

POLITECNICO DI MILANO

SCHOOL OF INDUSTRIAL AND INFORMATION

ENGINEERING

MSc in Computer Science and Engineering

Extending the Graphical

User Interface of Java

Modeling Tools

Supervisor:

Prof. Marco GRIBAUDO

Master Thesis by:

Emma BORTONE - 10673695

Academic year 2019-2020

Abstract [English]

Computer and communication systems have grown more and more complex, and their place is central

in the business world. Understanding those systems is therefore necessary in order to be able to

answer the questions that inevitably rise during the lifespan of a system: which resources should be

increased, and to what extent, in order to respond to an augmentation of demand? What causes a

system to slow down? The need to answer those questions leads to the development of tools and

techniques to simulate systems. Those techniques for performance evaluation require the use of

analytical or simulative methods and are often based on queuing networks models or on petri nets. It

is in this context that the Java Modelling tools project started at Politecnico di Milano in 2002. Java

Modelling tools (JMT) is a free open source tool suite for modelling computer and communication

systems, it is now developed in cooperation with Imperial college London. Java Modelling Tools

contains six tools: JSIMGraph, SIMwiz, JMVA, JABA, JWAT and JMCH. JSIMGraph provides a graphical

interface that allows an easy description of the network layout and a nicer visualization of complex

systems. JSIMGraph let the user build the network by selecting stations (queues, routers, delays...),

connecting them and defining the input parameters. Based on the feedback provided by the users of

JSIMGraph, the graphical user interface was extended by introducing a new type of connection with a

customizable shape and by allowing the rotation of stations. Those extensions were able to make

possible the construction of networks with a nicer and clearer layout, improving the efficiency of

creating network with JSIMGraph.

Key Words

Computer system; Network; Modelling; Performance evaluation; Graphical user interface; Java

modelling tools; Bezier; User experience; Software; Swing

Abstract [Italiano]

I sistemi informatici e di comunicazione sono diventati sempre più complessi e il loro posto è centrale

nel mondo degli affari. La comprensione di questi sistemi è quindi necessaria per poter rispondere alle

domande che inevitabilmente sorgono nel corso della vita di un sistema: quali risorse devono essere

aumentate, e in che misura, per rispondere ad un aumento della domanda? Cosa provoca il

rallentamento di un sistema? La necessità di rispondere a queste domande porta allo sviluppo di

strumenti e tecniche per simulare i sistemi. Queste tecniche di valutazione delle prestazioni richiedono

l'uso di metodi analitici o simulativi e sono spesso basate su modelli di reti di code o su reti di petri. È

in questo contesto che il progetto Java Modelling tools è iniziato al Politecnico di Milano nel 2002. Java

Modelling tools (JMT) è una suite di strumenti open source per la modellazione di sistemi di computer

e di comunicazione, sviluppata in collaborazione con l'Imperial college di Londra. Java Modelling Tools

contiene sei strumenti: JSIMGraph, SIMwiz, JMVA, JABA, JWAT e JMCH. JSIMGraph fornisce

un'interfaccia grafica che permette una facile descrizione del layout di rete e una più piacevole

visualizzazione di sistemi complessi. JSIMGraph permette all'utente di costruire la rete selezionando le

stazioni (code, router, delay...), collegandole e definendo i parametri di ingresso. Sulla base dei

feedback forniti dagli utenti di JSIMGraph, l'interfaccia grafica è stata estesa introducendo un nuovo

tipo di connessione con una forma personalizzabile e permettendo la rotazione delle stazioni. Tali

estensioni sono state in grado di rendere possibile la costruzione di reti con un layout più bello e chiaro,

migliorando l'efficienza della creazione di reti con JSIMGraph.

Key Words

Sistema informatico; Rete; Modellazione; Valutazione della performance; Interfaccia grafica; Java

modelling tools; Bezier; Esperienza utente; Software; Swing

Table of contents

I. Introduction ... 1

1. Purpose .. 1

2. Definitions, Acronyms, Abbreviations ... 1

3. Document Structure .. 1

II. Project Background ... 2

1. The need for computer systems modeling tools ... 2

2. Other existing tools for modelling computer systems .. 3

i. GreatSPN (GRaphical Editor and Analyzer for Timed and Stochastic Petri Nets) 3

ii. Möbius ... 4

iii. PEPA eclipse plug-in .. 4

iv. Platform Independent Petri net Editor 2 (PIPE) .. 5

v. PRISM .. 6

vi. Symbolic Hierarchical Automated Reliability and Performance Evaluator (SHARPE) 7

vii. TANGRAM II ... 8

III. Description of Java Modelling Tools (JMT) .. 9

1. Brief history of JMT ... 9

2. Description of JMT .. 9

i. JSIMwiz .. 10

ii. JMVA .. 10

iii. JABA ... 11

iv. JWAT .. 11

v. JMCH .. 11

vi. JSIMGraph ... 12

3. Study case using JSIMGraph .. 13

i. First infrastructure: A computing server and a storage server equipped with two disks 13

ii. Second infrastructure: Study of the behavior of a station after a growth of service time ... 16

IV. Improving JSIMGraph .. 20

1. The graphical user interface of JSIMGraph ... 20

2. Aspects of JSIMGraph that could be improved ... 20

i. The automatic connection shapes generating a confusing layout .. 20

ii. The input and output overlap ... 21

iii. The impossibility of quickly deleting an arc. ... 22

iv. The impossibility to rotate stations ... 22

v. The difficulty to properly and quickly align stations ... 23

3. Proposed improvements ... 23

4. Requirements .. 24

V. Implementation of the extensions .. 26

1. Modelling of Bezier curves .. 26

i. Definition of Bezier curves .. 26

ii. The implementation .. 27

iii. New format for the xml file ... 28

2. The process of drawing of Bezier connections. ... 30

3. Modifying the connection shapes ... 32

i. Moving controls points .. 32

ii. Adding intermediary points ... 35

iii. Deleting control points .. 38

iv. Adding tangents to sharp intermediary points ... 41

v. Breaking the tangent symmetry .. 43

vi. Breaking the connection continuity .. 46

vii. Possibility to switch between connection types. .. 49

4. Station rotation ... 49

i. The image rotation .. 50

ii. The ports rotation ... 50

iii. The rotation of connections shapes .. 52

5. Grid snaping ... 54

VI. Other extensions ideas .. 54

i. Add identifier to broken connections ... 54

ii. Possibility of deleting a connection and creating a new one by dragging the connection

arcs. 55

VII. Conclusion ... 56

1

I. Introduction

1. Purpose

The purpose of this document is to present the extensions added to the graphical user interface of

Java Modelling Tool. Java Modelling Tools, abbreviated JMT, is a free open source tool suite for

modelling computer and communication systems. This document focuses on the tool JSIMGraph

describing its purpose, its functionalities, its issues and how the extensions developed during the thesis

work described in this document solves them. The work presented in this document is based on the

version 1.0.5 of JMT.

2. Definitions, Acronyms, Abbreviations

Acronym or
abbreviation

Definitions

GUI Graphical user interface

MVA Mean value analysis

JMT Java Modelling Tools

GSPN Generalized Stochastic Petri Net

SWN Stochastic Well-Formed Net

WMT Windows Modeling Tool

RECAL Recursion by Chain Algorithm

MoM Method of Moments

CoMoM Class oriented Method of Moments

FCR FCR finite capacity region

3. Document Structure

The document is organized as follows:

Section 1, Introduction, describes the content of this document.

Section 2, Project background, describes the context that created the need for a computer network

modelling tool.

Section 3, Description of Java Modelling tools, provides a detailed description of JMT.

Section 4, Improving JSIMGraph, highlights the features of JSIMGraph that cause issues and suggests

extensions to solves them.

Section 5, Implementation of the extensions, describes how the extensions were implemented.

Section 6, Other extensions ideas, suggests other extensions to further improve the tool JSIMGraph.

Section 7, Conclusion, concludes on how the extensions improve the GUI of the tool.

2

II. Project Background

This section explains why modelling tools such as JMT are needed, and provides examples of the type

of questions that can be answered by using modelling tools.

1. The need for computer systems modeling tools

The complexity of computer and communication systems, their rapidity of evolution and their

prominent place in the business world leads to the need for tools and techniques to simulate systems

and understand their behavior. Those techniques for performance evaluation require the use of

analytical or simulative methods. They are often based on queuing networks models or on petri nets.

Understanding those systems is necessary in order to be able to answer the questions that will

inevitably rise during the lifespan of a system. The following examples provide an illustration of the

type of question that modelling and simulation can solve:

- The manufacturer of a turn-key medical information system needs an efficient

way to size systems in preparing bids. Given estimates of the arrival rates of

transactions of various types, this vendor must project the response times that the

system will provide when running on various hardware configurations.

- A stock exchange intends to begin trading a new class of options. When this

occurs, the exchange’s total volume of options transactions is expected to increase

by a factor of seven. Adequate resources, both computer and personnel, must be

in place when the change is implemented.1

Those questions do not have trivial answers and errors could result in extra costs or even compromise

the usability of the system. In order to answer those questions, two different techniques could be used:

experimentation and modeling techniques. In order to perform experimentation and measurements,

the system needs to already exists; and this is not the case during the design of a new system.

Experimentation is also often prohibitively expensive. On the opposite, modelling techniques are

cheaper and require only a model of the system. By using a simplified representation of the system, it

is then possible to understand and evaluate it. Queuing networks and petri nets are special types of

models.

A Petri net is a mathematical model used to describe concurrent and distributed systems. It is a

directed bipartite graph in which the arcs connect places (represented by circles) and transitions

(represented by bars).

A queuing model represents a computer system as a network of queues. This type of model is

composed of service centers, queues and customers that can be parametrized accordingly to the

specificities of the real system.

Both Petri nets and queuing networks require the use of a software in order to perform the simulation

of the system.

