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A B S T R A C T

Reinforcement learning is a very active area of research that studies
how to learn intelligent agents that can solve sequential decision-
making problems via simple interactions within an environment while
being guided by a feedback signal, called reward. In recent years, it
has shared the growth of interest with the other fields of artificial
intelligence thanks to the rise of deep learning techniques. However,
the area is far from being considered completely solved, as many
technical and theoretical challenges still need to be addressed. Among
these, we can find the ability to learn without external feedback, meaning
that the agent should be able, as humans, to learn by interacting with
the surrounding environment without being guided by explicit signals,
but only because of intrinsic motivation. Another crucial point of
interest is represented by the ability of the agent to generalize its behavior
among different environments. The purpose of this thesis is to deal with
both these aspects, combining them in a single setting. We address
the problem of learning to explore a class of multiple reward-free
environments with a unique general strategy, which aims to provide a
universal initialization to subsequent reinforcement learning problems
specified over the same class. Notably, the problem is inherently multi-
objective as we can trade off the exploration performance between
environments in many ways. In this work, we foster an exploration
strategy that is sensitive to the most adverse cases within the class.
Hence, we cast the exploration problem as the maximization of the
mean of a critical percentile of the state visitation entropy induced
by the exploration strategy over the class of environments. Then, we
present a policy gradient algorithm, MEMENTO, to optimize the
introduced objective through mediated interactions with the class.
Finally, we empirically demonstrate the ability of the algorithm in
learning to explore challenging classes of continuous environments
and we show that reinforcement learning greatly benefits from the
pre-trained exploration strategy when compared to learning from
scratch.
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E S T R AT T O I N L I N G UA I TA L I A N A

L’apprendimento per rinforzo [72] è una tecnica di apprendimento au-
tomatico, avente come proposito quello di realizzare agenti autonomi,
che siano in grado di prendere decisioni a seconda dello stato in cui
si trovano. La modalità attraverso cui l’agente apprende tale capacità
consiste nell’interazione con l’ambiente in cui è immerso. Solitamente,
a seguito di un’interazione, segue un cosiddetto segnale di rinforzo,
ovvero una ricompensa o una penalità per l’agente, rispettivamente
nel caso in cui esso abbia preso una decisione che sia conforme al
comportamento desiderato oppure no. In questo modo, l’agente, dopo
un certo numero di interazioni con l’ambiente, sarà in grado di pren-
dere la decisione che, secondo quanto appreso sino a quel momento,
porti ad un segnale di rinforzo positivo. Il campo di applicazione
dell’approccio appena descritto è molto vasto e spazia dai bot di trad-
ing ai rover in missione spaziale. In linea di massima, infatti, ogni
entità in grado di elaborare strategie, naturale o artificiale che sia, può
essere modellata come un agente immerso in un ambiente, in grado
di prendere decisioni e dunque di guadagnare o perdere qualcosa.

motivazione La tecnica di apprendimento tramite segnale di rin-
forzo, come detto, è stata impiegata con successo in numerosi settori,
anche in domini caratterizzati da una complessità non indifferente [69,
7, 2]. Tuttavia, per quanto intuitiva, la metodologia suddetta non è di
semplice attuazione. La difficoltà maggiore deriva dal fatto che solita-
mente la condizione da soddisfare affinché l’agente riceva un segnale
positivo o negativo viene introdotta da un progettista umano. Si tratta
dunque di una forma di supervisione che comporta una sfida notev-
ole, siccome nella maggior parte dei casi non è semplice progettare
una funzione che permetta all’agente di ottenere il comportamento
desiderato. È infatti pratica comune, per ovviare a tale complessità,
premiare l’agente solo in caso di successo, inserendo un segnale di
rinforzo sparso. Potremmo ad esempio premiare l’agente ogni volta
che riesce ad afferrare un oggetto e a collocarlo in una determinata
posizione. Sulla base di quanto detto finora, è naturale l’estensione ad
uno scenario in cui il segnale di rinforzo sia invece completamente as-
sente. In una situazione di questo tipo, l’agente deve essere in grado di
esplorare l’ambiente senza la necessità di ricevere qualcosa in cambio,
bensì potremmo dire per pura curiosità, così come farebbe un neonato
se lasciato in mezzo ad una stanza con dei giocattoli. L’esplorazione
che ne deriva consentirà all’agente di essere più malleabile e pronto a
situazioni future, in cui dovrà apprendere nuove abilità più complesse
e strutturate, anche attraverso l’utilizzo di segnali di rinforzo.
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ambienti multipli Quest’ultimo approccio offre quindi un van-
taggio notevole in termini di flessibilità e capacità di generalizzazione.
Tuttavia, questa generalizzazione è solitamente limitata ad un singolo
ambiente. Un ulteriore tassello di complessità può essere aggiunto
considerando un numero di ambienti che sia maggiore di uno. Sino
ad ora, infatti, pur implicitamente, abbiamo preso in considerazione
un agente immerso in un ambiente, in cui impara sulla base delle
interazioni con esso. La limitazione di questo metodo sta nel fatto
che l’agente potrebbe acquisire delle abilità che, se applicate in un
contesto diverso, non porterebbero allo stesso risultato o addirittura
che comporterebbero una drastica riduzione dell’efficacia.

sensitività al rischio L’aspetto di cui sopra risulta partico-
larmente cruciale in domini caratterizzati dalla presenza di frangenti
relativamente rari e molto sfavorevoli. In tali circostanze, vorremmo
che il nostro modello di agente fosse abbastanza robusto da poter ge-
stire sia il caso medio sia il caso peggiore. Numerosi approcci sono stati
proposti, tra cui il cosiddetto Valore a Rischio Condizionato o Conditional
Value at Risk (CVaR) [62]. Sostanzialmente, durante l’apprendimento,
esso riduce il proprio obiettivo ad una certa percentuale dei possibili
casi peggiori, individuati in base alla metrica che stiamo utilizzando
per valutare la prestazioni del nostro modello. L’idea di fondo è che
un agente che consideri, o addirittura incentri, il suo apprendimento
su tale misura di rischio possa comportarsi adeguatamente nel caso
in cui in futuro si venga a trovare in una situazione appartenente a
quella percentuale di casi più sfavorevoli.

stato dell’arte Nella letteratura sono stati proposti svariati
metodi per costruire agenti in grado di esplorare intrinsecamente,
ovvero senza necessità di segnali esterni [71, 10, 56, 13, 25]. Lo stato
dell’arte affronta il problema con un’esplorazione agnostica rispetto al
compito, volta cioè a garantire un’esplorazione il più uniforme possibile,
di modo che l’agente generalizzi rispetto ai compiti che gli verranno as-
segnati in futuro [36, 46, 86, 51, 30, 67]. Questa soluzione, tuttavia, non
considera uno scenario con più ambienti. Vi è poi una vasta letteratura
volta a costruire agenti in grado di far fronte a situazioni avverse. Vi
sono algoritmi che propongono l’ottimizzazione del CVaR per gestire
il rischio indotto dalla volatilità dei segnali di rinforzo [74, 17] o da
cambiamenti nella dinamica dell’ambiente [61]. Attualmente, tuttavia,
nessuno sembra aver impiegato tale misura per prendere in esame
la difficoltà dovuta alla presenza di una configurazione particolar-
mente avversa all’interno di una classe di ambienti. Infine, esiste una
branca relativamente recente di apprendimento con rinforzo, chiamata
meta reinforcement learning [82, 23, 26], nella quale l’obiettivo consiste
nel fare in modo che l’agente impari ad imparare. Più precisamente,
l’intento è quello di creare agenti che siano in grado di apprendere un
nuovo compito facendo affidamento su altri compiti imparati sino a
quel momento, facendo leva sullo sviluppo di una capacità di adat-

XVII



tamento rapido tra un compito e l’altro. Sebbene questo paradigma
sia già stato utilizzato per affrontare il problema dell’esplorazione, gli
algoritmi proposti assumono la presenza di un segnale di rinforzo, con
l’eccezione di [31]. Ad ogni modo, nessuno prende in considerazione
uno scenario caratterizzato da una molteplicità di ambienti.

obiettivo Questa tesi si pone come obiettivo quello di estendere
la generalizzazione dell’apprendimento in contesti privi di rinforzo,
affrontando il problema dell’esplorazione di più ambienti con un’unica
strategia. Oltre a definire formalmente il problema, ne forniamo una
caratterizzazione teorica, offrendo una metrica per quantificare la
difficoltà di esplorazione in una classe di ambienti. Inoltre, mostriamo
come e quando un agente possa beneficiare dall’approccio proposto
per risolvere qualunque compito futuro in uno qualsiasi degli ambienti
della classe, riducendo l’onere della progettazione di un appropriato
segnale di rinforzo e migliorando allo stesso tempo l’efficienza di
apprendimento.

contributi In questa tesi forniamo i seguenti contributi:

• Formuliamo il problema dandone una definizione formale in un
contesto avverso al rischio;

• Proponiamo un obiettivo per l’esplorazione senza segnali di
rinforzo all’interno di una classe di ambienti, per ottenere un
agente in grado di risolvere qualunque compito futuro definito
trasversalmente all’interno della classe stessa;

• Presentiamo un nuovo algoritmo per creare agenti che agiscano
in modo ottimale rispetto all’obiettivo introdotto;

• Mostriamo i meriti della soluzione proposta attraverso un’estesa
analisi empirica, comprendente una serie di esperimenti su do-
mini continui a bassa e alta complessità.

struttura della tesi La tesi è organizzata come segue. Nel
Capitolo 2, provvediamo a fornire al lettore tutte le conoscenze nec-
essarie per una piena comprensione dei capitoli successivi. In par-
ticolare, introdurremo le principali misure entropiche della teoria
dell’informazione, alcune metriche utili a calcolare la distanza tra dis-
tribuzioni di probabilità, e altre ancora volte a fornire una misura del
rischio. Inoltre, verranno presentati i concetti alla base dell’apprendimento
per rinforzo, successivamente estesi mediante una generalizzazione di
tale paradigma. Nel Capitolo 3, descriviamo l’attuale stato dell’arte
nell’affrontare i problemi di esplorazione con segnale di rinforzo
sparso e in assenza di segnale di rinforzo, di apprendimento avverso
al rischio, e di generalizzazione tramite adattamento rapido. Succes-
sivamente, nel Capitolo 4, presentiamo i nostri contributi, quali una
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formulazione del problema in un’ottica avversa al rischio, una carat-
terizzazione teorica del problema, la formulazione di un obiettivo che
si confà all’esigenza di esplorare una classe di ambienti in assenza
di segnale di rinforzo, e un algoritmo di apprendimento che lo ot-
timizzi. Nel Capitolo 5 procediamo fornendo una esaustiva analisi
sperimentale della metodologia introdotta, includendo domini con-
tinui a bassa e alta complessità. Infine, nel Capitolo 6, concludiamo
con un breve riepilogo e alcune riflessioni su possibili sviluppi futuri.
Nell’Appendice A, riportiamo le dimostrazioni dei teoremi che sono
state omesse dal testo principale per non appesantire l’esposizione.
Nell’Appendice B, includiamo alcuni esperimenti aggiuntivi, aventi
un’impostazione differente e che, non essendo centrali per questa
tesi, non sono stati inseriti nella discussione principale. Concludendo,
nell’Appendice C, completiamo le informazioni del Capitolo 5 con
ulteriori dettagli implementativi.

XIX





1
I N T R O D U C T I O N

Reinforcement learning [72] is an autonomous learning technique that
is aimed at building intelligent agents that are able to make sequential
decisions while interacting with an environment in which they are
immersed. Typically, the interaction is guided by a reinforcing signal,
which informs the agent whether the decision is compliant with the
desired behavior or not. In this way, the agent will be capable of
taking the most remunerative decisions according to the previous
interactions. The field of application of this approach is wide and
it ranges from trading bots to rovers for space missions. In fact, in
principle, every natural or artificial strategic entity can be modeled
as an agent immersed in an environment, capable of taking decisions
and therefore to earn or lose something.

intrinsic motivation Reinforcement learning, as we said, has
been proved to be successful in many fields, including domains char-
acterized by a high-level complexity [69, 7, 2]. Nonetheless, albeit
intuitive, such methodology is not always easy to implement. A major
obstacle is given by the reward signal, which is typically introduced
by a human designer. Thus, it is a form of supervision that involves
a significant challenge, as in most cases it is not easy to design a
reward function inducing the desired behavior to the agent. In fact, it
is common to avoid such complications by rewarding the agent only in
case of success, hence introducing a sparse reward signal. For instance,
we could reward the agent every time it manages to grab an object
and place it in a specific position. Moreover, it is natural to imagine a
scenario in which the reinforcing signal is instead completely absent.
In such context, the agent should be able to explore the environment
without the need to receive something in return, but we could say for
mere curiosity, as a child would do if he/she was left in the middle of
a room with some toys. The deriving explorative behavior will enable
the agent to be more malleable and ready for future circumstances, in
which it will have to learn new complex and more structured abilities,
also by means of reinforcing signals.

multiple environments The latter approach offers a significant
advantage in terms of flexibility and generalization. However, it is
usually limited to a single environment. Considering more than one
environment introduces additional complexity. In fact, even though
implicitly, so far we contemplated an agent immersed in a single
environment, learning from the interactions with it. The limitation of

1



introduction 2

this method lies in the fact that the agent could learn to behave in a
way that is not helpful for other contexts, or even harmful with respect
to learning from scratch.

risk-sensitivity The issue raised above is crucial in domains that
are characterized by the presence of relatively rare and particularly
unfavourable scenarios. In such circumstances, we would rather have
a model that is both good on average and robust to the worst case.
Several approaches have been proposed to measure such risk, e.g.,
the so-called Conditional Value at Risk (CVaR) [62]. Essentially, during
the learning phase, it considers only a certain percentage of the worst
possible cases, identified by means of the metric that we are using
to evaluate our model. The underlying intuition is that an agent
that weighs or even centers its learning on such measure of risk could
behave adequately in a worst-case situation, avoiding a severe decrease
in the performance.

state of the art Several methods have been proposed in the
literature to build agents able to intrinsically explore the environment,
i.e., without the need for external signals [71, 10, 56, 13, 25]. The
state of the art addresses the problem with a task-agnostic exploration,
namely aimed at guaranteeing an exploration that is as uniform as
possible over the states of the environment [36, 46, 86, 51, 30, 67]. In
this way, the agent can generalize with respect to the tasks that it
will have to handle in the future. Nevertheless, this solution does not
contemplate a scenario with multiple environments. There is also wide
literature aimed at building agents that are able to cope with adverse
situations. Some algorithms propose an optimization for the CVaR

to manage the risk induced by the volatility of reinforce signals [74,
17] or by changes in the environment dynamics [61]. However, none
of them is directly studying the difficulty caused by the presence of
a particularly adverse configuration inside a class of environments.
Finally, meta reinforcement learning [82, 23, 26] aims at producing agents
that learn to learn. More precisely, the intent is to create agents that
are able to learn a new task by relying on other tasks learned in the
past. Thus, the idea is to learn how to quickly adapt from task to task.
However, current approaches still assume the presence of a reward
signal, with the remarkable exception of [31]. In any case, to the best
of our knowledge, none of the existing works combine reward-free
meta-training with a multiple-environments setting.

goal The goal of this thesis is to extend the generality of reward-
free learning by addressing the problem of learning to explore multiple
environments with a single exploration strategy. In addition to provid-
ing a formal definition of the problem, we also formulate a theoretical
characterization, in which we propose a metric to quantify the diffi-
culty of exploration of a class of environments. Moreover, we show



introduction 3

how and when an agent can benefit from the proposed approach
to solve any subsequent task specified over any environment in the
class, reducing the burden on manual reward design while improving
learning efficiency over reinforcement learning from scratch.

contribution In this thesis, we provide the following contribu-
tions:

• We provide a formal definition of the problem in a risk-averse
fashion;

• We propose a new objective for exploration over a class of reward-
free environments, in order to obtain an agent that is able to
solve any subsequent task defined over any environment in the
class;

• We present a novel algorithm to build optimal behaving agents
with respect to this objective;

• We show the merits of the proposed solution by means of an
extensive empirical analysis, which includes experiments on
both low-dimensional and high-dimensional complexity.

overview The thesis is structured as follows. In Chapter 2, we
provide the essential background to completely understand the subse-
quent chapters. In particular, we introduce the main entropic measures
of the information theory, some metrics useful to compute the distance
between probability distributions, and some others aimed at providing
a measure of risk. Besides that, we present the concepts that are at the
basis of reinforcement learning, which we then extend by taking into
consideration a generalization of such paradigm. In Chapter 3, we
describe the current state of the art to address the problems of sparse
reward and reward-free exploration, risk-averse learning, and general-
ization via fast-adaptation. Then, in Chapter 4, we provide a formal
definition of the problem in a risk-averse manner, accompanied by a
theoretical characterization. We also formulate an objective suitable to
the requirement of exploring a class of reward-free environments, and
a learning algorithm to optimize it. In Chapter 5, we proceed with an
exhaustive experimental evaluation of the introduced methodology,
including domains with both low-dimensional and high-dimensional
complexity. Finally, in Chapter 6, we conclude with a summary and
some thoughts about possible future developments. In Appendix A,
we report the proofs of the theorems that we omitted from the main
text to avoid weighing the exposition. In Appendix B, we include an
evaluation of an orthogonal setting with respect to the one we focus in
this thesis. To conclude, in Appendix C, we complete the information
of Chapter 5 with some further implementation details.





2
E S S E N T I A L B A C K G R O U N D

In this chapter, we provide all the concepts that are crucial to un-
derstand the content of the thesis. In Section 2.1, we introduce the
information entropy measure in its different formulations and a way
to compute its estimate. Furthermore, we present two of the most
common measures of risk and two metrics to compute the distance
between probability distributions, that we will use to theoretically char-
acterize the problem in Section 4.3. Then, in Section 2.2, we gradually
present the reinforcement learning framework. Finally, in Section 2.3,
we discuss a generalization of standard reinforcement learning.

2.1 probability distributions and information entropy

In this section, we introduce the information entropy measure, de-
veloped by Claude Shannon in [68]. We start from the discrete case
and then proceed with the continuous one. Afterwards, we discuss
some entropy estimators that we will take into consideration in the
following sections. Finally, we describe two common measures of risk,
which allow to quantify the performance that can be obtained in the
tail of a distribution.

2.1.1 Discrete Entropy

Let X be a discrete random variable with possible outcomes {x1, . . . , xN},
whose probability is denoted by P(xi). The entropy of X is:

H(X) = −
N

∑
i=1

P(xi) logb P(xi), (2.1)

where b is the logarithm base. From now on, we consider b = e, the
Euler’s number, hence the natural logarithm. A unit of entropy is
called “nat” in this case.

The entropy measure is at the base of information theory and of
ergodic theory. In general, it quantifies the expected information we
need to determine the value of a random variable. If this quantity is
high, the entropy is high. That is why it can be also interpreted as a
measure of the disorder of a random variable. We can read the concept
of disorder as unpredictability of its outcome. Intuitively, the surprise
deriving from the outcome of a random variable X is higher if we

5
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have no reasons to suspect that one outcome is more probable than
the others. In fact, the entropy is maximal when the P(xi) follows a
uniform distribution, meaning that all outcomes are equally possible.
It is instead minimal when P(xi) follows a Dirac distribution, meaning
that it is equal to zero everywhere except in one value.

