the same

condition as the previous cases is met.

• A bonus is assigned if the Chaser is 5 m away from the Target. However the bonus is nullified

if the Chaser tends to go back and return inside the docking range.

• A bonus is assigned when the Chaser is docked. This condition terminates the episode with

success.

rt ≤ 1m (6.1.7)
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• A cumulative bonus is assigned when the Chaser is docked with an angle lower than the

maximum acceptable one.

rt ≤ 1m and |θNt | ≤ 5 deg (6.1.8)

• A cumulative penalty is assigned whenever the Chaser starts to move back.

rt > rt−1 (6.1.9)

• When the Chaser is in the proximity operation phase (rt≤1000 m) and explores a region

outside the docking cone (constraint #8), it receives a penalty. However, if it keeps making

progress inside the docking cone it receives a cumulative bonus. The condition is formalized

as follow:

(xt − yt > 0 or xt + yt < 0) (6.1.10)

A supplementary penalty is given if the Chaser misses the Target.

yt < −1m (6.1.11)

• If the Chaser does not respect constraints #4 and #5, it receives a penalty. The constraints

mentioned here are explained in Sec. 5.1.2.

• If the Chaser explores a region farther than the initial relative distance, it receives a penalty.

A margin of 150m is considered because of the uncertainties on the initial position. This

condition forcefully terminates the episode.

In Table 6.1.2, bonuses and penalties are reported and quantified, along with the assignment

conditions.

Condition Bonus/Penalty Nullification

rt ≤ 500m Rsparset = 10 Rsparset = 0 if rt−1 > 500 m

rt ≤ 100m Rsparset = 15 Rsparset = 0 if rt−1 > 100 m

rt ≤ 50m Rsparset = 15 Rsparset = 0 if rt−1 > 50 m

rt ≤ 5m Rsparset = 20 Rsparset = 0 if rt−1 > 5 m

rt ≤ 1m Rsparset = 150 None

rt ≤ 1m and |θNt ≤ 5 deg Rsparset = Rsparset + 50 None

rt > rt−1 Rsparset = Rsparset − 5 None

rt ≤ 1000m and (xt − yt > 0 or xt + yt < 0) Rsparset = −10 None

rt ≤ 1000m and (xt − yt < 0 or xt + yt > 0) Rsparset = Rsparset + 5 None

rt ≤ 1000m and yt < −1m Rsparset = −10 None

vt > vmax or vt > vdock + fs

√
Fmax
2m rt Rsparset = −20 None

rt > r0 + 150m Rsparset = −500 None

Table 6.1.2: Summary of the sparse reward logic for the assignment of bonuses and penalties
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6.1.2 Hyperparameters and Neural Networks setup

The hyperparameters introduced in Sec. 5.3 are now quantified after a process of trial and error.

The final set of hyperparameters is reported in Table 6.1.3.

Hyperparameter Value

Horizon 20

Epoch 16

Recurrent steps 120

γ 0.95

ϵ0 0.1

KL target 0.0001

Table 6.1.3: Hyperparameters for the first experiment

For the sake of clarity, the clipping parameter ϵ is initialized as ϵ0 = 0.1. As explained in Sec. 3.5.3,

it is changed during learning to target a specified value of KL divergence.

The architecture of the two neural networks, the Actor and the Critic, is inspired by [20]. In

particular, a LSTM cell is placed in the second hidden layer of the networks, that share the same

structure. The other two hidden layers are fully connected and linear. Finally, also the output layer

is a linear layer. The number of neurons and the activation functions are reported in Table 6.1.4

and Table 6.1.5.

Layer Neurons Activation

Hidden 1 130 tanh

Hidden 2 90 tanh

Hidden 3 60 tanh

Output 2 Linear

Table 6.1.4: Actor Neural Network architecture

Layer Neurons Activation

Hidden 1 130 tanh

Hidden 2 90 tanh

Hidden 3 60 tanh

Output 1 Linear

Table 6.1.5: Critic Neural Network architecture
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6.1.3 Results

In Meta-RL, it is possible to distinguish two different phases: a training phase and a testing phase.