1 LAZOWSKA E. D., ZAHORJAN J., GRAHAM G. S., SEVCIK K. C. (1984). Quantitative System Performance -
Computer System Analysis Using Queueing Network Models. Prentice-Hall

3

2. Other existing tools for modelling computer systems

Many tools are available for the modelling of computer systems, they all have the same global goal as

JMT: modelling computer and communication network in order to analyze them and predict their

behavior ; but they differ in terms of functionalities and modeling approaches.2 In this section, other

tools than JMT will be briefly presented. The list of tools presented in this section does not pretend to

be exhaustive or a ranking, and it contains only tools that provide a GUI.

i. GreatSPN (GRaphical Editor and Analyzer for Timed and Stochastic Petri Nets)

GreatSPN is a software developed by the Dipartimento di informatica at the Università di Torino, Turin,

Italy in cooperation with the Dipartimento di Informatica at the Università del Piemonte Orientale,

Alexandria, Greece. 3

GreatSPN is a tool for solving Generalized Stochastic Petri Nets (GSPNs) and Stochastic Well-Formed

Nets (SWNs). It can perform the modeling, validation, and performance evaluation of distributed

systems (by means of state-space analysis, simulation, structural analyses and Markov chain

generation). 4

The figure bellow (Figure 1) shows the GUI of the software GreatSPN.

Figure 1: GUI of GreatSPN

Source : http://www.di.unito.it/~greatspn/index.html#GreatManual

2 CASALE G., MUNTZ R. R., SERAZZI G., (2009), Special Issue on Tools for Computer Performance Modeling and
Reliability Analysis
3 DIPARTIMENTO DI INFORMATICA Università di Torino, (2008), GreatSPN,
http://www.di.unito.it/~greatspn/index.html
4 BABAR J., BECCUTI M., DONATELLI S., MINER A., (2010), GreatSPN Enhanced with Decision Diagram Data
Structures.

http://www.di.unito.it/~greatspn/index.html#GreatManual
http://www.di.unito.it/~greatspn/index.html

4

ii. Möbius

Möbius is a software for modeling complex systems developed by the Performability Engineering

Research Group (PERFORM) in the Center for Reliable and High Performance Computing at

the University of Illinois at Urbana-Champaign

It can be used for studying the reliability, availability, and performance of computer and

communication systems but it can also be used for other types of discrete-event systems such as

biochemical reactions within genes. This wide utilization range is made possible by the fact that Möbius

supports multiple modelling languages and multiple solution techniques. It is possible to choose

between graphical or textual representations and between the following model types: stochastic

extensions to Petri nets, Markov chains and extensions, and stochastic process algebras.56

The figure bellow (Figure 2) shows the GUI of the software Möbius.

Figure 2: GUI of Möbius

Source : https://www.mobius.illinois.edu/images/atomic-san-multiproc.jpg

iii. PEPA eclipse plug-in

The Performance Evaluation Process Algebra (PEPA) is a formal language that allows the quantitative

analysis of systems. This language was defined by Jane Hilston in 1994 for her PhD thesis at the

University of Edinburg.7

5 COURTNEY T., DALY D., DERISAVI S., GAONKAR S., GRIFFITH M., LAM V., SANDERS H. W., (2004), The Möbius
Modeling Environment: Recent Developments.
6 Möbius, (2020), Möbius – Model-based environment for validation of system reliability, availability, security,
and performance, https://www.mobius.illinois.edu/research.php
7 Laboratory for Foundations of Computer Science, The University of Edinburgh, (2011), PEPA – Performance
Evaluation Process Algebra, http://www.dcs.ed.ac.uk/pepa/

https://www.perform.illinois.edu/
https://www.perform.illinois.edu/
http://www.crhc.illinois.edu/
http://www.illinois.edu/index.html
https://www.mobius.illinois.edu/images/atomic-san-multiproc.jpg
https://www.mobius.illinois.edu/research.php
http://www.dcs.ed.ac.uk/pepa/

5

The PEPA eclipse plug-in allows the Markovian, static and ODE analysis of PEPA models. The tool runs

inside the eclipse framework. It provides a user-friendly graphical interface and an API that exposes

the PEPA library to third-party Eclipse plug-ins8 9.

The screenshot below (Figure 3) shows a PEPA model with the experimentation wizard. In this example,

the graph on the bottoms shows the throughput evolution depending on the variation of a specific

input parameters.

Figure 3: GUI PEPA Eclipse Plug-in

Source : http://www.dcs.ed.ac.uk/pepa/tools/plugin/screenshots.html

iv. Platform Independent Petri net Editor 2 (PIPE)

The project PIPE and then PIPE2 was created in 2002 as a MSc. Group Project called The Platform

Independent Petri net Editor PIPE at the Department of Computing at Imperial College London. It is still

currently in development at the college10.

PIPE2 is an open source and platform independent tool for the modelization and evaluation of Petri

nets, Model Place transition nets and Generalised Stochastic Petri nets.11

PIPE2 also offers an intuitive graphical user interface (see Figure 4):

8 Anonymous, (2009), The PEPA Plug-in Project, http://www.dcs.ed.ac.uk/pepa/tools/plugin/index.html
9 SMITH M J. A., (2010), A Tool for Abstraction and Model Checking of PEPA Models
10 Anonymous, PIPE2 - Platform Independent Petri net Editor 2 http://pipe2.sourceforge.net/index.html
11 BONET P., LLADO C.M., PUIJANER R., KNOTTENBELT W.J., (2007), PIPE v2.5: A Petri Net Tool for Performance
Modelling.

http://www.dcs.ed.ac.uk/pepa/tools/plugin/screenshots.html
http://www.doc.ic.ac.uk/
http://www.dcs.ed.ac.uk/pepa/tools/plugin/index.html
http://pipe2.sourceforge.net/index.html
http://dmi.uib.es/~cllado
http://www.doc.ic.ac.uk/~wjk
http://www.doc.ic.ac.uk/~wjk/publications/bonet-llado-knottenbelt-puijaner-clei-2007.pdf
http://www.doc.ic.ac.uk/~wjk/publications/bonet-llado-knottenbelt-puijaner-clei-2007.pdf

6

Figure 4: GUI PIPE2

Source : http://pipe2.sourceforge.net/images/screenshot.png

v. PRISM

The PRISM open source tool was created and is still actively maintained by Dave Parker (University of
Birmingham), Gethin Norman (University of Glasgow) and Marta Kwiatkowska (University of Oxford)12.

PRISM is a tool for modelling and analyzing systems with random or probabilistic behavior. It can
analyze discrete-time Markov chains (DTMCs), continuous-time Markov chains (CTMCs), Markov
decision processes (MDPs), probabilistic automata (PAs), probabilistic timed automata (PTAs) and the
extensions of these models with costs and rewards.13 This tool has a wide application domain, from
communication, security and multimedia protocols to randomised distributed algorithms and
biological systems.

PRISM can be run from the command-line but it also offers a graphical user interface that can be seen
in the picture bellow (Figure 5):

12 PRISIM, (2020), Prism Model Checker, http://prismmodelchecker.org/
13 KWIATKOWSKA M., NORMAN G., PARKER D., (2011), PRISM 4.0: Verification of Probabilistic Real-time
Systems.

http://pipe2.sourceforge.net/images/screenshot.png
http://prismmodelchecker.org/

7

Figure 5: PRISM GUI

Source : http://prismmodelchecker.org/screenshots.php

vi. Symbolic Hierarchical Automated Reliability and Performance Evaluator (SHARPE)

SHARPE was first developed as a part of Robin Sahner’s Ph.D. thesis in 198614. It is a hierarchical

modeling tool that analyzes stochastic models of reliability, availability, performance, and

performability.

SHARPE allows the user to choose between several model types: fault trees, acyclic series-parallel

graphs, reliability block diagrams, generalized stochastic Petri nets, acyclic Markov and semi-Markov

models, cyclic Markov and semi-Markov models, and closed single- and multi-chain product-form

queueing networks. For most of those model types, the users can choose among different analysis

algorithm provided by SHARPE15.

SHARPE can be run from the command-line but it also offers a GUI that implements description
techniques for most of the model types. This GUI that can be seen in the picture bellow (Figure 6):

14 TRIVEDI K. S., SAHNER R., (2009), SHARPE at the age of twenty-two, SIGMETRICS Perform.
15 Duke University SHARPE Portal, (2020), SHARPE Portal, https://sharpe.pratt.duke.edu/

http://prismmodelchecker.org/screenshots.php
https://sharpe.pratt.duke.edu/

8

Figure 6: GUI of SHARPE

Source : https://sharpe.pratt.duke.edu/system/files/Snapshot2.jpg

vii. TANGRAM II

Tangram-II was developed for research and educational purposes. It provides an environment for

system modeling and traffic measurement. Through the GUI, users can provide a high-level description

of a system and obtain its performance analysis. This tool supports Markovian, non-Markovian models

and Hybrid Markov Models (HMMs).16

The picture bellow (Figure 7) shows the GUI of TANGRAM II. On the left there is a Poisson source and,

on the right, there is a Poisson server (with a queue).17

Figure 7: GUI of TANGRAM II

Source : http://www.land.ufrj.br/tools/tangram2/tutorial/tangram2_firstSteps/figs/mm1k.gif

16 DE-SOUZA-E-SILVA E., FIGUEIREDO D. R., LEAO R. M.M., (2009), The TANGRAM-II Integrated Modeling
Environment for Computer Systems and Networks
17 LAND (Laboratory for modeling, analysis and development of networks and computer

systems), Tangram – II, http://www.land.ufrj.br/tools/tools.html

https://sharpe.pratt.duke.edu/system/files/Snapshot2.jpg
http://www.land.ufrj.br/tools/tangram2/tutorial/tangram2_firstSteps/figs/mm1k.gif
http://www.land.ufrj.br/tools/tools.html

9

III. Description of Java Modelling Tools (JMT)

Java Modelling Tools is a free open source tool suite for modelling computer and communication

systems. It contains six tools: JSIMGraph, SIMwiz, JMVA, JABA, JWAT and JMCH. From 2006 to this day

(26 June 2020), JMT was downloaded more than 70,500 times. 18

The most recent release of JMT is the version 1.0.5 and it was released the 12th April 2020. The

extensions presented in this document are based on this version.

