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Abstract

We study signaling in Bayesian ad auctions, in which bidders’ valuations depend on a
random, unknown state of nature. The auction mechanism has complete knowledge of
the actual state of nature, and it can send signals to bidders so as to disclose information
about the state and increase revenue. For instance, a state may collectively encode some
features of the user that are known to the mechanism only, since the latter has access
to data sources unaccessible to the bidders. We study the problem of computing how
the mechanism should send signals to bidders in order to maximize revenue. While this
problem has already been addressed in the easier setting of second-price auctions, to the
best of our knowledge, our work is the first to explore ad auctions with more than one
slot. In this Thesis, we focus on public signaling and Vickrey-Clarke-Groves mechanisms,
under which bidders truthfully report their valuations. We start with a negative result,
showing that, in general, the problem does not admit a PTAS unless P = NP, even when
bidders’ valuations are known to the mechanism. The rest of the Thesis is devoted to
settings in which such negative result can be circumvented. First, we prove that, with
known valuations, the problem can indeed be solved in polynomial time when either the
number of states or the number of slots is fixed. Moreover, in the same setting, we provide
an FPTAS for the case in which bidders are single minded, but the number of states of
nature and the number of slots can be arbitrary. Then, we switch to the random valuations
setting, in which these are randomly drawn according to some probability distribution.
In this case, we show that the problem admits an FPTAS, a PTAS, and a QPTAS, when,
respectively, the number of states of nature is fixed, the number of slots is fixed, and
bidders’ valuations are bounded away from zero.

Keywords: Ad Auctions, Bayesian Persuasion, Public Signaling Scheme.





Abstract in lingua italiana

In questa tesi si affronta lo studio di aste pubblicitarie Bayesiane, in cui le valutazioni
degli offerenti dipendono da un stato di natura aleatorio. Il meccanismo dell’asta ha una
conoscenza completa dello stato di natura reale e può inviare segnali agli offerenti in modo
da rivelare parzialmente l’informazione su di esso e aumentare il proprio guadagno. Ad
esempio, uno stato di natura può codificare alcune caratteristiche dell’utente che sono
note solo al meccanismo, poiché quest’ultimo ha accesso a fonti di dati inaccessibili agli
offerenti. In questa tesi si studia come un meccanismo d’asta debba inviare segnali agli
offerenti al fine di massimizzare le proprie entrate. Mentre questo problema è già stato
affrontato nel caso più semplice di aste second-price, al meglio della nostra conoscenza, in
questa tesi si affronta per la prima volta il caso di aste pubblicitarie con più di un slot. In
particolare, viene studiato il caso di uno schema di segnali pubblico e di un meccanismo
Vickrey-Clarke-Groves, in base ai quali gli offerenti riportano in modo veritiero le loro va-
lutazioni. In primo luogo si dimostra che, in generale, il problema non ammette un PTAS
a meno che P = NP, anche quando le valutazioni degli offerenti sono note al meccanismo.
Per questo motivo, nel resto della tesi, vengono affrontati scenari in cui tale risultato
negativo può essere aggirato. In primo luogo, si dimostra che, quando le valutazioni sono
note al meccanismo, il problema può essere risolto in tempo polinomiale se il numero degli
stati di natura o il numero di slots è fissato. Inoltre, nello stesso contesto, viene mostrata
l’esistenza di un FPTAS per il caso in cui gli offerenti sono single-minded, ma il numero
di stati di natura e slots può essere arbitrariamente grande. Si passa poi al caso di valu-
tazioni aleatorie, in cui queste sono estratte casualmente secondo una certa distribuzione
di probabilità. In questo caso, si mostra che il problema ammette un FPTAS, un PTAS
e un QPTAS, quando, rispettivamente, il numero di stati è fissato, il numero di slots è
fissato e le valutazioni degli offerenti sono tutte maggiori di una certa quantità.

Parole chiave: Aste Pubblicitarie, Persuasione Bayesiana, Schema di Segnali Pubblico.
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1| Introduction

1.1. General Overview

Nowadays, worldwide spending in digital advertising is skyrocketing, and this growth is
primarily driven by ad auctions. These account for almost all market share, since they
are at the core of popular advertising platforms, such as, e.g., those by Google, Amazon,
and Facebook. According to a recent report by eMarketer [2021], digital ad spending will
reach over $490 billion in 2021 and zoom past half a trillion in 2022 (see Figure 1.1).
We study signaling in ad auction settings by means of the Bayesian persuasion frame-
work [18]. In a standard ad auction, the advertisers (also called bidders) compete for
displaying their ads on a limited number of slots, and each bidder has their own private
valuation representing how much they value a click on their ad. In this work, we study
Bayesian ad auctions, which are characterized by the fact that bidders’ valuations depend
on a random, unknown state of nature. The auction mechanism has complete knowledge
of the actual state of nature, and it can send signals to bidders so as to disclose informa-
tion about the state and increase revenue. In particular, the auction mechanism commits
to a signaling scheme, which is defined as a randomized mapping from states of nature to
signals being sent to the bidders.
Our model fits many real-world applications that are not captured by classical ad auc-
tions. For instance, a state of nature may collectively encode some features of the user
visualizing the ads such as, e.g., age, gender, or geographical region that are known to the
mechanism only, since the latter has access to data sources unaccessible to the bidders.
We study the problem of computing a revenue-maximizing signaling scheme for the mech-
anism. In particular, in this Thesis we focus on public signaling, in which the mechanism
can only send a single signal that is observed by all the bidders. Moreover, we restrict our
attention to VCG mechanisms, which are widely used in practice and have the appealing
property of inducing bidders to truthfully report their valuations. While the signaling
problem studied in this Thesis has already been addressed in the easier setting of second-
price auctions Badanidiyuru et al. [2018], to the best of our knowledge, our work is the
first to explore algorithmic signaling in general ad auctions with more than one slot.
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Figure 1.1: Digital ad spending worldwide.

1.2. Related Works

We study signaling in ad auction settings by means of the Bayesian persuasion framework
by Kamenica and Gentzkow [2011]. Over the last years, this framework has received
considerable attention from the scientific community, due to its applicability to many
real-world scenarios, such as online advertising [5, 7, 17], voting [2, 9, 10, 15], traffic
routing [6, 13, 21], recommendation systems [19], security [20, 23], and product market-
ing [3, 8].
To the best of our knowledge, the algorithmic study of signaling in auctions is limited to
the second-price auction, which can be seen as a special ad auction with a single slot. A
remarkable exception is a recent work by Castiglioni et al. [2022], which studies signaling
in posted price auctions. Emek et al. [2014] study second-price auctions in the known
valuations setting. They provide an LP to compute an optimal public signaling scheme.
Moreover, they show that it is NP-Hard to compute an optimal signaling scheme in the
random valuations setting. In our work, we generalize their positive result, in order to pro-
vide our polynomial-time algorithm working when the number of slots m is fixed. Cheng
et al. [2015] complement the hardness result of Emek et al. [2014] by providing a PTAS
for the random valuations setting. This result cannot be extended to ad auctions, as we
show in our first negative result. However, we provide two generalizations of the result
by Cheng et al. [2015]: we provide a PTAS for the random valuations setting with a fixed
number of slots m, and a QPTAS when the bidder’s valuations are bounded away from
zero. Badanidiyuru et al. [2018] study algorithms whose running time does not depend
on the number of states of nature. Moreover, they initiate the study of private signaling
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schemes, showing that, in second-price auctions, private signaling introduces non-trivial
equilibrium selection problems. Finally, Castiglioni et al. [2022] study signaling in posted
price auctions. They first prove that the problem of maximizing the seller’s revenue does
not admit an FPTAS unless P = NP, even for basic instances with a single buyer. Due
to that, they focus on designing PTASs working both with public and private signaling
schemes.
This work is also related to the line of research that employs q-uniform posteriors distri-
butions in general Bayesian persuasion problems. Cheng et al. [2015] introduce q-uniform
posteriors for the first time, showing that, under some assumptions, distributions over q-
uniform posteriors approximate a sender-optimal public signaling scheme. They use this
argument to provide a PTAS working for second-price auctions with Bayesian valuations.
Xu [2020] focuses on the case of receivers’ binary actions and employs q-uniform posteriors
in order to show that the problem of computing an optimal public signaling scheme ad-
mits a bi-criteria PTAS for monotone submodular sender’s utility functions. Castiglioni
et al. [2020] consider the case of receivers’ binary actions and general sender’s utility
functions, and they provide a tight bi-criteria QPTAS for the problem. All the works
mentioned above focus on public signaling. The only exception is Castiglioni et al. [2020],
which studies a specific case in between private and public signaling, though restricted to
a voting scenario.

1.3. Original Contributions

We start our analysis with a negative result, showing that, in general, the revenue-
maximizing problem with public signaling does not admit a PTAS unless P=NP, even
when bidders’ valuations are known to the mechanism. Thus, in the rest of the Thesis, we
address settings in which we can prove that such a negative result can be circumvented.
First, we show that, in the known valuations setting, the problem admits a polynomial-
time algorithm when either the number of slots m or the number of states d is fixed. The
proposed algorithms work by solving suitably-defined linear programs (LPs) of polynomial
size, thanks to the crucial property that, when either m or d is fixed, there always exists
an optimal signaling scheme using a polynomial number of different signals. Moreover,
we also study special instances in which the bidders are single minded, but m and d can
be arbitrary. In this case, each bidder positively values a click on their ad only when
the actual state of nature is a specific single state, and all the bidders interested in the
same state value a click on their ad for the same amount. By exploiting a particular
combinatorial structure of the set of bidders’ posterior distributions induced by signaling
schemes, we are able to provide an FPTAS in such setting. The algorithm works by
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applying the ellipsoid method in a non-trivial way, with only access to an approximate
polynomial-time separation oracle. The latter is implemented by a rather involved dy-
namic programming algorithm, which works thanks to the particular structure of the set
of bidders’ posteriors. Then, we switch the attention to the random valuations setting,
where bidders’ valuations are unknown to the mechanism but randomly drawn according
to some probability distribution. In this case, we first provide some preliminary results
that establish useful connections between the optimal value of the revenue-maximizing
problem and that of optimal signaling schemes restricted to suitably-defined finite sets of
posterior distributions. These sets are defined so that the expected revenue of the mech-
anism is stable, meaning that it does not decrease too much when restricting signaling
schemes to use posteriors in such sets. As a preliminary step, we also show that it is
possible to compute an approximately-optimal signaling scheme having only access to a
finite number of samples from the distribution of bidders’ valuations. In conclusion, all
the preliminary results described so far allow us to prove that in the random valuations
setting, the problem admits an FPTAS, a PTAS, and a QPTAS, when, respectively, d is
fixed, m is fixed, and bidders’ valuations are bounded away from zero. Finally, the work
presented in this Thesis has been recently collected in a scientific paper by Bacchiocchi
et al. [2022].

1.4. Thesis Structure

The Thesis is structured as follows.

• In Chapter 2 we present the theoretical groundings on which this work is based.
In particular, we discuss some key concepts about: Ad Auctions, Computational
Complexity, and Information Design.

• In Chapter 3 we introduce the problem of computing an optimal revenue-maximizing
signaling scheme in ad auctions through the Bayesian persuasion framework.

• In Chapter 4 we discuss a general inapproximability result related to the computa-
tion of a revenue-maximizing signaling scheme which also holds in the easier case of
the known valuation setting.

• In Chapter 5 we study the problem of computing an optimal revenue-maximizing
signaling scheme in a setting in which the mechanism knows the matrix of bidders’
valuations.
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• In Chapter 6 we study the problem of computing an optimal revenue-maximizing
signaling scheme when the bidders’ valuations are drawn from a probability distri-
bution unknown to the mechanism.

• In Chapter 7 we present some experimental results aimed at understanding the
scenarios in which committing to a signaling scheme gives the mechanism higher
expected revenue than not doing so.
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2| Preliminaries

2.1. Vickrey-Clarke-Groves Mechanism

This section presents some preliminary concepts helpful in understanding the Vickrey-
Clarke-Groves (VCG) mechanism and its main properties. First, we introduce the follow-
ing notation:

• N := [n] is the set of players.1

• A := A1 × A2 × ... × An is a set of possible joint actions profiles, where Ai is the
action set of player i ∈ N .

• Θ := Θ1 × ... × Θn is a set of possible joint types profiles, where Θi is the set of
types of player i ∈ N .

• X is the set of outcomes.

• g : A→ X is the outcome function.

• λ is a probability distribution over the set of types Θ.

• u := (u1, ..., un) is the tuple of utility functions, where ui : X × Θ → [0, 1] is the
utility of player i ∈ N .

We also introduce the following definitions.

Definition 2.1 (Economic mechanism). An Economic mechanism is a tuple (A,X, g).

Definition 2.2 (Bayesian Game). A Bayesian Game is a tuple (A,X, g,Θ, λ, u).

Definition 2.3 (Social Choice Function). A social choice function f : Θ → X is a
function that associates each possible tuple of players’ types to an outcome.

Basically, given the preferences of the receivers, a social choice function investigates ways
in which they can be aggregated, while respecting some properties.

1In the following, given a natural number n ∈ N+, we denote with [n] the set {1, ..., n}.
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Definition 2.4 (Direct (revelation) economic mechanism). Given a social choice function
f : Θ→ X, a direct (revelation) economic mechanism is a mechanism (Θ, X, f).

We also introduce the definition of quasi linear environments in which the utility of a
player linearly depends on her valuation.

Definition 2.5 (Quasi Linear Environment). A quasi linear environment is given by:

• An outcome space given by: X = {(k, p1, ..., pn) : k ∈ K, pi ∈ [0, 1] ∀i ∈ N}.

• Utility functions: ui(k, θi) = vi(k, θi)− pi with vi : K ×Θi → [0, 1].

Where K is the set of possible allocations.

Quasi linear environments play a crucial role since they describe the key features of many
auctioning scenarios. Indeed, an allocation k ∈ K indicates which items are assigned
to each player, while payments represent the money each player has to provide to the
auctioneer. We now introduce an important characterization of a social choice function
in which players are incentivized to report their true type.

Definition 2.6 (Dominant-Strategy Incentive Compatibility). A social choice function
f : Θ→ X is dominant strategy incentive compatible (DSIC) if the Bayesian game induced
by the direct revelation economic mechanism has a pure dominant strategy equilibrium
(s∗1, ..., s

∗
n) such that s∗i (θi) = θi for every player i ∈ N and type θi ∈ Θi.

The definition means that truthfully responding is a dominant strategy for the players, no
matter what other players do. We finally present a mechanism having the crucial property
of incentivizing players to report their true type.

Definition 2.7 (Vickrey–Clarke–Groves (VCG) mechanism). A direct-revelation economic
mechanism (Θ, X, f) in which f(θ) = (k(θ), p1(θ), ..., pn(θ)) is Vickrey–Clarke–Groves
(VCG) mechanism if :

• The allocation is given by: k∗ ∈ argmax
k′∈K

∑
i∈N vi(k

′, θi).

• The payments are given by: pi (k
∗, θi) = max

k′∈K−i

∑
i ̸=j

vj(k
′, θj)−

∑
i ̸=j

vj(k
∗, θj) ∀i ∈ N .

Where K−i is the set of possible allocations without player i ∈ N .
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Theorem 2.1. Every VCG Mechanism is Dominant Strategy Incentive Compatible (DSIC).

Proof. Let k1 ∈ K be the allocation that maximizes the players’ valuations when player
i ∈ N reports her true type θi ∈ Θi, while let k2 ∈ K be the allocation that maximizes
the palyers’ valuations when player i ∈ N misreports her true type θ̃i ∈ Θi. Formally, we
have that:

k1 ∈ argmax
k∈K

vi(k, θi) +
∑
i ̸=j

vj(k, θj) k2 ∈ argmax
k∈K

vi(k, θ̃i) +
∑
i ̸=j

vj(k, θj).