2.1.2 Differential Entropy

The differential entropy of a continuous random variable X with
probability density function p(x) is defined as:

h(X) = −
∫
X

p(x) log p(x)dx, (2.2)

where X is the support region of the random variable. Notably, differ-
ential entropy is not a direct extension of discrete entropy. Going from
the discrete case to the continuous one requires to introduce a refer-
ence measure. The consequence is that we lose many nice properties.
For example, differential entropy is neither (necessarily) non-negative
nor (necessarily) invariant to coordinate transformations.

The Gaussian probability distribution plays a major role in infor-
mation theory. Interestingly, of all the probability distributions with
variance σ2, it can be shown [9] that it has the largest differential
entropy. The differential entropy of a multivariate Gaussian is:

H(X) =
p
2
+

p
2

log(2π) +
1
2

log(|Σ|),

where p is the length of the vectors whose components are indepen-
dent identically distributed (i.i.d.) Gaussian random variables, and |Σ|
is the determinant of the covariance matrix. Note that the entropy
increases as the variance increases. This is not a surprise, since the
variance is indeed a measure of the uncertainty.

2.1.3 Relative Entropy

Some of the difficulties associated with Shannon entropy in the con-
tinuous case can be mitigated by relative entropy, which is also called
Kullback-Leibler (KL) divergence [43], and it is defined as:

DKL(P||Q) =
∫

Rk
p(x) log

p(x)
q(x)

dx, (2.3)

where p(x) and q(x) are the probability densities of the distributions
P and Q respectively. It is always non-negative, and equality holds
only when the two distributions are equivalent. However, note that
it is not a true distance between distributions, as it is not symmetric
and it does not satisfy the triangle inequality. It is rather a measure
of entropy increase due to the use of an approximation to the true
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distribution instead of the true distribution itself. We will indeed use
this measure to deal with a scenario in which P is a target distribution
and Q is the distribution with which we approximate P.

Note that if we compute the relative entropy of a given distribution
with given mean and variance with respect to a Gaussian distribution
with the same mean and the same variance, we obtain a measure that
indicates how much our distribution is “non-normal”, which can be
written as:

DKL(PX || N (µX , σ2
X)) = log 2πeσ2 − h(X),

where h(X) is the differential entropy. This shows again that the Gaus-
sian distribution is the one that maximizes the differential entropy.

2.1.4 Non-parametric Differential Entropy Estimation

If we do not know the density function f of a distribution, we can still
obtain an estimate of the differential entropy given a realization of
X = {xt}T−1

t=0 [4]. Especially, we can turn to non-parametric, k-Nearest
Neighbors (k-NN) entropy estimators of the form [70]:

Ĥk( f ) = − 1
T

T−1

∑
t=0

ln
k · Γ( p

2 + 1)

N · |xt − xk−NN
t |p · π p

2
+ ln k−Ψ(k), (2.4)

where log k−Ψ(k) is a bias correction term in which Ψ is the Digamma
function, and p is the dimension of the random vector. The estima-
tor is known to be asymptotically unbiased and consistent [70]. As
mentioned in Section 2.1.3, in some cases we might have samples
from a sampling distribution f that is different from the target dis-
tribution f ′. We can provide an estimate of H( f ′) by means of an
Importance-Weighted (IW) k-NN estimator of the form [1]:

Ĥk( f ′| f )IW = −
T−1

∑
t=0

∑j∈N k
t

wj

k
ln

Γ( p
2 + 1)∑j∈N k

t
wj

|xt − xk−NN
t |p · π p

2
+ ln k−Ψ(k),

(2.5)

where N k
t is the set of indices of the k-NN of xt, and wj are the normal-

ized importance weights of samples xj, which are defined as:

wj =
f ′(xj)/ f (xj)

∑T−1
t=0 f ′(xt)/ f (xt)

.

The estimator in (2.5) is known to be asymptotically unbiased for
any choice of k [51, 1]. We can also estimate the Kullback-Leibler (KL)
divergence, described in Section 2.1.3, as:

D̂KL( f || f ′) = 1
T

T−1

∑
t=0

ln
k/T

∑j∈N k
t

wj
. (2.6)

Note that, when f ′ = f , D̂KL( f || f ′) = 0 and Ĥk( f ′| f )IW = Ĥk( f ).
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2.1.5 Wasserstein and Total Variation Metrics

We now present two common metrics for measuring closeness between
two probability distributions. Recall that, for the reasons pointed out
in Section 2.1.3, the KL divergence is not a true distance.

The first metric is the Total Variation (TV). It is a widely used prob-
ability metric, mainly because it admits useful bounding techniques
and also very natural interpretations (it ranges in [0, 1]). It is defined
as:

dTV(p, q) =
1
2

∫
X

∣∣d(p− q)
∣∣. (2.7)

Before we continue, it is worth introducing an additional concept,
which will be resumed later on. Let X, Y be two metric sets with
metric functions dX , dY. We say a function f : X → Y is L f -Lipschitz
continuous if it holds for some constant L f

dY( f (x′), f (x)) ≤ L f dX(x′, x), ∀(x′, x) ∈ X2, (2.8)

where the smallest L f is the Lipschitz constant and the Lipschitz

semi-norm is ‖ f ‖L = supx′ ,x∈X
{ dY( f (x′), f (x))

dX(x′ ,x) : x′ 6= x
}

.

We can now detail the second metric, which is the Wasserstein [41,
81]. Let p, q be two probability measures on a measurable space (X,F ),
it can be defined as:

dW1(p, q) = sup
f

{∣∣∣∣ ∫X
f d(p− q)

∣∣∣∣ : ‖ f ‖L ≤ 1
}

. (2.9)

2.1.6 Value at Risk and Conditional Value at Risk

In the literature, many risk measures have been introduced to quantify
the inherent risk in a certain setting. One of the most successful one
is the Conditional Value at Risk (CVaR) [62]. The CVaR is widely used in
the world of finance, but in the last years it has been adopted in many
other fields and it will play a central role in this thesis.

Before talking about the CVaR, however, it is worth introducing an-
other measure of risk first, which is called Value at Risk (VaR). Formally,
we can define the VaR as:

VaRα(X) = in f {x | FX(x) ≥ α}, (2.10)

where X is a random variable distributed according to a cumulative
density function (cdf) FX(x) = Pr(X ≤ x), and α ∈ (0, 1) is the
confidence level. Essentially, given a continuous distribution, the VaR

measures the risk as the maximum value with respect to a given
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confidence level α. Typically, with “value” one means a cost or a loss,
but it can be whatever other metric, e.g., entropy.

Now, we can go back to the CVaR, that can be defined as:

CVaRα(X) = E[X | X ≤ VaRα(X)]. (2.11)

Interestingly, the two terms are clearly related. In fact, even though VaR

has been also widely used as a risk measure, CVaR has taken over in
the last years thanks to its computational advantages and to superior
theoretical properties. For instance, CVaR is a coherent risk measure,
satisfying the properties of monotonicity, sub-additivity, homogeneity,
and translational invariance [58]. On the contrary, VaR is coherent only
when it is based on the standard deviation of a normal distribution.
In Figure 2.1 we provide an illustration of the two risk measures.

V aRαCV aRα

α

Figure 2.1: Graphic illustration of the VaRα and CVaRα terms.

If we specify X to be the random variable for some metric, which
is typically but not necessarily a loss, the CVaR is nothing but the
expected value E[X] that we would obtain in the bottom α-percentile
of the possible outcomes, i.e., what we call the worst case. Intuitively,
by optimizing for it, we are shifting our focus on the left tail-end of
the distribution, with the aim of moving to the right the red line.

2.2 reinforcement learning and markov decision pro-
cesses

In this section, we introduce the reader to the Reinforcement Learning
(RL) field. First, we provide a brief characterization of the area. Then,
we present the core elements of RL, namely those components and
abstractions that define its functioning. Finally, we explain how a RL

problem can be addressed, by supplying an overview of the main
algorithms and paradigms.

2.2.1 Reinforcement Learning

Reinforcement Learning is concurrently a problem, a set of methods
to solve the problem, and the field that studies the problem and
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the methods. The problem can be formalized as a sequential decision-
making problem, i.e., a setting in which a decision-maker has to make
a sequence of decisions in order to achieve a goal. The result of each
decision can be deterministic or non-deterministic and in some cases
delayed in time. Many real-world situations can be represented as a
sequential decision-making problem, ranging from automatic control
to robotics or operational research. The Markov Decision Process
(MDP) [72] is a mathematical framework used to model sequential
decision-making problems. The intent of an MDP is to capture the
most important aspects coming from the interaction between the
decision-maker and the environment in which it is immersed, which
are observations, actions and reward signals. Reinforcement learning
is then considering these aspects and learning what to do, namely
how to learn a behavior that associates an observation to an action in
order to maximize the reward from sampled interaction, i.e., without
the knowledge of the MDP.

2.2.2 Markov Decision Processes

Figure 2.2: The agent-environment interaction in a Markov decision process,
from [72].

In an MDP, an agent, i.e., the decision-maker, repeatedly interacts
with an environment. At each step t, the agent makes an action At

according to the current state St. At that point, the environment
answers by returning a new state St+1 and a reward signal Rt+1. The
first becomes the new state of the agent, while the second provides
an evaluation of the taken action At. Then the loop starts again. An
illustration of this process is shown in Figure 2.2.

More formally, we can define an MDP as a tuple 〈S ,A,P ,R, γ, d0〉,
where:

• S ⊆ Rns is a ns-dimensional continuous space, named state space;

• A ⊆ Rna is a na-dimensional continuous space, named action
space;



2.2 reinforcement learning and markov decision processes 11

• P is a function P : S × A → ∆(S) 1, named transition model,
where P(s′|s, a) is the probability of reaching the next state s′

given the values of the preceding state s and action a;

• R is a function R : S ×A → ∆(R), named reward model, where
R(s, a) is the expected scalar reward obtained after executing the
action a in the state s;

• γ ∈ [0, 1] is the discount factor for future rewards;

• d0 ∈ ∆(S) is the initial state distribution.

For completeness of notation, we define the state-action space SA as
the Cartesian product between the state space and the action space.
We can now define a trajectory as a sequence 〈st, at, rt+1〉i=0,...,T, where
st, at, rt+1 are respectively the current state, the taken action and the
resulting reward. The length of a trajectory is called time horizon T
and it can be either finite or infinite. The notation above considers a
state and action space that are both continuous. However, it is worth
noting that they can be formalized as discrete sets. In this case, the
MDP is said to be finite, since the sets S ,A,R all have a finite number
of elements.

The function P , i.e., the transition model, defines the dynamics of the
MDP. Generally, there are two main characteristics which are proper
to the dynamics of an environment. The first one is called Markov
property. It is satisfied when the probability of the next state depends
only on the immediately preceding state and action and not from the
earlier ones. Essentially, it means that the state st comprises all the
information about the trajectory s0, . . . , st−1 which are useful to make
future decisions:

Pr(St+1 = st+1|St = st, . . . , S0 = s0) = Pr(St+1 = st+1|St = st). (2.12)

The second characteristic is called stationarity. An MDP is stationary if
its dynamics does not change over time. From now on, we will assume
stationarity to be satisfied, but it is worth to mention that in the litera-
ture also non-stationary transition model have been considered [12].

The function R, i.e., the reward model, is responsible for the output
of the reward signal R(s, a), thus it plays a central role in learning a
behavior that satisfies our expectations. The reward signal is indeed
the main factor capable of changing the way in which the agent
behaves: if an action is followed by a low reward, when the agent will
find itself in the same situation in the future, it will probably opt for
another action. Note that the agent’s goal consists of maximizing the
total amount of rewards it receives. This means that this process is
evaluated in the long term, hence maximizing a cumulative reward.
Formally, we can define the latter by introducing the concept of return
Gt:

Gt = Rt+1 + Rt+2 + . . . + RT. (2.13)

1 ∆(X) denotes the batch of distributions over the set of X.
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The above is called finite-horizon undiscounted return, and it is just the
sum of rewards obtained in a fixed window of steps. However, as we
mentioned before, the time horizon T is not necessarily finite. There
are cases in which the agent-environment interaction does not split
in what are called episodes, i.e., sub-sequences of states, actions and
rewards with a terminal state, but instead goes on indefinitely. In those
cases, an infinite-horizon discounted return is used, defined as

Gt = Rt+1 + γRt+2 + γ2Rt+3 + . . . =
∞

∑
k=0

γkRt+k+1, (2.14)

where γ is the discount factor. The latter has two main advantages.
First, it is an intuitive way to account for the uncertainty about the fu-
ture: the further we look in the future, the more uncertain we are. This
is why we discount future rewards multiplying them by γk (recall that
γ ∈ [0, 1]). Second, it is mathematically convenient, because it makes
the infinite-sum in (2.14) to converge under reasonable conditions.

It is worth to say that there exist other versions of the MDP frame-
work, according to the setting we are using. For instance, if we do not
have access to a reward function R, we resort to a so-called Controlled
Markov Process (CMP), which therefore assumes the form of a tuple
〈S ,A,P , d0〉.

To conclude, by recalling the definition of Lipschitz continuity
in (2.8), we can provide the definition of Lipschitz MDP. A Lipschitz
MDP is a standard MDP augmented by a Lipschitz continuous transition
model and reward model, i.e.:

∀(s, s′, a, a′) ∈ S2 ×A2, (2.15)

dW1(P(·|s, a),P(·|s′, a′)) ≤ LP dSA((s, a), (s′, a′)),

∀(s, s′, a, a′) ∈ S2 ×A2,

|R(s, a)−R(s′, a′)| ≤ LR dSA((s, a), (s′, a′)).

2.2.3 Policies

So far, we have not given a name to the behavior learned by the agent
during its interaction with the environment. This decision strategy is
called a policy. Formally, a policy is a Markovian stationary function
of the form

π : S → ∆(A). (2.16)

It can be defined also as a distribution over actions given states. If the
agent is following the policy π, it means that the probability that At

given that St = s is defined as π(a|s) = P[At = a|St = s]. A policy can
be deterministic or stochastic. In the former case, for each state s ∈ S
there exists some action a ∈ A such that π(a|s) = 1. Instead, the latter
allows to define also randomized decision strategies.
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An agent that follows a policy π on an MDP induces a probability
distribution over the state space S , which determines the probability
of being in a state s at a given time-step t. Recalling that d0 is the
initial state distribution of an MDP, we can define the induced state
distribution as:

dπ
t (s) = Pr(st = s|π) =

∫
S

dπ
t−1(s

′)
∫
A

π(a|s′)Pr(s|s′, a)dads′, (2.17)

or, indicating with τ a generic trajectory:

dπ
t (s) = Pr(st = s|π) =

∫
T

Pr(τ, st = s|π)dτ, (2.18)

where

Pr(τ, st = s|π) = d0(s0)
t

∏
i=0

π(ai|si)Pr(si+1|si, ai). (2.19)

If the MDP satisfies certain conditions (i.e., it is aperiodic and recur-
rent [60]), it admits a unique steady-state distribution called steady-
state distribution dπ. The steady-state distribution is the fixed point of
Equation (2.17), which means that, for a finite time-step t, the state
distribution remains the same from t thereafter:

dπ(s) = lim
t→∞

dπ
t = dπ(s). (2.20)

Many real-world problems that we would like to solve with RL have a
huge or even infinite number of states and actions. In such cases, it
becomes impossible to define the policy for every state-action. Thus,
we resort to function approximation, meaning that we sample from a
desired function to build an approximation of it. In other words, we
want to obtain a more compact representation that generalizes across
states and actions. The function to be approximated can be a policy
or a value function (or both). The concept of value function will be
introduced in Section 2.2.4. We propose two of the most common
representations of stochastic policies, which are categorical policies
and diagonal Gaussian policies. As the name can suggest, categorical
policies are used when the action space is discrete, while diagonal
Gaussian policies are used with continuous action spaces.

2.2.3.1 Categorical Policy

A categorical random variable is a discrete random variable with
more than two possible outcomes. It thus follows that a categorical
distribution is essentially an extension of the Bernoulli distribution.
With that said, we can easily define a categorical policy as a classifier
over discrete actions. Especially, a softmax function is used to transform
the logits flowing out from our model f (θ, s) (e.g., a neural network)
into a vector of action probabilities:

πθ(a|s) = exp( f (θ, s))

∑|A|−1
i=0 exp( fi(θ, s))

. (2.21)
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2.2.3.2 Diagonal Gaussian Policy

A multivariate Gaussian distribution is characterized by a mean vector
µθ, and a covariance matrix Σ. A diagonal Gaussian policy can be
defined through a multivariate Gaussian distribution as:

πθ(a|s) = 1√
2πn|Σ|

exp(−1
2
(a− µθ)

TΣ−1(a− µθ)), (2.22)

where |Σ| is the determinant of the covariance matrix and n = na is
the dimension of the continuous action vector. The Gaussian policy
might be supported by a neural network that maps the observations
to the mean actions µθ(s). The covariance matrix can be represented
in different ways, but in all cases the output is the logarithm of
the standard deviations. The reason is that log σ can take values in
(−∞, ∞), hence it makes the process of training easier without losing
any information.

2.2.4 Value Functions

At this point, we can introduce a concept that is widely used in
RL, namely the value function. If the reward tells the agent the short-
term utility of taking an action in a given state, a value function
evaluates a state according to the long-term chain of rewards that can
be accumulated in the future starting from that state. More precisely,
the state value function of a state s under a policy π is the expected
return when starting in s and then following π:

Vπ(s) = E
π
[Gt|St = s], (2.23)

which we can define by means of the Bellman expectation equation [6]:

Vπ(s) =
∫
A

π(a|s)(R(s, a) + γ
∫
S

Pr(s′|s, a)Vπ(s′)ds′. (2.24)

Similarly, we can define the state-action value function, which encapsu-
lates the same meaning, but in this case we evaluate the long-term
utility of taking an action a in a state s under a policy π:

Qπ(s) = E
π
[Gt|St = s, At = a] (2.25)

= R(s, a) + γ
∫
S

Pr(s′|s, a)
∫
A

π(a′|s′)Qπ(s′, a′)ds′da′.

Interestingly, these measures can be adopted to provide a partial
ordering over policies. In fact, a policy π is better than another policy
π′ if its expected return is greater or equal to that of π′ for each state
s, namely:

π ≥ π′ ⇐⇒ Vπ(s) ≥ Vπ′(s) ∀s ∈ S .
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Crucially, for any MDP there always exists a policy which is better or
equal to all the other policies. This policy is called the optimal policy
and we will indicate it as π∗. Note that there can be more than one
optimal policy, but they all share the same optimal state value function:

V∗(s) = maxπVπ(s) ∀s ∈ S (2.26)

= maxa{R(s, a) + γ
∫
S

Pr(s′|s, a)V∗(s′)ds′},

and the same optimal state-action value function:

Q∗(s, a) = maxπQπ(s, a) ∀s ∈ S , ∀a ∈ A (2.27)

= maxa{R(s, a) + γ
∫
S

Pr(s′|s, a)maxa′Q∗(s′, a′)ds′da′}.