In this section, Java Modeling Tools (JMT) will be presented in details

1. Brief history of JMT

Researchers at Politecnico were studying computer and communication models and, in order to make

their work easily usable by others, they started the development of a software that would encapsulate

their work within a more convenient and approachable interface.

In 1990, a first MSc thesis developed an MVA (mean value analysis) tool in C, then the programming

language changed to C++.

In 2002, the code of the previously existing tool suite for performance evaluation called Windows

modelling tools (WMT) was entirely converted to Java; and the JMT project started at Politecnico di

Milano.

In 2013, the cooperation between Politecnico di Milano and Imperial College London started. Since

then, many students and research assistants form Politecnico di Milano and from Imperial College were

involved in the JMT project.

2. Description of JMT 19

JMT is a suite of modelling tools that allows researchers and engineers to perform workload

characterization, performance evaluation, capacity planning and modelling of computer and

communication systems. The JMT suite can help software and system performance engineers to

predict the behavior of a system and quickly answer what-if questions.

The JMT suite is composed by the six following tools (see Figure 8: Start screen of JMT):

18 CASALE G., SERAZZI G., BERTOLI M., (2020), Java Modelling Tools- User manual
19 CASALE G., SERAZZI G., (2011), Quantitative System Evaluation with Java Modeling Tools (Tutorial Paper)

10

Figure 8: Start screen of JMT

i. JSIMwiz

JSIMwiz is a wizard-based interface for simulation of queueing network and Petri net models.

With this tool, the user is helped in his process of defining the network by a sequence of

wizard windows.

This tool supports state-independent routing strategies like Markovian and round robin; as well as

state dependent routing strategies like load dependent routing, shortest response time with minimum

queue length and server with minimum utilization.

The model build by the user can also contain fork-join servers (parallelism), place-transition structures

(synchronization), class switching, priority classes and finite capacity regions (blocking).

JSIMwiz also supports What-if analyses, where a sequence of simulations is run for different values of

control parameters.

ii. JMVA

With JMVA, the user specifies the structure of the model by textual wizards. The tool is

based on a stabilized version of the Mean Value Analysis (MVA) algorithm and its extensions

for single-class or multiclass product-form queueing networks, processing open, closed or

mixed workloads.

It also provides What-if analyses and a graphical representation of the results.

This tool provides several exact algorithms for closed networks:

• MVA (Mean-Value Analysis),

• RECAL (Recursion by Chain Algorithm),

11

• MoM (Method of Moments),

• CoMoM (ClassOriented Method of Moments).

And several approximate solution algorithms:

• Chow,

• Bard-Schweitzer,

• AQL,

• Linearizer,

• De Souza-Muntz Linearizer

iii. JABA

JABA is an analytical tool for the automated identification of bottlenecks in multiclass closed

product-form networks. The optimization studies (throughput maximization, identification

of the optimal load, minimization of response time etc) can be performed thanks to the

identification of the saturation sectors. Saturation sector are the mixes of requests of the different

classes in execution that saturate several resources simultaneously.

This tool is able to analyze efficiently models with thousands of queues.

iv. JWAT

JWAT allows the workload characterization and provides algorithms for data scaling, k-

means, fuzzy k-means clustering, outlier filtering and sample extraction for identifying

similarities in the input data. The tool provides several input files formats (like Apache HTTP

and IIS log files) but the users can also specify customized formats.

The clusters centroids represent the mean values of the parameters of the classes (e.g., CPU time,

number of I/Os, number of web pages pages accessed) that can be used for the workload

parameterization.

v. JMCH

JMCH is a graphical simulator that solves:

• single-station models, including single-server stations with finite (M/M/1/k) or

infinite (M/M/1) queue sizes

• multiple-server stations with limited (M/M/c/k) or unlimited (M/M/c) queue sizes

The animation allows to visualize the simulation state both on the queue buffer and on a Markov model

representing the system state

With this tool, the user can dynamically change the service time, the arrival rate and the queue size of

the system.

12

vi. JSIMGraph

JSIMGraph uses the same simulator engine as the one used by JSIMwiz, but instead of

making the user define the network by a sequence of wizard windows, it provides a

graphical user-friendly interface. This allow an easier description for both the network

layout and the input parameters; and a nicer visualization of complex systems.

Moreover, JSIMGraph facilitates the process of performing an evaluation study by automatizing the

critical statistical decisions, such as transient detection and removal, variance estimation, and

simulation length control. This way, the users are not required to take decisions about parameters they

may not be familiar with. Then, when all performance indexes are estimated with the required

accuracy, the simulation automatically stops.

This tool supports what-if analyses, dynamical presentation of simulation state, performance metrics

estimates and related confidence intervals. As JSIMwiz, it supports the evaluation of the most popular

types of queueing models and several other constructs that cannot be solved by an exact analytical

technique like non-product-form networks. JSIMGraph provides supports for fork-and-join elements,

blocking mechanisms, burstiness, priorities, state-dependent routing strategies, user-defined general

distributions, import and reuse of log data.

Arrival rates :

JSIMGraph generates arrival rates for open classes of customers by source stations and station service

times (for any type of station in open and closed models). They can be generated according to the

following distributions:

Queueing disciplines:

JSIMGraph allows the use of preemptive and non-preemptive queueing disciplines:

• Non-preemptive:

o First Come First Served (FCFS)

o Random (RAND)

o Last Come First Served (LCFS)

o Longest Job First (LJF)

o Shortest Job First (SJF)

o Longest Expected Processing Time (LEPT)

o Shortest Expected Processing Processing Time (SEPT)

• Preemptive:

o Processor Sharing (PS)

o Discriminatory Processor Sharing (DPS)

o Generalized Processor Sharing (GPS)

• Burst (General),

• Burst (MAP: Markovian Arrival Process),

• Burst (MMPP2: Markov-Modulated Poisson Process of order 2),

• Coxian,

• Deterministic,

• Erlang,

• Exponential,

• Gamma,

• Hyperexponential,

• Normal,

• Pareto,

• Phase-Type,

• Replayer,

• Uniform

13

In case of limited capacity regions (blocking regions), the available drop rules are: Drop, Waiting

Queue and Blocking After Service (BAS).

Routing strategies

The path followed by requests among the resources can be described probabilistically or by using

one of the following rooting strategies:

• Fastest Service

• Least Utilization

• Load Dependent Routing

• Random

• Join the Shortest Queue

• Shortest Response Time

• Round Robin (with and without weights)

• Power of k choices (with and without memory)

• Disabled (the values of the control parameters are evaluated on the stations connected in

output to the considered one)

These strategies can be further combined among themselves through the use of a routing station.

3. Study case using JSIMGraph

In this section, two study cases will be presented to show the kind of problems that JSIMGraph can
solve. The study cases are taken from the JMT user manual (CASALE G., SERAZZI G., BERTOLI M., (2020),
Java Modelling Tools- User manual)

i. First infrastructure: A computing server and a storage server equipped with two disks20

In this scenario, we study the digital infrastructure of a company, the goal is to evaluate the

performances of the system, in particular we want to evaluate the system throughput and response

time. The infrastructure is composed of a computing server and a storage server equipped with two

disks.

The workload is considered as a single closed class with a population of N = 3 customers.

The infrastructure is composed of four stations: the computing server and the disks are modelized by

queueing load independent stations (CPU, Disk1 and Disk2), and the user’s think time (Z=16s) between

interactions with the system is modelized by a delay center (users). The following image (Figure 9)

shows the infrastructure layout (done using JSIMGraph):

20 CASALE G., SERAZZI G., BERTOLI M., (2020), Java Modelling Tools- User manual, Chapter 3, page
104

14

Figure 9: Network layout, first study case

The service times are distributed exponentially. Their value per station, together with the values of the

Visits are shown in the following table (Table 1):

 CPU Disk1 Disk2 Users

Service time (sec) 0.006 0.038 0.030 16

Visits 101 60 40 1
Table 1: Values for Service time and visits, first study case

The model is parametrized with the following parameters (Table 2):

Station Service distribution Routing strategy

Users Exponential λ=16 Random

CPU Exponential λ=0.06 Probabilities:
- Disk1: 60/101
- Disk2: 40/101
- Users: 1/101

Disk1 Exponential λ=0.038 Probabilities:
- CPU: 1

Disk2 Exponential λ=0.030 Probabilities:
- CPU: 1

Table 2: Stations parameters, first study case

After parametrizing the model, we can choose the performance indices that interest us. The selected

performance indices will be collected and plotted by the simulation engine.

We select the following performance indices:

• Throughput [jobs/sec] (for CPU, Disk1, Disk2, Users and the System)

• Number of customers [jobs] (for CPU, Disk1, Disk2, Users and the System)

• Residence time [sec] (for CPU, Disk1, Disk2, Users)

• Utilization (for CPU, Disk1, Disk2 and Users)

• Response time [sec] (for the system)

15

When running the simulation, JSIMGraph colors the stations according to the percentages of station

busy time and of the queue length due to customers (see Figure 10). JSIMGraph also displays, the

progress of the average values of the selected performance indices and the extremes of the confidence

intervals. All the results can then be exported in csv format.

Figure 10: Network layout after simulation, first study case

Table 3 shows the average, min and max values of the performance indices at the station level at the

and at the level of the global system.