The utility of player i ∈ N when she reports her true type is given by:2

ui(k1, θi) = vi(k1, θi)− pi(k1) = vi(k1, θi) +
∑
i ̸=j

vj(k1, θj) + max
k′∈K−i

∑
i ̸=j

vj(k
′, θj)

≥ vi(k2, θ̃i) +
∑
i ̸=j

vj(k2, θj) + max
k′∈K−i

∑
i ̸=j

vj(k
′, θj)

= ui(k2, θ̃i).

The inequality holds because of the definition of allocations k1, k2 ∈ K and shows that
the utility of player i ∈ N is maximized when she reports her true type, concluding the
proof.

We now present an introductory example of an auction implementing a VCG mechanism.

Example 2.1. We consider an auction with three bidders and two items. This example
assumes that the bidders’ valuations coincide with their types, as reported in the following.

v1 v2 v3

∅ 0.0 0.0 0.0
{A} 0.2 0.0 0.0
{B} 0.0 0.5 0.0
{A,B} 0.2 0.5 0.6

Table 2.1: Bidders’ valuations.

The VCG allocation prescribes item {A} to player 1 while it prescribes item {B} to player
2, since this allocation is the one that maximizes the reported valuations. Finally, the

2W.l.o.g., we assume that each player j ∈ N reports her true type.
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prices prescribed by the VCG mechanism are reported below:

p1 = max
k′∈K−1

∑
i ̸=1

vi(k
′)−

∑
j ̸=1

vj(k
∗) = 0.6− 0.2 = 0.4

p2 = max
k′∈K−2

∑
i ̸=2

vi(k
′)−

∑
j ̸=2

vj(k
∗) = 0.6− 0.5 = 0.1

p3 = max
k′∈K−3

∑
i ̸=3

vi(k
′)−

∑
j ̸=3

vj(k
∗) = 0.7− 0.7 = 0

where k∗ ∈ K is the allocation presented in Definition 2.7, which maximizes the reported
valuations.

2.2. Ad Auctions

In this section, we introduce and characterize ad auctions (or sponsored search auctions).
In particular, as customary in the literature, we assume there is a set N := [n] of ad-
vertisers (or bidders) who compete for displaying their ads on a set M := [m] of slots,
with m ≤ n. Each bidder i ∈ N is characterized by a private valuation vi ∈ [0, 1], which
represents how much they value a click on their ad. Moreover, each slot j ∈M is associ-
ated with a click through rate (CTR) parameter λj ∈ [0, 1], which is the probability of a
user clicking the slot and we indicate with Λ := {λ1, ..., λm} the set of these parameters.
In this work, for the ease of presentation, we assume that the click through rate only
depends on the slot and not on the ad being displayed. In general, each slot may have its
own prominence value the probability with which a user observes it and each bidder may
have their own ad quality the probability with which their ad is clicked once observed,
so that the click through rate is defined as the product of these two quantities. All the
results in this thesis can be easily extended to such general model. Moreover, for ease of
notation, we assume that the slots are ordered so that λ1 ≥ . . . ≥ λm. The auction goes
on as follows: first, each bidder i ∈ N separately reports a bid bi ∈ [0, 1] to the auction
mechanism; then, based on the bids, the latter allocates an ad to each slot and defines how
much each bidder has to pay the mechanism for a click on their ad. We focus on truthful
mechanisms, and the VCG mechanism in particular. In truthful mechanisms, as shown
in previous section, allocation and payments are defined so that it is a dominant strategy
for each bidder to report their true valuation to the mechanism, namely bi = vi for every
i ∈ N . In particular, the allocation implemented by the VCG mechanism orderly assigns
the first m bidders in decreasing value of bi to the first m slots (those with the highest
click through rates). At the same time, assuming without loss of generality that bidder i
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is assigned to slot i, the mechanism defines the payments according to Definition 2.7:

pi =
( m+1∑

j=i+1

bjλj−1 +
i−1∑
j=1

bjλj

)
−
(m+1∑

j=1

bjλj − λibi

)
=

m+1∑
j=i+1

bj(λj−1 − λj),

for each bidder i ∈ [m], where, for the ease of notation, we let λm+1 = 0. The payment is
zero for all the other bidders. In practice, each bidder i ∈ [m] has to pay pi/λi whenever a
user clicks on their ad, so that their utility is λivi− pi in expectation over the clicks. The
expected utility of all the other bidders is zero. In the following we provide an example
of ad auction implementing a VCG allocation mechanism.

Example 2.2. We consider an ad auction with m = 3 slots and n = 6 bidders interested
in displaying their ad. In the following tables we summarize all the information concerning
the bidders’ valuations and the slots’ features. In particular the CTRs are given by:

λ1 λ2 λ3

0.8 0.3 0.2

Table 2.2: Slots’ CTRs.

while the bidders’ valuations are given by:

v1 v2 v3 v4 v5 v6

0.5 0.6 0.9 0.4 0.4 0.8

Table 2.3: Bidders’ valuation in an ad auction.

It is easy to check that, accordingly to what prescribed by the VCG allocation mechanism,
the first slot is allocated to advertiser 3, the second to advertiser 6, while the last one
to advertiser 2, as shown in Figure 2.1. In addition, the payments prescribed by the
mechanism are reported below.

p3 = v6(λ1 − λ2) + v2(λ2 − λ3) + v1λ3 = 0.56

p6 = v2(λ2 − λ3) + v1λ3 = 0.16

p2 = v1λ3 = 0.1.

We remark that the expected payments associated to the three remaining receivers are equal
to zero since their ad is not displayed.
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Figure 2.1: VCG allocation in ad auctions.

2.3. Computational Complexity

In this section, we present some definitions related to the Computational Complexity
Theory, which is the field of Computer Science that aims at classifying problems in com-
plexity classes according to their difficulty. In particular, we introduce some preliminary
concepts and the most important complexity classes. In general, the complexity of an
algorithm can be measured in two dimensions:

• the time complexity, which measures the maximum number of computational steps
that the algorithm performs in order to output a solution;

• the space complexity, which measures the amount of memory used by the algorithm.

Usually, the complexity is expressed as a function of the size of the algorithm’s input.
However, since it is often quite involved to provide an analytical expression of such a
function, it results easier just to provide an upper bound of it.

Definition 2.8. The function f(n) is asymptotically upper-bounded by g(n), we write it
as f(n) = O(g(n)), if there exist two positive constants c and n0 such that:

0 ≤ f(n) ≤ cg(n), ∀n ≥ n0.

Thanks to the previous definitions we can now distinguish the two main classes of algo-
rithms.

Definition 2.9. An algorithm is polynomial if it has a worst-case time complexity O
(
nd
)
,

where d is a constant and n is the size of the input.
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Definition 2.10. An algorithm is exponential if it has a worst-case time complexity O (2n)

where n is the size of the input.

It is possible to show that there exist problems that are particularly difficult and can
be solved only in exponential time. Due to that, problems are classified in complexity
classes, depending on their difficulty. We present now complexity classes with respect to
two types of problems: decision problems and functional problems. Decision problems
are problems that admit only YES or NO answers and can be split into three complexity
classes:

• P. The class of decision problems that can be solved by a polynomial time algorithm.

• NP. The class of decision problems such that for every YES-instance there is a
concise certificate which allows to verify, in polynomial time, that the instance
really admits a YES answer.

• Co-NP. The class of decision problems whose complements are in NP; where the
complement of a decision problem is obtained reversing the YES and NO answers.

Functional problems are problems where a single output, if it exists, is expected for
every input, but the outcome is more complex than one of decision problems. Also these
problems can be split into complexity classes, including:

• FP. The class of functional problems that can be solved by a polynomial time
algorithm;

• FNP. The class of functional problems such that there exists an algorithm that,
given a problem instance I and a solution y, can verify, in polynomial time, whether
y is a solution of I.

In NP, there is a class of problems, called NP-Complete problems, which includes the
most difficult problems in NP. Each problem in NP can be transformed into one of these
problems in polynomial time. In the following, we introduce the formal definition of
reduction, NP-Hardness, and NP-Completeness.

Definition 2.11. A problem π can be reduced in polynomial time to another problem π′,
written as π ≤P π′, if there exists a transformation that allows to build an instance I ′

of π′ from an instance I of π in polynomial time, and such that a solution of I can be
derived, in polynomial time, from one of I’.

If a problem π is reducible in polynomial time to a problem π′, then π′ is at least as
difficult as π. For example, if π′ can be solved in polynomial time also π has a polynomial
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time algorithm. In fact, we can solve π by reducing π to π′ and solving π′. Reductions
are also useful to determine membership to another class of problems, called NP-Hard
problems.

Definition 2.12. A problem π is NP-Hard if every problem π′ ∈ NP is such that π′ ≤P π.

Definition 2.13. A problem π is NP-Complete if it is in NP and it is NP-Hard.

NP-Complete problems play a crucial role because, if there exists a polynomial algorithm
for a NP-Complete, then P = NP, while proving that does not exist a polynomial al-
gorithm for a NP-Complete implies that P ⊂ NP and thus some problem in NP cannot
be solved in polynomial time. The fact that no polynomial time algorithm for an NP-
Complete problem has ever been found motivates the conjecture that P ̸= NP. Figure
2.2 shows the two different scenarios. Since it is possible to reduce every problem in NP
to an NP-Complete problem, to show that a problem is NP-Hard it is enough to prove
that an NP-Complete problem can be reduced to it. We now restrict our attention to
optimization problems since they play a crucial role in the development of this thesis.
Sometimes, optimization problems cannot be solved efficiently by an exact algorithm, but
there exist algorithms that can approximate an optimal solution in polynomial time.

Figure 2.2: The two possible relations between P and NP.

Since an approximate solution could be acceptable for a given application, approximation
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algorithms can be usefully employed, as they are usually much faster than exact algo-
rithms and guarantee a bound on the error. Since we will mainly rely on maximization
problems in this work, we present the following definitions in order to maximize a given
objective function. Nevertheless, it is possible to extend these definitions for other kinds
of problems. In the following we let OPT be the value of the optimal solution while we
let APX be the value returned by the approximation algorithm.

Definition 2.14 (Multiplicative approximation algorithm). Given a maximization prob-
lem P and ε > 0. An algorithm provides an ε-multiplicative approximation for the problem
P, if for all instances I of P it delivers a feasible solution such that:

APX
OPT

≥ (1− ε)

Definition 2.15 (Additive approximation algorithm). Given a maximization problem P
and ε > 0. An algorithm provides an ε-additive approximation for the problem P, if for
all instances I of P it delivers a feasible solution such that:

APX ≥ OPT− ε

We also introduce the definition of polynomial-time approximation scheme (PTAS) where
the algorithm gives arbitrarily good approximations for the problem in polynomial time.

Definition 2.16 (Polynomial time approximation scheme). Let P be a maximization
problem. A polynomial time approximation scheme (PTAS) is an algorithm that takes an
instance I of P of size n and a parameter ε > 0, and in time poly(n), outputs a solution
that is a (multiplicative or additive) ε-approximation of the optimal solution.

Similarly, we introduce the strongest notion of fully polynomial time approximation
scheme (FPTAS).

Definition 2.17 (Fully polynomial-time approximation scheme). Let P be a maximiza-
tion problem. A fully polynomial time approximation scheme (FPTAS) is an algorithm
that takes an instance I of P of size n and a parameter ε > 0, and in time poly (n, 1/ϵ),
outputs a solution that is a (multiplicative or additive) ε-approximation of the optimal
solution.
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2.4. Information Design

Information design is the field in economics and game theory that studies how the strate-
gic provision of information can affect the interaction between rational players. In this
scenario, the interaction between agents can be described as a game with incomplete
information. The main important feature of these games is that the payoff function de-
pends on a finite set of parameters Θ := {θ1, . . . , θd}, denoted as states of nature, in order
to model the environment randomicity. The primary goal of Information Design is to
study and characterize the information structure of such games, which can be modeled
as a map between states of nature and a countable set of signals S. Signals are designed
to spread information to the agents and, by doing so, influence the decisions they will
consequently take. Information design addresses the study of information structures by
using two approaches based on a descriptive or a prescriptive question. The descriptive
question aims at understanding the consequences of the provision of information on the
set of potential equilibria of a game with incomplete information. While the prescriptive
question, also called persuasion, deals with computing the information structure which
optimizes a given objective function. Bayesian persuasion tries to understand all those
situations in which an informed principal (the sender) tries to persuade the behavior of
self-interested agent(s) (the receiver(s)) via the provision of payoff-relevant information.

2.4.1. Persuading a Single Agent

This model describes the interaction of two agents, an informed sender and a receiver.
The receiver may pick one of several actions a ∈ A and her utility is specified by the
function u : A × Θ → R, highlighting the fact that she is influenced by the selected
action and by a random state of nature θ ∈ Θ. In turn, the choice of the receiver effects
together with the state of nature θ ∈ Θ the sender’s objective function f : A × Θ → R.
The state of nature θ ∈ Θ is drawn according to a prior distribution µ ∈ ∆Θ, which is
known by the sender and the receiver.3 However, since the sender can observe the actual
realization of the state of nature θ ∈ Θ, she can persuade the receiver to take a more
profitable action. In addition, before the state of nature is realized, the sender publicly
commits to a signaling scheme (also called policy), which represents a randomized map
from the set of states of nature Θ to the set of signals S. A signal can be considered as
an abstract element without intrinsic meaning. Nevertheless, since the receiver is rational
and Bayesian, she interprets it depending on how the signaling scheme uses it. Finally,

3Given a finite set X, we denote with ∆X the (|X|−1)-dimensional simplex defined over the elements
of X.



2| Preliminaries 21

the interaction between the sender and the receiver is reported below:

1. The sender commits to signaling scheme ϕ : Θ→ ∆S .

2. The receiver observes the signaling scheme chosen by the sender.

3. The true state θ ∼ µ is realized and the sender observes it.

4. A signal s ∈ S is drawn from ϕθ.

5. The receiver observes the signal s and rationally updates his belief over Θ, according
to the Bayes rule.

6. The receiver selects an action a maximizing her expected utility.

7. The sender and the receiver receive utility f(θ, a) and u(θ, a), respectively.

A signaling scheme ϕ : Θ→ ∆S is a map from the set of states of nature Θ to distributions
over the set of signals S. Given a public signaling scheme, the probability that the sender
selects a signal s ∈ S after observing θ ∈ Θ is given by ϕθ(s). On the other hand, the
probability to receive the signal s ∈ S is equal to Pr(s) =

∑
θ∈Θ µθϕθ(s). After receiving

the signal s ∈ S, the receiver infers a probability distribution ξ(θ) = µθϕθ(s)/Pr(s) over
the set of states of nature by means of Bayes theorem. Then, the receiver takes an action
a∗(ξ) ∈ argmaxa∈A

∑
θ∈Θ ξ(θ)u(θ, a), maximizing her expected utility. In case of indif-

ference, it is usually assumed that the tie is broken in favor of the sender. Finally, the
sender gets utility f (θ, a∗(ξ)). Algorithmic Bayesian persuasion studies the algorithmic
problem of computing an optimal signaling scheme that maximizes the expected sender’s
utility. In particular, since each signal corresponds to an action, it is possible to label
each one of them with the action it generates. From this observation, Kamenica and
Gentzkow [2011] show by a revelation-principle style argument that it is possible to as-
sume that the sender commits to signaling schemes with two different properties. Direct
signaling schemes, meaning that the signals S are action recommendations, and persua-
sive signaling schemes, which means that the receiver has no incentive in deviating from
the recommended action. As a result, |S| = |A|, with each signal s ∈ S interpretable as
a recommendation to play action a ∈ A. Moreover, the recommendation of the sender is
followed by the receiver since no other action provides her a better utility. In addition,
the presence of incentive compatibility (IC) constraints in the formulation of the problem
ensures the persuasiveness requirement. Finally, restricting our attention to direct and
persuasive signaling schemes, the following linear program (LP) describes the sender’s
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optimization problem.

max
ϕ≥0

∑
θ∈Θ

µθ

∑
a∈A

ϕθ(a)f(θ, a) s.t.∑
θ∈Θ

µθϕθ(a) (u (θ, a)− u (θ, a′)) ≥ 0 ∀a, a′ ∈ A∑
a∈A

ϕθ(a) = 1 ∀θ ∈ Θ

ϕθ(a) ≥ 0 ∀a ∈ A,∀θ ∈ Θ.