The former consists in the optimization of the policy. This process gives as result an adaptive

Agent that is able to accomplish any task similar to the ones it is trained on. During the testing

phase, instead, the optimized Agent does not learn. By fixing the policy that is obtained in the

previous phase, the Agent is thrown in a precise environment, similar to the ones in which it is

trained. Then, by applying the fixed policy, which becomes a deterministic one, it is tested to solve

this new task.

Training

The training of the recurrent networks is performed over 30000 episodes, where for each episode

a new environment is generated. To reduce computational time, every episode terminates at 100

iterations over the environment dynamics, taking into account the possibility of early termination.

In this phase, uncertainties are added also to the inertia properties of the Chaser spacecraft

Table 6.1.6. This can be translated in the possibility of applying the algorithm to different

spacecrafts for the testing phase.

Variable Description Min value Max value

m Spacecraft mass 11 kg 13 kg

Izz Spacecraft mass moment of inertia in z-axis 5× 10−2 kg m2 6.5× 10−2 kg m2

Table 6.1.6: Uncertainties on the inertia properties of the Chaser

Bearing in mind that the ultimate goal of the training is to optimize the adaptive policy and collect

the maximum possible reward, the results are shown below.

Figure 6.1.3: Optimization rewards learning curve for the first experiment.

In Fig. 6.1.3, the mean reward over the horizon is shown in red. The maximum reward that

is obtained during each training episode is shown in cyan and it is referred to the best possible
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action sequence that grants the highest reward. On the other hand, the green curve illustrates

the minimum reward, associated with bad samples. Altogether, even considering some disruptive

samples, as for example the one near 15000 episode, it is clear that the learning is successful.

One may note that the behavior at the end of the training becomes unstable. The reason behind

this phenomenon could be linked to the correction of the learning rates and clipping parameter,

due to the servo-kl control, discussed in Sec. 3.5.3. In particular, if the KL divergence decreases

becoming too lower than the target one, the Agent may change his behavior, visiting even poor

regions of the action-state space and thus collecting lower rewards.

Figure 6.1.4: Optimization curves of the terminal positions reached by the Chaser, with the

associated terminal velocity. First case.

Figure 6.1.5: Optimization curve of the terminal attitude of the Chaser. First case.

The above figures, Fig. 6.1.4 and Fig. 6.1.5, show the learning process of the Agent in detail. It

can be noted that the mean terminal position (in red) and velocity (in green) over the course of

the training phase are optimized. The minimum final position reached by the target is shown in
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red and it is associated with the maximum reward that is collected during training, shown in cyan

in Fig. 6.1.3. In addition, the Agent is able to adjust its mean final attitude as shown in Fig. 6.1.5.

It is worth recalling that these learning curves and optimization results are referred to a vast group

of similar environment. In other words, the adaptability of the Meta-RL Agent is verified.

Testing

Once the policy is optimized, the Agent is tested with a fixed policy. The uncertainties on the

inertia properties are removed, in order to solve the problem proposed by [22] and described in

chapter 2. The Agent is tested over 10000 episodes, each with different initial conditions due to

uncertainties. The terminal points, that are shown in Fig. 6.1.6, demonstrate that among the 10000

test trajectories, the 16.58% are acceptable ones. The trajectories that reach less than 10 meters

of separation from the Target are shown in Fig. 6.1.7.
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Goal

Figure 6.1.6: Terminal points of the 10000 test trajectories. The green dots represent the acceptable

trajectories and the red cross the not-acceptable ones. The docking cone is displayed in red.
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Figure 6.1.7: Trajectories that end at less than 10 m of relative distance from the Target.

From the Fig. 6.1.7, it can be noted how vast is the area of the starting points. This means that

the Agent succeeds in learning the correct behavior from a multitude of initial positions.

For a clear view of the ability of the Agent to respect the constraints imposed in Sec. 2.4, the best

trajectory is extracted from the 1642 ones, considering the terminal position reached as a criterion

for the selection.