 Residence
time
[sec]

Utilization
[%]

Throughput
[jobs/sec]

Response
Time [sec]

Number
of

customers
[jobs]

CPU Min

Max

Avg

0.8915

0.9843

0.9379

0.0788

0.0950

0.0869

13.6539

16.4400

14.9179

 0.0840

0.0988

0.0914

Users Min

Max

Avg

14.9246

16.3191

15.6218

2.1573

2.4757

2.3165

0.1391

0.1573

0.1476

2.1573

2.4757

2.3165

Disk1 Min

Max

Avg

3.0748

3.7180

3.3964

0.2993

0.3576

0.3285

7.9733

9.1456

8.5193

0.3811

0.4537

0.4174

Disk2 Min

Max

Avg

1.6924

1.9179

1.8052

0.1622

0.1887

0.1755

5.3243

6.2704

5.7587

0.1779

0.2093

0.1936

System Min

Max

Avg

0.1387

0.1575

0.1475

19.1441

21.7909

20.4675

-

-

3.000
Table 3: Simulation results, first study case

16

This analysis of the digital infrastructure of the company, allowed us to quickly and easily evaluate its

performances at the scale of the system but also as the scale the station.

ii. Second infrastructure: Study of the behavior of a station after a growth of service time21

In this second scenario, we study the infrastructure of an Intranet composed of a storage server and

an Apache server. The storage server consists of three disks (modelized by queuing stations) accessed

according to a RAID0 striping algorithm (modelized by a fork station). The Apache web server is

composed of two independents servers, preceded by a load balancer that splits the request among

them. For performance reasons, the Apache web server can only accept a limited number of

concurrent requests. The Apache server is therefore modelled as a Finite Capacity Region with the

maximum number of customers MaxClients = 100.

The figure below (Figure 11) shows the layout of the infrastructure

Figure 11: Network layout, second study case

The goal of the analysis we will perform is to predict the behavior of the first web server (station Web

Server 1) if its service time grows by 150%

The customers are subdivided into two open classes, Class0 and Class1. The customers of class0 are

only allowed to access the Apache server while the customers of class1 can visit either the storage or

the Apache server according to a probabilistic algorithm.

21 CASALE G., SERAZZI G., BERTOLI M., (2020), Java Modelling Tools- User manual, Chapter 3, page
107

17

Interarrival times of class0 and class1 customers follows the distribution below:

• Class0: hyperexponential with parameters (p, λ1, λ2) = (0.291, 0.182, 0.442),

• Class1: exponential with λ=5

The RAID0 striping algorithm is modelized by a Fork station. When a request arrives at station RAID0,

it is splitted in three requests sent in parallel to the three disks of the storage server. The Fork degree

at RAID0 station is 3. This means that for each incoming request, three requests are generated in each

outgoing link.

The following table (Table 4) shows the service distribution and Routing strategy of the stations of the

network.

Station Service
distribution

Routing strategy

Requests Class0 Probabilities:
- LoadBalancer: 1

Class1 Probabilities:
- LoadBalancer: 0.5
- RAID0: 0.5

Disk 1 Class0 Exponential λ=5 Random

Class1 Exponential λ=0.5 Random

Disk 2 Class0 Exponential λ=5 Random

Class1 Exponential λ=0.5 Random

Disk 3 Class0 Exponential λ=5 Random

Class1 Exponential λ=0.5 Random

LoadBalancer Class0 Shortest Queue Length

Class1 Shortest Response Time

Web Server 1 Class0 Exponential λ=1 Random

Class1 Exponential λ=1 Random

Web Server 2 Class0 Exponential λ=1 Random

Class1 Exponential λ=1 Random

Table 4: Stations parameters, second study case

In this scenario, JSIMGraph is used to study the behavior of the first web server (station Web Server 1)

if its service time for all classes grows by 150%: This is a What-If analysis. Particularly, the company

owning the network needs to predict the System Response Time for both Class0 and Class1 customers

at confidence interval 0.99 and maximum relative error 0.05. It is also needed to know the global

throughput of WebServer1 at confidence interval 0.90 and maximum relative error 0.10.

18

Therefore, we select the following performance indices

• Throughput [jobs/sec] (for all classes for Web Server 1)

• Response time of the system [sec] (for class0 and class1)

• Throughput of station Web Server 1 (for all classes)

The results of the What-if analysis in terms of Throughput for both Class0 and Class1 customers is

shown by Figure 12 and Table 5.

Figure 12: Results on throughout (all classes), second study case

 100.00% 105.56% 111.11% 116.67 122.22% 127.78% 133.33% 138.89% 144.44% 150.00%

Mean
Value
[jobs/s]

0.2116 0.2004 0.1907 0.2080 0.2005 0.1937 0.1844 0.1874 0.1837 0.1779

Max
[jobs/s]

0.2246 0.2053 0.2068 0.2281 0.2121 0.2021 0.1985 0.1924 0.2040 0.1867

Min
[jobs/s]

0.2000 0.1957 0.1769 0.1911 0.1901 0.1860 0.1722 0.1827 0.1671 0.1700

Table 5: Results on throughout (all classes), second study case

• Response time of the system for Class0

The results of the What-if analysis in terms of System Response Time for Class0 customers is shown

by Figure 13 and Table 6.

19

Figure 13: Results on system response time for Class0, seconf study case

 100.00% 105.56% 111.11% 116.67 122.22% 127.78% 133.33% 138.89% 144.44% 150.00%

Mean
Value
[jobs/s]

1.1040 1.1137 1.1515 1.1884 1.2123 1.2644 1.2974 1.3257 1.3732 1.3723

Max
[jobs/s]

1.1438 1.1619 1.1940 1.2245 1.2541 1.3238 1.3613 1.3868 1.4414 1.4106

Min
[jobs/s]

1.0643 1.0655 1.1090 1.1523 1.1706 1.2050 1.2335 1.2647 1.3051 1.3339

Table 6: Results on system response time for Class0, second study case

• Response time of the system for Class1

The results of the What-if analysis in terms of System Response Time for Class1 customers is shown

by Figure 14 and Table 7: Results on system response time class1, second study caseTable 7.

Figure 14: Results on system response time class1, second study case

20

 100.00% 105.56% 111.11% 116.67 122.22% 127.78% 133.33% 138.89% 144.44% 150.00%

Mean
Value
[jobs/s]

1.7951 1.7795 1.8509 1.8280 1.8406 1.8472 1.8695 1.8718 1.9192 1.9150

Max
[jobs/s]

1.8771 1.8250 1.9414 1.9103 1.8992 1.9142 1.9423 1.9287 1.9996 2.0027

Min
[jobs/s]

1.7132 1.7340 1.7603 1.7458 1.7820 1.7802 1.7967 1.8148 1.8389 1.8272

Table 7: Results on system response time class1, second study case

IV. Improving JSIMGraph

As we saw in the previous section, JSIMGraph is a powerful tool for performing the analysis of

computer systems and predicting their behaviors, but according to feedbacks from the users of JMT,

some aspects of the graphical user interface could still be improved.

1. The graphical user interface of JSIMGraph

The graphical user interface of JMT is built with Java Swing: a lightweight GUI widget toolkit used to

create windows-based applications. It is entirely written in Java and thus is platform-independent. Java

Swing is part of the Java Foundation Classes (JFC) and is built on the top of the Abstract Windowing

Toolkit (AWT) API.

Inside tool JSIMGraph, the network model is drawn using the class Graphics2D of Swing.

2. Aspects of JSIMGraph that could be improved

This section describes some of the issues concerning the GUI faced by the users of JMT. This section,

as well as the rest of this document, focuses on the version 1.0.5 of JMT.

i. The automatic connection shapes generating a confusing layout

When a user wants to connect two stations together, he performs the following steps:

1. Clicks on the connection button:

2. Clicks on the source station

3. Drags the mouse to the target station

4. Releases mouse on the target station

Then, the shape of the arc is generated automatically.

The pro of this solution is that the user does not have to build the connection shape himself so he saves

time. The con is that sometimes, the automatic shape is not the one the user would like to have. When

a very complex system is modelized, the cons exceed the pros. Indeed, the automatic arcs shapes can

21

sometime make the graph difficult to understand. In that case the only possibility for the user to

improve the layout is to move the stations and hope that the new automatically generated arc will be

nicer.

The figure below (Figure 15) shows the model of a rock-collapse forecasting system. More details about

the system can be found in the publication Capacity Planning of Fog Computing Infrastructures for

Smart Monitoring written by Riccardo Pinciroli, Marco Gribaudo, Manuel Roveri and Giuseppe

Serazzi22.

This network is given as an example in this section because its layout suffers from unclear connections.

Especially the arcs from Station Transmitting to station Deplete, from Station Deplete to station

Transmitting and from Station Transmitting to station Rest are not easily distinguishable.

Figure 15: Model with problematic arc shapes

ii. The input and output overlap

Another reason for which the connections are hardly readable is that when several arcs connect the

same stations, their shape overlap at the ports of the stations.

In Figure 16, we can see that two arcs are existing from station Deplete and that two arcs are entering

station Transmitting. But in input of the station Transmitting, the two arcs coincide, so we see only one

arrow. At the output of station Deplete where two arcs exit, we observe the same phenomenon: the

two arcs completely overlap.

22 PINCIROLI R., GRIBAUDO M., ROVERI M., SERAZZI G. (2018) Capacity Planning of Fog Computing
Infrastructures for Smart Monitoring

22

Figure 16: highlight of port input and output overlap problem

iii. The impossibility of quickly deleting an arc.

In JSIMGraph version 1.05, the arcs are non-selectable. So, if a user makes a mistake when connecting

two stations, he does not have the possibility to simply select and delete the wrong arc. In order to do

so he must delete the source or target station of the arc. This can cause a non-negligible waste of time,

especially if the station simulation parameters were already filled or if the station had other

connections.

iv. The impossibility to rotate stations

The station can be mirrored vertically as shown in Figure 17 but they can’t be rotated.

Figure 17: Example of station being mirrored

This is problematic when the system being modelized has the kind of layout shown in Figure 18.