Notice that in the previous LP there is a variable ϕθ(a) ∈ [0, 1] for each state of nature
θ ∈ Θ and action a ∈ A. Solving this LP is often impractical, due to that, it is possible
to re-formulate it in the space of the receiver’s posterior probabilities. As we will see
along this thesis, this approach will allow us to tackle many different problems and it
will play a crucial role in the development of all our analysis. In particular, as previously
observed, given a signaling scheme ϕθ(s), each signal s ∈ S is played with probability
Pr(s) =

∑
θ∈Θ µθϕθ(s) and once the receiver observes it, she infers a posterior distribution

over the set of states of nature ξ(θ) = µ(θ)ϕθ(s)/Pr(s). Therefore, a signaling scheme can
be thought as a distribution γ ∈ ∆(∆Θ) over posterior distributions, one for each signal,
whose expectation equals the prior µ ∈ ∆Θ. In other words, a signaling scheme is a way
of writing µ ∈ ∆Θ as a convex combination of the posterior distributions in the simplex.

max
γ≥0

∑
ξ∈supp(γ)

γ(ξ)
∑
θ∈Θ

ξ(θ)f (θ, a∗(ξ)) s.t.

∑
ξ∈supp(γ)

γ(ξ)ξ(θ) = µθ ∀θ ∈ Θ.

In principle, since the space of possible posterior distributions over the states of natures is
infinite-dimensional, also the latter LP results impractical to be solved. Nevertheless, in
this work we will see how to solve the previous LP for particular instances of the problem
we consider. The following example presents a possible scenario of application of the
Bayesian persuasion model.

Example 2.3. Consider an academic advisor (the sender) who is writing a recommen-
dation letter (the signal) for his graduating student to send to a company (the receiver),
which in turn must decide whether or not to hire the student. The advisor gets utility 1
if his student is hired, and 0 otherwise. The state of nature determines the quality of the
student, and hence the company’s utility from hiring the student. Suppose that the student
is excellent with probability 1/3, and weak with probability 2/3. Moreover, suppose that
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the company gets utility 1 for hiring an excellent student, utility −1 for hiring a weak
student, and utility 0 for not hiring. Consider the following signaling schemes:

1. No information: Given no additional information, the company maximizes its
utility by not hiring. The advisor’s expected utility is 0.

2. Full information: Knowing the quality of the student, the company hires him if
and only if he is excellent. The advisor’s expected utility is 1/3.

3. The optimal (partially informative): The advisor recommends "hiring" when
the student is excellent, and with probability 1/2 when the student is weak. Other-
wise, the advisor recommends "not hiring". The company maximizes its expected
utility by following the recommendation, and the advisor’s expected utility is 2/3.

2.4.2. Persuading Multiple Agents

On the ground of the foundational work by Kamenica and Gentzkow [2011], several ex-
tensions of the single-agent model have been proposed. One of the most important is the
one that allows the presence of multiple receivers. Information structure design can get
much more complex when a lot of receivers are involved. This is due to the following two
key dimensions of challenges:

• Externalities among receivers: Whereas in the single-agent model the receiver
selects the action exclusively on the ground of its virtue to maximise his own utility,
by contrast the presence of multiple receivers introduces the additional problem of
selecting and computing an equilibrium among them.

• Coordinating receivers: When the sender faces a multitude of receivers, she faces
the additional problem of coordinating their actions.

Seeking to split these two different sources of complexity, it is common to introduce an ad-
ditional hypothesis to the Bayesian persuasion model that is the so called no-externalities
assumption, prescribing that each receiver’s utility is independent from the actions cho-
sen by other receivers. This assumption allows to circumvent the equilibrium selection
and computational problem, which have been proven to make the problem intractable
even in elementary settings, and focus on the critical problem of coordinating receivers’
behaviors. However, even when accounting for the no-externalities assumption, the issue
of computing an optimal signaling scheme remains largely intractable in a multi-receivers
setting. To account for multiple receivers with no inter-agent externalities, the basic
model presented before requires a series of changes. In particular, the single receiver is
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substituted with a finite set R of receivers, each one equipped with a finite set of available
actions Ar. Due to the no-externalities assumption, each receiver’s payoff depends only
on the action she selects and the state of nature θ ∈ Θ. The function ur : Θ × Ar → R
describes the utility of receiver r ∈ R, and the notation ur(θ, a) denotes the utility she
perceives by playing action a ∈ Ar being in state θ ∈ Θ. The sender’s utility is a function
of the state of nature θ ∈ Θ and the actions selected by all the receivers. A tuple specify-
ing an action for each receiver is usually indicated as action profile and it is denoted by
a ∈ A, where A := ×r∈RAr. Hence, the sender’s utility is described by f : Θ × A → R
and f(θ, a) denotes the sender’s payoff when receivers behave according to action profile
a ∈ A and the state of nature is θ ∈ Θ. The interaction between the sender and the
receivers proceeds with the same steps that characterize the exchange of information in
the single-agent persuasion model. The slight difference is that the sender must send
signals to multiple receivers and, therefore, she sends a signal to each of them. How these
signals are structured depends on the type of signaling scheme employed by the sender.
In the literature of multi-receivers persuasion, two basic types of signaling scheme have
been studied:

• Private signaling scheme: The sender can reveal different (possibly correlated)
signals to different receivers through a private communication channel.

• Public signaling scheme: The sender is constrained to rely upon a public com-
munication channel, thus she has to send a unique signal to every receiver, making
the same information available to all of them.

Example 2.4. Consider again an academic advisor (the sender) who is writing a rec-
ommendation letter (the signal) for his student. However, now the student has applied
to two fellowship programs (the receivers), each of which must decide whether or not to
award the student a fellowship funding as part of his graduate education. Suppose that the
student can accept one or both fellowship awards. The advisor gets utility 1 if his student
is awarded at least one fellowship, and o otherwise. A student is excellent with probability
1/3 and weak with probability 2/3, and a fellowship program gets utility 1 from awarding
an excellent student, −1 from awarding a weak student, and 0 from not awarding the stu-
dent. Obviously, a fellowship program makes an award if and only it believes its expected
utility for doing so is non negative. Consider the following signaling schemes:

• No Information: Neither program makes the award, and the advisor’s utility is 0.

• Full information: Both programs make the award if the student is excellent, and
neither of them makes the award if the student is weak. The advisor’s expected utility
is 1/3.
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• Optimal public scheme: If the student is excellent, the advisor publicly signals
"award". If the student is weak, the advisor publicly signals "award" or "don’t
award" with equal probability. Therefore, both programs are simultaneously per-
suaded to award the fellowship the student with probability 2/3, and neither of them
makes the award with probability 1/3. The advisor’s expected utility is 2/3.

• Optimal private scheme: If the student is excellent, the advisor recommends
"award" to both fellowship programs. If the student is weak, the advisor recom-
mends"award" to one fellowship program chosen uniformly at random, and recom-
mends "don’t award" to the other. The result is that both fellowship programs make
the award when the student is excellent, and exactly one of the programs makes the
award when the student is weak. This yields utility 1 for the advisor.

2.4.3. Public Signaling Schemes

In this thesis we will focus only on public signaling schemes in which the sender reports
the same identical signal s ∈ S to all the receivers and we indicate with S the set of
such signals. Analogously to what we have presented before, a public signaling scheme
ϕ : Θ → ∆S is a map from states of nature Θ to distributions over public signals S.
Moreover, given a public signaling scheme, the probability with which the sender selects
a signal s ∈ S after observing θ ∈ Θ is denoted by ϕθ(s). While, the probability with
which the receiver receives signal s is given by Pr(s) =

∑
θ∈Θ µθϕθ(s). Since the prior

is a common information among the receivers and also they observe the same signal
s ∈ S, they all perform the same Bayesian update and infer the same posterior belief
ξ(θ) = µθϕθ(s)/Pr(s). After inferring the posterior distribution ξ ∈ ∆Θ, each receiver r

solves a single-receiver decision problem to choose the action that maximizes his posterior
expected utility, in a way that: a∗(ξ) ∈ argmaxa∈Ar

∑
θ∈Θ ξ(θ)ur(θ, a). Analogously to

the single-receiver case, ties are broken in favor of the sender. Again, applying the same
argument employed in single-receiver persuasion, we can restrict attention to direct and
persuasive public signaling schemes. Therefore, each signal s ∈ S can be equivalently
expressed as an action profile a ∈ A, recommending an action to each receiver. As
in the single-receiver persuasion case, the persuasiveness requirement is enforced by IC-
constraints on the signaling scheme. Also in this case we focus our attention on direct
and persuasive public signaling schemes and so the sender’s optimization problem can be
formulated with the following LP, where we denote with ϕθ(a) the probability with which
the sender draws the signal s = a when the realized state of nature is θ ∈ Θ. Notice that
the following LP has an exponential number of variables and so it cannot be solved in
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polynomial time.

max
ϕ≥0

∑
θ∈Θ

µθ

∑
a∈A

ϕθ(a)f(θ, a) s.t.∑
θ∈Θ

µθϕθ(a) (ur (θ, ar)− ur (θ, a
′)) ≥ 0 ∀r ∈ R, ∀a ∈ A, a′ ∈ Ar

∑
a∈A

ϕθ(a) = 1 ∀θ ∈ Θ

ϕθ(a) ≥ 0 ∀a ∈ A, ∀θ ∈ Θ.

Finally, as highlighted for the case of single-receiver persuasion, it is possible to re write the
problem of computing an optimal public signaling scheme adopting a different approach.
Indeed, adopting the same reasoning employed in previous section, a public signaling
scheme can be thought as a distribution γ∆(∆Θ) over posterior distributions such that∑

ξ∈supp(γ) γ(ξ) ξ(θ) = µθ for each θ ∈ Θ. Hence, the problem can be seen has the
computation of a distribution γ ∈ ∆(∆Θ) that optimizes the sender’s utility.

max
γ≥0

∑
ξ∈supp(γ)

γ(ξ)
∑
θ∈Θ

ξ(θ)f (θ, a∗(ξ)) s.t.

∑
ξ∈supp(γ)

γ(ξ) ξ(θ) = µθ ∀θ ∈ Θ.

We finally remark the fact that from an optimal solution of the previous LP we can always
recover an optimal signaling scheme ϕ : Θ→ ∆S setting:

ϕθ(s) =
γ(ξs)ξs(θ)

µθ

∀θ ∈ Θ, ∀s ∈ S.
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3.1. Bayesian ad Auction

We present now how the Bayesian Persuasion framework applies to ad auctions. In
particular we present a Bayesian ad auctions, which is characterized by a finite set
Θ := {θ1, . . . , θd} of d states of nature. Moreover each bidder1 i ∈ N has a valuation
vector vi ∈ [0, 1]d, with vi(θ) being bidder i’s valuation in state θ ∈ Θ, and all such
vectors are arranged in a matrix of bidders’ valuations V ∈ [0, 1]n×d, whose entries are
defined as V (i, θ) := vi(θ) for all i ∈ N and θ ∈ Θ. We model signaling by means of
the Bayesian persuasion framework (see Section 2.4). We consider the case in which the
auction mechanism (the sender) knows the state of nature and acts as a sender by issuing
signals to the bidders (the receivers), so as to partially disclose information about the
state and increase revenue. As customary in the literature, we assume that the state is
drawn from a common prior distribution µ ∈ ∆Θ, with µθ denoting the probability of
state θ ∈ Θ. The mechanism publicly commits to a signaling scheme ϕ : Θ→ ∆S , which
is a randomized mapping from states of nature to signals for the bidders. We focus on the
case of public signaling in which all the bidders receive the same signal from the auction
mechanism. Formally, a signaling scheme is a function ϕ : Θ → ∆S , where S is a set
of available signals. For the ease of notation, we let ϕθ(s) be the probability of sending
signal s ∈ S when the state is θ ∈ Θ. Finally, a Bayesian ad auction goes on as follows:

1. The auction mechanism chooses a signaling scheme ϕ and the bidders observe it.

2. The mechanism observes the state of nature θ ∼ µ and draws signal s ∼ ϕθ.

3. The bidders observe the signal s ∈ S and rationally update their prior belief over
states according to Bayes rule. In particular, given a signal s ∈ S, they infer a
posterior probability ξs ∈ ∆Θ over the set of States of Nature, prescribed by:

ξs(θ) :=
µθϕθ(s)∑

θ′∈Θ µθ′ϕθ′(s)
. (3.1)

1In this thesis we will indifferently use the terms: receivers, bidders, advertisers.
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4. Finally, each bidder i ∈ N truthfully reports to the mechanism its expected valua-
tion given the posterior ξs ∈ ∆Θ, namely ξ⊤s vi =

∑
θ∈Θ vi(θ) ξs(θ), and the mecha-

nism allocates slots and defines payments as in a standard ad auction (see Section
2.2).

In figure 3.1 we report the time line of a Bayesian ad auction.

time
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. . .
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Figure 3.1: Time-line of a Bayesian ad auction.

3.2. The Revenue-maximization Problem

Our goal will be the one to design an optimal signaling scheme ϕ : Θ → ∆S which
maximizes the expected revenue of the mechanism. To do that it is oftentimes useful
to represent signaling schemes as convex combinations of the posteriors they can induce.
Formally, a signaling scheme ϕ : Θ → ∆S induces a probability distribution γ over
posteriors in ∆Θ, with γ(ξ) denoting the probability of posterior ξ ∈ ∆Θ, defined as
follows:

γ(ξ) :=
∑

s∈S:ξs=ξ

∑
θ∈Θ

µθϕθ(s).

Indeed, we can directly reason about distributions γ over ∆Θ rather than about signaling
schemes, provided that they are consistent with the prior. By letting supp(γ) := {ξ ∈
∆Θ | γ(ξ) > 0} be the support of γ, this requires that:

∑
ξ∈supp(γ)

γ(ξ) ξ(θ) = µθ ∀θ ∈ Θ. (3.2)

From now on we will use the term signaling scheme to refer to a consistent distribution
γ over ∆Θ. We focus on the problem of computing an optimal signaling scheme, i.e., one
maximizing the revenue of the mechanism. We study two settings:

• In Chapter 5 we discuss the Known Valuations setting in which the matrix of bidders’
valuations V is known to the mechanism.

• In Chapter 6 we study the Random Valuations setting in which the matrix of bid-
ders’ valuations V is unknown, but randomly drawn according to a probability



3| Problem Formulation 29

distribution V . Moreover, as it is customary in the literature, (see e.g., Badani-
diyuru et al. [2018]), in the Random Valuations setting we assume that algorithms
have access to a black-box oracle returning i.i.d. samples drawn from V (rather than
actually knowing such distribution).