Indeed, once we know Q∗(s, a), we can easily define the optimal policy
as the one that acts greedily with respect to it:

π∗(a|s) = arg max
a

Q∗(s, a), ∀s ∈ S . (2.28)

An optimal value function thus specifies the best possible performance
in an MDP. In fact, an MDP is said to be “solved” when we know the
optimal value functions.

2.2.5 The RL Problem

At this point, we can easily define the main objective when we try to
solve a RL problem. Independently from the way in which we measure
the return and from the kind of policy we are using, the goal in RL

is to find a policy that maximizes the expected return. We can thus
measure the performance of an agent as:

J π = E
τ∼π

[G(τ)] =
∫
T

Pr(τ|π)G(τ)dτ. (2.29)

The optimal policy is then expressed as:

π∗ = arg max
π

J π. (2.30)

Note that this optimality criterion is weaker than the one in (2.28),
because in this case the policy does not need to be optimal in all the
states, but only in the ones that are visited with a non-zero probability.
Moreover, it is worth to know that there is always a deterministic
optimal policy for any MDP [60].

2.2.6 Methods to solve MDPs

We said that solving an MDP means to find the optimal state-action
value function, or the optimal policy alike. There are plenty of ways
to address this problem, thus it is worth to provide a taxonomy that
takes into consideration all the different settings we can encounter.
The first distinction is the following:
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• Model-based learning: the agent tries to understand the environ-
ment in which it is immersed to create a model of it. In other
words, it tries to build an approximation of the transition model
P and of the reward function R. The main advantage of having
a model consists in the possibility to perform planning, looking
in advance at what can happen and acting accordingly. This
results also in a higher sample efficiency. However, if this is
relatively easy to do when the ground-truth model is given,
leading to remarkable results such as with AlphaZero [69], in
the remaining cases, which are the majority, the agent has to
build an approximation of it from pure experience, which sets
several challenges. Dynamic programming can be used to obtain
an optimal policy assuming to have a perfect model of the en-
vironment. Nonetheless, it is rarely used in practice, due to its
assumption and to its poor computational efficiency;

• Model-free learning: the agent learns without any knowledge
about the model.

A second distinction can be done by considering the following two
paradigms:

• Value-based learning: the focus is on the value functions, which
once estimated are used to perform the actions. One of the most
successful method is Q-learning [83], which, as the name sug-
gests, learns an approximation of the optimal state-action value
function in (2.25), and then selects the action that is optimal
according to the approximation. DQN [50] is a practical imple-
mentation of Q-learning, where value functions are represented
by neural networks;

• Policy-based learning: the focus is on the policy itself. We consider
a parameterized policy πθ and we directly update its parameters.
Note that in this case we are directly optimizing the thing we
want to obtain, as opposed to a value-based method. Neverthe-
less, even if a value function is in this case not required to select
an action, it can be used to learn the policy parameters, in which
case we talk of an actor-critic method. Policy-based methods have
several advantages over the value-based ones, but one of the
most straightforward is that a policy may be a simpler function
to approximate than an action-value. Another significant benefit
of using policy parameterization is the possibility to inject a
prior knowledge about the form of the policy that we would
like to obtain. Moreover, policy-based methods are more suitable
for scaling RL in high-dimensional continuous action spaces, as
well as for episodic tasks, i.e., for tasks that can be broken down
into a sequence of separate episodes. Finally, they allow to work
with stochastic policies in a more natural way. One example of
successful application of this approach is PPO [66].

To conclude, another distinction is between:
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• On-policy learning: the so-called behavioral policy, i.e., the one
used by the agent to interact with the environment, is also the
one that we aim to optimize. Policy-based methods typically
follow this approach, updating the policy with the data collected
through the latest version of the same policy;

• Off-policy learning: the agent acts according to a behavioral policy,
but the policy that is actually optimized is different and it is
usually called target policy. The Q-learning algorithm follows this
approach.

2.2.7 Policy Gradient Methods

Policy gradient methods, introduced by [84], obviously belongs to the
policy-based class, according to one of the distinctions made in the
previous section. They indeed operate directly in the parameter space
of parameterized policies. In particular, the name comes from the
fact that they learn the parameters of the policy by means of gradient
ascent, i.e., by updating the parameters towards the maximum growth
direction of the performance measure (2.29). The search of the optimal
policy is performed into the so-called policy space, which in this case
is restricted to all the stochastic, differentiable and parameterized
policies and can be formally defined as:

ΠΘ = {πθ : θ ∈ Θ ⊆ Rnθ}, (2.31)

where nθ is the number of parameters. Hence, given the parameters
of the current policy θt (e.g., the weights of a neural network) and
indicating as J πθ the performance measure with respect to the policy
parameters, and with ∇θJ πθ its respective gradient, we can write the
updating procedure as:

θt+1 ← θt + α∇θJ πθ , (2.32)

where α value is the learning rate.

2.2.8 Derivation of the Policy Gradient

In order to actually use the update in (2.32), we need an expression of
the policy gradient that we can numerically compute. Starting from
the performance measure definition in (2.29), we can derive:

∇θJ πθ = ∇θ
∫
T

Pr(τ|πθ)G(τ)dτ (2.33)

=
∫
T
∇θPr(τ|πθ)G(τ)dτ

=
∫
T

Pr(τ|πθ)∇θ log Pr(τ|πθ)G(τ)dτ

= E
τ∼Pr(·|πθ)

[
G(τ)∇θ log Pr(τ|πθ)

]
,
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where in the third step we used the log-derivative trick ∇θp(x;θ) =
p(x;θ) log p(x;θ). Once we have this formulation, we can see that we
reduced the gradient to an expectation, which we can estimate with a
sample average. Let us recall that the gradient of the log-probability
of a trajectory τ is:

∇θPr(τ|πθ) = (((((((∇θ log d0(s0) +
T−1

∑
t=0

(((((((((((
(∇θ log P(st+1|st, at) (2.34)

+∇θ log πθ(at|st))

=
T−1

∑
t=0
∇θ log πθ(at|st),

and that G(τ) = ∑T−1
t=0 γtrt. Significantly, Equation (2.34) states that

∇θPr(τ|πθ) does not depend on the transition model. Finally, we can
write the resulting expression:

∇θJ πθ = E
τ∼P(τ|πθ)

[ T−1

∑
t=0

γtrt∇θ log πθ(at|st)
]
. (2.35)

Note that in (2.34) we remove the terms that do not depend on the
policy parameters θ. The resulting equation highlights a crucial result
for policy gradients. This result holds for stochastic policies only and
that is why they are so important in policy gradients methods.

To conclude, the estimator in (2.35) is only one among the possible
policy gradient estimators [57]. Some other estimators apply some
tweaks to the γtrt term, in order to deal with the inherently present
noise in Monte-Carlo estimates. For instance, the REINFORCE al-
gorithm [84] uses exactly what we delineated in (2.35), but with an
additional baseline b, which we can subtract from the γtrt term to
reduce the variance. Below we report the general procedure of a policy
gradient algorithm.

Algorithm 1: Policy Gradient Algorithm
Input: initial policy πθ0 , learning rate α

for h = 0, 1, . . ., until convergence do
Explore: collect sample trajectories using πθh

Evaluate: compute (estimate) the policy the gradient ∇θJ πθh

Update: update the policy parameters θh+1 ← θh + α∇θJ πθ

end for
Output: optimal policy πθh

2.3 the pareto frontier : a multi-objective perspective

Many real-world problems are characterized by the presence of mul-
tiple objectives, sometimes conflicting with each other. In such cases,
the standard RL framework [72] is not suitable, due to its single-
objective focus. That is why throughout the years a new branch has
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began to develop, named Multi-Objective Reinforcement Learning
(MORL). Essentially, MORL considers Multi-Objective MDPs (MOMDPs)
to solve sequential decision-making problems with multiple, possi-
bly conflicting, objectives. Formally, a MOMDP is defined as a tuple
〈S ,A,P ,R, γ , d0〉, where R = [R1, . . . ,Rq]T and γ = [γ1, . . . , γq]T

are q-dimensional column vectors of reward functions and discount
factors. Accordingly, a policy π is associated to q expected returns
J π = [J π

1 , . . . ,J π
q ].

In Section 2.2.4, we gave the definition of optimal policy and we
said it is not necessarily unique. If there are N optimal policies, they
all share the same optimal state value function. In a MOMDP this does
not hold anymore, as a single policy cannot maximize simultaneously
all the objectives, due to their conflicting nature. Here comes to play
the concept of Pareto frontier. In order to understand it better, let’s first
introduce the notion of Pareto dominance. Formally, a policy π strongly
dominates a policy π′ if it is superior on all objectives:

π � π′ ⇐⇒ ∀i ∈ {1, . . . , q},J π
i > J π′

i . (2.36)

Instead, a policy π weakly dominates a policy π′ if it is not worse on all
the objectives:

π � π′ ⇐⇒ ∀i ∈ {1, . . . , q},J π
i ≥ J π′

i ∧∃i ∈ {1, . . . , q},J π
i = J π′

i .

(2.37)

Finally, we define a Pareto-optimal policy as:

π∗ = π s.t. @π′, π′ � π. (2.38)

At this point we can introduce the concept of Pareto frontier. Since in
general there exist multiple (locally) Pareto-optimal policies, where with
“locally” we mean that the dominance is restricted to a neighborhood
of π, the objective we would like to achieve consists in finding the
set of all these Pareto-optimal policies. The Pareto frontier is nothing
but the set obtained by mapping the Pareto-optimal policies π∗ with
their corresponding J π∗ . In [54], Parisi et al. propose a policy-based
approach to learn a continuous approximation of the Pareto frontier
in MOMDPs. They consider a function φρ that defines a manifold in
the policy parameter space, from which another mapping is done
by means of the expected return J (θ), obtaining the corresponding
image in the objective space. Given this setting, they try to find the
parameterization ρ that minimizes the distance from the real Pareto
frontier using a gradient-ascent procedure.





3
S TAT E O F T H E A RT

In this chapter, we provide an overview of the latest methods and
approaches in the literature that are relevant to the problems we will
encounter in the next sections. Since this thesis is at the intersection
of three different areas, the overview will briefly cover all of them.
In particular, in Section 3.1, we discuss the recent developments of
the exploration problem in reinforcement learning, with a focus on
intrinsic motivation and task-agnostic exploration. Then, in Section 3.2,
we introduce those methods whose aim is to build robust policies,
where the meaning of robust can be generally understood as the
capability to deal with situations more complex than the average.
Finally, in Section 3.3, we introduce the paradigm of meta-learning (or
learning to learn) and the methods that use it to learn policies that are
able to quickly learn new tasks or to adapt to new environments.

3.1 exploration in reinforcement learning : from sparse-
reward to reward-free

In the previous sections, we just assumed the presence of some kind
of reward signal, and given this assumption we formulated several
expressions. This is indeed how RL was originally thought and many
astonishing results have been obtained in the recent years [50, 69].
However, a reward function is not always granted but somehow a lux-
ury. In fact, even if the intuition behind its functioning is unequivocal,
its design is not as straightforward [32]. Typically, the way in which
we avoid this obstacle is to adopt a very simple formulation, such as
giving a positive reward (e.g., +1) each time the agent solves a task.
The drawback of this solution is that the reward signal becomes sparse,
meaning that the agent has to perform a certain number of actions
without receiving any feedback about its behavior. This approach is
feasible if the state space is not too large, otherwise the agent will
struggle to reach the goal even once. To further complicate the matter,
in some cases the reward might not be present at all while training [40].
In both the sparse-reward or the reward-free scenarios, exploration
becomes the main challenge for the agent.

To address this exploration problem, several works have been pro-
posed. We provide a brief but exhaustive overview of the main meth-
ods used to tackle the exploration problem in sparse-reward and
reward-free RL.

21
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3.1.1 Prediction-Error Methods

Prediction-error methods use the error coming from the prediction
of the next state as an intrinsic bonus, following the intuition that
the agent will prefer to go in states that it does not know well, hence
where the error is higher. Generally, the error might be defined as:

Rintrinsic(st, st+1) = || f (st+1)−M( f (st), at)||2,

where f (·) is the feature space and M our model of the environment,
typically a neural network. The main challenge in this setting consists
of learning an appropriate function f . In [56], the idea is to learn it
end-to-end by means of an inverse dynamics model. Essentially, the
predictions are not made in the raw observation space (e.g., pixels),
but instead only the information that are directly related to the agent’s
actions are represented in the feature space. This solves the so-called
white-noise problem [64], which occurs due to local stochasticity and
that pushes the agent to stall its exploration.

3.1.2 Count-Based Methods

Count-based methods add an intrinsic bonus when the agent encoun-
ters a new or less visited state. The simplest way in which such idea
can be put in practice is by counting the number of times a state s has
been visited. At that point, the intrinsic bonus can be computed as:

Rintrinsic(st) =
1√

N(st)
,

where N(st) is the number of times the state st has been visited.
The obvious limitation of this solution is that it works well only for
discrete state spaces with small dimensions. Several approaches have
been proposed in the literature to deal with this shortcoming, by
hashing the state space [75] or by means of density models [5, 53].
One drawback of density models is their computational complexity.
Burda et al. [13] managed to reduce this complexity and to obtain
better results overall. They use a fixed random neural network to
produce random continuous features, and a second network to predict
the output of the random one. The intrinsic bonus is given by the
prediction error. In this sense, it can be considered a prediction-error
method as well. The count-based aspect is due to the fact that the
higher the error, the lower the number of visits of the second network
to the considered state.

3.1.3 Information Gain Methods

Information gain methods add an intrinsic bonus that is proportional
to the amount of uncertainty about the environment that has been
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reduced in the last step. The uncertainty is typically measured by
means of the mutual information, which can be computed as:

I(X; Y) = H(X)− H(X|Y),

where X and Y are two random variables and H is the entropy. Note
that we can interpret the mutual information between X and Y as
the entropy reduction on X given Y. In [29], they use the conditional
mutual information I(A; G|S) to quantify the dependence of the policy
on the goal G and they minimize it in order to obtain a policy that
is able to exploit a multi-goals structure to allow for an efficient
exploration of new environments.

Another relevant work is the one in [25]. They propose an algorithm
called Diversity Is All You Need (DIAYN), aimed at learning new skills
without a reward function. Especially, as its name suggests, it seeks
for a set of skills which is as diverse as possible, thus maximizing
the exploration of possible behaviors. The way in which they achieve
such a diversity is by optimizing a mutual information objective of
the form:

maximize F (θ) = I(S; Z) + H(A|S)− I(A; Z|S)
= H(Z)− H(Z|S) + H(A|S, Z),

where S and A represent states and actions respectively, Z ∼ p(z)
is a latent variable representing the skill (where they fix p(z) to be
uniform), I(·) is the mutual information, and H(·) is the entropy.
Intuitively, the above objective pushes towards distinguishable skills,
i.e., which visit different states, by maximizing the mutual information
between S and Z. Concurrently, the mutual information between skills
and actions given the state is minimized to guarantee that skills are
distinguishable with respect to states and not actions. Finally, the
entropy of the actions conditioned to the states is maximized to obtain
skills that are different from one another.

Actually, as they cannot integrate over all states and skills, they
approximate p(z|s) with a learned discriminator qφ(z|s). Then, they
exploit the Jensen’s inequality [3] to write:

F (θ) = H(A|S, Z)− H(Z|S) + H(Z) (3.1)

= H(A|Z, S) + E
z∼p(z)
s∼π(z)

[
log p(z|s)

]
− E

z∼p(z)

[
log p(z)

]
≥ H(A|Z, S) + E

z∼p(z)
s∼π(z)

[
log qφ(z|s)− log p(z)

]

3.1.4 A Limitation Of Intrinsic Bonuses

As outlined in [24], both count-based methods and prediction-error
methods suffer the problem of detachment, possibly making them
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unable to methodically explore the environment. In fact, the inherently
consumable nature of intrinsic bonuses might cause the agent to
become detached from the frontiers with high rewards, meaning that
the agent will hardly rediscover a frontier after having exhausted the
intrinsic bonuses. This is particularly limiting when the reward is not
only sparse, but even not present at all. Different methodologies have
to be developed for this case, which we outline in next section.

3.1.5 Task-Agnostic Exploration Methods

Task-agnostic exploration methods address the problem of exploration
by seeking for an intrinsic objective that, when optimized, can lead to
a policy which allows the agent to solve many subsequent tasks. The
typical objective is strive for a policy that induces a state distribution
which is as uniform as possible. Usually, this objective is measured in
terms of the entropy function.

The first work to propose such an approach is [36]. Their objective
is given by:

π∗ ∈ arg max
π∈Π

H(dπ), (3.2)

where Π is the policy space and dπ is the state distribution induced
by π. As one might notice, optimizing the objective in (3.2) is not
straightforward. Ideally, we could use (2.17) and then compute the
entropy directly, but in practice it is not feasible except for simple
discrete domains, since we would need to estimate the transition
model. In [36], Hazan et al. resort to compute an estimate of the state
distribution with a density model. Especially, they provide results
for both a count-based density model and a kernel-based density
model [55]. Their algorithm learns an optimal mixture of policies by
means of the conditional gradient method [27].

Several works have then followed this line of research. For instance,
in the discrete setting we can find [76], which introduce the active
exploration problem in MDPs, providing an algorithm that seeks for
a policy maximizing the accuracy of the mean predictions given an
unknown environment, and whose states are characterized by random
variables that need to be estimated. Another relevant work that oper-
ates in the discrete case is the one of [52]. They adopt the objective
in (3.2), but instead of using the conditional gradient method, they
maximize a lower bound to the policy entropy, and also propose a
constraint formulation to lower the time with which the policy reaches
its full exploration efficiency.

As regards the continuous case, in [46] the objective is reformulated
as the problem of matching a given target distribution p∗(s), which en-
codes our belief about the future tasks. If the target distribution is the
uniform one, the objective is equivalent to the entropy maximization.
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The disparity between the state marginal distribution ρ(s) (defined
as the probability that the policy visits the state s) and the target
distribution is measured with the KL divergence. Thus, the objective
becomes:

min
π∈Π

DKL(ρπ(s) || p∗(s)) (3.3)

= max
π∈Π

E
ρπ(s)

log p∗(s) + Hπ(s).

Their approach also relies on a density model to estimate the entropy
and the output is still a mixture of policies (at least for complex target
distributions). Other more recent works are [86], whose algorithm out-
puts a single exploratory policy by maximizing the Rényi entropy over
the state-action space, and [30], where Guo et al. introduce a version
of the Shannon entropy, named geometry-aware Shannon entropy, that
relies on a symmetric similarity function k : S × S → [0, 1] to capture
the underlying geometry of the state space S .