The best selected trajectory is showed in Fig. 6.1.8, with terminal position and final attitude angle

equal to:

||r|| = 2.74m |θN | = 0.80 deg
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Figure 6.1.8: Best trajectory in the Hill’s reference frame (a). Zommed in (b), where the docking

cone is displayed.
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Figure 6.1.9: Relative velocity (a) is always respectful of both constraints. In the proximity operation

phase, the constraint on the bounded relative velocity (#5) is dominating the one on the recoverable

relative velocity (#4). In (b) , the attitude angle and the relative angular velocity are illustrated.

Gaetano Calabrò 59
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Figure 6.1.10: The commanded thrust and, consequently, the ∆V , are shown in (a). The reaction

wheel commands, scaled by a factor of 10, are shown in (b).

As shown in Fig. 6.1.9 and Fig. 6.1.10, the Agent is always respecting the constraint imposed. It

can also be noted how smooth is the control obtained as output from the Actor neural network. In

other words, the Agent needs only a few manoeuvres to reach the target and adjust its attitude,

fulfilling the constraints on the velocity, the attitude and the physical limitations of the actuators.

For the sake of clarity, in Fig. 6.1.10 (a), the dashed red lines represent the constraints due to the

physical limitations of the thruster. It can be noted that the impulse velocity limits decrease in

time, as the time step is reduced. This is justified from eq. (5.1.10) with a fixed maximum thrust.

6.2 Experiment 2: Rendezvous from 5 km

The second experiment focuses on a Rendezvous Proximity Operations and Docking manoeuvre

from 5 km of nominal initial distance along the V-bar. Also in this case, uncertainties are added

to the initial state. However, due to the complexity of this case, uncertainties are considerably

reduced.

Assume a nominal initial state as:

S0 = [0, 5000, 0, 0, 0, 0]

Uncertainties are added to the relative position and velocity, and to the attitude angle as reported

incTable 6.2.1. As before, the relative angular velocity is not considered as an uncertain state

component only to avoid an increase in the complexity of the problem.
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State variables Uncertainty range Min value Max value

x0 [−10;+10] m −10 m 10 m

y0 [−10;+10] m 4990 m 5010 m

vx0 [−10−7; 10−7] m s−1 −10−7 m s−1 10−7 m s−1

vy0 [−10−7; 10−7] m s−1 −10−7 m s−1 10−7 m s−1

θ0 [−5;+5] deg −5 deg +5 deg

Table 6.2.1: Maximum and minimum values assumed by the uncertain state variables: relative

position, translation velocity and orientation. Referred to experiment 2.

6.2.1 Reward logic

The reward logic implemented for the second experiment is similar to the one adopted in the case

discussed previously. Indeed, the two reward functions differ only for minor changes.

Shaping rewards

The shaping rewards are identical in expression with respect to the Proximity Operations case.

The only difference can be found on the normalization of the artificial potential. In particular:

Ũt = Ut
U5000

U5000 = 1
2katt(5000)

2

(6.2.1)

As is can be seen in eq. (6.2.1), the reference potential is evaluated at the nominal initial relative

distance of 5000 km. The considerations made for the first case still hold.

The expression of the shaping reward referred to the attitude angle has not been modified.

Sparse rewards

With respect to the first case, new conditions are added for the assignment of sparse rewards. The

newly introduced bonuses and penalties are listed below.

• If the Chaser reaches 1000m, it receives a bonus. However, the bonus is nullified whenever

the Chaser moves away and returns to 1000m.

• A cumulative penalty is assigned when the Chaser starts to move back from relative distances

higher than 1000 m.

For the sake of clarity, the Table 6.2.2 sums up all the bonuses and penalties considered in this

experiment.
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Condition Bonus/Penalty Nullification