23

Figure 18: Example of problem caused by the impossibility to rotate stations

With this type of network architecture, it would be preferable have the possibility to rotate the stations

Transition 3, Transition 4 and Place1 by 90°. The following figure (Figure 19) shows how much the

rotation of stations could improve the layout in that case.

Figure 19: Example of a nicer layout that could be obtained by rotating stations

v. The difficulty to properly and quickly align stations

The current version of JSIMGraph does not give the possibility to the users to snap stations to a grid.

The consequence is that it can be inconvenient and time consuming for the users to correctly align

stations without any guidance. And, if connected stations are not correctly aligned, the shape of the

connection will present a little undesirable step.

3. Proposed improvements

The goal of my thesis at Politecnico di Milano was to solve the problems mentioned before. In order

to do that, the following improvements were implemented:

24

I 1. Give the possibility to the user to choose between two types of connections with a different

graphical appearance but with the same semantic meaning. The first type of connection is the

one already existing (with the previously described pros and cons). The second type of

connection allows the user to draw the shape of the arc with the mouse. With the new

connection type, the user has the possibility to choose the intermediary points of the arc and

to do sharp or curved edges (thus solving the problem presented in section “The automatic

connection shapes”).

I 2. Give the possibility to the user to modify the shape of a hand draw connection once it has been

created. This implies the possibility to select arcs (thus solving the problem presented in

section “The impossibility of quickly deleting an arc”) and the possibility to move the input and

output of arcs (solving the problem presented in section “The input and output overlap”).

I 3. Allow the rotation of stations. (cf section “The impossibility to rotate stations”)

I 4. Give the possibility to the user to snap items (stations and arcs) to the grid (cf section “The

difficulty to properly and quickly align stations”).

4. Requirements

The Table 9 and Table 8 describe more precisely the extensions that were developed during this thesis

work.

Table 8: non-functional requirements

NON-FUNCTIONAL REQUIREMENTS

Requirement
id

Description

NR1 The new version of the tool must retro compatible

NR2 The development language must be JAVA

NR3 The GUI extensions must use Swing

NR4 The tool must able to open models created with previous versions of JMT

25

FUNCTIONAL REQUIREMENTS

Requirement id Description

I1

R1 The system must offer the possibility to connect stations with a Bezier
connection or an automatic connection

R2 The system must allow the user to draw Bezier connections using the mouse

R2.1 The system must allow the user to draw arcs with an arbitrary number of
intermediary points

R2.2 The system must allow the user to draw arcs with curved or sharp edges

I2

R3 The system must offer the possibility to replace a connection of one type by a
connection of the other type (Bezier / automatic)

R4 The system must allow the selection of connections

R5 The system must allow the modification of connection of Bezier type

R5.1 When a Bezier connection is selected, the system must make visible to the user
the control points responsible for the shape of the connections

 R5.2 The system must allow the user to move the control points of a Bezier connection

 R5.3 The system must allow the user to add control points to a Bezier connection

 R5.4 The system must allow the user to remove control points from a Bezier
connection

 R5.5 The system must allow the transformation of sharp edges into curved edges (and
inversely) for Bezier connections.

 R5.6 The system must allow the user to break the continuity of a connection (this
means that the user creates a hole in the connection)

I3 R6 The system must allow the rotation of station by hops of 45° to the left or to
the right

I4

R7 The system must allow to snap stations and arcs to a grid

R7.1 The system must allow the user to enable and disable the grid functionality as
he wishes.

Table 9: functional requirements

26

V. Implementation of the extensions

1. Modelling of Bezier curves

The objective is to give the users the possibility to connect stations by drawing arbitrary shapes with

the mouse. The user must be able to draw shapes with sharp or curved edges and with an arbitrary

number of intermediary points.

The figure below (Figure 20) shows an example of the type of shape that is made possible with this

new feature:

Figure 20: Example of new connection shape

 The shapes of the connection are implemented using Bezier curves

i. Definition of Bezier curves

A Bezier curve is a parametric curve related to Bernstein polynomial. Bezier curves are named after

Pierre Bezier, who used it in the 1960s for designing curves for the bodywork of Renault cars.

General definition

The Bezier curve for the n+1 controls points (P0, … Pn) is the set of points defined by the parametric

representation: 𝑃(𝑡) = ∑ 𝐵𝑖
𝑛𝑛

𝑖=0 (𝑡) ∗ 𝑃𝑖 with 𝑡 ∈ [0 ; 1] and with 𝐵𝑖
𝑛 the Bernstein polynomial :

The series of points P0, ..., Pn forms the Bezier polygon (or control polygon). The convex hull of the

Bezier polygon contains the Bezier curve.

To implement the new type of connection in JSIMGraph, a specific type of Bezier curves is used: Cubic

Bezier curves.

Specific case: Cubic Bezier curves

𝑃(𝑡) = ∑(
𝑛
𝑖
) (1 − 𝑡)𝑛−𝑖

𝑛

𝑖=0

𝑡𝑖𝑃𝑖

 = (1 − 𝑡)𝑛𝑃0 + (
𝑛
1
) (1 − 𝑡)𝑛−1𝑡𝑃1 + ⋯+ (

𝑛
𝑛 − 1

) (1 − 𝑡)𝑡 𝑛−1𝑃𝑛−1 + 𝑡𝑛𝑃𝑛 0 ≤ 𝑡 ≤ 1

27

A cubic Bezier curve is defined by four points P0, P1, P2 and P3. The curve starts from P0 and is directed

towards P1 and arrives at P3 coming from the direction of P2. In general, the curves don’t intersect

with the points P1 and P2: those points only give an indication on direction. The figure bellow (Figure

21) shows an example of a cubic Bezier curve:

Figure 21: Example of cubic Bezier curve

A cubic Bezier curve can be defined as an affine combination of the four controls points. Its explicit

expression is:

𝑃(𝑡) = (1 − 𝑡)3𝑃0 + 3(1 − 𝑡)2𝑡𝑃1 + 3(1 − 𝑡)𝑡 2𝑃2 + 𝑡3𝑃3 𝑤𝑖𝑡ℎ 0 ≤ 𝑡 ≤ 1

ii. The implementation

The shape of a connection is built using a sequence of cubic Bezier curves. The Figure 22 shows an

example of a connection composed of three cubic Bezier curves.

Figure 22: Example of structure of new connection shape

As observed in Figure 22, a straight line is obtained by making the controls points P1 and P2 coincide

respectively with P0 and P3.

28

As java is an oriented-object language, two new classes were created to represent a connection shape.

• Class JMTPath:

Represents the shape of the connection. It has an attribute arcs which is a list of instances of

JMTArc

• Class JMTArc:

Represents the shape of a portion of connection. A JMTArc can be written as a cubic Bezier

curve. It has three attributes:

o source: a point representing the position of the source the arc (called P0 in the Figure 22)

o arcPoints: a list of points representing the positions of the control points of the arcs (called

P1 and P2 in the Figure 22)

o target: a point representing the position of the target the arc (called P3 in the Figure 22)

Before the implementation of this new feature, the connection shapes were built automatically by the

software. The construction of the connection was done dynamically so there was no need to store data

about the shape of the connection. Now the user also has the possibility to draw by himself the

connections shapes, this implies that the shape of the connection needs to be stored.

When two stations are linked by a Bezier connection, the shape of that connection is stored in the

model in the form of a hash map where the shape of the connection (an instance of JMTPath) can be

retrieved from the identifiers of the source and target stations.

The position of the points of the shape are relative to the position of the stations following the

following schema:

For all arcs except the last:

• Point P0: relative to the position of the source station

• Point P1: relative to P0

• Point P2: relative to P3

• Point P3: relative to the position of the source station

For the last arc:

• Point P0: relative to the position of the source station

• Point P1: relative to P0

• Point P2: relative to P3

• Point P3: relative to the position of the target station

The points P1 and P2 indicate the direction of the arc at points P0 and P3 respectively, they will

therefore be called tangents.

iii. New format for the xml file

When the user presses the save button, the connections shapes stored in the model are written in the

xml file. The xml file is the file that contains all the information about a model (the stations, their

29

positions, the connections, the parameters (queue strategies, routing strategies…), the simulation

results etc). In order to be able to display the correct connections shapes when a model is opened, the

xml file must also contain the shapes of the connections for stations connected with Bezier

connections.

The following extract of the XML file shows how the connection shapes are defined for the example

shown in Figure 22.

.

.

.
 <connectionShape source="Source 1" target="Queue 1">
 <arc>
 <source x="0.0" y="0.0"/>
 <point x="59.82499999999999" y="-93.68799999999999"/>
 <point x="-53.0" y="67.0"/>
 <target x="91.82499999999999" y="10.312000000000012"/>
 </arc>
 <arc>
 <source x ="91.82499999999999" y="10.312000000000012"/>
 <point x ="32.82499999999999" y="87.31200000000001"/>
 <point x ="-42.0" y="-90.0"/>
 <target x="208.825" y="30.312000000000012"/>
 </arc>
 <arc>
 <source x="208.825" y="30.312000000000012"/>
 <point x="0.0" y="0.0"/>
 <point x="0.0" y="0.0"/>
 <target x="0.0" y="0.3400000000000034"/>
 </arc>
 </connectionShape>
.
.
.

This new version of JMT supports both types of connections shape: automatic and Bezier.

When a file is opened in JMT, the first step is to read the XML file. If a connection shape is found in the

XML file, and if the model contains a corresponding connection for that connection shape, then the

connection shape is added in the model in the form of a hash map that links the shape of the

connection with the identifiers of the source and target stations.

Then, when the arcs need to be rendered, the renderer checks if a connection shape exist in the model,

if yes, the connection is rendered according to the specified shape, otherwise the connection is

renderer by dynamically computing a shape.

So, if a model created with an older version is opened with this new version of JMT, the XML file will

not contain any connections shapes. So, the connections will be rendered using the automatic shape

computation: the result will be the same as if the model was opened in the previous version of JMT.