Finally, [51] propose an algorithm, called Maximum Entropy POLicy
optimization (MEPOL), to learn a single exploration policy rather than
a mixture of policies. Especially, it gets rid of any explicit model
to estimate the entropy, a procedure which is known to have some
flaws [4], which make the solutions that use it hardly scalable to
complex domains. Their objective is defined as:

maxπ∈ΠH(d̄T), d̄T =
1
T

T−1

∑
t=0

dπ
t , (3.4)

where d̄T = 1
T ∑T

t=1 dπ
t is the finite-horizon marginal distribution across

all steps. As said for (3.2), optimizing (3.4) is not trivial, and if done
directly it would preclude high-dimensional domains. That is why
in [51], Mutti et al. opt for a policy-search model-free algorithm that
uses a non-parametric differential entropy estimator of the form seen
in (2.5) and that is here reported for convenience, after making some
changes to the notation:

ĤIW
τi

= −
T−1

∑
t=0

∑j∈N k
t

wj

k
ln

∑j∈N k
t

wj

Vk
t

+ ln k−Ψ(k), (3.5)

where

Vk
t =

∥∥st,τi − sk-NN
t,τi

∥∥p · π p
2

Γ( p
2 + 1)

(3.6)

is the volume of the hyper-sphere of radius Rt =
∥∥st,τi − sk-NN

t,τi

∥∥, which
is the Euclidean distance between st,τi and its k-nearest neighbor sk-NN

t,τi
.

In fact, they show how a Euclidean metric suffices to get reliable
entropy estimates in continuous control domains. MEPOL relies on
the above estimator to assess the quality of a policy given a batch of
interactions, and tries to maximize it within a parametric policy space.
The intuition behind the use of a k-NN estimator to provide an estimate
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of the entropy is that the entropy of a continuous distribution can be
somehow inferred by looking at how random samples drawn from
it end up lying over the support surface [4]. Maximizing the entropy
via a k-NN estimator thus means to seek for a uniform coverage of the
support. The way in which MEPOL does this consists in combining the
idea of two successful policy-search methods: POIS [49], to perform
the optimization offline via importance sampling, allowing for an
efficient exploitation of the samples collected with previous policies,
and TRPO [65], as the IW estimator is optimized via gradient ascent by
performing subsequent optimizations withing a trust-region around
the current policy. The trust-region constraint is obtained by imposing:

D̂KL(πθ′ ||πθ) =
1
T

T−1

∑
t=0

ln
k/T

∑j∈N k
t

wj
≤ δ, (3.7)

where D̂KL(πθ′ ||πθ) is a non-parametric IW k-NN estimate of the KL

divergence [1].

Interestingly, [34] adopt the same entropy estimator, but the k-NN

computation is performed on the latent representation space obtained
by means of contrastive learning [33] (and more recently [15]). This
allows them to test their algorithm in a visual-based setting. A similar
approach is followed in [67], where the k-NN computation is performed
in the representation space of a randomly initialized encoder. More
precisely, they define the intrinsic reward as:

ri(si) = log(
∥∥yi − yk−NN

i

∥∥
2 + 1), (3.8)

where yi = fθ(si) is a fixed representation from a random encoder,
and yk−NN

i its k-nearest neighbor within a set of N representations.
Interestingly, the parameters θ of the encoder are randomly initialized
and fixed during the training. As regards the choice of a random
initialization, they refer to several works in the literature that have
shown its effectiveness in different areas, RL included [28, 45]. They opt
for a fixed representation with the aim of having a more stable intrinsic
reward, as the distance between two states remains unchanged during
the training. The choice of an encoder architecture must be sought
in the intent of extracting features that are relevant to discriminate
between states. The intuition comes from the strong inductive bias of
deep convolutional networks [80, 14].

The works of [51] and [67] will be resumed in Chapter 4, since their
contribution is significant in this thesis. For the sake of completeness,
we provide in Algorithm 2 the pseudo-code of MEPOL.

3.2 risk-sensitive algorithms in reinforcement learn-
ing

The idea of risk-sensitive RL, also sometimes called Risk-Averse or Risk-
Safe RL, is a natural development of the concepts that we introduced in
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Algorithm 2: MEPOL
Input: exploration horizon T, sample-size N, trust-region
threshold δ, learning rate α, nearest neighbors k
initialize θ
for epoch = 1, 2, . . . , until convergence do

draw a batch of dN
T e trajectories of length T with πθ

build a dataset of particles Dτ = {(τt
i , si)}N

i=1
θ′ = IS-Optimizer(Dτ , θ)
θ ← θ′

end for
Output: task-agnostic exploration policy πθ

IS-Optimizer

Input: dataset of particles Dτ, sampling parameters θ
initialize h = 0 and θh = θ

while DKL(d̄T(θ0)||d̄T(θh)) ≤ δ do
compute a gradient step:
θh+1 = θh + α∇θh Ĥk

(
d̄T(θh)|d̄T(θ0)

)
h← h + 1

end while
Output: parameters θh

the previous sections. In Section 2.2.5, we said that, generally speaking,
the goal in RL is to find a policy that maximizes the expected return. The
term “expected” is highlighted because in many real-world problems
it represents the weakness of what we introduced as the standard RL

approach. There are several applications in which the environments
can contain many uncertainties, due to their stochastic nature, and if
the optimization is based on the average case, they can go unnoticed.
In other words, particularly unlucky situations may occur and if our
agent is not robust enough to deal with those situations, bad things can
happen. One straightforward example can be found by considering
the world of finance: when we decide to make an investment, we
would like to maximize the expected return, but also to avoid to lose
everything due to an unexpected event. Hence, the trading-bot should
be robust enough to perform reasonably well even in the so-called
worst-case scenario.

Risk-sensitive RL tries to address these limitations. In order to do
that, it makes use of some mathematical tools, which provide a mea-
sure of the risk. The basic insight is to shift the focus of the optimiza-
tion process to the worst-case, or at least to take it into consideration,
e.g., by introducing one or more constraints. Two risk measures which
have been increasingly adopted in the last years are the VaR and CVaR.
Due to the superior properties of CVaR over VaR, which we highlighted
in Section 2.1.6, CVaR has increasingly taken the place of VaR in risk-
averse RL. The first work proposing such change of direction is [62],
which shows the effectiveness of a CVaR minimization in a portfolio
optimization setting. It addresses the problem by means of linear
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programming. Other works have then built on this idea [38, 39], im-
proving the computational efficiency limits imposed by solving a linear
programming problem. However, they still make use of a stochastic
program formulation. Hence, in their respective field of application,
the parameters do not affect the distribution of the outcomes.

The first work to propose a policy-gradient algorithm for CVaR op-
timization is [74]. They derive a novel formula for the CVaR gradient,
along with a Monte-Carlo based estimator and a stochastic gradient
descent procedure for the optimization, which is guaranteed to con-
verge to a local optimum. Then, they empirically test their solution
in a RL domain, learning a risk-sensitive policy for Tetris. We report
below the general formulation of the CVaR gradient:

∇θCVaRα(X) = E
θ

[
∇θ fX(X;θ)(X−VaRα(X)

∣∣∣X ≤ VaRα(X)
]
, (3.9)

where X is a random variable that would typically assume the form
of some kind of performance measure, fX(X;θ) its probability density
function, and b the baseline. The Monte-Carlo estimate of the gradient
is given by:

∇̂θCVaRα(X) =
1

αN

N

∑
i=1

fτj

(
Xi − V̂aRα

)
1
(
Xi ≤ V̂aRα

)
, (3.10)

where fτj = ∑T−1
t=0 ∇θ log πθ(at,τi , st,τi). Remarkably, the estimator in

(3.10) is asymptotically unbiased and consistent [74], but it is ham-
pered by the estimation error of the VaR term to be subtracted to each
Xi in finite sample regimes [42]. In Algorithm 3 we detail the full
procedure.

Algorithm 3: CVaRSGD

Input: initial parameters θ0 ∈ Rk, step size ε, percentile α, reward
function r(x, y) : Rn ×Y → R, projection operator Γ : Rk → Rk

for i = 0, 1, . . ., until convergence do
sample ni i.i.d. realizations xni , yni ∼ fX ,Y(x, y;θi)

compute r1, . . . , rN = Sort(r(x1, y1), . . . , r(xN , yN))

estimate VaRα ∼ rdαNe
for j = 0, 1, . . . , k do

compute a Monte-Carlo estimate of the CVaR gradient ∆j;ni

update the parameters θi+1
j ← Γ(θi

j + εi∆j;ni)

end for
end for
Output: risk-sensitive policy πθ

Concurrently with [74], a similar solution has been endorsed in [17].
They propose both a policy-gradient algorithm and an actor-critic
algorithm having as objective the mean-CVaR optimization, in which
the CVaR becomes a constraint rather than the objective function:

maximize
πθ∈ΠΘ

Fmean-cvar(πθ) =

{
E[X] s.t. CVaRα[X] ≥ ξ

}
, (3.11)
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where ξ is the parameter to control risk aversion. The nature of this
parameter changes according to the context in which it is used. For
instance, in the financial framework, it typically represents the loss
tolerance.

Knowing from [62] that CVaR can be equivalently written as:

CVaRα(X) = max
ν∈R

{
ν +

1
ε

E
x∼ fX

[
(x− ν)−

]}
, (3.12)

where (z)− = min(0, z), and exploiting the Lagrangian relaxation
method [8] to get an unconstrained form, they write the optimization
problem as:

min
λ≥0

maximize
θ∈Θ,ν∈R

E
x∼ fX;θ

[
x
]
+ λ

(
ν +

1
ε

E
x∼ fX;θ

[(
x− ν

)−]− ξ

)
. (3.13)

As opposed to [74], they thus adopt a fully principled, i.e., unbiased
and consistent, policy update formulation. The optimization is per-
formed via a three-timescale gradient ascent procedure for the policy
gradient algorithm so that the VaR parameter ν update is on the fastest
time-scale, the policy parameter θ update on the intermediate time-
scale, and the Lagrange multiplier λ update on the slowest time-scale.
Instead, as regards the actor-critic algorithm, the hierarchy remains
the same, but the fastest time-scale is taken by the critic update.

The same constrained formulation is presented in [37] to learn
robust options, which are temporally extended sequence of actions [73].
Also [18], building on [20], propose a safe and active model-based
learner, where the safe component is obtained by incorporating a CVaR

constraint, which is again relaxed through the Lagrangian method.

Finally, it is worth to mention the work of [61], as it shares some
of the intent that are central to this thesis (we will provide further
explanations in Chapter 4). They take into consideration an inherent
issue of model-based methods, i.e., the possibility to obtain control
strategies that are not robust to model risks, which are caused by a
discrepancy between the real-world target domain and the simulated
source domain. To address this problem, they opt for an adversarial
training on an ensemble of models. Formally, given the source do-
mains (MDPs) and a distribution pM over them, they wish to learn
a policy π∗θ that performs well for all M ∼ pM. To accomplish this
result, they iteratively sample a model from the source domain, they
collect trajectories from it, and they add them to a dataset D. Then,
they perform the gradient update on a subset of D, that specifically
contains only the trajectories whose return is lower or equal to the
α-percentile value of returns. In fact, as in [74], they optimize for the
CVaR, maximizing the expected return for the worst α-percentile of
M.
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3.3 meta reinforcement learning

Meta reinforcement learning [82, 23] is a recent field of RL, directly
aimed at making a further step towards general algorithms. The goal
of traditional meta-learning is to learn a model that is able to quickly
learn new skills or adapt to new environments. The idea comes from
psychology, where this process is called learning to learn [35]. In their
work, [11] highlight how one shortcoming of standard deep RL is
the use of weak inductive biases, namely the set of assumptions
used by the agent when it encounters an unseen situation to make
a decision. Logically, the stronger the inductive bias the faster the
learning. However, the catch is that this is true only if the the set
of assumptions the agent use contains the correct assumption. The
intuition of meta RL is to induce a stronger inductive bias by taking
advantage of the past experience. This is something that naturally
happens in our life. For instance, if we have to learn how to use
a new object, we would probably succeed faster if we have some
previous experience with similar objects or other related ones. We are
thus guided by our bias, that allows to reduce the number of trials
(variance), making the process of learning relatively faster.

In [82, 23], they use a model-based approach, in which they adopt
a recurrent architecture, which is trained on a set of tasks sam-
pled from a common distribution. Another common approach is
the optimization-based one. The work of [26] belongs to this class
of solutions. They propose an algorithm called Model-Agnostic Meta-
Learning (MAML), where with model-agnostic they mean that it is com-
patible with any gradient-descent trainable model, and also transversal
with respect to the area of application. In fact, they empirically show
its efficacy in the classification, regression, and reinforcement learning
settings. Formally, they consider a set of tasks T , where each task
Ti ∈ T is an MDP with horizon T, drawn from a given distribution
p(T ) and whose loss is defined as:

LTi(πθ) = − E
τ∼πθ

[ T−1

∑
t=0

Ri(τt)
]
.

For each task Ti, K trajectories are sampled with πθ, the gradient
∇θLTi(πθ) is evaluated and the adapted parameters are updated as:

θ′i ← θ− α∇θLTi(πθ).

Then, new trajectories are sampled using πθ′i . Once the previous
operations have been completed for all the tasks, the parameters θ are
finally updated using the new trajectories:

θ ← θ− β∇θ ∑
Ti∼p(T )

LTi(πθ′i ).

The rationale is to perform the meta-optimization over the model
parameters θ, while the objective depends on the updated model
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Figure 3.1: An intuitive illustration of the MAML optimization, from [26].

parameters θ′. This procedure results in a model whose parameters
can be adapted to a new task in a small number of gradient steps.

One typical assumption made by meta RL algorithms is the possibil-
ity to sample from a pre-specified task distribution. Just like we said
about the difficulty of designing a suitable reward function, we can
claim the same about the design of a task distribution. To address this
limitation, [31] propose an unsupervised meta-learning (UML) method
to automatize the task design process. Formally, they consider the
task distribution as a mapping from a latent variable z ∼ p(z), which
represents a single task, to a corresponding reward function rz(s, a).
Especially, they rely on DIAYN [25] (see Section 3.1.3) to train a dis-
criminator D(z|s) that predicts which z was used to generate a given
trajectory τ. Once trained, they iteratively sample a task z ∼ p(z),
extract the reward function rz(s|a) = log(D(z|s)) and they provide a
task to a standard meta RL algorithm, MAML.





4
M U LT I - E N V I R O N M E N T E X P L O R AT I O N W I T H O U T
R E WA R D S

In this chapter, we present a novel model-free policy-gradient algo-
rithm to learn a single exploration strategy over a class of reward-free
environments. In Section 4.1, we formally introduce the problem and
we frame it into the current literature. In Section 4.2, we define the
actual objective our algorithm seeks to optimize. Then, in Section 4.3,
we theoretically characterize the problem, proposing a way to quantify
the difficulty of exploration given a class of environments. Finally,
in Section 4.4, we exhaustively describe how our algorithm works to
optimize the previously introduced objective.

4.1 a multi-objective problem

In this section, we frame the problem we want to address. As we said
in Section 3.1, the typical RL [72] setting involves a learning agent
interacting with an environment in order to maximize a reward signal.
In principle, the reward signal is a given and perfectly encodes the
task. In practice, the reward is usually hand-crafted, and designing it
to make the agent learn a desirable behavior is often a huge challenge.
This poses a serious roadblock on the way of autonomous learning, as
any task requires a costly and specific formulation, while the synergy
between solving one RL problem and another is very limited. To
address this crucial limitation, Jin at al. [40] have formulated the reward-
free RL problem. In this setting, the agent is tasked with mastering an
environment without rewards, so that the knowledge it acquires can be
eventually deployed to solve any RL problem one could specify in this
same environment. Mastering the environment has been formulated
in (i) learning to model its transition dynamics [40, 77, 78, 87], or (ii)
learning to explore it with a general, task-agnostic, strategy [36, 51].
Although they overcome the reliance on a reward function, previous
solutions to reward-free RL are still severely environment-specific.

Figure 4.1: Illustration of the two-phase learning problem.

In this work, we aim to push the generality of reward-free learning
even further by addressing the problem of learning to explore multiple
environments with a single exploration strategy. In other words, we

33
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consider a class of reward-free environments that belong to the same
domain but differ in their transition dynamics; given that, the ultimate
goal of the agent is to learn an exploration strategy that helps to
solve any subsequent RL task specified over any environment in the
class, reducing the burden on manual reward design while improving
learning efficiency over RL from scratch. In Figure 4.1, we depict the
learning problem, pointing out the two phases that constitute the
overall process. More precisely, on the left, we highlight the process of
learning to explore multiple environments. The obtained exploration
policy π∗E conveys a pre-trained initialization to the subsequent RL

process (right), which outputs a reward maximizing policy π∗J for an
MDPMR built upon any environment of the class.

In order to accomplish this goal, we extend a reward-free objective
meant for environment-specific exploration, which is the Maximum
State Visitation Entropy (MSVE) [36]. The underlying intuition is that a
desirable property for a general exploration strategy is to visit with
high probability any state where the agent might be rewarded in
a subsequent RL task. When dealing with multiple environments,
this becomes a multi-objective problem, as one could establish any
combination of preferences over the environments in the class.

Figure 4.2: Where our work (star) stands in the literature.

We can depict the point in the literature in which our work lies as in
Figure 4.2, i.e., coarsely at the intersection of reward-free exploration
(see Section 3.1), robust and risk-averse RL (see Section 3.2), and meta
RL (see Section 3.3).

4.2 learning to explore multiple environments

In this section, we present the objective for learning to explore multiple
environments with a unique general strategy.

Let M = {M1, . . . ,MI} be a class of unknown CMPs, in which
every elementMi = (S ,A,Pi, d0) has a specific transition model Pi,
while S ,A, d0 are common across the class. More precisely, S and
A are potentially infinite and homogeneous (hence with the same
features) inside the class. At each turn, the agent is able to interact
with a single environmentM ∈M. The selection of the environment
to interact with is mediated by a distribution pM over M, outside the
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control of the agent. The aim of the agent is to learn an exploration
strategy that is general across all MDPsMR one can build upon M.
In a single-environment setting, this problem has been assimilated
to learning a policy that maximizes the entropy of the induced state
visitation frequencies [36, 46, 51].

Recalling what we said in Section 2.3, we can contemplate a dual
multi-objective scenario if we consider M with the MORL paradigm.
The duality is given by the multiplicity of the environments and the
multiple dimensions that we would consider for each environment.
We could try to learn an approximation of the Pareto frontier with
the aim of obtaining a set of policies that allows for a comprehensive
exploration of the environment. In fact, one considerable advantage
of multiple-policy methods over single-policy methods is the ability
to represent the Pareto-optimal manifold, allowing for a posteriori
selection of the best policy given the task. Essentially, instead of
considering all the features in a uniform way, we can optimize for a
trade-off between them, as if we were assigning them some weights.
Formally, we could write the objective as:

Ei,j(π) = E
τ∼pπ ,Mi

[Hτ(j)], (4.1)

where i and j denote the environment and the feature respectively. In
this thesis, we will narrow down the problem by exploring uniformly
on j and adopting a risk-sensitive approach on i. However, a prelimi-
nary study on the multi-objective features exploration is provided in
Appendix B.