Finally we denote by Rev(V, ξ) the expected revenue of the mechanism when the bid-
ders’ valuations are given by V and the posterior induced by the mechanism is ξ ∈ ∆Θ.
Formally, given that bidders truthfully report their expected valuations and assuming
w.l.o.g. that bidder i ∈ N is assigned by the mechanism to slot i ∈ N , we can write
Rev(V, ξ) :=

∑m
j=1 j ξ

⊤vj+1(λj − λj+1). Then, given a signaling scheme γ, the expected
revenue of the mechanism is given by Eξ∼γ [Rev(V, ξ)]. When the valuations are unknown,
we let Rev(V , ξ) := Eξ∼γ,V∼V [Rev(V, ξ)] and define the expected revenue analogously.
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Result

We start our analysis with the following negative result.

Theorem 4.1. The problem of computing an optimal signaling scheme does not admit a
PTAS unless P = NP, even when it is restricted to the Known Valuations setting.

Proof. We reduce from VERTEX COVER in cubic graphs. Formally, it is NP-Hard to
approximate the minimum size vertex cover in cubic graph with an approximation (1+ε),
for a given constant ε > 0 (see Alimonti and Kann [2000]). Let η = ε/7 and δ = η/4.
We show that for δ > 0, an 1− δ approximation to the signaling problem can be used to
provide a (1 + ε) approximation to vertex cover in polynomial time.

Given an instance of vertex cover (L,E) with nodes ρ = |L| and edges E. For each
z ∈ [ρ], we build an instance as follows. There are mz = z + ρ|E| − 1 slots and λj = 1

for each j ∈ [m]. The set of states is Θ = {θl}l∈L and the set of receivers is N =

{re,i}e∈E,i∈[ρ] ∪ {rl}l∈L ∪ {ri}i∈[m+1]. The valuation of a receiver re,i, e ∈ E and i ∈ [ρ], is
vre,i(θv) = 1 if v ∈ e, i.e., e is an edge that includes v, and 0 otherwise. The valuation of
a receiver rl, l ∈ L, is vrv(θl) = 1 and vrl(θl′) = 0 for each l′ ̸= l. Moreover the valuation
of a receiver {ri}, i ∈ [m+1] is vri(θ) = (1− η)/z for each state θ ∈ Θ. Finally, the prior
is uniform over all the states.

Let L∗ be the minimum vertex cover and z∗ be its size. We show how to build a vertex
cover of size at most z∗(1 + ε) from the solutions to the signaling problems instantiated
with z ∈ [ρ]. For all z ∈ [ρ], given a signaling scheme we recover a vertex cover L(z) as
follows. Take the posterior with larger sender’s utility and add to the vertex cover L(z)

all the vertexes l ∈ L such that the receiver rl has valuation at least 1/z(1− 3
4
η). Then,

for each edge that is not covered, we add to L(z) one arbitrary adjacent vertex. It is easy
to see that the resulting solution L(z) is a vertex cover. Finally, the algorithm returns
the smallest among the vertex covers L(z), z ∈ [ρ].
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We show that the vertex cover L(z∗) has size at most z∗(1 + ε), concluding the proof.
First, we show that the optimal solution of the signaling problem is at least mz∗

z∗
(1− 1

2
η).

Consider the signaling scheme with two signals s1 and s2 with ϕθl(s1) = 1 for each l ∈ L∗

and ϕθl(s2) = 1 for each l /∈ L∗. In the posterior induced by s1 the revenue is at least mz∗
z∗

since all the receivers re,i, have expected at least 1/z∗, while all the receivers {rl}l∈L∗ have
utility at least 1/z∗. Hence, there are at least z∗ + ρ|E| = mz∗ + 1 agents with valuation
at least 1/z∗. Moreover, in the posterior induced by s2 the revenue is at least (1− η)mz∗

z∗

since all the receivers {ri}i∈[mz∗+1] have expected valuation (1 − η)/z∗. Since z∗ ≥ |E|/3
and ρ = 2

3
|E| signal s1 is sent with probability at least z∗/ρ ≥ 1

2
and the solution

has value at least 1
2
mz∗
z∗

+ 1
2
(1 − η)mz∗

z∗
= mz∗

z∗
(1 − 1

2
η). Hence, a 1 − δ approximation

algorithm for the signaling problem must return a signaling scheme with value at least
mz∗
z∗

(1− 1
2
η)(1−δ) ≥ mz∗

z∗
(1− 3

4
η). Since the expected revenue is of the signaling scheme is

at least mz∗
z∗

(1− 3
4
η), this signaling scheme sends a signal that induces a posterior ξ ∈ ∆Θ

with revenue at least mz∗
z∗

(1 − 3
4
η). This implies that there are at least z∗ receivers rl

with utility greater or equal to 1
z∗
(1− 3

4
η) and that the utility of all the receivers re,i is at

least 1
z∗
(1 − 3

4
η). We show that our algorithm recovers a vertex cover with size at most

z∗(1 + 7η) = z∗(1 + ε) from this posterior. Consider the set of vertexes L1 with utility
at least 1

z∗
(1 − 3

4
η). This set has size at most z∗/(1 − 3

4
η) since in each state only one

receiver rl has valuation 1 and all the other receivers r′l, l′ ̸= l, have valuation 0. Consider
the set L2 = L \ L1 of vertexes not in this set. We have that

∑
l∈L2 ξ(θl) ≤ 3

4
η since∑

l∈L1 ξ(θl) =
∑

l∈L1 ξ⊤vrl ≥ (1− 3
4
η). Let Ē be the set of edges not covered by L1. Since

each vertex has three edges, we have that
∑

e∈Ē ξ⊤vre,i ≤ 33
4
η for each i ∈ [mz∗ + 1].

Moreover, since for each edge in Ē, ξ⊤vre,i ≥ (1 − 3
4
η)/z∗, we have that |Ē| ≤ 3 3

4
η

(1− 3
4
η)/z∗

.
Then, the vertex cover build by the algorithm for z = z∗ includes at most

z∗(
1

1− 3
4
η
+

33
4
η

1− 3
4
η
) ≤ z∗(1 +

9

4
η)(1 +

3

2
η) ≤ z∗(1 + 7η) = z∗(1 + ε).

Theorem 4.1 is proved by a reduction from the VERTEX COVER problem in cubic
graphs Alimonti and Kann [2000]. In the rest of this Thesis, we study several settings
in which the negative result in Theorem 4.1 can be circumvented, by either fixing some
parameters of the problem (see Section 5.2 and Section 6.2) or considering instances with
a specific structure (see Sections 5.3 and 6.3).
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5.1. Introduction

In this section we focus on the problem of computing a revenue-maximizing signaling
scheme when the bidder’s valuation matrix V ∈ [0, 1]n×d is known by the mechanism. In
particular we formulate the problem by means of the following LP1.

max
γ≥0

∑
ξ∈supp(γ)

γ(ξ)Rev(V, ξ) s.t.

∑
ξ∈supp(γ)

γ(ξ) ξ(θ) = µθ ∀θ ∈ Θ.

(5.1a)

(5.1b)

Due the negative result presented in Chapter 4 we will focus on two particular setting.
In the first one we will look for an optimal signaling scheme when either the number of
states of nature d or the number of slots m is fixed (see Section 5.2), while in the second
setting we will tackle the problem when the bidders are single minded according to the
definition presented in Section 5.3.

5.2. Parametrized Complexity

We first study the parametrized complexity of the problem of computing an optimal
signaling scheme, showing that it admits a polynomial-time algorithm when either the
number of slots m or the number of states of nature d is fixed. In the following, we let
Πl ⊆ 2N be the set of all the the possible permutations of l ≤ n bidders taken from N ,
with π = (i1, ..., il) ∈ Πl denoting a tuple made by bidders i1, . . . , il ∈ N , in that order.
We also let Ξπ ⊆ ∆Θ be the (possibly empty) set of posteriors in which the expected
valuations of bidders in π ∈ Πl are ordered (from the highest to the lowest) according to
π. Formally we define Ξπ as follows.2

1Since, in next sections, we will prove that there always exists an optimal distribution γ with finite
support we can safely write the problem as follows.

2we denote with πj the j − th element of the tuple π.
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Definition 5.1. Given an integer l ≤ n and a tuple π = (i1, ..., il) ∈ Πl we let Ξπ ⊆ ∆Θ

be such that:
Ξπ :=

{
ξ ∈ ∆Θ | ξ⊤vπ1 ≥ ξ⊤vπ2 ≥ . . . ≥ ξ⊤vπl

}
.

We first observe that for each possible integer l ≤ n and tuple π ∈ Πl the region Ξπ ⊆
∆Θ is a convex polytope. Moreover we observe that, given a permutation π ∈ Πl of
l ≥ m + 1 bidders, the expected revenue of the mechanism in any posterior ξ ∈ Ξπ is
Rev(V, ξ) =

∑
θ∈Θ ξ(θ)

∑m
j=1 jvπj+1

(θ)(λj−λj+1), since the bidders truthfully report their
expected valuations to the mechanism, and, thus, the latter allocates slots to bidders in
π according to their order in the permutation. Thus, for any fixed π ∈ Πl with l ≥ m+1,
the term Rev(V, ξ) is linear in ξ ∈ Ξπ.

5.2.1. Fixing the Number of Slots

To find a revenue-maximizing signaling scheme in this setting we start proving the fol-
lowing lemma.

Lemma 5.1. There always exists a revenue-maximizing signaling scheme γ such that
|Ξπ ∩ supp(γ)| ≤ 1 for every π ∈ Πm+1.

Proof. To prove the result we show that, given a signaling scheme γ that induces two
posteriors ξ, ξ′ ∈ Ξπ for a π ∈ Πm+1, we can recover a signaling scheme γ∗ with at least
the same revenue that replaces the two posteriors ξ and ξ′ with a convex combination of
them. Let ξ, ξ′ ∈ Ξπ be two elements belonging to the support of an optimal signaling
scheme γ. In order to show the result we introduce a posterior probability ξ∗ as follows:
ξ∗ = zξ1 + (1 − z)ξ2 with z = γ(ξ1)/(γ(ξ1) + γ(ξ2)). Since Ξπ is a convex polytope each
convex combination of a subset of its elements belongs to it, so that ξ∗ ∈ Ξπ. Moreover, we
define a new signaling scheme γ∗ as follows: γ∗(ξ∗) = γ(ξ1)+γ(ξ2) and γ∗(ξ1) = γ∗(ξ2) = 0

while γ∗(ξi) = γ(ξi) ∀i ̸= 1, 2. To conclude the proof, we observe that the two signaling
schemes gain the same revenue. Indeed, by linearity we have: γ(ξ∗)Rev(V, ξ∗) = (γ(ξ1)+

γ(ξ2))Rev(V, zξ1 + (1− z)ξ2) = γ(ξ1)Rev(V, ξ1) + γ(ξ2)Rev(V, ξ2).

Intuitively, the lemma follows from the fact that, given any signaling scheme γ and two
posteriors ξ, ξ′ ∈ supp(γ) such that ξ, ξ′ ∈ Ξπ for some π ∈ Πm+1, it is always possible
to define a new signaling scheme that replaces ξ and ξ′ with a suitably-defined convex
combination of them, without decreasing the expected revenue (since it is linear over Ξπ).
To formulate the problem as an LP we introduce a variable for each π ∈ Πm+1 and θ ∈ Θ

in order to encode the products γ(ξπ)ξπ(θ). Formally given a tuple π ∈ Πm+1 and ξ ∈ Ξπ,
we define xπ(θ) := γ(ξ)ξ(θ) for each θ ∈ Θ as the posterior probability multiplied by the
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probability of state θ ∈ Θ in ξ ∈ ∆Θ. Notice that by Lemma 5.1 there is at most one
ξ ∈ Ξπ belonging to the support of an optimal γ for each possible tuple π ∈ Πm+1. Thus,
we can represent our optimization problem with the following LP.

max
x∈[0,1]|Πm+1||Θ|

∑
π∈Πm+1

∑
θ∈Θ

xπ(θ)
m∑
j=1

j vπj+1
(θ)(λj − λj+1) s.t.

∑
π∈Πm+1

xπ(θ) = µθ ∀θ ∈ Θ

∑
θ∈Θ

xπ(θ)[vπj
(θ)− vπj+1

(θ)] ≥ 0 ∀π ∈ Πm+1, j ∈ [m]

(5.2a)

(5.2b)

(5.2c)

In Theorem 5.1 we finally prove that an optimal revenue-maximizing signaling scheme can
be found in polynomial time if m is fixed. This holds because LP 5.2 has a polynomial
number of variables and constraints and an optimal solution of LP 5.2 is always associated
to a signaling scheme γ gaining the same revenue.

Theorem 5.1. In the Known Valuations setting, if the number of slots m is fixed, then
an optimal signaling scheme can be computed in polynomial time.

Proof. As a first step we observe that the number of variables in LP 5.2 results equal
to O(nm+1d) while the number of constraints is equal to O(nm+1 + d). Due to that, as
long as m is fixed, LP 5.2 is solvable in polynomial time. In addition, we show that from
an optimal solution of LP 5.2 we can always find a signaling scheme that provides the
same revenue. This holds setting γ(ξπ) =

∑
θ∈Θ xπ(θ) for each π ∈ Πm+1 and ξπ(θ) =

xπ(θ)/γ(ξπ) for each π ∈ Πm+1 and θ ∈ Θ if γ(ξπ) ̸= 0. Finally the two gains the same
revenue indeed we have:

∑
π∈Πm+1

γ(ξπ)
∑
θ∈Θ

m∑
j=1

j ξπ(θ)vij+1
(θ)(λj − λj+1) =

∑
π∈Πm+1

∑
θ∈Θ

γ(ξπ)ξπ(θ)
m∑
j=1

j vij+1
(θ)(λj − λj+1)

=
∑

π∈Πm+1

∑
θ∈Θ

xπ(θ)
m∑
j=1

j vij+1
(θ)(λj − λj+1)

We finally remark that setting m = 1, λ1 = 1 and λ2 = 0 in LP 5.2 we find what presented
by Emek et al. [2014] in the easier case of a second price auction.
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5.2.2. Fixing the Number of States of Nature

To design a polynomial-time algorithm in this scenario, we restrict the attention to those
signaling schemes supported on a suitable defined finite set of posterior probabilities
Ξ∗ ⊂ ∆Θ. Formally we define3 Ξ∗ :=

⋃
π∈Πn

V (Ξπ) as the union of the vertexes of the
previous introduced regions Ξπ over all the possible tuple π ∈ Πn. In the following lemma
we prove that there always exists an optimal signaling scheme supported in Ξ∗ ⊂ ∆Θ.

Lemma 5.2. There always exists a revenue-maximizing signaling scheme γ such that
supp(γ) ⊆ Ξ∗.

Proof. First, we observe that for each ξ ∈ ∆Θ there exists a tuple π ∈ Πn such that
ξ ∈ Ξπ, this easily follow from the fact that

⋃
π∈Πn

Ξπ = ∆Θ. As observed before in such
regions the revenue is a linear function. Thus, it is possible to decompose each posterior
ξ ∈ Ξπ by Caratheodory’s theorem as a convex combination of the vertexes of Ξπ without
decreasing the revenue. Formally, for each π ∈ Πn and each posterior ξ ∈ Ξπ, there exists
a distribution γξ ∈ ∆V (Ξπ) such that:

ξ(θ) =
∑
ξ̃∈Ξ∗

γξ(ξ̃)ξ̃(θ) ∀θ ∈ Θ.

We show that such a decomposition does not affect the final revenue. Indeed, by linearity
we get the following:∑

ξ̃∈V (Ξπ)

γξ(ξ̃)Rev(V, ξ̃) = Rev
(
V,

∑
ξ̃∈V (Ξπ)

γξ(ξ̃)ξ̃
)
= Rev(V, ξ).