Therefore, there is no compatibility issue between the two versions of JMT. After opening a model

made with the older version of JMT, the user will have the possibility to change the connection types

by transforming any existing connection into a Bezier connection.

30

If a model containing connections shapes is opened with the older version of JMT, the section of the

XML file concerning the connection shape will simply be ignored, so the connections will be displayed

as if they were automatic connections.

2. The process of drawing of Bezier connections.

For connecting stations, the user has the choice between an automatic edge or an edge that he can

draw himself. The JSIMGraph tool has two buttons for connecting stations:

For connecting stations with an automatic connection

For connecting stations with a manual Bezier connection

When a user wants to connect two stations together with a Bezier connection, he performs the

following steps:

1. Clicks on the connection button:

2. Clicks on the source station

 If the shift key was pressed when doing the click:

 2.1 drags the mouse to select the position of the control point P1

 Otherwise the arc is sharp (P1 is set at the same location as P0)

3. Moves the mouse to the position of the intermediary point (Point P3 of the current arc and point P0

of the successive arc) and clicks

 If the shift key was pressed when doing the click:

3.1 drags the mouse to select the position of the control point P2 of the current arc and of the

control point P1 of the successive arc

 Otherwise the arc is sharp (P2 is set at the same location as P3)

4. Repeats the step 3 for how many intermediary points necessary

5. Moves the mouse to the location of the target station and clicks

 If the shift key was pressed when doing the click:

 5.1 drags the mouse to select the position of the control point P2

 Otherwise the arc is sharp (P2 is set at the same location as P3)

At any time, the user can stop the process of drawing the arc by pressing the key Escape on his

keyboard.

This process can also be explained as a state diagram:

31

Figure 23: State diagram of the process of drawing Bezier connections

In order to facilitate the drawing phase, and because this is not restrictive in most cases, the users only

have the possibility to create connections that respect the following rules:

• The connection is continuous:

If the connection contains 𝑛 arcs and 𝑛 ≥ 2, then ∀ 𝑖 ∈ [0, 𝑛 − 1], 𝑃3𝐴𝑟𝑐 𝑖 = 𝑃0𝐴𝑟𝑐 𝑖+1

• The tangents are symmetric:

If the connection contains 𝑛 arcs and 𝑛 ≥ 2, then ∀ 𝑖 ∈ [0, 𝑛 − 1], 𝑃2𝐴𝑟𝑐 𝑖 = − 𝑃1𝐴𝑟𝑐 𝑖+1

The following figure (Figure 24) presents a visual example:

Figure 24: Example of a Bezier connection showing the continuity and symmetry of tangents

Once the connection has been created, the user has the possibility to modify the shape of the

connection so that it doesn’t respect the conditions of continuity and of symmetry of the tangents.

32

3. Modifying the connection shapes

Once an arc has been created, it can be deleted and its shape can be modified.

In order the delete an arc, the user simply has to select the arc by clicking on it. Once the arc is selected,

it can be deleted the same way as the stations: by clicking on the button or by pressing Del on the

keyboard.

The arc selection feature has been implemented for both the new connection type and the old one

(the automatic one).

When the user selects a Bezier connection a tool box appears presenting buttons for all the possible

action that can be done on an arc:

• Moving control points

• Adding intermediary points

• Deleting control points

• Adding tangents to sharp control points

• Breaking the tangent symmetry

• Breaking the continuity

i. Moving controls points

The user can move any type of control point: tangents points (P1 and P2) as in Figure 25, and also

intermediary points like P0 and P3. The points can be moved anywhere on the canvas, except for the

point P0 of the first arc and the point P3 of the last arc. For those points, the user is allowed to move

the point only inside the boundary of the station. The authorized zone is highlighted by a rectangle as

seen in Figure 26.

Figure 25: moving point P2 of the first arc

33

Figure 26: Moving point P0 of the first arc

As seen in Figure 24, the tangents (Points of P1 and P2) are symmetric by default. This means that

moving a point P2 also implies moving the point P1 of the next arc in order to keep the symmetry. If

the user wants to move tangents independently, he has to press the fifth button and performs the

action described in section “Breaking the tangent symmetry”.

The process of moving control points is very simple: First, the user selects the connection by clicking

on it. This reveals the tool box with the button for moving control points selected by default, so the

user can start moving control points:

• First, he simply places his mouse on a control point (if the pointer is near enough to the control

point, it will be highlighted in red).

• Then he selects the control point by clicking on it and keeping the mouse pressed.

• To move the control point he drags the mouse (an overlay showing the new shape of the arc

is displayed)

• Finally, he validates the new position of the control point by releasing the mouse.

The state diagram Figure 27 gives an overview of the process of moving control points. The activity

diagram displayed in Figure 28 shows in further details how control points are moved according to

their type (P0, P1, P2 or P3).

Figure 27: State diagram: moving control points

When the user releases the mouse, the new position of the moved control point is validated and the

connection shape stored in the model is updated.

34

Figure 28: Activity diagram: moving control points

35

ii. Adding intermediary points

The user also has the possibility to add a new control point on any arc of a connection. The exact

position of the new control point cannot be precisely chosen by the user as the added point will be

automatically placed in the middle of the selected arc. The position of this point can then be modified

as explained in section “Moving controls points”.

Figure 29 shows the addition of a new control point in the last arc. The figure on top shows the

selection of the arc (the arc is highlighted in red) and the bottom figure shows the new point.

Figure 29: Adding a point on the last arc

36

In order to add a control point, the user must follow the following steps:

• First, he selects the connection by clicking on it.

• This reveals the tool box on which the user must select the second button.

• Then the user simply places his mouse on the arc on which he wants to add the control point

(the arc is highlighted in red if the mouse is close enough to arc).

• Finally, he confirms by clicking on the arc (pressing the mouse and releasing) and a new control

point is inserted half way through of the selected arc.

The state diagram Figure 30 gives an overview of the process of adding control points.

Figure 30: State diagram: adding control point

The activity diagram displayed in Figure 31 shows in further details how a connection shape is modified

when a new intermediary point is added.

37

Figure 31: Activity diagram: adding intermediary point

38

iii. Deleting control points

The user can delete both tangents points (P1 and P2) and intermediary points (P0 and P3) as in Figure

32. When a tangent point is deleted, the tangent becomes null. When an intermediary point is deleted

the two arcs respectively originating and leaving that point are replaced by one unique arc.

Figure 32: Removing an intermediary point

In order to delete a control point, the user must follow the following steps:

• First, he selects the connection by clicking on it.

• This reveals the tool box on which the user must select the third button.

• Then the user simply places his mouse on the control point that he wants to delete (the point

is highlighted in red if the mouse is close enough to it).

• Finally, he confirms by clicking on the control point (pressing the mouse and releasing) and the

control point is removed.

39

The state diagram at Figure 33 gives an overview of the process of adding control points. This state

diagram is valid for deleting points, adding tangents and breaking connection. In the case of the point

deletion, a “valid point” is any control point except the point P0 of first arc and the point P3 of the last

arc.

Figure 33: State diagram for deleting points, adding tangents and breaking connection

The activity diagram displayed in Figure 34 shows in further details how a connection shape is modified

when a control point is removed.

40

Figure 34: Activity diagram: delete control point

41

iv. Adding tangents to sharp intermediary points

A sharp intermediary point is a point of type P0 or P3, with a null tangent. As the coordinates of the

points P1 and P2 are relative respectively to the points P0 and P3, a null tangent means that, for the

considered arc, the point P1 or the point P2 is null. Figure 35 shows symmetrical tangents being added

for point P3 of Arc 1 and for point P0 of Arc 2.

Figure 35: adding tangent to a sharp intermediary point

In order to add tangents to a control point, the user must follow the following steps:

• First, he selects the connection by clicking on it.

• This reveals the tool box on which the user must select the fourth button.

• Then the user simply places his mouse on the control point for which he wants to add tangents

(the control point is highlighted in red if the mouse is close enough to it and if it is a sharp

control point).

• Finally, he confirms by clicking on the control point (pressing the mouse and releasing) and the

tangents are added.

The state diagram Figure 33 gives an overview of the process of adding tangents to a sharp control

point. In this situation, a “valid point” is any sharp control point.

42

The activity diagram displayed in Figure 36 shows in further details how a connection shape is modified

when tangents are added to a sharp control point.

Figure 36: Activity diagram: Add tangents to sharp intermediary point

43

v. Breaking the tangent symmetry

As seen in Figure 24, the tangents (Points of P1 and P2) are symmetric by default. This means that if a

point P1 is moved, and if the connection is continuous at point P0, the point P2 of the previous arc will

also be moved in order to keep the symmetry.

If the user wants to break the symmetry, this is possible using the fifth button of the tool bar: the fifth

functionality of the tool bar allows the user to move only one side of the tangent.

Figure 37 shows the point P1 of the second arc being moved independently of the other tangent point.

Previously the position of this point was linked to the position of the point P3 of the first arc, but the

symmetry between those two points has now been broken.

Once the symmetry has been broken, the tangents will be moved independently using the first button

of the tool bar.

Figure 37: Breaking the tangent symmetry

The process of breaking the tangents symmetry is very simple: First, the user selects the connection

by clicking on it. This reveals the tool box on which the user must select the fifth button:

• First, he simply places his mouse on a tangent point (if the pointer is near enough to the control

point, it will be highlighted in red).

• Then he selects the tangent point by clicking on it and keeping the mouse pressed.

• To move the tangent point, he drags the mouse (an overlay showing the new shape of the arc

is displayed)

Finally, he validates the new position of the tangent point by releasing the mouse.

44

Figure 38 gives an overview of the process of moving tangents points by breaking the symmetry. The

activity diagram displayed in Figure 39 shows in further details how a connection shape is modified

when tangent symmetry is broken.