rt ≤ 1000m Rsparset = 5 Rsparset = 0 if rt−1 > 1000 m

rt ≤ 500m Rsparset = 10 Rsparset = 0 if rt−1 > 500 m

rt ≤ 100m Rsparset = 15 Rsparset = 0 if rt−1 > 100 m

rt ≤ 50m Rsparset = 15 Rsparset = 0 if rt−1 > 50 m

rt ≤ 5m Rsparset = 20 Rsparset = 0 if rt−1 > 5 m

rt ≤ 1m Rsparset = 150 None

rt ≤ 1m and |θNt ≤ 5 deg Rsparset = Rsparset + 50 None

rt > 1000m and rt > rt−1 Rsparset = Rsparset − 20 None

rt ≤ 1000m and rt > rt−1 Rsparset = Rsparset − 5 None

rt ≤ 1000m and (xt − yt > 0 or xt + yt < 0) Rsparset = −10 None

rt ≤ 1000m and (xt − yt < 0 or xt + yt > 0) Rsparset = Rsparset + 5 None

rt ≤ 1000m and yt < −1m Rsparset = −10 None

vt > vmax or vt > vdock + fs

√
Fmax
2m rt Rsparset = −20 None

rt > r0 + 150m Rsparset = −500 None

Table 6.2.2: Summary of the sparse reward logic for the assignment of bonuses and penalties in the

second experiment.

6.2.2 Hyperparameters and Neural Networks setup

The hyperparameters selected for this experiment are reported in Table 6.2.3.

Hyperparameter Value

Horizon 30

Epoch 16

Recurrent steps 120

γ 0.95

ϵ0 0.1

KL target 0.0001

Table 6.2.3: Hyperparameters for the second experiment

As it can be noted, the horizon is the only parameter that has been changed for this case, in order

to increase the stability of the training process.

The architecture of the Actor and Critic neural networks is identical to the one reported in Sec. 6.1.2.

For the sake of clarity, the Table 6.1.4 and Table 6.1.5 are reported here below.
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Layer Neurons Activation

Hidden 1 130 tanh

Hidden 2 90 tanh

Hidden 3 60 tanh

Output 2 Linear

Table 6.2.4: Actor Neural Network architecture

Layer Neurons Activation

Hidden 1 130 tanh

Hidden 2 90 tanh

Hidden 3 60 tanh

Output 1 Linear

Table 6.2.5: Critic Neural Network architecture

6.2.3 Results

The last case shows the complexity of the application of a Meta-RL algorithm to a full ARPOD

manoeuvre. Once more, the Agent is trained over a variety of environments, each generated from

the uncertainties in the dynamics. Following the training phase, the Agent is tested on a certain

number of episodes.

Training

The training of the recurrent networks is performed again over 30000 episodes, that correspond to

30000 environments. The episodes are terminated naturally at 100 iterations over the environment

dynamics. Similarly to the first experiment, uncertainties are added to the inertia properties, shown

below in Table 6.2.6.

Variable Description Min value Max value

m Spacecraft mass 11 kg 13 kg

Izz Spacecraft mass moment of inertia in z-axis 5× 10−2 kg m2 6.5× 10−2 kg m2

Table 6.2.6: Uncertainties on the inertia properties of the Chaser for the second experiment.

The results of the training phase for this experiment are reported in Fig. 6.2.1.
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Figure 6.2.1: Optimization rewards learning curve for the second experiment.

In this second case, the training is more than successful. The curves of maximum (cyan) and mean

(red) rewards are almost overlapped, which means that, on average, the Agent gets as much reward

as possible. The same consideration can be done for the curve of minimum reward. Especially, it

can be noted how the oscillation of the green curve are limited as the training goes on. To sum up,

the policy is optimized.

The curves that show how the terminal position evolves on average and on the best possible case

are useful for the reader to justify the success of the training phase, Fig. 6.2.2. The same applies

to the curve that shows the mean final attitude angle evolution, Fig. 6.2.3.

Figure 6.2.2: Optimization curves of the terminal positions reached by the Chaser, with the

associated terminal velocity. Second case.
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Figure 6.2.3: Optimization curve of the terminal attitude of the Chaser. Second case.

Testing

The optimized Agent is again tested over 10000 episodes, each with different initial conditions due

to uncertainties, that, as done before, are removed from the inertia properties.

In Fig. 6.2.4, it can be noted that all the 10000 test trajectories end up on a small region, which is

close to the target and inside the docking cone. Therefore, all trajectories are acceptable and are

showed in Fig. 6.2.5.
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Figure 6.2.4: Terminal points of the 10000 test trajectories. The green dots represent the acceptable

trajectories. The docking cone is displayed in red. Second experiment.
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0 1000 2000 3000 4000 5000
Y [m]

300

200

100

0

100

X 
[m

]

Trajectories in the Hill's frame

Figure 6.2.5: Acceptable trajectories for the second experiment.