We can straightforwardly extend the MSVE objective to multiple
environments by considering the expectation over the class of CMPs:

EM(π) = E
M∼pM
τ∼pπ,M

[
Hτ

]
, (4.2)

where the usual entropy objective over the single environment Mi
can be easily recovered by setting pMi = 1. However, the objective
function (4.2) does not account for the tail behavior of Hτ, i.e., for the
exploration performance in environments of M that are rare or par-
ticularly unfavorable. This is decidedly undesirable as the agent may
be tasked with an MDP built upon one of these adverse environments
in the subsequent RL phase, where even an optimal strategy w.r.t. (4.2)
may fail to provide sufficient exploration. To overcome this limitation,
we look for a more nuanced exploration objective that balances the
expected performance with the sensitivity to the tail behavior. By
taking inspiration from the risk-averse optimization literature [62], we
consider the CVaR of the state visitation entropy induced by π over
M:

Eα
M(π) = CVaRα(Hτ)

= E
M∼pM
τ∼pπ,M

[
Hτ | Hτ ≤ VaRα(Hτ)

]
, (4.3)
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where α is the confidence level and E1
M(π) := EM(π). The lower

we set the value of α, the more we hedge against the possibility of a
bad exploration outcome in someM ∈M. We can thus define our
objective as learning a policy

π∗E ∈ arg max Eα
M(π) (4.4)

through mere interactions with M.

4.3 theoretical analysis of the problem

Before presenting a method to optimize the objective in (4.3), it is
worth discussing the problem and, especially, what makes a class
of CMPs hard to explore with a unique strategy. Intuitively, learning
to explore a class M with a policy π is challenging when the state
distributions induced by π in differentM ∈M are diverse. The more
diverse they are, the more their entropy can vary, and the harder is to
get a π with a large entropy across the class. To measure this diversity,
we are interested in the supremum over the distances between the
state distributions (dM1

π , . . . , dMI
π ) that a single policy π ∈ Π realizes

over the class M. We call this measure the diameter DM of the class
M. Since we have infinitely many policies in Π, computing DM is
particularly arduous. However, we are able to provide an upper bound
to DM defined through a Wasserstein metric (see Section 2.1.5), under
common regularities assumptions for the class M.

Assumption 1. The class M is LPπ -Lipschitz continuous,

dW1(Pπ(·|s′), Pπ(·|s)) ≤ LPπ dS (s′, s), ∀(s′, s) ∈ S2,

where Pπ(s|s) =
∫
A π(a|s)P(s|s, a)da for P ∈ M, π ∈ Π, LPπ is a

constant LPπ < 1, and dS is a metric on S .

Theorem 4.3.1. Let M be a class of CMPs satisfying Assumption 1. Let
dMπ be the marginal state distribution over T steps induced by the policy π

inM ∈M. We can upper bound the diameter DM of the class as

DM := sup
π∈Π,M′ ,M∈M

dW1(d
M′
π , dMπ )

≤ sup
P′ ,P∈M

1− LT
Pπ

1− LPπ
sup

s∈S ,a∈A
dW1(P′(·|s, a), P(·|s, a)).

Theorem 4.3.1 provides a measure to quantify the hardness of the
exploration problem in a specific class of CMPs, and to possibly com-
pare one class with another. However, the value of DM might result,
due to the supremum over Π, from a policy that is far away from
the policies we actually deploy while learning, say (π0, . . . , π∗E ). To
get a finer assessment of the hardness of M we face in practice, it is



4.4 a policy gradient approach 37

worth considering a policy-specific measure to track during the opti-
mization. We call this measure the π-diameter DM(π) of the class M.
Theorem 4.3.2 provides an upper bound to DM(π) defined through a
convenient TV metric.

Theorem 4.3.2. Let M be a class of CMPs, let π ∈ Π be a policy, and let
dMπ be the marginal state distribution over T steps induced by π inM ∈M.
We can upper bound the π-diameter DM(π) of the class as

DM(π) := sup
M′ ,M∈M

dTV(dM
′

π , dMπ )

≤ sup
P′ ,P∈M

T E
s∼dMπ

a∼π(·|s)

dTV(P′(·|s, a), P(·|s, a)).

We can build on Theorem 4.3.2 to relate the result to the performance
measure of MEMENTO, i.e., the entropy, as follows:

Theorem 4.3.3. Let M be a class of CMPs, let π ∈ Π be a policy and
DM(π) the corresponding π-diameter of M. Let dMπ be the marginal state
distribution over T steps induced by π inM ∈M, and let σM ≤ σM :=
infs∈S dMπ (s), ∀M ∈M. We can upper bound the entropy gap of the policy
π within the model class M as

sup
M′ ,M∈M

∣∣H(dM
′

π )− H(dMπ )
∣∣ ≤ (DM(π)

)2/
σM −DM(π) log σM

4.4 a policy gradient approach

In this section, we present an algorithm, called Multiple Environments
Maximum ENTropy Optimization (MEMENTO), to optimize the explo-
ration objective in (4.3) through mediated interactions with a class of
continuous environments.

MEMENTO operates as a typical policy gradient approach [21]. It di-
rectly searches for an optimal policy by navigating a set of parametric
differentiable policies ΠΘ := {πθ : θ ∈ Θ ⊆ Rn}. Given a probability
distribution pM, the algorithm operates by iteratively sampling an
environment Mi ∈M drawn according to pM and then sampling
B trajectories of length T from it using πθ, where B is the dimension
of each mini-batch. The reason why we introduce an additional pa-
rameter B, instead of considering one trajectory at a time, is due to
the fact that a significant amount of samples is needed to obtain a
reliable estimate of the entropy, noting that the entropy estimator is
only asymptotically unbiased. The estimate of the entropy of each
mini-batch Ĥτj is then computed by means of the estimator in (4.7)
and appended to the dataset D. Once we obtain the final dataset D,
we can straightforwardly derive a risk-sensitive policy update by just
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subsampling from it, so that to keep only the realizations below the
α-percentile. This can be easily done by sorting D in ascending order
and considering only the first αN mini-batches. Then, we can compute
the gradient as follows:

∇̂θEα
M(πθ) =

1
αN

N

∑
i=1

fτi Ĥτi 1(Ĥτi ≤ V̂aRα(Hτ)). (4.5)

As in [51], the operations carried out once all the trajectories have been
sampled are executed in a fully off-policy manner, in which we repeat
the same steps until either a trust-region boundary of the form

D̂KL(πθ′ ||πθ) =
1
T

T−1

∑
t=0

ln
k/T

∑j∈N k
t

wj
≤ δ (4.6)

is reached, or the off-policy iterations exceeds a specified limit. The
value of (4.6) is computed as in [51], by considering the entire batch
of trajectories collected to execute the off-policy optimization steps as
a single trajectory.

The policy parameters θ are iteratively updated in the gradient
direction, until a stationary point is reached. This update has the form

θ′ = θ+ β∇̂θEα
M(πθ),

where β is a learning rate, and ∇θEα
M(πθ) is the gradient of (4.3) w.r.t.

θ. The following proposition provides the formula of ∇θEα
M(πθ). The

derivation follows closely the one in [74, Proposition 1], which we
have adapted to our objective function of interest (4.3).

Proposition 4.4.1. Let πθ ∈ ΠΘ. The policy gradient of the exploration
objective Eα

M(πθ) w.r.t. θ is given by

∇θEα
M(πθ) = E

M∼pM
τ∼pπθ ,M

[( T−1

∑
t=0
∇θ log πθ(at,τ|st,τ)

)

×
(

Hτ −VaRα(Hτ)

)∣∣∣∣Hτ ≤ VaRα(Hτ)

]
.

However, in this work we do not assume full knowledge of the
class of CMPs M, and the expected value in Proposition 4.4.1 can-
not be computed without having access to pM and pπθ ,M. Instead,
MEMENTO computes the policy update via a Monte Carlo estimation
of ∇θEα

M from the sampled interactions {(Mi, τi)}N
i=1 with the class

of environments M. The policy gradient estimate itself relies on a
Monte Carlo estimate of each entropy value Hτi from τi, and a Monte
Carlo estimate of VaRα(Hτ) given the estimated {Hτi}N

i=1. The follow-
ing paragraphs describe how these estimates are carried out, while
Algorithm 4 provides the pseudo-code of MEMENTO.
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Algorithm 4: MEMENTO
Input: initial policy πθ0 , exploration horizon T, number of
trajectories N, batch-size B, percentile α, learning rate β,
trust-region threshold δ, sampling distribution pM
for epoch = 0, 1, . . ., until convergence do

for i = 1, 2, . . . , N do
sample an environmentMi ∼ pM
for j = 1, 2, . . . , B do

sample a trajectory τj ∼ pπθ ,Mi of length T
end for

end for
initialize dataset D = ∅, off-policy step h = 0 and θh = θ

while D̂KL(πθ0 ||πθh) ≤ δ do
for j = 1, 2, . . . , B do

estimate Hτj with (4.7)
append Ĥτj to D

end for
sort D and split it in Dα and D1−α

compute a gradient step θh+1 = θh + β∇̂θhEα
M(πθh)

h← h + 1
end while
θ ← θh

end for
Output: exploration policy πθh

4.4.1 Entropy Estimation

We would like to compute the entropy Hτi of the state visitation
frequencies dτi from a single realization {st,τi}T−1

t=0 ⊂ τi. This estimation
is notoriously challenging when the state space is continuous and high-
dimensional S ⊆ Rp. Taking inspiration from recent works pursuing
the MSVE objective [51, 34, 67], we employ a principled k-NN entropy
estimator [70] of the form

ĤIW
τi

= −
T−1

∑
t=0

∑j∈N k
t

wj

k
ln

Γ( p
2 + 1)∑j∈N k

t
wj∥∥st,τi − sk-NN

t,τi

∥∥p
π

p
2
+ ln k−Ψ(k) (4.7)

where Γ is the Gamma function, ‖ · ‖ is the Euclidean distance, sk-NN
t,τi

∈
τi is the k-nearest neighbor of st,τi , ln k−Ψ(k) is a bias correction term
in which Ψ is the Digamma function, N k

i is the set of indices of the
k-NN of st,τi , and wj are the normalized importance weights of samples
sj,τi . To compute these importance weights, we consider a dataset
D = {st,τi}T−1

t=0 by looking each state encountered in a trajectory as
an unweighted particle. Then, we expand it as Dτi = {(τi,t, st)}T−1

t=0 ,
where τi,t = (s0,τi , . . . , st,τi) is the portion of the trajectory that leads to
state st,τi . This allows to associate each particle st,τi to its importance
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weight ŵt and normalized importance weight wt for any pair of target
(πθ′) and sampling (πθ) policies:

ŵt =
p(τi,t|πθ′)
p(τi,t|πθ)

=
t

∏
z=0

πθ′(az,τi |sz,τi)

πθ(az,τi |sz,τi)
, wt =

ŵt

∑T−1
n=0 ŵn

.

As we already discussed in Section 3.1.5, the intuition behind the es-
timator in (4.7) is straightforward: we can suppose the state visitation
frequencies dτi to have a high entropy as long as the average distance
between any encountered state and its k-NN is large. Despite its sim-
plicity, a Euclidean metric suffices to get reliable entropy estimates in
continuous control domains [51]. More sophisticated metrics can be
used to deal with rich-observations, e.g., in visual-based domains [34,
67].

4.4.2 VaR Estimation and Baseline

The last missing piece to get a Monte Carlo estimate of the policy
gradient ∇θEα

M is the value of VaRα(Hτ). Being H[1], . . . , H[N] the
order statistics out of the estimated values {Ĥτi}N

i=1, we can naïvely
estimate the VaR as

V̂aRα(Hτ) = H[dαNe]. (4.8)

Albeit asymptotically unbiased, the VaR estimator in (4.8) is known
to suffer from a large variance in finite sample regimes [42], which
is aggravated by the error in the upstream entropy estimates, which
provide the order statistics. This variance is mostly harmless when we
use the estimate to filter out entropy values beyond the α-percentile,
i.e., the condition Hτ ≤ VaRα(Hτ) in Proposition 4.4.1. Instead, its
impact is significant when we subtract it from the values within the
α-percentile, i.e., the term Hτ − VaRα(Hτ) in Proposition 4.4.1. To
mitigate this issue, we consider a convenient baseline b = −VaRα(Hτ)

to be subtracted from the latter, which gives the Monte Carlo policy
gradient estimator

∇̂θEα
M(πθ) =

N

∑
i=1

fτi Ĥτi 1(Ĥτi ≤ V̂aRα(Hτ)), (4.9)

where fτi = ∑T−1
t=0 ∇θ log πθ(at,τi |st,τi). Notably, the baseline b trades

off a lower estimation error for a slight additional bias in the estima-
tion (4.9). We found that this baseline leads to empirically good results
and we can corroborate its use with some theoretical motivations.
First, let us report for convenience the two alternatives policy gradient
estimator, i.e, with and without baseline:

∇̂θEα
M(πθ) =

1
αN

N

∑
i=1

fτi

(
Ĥτi − V̂aRα(Hτi)

)
1(Ĥτi ≤ V̂aRα(Hτ)),

∇̂b
θEα

M(πθ) =
1

αN

N

∑
i=1

fτi

(
Ĥτi −VaRα(Hτi)− b

)
1(Ĥτi ≤ V̂aRα(Hτ)).
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where fτi = ∑T−1
t=0 ∇θ log πθ(at,τi |st,τi). The former (∇̂θEα

M) is known
to be asymptotically unbiased [74], but it is hampered by the esti-
mation error of the VaR term to be subtracted to each Ĥτi in finite
sample regimes [42]. The latter (∇̂b

θEα
M) introduces some bias in the

estimate, but it crucially avoids the estimation error of the VaR term
to be subtracted, as it cancels out with the baseline b. The following
proposition, along with related lemmas, assesses the critical number
of samples (n∗) for which an upper bound to the bias of ∇̂b

θEα
M is

lower to the estimation error of ∇̂θEα
M.

Lemma 4.4.2. The expected bias of the policy gradient estimate ∇̂b
θEα

M(πθ)

can be upper bounded as

E
M∼M

τi∼pπθ ,M

[
bias

]
= E
Mi∼M

τi∼pπθ ,Mi

[
∇θEα

M(πθ)− ∇̂b
θEα

M(πθ)
]
≤ Uαb,

where U is a constant such that fτi ≤ U for all τi.

Proof. This Lemma can be easily derived by means of

E
Mi∼M

τi∼pπθ ,Mi

[
bias

]
= E
Mi∼M

τi∼pπθ ,Mi

[
∇θEα

M(πθ)− ∇̂b
θEα

M(πθ)

]

= ∇θEα
M(πθ)− E

Mi∼M
τi∼pπθ ,Mi

[
1

αN

N

∑
i=1

fτi

(
Ĥτi −VaRα(Hτi)− b

)
1(Ĥτi ≤ V̂aRα(Hτ))

]

= ∇θEα
M(πθ)− E

M∼M
τ∼pπθ ,M

[
fτ

(
Ĥτ −VaRα(Hτ)− b

)
1(Ĥτ ≤ V̂aRα(Hτ))

]
(4.10)

= ∇θEα
M(πθ)−∇θEα

M(πθ) + E
M∼M

τ∼pπθ ,M

[
fτ b 1(Ĥτ ≤ V̂aRα(Hτ))

]
(4.11)

= E
M∼M

τ∼pπθ ,M

[
fτ b 1(Ĥτ ≤ V̂aRα(Hτ))

]
≤ Uαb, (4.12)

where (4.11) follows from (4.10) by noting that the estimator without
the baseline term is unbiased [74], and (4.12) is obtained by upper
bounding fτ with U and noting that E M∼M

τ∼pπθ ,M

[
1(Ĥτ ≤ V̂aRα(Hτ))

]
=

α. �

Lemma 4.4.3 (VaR concentration bound from [44]). Let X be a continu-
ous random variable with a pdf fX for which there exist η, ∆ > 0 such that
fX(x) > η for all x ∈

[
VaRα(X)− ∆

2 , VaRα(X) + ∆
2

]
. Then, for any ε > 0

we have

Pr
[
|V̂aRα(X)α −VaRα(X)| ≥ ε

]
≤ 2 exp

(
− 2nη2 min(ε2, ∆2)

)
,

where n ∈N is the number of samples employed to estimate V̂aRα(X).
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Proposition 4.4.4. Let ∇̂θEα
M(πθ) and ∇̂b

θEα
M(πθ) be policy gradient

estimates with and without a baseline. Let fH be the pdf of Hτ, for which
there exist η, ∆ > 0 such that fH(Hτ) > η for all Hτ ∈

[
VaRα(Hτ) −

∆
2 , VaRα(Hτ) +

∆
2

]
. The number of samples n∗ for which the estimation

error ε of ∇̂θEα
M(πθ) is lower than the bias of ∇̂b

θEα
M(πθ) with at least

probability δ ∈ (0, 1) is given by

n∗ =
log 2/δ

2η2 min(U 2α2b2, ∆2)
.

Proof. The proof is straightforward by considering the estimation error
ε of ∇̂θEα

M(πθ) equal to the upper bound of the bias of ∇̂b
θEα

M(πθ)

from Lemma 4.4.2, i.e., ε = Uαb. Then, we set

δ = 2 exp
(
− 2n∗η2 min(U 2α2b2, ∆2)

)
from Lemma 4.4.3, which gives the result through simple calculations.

�

The Proposition 4.4.4 proves that there is little incentive to choose
the policy gradient estimator ∇̂θEα

M when the number of trajecto-
ries is lower than n∗, as its estimation error would exceed the bias
introduced by the alternative estimator ∇̂b

θEα
M. Unfortunately, it is not

easy to compute n∗ in our setting, as we do not assume to know the
distribution of Hτ, but the requirement is arguably seldom matched
in practice.

In Chapter 5 we will empirically show that the baseline b = −VaRα(Hτ)

might benefit the variance of the policy gradient estimation, at the
expense of the additional bias, which is anyway lower than the esti-
mation error of ∇̂θEα

M.





5
E X P E R I M E N TA L A N A LY S I S

In this chapter, we provide an extensive empirical evaluation of the
proposed methodology over the two-phase learning process described
in Figure 4.1. Especially, we investigate the ability to learn a general
exploration strategy over a class of continuous environments (learning
to explore), and how this pre-trained strategy is beneficial to RL. In
Section 5.1, we first provide a brief overview of how the empirical
evaluation is organized, followed by an exhaustive analysis of an
illustrative domain in Section 5.2. Then, in Section 5.3, we assess
the ability of MEMENTO to deal with larger classes of environments.
Afterwards, in Section 5.4, we further extend our study by evaluating
MEMENTO on a class of high-dimensional domains, including a visual-
based one. Finally, in Section 5.5, we show how MEMENTO outperforms
two algorithms that belong to the meta RL paradigm.

5.1 overview

In the next sections, we will assess the ability of MEMENTO to learn
to explore a class of multiple reward-free environments based on the
exploration objective in (4.3). In other words, we seek to empirically
show the claim presented in Chapter 4, namely the fact that by opti-
mizing for the CVaR, we can obtain a more robust exploratory policy.
This policy is general across different environments, and it does not
suffer a drop in performance due to some adversarial configurations.