Figure 38: State diagram: Moving tangent point by breaking the symmetry

When the user releases the mouse, the new position of the moved control point is validated and the

connection shape stored in the model is updated.

45

Figure 39:Activity diagram: Breaking the tangent symmetry

46

vi. Breaking the connection continuity

As seen in Figure 24, the connections are continuous by default. This means that for a connection

containing 𝑛 arcs, ∀ 𝑖 𝜖 [0, 𝑛 − 2], the point P3 of arc 𝑖 and the point P0 of arc 𝑖 + 1 coincide. This

means that if a point P3 is moved by a given offset, and if the connection is continuous at point P3, the

point P0 of the next arc will also be moved by the same offset in order to keep the continuity.

If the user wants to break the continuity, this is possible using the sixth button of the tool bar: the sixth

functionality of the tool bar allows the user to separate the point P3 of arc 𝑖 and the point P0 of arc

𝑖 + 1 ∀ 𝑖 𝜖 [0, 𝑛 − 2] with 𝑛 the number of arcs in the connection.

Figure 40 shows the breakage of the continuity between the penultimate arc and the last arc. The

figure on top shows the selection of the breaking point (the intermediary point is highlighted in red)

and the bottom figure shows the result.

Once the continuity has been broken, the intermediary points P0 and P3 will be moved independently

using the first button of the tool bar. This allow the user to merge the arcs back together by moving

the broken pieces so that they coincide. Breaking the continuity also imply breaking the symmetry so

the tangents will also be moved independently until the arcs are merged back together.

Figure 40: Breaking the arc continuity

47

In order break a connection, the user must follow the following steps:

• First, he selects the connection by clicking on it.

• This reveals the tool box on which the user must select the sixth button.

• Then the user simply places his mouse on the intermediary point where he wants to break the

arc (the control point is highlighted in red if the mouse is close enough to it).

• Finally, he confirms by clicking on the control point (pressing the mouse and releasing) and the

connection is broken.

A connection can be broken at any intermediary point except at the source station (point P0 of first

arc) or at the target station (point P3 of the last arc).

The state diagram Figure 33 gives an overview of the process of breaking a connection form the user’s

perspective. In this situation, a “valid point” is any intermediary point except point P0 of first arc or

point P3 of the last arc.

The activity diagram displayed in Figure 41 shows in further details how a connection shape is modified

when the continuity is broken.

48

Figure 41: activity diagram: Breaking the connection continuity

49

vii. Possibility to switch between connection types.

As explained before, the user can choose between connecting stations with an automatic and non-

editable connection or with a Bezier connection that has to be hand drawn and that can be modified

afterward.

It is also possible to change the type of a connection already created. This way it is possible to update

the connections of a network created with an older version of JMT (where the only available

connection type was the automatic one).

The connection type can be modified in the two ways: automatic to Bezier and Bezier to automatic.

The modification of a connection type only impacts the appearance of a connection: it doesn’t

influence the input parameters of the model like the firing rules.

4. Station rotation

As described in section “The impossibility to rotate stations”, JMT did not give to the user the possibility

to rotate stations. As this could compromise the clarity of networks layouts, functionalities allowing

the rotation of stations by hops of 45° (to the left or to the right) were added to the tool.

The rotation of stations is made possible only for stations that are only connected with Bezier

connections. This choice was made because the algorithm in charge of automatically computing the

shape of non-Bezier connection is not made to take in consideration the fact that stations can be

rotated.

In order to prevent the rotation of stations connected by a non-Bezier connection, two new attributes

were added to the definition of a station (class JmtCell)

o isFreeRotationAllowed: a Boolean equal to true if the station is linked only to Bezier

connections and false otherwise.

o rotationAngle: a double representing the rotation angle in radians. The attribute rotationAngle

is always equal to 0.0 if isFreeRotationAllowed is false.

Each time a new connection is added, or each time a connection type is changed, a test is performed

to check if the status of the attribute isFreeRotationAllowed should be changed for the source or

target station.

In order to rotation a station the user must:

1. Select the station

2. Click on one of the two buttons for rotating stations:

If the free rotation is not authorized for the selected station, the user will not be able to perform the

step 2 because the rotations buttons will be disabled.

It is possible to combine rotation and mirroring of station without restrictions.

50

The rotation of a station implies the rotation of the station icon, the rotation of the ports and the

rotation of the end of the Bezier connections linked to that station.

i. The image rotation

When a station is rotated, the image of the station must be reloaded. The image of the station is

rotated by the specified rotation angle using an affine transformation, and the size of the image is

changed accordingly.

If we call θ the rotation angle in radians, the new width (w2) and the new height (h2) are determined

using the standard image width(w1) and height (h1) according to the following formula:

𝑤2 = 𝑤1 ∗ cos(θ) + ℎ1 ∗ sin(𝜃)

ℎ2 = 𝑤1 ∗ sin(𝜃) + ℎ1 ∗ cos(𝜃)

ii. The ports rotation

The input and output ports position are defined as an offset from the top left edge of the station

bounds. The bounds of the station are delimited by rea ctangle encapsulating the station icon and the

station name (the dotted green rectangle in Figure 42). When a station is being rotated or mirrored,

the ports positions need to be updated.

Figure 42: illustration of ports rotation

51

Figure 42 shows a queue station before and after the rotation. In order not to unnecessarily overload

the figure, only the offset for the input port are presented. The offsets for the output port are defined,

as for the input port, from the top left corner of the rectangle defining the station bounds.

The offset coordinates for both the input and output port are:

𝑥𝑂𝑓𝑓 =

W2 − 𝑤2

2 + 𝒙

𝑊2
∗ 1000

𝑦𝑂𝑓𝑓 =
𝒚

𝐻2
∗ 1000

The values of x and y depends of the nature of the port:

• For the input port of a non-mirrored station, or for the output port of a mirrored station:

𝑥 =
𝑤1

2
∗ cos(𝜃 + 𝜋) +

𝑤2

2

𝑦 =
𝑤1

2
∗ 𝑠𝑖𝑛(𝜃 + 𝜋) +

ℎ2

2

Legend:

h1: height of the standard station icon (rotation angle of 0°)

w1: width of the standard station icon (rotation angle of 0°)

H1: height of the station bounds before rotation

W1: width of the station bounds before rotation

h2: height of the station icon after rotation

w2: width of the standard station icon after rotation

H2: height of the station bounds after rotation

W2: width of the station bounds after rotation

O: output port

I: input port

Θ: rotation angle

xOff_in: x Offset of the input port

yOff_in: y Offset of the input port

52

• For the input port of a mirrored station, or for the output port of a non-mirrored station:

𝑥 =
𝑤1

2
∗ cos(𝜃) +

𝑤2

2

𝑦 =
𝑤1

2
∗ 𝑠𝑖𝑛(𝜃) +

ℎ2

2

iii. The rotation of connections shapes

For any connection, the user has the possibility the move point P0 of the first arc and the point P3 of

the last arc anywhere inside the boundary of the station. This means that the connections do not

necessary originate from the output port of a station, and do not necessary arrives at the input port of

a station.

• If a connection originates from the output port of a station, the point P0 of the first arc then,

𝑃0𝑓𝑖𝑟𝑠𝑡𝐴𝑟𝑐 = (0.0 ; 0.0).

• If a connection goes to the input port of a station, the point P3 of the last arc then,

 𝑃3𝐿𝑎𝑠𝑡𝐴𝑟𝑐 = (0.0 ; 0.0).

If the user moves the last point of a connection (in order to avoid overlapping for example) then the

point 𝑃3𝐿𝑎𝑠𝑡𝐴𝑟𝑐 in the JMTPath will be modified. After being moved, the value of 𝑃3𝐿𝑎𝑠𝑡𝐴𝑟𝑐 is equal

to an offset from the input port position.

The behavior is the same if the user moves the first point of a connection but in this case the value of

𝑃0𝑓𝑖𝑟𝑠𝑡𝐴𝑟𝑐 is equal to an offset from the output port position.

Figure 43 gives an example of a queue station receiving three connections in input. In this situation the

point P3 of the last arc for the connection at the top and for the connection at the bottom have been

moved: they don’t coincide with the input port

Figure 43: Queue station with three input connections

Figure 44: Queue station with three input connections after rotation

53

When the station is rotated as in Figure 44, the values of 𝑃3𝐿𝑎𝑠𝑡𝐴𝑟𝑐 for the top and bottom connection

have been updated to take the rotation into account.

The Figure 45 shows a queue station before and after a rotation by an angle 𝜃. For the connection on

top, the initial value of 𝑃3𝐿𝑎𝑠𝑡𝐴𝑟𝑐 if given by the vector 𝑣1⃗⃗⃗⃗ , and the value after rotation is given by the

vector 𝑣2⃗⃗⃗⃗ .

The vector 𝑖 is the unit vector 𝑖 = [1 0] .

Figure 45: Illustration for the calculation of connection rotation

The coordinates of the vector 𝑣2⃗⃗⃗⃗ are obtained by the following method:

𝜃1 = arccos (
𝑣1⃗⃗⃗⃗

‖𝑣1⃗⃗⃗⃗ ‖
∙

𝑖

‖𝑖 ‖
)

𝜃2 = 𝜃1 − 𝜃

𝑣2⃗⃗⃗⃗ = ‖𝑣1⃗⃗⃗⃗ ‖ ∗ [cos (𝜃2) sin(𝜃2)]

Finally, the new value of the point 𝑃3𝐿𝑎𝑠𝑡𝐴𝑟𝑐 is obtained:

𝑁𝑒𝑤 𝑃3𝐿𝑎𝑠𝑡𝐴𝑟𝑐 = (‖𝑣1⃗⃗⃗⃗ ‖ ∗ cos(𝜃2) ; ‖𝑣1⃗⃗⃗⃗ ‖ ∗ sin(𝜃2))

This method applies also in the case where the point to be updated is 𝑃0𝑓𝑖𝑟𝑠𝑡𝐴𝑟𝑐.