To conclude the proof, we show that given the optimal distribution γ, we can recover a
distribution γ∗ ∈ ∆Ξ∗ with the same revenue. In particular, γ∗ ∈ ∆Ξ∗ is such that:

γ∗(ξ̃) =
∑

ξ∈supp(γ)

γ(ξ)γξ(ξ̃) ∀ξ̃ ∈ Ξ∗.

Since γ satisfies the consistency constraints (see Equation 3.2), it easy to see that also
γ∗ ∈ ∆Ξ∗ satisfies the constraints. Moreover, the two distributions provide the same

3Given a poplytope X we denote with V (X) the set of its vertexes.
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revenue. Indeed, we have∑
ξ̃∈Ξ∗

γ∗(ξ̃) Rev(V, ξ̃) =
∑

ξ∈supp(γ)

γ(ξ)
∑
ξ̃∈Ξ∗

γξ(ξ̃)Rev(V, ξ̃)

=
∑

ξ∈supp(γ)

γ(ξ) Rev(V, ξ).

The lemma follows from the fact that, given any signaling scheme γ and posterior
ξ ∈ supp(γ) such that ξ ∈ Ξπ for some π ∈ Πn, by Carathéodory’s theorem it is always
possible (since Ξπ is a polytope) to decompose ξ ∈ ∆Θ into a convex combination of
the vertices of Ξπ, obtaining a new signaling scheme that provides the mechanism with
an expected revenue at least as large as that of γ (since Rev(V, ξ) is linear over Ξπ).
By observing that |Ξ∗| = O((n2 + d)d−1), it is easy to show that an optimal signaling
scheme can be computed by means of LP 5.1 taking supp(γ) = Ξ∗, which has a number
of variables and constraints that is polynomial once d is fixed. This proves the following:

Theorem 5.2. In the Known Valuations setting, if the number of states d is fixed, then
an optimal signaling scheme can be computed in polynomial time.

Proof. We first observe that the vertexes of each region Ξπ are identify by the intersection
of d−1 linear independent hyperplanes for each π ∈ Πn. Moreover, we note that each one
of these vertexes is identified by a subset of the O(n2) constraints ξ⊤vi ≥ ξ⊤vj for each i ̸=
j ∈ N and the d constraint ensuring that ξ(θ) ≥ 0 for each θ ∈ Θ. Hence, the total number
of vertexes defining the previous discussed regions will be at most

(
n2+d
d−1

)
= O((n2+d)d−1).

Finally, we notice that, as long as d is a fixed parameter, it is possible to find an optimal
signaling scheme in polynomial time solving LP 5.1 setting supp(γ) = Ξ∗.

5.3. Single-Minded Bidders

In this section, we focus on particular Bayesian ad auctions where the bidders are single
minded. Intuitively, in our setting, by single mindedness we mean that each bidder is
interested in displaying their ad only when the realized state of nature is a specific (single)
state, and that all the bidders interested in the same state value a click on their ad for
the same amount. We introduce the following formal definition:
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Definition 5.2 (Single-minded bidders). In a Bayesian ad auction, we say that bidders
are single minded if there exist Nθ ⊆ N and δθ ∈ [0, 1] for all θ ∈ Θ such that:

(i) N =
⋃

θ∈ΘNθ and Nθ ∩Nθ′ = ∅ for all θ ̸= θ′ ∈ Θ;

(ii) for every θ ∈ Θ and i ∈ Nθ, it holds vi(θ) = δθ and vi(θ
′) = 0 for all θ′ ∈ Θ : θ′ ̸= θ.

To better understand definition 5.2 we present an introductory example.

Example 5.1. Let Θ = {θ1, θ2, θ3} be the set of states of Nature and let be µ ∈ ∆Θ a
uniform prior distribution. Let |Nθ1 | = 10, |Nθ2| = 3 and |Nθ3| = 3 and let δθi = 1 for
i = 1, 2, 3. In addition, we consider an auction with m = 5 slots with CTRs given by
Λ = {1, 0.9, 0.8, 0.7, 0.6}. In this case it is possible to design an optimal signaling (see
Table 5.1) ϕ : Θ→ ∆S scheme just considering two different signals S = {s1, s2}.

state θ1 state θ2 state θ3

signal s1 1 0 0

signal s2 0 1 1

Table 5.1: Probability to send signal s ∈ S when θ ∈ Θ is drawn.

Note that when bidders receive the signal s1 the posterior probability they infer is given
by ξs1 = (1, 0, 0), on the contrary when they receive the signal s2 the posterior probability
they infer is equal to ξs2 = (0, 0.5, 0.5). It is possible to show that the revenue prescribed
by an optimal signaling scheme is equal to:∑

s∈S

γ(ξs)Rev(ξs, V ) = γ(ξs1)Rev(ξs1 , V ) + γ(ξs2)Rev(ξs2 , V )

=
4

3
+

4

3
=

8

3

Moreover, to satisfy constraints of Equation 3.2 we have that γ(ξs1) = 1/3 and γ(ξs2) =

2/3. On the other hand the expected revenue that does not commit to a signaling scheme
is equal to4: ∑

θ∈Θ

µθRev(Iθ, V ) =
1

3

(
4 +

3

5
+

3

5

)
=

26

15

Notice that, given a posterior ξ ∈ ∆Θ induced by the mechanism, all the bidders belonging
to the same set Nθ have the same expected valuation, namely ξ⊤vi = δθξ(θ) for all θ ∈ Θ

4We denote with Iθ ∈ ∆Θ the vector having all components equal to zero except the one corresponding
to θ ∈ Θ which is equal to 1.
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and i ∈ Nθ. As a result, given that bidders truthfully report their expected valuations,
the mechanism will always receive at most d different bids, one per set Nθ. The last
observation implies that, given ξ ∈ ∆Θ, in order to unequivocally define an allocation of
bidders to slots (and, thus, also define the expected payments) it is sufficient to know
the relative ordering of the (at most) d different expected valuations associated to sets
Nθ. This allows us to tackle the problem with an approach analogous to the one of
Section 5.2, with the only difference that, in this case, we will reason about permutations
of the groups of bidders Nθ, rather than about permutations of all the individual bidders.
In the following, we let Π ⊆ 2Θ be the set of all the permutations of the sates of nature
Θ = {θ1, . . . , θd}, while we let π = (θk1 , . . . , θkd) ∈ Π be an ordered tuple made by states
θk1 , . . . , θkd ∈ Θ, where k1, . . . , kd ∈ [d]. Moreover the polytope of posteriors in which the
expected valuations associated to sets Nθ are ordered according to π is given by:

Ξπ :=
{
ξ ∈ ∆Θ | δθk1ξ(θk1) ≥ . . . ≥ δθkdξ(θkd)

}
The first preliminary result that we need in order to derive our approximation algorithm
is a characterization of the vertices of the sets Ξπ for π ∈ Π, as follows.

Lemma 5.3. Given π ∈ Π and ξ ∈ Ξπ, it holds that ξ ∈ V (Ξπ) if and only if there exists
ℓ ∈ [d] such that (i) and (ii) are both satisfied:

(i) δθk1ξ(θk1) = . . . = δθkℓξ(θkℓ) > 0

(ii) δθkℓ+1
ξ(θkℓ+1

) = . . . = δθkdξ(θkd) = 0

Proof. First, we show that if a posterior ξ ∈ Ξπ satisfies (i) and (ii), then ξ ∈ V (Ξπ) and
thus it is a vertex of Ξπ. In particular, ξ ∈ Ξπ satisfies the linear independent equality
δθkj ξ(θkj) = δθkj+1

ξ(θkj+1
) for each j ∈ [ℓ − 1]. Moreover, it satisfies δθkj ξ(θkj) = 0 for

each j ∈ {ℓ + 1, . . . , d} and the simplex equality
∑

θ∈Θ ξ(θ) = 1. Hence, ξ ∈ Ξπ is at the
intersection of d linear independent hyperplanes defining Ξπ and it is a vertex of Ξπ. To
conclude the proof, we show that each vertex ξ ∈ Ξπ satisfies (i) and (ii). In particular,
we show that given a posterior ξ ∈ Ξπ such that δθkj∗ ξ(θkj∗ ) > δθkj∗+1

ξ(θkj∗+1
) > 0 for a

j∗ ∈ [d], and thus it does not satisfies (i) and (ii), the posterior is at the the intersection
of at most d − 1 linear independent hyperplanes. Consider the hyperplanes δθkj ξ(θkj) =

δθkj+1
ξ(θkj+1

) for j ≤ j∗−1. Notice that ξ ∈ Ξπ satisfies at most all the j∗−1 equalities of
this kind.5 Moreover, consider all the j > j∗ with δθkj∗ ξ(θkj∗ ) > 0. Let j∗∗ be the largest j
that satisfies this condition. By a similar argument as above, we can show that there are

5Notice that the equality δθkj
ξ(θkj

) = δθk
j′
ξ(θkj′ ) with j′ > j and|j− j′| ≥ 2 is linear dependent from

the equalities δθkj̄
ξ(θkj̄

) = δθkj̄+1
ξ(θkj̄+1

) for each j̄ ∈ {j, . . . , j′ − 2}.
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at most j∗∗ − j∗ − 1 linear equalities δθkj ξ(θkj) = δθkj+1
ξ(θkj+1

) with j∗ + 1 ≤ j ≤ j∗∗ − 1.
Finally, for all the j > j∗∗, the equalities δθkj ξ(θkj) = 0 are satisfied. Hence, including
the simplex constraint there are at most j∗ − 1 + j∗∗ − j∗ − 1 + d− j∗∗ + 1 = d− 1 linear
independent equalities, concluding the proof.

Intuitively, Lemma 5.3 states that the vertices of a set Ξπ are all the posteriors ξ ∈ ∆Θ

such that, for some ℓ ∈ [d], only the first ℓ states according to the ordering defined by π

are assigned a positive probability, while all the remaining states have zero probability.
Moreover, the positive probabilities of the posterior ξ ∈ ∆Θ are defined so that all the
bidders belonging to the first ℓ sets Nθ, according to the ordering defined by π, are the
same. Notice that, in the special case in which all the values δθ are equal to one, the
vertices of all the sets Ξπ are all the uniform probability distributions over subsets of ℓ
states of nature, for any ℓ ∈ [d]. By letting Ξ∗ =

⋃
π∈Π V (Ξπ), since the term Rev(V, ξ)

is linear in ξ over Ξπ for every permutation π ∈ Π, we can conclude that OPTΞ∗ = OPT
(the proof is analogous to that of Lemma 5.2). Thus, Lemma 5.3 allows us to find an
optimal signaling scheme by solving LP 5.1 taking supp(γ) = Ξ∗ and the matrix of bidders’
valuations V . However, notice that, since the size of Ξ∗ is exponential in d, the resulting
LP has exponentially-many variables. Nevertheless, since the LP has polynomially-many
constraints, we can still solve it in polynomial time by applying the ellipsoid algorithm
to its dual, provided that a polynomial-time separation oracle is available. In order to
design a polynomial-time separation oracle, we apply the procedure described above to a
relaxed version of LP 5.1, whose optimal value is sufficiently close to that of the original
LP. Given β ∈ R+, the relaxed LP reads as follows:

max
γ∈∆Ξ∗ ,z≤0

∑
ξ∈Ξ

γ(ξ)Rev(V , ξ) + βz s.t.∑
ξ∈Ξ∗

γ(ξ) ξ(θ)− z ≥ µθ ∀θ ∈ Θ.

(5.4a)

(5.4b)

The dual problem of LP 5.4 reads as follows:

min
y≤0,t

∑
θ∈Θ

yθµθ + t s.t.∑
θ∈Θ

yθ ξ(θ) + t ≥ Rev(V , ξ) ∀ξ ∈ Ξ∗

∑
θ∈Θ

yθ ≥ −β,

(5.5a)

(5.5b)

(5.5c)

where yθ ∈ R− for θ ∈ Θ are dual variables associated to Constraints (5.1b), while t is a
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dual variable for
∑

ξ∈Ξ∗ γ(ξ) = 1. Notice that, by relaxing the LP, in the dual LP 5.5 we
get the additional Constraint (5.5c) and that yθ ≤ 0 for all θ ∈ Θ. This is crucial to design
a polynomial-time separation oracle. The separation problem associated to Problem 5.5
reads as:

Definition 5.3 (Separation problem). Given values for the dual variables yθ ∈ [−β, 0]
for all θ ∈ Θ, compute:

max
ξ∈Ξ∗

Rev(V, ξ)−
∑
θ∈Θ

yθ ξ(θ). (5.6)

The following Lemma 5.4 shows that Problem 5.6 can be solved optimally up to any given
additive loss λ > 0, by means of a dynamic programming algorithm that runs in time
polynomial in the size of the input, in 1

λ
, and in β. Formally:

Lemma 5.4. Given λ > 0, there exists an algorithm that finds an additive λ-approximation
to the Separation problem 5.6, in time polynomial in the size of the input, in 1

λ
, and in β.

Proof. Let f(v, j) be the revenue when j ∈ [n] bidders have expected valuation v ∈ [0, 1]

and all the other bidders have expected valuation 0. Moreover, given a set E ⊆ R and an
x ∈ R, let ⌊x⌋E be equal to the largest element e ∈ E such that e ≤ x. Similarly, we define
⌈x⌉E be equal to the smallest element e ∈ E such that e ≥ x. We show that Algorithm 5.1
provides the desired guarantees. It is easy to see that the algorithm runs in polynomial
time. Let ξ∗ ∈ Ξ∗ be the optimal solution to maxξ∈Ξ∗ Rev(V, ξ) −

∑
θ∈Θ yθ ξ(θ). Notice

that by the definition of Ξ∗ there exists a subset of states Θ∗ ⊆ Θ and a value v∗ such
that ξ∗(θ)δθ = v∗ for each θ ∈ Θ∗ and ξ∗(θ) = 0 for each θ /∈ Θ∗. Our first step is to show
that this solution ξ∗ ∈ Ξ∗ corresponds to a feasible solution of the algorithm. Formally,
we show that Θ∗ is a feasible subset of states for Θ(v, d, w,

∑
θ∈Θ∗ |Nθ|). In particular,

it is sufficient to prove that w =
∑

θ∈Θ∗⌊v/δθ⌋E ≤
∑

θ∈Θ∗ v/δθ ≤
∑

θ∈Θ∗ v∗/δθ = 1,
with v = ⌊v∗⌋G. Since this solution is feasible, it provides a lower bound on the value
maxv∈G,j∈[n],w∈E f(v, j) + M(v, d, w, j). Moreover, let θ∗ ∈ Θ∗ be the state in Θ∗ with
smallest δθ, we provide a bound on v∗. In particular it holds that v∗ ≤ δθ∗ , otherwise
ξ∗(θ∗) = v∗/δθ∗ > 1 and v∗ ≥ δθ∗/d, otherwise

∑
θ∈Θ∗ v∗/δθ < 1. This implies that for

each θ ∈ Θ∗ we have v/δθ = ⌊v∗⌋G/δθ ≥ (v∗ − εδθ∗)/δθ ≥ v∗/δθ − ε and v ≥ v∗ − ε. Now,
we can provide a lower bound on maxv∈G,j∈[n],w∈E f(v, j) + M(v, d, w, j). In particular,
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the solution that takes states Θ∗, v = ⌊v∗⌋G, and w =
∑