To this end, we first consider a class M composed of two different
configurations of a continuous 2D gridworld domain, which we call
the GridWorld with Slope. We use this simple setting as representative
for the entire batch of experiments, discussing how the choice of
the percentile of interest affects the exploration strategy. Then, we
verify the ability of our method to scale with the size of the class of
environments, by considering a class of 10 continuous gridworlds. We
call this domain MultiGrid. Afterwards, we verify the ability of our
method to scale with the dimensionality of the environments in the
class, by considering a class of 29D Ant domains, and by subsequently
doubling down on the dimensionality of the observations with a class
of MiniGrid vision-based domains. Finally, we provide a comparison
with two meta RL algorithms, which are MAML [26] and UML [31], of
which we gave an outline in Section 3.3.

44
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For all the experiments but one, we use a Gaussian distribution
with diagonal covariance matrix to represent the parametric policy
πθ. It takes as input the environment state features and outputs an
action vector a ∼ N (µ, σ2). The mean µ is state-dependent and is
the downstream output of a densely connected neural network. The
standard deviation is state-independent and it is represented by a
separated trainable vector. The dimension of µ, σ, and a vectors is
equal to the action-space dimension of the environment. The only
exception is given by the MiniGrid domain, because it is visual and
discrete. In that case, we use a convolutional architecture, followed by
a standard feed-forward neural network with output given by a cate-
gorical distribution. More details are provided in the corresponding
Section 5.4.2.

In any considered domain, we highlight the significant benefit that
the exploration strategy provides to RL problems specified in the same
class of environments. Moreover, for both GridWorld with Slope and
MultiGrid, we show that the exploration strategy learned with our
approach is superior for RL w.r.t. a policy meta-trained with MAML or
UML on the same class.

We report the parameters used in the experiments in Appendix C.

5.2 an illustrative domain : gridworld with slope

In GridWorld with Slope (2D states, 2D actions), which we coded from
scratch, the agent can move inside a map composed of four rooms
connected by four narrow hallways, by choosing at each step how
much to move on the x and y axes. One side of the environment
measures 2 units and the agent can cover at most 0.2 units in a
single step. Thus, the agent needs around 10 steps to go from one
side to the other on a straight line. When the agent collides with
the external borders or with the internal walls, it is re-positioned
according to a custom function. This is done not only to make the
interaction more realistic, but also to limit the possibility to have a
negative infinite entropy resulting from the k-NN computation, which
can occur whenever more than k samples lie on the same position.
This precaution is particularly useful in our scenario, due to the way in
which we create the two configurations GWS and GWN. Indeed, GWS
is characterized by a south-facing slope, while GWN is characterized
by a north-facing slope, both of which are present only in the upper
half of the environment. Since the initial position of the agent is
sampled in a small square in the top-right corner, it is easy to see
that in the first epochs in the GWN environment, the agent would
repeatedly collide with the top-border, leading in general to a much
more lower entropy w.r.t. to GWS.

We only apply the slope to the upper half of the environment to ob-
tain a convenient trade-off between the overall exploration complexity
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Figure 5.1: An informal illustration of the GridWorld with Slope domain.

and the risk caused by the adverse configuration. Indeed, we noted
that by applying the slope to the whole GridWorld, the advantage
in terms of exploration entailed by the risk-averse approach is even
higher, but it struggles to explore the bottom states of the environment
within a reasonable number of samples. The slope is computed as
s ∼ N (∆max

2 , ∆max
20 ), where ∆max = 0.2 is the maximum step that the

agent can perform. A visual representation of the setting can be found
in Figure 5.1, where the shaded areas denote the initial state distribu-
tion and the arrows render a slope that favors or contrasts the agent’s
movement.

This class of environments is unbalanced (and thus interesting
to our purpose) for two reasons: first, the GWN configuration is
more challenging from a pure exploration standpoint, since the slope
prevents the agent from easily reaching the two bottom rooms; sec-
ondly, the distribution over the class is also unbalanced, as it is
pM = [Pr(GWS), Pr(GWN)] = [0.8, 0.2], meaning that the adver-
sarial configuration is sampled only with a probability of 0.2, as a
representative of the worst-case scenario.

We execute the algorithm over 200 trajectories with exploration
horizon T = 400. Being the batch-size B = 5, we have N = 40 mini-
batches. Due to the sampling distribution pM, in each epoch we have
on average 32 mini-batches containing trajectories deriving from the
interaction of the agent with GWS and 8 mini-batches containing
trajectories deriving from the interaction of the agent with GWN. We
set the percentile α = 0.35, hence the policy update is done on a
dataset Dα containing 14 mini-batches. The α-percentile results from
an empirical analysis that will be discussed in Section 5.2.1. Essentially,
we choose α to ensure that Dα will likely contain trajectories from both
the configurations.

We compare MEMENTO against Neutral, which is a simplified version
of MEMENTO with α = 1,1 to highlight the importance of percentile sen-
sitivity w.r.t. a naïve approach to the multiple environments scenario.
The methods are evaluated in terms of the state visitation entropy
E1
M induced by the exploration strategies they learn. In Figure 5.2, we

compare the performance of the optimal exploration strategy obtained

1 The pseudocode is identical to Algorithm 4 except that all trajectories affect the
gradient estimate in (4.9).
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Figure 5.2: Comparison of the exploration performance E1
M obtained by

MEMENTO (α = 0.35) and Neutral (α = 1) in the GridWorld with
Slope domain. The polices are trained (150 epochs, 8× 104 sam-
ples per epoch) on the configuration (a) and tested on (a, b, c).
The dashed lines in (b, c) represent the optimal performance in
that specific configuration. We provide 95% c.i. over 4 runs.

by running MEMENTO (α = 0.35) and Neutral (α = 1) for 150 epochs
on the GridWorld with Slope class (pM = [0.8, 0.2]). We show that the
two methods achieve a very similar expected performance over the
class (Figure 5.2a). However, this expected performance is the result
of a (weighted) average of very different contributions. As anticipated,
Neutral has a strong performance in GWS (pM = [1, 0], Figure 5.2b),
which is close to the configuration-specific optimum (dashed line),
but it displays a bad showing in the adverse GWN (pM = [0, 1],
Figure 5.2c). Conversely, MEMENTO learns a strategy that is much
more robust to the configuration, showing a similar performance in
GWS and GWN, as the percentile sensitivity prioritizes the worst case
during training.
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Figure 5.3: Empirical distributions of Neutral (left) and MEMENTO (right)

To confirm this conclusion, it is worth looking at the actual distri-
bution that is generating the expected performance in Figure 5.2a. To
this end, in Figure 5.3, we provide the empirical distribution of the
trajectory-wise performance (Hτ), considering a batch of 200 trajecto-
ries with pM = [0.8, 0.2]. It clearly shows that Neutral is heavy-tailed
towards lower outcomes, whereas MEMENTO concentrates around the
mean. This suggests that with a smart choice of α we can induce a
good exploration outcome for every trajectory (and any configuration),
while without percentile sensitivity we cannot hedge against the risk
of particularly bad outcomes.

However, let us point out that not all classes of environments would
expose such an issue for a naïve, risk-neutral approach. To provide
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(a) MEMENTO (b) Neutral

Figure 5.4: Heatmaps of the state visitations (200 trajectories, T = 400)
induced by the exploration policies trained with MEMENTO (α =
0.35) (a) and Neutral (α = 1) (b) in the GridWorld Counterexample
domain.
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Figure 5.5: Comparison of the exploration performance E1
M obtained by

MEMENTO (α = 0.35) and Neutral (α = 1) in the GridWorld Coun-
terexample domain. The polices are trained (50 epochs, 8× 104

samples per epoch) on the configuration (a) and tested on (a, b,
c). We provide 95% c.i. over 4 runs.

some evidence of this fact, we provide a convenient example. We
consider two GridWorld environments that differ for the shape of the
traversable area (see Figure 5.4), sampled according to pM = [0.8, 0.2],
and we run MEMENTO with α = 0.35 and Neutral (α = 1), obtaining
the two corresponding exploration policies. In Figure 5.5 we show the
performance (measured by E1

M) obtained by executing those policies
on each setting. Clearly, regardless of what configuration we consider,
there is no advantage deriving from the use of a risk-averse approach
as MEMENTO, meaning that the class of environments M is balanced
in terms of hardness of exploration.

Nonetheless, it is fair to assume that, in terms of risk, real classes of
environments will be more similar to the GridWorld with Slope domain
than to the one of the counterexample. Those are the settings we care
about, as they require nuanced solutions (e.g., MEMENTO) for scenarios
with multiple environments.

5.2.1 On the Value of the Percentile

In this section, we discuss how the choice of the percentile (i.e., pa-
rameter α) impacts the results reported in Figure 5.2.



5.2 an illustrative domain : gridworld with slope 49

0.15 0.25 0.35
0

0.5

α

E1
M

(a) α sensitivity

0 50 100 150

0

0.2

0.5

0.8

1

epoch

α
%

qu
ot

a

α = 0.15

α = 0.25

α = 0.35

(b) α% composition

Figure 5.6: The behaviour of MEMENTO with different values of α. We provide
95% c.i. over 4 runs.

We repeatedly train MEMENTO (for 150 epochs) in the GridWorld with
Slope domain considering different values for α, and we compare the
resulting exploration performance E1

M as in Figure 5.2. In Figure 5.6a,
we can see that the lower α we choose, the more we prioritize GWN
(right bar for every α) at the expense of GWS (left bar). Note that
this trend carries on with increasing α, ending in the values of Fig-
ures 5.2b, 5.2c. The reason for this behavior is quite straightforward,
and we empirically support it with the results in Figure 5.6b: the
smaller is α, the larger is the share of trajectories from the adverse
configuration (GWN) ending up in the percentile at first, and thus the
more GWN affects the policy update (see the gradient in (4.9)).

5.2.2 The Baseline

In Section 4.4.2 we provided some theoretical corroborations to sup-
port the claim that the bias introduced by our policy gradient estimator
is lower than the one introduced by the need of estimating the VaR

(see Proposition 4.4.4). In this section, we empirically show that the
baseline b = −VaRα(Hτ) represents a valid or even better alternative
despite its simplicity.
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Figure 5.7: Comparison of the exploration performance E0.35
M (left) and sam-

pled gradients of the policy mean (right) achieved by MEMENTO

(α = 0.35) with and without the baseline b = −VaRα(Hτ) in the
policy gradient estimation (4.9). We provide 95% c.i. over 4 runs.

In Figure 5.7 (left), we can see that the exploration performance Eα
M

obtained by MEMENTO with and without the baseline is essentially
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Figure 5.8: Comparison of the average return JMR as a function of learning
epochs (1.2× 104 samples per epoch) achieved by TRPO initial-
ized with MEMENTO (α = 0.35), Neutral (α = 1), and random
exploration strategies, when dealing with a set of RL tasks speci-
fied on the GridWorld with Slope domain (a). We provide 95% c.i.
over 50 randomly sampled goal locations (b).

the same in the illustrative GridWorld with Slope domain. Whereas
Figure 5.7 (right) suggests a slightly inferior variance for the policy
gradient estimate employed by MEMENTO with the baseline.

5.2.3 RL with a General Exploration Strategy

In this section, we illustrate how beneficial is the pre-trained explo-
ration strategy to deal with any RL problem one could specify in the
GridWorld with Slope class.

To this end, we design a family of MDPsMR, whereM ∈ {GWS, GWN},
and R is any sparse reward function that gives 1 when the agent
reaches the area nearby a random goal location (d ≤ 0.1) and 0
otherwise. On this family, we compare the performance achieved
by TRPO [65] with different initializations: the exploration strategies
learned by MEMENTO (α = 0.35) and Neutral (α = 1), or a random
policy (Random). These three variations are evaluated in terms of
their average return JMR , which is defined as J π

MR = Eτ∼pπ,M
[
R(τ)

]
,

over 50 randomly generated goal locations, of which we provide an
illustration in Figure 5.8b.

In Figure 5.8a, we show the results of the comparison. As expected,
the performance of TRPO with Neutral is competitive in the GWS
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configuration, but it falls sharply in the GWN configuration, where
it is not significantly better than TRPO with Random. Instead, the
performance of TRPO with MEMENTO is strong on both GWS and
GWN. Despite the simplicity of the domain, solving an RL problem in
GWN with an adverse goal location is far-fetched for both a random
initialization and a naïve solution to the reward-free exploration over
multiple environments.

5.3 scaling to larger classes of environments

In this section, we show that the previous analyses extend straightfor-
wardly to larger classes of environments.

To this end, we consider a class M composed of ten different
configurations of the continuous gridworlds presented in Section 5.2,
which we call the MultiGrid domain. These environments differ for
both the shape and the type of slope to which they are subject to.
The adverse configuration is still GWN, but the slope is computed
as s ∼ N (∆max

2.6 , ∆max
20 ), where ∆max = 0.2. The other 9 gridworlds

have instead a different arrangement of the walls (see the heatmaps
in Figure 5.10) and the slope, computed as s ∼ N (∆max

3.2 , ∆max
20 ) with

∆max = 0.2, is applied over the entire environment. Two configurations
are subject to south-facing slope, three to east-facing slope, one to
south-east-facing slope and three to no slope at all.
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Figure 5.9: Comparison of the exploration performance E1
M (95% c.i. over

4 runs), and the average return JMR (95% c.i. over 50 tasks)
obtained by TRPO with corresponding initialization, achieved by
MEMENTO (α = 0.1) and Neutral (α = 1) in the MultiGrid domain
(50 epochs per 2× 105 samples).

As before, we compare MEMENTO (α = 0.1) and Neutral (α = 1) on
the exploration performance E1

M achieved by the optimal strategy, in
this case considering a uniformly distributed pM. While the average
performance of Neutral is slightly higher across the class (Figure 5.9a,
left bar), MEMENTO still has a decisive advantage in the worst-case
configuration (Figure 5.9a, right bar). Likewise, just as in Section 5.2.3,
this advantage transfer to the RL phase, where we compare the average
return JMR achieved by TRPO with MEMENTO, Neutral, and Random
initializations over 50 random goal locations in the GWN configuration,
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which are the same as in the GridWorld with Slope experiment, i.e, the
ones in Figure 5.8b. The results of the RL comparison are reported in
Figure 5.9b.

(a) MEMENTO

(b) Neutral

Figure 5.10: Heatmaps of the state visitations (200 trajectories, T = 400)
induced by the exploration policies trained with MEMENTO (α =
0.1) (a) and Neutral (α = 1) (b) in the MultiGrid domain. We
provide the average over 4 seeds.

In Figure 5.10, we report the state-visitation frequencies achieved by
MEMENTO (Figure 5.10a) and Neutral (Figure 5.10b) in each configura-
tion of the MultiGrid domain. Clearly, MEMENTO manages to obtain a
better exploration in the adversarial configuration w.r.t. Neutral, espe-
cially in the bottom part of the environment, which is indeed the most
difficult part to visit. On the other environments, the performance is
overall comparable.

5.4 scaling to increasing dimensions

In this section, we show that the previous analyses nicely scales to
classes of (challenging) high-dimensional domains, thanks to the flexi-
bility of the entropy estimator (4.7).

5.4.1 Ant

To this end, we first consider a class M consisting of two Ant environ-
ments, with 29D states and 8D actions. A visualization of both the en-
vironments is reported in Figure 5.11. In order to build them, we adapt
the Ant-Maze environment of rllab [22], exploiting its malleability to
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(a) Ant Stairs Down (b) Ant Stairs Up

Figure 5.11: Illustration of the Ant Stairs domain. We show a render of the
Ant Stairs Down environment (a) and of the adverse Ant Stairs
Up environment (b).

build two configurations that fit our purposes. In the first, sampled
with probability pM1 = 0.8, the Ant faces a wide descending staircase
(Ant Stairs Down), made up of 3× 3 blocks of decreasing height and a
final 1× 3 flat area. In the second, the Ant faces a narrow ascending
staircase (Ant Stairs Up, sampled with probability pM2 = 0.2), which
is significantly harder to explore than the former. It is made up of
an initial square (the initial position of the Ant), followed by three
blocks of increasing height. Note that each block has a side length
slightly greater than the Ant size. In the mold of the gridworlds in
Section 5.2, these two configurations are specifically designed to create
an imbalance in the class.
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Figure 5.12: Comparison of the exploration performance E1
M (95% c.i. over

4 runs), and the average return JMR (95% c.i. over 8 tasks)
obtained by TRPO with corresponding initialization, achieved
by MEMENTO (α = 0.2) and Neutral (α = 1) in the Ant domain
(400 epochs per 6× 104 samples).

As in Section 5.2, we compare MEMENTO (α = 0.2) against Neutral
(α = 1) on the exploration performance E1

M achieved after 400 epochs.
Note that Eα

M is maximized over the x, y spatial coordinates of the
ant’s torso during the learning to explore phase. MEMENTO fares slightly
better than Neutral both in the worst-case configuration (Figure 5.12a,
right bar) and, surprisingly, in the easier one (Figure 5.12a, left bar). We
do not expect the latter fact to happen in general: arguably, MEMENTO

will always perform better (or on par) in the worst case, but on average
it will be worse. Then, we design a set of incrementally challenging
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sparse-rewards RL tasks in the Ant Stairs Up, which give reward 1 upon
reaching a certain step of the staircase. Also in this setting, TRPO with
MEMENTO initialization outperforms TRPO with Neutral and Random
in terms of the average return JMR (Figure 5.12b). Note that these
sparse-reward continuous control tasks are particularly arduous: TRPO

with Neutral and Random barely learns anything, while even TRPO

with MEMENTO does not handily reach the optimal average return (1)
within 100 epochs.

5.4.2 MiniGrid - A Visual Domain

In this section, we double down on the dimensionality of the ob-
servations, pursuing reward-free exploration of a class of multiple
vision-based domains. We use the MiniGrid suite [16], which consists
of a set of fast and light-weighted gridworld environments. The envi-
ronments are partially observable, with the dimension of the agent’s
field of view having size 7× 7× 3. Both the observation space S and
the action space A are discrete, and in each tile of the environment
there can be only one object at the same time. The set of objects is
O = {wall, f loor, lava, door, key, ball, box, goal}. The agent can move
inside the grid and interact with these objects according to their prop-
erties. In particular, the actions comprise turning left, turning right,
moving forward, picking up an object, dropping an object and toggling,
i.e., interacting with the objects (e.g., to open a door). The strength
of MiniGrid is its malleability: besides the off-the-shelf environments,
it allows to easily develop custom implementations. We exploit this
property to build two custom environments, of which we provide an
illustration in Figure 5.13. The first one has a size of 18× 18, and it
simply contains some sparse walls. The second one is smaller, 10× 10,
and is characterized by the presence of a door at the top of a narrow
hallway. The door is closed but not locked, meaning that the agent
can open it without using a key. In both the environments, the agent
is the red triangle starting in the bottom-left corner.

(a) Easy configuration (b) Adverse configuration

Figure 5.13: Illustration of the MiniGrid domain.