With respect to the first experiment, here all the trajectories start from a smaller region, due to

the reduction of the uncertainties. However, it can be noted how all of them end up at 15 m from

the Target. Even if the mission can not be considered completed, this shows the robustness of a

Meta-Reinforcement learning algorithm, when a proper training is conducted.

In order to visualize how the velocity and the control commands evolve, it is convenient to select

the best trajectory among the 10000 acceptable ones. The criterion for the selection is still based on

the closest relative distance from the Target. Hence, the best trajectory for this second experiment

is showed in Fig. 6.2.6. The terminal position and the final attitude angle are:

||r|| = 15.8m |θN | = 0.63 deg
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Figure 6.2.6: Best trajectory in the Hill’s reference frame (a). Zommed in (b), where the docking

cone is displayed.
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Figure 6.2.7: Relative velocity (a). In (b) , the attitude angle and the relative angular velocity are

illustrated.

The relative velocity showed in Fig. 6.2.7 is respectful of the constraints almost everywhere. It can

be noted, however, that the constraint #4 on the recoverable relative velocity is violated before

reaching the close proximity operation phase, at 1000m. This implies that the thruster velocity

impulse needed to respect the constraint overcomes the physical limitation of the actuator. From

a safety viewpoint, the effects of the non compliance of this constraint are not relevant, being the

Chaser far enough from the Target.

Finally, the behavior of the actuators in shown in Fig. 6.2.8 (a), for the thruster, and in Fig. 6.2.8

(b), for the reaction wheel.
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Figure 6.2.8: The commanded thrust and, consequently, the ∆V , are shown in (a). The reaction

wheel commands, scaled by a factor of 10, are shown in (b).

In this second experiment, the Agent still learned how to behave for a multitude of similar

environments. From the graph in terms of commanded controls, it can be noted how the Agent

needs only few manoeuvres to properly reach the Target. This is justified from the fact that during
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training the Agent explores and performs a longer sequence of actions. After training, however, the

policy is fixed and the Agent knows exactly what is the best sequence of actions to take.
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Conclusion

The results obtained from the application of Meta-Reinforcement learning for an Autonomous

Rendezvous, Proximity Operation and Docking (ARPOD) manoeuvre problem are very promising.

Considering the complexity behind the problem in question and the safety requirements, Meta-RL

performed discreetly.

The work inherited from [23] stood as a guideline for the implementation of Meta-RL for such a

highly constrained and complex problem. The definition of a proper reward function helped in the

achievement of a discrete learning. The Meta-reinforcement learning Agent was properly trained to

solve the ARPOD problem from a restricted range of possible initial positions. The robustness and

adaptability demonstrated in this work justifies the strength of Meta-RL in the solution of different

tasks, without the need of a specific training for each of the problems. However, even if the training

can be considered successful, the mission should not be considered as achieved. In particular, it

was shown how the Agent was able to get very close to the Target spacecraft yet without reaching

the final docking phase.

In order to finalize this work, different paths can be followed. The first possibility is to tune properly

all the hyperparameters. Indeed, a proper tuning, selected after a high number of trials and errors,

could eventually lead to a better solution than the one showed in this master thesis.

Another solution could be to select a different reward function that uniquely teaches the Agent the

best possible sequence of actions to take to reach the goal. Finally, a very peculiar solution could

be to execute a Meta-RL algorithm to teach the Agent how to reach different locations on the way

to the Target spacecraft. Then, after training and testing, patch all the trajectories obtained to

finalize a full trajectory. A solution like the one proposed here is surely feasible but very complex,

due to the level of randomness that characterizes reinforcement learning algorithms.

To conclude, Meta-RL can surpass classical techniques and other machine learning methods for

the solution of very complex problem. This work acts as a proof of the high level of flexibility

and robustness that Meta-RL can provide. For future works, the addition of actuator failures or

more uncertainties on the dynamics can bring to more complex and realistic problems that can be

tackled using a Meta-Reinforcement learning algorithm.
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