θ∈Θ∗⌊v/δθ⌋E has value at least:

f(v,
∑
θ∈Θ∗

|Nθ|)−
∑
θ∈Θ∗

yθv

δθ
≥ f(v∗,

∑
θ∈Θ∗

|Nθ|)− εm−
∑
θ∈Θ∗

yθv

δθ

≥ f(v∗,
∑
θ∈Θ∗

|Nθ|)−
∑
θ∈Θ∗

yθξ(θ)− εm− dβε

= max
ξ∈Ξ∗

[Rev(V, ξ)−
∑
θ∈Θ

yθ ξ(θ)]− εm− dβε,

where the first inequality comes from Lipschitz continuity of f(·, x), i.e., f(v∗, x) −
f(v, x) ≤ m|v∗ − v| for each x ∈ N+ and v = ⌊v∗⌋G ≥ v∗ − ε, while the second inequality
comes from −yθv/δθ ≥ −yθ(v∗/δθ − ε) ≥ −yθv∗/δθ − βε for each θ ∈ Θ∗. To conclude the
proof, we show that from a solution (v̂, ĵ, ŵ) and Θ̂ the algorithm find a posterior ξ̂ ∈ ∆Θ

with value at least f(v̂, ĵ)+M(v̂, d, ŵ, ĵ)−εdm−2βdε. First, we bound the value of wreal.
In particular, wreal ≤ 1 + εd since for each state θ ∈ Θ, v̂/δθ − ⌊v̂/δθ⌋E ≤ ε and ŵ ≤ 1.
Hence, in the posterior ξ̂ ∈ ∆Θ all the bidders have valuation at least v̂/(1+ εd) ≥ v̂− εd

and Rev(V, ξ̂) = f(v̂ − εd,
∑

θ∈Θ̂ |N (θ)|) ≥ f(v̂,
∑

θ∈Θ̂ |N (θ)|) − εdm by the Lipschitz
continuity of f(·, x). Now, we consider the component M(v̂, d, ŵ, ĵ). In particular, we
show that

∑
θ∈Θ̂−ξ̂(θ)yθ ≥M(v̂, d, ŵ, ĵ)− 2βdε. Since yθ ≤ 0 for each θ ∈ Θ, it holds:

∑
θ∈Θ̂

−ξ̂(θ)yθ =
∑
θ∈Θ̂

− v̂

δθwreal

yθ

=
M(v̂, d, ŵ, ĵ)

wreal

≥ M(v̂, d, ŵ, ĵ)

(1 + dε)

≥M(v̂, d, ŵ, ĵ)− βdε− βd2ε2,

where the last inequality comes from M(v̂, d, ŵ, ĵ) ≤ βwreal ≤ β(1+ dε) and 1/(1+ dε) ≥
1−dε. To conclude, the value of the solution ξ̂ ∈ ∆Θ is an additive λ-approximation with
λ = εm+ εdm+ 2βdε+ βd2ε2.
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Algorithm 5.1 Dynamic programming algorithm in the proof of Lemma 5.4
Require: ε > 0.
1: c← ⌈1/ε⌉
2: E ← {i/c}ci=0

3: G← ∪θ∈Θ{δθi/c}ci=0

4: initialize empty M and Θ with dimension c× d× c× n

5: for v ∈ G do
6: for w ∈ E,w ≥ ⌊v/δθ1⌋E do
7: M(v, 1, w, |Nθ1|)← −yθ1v/δθ1
8: Θ(v, 1, w, |Nθ1|)← {θ1}
9: end for

10: for i ∈ [d],w ∈ E,j ∈ [n] do
11: if M(v, i− 1, w, j) ≥M(v, i− 1, w − ⌈v/δθi⌉E, j − |Nθi |))− yθiv/δθi then
12: M(v, i, w, j)←M(v, i− 1, w, j)

13: Θ(v, i, w, j)← Θ(v, i− 1, w, j)

14: else
15: M(v, i, w, j)←M(v, i− 1, w − ⌈v/δθi⌉E, j)− yθiv/δθi
16: Θ(v, i, w, j)← Θ(v, i− 1, w − ⌈v/δθi⌉E, j) ∪ {θi}
17: end if
18: end for
19: end for
20: (v̂, ĵ, ŵ)← argmaxv∈E,j∈[n],w∈E f(v, j) +M(v, d, w, j)

21: Θ̂← Θ(v̂, d, ŵ, ĵ)

22: wreal =
∑

θ∈Θ̂ v̂/δθ,
23: for θ ∈ Θ̂ do
24: ξ̂(θ) = v̂

δθwreal

25: end for
26: return ξ̂ ∈ ∆Θ

The crucial observation that allows us to solve Problem 5.6 by means of dynamic program-
ming is that, in any posterior ξ ∈ Ξ∗, bidders’ expected valuations are either a positive,
bidder-independent value or zero (see Lemma 5.3). This allows us to build a discretized
range of possible bidders’ valuation values, so that, for each discretized value, we can
compute an optimal posterior ξ ∈ Ξ∗ inducing that value by adding states of nature in-
crementally in a dynamic programming fashion. Since the algorithm in Lemma 5.4 only
returns an approximate solution to Problem 5.6, we need to carefully apply the ellipsoid
algorithm to solve LP 5.5, so that it correctly works even with an approximated oracle.
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Some non-trivial duality arguments allow us to prove that, indeed, this can be achieved
by only incurring in a small additive loss on the quality of the returned solution, and
without degrading the running time of the algorithm. Overall, this allows us to conclude
that:

Theorem 5.3. In the Known Valuations setting, if the bidders are single minded, then
the problem of computing an optimal signaling scheme admits an additive FPTAS.

Proof. Our FPTAS is described in Algorithm 5.2.

Algorithm 5.2 FPTAS in the proof of Theorem 5.3
Require: parameter of the relaxed LP β > 0, approximation factor of the approximation

oracle λ > 0, error η > 0.
1: Initialization: ρ1 ← 0, ρ2 ← m, H ← ∅,H⋆ ← ∅.
2: while ρ2 − ρ1 > η do
3: ρ3 ← (ρ1 + ρ2)/2

4: H ← {posteriors relative to the violated constraints returned by the ellipsoid
method on F○ with objective ρ3 and approximation error η}

5: if unfeasible then
6: ρ1 ← ρ3

7: H⋆ ← H

8: else
9: ρ2 ← ρ3

10: end if
11: (γ, z)← solution to LP 5.14 with only posteriors in H⋆

12: return the solution γ̄ corresponding to the solution of the relaxed problem (γ, z)

13: end while

We start providing the following relaxation to LP 5.1 for a value β ∈ R+ defined in the
following.

max
γ∈∆Ξ∗ ,z≤0

∑
ξ∈Ξ∗

γ(ξ)Rev(V , ξ) + βz s.t.∑
ξ∈Ξ∗

γ(ξ) ξ(θ)− z ≥ µθ ∀θ ∈ Θ.

(5.8a)

(5.8b)

Given a solution (γ, z) to LP 5.8, we can find an approximate solution to LP 5.1 as follows.
First, notice that by the optimality of (γ, z), we have

∑
ξ∈Ξ∗ γ(ξ)Rev(V , ξ)+βz ≥ 0 and
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z ≥ −m/β. Moreover we define µ̄θ =
∑

ξ∈Ξ∗ γ(ξ) ξ(θ), so that we have |µ̄θ − µθ| ≤ m/β

for each θ ∈ Θ. Consider a distribution γ̄ such that: γ̄(ξ) = (1 − m/β)γ(ξ) for each
ξ ∈ ∆Θ except for the vertexes of the simplex of ∆Θ. Moreover, for each θ ∈ Θ we
define γ̄(Iθ) = γ(Iθ)(1 − m/β) + µθ −

∑
ξ∈Ξ∗ γ(ξ)ξ(θ)(1 − m/β). We observe that γ̄ is

a feasible solution to LP 5.1 since
∑

ξ∈Ξ∗ γ̄(ξ)ξ(θ) = µθ for each θ ∈ Θ and it has value
at least OPTΞ∗ − 2m2/β since the distribution γ is scaled by a factor (1 − m/β) and
OPTΞ∗ ≤ m. Hence, to provide an approximation to LP 5.1, it is sufficient to provide an
approximation to LP 5.8 for a sufficiently large β > 0. Since LP 5.8 has an exponential
number of variables, the algorithm works by applying the ellipsoid method to the following
dual problem.

min
y≤0,t

∑
θ∈Θ

yθµθ + t s.t.∑
θ∈Θ

yθ ξ(θ) + t ≥ Rev(V, ξ) ∀ξ ∈ Ξ∗

∑
θ∈Θ

yθ ≥ −β,

(5.9a)

(5.9b)

(5.9c)

where the dual variables are y ∈ Rd
− and t ∈ R. Instead of an exact separation oracle, we

use an approximate separation oracle that employs Algorithm 5.1 with a suitably-defined
approximation λ > 0. We use a binary search scheme to find a value ρ⋆ ∈ [0,m] such that
the dual problem with objective ρ⋆ is unfeasible, while the dual with objective ρ⋆ + η is
approximately feasible, for some η ≥ 0 defined in the following. The algorithm requires
log(m/η) steps and, at each step, it works by determining, for a given value ρ3, whether
there exists a feasible solution for the following feasibility problem that we call F○:

∑
θ∈Θ

yθµθ + t ≤ ρ3∑
θ∈Θ

yθ ξ(θ) + t ≥ Rev(V, ξ) ∀ξ ∈ Ξ∗

∑
θ∈Θ

yθ ≥ −β

yθ ≤ 0 ∀θ ∈ Θ.

(5.10a)

(5.10b)

(5.10c)

(5.10d)

At each iteration of the bisection algorithm, the feasibility problem F○ is solved via the
ellipsoid method. To do so, we need a separation oracle. We focus on an approximate
separation oracle that returns a violated constraint. The oracle is implemented as follows.
Given (y, t), first it check if all the yθ ≤ 0 for each θ ∈ Θ,

∑
θ∈Θ yθ ≥ −β, and

∑
θ∈Θ yθµθ+

t ≤ ρ3. If it is not the case, it returns a violated constraint. Otherwise, it uses Algorithm
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5.1 to approximate:

max
ξ∈Ξ∗

Rev(V, ξ)−
∑
θ∈Θ

yθ ξ(θ). (5.11)

Notice, that we guarantee that Algorithm 5.1 is called with yθ ≥ −β for each θ ∈ Θ. Let
ξ be the returned posterior. If there returned posterior has value at least t, the separation
oracle returns the constraint relative to posterior ξ ∈ ∆Θ. Otherwise, it returns feasible.
The bisection procedure terminates when it determines a value ρ⋆ such that on F○ the
ellipsoid method returns unfeasible for ρ⋆, while returning feasible for ρ⋆ + η. Then,
the algorithm solves a modified primal LP 5.14 with only the subset of posteriors in
H⋆, where H⋆ is the set of posteriors relative to the violated constraints returned by
the ellipsoid method applied on the unfeasible problem with objective ρ⋆. Finally, it
computes a solution γ̄ from the solution γ of LP 5.14 as observed before. Now, we prove
the approximation guarantees of the algorithm. The algorithm finds a ρ⋆ such that the
problem is unfeasible, i.e., the value of ρ1 when the algorithm terminates, and a value
smaller than or equal to ρ⋆ + η such that the ellipsoid method returns feasible, i.e., the
value of ρ2 when the algorithm terminates. In particular, we show that OPT ≤ ρ⋆+η+λ,
where OPT is the value of LP 5.8. Since, the bisection algorithm returns that F○ is feasible
with objective ρ⋆+η, it finds a solution (y, t) such that the approximate separation oracle
did not find a violated constraint. We show that (y, t) is a solution to the following LP.

∑
θ∈Θ

yθµθ + t ≤ ρ⋆ + η∑
θ∈Θ

yθ ξ(θ) + t ≥ Rev(V, ξ)− λ ∀ξ ∈ Ξ∗

∑
θ∈Θ

yθ ≥ −β

yθ ≤ 0 ∀θ ∈ Θ.

(5.12a)

(5.12b)

(5.12c)

(5.12d)

This holds because we have shown that, when the separation oracle returns feasible, it
holds maxξ∈Ξ∗ [Rev(V, ξ) −

∑
θ∈Θ yθ ξ(θ)] ≤ t + λ by the approximation guarantees of

Algorithm 5.1, implying that all the Constraints (5.12b) are satisfied. Moreover, when
the separation oracle returns feasible all the other constraints are satisfied. Then, by
strong duality the value of the following LP is at most ρ⋆ + η.

max
γ∈∆Ξ∗ ,z≤0

∑
ξ∈Ξ∗

γ(ξ) (Rev(V, ξ)− λ) + βz s.t.∑
ξ∈Ξ∗

γ(ξ) ξ(θ)− z ≥ µθ ∀θ ∈ Θ.

(5.13a)

(5.13b)
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Notice that any solution to LP 5.1 is also a feasible solution to the previous modified
problem. Since in any feasible solution

∑
ξ∈Ξ∗ γ(ξ) = 1 and LP 5.13 has value at most

ρ⋆+η, then OPT ≤ ρ⋆+η+λ, where we recall that OPT is the value of LP 5.8. Let H⋆ be
the set of posteriors relative to the constraints returned by the ellipsoid method run with
objective ρ⋆. Since the ellipsoid method with the approximate separation oracle returns
unfeasible, by strong duality LP 5.8 with only the variables γ(ξ) relative to constraints
in H⋆ has value at least ρ⋆. Moreover, since the ellipsoid method guarantees that H⋆ has
polynomial size, the LP can be solved in polynomial time. Hence, solving the following
LP, i.e., the primal of LP 5.9 with only the variables γ(ξ) in H⋆, we can find a solution
with value at least ρ⋆.

max
γ∈∆H⋆ ,z≤0

∑
ξ∈H⋆

γ(ξ)Rev(V, ξ) + βz s.t.∑
ξ∈H⋆

γ(ξ) ξ(θ)− z ≥ µθ ∀θ ∈ Θ.

(5.14a)

(5.14b)

To conclude the proof, notice that the algorithm provides an 2m2/β + η + λ, where the
term 2m2/β is due to the relaxation of the primal and η+λ to the use of an approximate
separation oracle. Since the algorithm runs in time polynomial in β, 1/η and 1/λ, we can
provide an arbitrary good approximations choosing sufficiently small values of η and λ,
and a sufficiently large value for β.
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6.1. Introduction

Differently from Chapter 5 we assume now that each valuation vector vi ∈ [0, 1]d, for each
bidder i ∈ N , is independently drawn from a probability distribution Vi and we indicate
with V = {Vi}i∈N the collection of such distributions. In addition we denote V ∼ V to
indicate that the matrix V ∈ [0, 1]n×d is built drawing each vi independently from Vi while
we let Rev(V , ξ) := EV∼V [Rev(V, ξ) ] be the expected revenue over the latter distribution.
Finally, given a finite set Ξ ⊂ ∆Θ of posteriors, we formulate the problem of computing
a revenue-maximizing signaling scheme supported in Ξ ⊂ ∆Θ with the following LP.

max
γ≥0

∑
ξ∈Ξ

γ(ξ)Rev(V , ξ) s.t.∑
ξ∈Ξ

γ(ξ) ξ(θ) = µθ ∀θ ∈ Θ.