Before introducing the experimental setting, it is worth making
a brief description of the architecture that we will use to perform
this analysis. Indeed, we have to handle 7× 7× 3 RGB images as
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inputs, and the set of all the possible inputs is discrete and finite.
Hence, we need to change our policy, which is a Gaussian policy, to
one that is able to process images and output discrete actions. We
adopt the architecture recently proposed by [67] and that we shortly
exposed in Section 3.1.5. Thus, we use a random encoder made up
of 3 convolutional layers with kernel 2, stride 1, and padding 0, each
activated by a ReLU function, and with 16, 32 and 64 filters respectively.
The first ReLU is followed by a 2D max pooling layer with kernel 2.
The output of the encoder is a 64 dimensional tensor, which is then
fed to a feed-forward neural network with two fully-connected layers
with hidden dimension 64 and a Tanh activation function.

Figure 5.14: Illustration of the procedure to perform the k-NN computation in
the representation space generated by a fixed random encoder,
adapted from [67].

As regards the training procedure, everything remains as we de-
scribed it in Section 4.4, except for two differences. The first difference
is that the k-NN computation is performed on the representation space
generated by a fixed random encoder. Note that this random encoder
is not part of the policy. It is randomly initialized and not updated
during the training in order to produce a more stable entropy estimate.
In addition, before computing the distances, we apply to its output
a random Gaussian noise ε ∼ N (0.001, 0.001) truncated in [0, 0.001].
We do this to avoid the aliasing problem, which occurs when we
have many samples (more than k) in the same position, thus having
zero distance and producing a negative infinite entropy estimate. The
homogeneity of the MiniGrid environments in terms of features make
this problem more frequent. In Figure 5.14, we report a visualization
of the procedure. The second difference is the addition of a bootstrap-
ping procedure for the easy configuration, meaning that we use only
a subset of the mini-batches of the easy configuration to update the
policy. Especially, we randomly sample a number of mini-batches that
is equal to the dimension of the Dα dataset so that Neutral uses the
same number of samples of MEMENTO. The reason why we avail this
method is to avoid a clear advantage for Neutral in learning effective
representations, since it usually access more samples than MEMENTO.
Note that it is not a stretch, since we are essentially balancing the
information available to the two algorithms.

Following the line of the experiments in the GridWorld with Slope
domain, we thus create an unbalanced couple of environments. The
distribution over the class is unbalanced, as it is pM = [0.8, 0.2],
where 0.2 refers to the adverse configuration of Figure 5.13b. Moreover,
the adverse configuration owes its difficulty to two factors: first, the
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Figure 5.15: Comparison of the average return JMR as a function of learning
epochs (7.5× 103 samples per epoch) achieved by TRPO initial-
ized with MEMENTO (α = 0.3), Neutral (α = 1), and random
exploration strategies (300 epochs per 1.5× 104 samples), when
dealing with a set of RL tasks specified on both the configura-
tions of the MiniGrid domain (a), (b). We provide 95% c.i. over
13 goal locations (c), (d).

closed door is by itself a challenging obstacle; second, we modify the
movement of the agent so that the direction is given by the bottom of
the triangle instead of the top. The intuition is that by doing this we are
essentially changing the shape of the agent, hence causing the policy
to struggle in the exploration. We train the policy for 300 epochs, using
100 trajectories with horizon T = 150. For MEMENTO, we set α = 0.3.
As usual, we then compare the average return JMR achieved by TRPO

with the MEMENTO, Neutral and Random initialization. We manually
place 13 goals in the environment to obtain a uniform coverage. In
Figures 5.15c, 5.15d we show their locations. The agent receives a
reward of +1 if its position matches the one of the goal, otherwise 0.
In Figures 5.15a, 5.15b we report the RL results on both the easy and
the adverse configurations.

Also in this case, TRPO with MEMENTO initialization outperforms
Neutral and Random in terms of the average return JMR in the
adverse configuration, while having a comparable performance to
Neutral in the easy one. Interestingly, in the adverse environment,
MEMENTO has an initial performance very similar to the others, but it
then allows to quickly learn. Note also that the tasks are not straight-
forward, as TRPO with random initialization barely manages to have
an average return JMR that is greater than 0.
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5.5 comparison with meta-rl

In this section, we compare the exploration strategy learned with
MEMENTO w.r.t. a policy trained with two meta RL algorithms, which
are MAML [26] and UML [31]. The motivation behind the use of UML has
to be sought in the aim of finding a more sensible comparison. In fact,
in contrast to MAML, it does not require manual task design, since the
reward function is automatically extracted from an unsupervised skills
discovery method (i.e., DIAYN). Hence, not assuming the reward during
the meta-training phase, UML is surely a more sound comparison.
Nonetheless, it is worth to underline the fact that the meta RL paradigm
as a whole is not the most significant comparison, since with MEMENTO

we are not focusing on adaptation, but on finding a policy that is
naturally capable of exploring a class of unknown CMPs.

We meta-train a policy with MAML on the same GridWorld with Slope
(pM = [0.8, 0.2]) and MultiGrid (uniformly distributed pM) domains
that we have previously presented. During meta-training, we provide
MAML with full access to the tasks (i.e., reward functions) that we will
consider in the meta-testing phase. Note that this gives MAML a great
edge over MEMENTO and UML, which operate reward-free training. As
in [26], we compute the gradient updates with vanilla policy gradient
and TRPO as meta-optimizer. Since our setting resembles what [26] call
2D navigation, we use the same meta-batch size of 20, i.e., considering
20 tasks for each batch of tasks, for a total of 200 number of batches.
The policy is trained to maximize the performance after 1 policy gra-
dient update using 30 trajectories. As regards UML, we use DIAYN [25]
to acquire the task proposals and then we feed them into MAML with
the setting we just described. We use the default hyperparameters of
DIAYN and a number of skills equal to the one used in MAML, i.e., 20.
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(a) GridWorld with Slope: GWS (left) and GWN (right)
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Figure 5.16: Comparison of the average return JMR achieved by TRPO (1.2×
104 samples per epoch) initialized with a MEMENTO exploration
strategy (α = 0.35 (a), α = 0.1 (b)) and a MAML and UML meta-
policy, when dealing with a set of RL tasks in the GridWorld
with Slope (a) and the MultiGrid (b). We provide 95% c.i. over
50 tasks.

As in previous sections, we consider the average return JMR achieved
by TRPO initialized with the exploration strategy learned by MEMENTO

or the meta-policy learned by MAML or UML. TRPO with MEMENTO
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fares clearly better than TRPO with MAML in all the configurations
(Figures 5.16a, 5.16b). Note that as opposed to [26], where the reward
function is dense, we keep the one used up to now, i.e., assigning
+1 only when the agent is in the surroundings of the goal and 0
otherwise. MEMENTO is also remarkably superior to UML, which, inter-
estingly, performs worse than MAML in all the configurations, with a
substantial drop in the MultiGrid domain. In Figure 5.17 we report the
discriminability term log qφ(z|s) during the training of DIAYN for both
GridWorld with Slope and MultiGrid: while DIAYN somewhat manage to
increase the trajectories discriminability in the former, it is not able to
tackle the additional complexity provided by MultiGrid.
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GridWorld with Slope MultiGrid

Figure 5.17: Comparison of the discriminability term log qφ(z|s) achieved
by DIAYN in the GridWorld with Slope and the MultiGrid. We
provide 95% c.i. over 4 runs.
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Figure 5.18: Comparison of the average return JMR achieved by TRPO (1.2×
104 samples per epoch) initialized with a MEMENTO exploration
strategy (α = 0.1), Neutral (α = 1), and a UML meta-policy,
when dealing with a set of RL tasks in one of the non-adverse
configurations of the MultiGrid domain. We provide 95% c.i.
over 50 tasks (a). We illustrate the fast-adapting behaviour of
the MAML policy in (b).

In Figure 5.18, we provide two additional plots. The one on the left
is another comparison on the MultiGrid domain, but in this case we
execute TRPO initialized with MEMENTO, Neutral, Random and UML

on one of the other nine environments, i.e., one that is not adverse.
Reasonably (given the results in 5.3), MEMENTO and Neutral have an
excellent and similar performance. Instead, despite a small improve-
ment w.r.t. 5.16b, UML still struggles. Actually, it performs worse than
Random, meaning that the learned reward functions might induce
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a negative bias in this case. In Figure 5.18b, we instead provide a
visualization of the fast-adapting behavior of the MAML policy, which
is indeed the objective for which it is thought.





6
C O N C L U S I O N S

In this thesis, we addressed the problem of learning to explore a class
of multiple reward-free environments with a unique general strategy.
First, we formulated the problem within a tractable MSVE objective
with percentile sensitivity, so that to obtain a unique exploration strat-
egy that is transverse w.r.t. a class of reward-free environments, i.e,
that does not suffer the presence of a particularly adverse configura-
tion. Then, we presented a policy gradient algorithm, MEMENTO, to
optimize this objective, exploiting a non-parametric entropy estimator.
Finally, we provided an extensive experimental analysis to show its
ability in learning to explore and the benefits it brings to subsequent
RL problems, where the rewards are sparsely defined. During this
analysis, we assess the ability of MEMENTO to both scale to larger
classes of environments, testing it on 10 different configurations, and
to high-dimensional domains, testing it on a Ant environment with
29D states and 8D actions. Moreover, we also prove its efficacy in a
visual-based domain, i.e., MiniGrid. We also compare MEMENTO with
two meta RL algorithms, which do not succeed in outperforming it,
despite one of them has even access to the reward functions.

As a final note, it is worth mentioning some alternative settings
in which MEMENTO can be employed with benefit. In this work, we
focused on a specific solution for an essentially multi-objective prob-
lem, by establishing a preference over the environments through the
CVaR objective. Instead, as already discussed in Section 4.2, a future
direction could pursue learning a direct approximation of the Pareto
frontier [54] of the exploration strategies over multiple environments.
Alternatively, we could replace the class of environments with a single
CMP specified under uncertainty [63], and deal with the robust reward-
free exploration problem with little or no modifications to MEMENTO.
Another promising direction is to assume some control over the class
distribution during the learning to explore process, either by an ex-
ternal supervisor or by the agent itself [48]. Lastly, future work may
establish regret guarantees for the reward-free exploration problem
over multiple environments, in a similar flavor to the reward-free RL

problem in a single environment [40].

We believe that this work motivates the importance of designing
specific solutions to the relevant reward-free exploration problem over
multiple environments, and that it represents a further step towards
the achievement of artificial general intelligence.
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A
T H E O R E M P R O O F S

Theorem 4.3.1. Let M be a class of CMPs satisfying Assumption 1. Let
dMπ be the marginal state distribution over T steps induced by the policy π

inM ∈M. We can upper bound the diameter DM of the class as

DM := sup
π∈Π,M′ ,M∈M

dW1(d
M′
π , dMπ )

≤ sup
P′ ,P∈M

1− LT
Pπ

1− LPπ
sup

s∈S ,a∈A
dW1(P′(·|s, a), P(·|s, a)).

Proof. The proof follows techniques from [59]. Let us report a prelimi-
nary result which states that the function h f (s) =

∫
A π(a|s)

∫
S P(s|s, a)ds da

has a Lipschitz constant equal to LPπ [59, Lemma 3]:

∣∣h f (s′)− h f (s)
∣∣ = ∣∣∣∣ ∫S f (s)

∫
A

π(a|s′)P(s|s′, a)da ds

−
∫
S

f (s)
∫
A

π(a|s)P(s|s, a)da ds
∣∣∣∣

=

∣∣∣∣ ∫S f (s)
(

Pπ(s|s′)− Pπ(s|s)
)

ds
∣∣∣∣ ≤ LPπ dS (s′, s),

(A.1)

where dS is a metric over S and Pπ(s|s) =
∫
A π(a|s)P(s|s, a)da. Then,

we note that the marginal state distribution over T steps dMπ can be
written as a sum of the contributions dMπ,t related to any time step
t ∈ [T], which is

dMπ (s) =
1
T

T−1

∑
t=0

dMπ,t(s). (A.2)

71
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Hence, we can look at the Wasserstein distance of the state distribu-
tions for some t ∈ [T] andM′,M ∈M. We obtain

dW1(d
M′
π,t , dMπ,t) = sup

f

{∣∣∣∣ ∫S
(

dM
′

π,t (s)− dMπ,t(s)
)

f (s)ds
∣∣∣∣ : ‖ f ‖L ≤ 1

}
(A.3)

= sup
f

{∣∣∣∣ ∫S
∫
A

∫
S

(
dM

′
π,t−1(s)π(a|s)P′(s|s, a)

− dMπ,t−1(s)π(a|s)P(s|s, a)
)

f (s)ds da ds
∣∣∣∣ : ‖ f ‖L ≤ 1

}
= sup

f

{∣∣∣∣ ∫S dM
′

π,t−1(s)
∫
A

∫
S

π(a|s)
(

P′(s|s, a)− P(s|s, a)
)

f (s)ds da ds

(A.4)

+
∫
S

(
dM

′
π,t−1(s)− dMπ,t−1(s)

) ∫
A

∫
S

π(a|s)P(s|s, a) f (s)ds da ds
∣∣∣∣ : ‖ f ‖L ≤ 1

}
(A.5)

≤ sup
f

{∣∣∣∣ ∫S dM
′

π,t−1(s)
∫
A

∫
S

π(a|s)
(

P′(s|s, a)− P(s|s, a)
)

f (s)ds da ds
∣∣∣∣ : ‖ f ‖L ≤ 1

}
+ sup

f

{∣∣∣∣ ∫S
(

dM
′

π,t−1(s)− dMπ,t−1(s)
) ∫
A

∫
S

π(a|s)P(s|s, a) f (s)ds da ds
∣∣∣∣ : ‖ f ‖L ≤ 1

}
≤ sup

f

{ ∫
S

dM
′

π,t−1(s)
∫
A

π(a|s)da ds

sup
s∈S ,a∈A

{∣∣∣∣ ∫S
(

P′(s|s, a)− P(s|s, a)
)

f (s)ds
∣∣∣∣} : ‖ f ‖L ≤ 1

}
+ LPπ sup

f

{∣∣∣∣ ∫S
(

dM
′

π,t−1(s)− dMπ,t−1(s)
)

h f (s)
LPπ

ds
∣∣∣∣ : ‖ f ‖L ≤ 1

}
(A.6)

= sup
s∈S ,a∈A

dW1(P′(·|s, a), P(·|s, a)) + LPπ dW1(d
M′
π,t−1, dMπ,t−1),

(A.7)

where we have plugged the common temporal relation dMπ,t(s
′) =∫

S
∫
A dMπ,t−1(s)π(a|s)P(s′|s, a)ds da into (A.3), we sum and subtract∫

S
∫
A
∫
S dM

′
π,t−1(s)π(a|s)P(s|s, a)ds da ds to get (A.4), (A.5), and we

apply the inequality in (A.1) to obtain (A.6) and then (A.7). To get
rid of the dependence to the state distributions dM

′
π,t−1 and dMπ,t−1, we

repeatedly unroll (A.7) to get

dW1(d
M′
π,t , dMπ,t) ≤

( t

∑
j=0

Lj
Pπ

)
sup

s∈S ,a∈A
dW1(P′(·|s, a), P(·|s, a)) + Lt

Pπ dW1(D′, D)

(A.8)

=

(
1− Lt

Pπ

1− LPπ

)
sup

s∈S ,a∈A
dW1(P′(·|s, a), P(·|s, a)) + Lt

Pπ dW1(D′, D),

(A.9)

where we note that dW1(d
M′
π,0 , dMπ,0) = dW1(D′, D) to derive (A.8), and

we assume LPπ < 1 (Assumption 1) to get (A.9) from (A.8). As a side
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note, when the state and action spaces are discrete, a natural choice
of a metric is dS (s′, s) = 1(s′ 6= s) and dA = 1(a′ 6= a), which results
in the Wasserstein distance being equivalent to the total variation, the
constant LPπ = 1, and ∑t

j=0 Lj
Pπ = t. More details over the Lipschitz

constant LPπ can be found in [59]. Finally, we can exploit the result in
(A.9) to write

dW1(d
M′
π , dMπ ) = sup

f

{∣∣∣∣ ∫S
(

1
T

T−1

∑
t=0

dM
′

π,t (s)−
1
T

T−1

∑
t=0

dMπ,t(s)
)

f (s)ds
∣∣∣∣ : ‖ f ‖L ≤ 1

}
(A.10)

≤ 1
T

T−1

∑
t=0

sup
f

{∣∣∣∣ ∫S
(

dM
′

π,t (s)− dMπ,t(s)
)

f (s)ds
∣∣∣∣ : ‖ f ‖L ≤ 1

}

≤ 1
T

T−1

∑
t=0

1− Lt
Pπ

1− LPπ
sup

s∈S ,a∈A
dW1(P′(·|s, a), P(·|s, a)) + Lt

Pπ dW1(D′, D)

≤ 1− LT
Pπ

1− LPπ
sup

s∈S ,a∈A
dW1(P′(·|s, a), P(·|s, a)) + LT

Pπ dW1(D′, D),

(A.11)

in which we use (A.2) to get (A.10). The final result follows from (A.11)
by assuming the initial state distribution D to be shared across all the
CMPs in M, and taking the supremum over P′, P ∈M. �

Theorem 4.3.2. Let M be a class of CMPs, let π ∈ Π be a policy, and let
dMπ be the marginal state distribution over T steps induced by π inM ∈M.
We can upper bound the π-diameter DM(π) of the class as

DM(π) := sup
M′ ,M∈M

dTV(dM
′

π , dMπ )

≤ sup
P′ ,P∈M

T E
s∼dMπ

a∼π(·|s)

dTV(P′(·|s, a), P(·|s, a)).