54

5. Grid snaping

As explained in section “The difficulty to properly and quickly align stations”, JSIMGraph did not have

a functionality allowing users to snap stations or controls points of a connection on a grid.

In order to make easier the process of aligning stations and connections, a grid functionality has been

added to JSIMGraph. Now it is possible for the user to activate a grid by pressing the grid button:

The button activate the grid and displays it to the user (as shown in Figure 46 and Figure 47)

Figure 46: GUI with grid disabled

Figure 47: GUI with grid enabled

When the grid is enabled, the stations will be snapped at the grid by their output port. This means that

the port of the stations will be placed at the intersection between two grid lines.

When the grid is active, the snapping occurs each time the user inserts a station, moves a station,

draws a Bezier edge or moves the control points of a Bezier edge.

The snapping is made using the already available function snap of the Swing based software

component JGraph.

VI. Other extensions ideas

Other features could further improve the tool JSIMGraph. The improvements ideas presented in this

section were not originally planned, they emerged during the development of the already presented

features.

i. Add identifier to broken connections

As explained in section “Breaking the connection continuity”, a new feature has been developed

allowing the users to break connections. One issue is that when several connections are broken, the

only way for the user to know how the broken pieces are connected is to select the connection as in

55

Figure 48. A solution would be to add an alphabetical identifier to the broken connection as shown in

Figure 49.

Figure 48: Selected broken arc

Figure 49: Broken arc with alphabetical identifier

ii. Possibility of deleting a connection and creating a new one by dragging the connection arcs.

Another improvement idea would be to allow users to modify the connections between stations by

dragging the connection shapes.

For example in Figure 50, we could allow the user to drag the last control point of the connection

between the stations Fork 1 and Queue 1 to the station Queue 2; and by doing so, the connection

between Fork 1 and Queue 1 would be deleted and a connection between Fork 1 and Queue 2 would

be created.

This action should in addition preserve the Firing parameter provided in station Fork1.

Figure 50: changing connections

56

VII. Conclusion

This document describes the extensions made to the graphical interface of JMT, a tool used to perform

performance evaluation, capacity planning and modelling of computer and communication systems.

The four main extensions are the possibility for the user to draw the connection shapes, the possibility

to modify the connection shapes, the possibility to rotate stations, and the possibility to activate a grid.

In the section “The automatic connection shapes generating a confusing layout”, an example of

computer network was presented. This example is repeated below in Figure 51. Figure 52 presents the

same network re-made taking advantage of the extension of the graphical interface. In the second

version, all the arcs are of Bezier type, and all stations are perfectly aligned using the grid snapping

feature. The extremities of the arcs (input and output) are placed in order to avoid arc intersection and

overlapping. The comparison between Figure 51 and Figure 52 illustrate that the added features

greatly improve the readability of network layout.

Figure 51: Example of computer network before GUI extension

Figure 52: Example of computer network after GUI extension

57

Other extensions could be added to the GUI in order to further improve it, like allowing the transfer of

connections between stations or adding identifiers to the broken arcs (see section “Other extensions

ideas”). Indeed, the software JMT is in constant evolution.

The extensions presented in in document have not been released yet, as they still need to be approved

by the others stakeholders of the JMT project, but I hope they will soon be available to be downloaded

by all users of JMT.

List of tables
Table 1: Values for Service time and visits, first study case .. 14

Table 2: Stations parameters, first study case .. 14

Table 3: Simulation results, first study case .. 15

Table 4: Stations parameters, second study case ... 17

Table 5: Results on throughout (all classes), second study case ... 18

Table 6: Results on system response time for Class0, second study case .. 19

Table 7: Results on system response time class1, second study case .. 20

Table 8: non-functional requirements .. 24

Table 9: functional requirements .. 25

List of figures
Figure 1: GUI of GreatSPN ... 3

Figure 2: GUI of Möbius... 4

Figure 3: GUI PEPA Eclipse Plug-in .. 5

Figure 4: GUI PIPE2 .. 6

Figure 5: PRISM GUI .. 7

Figure 6: GUI of SHARPE .. 8

Figure 7: GUI of TANGRAM II ... 8

Figure 8: Start screen of JMT ... 10

Figure 9: Network layout, first study case ... 14

Figure 10: Network layout after simulation, first study case .. 15

Figure 11: Network layout, second study case.. 16

Figure 12: Results on throughout (all classes), second study case ... 18

Figure 13: Results on system response time for Class0, seconf study case .. 19

Figure 14: Results on system response time class1, second study case ... 19

Figure 15: Model with problematic arc shapes ... 21

Figure 16: highlight of port input and output overlap problem .. 22

Figure 17: Example of station being mirrored ... 22

Figure 18: Example of problem caused by the impossibility to rotate stations 23

Figure 19: Example of a nicer layout that could be obtained by rotating stations 23

Figure 20: Example of new connection shape... 26

Figure 21: Example of cubic Bezier curve .. 27

Figure 22: Example of structure of new connection shape... 27

Figure 23: State diagram of the process of drawing Bezier connections .. 31

Figure 24: Example of a Bezier connection showing the continuity and symmetry of tangents 31

Figure 25: moving point P2 of the first arc .. 32

Figure 26: Moving point P0 of the first arc.. 33

Figure 27: State diagram: moving control points .. 33

Figure 28: Activity diagram: moving control points .. 34

Figure 29: Adding a point on the last arc .. 35

Figure 30: State diagram: adding control point .. 36

Figure 31: Activity diagram: adding intermediary point ... 37

Figure 32: Removing an intermediary point.. 38

Figure 33: State diagram for deleting points, adding tangents and breaking connection 39

Figure 34: Activity diagram: delete control point ... 40

file:///C:/Users/emmab/Documents/Polimi/M2S2/JMT%20Tesina/Documentation/Extending%20the%20Graphical%20User%20Interface%20of%20Java%20Modeling%20Tools.docx%23_Toc45204819

Figure 35: adding tangent to a sharp intermediary point ... 41

Figure 36: Activity diagram: Add tangents to sharp intermediary point .. 42

Figure 37: Breaking the tangent symmetry ... 43

Figure 38: State diagram: Moving tangent point by breaking the symmetry 44

Figure 39:Activity diagram: Breaking the tangent symmetry ... 45

Figure 40: Breaking the arc continuity .. 46

Figure 41: activity diagram: Breaking the connection continuity ... 48

Figure 42: illustration of ports rotation ... 50

Figure 43: Queue station with three input connections ... 52

Figure 44: Queue station with three input connections after rotation .. 52

Figure 45: Illustration for the calculation of connection rotation ... 53

Figure 46: GUI with grid disabled .. 54

Figure 47: GUI with grid enabled ... 54

Figure 48: Selected broken arc .. 55

Figure 49: Broken arc with alphabetical identifier .. 55

Figure 50: changing connections ... 55

Figure 51: Example of computer network before GUI extension ... 56

Figure 52: Example of computer network after GUI extension .. 56

Bibliography

Anonymous, (2009), The PEPA Plug-in Project, http://www.dcs.ed.ac.uk/pepa/tools/plugin/index.html 5

Anonymous, PIPE2 - Platform Independent Petri net Editor 2 http://pipe2.sourceforge.net/index.html.............. 5

BABAR J., BECCUTI M., DONATELLI S., MINER A., (2010), GreatSPN Enhanced with Decision Diagram Data

Structures. ... 3

BONET P., LLADO C.M., PUIJANER R., KNOTTENBELT W.J., (2007), PIPE v2.5: A Petri Net Tool for Performance

Modelling .. 5

CASALE G., MUNTZ R. R., SERAZZI G., (2009), Special Issue on Tools for Computer Performance Modeling and

Reliability Analysi .. 3

CASALE G., SERAZZI G., (2011), Quantitative System Evaluation with Java Modeling Tools (Tutorial Paper) 9

CASALE G., SERAZZI G., BERTOLI M., (2020), Java Modelling Tools- User manual .. 9

COURTNEY T., DALY D., DERISAVI S., GAONKAR S., GRIFFITH M., LAM V., SANDERS H. W., (2004), The Möbius

Modeling Environment: Recent Developments. .. 4

DE-SOUZA-E-SILVA E., FIGUEIREDO D. R., LEAO R. M.M., (2009), The TANGRAM-II Integrated Modeling

Environment for Computer Systems and Networks .. 8

Duke University SHARPE Portal, (2020), SHARPE Portal, https://sharpe.pratt.duke.edu/ 7

KWIATKOWSKA M., NORMAN G., PARKER D., (2011), PRISM 4.0: Verification of Probabilistic Real-time Systems.

 .. 6

Laboratory for Foundations of Computer Science, The University of Edinburgh, (2011), PEPA – Performance

Evaluation Process Algebra, http://www.dcs.ed.ac.uk/pepa/ ... 4

LAND (Laboratory for modeling, analysis and development of networks and computer

systems), Tangram – II, http://www.land.ufrj.br/tools/tools.html ... 8

LAZOWSKA E. D., ZAHORJAN J., GRAHAM G. S., SEVCIK K. C. (1984). Quantitative System Performance -

Computer System Analysis Using Queueing Network Models. Prentice-Hall ... 2

Möbius, (2020), Möbius – Model-based environment for validation of system reliability, availability, security,

and performance, https://www.mobius.illinois.edu/research.php... 4

PINCIROLI R., GRIBAUDO M., ROVERI M., SERAZZI G. (2018) Capacity Planning of Fog Computing Infrastructures

for Smart Monitoring .. 21

PRISIM, (2020), Prism Model Checker, http://prismmodelchecker.org/ .. 6

SMITH M J. A., (2010), A Tool for Abstraction and Model Checking of PEPA Models ... 5

TRIVEDI K. S., SAHNER R., (2009), SHARPE at the age of twenty-two, SIGMETRICS Perform 7