(6.1a)

(6.1b)

In the following we let OPTΞ be the optimal value of LP 6.1, while we let OPT be
the optimal expected revenue of the mechanism over all the possible signaling schemes
γ. In this setting we assume that the auction mechanism has access to the distribution
of bidders’ valuations V only through a black-box sampling oracle. In particular, given
s ∈ N+ i.i.d. samples of matrices of bidders’ valuations, namely V1, . . . , Vs ∈ [0, 1]n×d, we
let Vs be their empirical distribution, given by:

PrV∼Vs

{
V = V̂

}
:=

∑s
t=1 I{Vt = V̂ }

s
∀ V̂ ∈ [0, 1]n×d. (6.2)

In this section we provide two preliminary useful lemmas. The first one (Lemma 6.1)
works under the true distribution of bidders’ valuations V , and it establishes a connection
between the optimal expected revenue and the optimal value of LP 6.1 for suitably-defined
finite sets Ξ ⊂ ∆Θ of posteriors. In particular, we look at sets Ξ ⊂ ∆Θ for which the
function Rev(V , ·) is stable according to the following definition.
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Definition 6.1 ((α, ε)-stability). Given α, ε ≥ 0 and a finite set Ξ ⊂ ∆Θ, we say that
Rev(V , ·) is (α, ε)-stable for Ξ if, for every ξ ∈ ∆Θ, there exists a distribution γξ ∈ ∆Ξ

such that:

Eξ′∼γξ

[
Rev(V , ξ′)

]
≥ (1− α)Rev(V , ξ)− ε. (6.3)

Definition 6.1 plays a crucial role indeed, given a finite set Ξ ⊂ ∆Θ of posteriors such that
Rev(V , ·) is (α, ε)-stable for it, an optimal solution of LP 6.1 restricted to Ξ ⊂ ∆Θ has
value at least (1− α)OPT− ε. Formally the following lemma holds.

Lemma 6.1. Given α, ε ≥ 0 and Ξ ⊂ ∆Θ such that Rev(V , ·) is (α, ε)-stable for Ξ, then
it holds OPTΞ ≥ (1− α)OPT− ε.

Proof. Let γ be an optimal distribution over ∆Θ satisfying the consistency constraints
(see Equation 3.2), we define γ∗ ∈ ∆Ξ as follow:

γ∗(ξ̃) =
∑

ξ∈supp(γ)

γ(ξ)γξ(ξ̃) ∀ξ̃ ∈ Ξ,

where γξ is the distribution over Ξ ⊂ ∆Θ that satisfies Definition 6.1. It is easy to check
that also γ∗ ∈ ∆Ξ satisfies the consistency constraints. Moreover, since Rev(V , ·) is
(α, ϵ)-stable for Ξ ⊂ ∆Θ, we get:∑

ξ̃∈Ξ

γ∗(ξ̃)Rev(V , ξ̃) =
∑

ξ∈supp(γ)

γ(ξ)
∑
ξ̃∈Ξ

γξ(ξ̃)Rev(V , ξ̃)

≥
∑

ξ∈supp(γ)

γ(ξ)((1− α)Rev(V , ξ)− ε)

= (1− α)
∑

ξ∈supp(γ)

γ(ξ)Rev(V , ξ)− ε

= (1− α)OPT− ε,

proving the lemma.

The second lemma (Lemma 6.4) deals with the approximation error introduced by using
an empirical distribution of bidders’ valuations Vs, rather than the actual distribution V
(see Equation 6.2 for its definition). Specifically, given a finite set Ξ ⊂ ∆Θ of posteriors
we let γVs ∈ ∆Ξ be an optimal solution of LP 6.1 for distribution Vs and set Ξ. Moreover,
we define:

OPTΞ,s := E
[∑

ξ∈Ξ

γVs(ξ)Rev(V , ξ)
]

(6.4)
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as the average expected1 revenue of signaling schemes γVs under the true distribution of
valuations V . Then, a concentration argument proves the following:

Lemma 6.2. Given ρ, τ > 0, let Ξ ⊆ ∆Θ be finite and s =
⌈
2(λ1m)2

τ2
log 2

ρ

⌉
then OPTΞ,s ≥

(1− ρ|Ξ|)OPTΞ − τ .

Proof. We first observe that for each ξ ∈ ∆Θ we have:

Rev(V , ξ) ≤
m∑
j=1

j (λj − λj+1)

≤ m
m∑
j=1

(λj − λj+1) = λ1m.

So that by Hoeffding bound we have:

Pr
(∣∣Rev(Vs, ξ)−Rev(V , ξ)

∣∣ ≤ τ/2
)
≥ 1− 2e

−sτ2

2(λ1m)2 = 1− ρ

where the inequality is attained considering a number of samples s =
⌈
2(λ1m)2

τ2
log(2

ρ
)
⌉
.

Moreover, by union bound and De Morgan’s laws, we get:

Pr
( ⋂

ξ∈Ξ

{∣∣Rev(Vs, ξ)−Rev(V , ξ)
∣∣ ≤ τ/2

})
≥ 1− ρ|Ξ|.

Let γ∗ ∈ ∆Ξ be an optimal solution of LP 6.1 while let γVs ∈ ∆Ξ an optimal solution of
the same LP when the distribution is the empirical one. We observe that the expected
revenue attained with γVs ∈ ∆Ξ is greater or equal to the one prescribed by γ∗ ∈ ∆Ξ

minus a fixed parameter with a probability of at least 1− ρ|Ξ|. Formally it holds:∑
ξ∈Ξ

γVs(ξ)Rev(V , ξ) ≥
∑
ξ∈Ξ

γVs(ξ)Rev(Vs, ξ)− τ/2

≥
∑
ξ∈Ξ

γ∗(ξ)Rev(Vs, ξ)− τ/2

≥
∑
ξ∈Ξ

γ∗(ξ)Rev(V , ξ)− τ.

1The expectation is with respect to the sampling procedure that determines Vs.
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Finally, we have that:

OPTΞ,s = E
[∑

ξ∈Ξ

γVs(ξ)Rev(V , ξ)
]

≥
(
1− ρ|Ξ|

)
E
[∑

ξ∈Ξ

γVs(ξ)Rev(V , ξ)|
⋂
ξ∈Ξ

{∣∣Rev(Vs, ξ)−Rev(V , ξ)
∣∣ ≤ τ/2

}]
≥

(
1− ρ|Ξ|

)∑
ξ∈Ξ

γ∗(ξ)Rev(V , ξ)− τ

≥
(
1− ρ|Ξ|

)
OPTΞ − τ

proving the lemma.

We also introduce a family of posteriors depending on a parameter q ∈ N+ which are
those encoded as particular q-uniform probability distributions, as formally stated in the
following definition.

Definition 6.2 (q-uniform posterior). A posterior ξ ∈ ∆Θ is q-uniform if it can be ob-
tained by averaging the elements of a multi-set defined by q ∈ N+ canonical basis of Rd.

We denote the set of all q-uniform posteriors for a given q ∈ N+ as Ξq ⊂ ∆Θ and we
provide a visual representation of the set Ξq for q = 4 and d = 3.

Figure 6.1: The set Ξq with q = 4 and d = 3.

Intuitively the set Ξq represents a uniform grid over the Simplex ∆Θ and its cardinality
depends both on the number of states of nature d and the parameter q as stated in the
following lemma.
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Lemma 6.3. Given q, d ∈ N+ such that d ≥ 2, q ≥ 1 it holds:

|Ξq| =
(
q + d− 1

d− 1

)
Proof. Let S(d, q) = |Ξq| such that Ξq ⊂ ∆Θ with |Θ| = d. It is easy to check that S(d, q)
is recursively defined as follows: S(d, q) = S(d, q − 1) + S(d − 1, q) with d ≥ 2, q ≥ 1

and board conditions: S(2, q) = q + 1, S(d, 1) = d. Thanks to the well known property
of binomial coefficients2 it is possible to check that a solution of the previous equation is
given by S(d, q) =

(
q+d−1
d−1

)
.

Finally we observe that Lemma 6.3 ensures that if the parameter q ∈ N+ is fixed then
|Ξq| = O(qd) while, if the parameter d ∈ N+ is fixed, it holds |Ξq| = O(dq).

6.2. Parametrized Complexity

Analogously to what we have done before in the Known Valuation case, we study the
paramatrized complexity of computing a revenue maximizing-signaling scheme. In par-
ticular in this section we show that the problem admits an additive FPTAS when the
number of states of Nature d is fixed while the problem admits an additive QPTAS when
the number of slots m is fixed.

6.2.1. Fixing the Number of States of Nature

First, we study the computational complexity of the problem of computing an optimal
signaling scheme when the number of states d is fixed. We provide an (additive) FP-
TAS that works by performing the following two steps: (i) it collects a suitable number
s ∈ N>0 of matrices of bidders’ valuations, by invoking the sampling oracle; and (ii) it
solves LP 6.1 for the resulting empirical distribution Vs and a suitably-defined set of q-
uniform posteriors. In particular, given a desired (additive) error λ > 0, the algorithm
works on the set Ξq for q = ⌈md

λ
⌉ and its approximation guarantees rely on the following

Lemma 6.4, proved again by means of Lemma 6.1.

2
(
n
k

)
=

(
n

k−1

)
+
(
n−1
k−1

)
for each n, k ∈ N+ such that k ≤ n.
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Lemma 6.4. Given λ > 0 and q = ⌈md
λ
⌉, then OPTΞq≥OPT − λ.

Proof. First, we show that the revenue is a Lipschitz continuous function in the posterior
probability ξ ∈ ∆Θ with respect to the infinity norm. In particular, it holds:

|Rev(V , ξ)−Rev(V , ξ′)| ≤ md||ξ − ξ′||∞ ∀ξ, ξ′ ∈ ∆Θ.

This follows from the fact that Rev(V , ξ) is a piecewise linear, continuous function in
ξ ∈ ∆Θ and ||∇ξRev(V , ξ)||1 ≤ md almost everywhere. In addition we define:

Iλ(ξ) = {ξ′ ∈ ∆Θ | ||ξ − ξ′||∞ ≤ λ/md}

as the neighbourhood of a given posterior ξ ∈ ∆Θ and Ξ(ξ) = Iλ(ξ) ∩ Ξq its intersection
with the set Ξq. It is easy to see that ξ ∈ co(Ξ(ξ)). Hence, by Caratheodory’s theorem
we can decompose each ξ ∈ ∆Θ as follow:∑

ξ̃∈Ξ(ξ)

γξ(ξ̃)ξ̃(θ) = ξ(θ) ∀θ ∈ Θ

with γξ ∈ ∆Ξ(ξ). We show now that such a decomposition decreases the expected revenue
under ξ ∈ ∆Θ of at most a fixed parameter. Formally, we have that:

Eξ̃∼γξ

[
Rev(V , ξ̃)

]
=

∑
ξ̃∈Ξ(ξ)

γξ(ξ̃)Rev(V , ξ̃)

≥
∑

ξ̃∈Ξ(ξ)

γξ(ξ̃)(Rev(V , ξ)− λ)

= Rev(V , ξ)− λ,

where the inequality comes from the Lipschitz continuity of Rev(V , ξ) and
||ξ − ξ̃||∞ ≤ λ/md for all ξ̃ ∈ Ξ(ξ). This proves that the revenue is (0, λ)-stable over Ξq

and by Lemma 6.1 we have that OPTΞq ≥ OPT− λ

Thanks to Lemmas 6.2 and 6.4 (the former applied for suitable values ρ, τ > 0), we can
prove that the procedure described in steps (i) and (ii) above gives a signaling scheme
achieving an expected revenue at most a function of λ lower than OPT, provided that
the number of samples s is defined as in Lemma 6.4. Moreover, since d is fixed thanks to
Lemma 6.3 we have that |Ξq| = O(qd) = O(( 1

λ
md)d) and then the overall procedure runs

in time polynomial in the input size and in 1
λ
. Thus, we can conclude that:



6| Random Valuations Setting 55

Theorem 6.1. In the Random Valuations setting, if the number of states d is fixed, then
the problem of computing an optimal signaling scheme admits and additive FPTAS.

Proof. Let η > 0 be the desired approximation and let τ , α, and q be three suitable values
defined in the following. Applying Lemma 6.2 for Ξ = Ξq, ρ = α

m
, τ and s = ⌈2m2

τ2
log(2m

α
)⌉,

we get:
OPTΞq,s = E

[ ∑
ξ∈Ξq

γVs(ξ)Rev(V , ξ)
]

≥
(
1− α|Ξq|

m

)
OPTΞq − τ

≥ OPTΞq − τ − α|Ξq|.

By Lemma 6.4, for a value λ defined in the following and q = ⌈md
λ
⌉ we have that:

OPTΞq,s = E
[ ∑
ξ∈Ξq

γVs(ξ)Rev(V , ξ)
]

≥ OPTΞq − τ − α|Ξq|

≥ OPT− λ− τ − α|Ξq|

= OPT− η,

where the last equality holds taking λ = η/3, ε = η/6, α = η/(3|Ξq|).

6.2.2. Fixing the Number of Slots

Next, we switch the attention to the case in which the number of slots m is fixed. We
provide an additive PTAS that works as the FPTAS in Theorem 6.1, but whose approx-
imation guarantees follow from Lemma 6.2 and Lemma 6.5 (rather than Lemma 6.4).
Thus, the only difference with respect to the previous case is that the algorithm works
on the set Ξq of q-uniform posteriors for q defined as in Lemma 6.5. As a result, since
|Ξq| = O(dq) and q depends on a parameter η > 0 that is related to the quality of the
obtained approximation, the algorithm is only a PTAS rather than an FPTAS. Formally,
we can prove the following:

Lemma 6.5. Given η > 0 and q =
⌈

1
2η2

log m+1
η

⌉
, then OPTΞq ≥ OPT− 2ηm.

Proof. We show that there exists a distribution γ ∈ ∆Ξq over q-uniform posterior that
provides an expected revenue that satisfies the conditions in the statement. For a ξ ∈ ∆Θ,
let ξq ∈ Ξq be the empirical mean of q vectors built form q i.i.d. samples drawn from the
given posterior ξ ∈ ∆Θ. In particular, each sample is obtained by randomly drawing a
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state of nature, with each state θ ∈ Θ having probability ξ(θ) of being selected, and,
then, a d-dimensional vector is built by letting all its components equal to 0, except for
that one corresponding to θ ∈ Θ, which is set to 1. Notice that ξq is a random vector
supported on q-uniform posteriors, whose expected value is posterior ξ ∈ ∆Θ. Then, we
let γξ ∈ ∆Ξq be such that, for every ξ̃ ∈ Ξq, it holds γξ(ξ̃) = Pr{ξq = ξ̃}. Moreover, in
the following, given a ξ ∈ ∆Θ and a j ∈ [m + 1] we write the expected valuation ξ⊤vij
without specifying that π = (i1, ..., im+1) ∈ Πm+1 is the tuple such that ξ ∈ Ξπ. Then, by
Hoeffding bound we have that:

Prξ̃∼γξ

(
ξ̃⊤vij ≥ ξ⊤vij − η

)
≥ 1− e−2qη2 = 1− η

m+ 1
∀j ∈ [m+ 1]

where the equality follows from the definition of the number of posteriors q. Thanks to
union bound and De Morgan’s laws we get:

Prξ̃∼γξ

(m+1⋂
j=1

{ξ̃⊤vij ≥ ξ⊤vij − ε}
)
≥ 1− η.

Now we prove that the revenue is (0, 2ηm)-stable over Ξq.

Eξ̃∼γξ

[
Rev(V , ξ̃)

]
≥ Eξ̃∼γξ

[
Rev(V , ξ̃)

∣∣m+1⋂
j=1

{ξ̃⊤vij ≥ ξ⊤vij − η}
]
Pr

(m+1⋂
j=1

{ξ̃⊤vij ≥ ξ⊤vij − η}
)

≥ (1− η)Eξ̃∼γξ

[
Rev(V , ξ̃)|

m+1⋂
j=1

{ξ̃⊤vij ≥ ξ⊤vij − η}
]

≥ (1− η)
( m∑

j=1

j (λj − λj+1)(ξ
⊤vij+1

− η)
)

≥ (1− η)
(
Rev(V , ξ)− ηm

)
≥ Rev(V , ξ)− 2ηm

he latter inequality shows that the revenue is (0, 2ηm)-stable over Ξq with q = ⌈ 1
2η2

log
(
m+1
η

)
⌉.