Proof. The proof follows techniques from [48], especially Proposition
3.1. Without loss of generality, we take M′,M ∈ M. With some
overloading of notation, we will alternatively identify a CMP with the
tuple M or its transition model P. Let us start considering the TV
between the marginal state distributions induced by π overM′,M,
we can write

dTV(dM
′

π , dMπ ) =
1
2

∫
S

∣∣dM′
π (s)− dMπ (s)

∣∣ds

=
1
2

∫
S

∣∣∣∣ 1
T

T−1

∑
t=0

dM
′

π,t (s)−
1
T

T−1

∑
t=0

dMπ,t(s)
∣∣∣∣ds (A.12)

≤ 1
2T

T−1

∑
t=0

∫
S

∣∣dM′
π,t (s)− dMπ,t(s)

∣∣ds

=
1
T

T−1

∑
t=0

dTV(dM
′

π,t , dMπ,t), (A.13)



theorem proofs 74

where we use (A.2) to get (A.12). Then, we provide an upper bound
to each term of the final sum in (A.13), i.e.,

dTV(dM
′

π,t , dMπ,t) =
1
2

∫
S

∣∣dM′
π,t (s)− dMπ,t(s)

∣∣ds

=
1
2

∫
S

∣∣∣∣ ∫A
∫
S

dM
′

π,t−1(s)π(a|s)P′(s|s, a)− dMπ,t−1(s)π(a|s)P(s|s, a)
∣∣∣∣ds da ds

(A.14)

≤ 1
2

∫
S

∣∣dM′
π,t−1(s)− dMπ,t−1(s)

∣∣ ∫
A

∫
S

π(a|s)P′(s|s, a)ds da ds

(A.15)

+
1
2

∫
S

∫
A

dMπ,t−1(s)π(a|s)
∫
S

∣∣P′(s|s, a)− P(s|s, a)
∣∣ds da ds

(A.16)

= dTV(dM
′

π,t−1, dMπ,t−1) + E
s∼dMπ,t−1
a∼π(·|s)

[
dTV(P′(·|s, a), P(·|s, a))

]
(A.17)

=
t−1

∑
j=1

E
s∼dMπ,j

a∼π(·|s)

[
dTV(P′(·|s, a), P(·|s, a))

]
+ dTV(D′, D), (A.18)

where we use the temporal relation dMπ,t(s
′) =

∫
S
∫
A dMπ,t−1(s)π(a|s)P(s′|s, a)ds da

to get (A.14), in which we sum and subtract
∫
S
∫
A
∫
S dMπ,t−1(s)π(a|s)P(s|s, a)ds da ds

to obtain (A.15) and (A.16), and we repeatedly unroll (A.17) to write
(A.18), noting that dTV(dM

′
π,0 , dMπ,0) = dTV(D′, D). Finally, we can plug

(A.18) in (A.13) to get

dTV(dM
′

π , dMπ ) ≤ 1
T

T−1

∑
t=0

dTV(dM
′

π,t , dMπ,t)

≤ 1
T

T−1

∑
t=0

t−1

∑
j=1

E
s∼dMπ,j

a∼π(·|s)

[
dTV(P′(·|s, a), P(·|s, a))

]
+ dTV(D′, D)

≤
T−1

∑
t=0

∫
S

1
T

T−1

∑
j=0

dMπ,j(s) E
a∼π(·|s)

[
dTV(P′(·|s, a), P(·|s, a))

]
ds + dTV(D′, D)

(A.19)

=
T−1

∑
t=0

E
s∼dMπ

a∼π(·|s)

[
dTV(P′(·|s, a), P(·|s, a))

]
+ dTV(D′, D) (A.20)

= T E
s∼dMπ

a∼π(·|s)

[
dTV(P′(·|s, a), P(·|s, a))

]
+ dTV(D′, D), (A.21)

in which we have used (A.2) to obtain (A.20) from (A.19). The final
result is straightforward from (A.20) by assuming the initial state
distribution D to be shared across all the CMPs in M, and taking the
supremum over P′, P ∈M. �

Theorem 4.3.3. Let M be a class of CMPs, let π ∈ Π be a policy and
DM(π) the corresponding π-diameter of M. Let dMπ be the marginal state
distribution over T steps induced by π inM ∈M, and let σM ≤ σM :=
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infs∈S dMπ (s), ∀M ∈M. We can upper bound the entropy gap of the policy
π within the model class M as

sup
M′ ,M∈M

∣∣H(dM
′

π )− H(dMπ )
∣∣ ≤ (DM(π)

)2/
σM −DM(π) log σM

Proof. Let us expand the entropy gap of the policy π as

sup
M′ ,M∈M

∣∣H(dM
′

π )− H(dMπ )
∣∣

= sup
M′ ,M∈M

{∣∣∣∣− ∫S dM
′

π (s) log dM
′

π (s)ds +
∫
S

dMπ (s) log dMπ (s)ds
∣∣∣∣}

(A.22)

≤ sup
M′ ,M∈M

{∣∣∣∣ ∫S
(

dMπ (s)− dM
′

π (s)
)

log dMπ (s)ds
∣∣∣∣

+

∣∣∣∣ ∫S dM
′

π (s)
(

log dM
′

π (s)− log dMπ (s)
)

ds
∣∣∣∣} (A.23)

≤ sup
M′ ,M∈M

{
− log σM

∫
S

∣∣∣dM′
π (s)− dM

′
π (s)

∣∣∣ds + DKL
(
dM

′
π ||dMπ

)}
(A.24)

≤ sup
M′ ,M∈M

{
− log σMDTV(dM

′
π , dMπ ) +

(
DTV(dM

′
π , dMπ )

)2/
σM

}
(A.25)

≤
(
DM(π)

)2/
σM −DM(π) log σM (A.26)

in which we sum and subtract
∫
S dM

′
π (s) log dMπ (s)ds to obtain (A.23)

from (A.22), log dMπ (s) is upper bounded with log σM to get (A.24),
and we use the reverse Pinsker’s inequality DKL(p||q) ≤ (DTV(p, q))2/ infx∈X q(x)
[19, p. 1012 and Lemma 6.3] to obtain (A.31). Finally, we get the result
by upper bounding DTV(dM

′
π , dMπ ) with the π-diameter DM(π) and

σM with σM in (A.25). �

Proposition 4.4.1. Let πθ ∈ ΠΘ. The policy gradient of the exploration
objective Eα

M(πθ) w.r.t. θ is given by

∇θEα
M(πθ) = E

M∼pM
τ∼pπθ ,M

[( T−1

∑
t=0
∇θ log πθ(at,τ|st,τ)

)

×
(

Hτ −VaRα(Hτ)

)∣∣∣∣Hτ ≤ VaRα(Hτ)

]
.

Proof. Let us start from expanding the exploration objective (4.3) to
write

Eα
M(π) = CVaRα(Hτ)

= E
M∼pM
τ∼pπ,M

[
Hτ | Hτ ≤ VaRα(Hτ)

]
=

1
α

∫ VaRα(Hτ)

−∞
pπθ ,M(h)h dh, (A.27)
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where pπθ ,M is the probability density function (pdf) of the random
variable Hτ when the policy πθ is deployed on the class of environ-
ments M, and the last equality comes from the definition of CVaR [62].
Before computing the gradient of (A.27), we derive a preliminary
result for later use, i.e.,

∇θ
∫ VaRα(Hτ)

−∞
pπθ ,M(h)dh

=
∫ VaRα(Hτ)

−∞
∇θpπθ ,M(h)dh +∇θVaRα(Hτ)pπθ ,M(VaRα(Hτ)) = 0,

(A.28)

which follows directly from the Leibniz integral rule, noting that
VaRα(Hτ) depends on θ through the pdf of Hτ. We now take the
gradient of (A.27) to get

∇θEα
M(π) = ∇θ

1
α

∫ VaRα(Hτ)

−∞
pπθ ,M(h)h dh

=
1
α

∫ VaRα(Hτ)

−∞
∇θpπθ ,M(h)h dh

+
1
α
∇θVaRα(Hτ)VaRα(Hτ)pπθ ,M(VaRα(Hτ))

(A.29)

=
1
α

∫ VaRα(Hτ)

−∞
∇θpπθ ,M(h)

(
h−VaRα(Hτ)

)
dh,

(A.30)

where (A.29) follows from the Leibniz integral rule, and (A.30) is
obtained from (A.29) through (A.28), which we can rearrange to
write pπθ ,M(VaRα(Hτ)) = 1

∇θVaRα(Hτ)

∫ VaRα(Hτ)
−∞ ∇θpπθ ,M(h)dh. All

of the steps above are straightforward replications of the derivations
by Tamar, Glassner, and Mannor [74], Proposition 1. To conclude the
proof we just have to compute the term ∇θpπθ ,M(h), which is specific
to our setting. Especially, we note that

∇θpπθ ,M(h) =
∫
M

pM(M)
∫
T
∇θpπθ ,M(τ)δ(h− Hτ)dτ dM

(A.31)

=
∫
M

pM(M)
∫
T

pπθ ,M(τ)∇θ log pπθ ,M(τ)δ(h− Hτ)dτ dM

=
∫
M

pM(M)
∫
T

pπθ ,M(τ)

( T−1

∑
t=0
∇θ log πθ(at,τ|st,τ)

)
δ(h− Hτ)dτ dM,

(A.32)

where (A.31) and (A.32) are straightforward from the definitions in
Section 2.2, and T is the set of feasible trajectories of length T. Finally,
the result follows by plugging (A.32) into (A.30), which gives

∇θEα
M(π) =

1
α

∫
M

pM(M)
∫
T

pπθ ,M(τ)
∫ VaRα(Hτ)

−∞
δ(h− Hτ)( T−1

∑
t=0
∇θ log πθ(at,τ|st,τ)

)(
h−VaRα(Hτ)

)
dh dτ dM.

�





B
A D D I T I O N A L E X P E R I M E N T S

In this Appendix, we discuss some additional experiments, which
we decided to not include in Chapter 5 because they have a different
setting, which is not central in this thesis. However, as stated in
Section 4.2 and in the conclusions of Chapter 6, they can represent a
good starting point for a future work.

We carried out these experiments using the Meta-World bench-
mark [85]. It consists of 50 robotic manipulation tasks implemented in
the MuJoCo physics engine [79], and it is thought to evaluate state of
the art multi-task and meta-learning algorithms. Multi-task learning
and meta-learning have essentially the same goal: expand the set of
the learned skills. However, multi-task RL tries to do that by learning
a fixed set of skills with minimal data, while meta RL (see Section 3.3)
relies on past experience to quickly adapt to new tasks. Yu et al. [85]
introduce this benchmark to overcome some limitations of previous
suites, such as the Arcade Learning Environment [47], which is too
heterogeneous in terms of visual appearance, controls and objectives
to allow for a substantial efficiency gain thanks to positive transfer
between the different tasks. Instead, Meta-World proposes tasks that
share the same environment and control structure, but that are at the
same time different from one another. In particular, all the tasks com-
prise a simulated Sawyer robotic arm, whose action space A includes
the 3D coordinates of the end-effector position and the possibility to
grab an object by opening and closing it. The observation space S
includes the 3D Cartesian positions of the end-effector and of one or
two objects, while the 3D position of the goal is hidden and used to
compute a dense reward function (which we do not use). In Figure B.1,
we report an illustration of one of the 50 tasks.

Figure B.1: An illustration of one of the 50 tasks contained in the Meta-
World benchmark [85].
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b.1 drawer-close environment

The first experiment that we want to describe is exactly the one de-
scribed in Figure B.1. It is called drawer-close-v1 and it consists of the
robotic arm and a drawer, which is initially open. The goal, as planned
by the Meta-World suite, is to close the drawer, going from a point
(a) to a point (b). Our setting is as usual a reward-free domain, in
which we want to explore as evenly as possible. We proceed by maxi-
mizing the entropy by means of the estimator in (4.7). As in the Ant
experiment (see Section 5.4), we perform the maximization only on a
subset of the features. Interestingly, the difference here is that we are
dealing with multiple entities, i.e., we have features of both the robotic
arm and the drawer. We initially maximized the entropy over the 3D
position of the end-effector, with the intent of exploring the whole
environment and eventually interacting with the drawer. However, ex-
ploring a three-dimensional space as large as the one here considered
requires an extremely high number of samples. Note indeed that the
actions are scaled by a factor of 1

100 , making the exploration very slow.
This is an obvious design choice, since the movement of the robotic
arm must be smooth. Even if we assume to be able to fully explore the
environment, the interaction with the object can be very poor or even
absent, since the arm has no incentive to do it. We actually noticed
that also maximizing the entropy over both the arm’s and the object’s
features is not enough to guarantee an exhaustive interaction. That is
why we ended up with this solution: we narrowed down the portion
of navigable environment and we maximized the entropy over the 3D
position of the end-effector. Once obtained a policy capable of explor-
ing the narrowed region in a uniform way, we used it as initialization
to launch another experiment, this time maximizing the entropy only
over the y coordinate of the drawer. Clearly, these choices inject some
domain knowledge in the solution, which is something that is not
always possible. This recall the point made in Section 4.2, namely the
viable option to learn an approximation of the Pareto frontier instead
of manually choose the features of interest.

For the first exploration phase, we trained the algorithm for 40

epochs, sampling 10 trajectories with a time horizon T = 10000, a
mini-batch of size B = 2 and k = 50. In Figure B.2, we report the
heatmap of the state visitation induced by the obtained policy, where
we can distinguish the parallelepiped that represents the narrowed
region. Then, as we said, we launched again the algorithm, by using
the previously obtained policy as initialization and maximizing the
entropy over the y coordinate of the drawer. Note that in this case we
are maximizing the entropy over the other two dimensions as well
(x, z), but they would not impact the process, because the drawer has
no lateral or vertical movements. We set the parameters to Ntraj = 50,
T = 1000, B = 5, and k = 1000. The reason behind such an high value
of k is that by limiting the entropy estimation to only the feature y,
which covers a very small range, we incur in the aliasing problem.
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Figure B.2: Heatmap of the state visitation induced by the exploration pol-
icy in the drawer-close-v1 domain when optimizing on the 3D
position of the robotic arm.
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Figure B.3: Box plot showing the range of the features in the drawer-close-v1
domain when optimizing on the y coordinate of the drawer.

The aliasing problem occurs when too many samples are in the same
position, leading the k-NN computation to output an infinite value. At
this point, the resulting behavior was quite satisfying. However, the
Sawyer arm learned to move the drawer in a way that was not natural,
e.g., by applying some pressure on the border and then moving back
and forth. The issue was mainly due to the simulated physics of the
environment. We thus increased the mass of the drawer and its friction
with the table, obtaining a perfect behavior of the agent: it was able
to grab the drawer’s handle and go back and forth, as one can guess
from the box plot in Figure B.3. We can clearly notice that the only
two features with a significant range of motion is the y coordinate of
both the end-effector (hand in the plot) and the drawer (obj in the plot).

b.2 window-open environment

The second experiment uses the environment called window-open-v1.
As the name suggests, in this case we have a window that is initially
closed (see Figure B.4a). Following the same intuitions as in the drawer-
close domain, we reduced the navigable space and we initially trained
a policy to explore it. Then, we used the policy as initialization to
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launch another experiment, where we maximized the entropy over
the x coordinate of the window. Also in this case, we had to make
some tweaks in order to obtain a natural interaction. We increased
the size of the handle, otherwise too small to be grabbed (note that
the Meta-World tasks are thought for a dense reward setting, where
the reward is computed according to the distance between the end-
effector and the position of the goal). Furthermore, we changed the
initial position of the window, setting it at the center of its range. In
this way the agent can learn to move it in both directions on the x axis,
without stalling in one of the two corners. In Figure B.4b, we provide
a box plot, which shows how the positions of the robotic arm and the
window change during one epoch. Noticeably, the x coordinate of the
end-effector and the x coordinate of the window are the ones with the
largest range.

(a) The environment

0 0.5 1

hand x

hand y

hand z

obj x

obj y

obj z

(b) Features’ range

Figure B.4: Illustration of the window-open-v1 environment (a), and a box
plot showing the range of the features when optimizing on the
x coordinate of the window (b).

b.3 door-open environment

The last experiment uses the environment called door-open-v1. It con-
sists of the usual robotic arm and a door, which is initially closed (see
Figure B.5a). We followed the exact same procedure of training, maxi-
mizing (in the second phase) on the x and y coordinates of the door.
We made two main changes to the default setting. First, we increased
the friction with the floor (i.e., the table) as with the drawer-close-v1
domain. Second, in the preliminary exploration, we had to adapt the
narrowed region so that the agent could not get on the right of the
door to avoid some brutal movements, which are probably due to the
physics of the pin. Again, in Figure B.5b, we show the range of the dif-
ferent features. Understandably, all the features but obj z are subject to
a movement, with the x position of the door being the most explored.
Note that in this case we are maximizing over two features, which
are subject to change in different moments, as the door first moves on
the x axis and then on the y axis. This seems to make the interaction
quite difficult. In fact, as opposed to the previous two domains, the
movement induced by the final policy is not really smooth. An easy
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future development might consider a combination of the two features,
e.g., via polar coordinates.

(a) The environment
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(b) Features’ range

Figure B.5: Illustration of the door-open-v1 environment (a), and a box plot
showing the range of the features when optimizing on the x, y
coordinates of the door (b).





C
I M P L E M E N TAT I O N D E TA I L S

c.1 hyperparameter values

c.1.1 Learning to Explore

In Table C.1, we report the parameters of MEMENTO and Neutral that
are used in the learning to explore phase of the experiments with low-
dimensional complexity, i.e., GridWorld with Slope and MultiGrid. In
Table C.2, we report the parameters of MEMENTO and Neutral that
are used in the learning to explore phase of the experiments with high-
dimensional complexity, i.e., Ant and MiniGrid.

Table C.1: MEMENTO and Neutral Parameters for Low-Dimensional Do-
mains

GridWorld with Slope MultiGrid

Number of epochs 150 50

Horizon (T) 400 400

Number of traj. (N) 200 500

Mini-batch dimension (B) 5 5

α-percentile 0.35 0.1

Sampling dist. (pM) [0.8,0.2] [0.1,0.1,. . .,0.1]

KL threshold (δ) 15 15

Learning rate (β) 10−5 10−5

Number of neighbors (k) 30 30

Policy hidden layer sizes (300,300) (300,300)

Policy hidden layer act. function ReLU ReLU

Number of seeds 4 4

c.1.2 Reinforcement Learning

In Table C.3, we report the TRPO parameters that are used in the RL

phase of the experiments.

84
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Table C.2: MEMENTO and Neutral Parameters for High-Dimensional Do-
mains

Ant MiniGrid

Number of epochs 400 300

Horizon (T) 400 150

Number of traj. (N) 150 100

Mini-batch dimension (B) 5 5

α-percentile 0.2 0.3

Sampling dist. (pM) [0.8,0.2] [0.8,0.2]

KL threshold (δ) 15 15

Learning rate (β) 10−5 10−5

Number of neighbors (k) 500 50

Policy hidden layer sizes (400,300) *

Policy hidden layer act. function ReLU *

Number of seeds 4 4

* See Section 5.4.2 for full details on the architecture.

Table C.3: TRPO Parameters for Goal-Based RL

GridWorld with Slope MultiGrid Ant MiniGrid

Number of Iter. 100 100 100 200

Horizon 400 400 400 150

Sim. steps per Iter. 1.2× 104 1.2× 104 4× 105 7.5× 103

δKL 10−4 10−4 10−2 10−4

Discount (γ) 0.99 0.99 0.99 0.99

Number of seeds 50 50 8 13

Number of goals 50 50 8 13

c.1.3 Meta-RL

In Table C.4 and Table C.5, we report the MAML and UML param-
eters that are used in the experiments described in Section 5.5, in
order to meta-train a policy on the GridWorld with Slope and Multi-
Grid domains. For MAML experiments, we adopted the codebase at
https://github.com/tristandeleu/pytorch-maml-rl, while for DIAYN

we used the original implementation.

https://github.com/tristandeleu/pytorch-maml-rl
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Table C.4: MAML Parameters

GridWorld with Slope MultiGrid

Number of batches 200 200

Meta batch size 20 20

Fast batch size 30 30

Num. of Grad. Step 1 1

Horizon 400 400

Fast learning rate 0.1 0.1

Policy hidden layer sizes (64,64) (64,64)

Policy hidden layer act. function Tanh Tanh

Number of seeds 4 4

Table C.5: DIAYN Parameters

GridWorld with Slope MultiGrid

Number of epochs 1000 1000

Horizon 400 400

Number of skills 20 20

Learning rate 3× 10−4 3× 10−4

Discount (γ) 0.99 0.99

Policy hidden layer sizes (300,300) (300,300)

Policy hidden layer act. function ReLU ReLU

Number of seeds 4 4
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