Hence, by Lemma 6.1, OPTΞq ≥ OPT− 2ηm proving the lemma.

Theorem 6.2. In the Random Valuations setting, if the number of slots m is fixed, then
the problem of computing an optimal signaling scheme admits and additive PTAS.

Proof. Let ν > 0 be the desired approximation and let τ , α, and q be three suitable values
defined in the following. Applying Lemma 6.2 for Ξ = Ξq, ρ = α

m
, τ and s = ⌈2m2

τ2
log 2m

α
⌉,
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we get:
OPTΞq,s = E

[ ∑
ξ∈Ξq

γVs(ξ)Rev(V , ξ)
]

≥
(
1− α|Ξq|

m

)
OPTΞq − τ

≥ OPTΞq − τ − α|Ξq|.

By Lemma 6.5, we have that for a value η defined in the following and q = ⌈ 1
2η2

log m+1
η
⌉

it holds:
OPTΞq,s = E

[ ∑
ξ∈Ξq

γVs(ξ)Rev(V , ξ)
]

≥ OPTΞq − τ − α|Ξq|

≥ OPT− 2ηm− τ − α|Ξq|

= OPT− ν.

Where the last equality holds for η = ν/6m, τ = ν/3, and α = ν/ (3|Ξq|).

6.3. Valuations Bounded Away From Zero

We conclude the section by studying the case in which the bidders’ valuations are bounded
away from zero. This case is dealt with an algorithm identical to the one in Theorem 6.2,
but relies on Lemma 6.2 and Lemma 6.6. Thus, since the value of q in Lemma 6.6 is
related to the quality of the approximation thorough a parameter η > 0 and also depends
logarithmically on the number of slots m, we obtain:

Lemma 6.6. Given η > 0 and q =
⌈

1
2η2

log m+1
η

⌉
if, for some δ > 0, it is the case that

vi(θ) > δ for all i ∈ N and θ ∈ Θ, then OPTΞq ≥ (1− η/δ)2 OPT.

Proof. By Lemma 6.5 given q =
⌈

1
2η2

log m+1
η

⌉
we know that there exists a distribution

γ ∈ ∆Ξq such that:

Prξ̃∼γξ

(
ξ̃⊤vij ≥ ξ⊤vij − η

)
≥ 1− e−2qη2 = 1− η

m+ 1
∀j ∈ [m+ 1]

where π = (i1, ..., im+1) ∈ Πm+1 is the tuple such that ξ ∈ Ξπ. Thanks to union bound
and De Morgan’s laws we get:

Prξ̃∼γξ

(m+1⋂
j=1

{ξ̃⊤vij ≥ ξ⊤vij − ε}
)
≥ 1− η.
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Now, we prove that the revenue is ((1− η/δ)2, 0)-stable over Ξq. In particular, it holds:

Eξ̃∼γξ

[
Rev(V , ξ̃)

]
≥ Eξ̃∼γξ

[
Rev(V , ξ̃)

∣∣m+1⋂
j=1

{ξ̃⊤vij ≥ ξ⊤vij − η}
]
Pr

(m+1⋂
j=1

{ξ̃⊤vij ≥ ξ⊤vij − η}
)

≥ (1− η)Eξ̃∼γξ

[
Rev(V , ξ̃)|

m+1⋂
j=1

{ξ̃⊤vij ≥ ξ⊤vij − η}
]

≥ (1− η)
( m∑

j=1

j (λj − λj+1)(ξ
⊤vij+1

− η

δ
ξ⊤vij+1

)
)

≥ (1− η)
((

1− η

δ

) m∑
j=1

j (λj − λj+1)ξ
⊤vij+1

)
≥

(
1− η

δ

)2

Rev(V , ξ).

The latter inequality shows that the revenue is ((1− η/δ)2, 0)-stable over Ξq with
q = ⌈ 1

2η2
log

(
m+1
η

)
⌉. Thus, by Lemma 6.1, OPTΞq ≥ (1− η/δ)2OPT proving the lemma.

Theorem 6.3. In the Random Valuations setting, if vi(θ) ≥ δ for all i ∈ N and θ ∈ Θ

for some δ > 0, then the problem of computing an optimal signaling scheme admits a
(multiplicative) QPTAS.

Proof. Let β be the desired approximation. Moreover, let α and η be values defined in
the following, τ = νδλ1, q = ⌈ 1

2η2
log

(
m+1
η

)
⌉, and s = ⌈ 2m2

(δν)2
log( 2

α
)⌉. By Lemma 6.2, it

holds
OPTΞq,s = E

[ ∑
ξ∈Ξq

γVs(ξ)Rev(V , ξ)
]

≥
(
1− α|Ξq|

)
OPTΞq − νδλ1

≥
(
1− ν − α|Ξq|

)
OPTΞq .

By Lemma 6.6 we have:

OPTΞq,s = E
[ ∑
ξ∈Ξq

γVs(ξ)Rev(V , ξ)
]

≥
(
1− ν − α|Ξq|

)
OPTΞq

≥ (1− ν − α|Ξq|)
(
1− η

δ

)2

OPT

= (1− β)OPT,
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where the last inequality holds for ν = β/8, α = β/(8|Ξq|), and η = δβ/4.

The following theorem shows that the result is tight.

Theorem 6.4. Assuming the ETH, there exists a constant ω > 0 such that finding a
signaling scheme that provides an expected revenue at least of (1−ω)OPT requires I Ω̃(log I)

time, where I is the size of the problem instance. This holds even when vi(θ) >
1
3

for all
i ∈ N and θ ∈ Θ.3

Proof. We reduce from public signaling in elections with a k-voting rule. In particular,
each receiver i ∈ N has an utility ui

θ ∈ [−1, 1] in a state θ ∈ Θ, where ui
θ represent

the difference between the utility of receiver i ∈ N in voting c0 with respect to c1. The
sender’s utility is 1 if the at least k-voters vote for c0, i.e., the induced posterior ξ ∈ ∆Θ

is such that
∑

θ∈Θ ξ(θ)ui
θ ≥ 0. Otherwise, the sender’s utility is 0. See Castiglioni et al.

[2020] for a more detailed description of the problem. Castiglioni et al. [2020] show that
assuming the ETH4, there exists a constant ε > 0 such that distinguish between this two
cases requires nΩ̃(log(n)) time:

1. there exists a signaling scheme such that in any induced posterior ξ ∈ ∆Θ at least
k voters have

∑
θ∈Θ ξ(θ)ui

θ ≥ 0;

2. in all the posteriors there are strictly less than k receivers with
∑

θ∈Θ ξ(θ)ui
θ ≥ −ε.

To prove the theorem, we show how to reduce the k-voting problem to our revenue max-
imization problem. In particular, given an instance of k-voting, we build an instance of
our problem with the same number of receivers. The valuation of receiver i ∈ N in a
state θ ∈ Θ is vi(θ) =

ui
θ

3
+ 2

3
, Moreover, there are m = k − 1 slots with λj = 1 for each

j ∈ [m]. Finally, we set the required approximation ω = ε/2. We show that when the first
case holds, the revenue is at least (k− 1)2

3
, while in the second case it is strictly less than

(k−1)2−ε
3

. Hence, a 2−ε
3
/2
3
= 1−ε/2 = 1−ω approximation to the signaling problem can

be used to provide an ε-approximation to k-voting. Since we provide a polynomial time
reduction from k-voting to the revenue maximization problem, this is sufficient to prove
the theorem.

soundness. Suppose that there exists a signaling scheme such that in any induced
posterior ξ ∈ ∆Θ at least k voters have

∑
θ∈Θ ξ(θ)ui

θ ≥ 0. Consider the same signaling
scheme in the revenue maximization problem. Then, in all the induced posteriors ξ ∈ ∆Θ

3The Ω̃ notation hides poly-logarithmic factors.
4Exponential Time Hypothesis.
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there are at least k receivers with expected valuation at least 2
3

and the total revenue is
at least (k − 1)2

3
.

completeness. Suppose that in all the posteriors ξ ∈ ∆Θ there are strictly less than
k receivers with

∑
θ∈Θ ξ(θ)ui

θ ≥ −ε. Notice that the revenue of a posterior is given by
(k − 1)x, where x is the smallest expected valuation. Hence, the maximum revenue is
strictly less than (k − 1)2−ε

3
.
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7| Experimental Results

In this chapter, we provide some experimental results showing how committing to a signal-
ing scheme gives the mechanism higher expected revenue. In particular, we analyze differ-
ent settings of a Bayesian ad auction, showing how varying a parameter of a given instance
can increase or decrease the persuasiveness power of committing to a signaling scheme. In
all the experiments we consider that the bidders’ valuations matrix V ∈ [0, 1]n×d is built
drawing independently each V (i, θ) ∼ Be(p) from a Bernoulli distribution of parameter
p ∈ [0, 1] for each θ ∈ Θ and i ∈ N . Once the bidders’ valuation matrix is built, we
assume that the auction mechanism has access to it, and then it computes an (almost)
optimal signaling scheme by solving LP 5.1 instantiated for the set Ξq with q = 30 (see
Definition 6.2). Moreover, to reduce the bias of our analysis, we repeat 30 different times
the procedure described above. Finally, for each instance of the problem I, we considered
the persuasiveness ratio given by:

r(I) =
Eθ∼µ,ξ∼γ[Rev(ξ, V )]

Eθ∼µ[Rev(Iθ, V )]
,

with γ optimal solution of the previously discussed LP. Notice that r(I) ≥ 1 for each
possible instance of the problem I, since the solution in which the mechanism simply
reveals the state of nature is feasible for LP 5.1. In addition, the ratio r(I) has an
intuitive meaning since the numerator represents the expected revenue prescribed by an
optimal solution of the previously discussed LP, while the denominator represents the
expected revenue the mechanism would get without committing to it. So, higher values
of such a ratio indicate that the persuasiveness power of a signaling scheme is higher for
that specific instance. On the contrary, when the ratio is equal to 1, the persuasiveness
power of committing to a signaling scheme is negligible.
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7.0.1. Varying the Bidders’ Interest

In the first scenario we consider an ad auction with n = 30 bidders, m = 4 slots and
d = 3 states of nature with a uniform prior distribution µ ∈ ∆Θ. In addition, we assume
that the set of CTRs is given by Λ = {0.7, 0.6, 0.5, 0.4} and we vary the parameter
p in the range between 0.05 and 0.25, which defines the bidders’ valuation matrix as
previously discussed. The latter parameter has an intuitive meaning since greater values
of p are associated to bidders’ valuations matrices with a higher expected number of
bidders interested in displaying their ad. Figure 7.1 shows that a larger persuasiveness
power is associated with lower values of p ∈ [0, 1], while when p = 0.25 the persuasiveness
ratio is equal to 1. Due to that, we can conclude that in auctions in which the average
interest in displaying an ad is greater, the effect of committing to a signaling scheme
is negligible, while in contexts of lower interest, a persuasive mechanism guarantees the
auctioneer a higher revenue.

Figure 7.1: Varying the bidders’ interest.

7.0.2. Varying the Number of Slots

In the second scenario, we consider an ad auction with n = 30 bidders, m = 4 slots and
d = 3 states of nature with a uniform prior distribution µ ∈ ∆Θ. Moreover we assume that
the bidders’ valuation matrix is built in a way that V (i, θ) ∼ Be(p) for each θ ∈ Θ, i ∈ N
taking p = 0.1. Differently from above, we now consider different ad auctions with a
number of slots varying from 2 to 10. In particular, for each instance with m items we
assume that the set of CTRs is given by Λ = {2/10, ...,m/10}. So that, for example, when
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the number of slots is equal to m = 4 we have that Λ = {0.1, 0.2, 0.3, 0.4}. In Figure 7.2
we report how the persuasiveness ratio varies in auction with a different number of slots.
In this case, we observe that, since the number of bidders is fixed, with a progressive
increase in the number of slots, the persuasive power of a signaling scheme grows. In
particular, in an ad auction with two or three slots, the persuasiveness ratio equals the
unitary value, while for an ad auction with ten slots, the ratio is almost equal to 2.

Figure 7.2: Varying the number of slots.

7.0.3. Varying the Number of Bidders

In the third setting, analogously to what we have done so far, we consider ad auctions
with m = 4 slots and d = 3 states of nature with a uniform prior distribution µ ∈
∆Θ. Moreover, we assume that the bidders’ valuation matrix is built in a way that
V (i, θ) ∼ Be(p) for each θ ∈ Θ, i ∈ N taking p = 0.1 and we vary the number of
bidders participating in the auction from n = 15 to n = 45. Figure 7.3 shows that the
persuasiveness ratio is higher for instances with fewer bidders, while it results lower when
the number of bidders increases. Such a behaviour proves that if the number of slots does
not change, increasing the number of bidders also increases the probability of finding some
interested advertisers in displaying their ad. Specifically, as we can see from Figure 7.3,
when we consider an instance with 45 bidders, the persuasiveness ratio is almost equal
to 1.2, while when we allow for a setting with only 15 bidders, the persuasiveness ratio
equals the value of 2.3.
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Figure 7.3: Varying the number of bidders.

7.0.4. Economic Interpretation

These experiments show that in some ad auctions, a persuasive mechanism guarantees a
higher revenue, while in other cases, the effectiveness of committing to a signaling scheme
is almost null. In fact, in instances where the mechanism has receives sufficiently high
average evaluations for each state of nature, the persuasive power of a signal scheme is
negligible since the solution in which the mechanism simply reveals the state of nature
turns out to be the winning one. On the contrary, in situations where the mechanism
does not have this guarantee, such as in the case of an ad auction with many slots or few
participants, the persuasive power of a public signaling scheme proves to be of fundamental
importance. For this reason, in instances where the mechanism has no guarantee to receive
sufficiently high valuations, a partial disclosure of the information on the state of nature
provides the mechanism with higher revenue since it increases the competition among
bidders.
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8| Conclusions and Future Works

This thesis studies how an ad auction mechanism should commit to a public signaling
scheme to maximize revenue. To the best of our knowledge, we extended the study of
public signaling to auctions with one more slot, which was limited to the study of second-
price auctions. In particular, we first proved that there is no PTAS for computing a
revenue-maximizing signaling scheme unless P = NP; due to that, we studied several sce-
narios in which such a negative result could be circumvented. All the proposed algorithms
solve suitably-defined linear programs of polynomial size and provide an optimal or an
ε-approximation of an optimal revenue-maximizing signaling scheme.
In this work, we focused only on public signaling schemes in which the mechanism draws
a signal and publicly reports it to all the bidders in the same way. A new possible re-
search direction could be the study of a private signaling scheme characterized by the fact
that the mechanism could send different signals to different receivers. In this scenario,
it has been shown that bidders may not report their true valuation (since it does not
represent an equilibrium) also in the simpler case of a second-price auction. Moreover,
one of the most limiting assumptions in our model is that the auctioneer is required to
have access to the bidders’ valuation distribution through a black-box sampling oracle.
Due to that, a new possible research track could relax this assumption through an online
learning framework, as first proposed by Castiglioni et al. [2020], in which the auctioneer
repeatedly faces bidders whose valuations are unknown and chosen adversarially. This
study should focus on no-regret algorithms prescribing a signaling scheme at each round
close to the best-in-hindsight one. Finally, also the assumption that bidders may not share
information could be relaxed. Indeed, if bidders are allowed to communicate, they could
agree to report a lower value to the mechanism getting a better utility. In this setting, it
is possible to study how an ad auction mechanism should commit to a signaling scheme
depending on the possible coalitions formed by bidders.
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