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Abstract

Mixed-effects models are a widely used branch of statistics nowadays and the literature
focusing on their development is constantly evolving. In this thesis, we propose an R
package for Semi parametric Mixed Effect Models, called SpMEMs, which has the task of
collecting and automating into user-usable functions some of the latest results obtained
in the research about mixed-effects models. In particular, we refer to two branches of
research. The former concerns mixed-effects models for generalized responses where tree
and random forest structures are assumed for the fixed-effects part. The latter concerns
mixed-effects models for generalized, univariate, and biavariate responses where random
effects assume a discrete distribution with an a priori unknown support. This particular
innovation allows mixed-effects models to act as a method for unsupervised classification
by joining similar grouping units into sub-populations. The thesis provides a theoretical
explanation of the methods presented and investigates the R code in detail, by offering
diversified examples useful for understanding the methods and related algorithms.

Keywords: R package, Semiparametric methods, Mixed effects models, Regression and
classification trees, random forest





Abstract in lingua italiana

I modelli a effetti misti sono una branca della statistica molto utilizzata al giorno d’oggi
e la letteratura che si concentra sul loro sviluppo è in continua evoluzione. In questa tesi,
proponiamo un pacchetto R per modelli a effetti misti semiparametrici, chiamato Sp-
MEMs, che ha il compito di raccogliere e automatizzare in funzioni utilizzabili dall’utente
alcuni degli ultimi risultati ottenuti nell’ambito della ricerca per questo tipo di modelli. In
particolare si fa riferimento a due filoni di ricerca, il primo riguarda modelli a effetti misti
per risposte generalizzate dove per la parte a effetti fissi vengono assunte strutture ad al-
bero e random forest; il secondo riguarda modelli a effetti misti per risposte generalizzate,
univarite e biavariate in cui gli effetti random assumono una distribuzione discreta con
supporto sconosciuto a priori. Questa particolare innovazione permette ai modelli a effetti
misti di agire come un metodo per la classificazione non supervisionata unendo grupppi
simili di unità statistiche in sotto-popolazioni. La tesi fornisce una spiegazione teorica
dei metodi presentati, e investiga nel dettaglio la parte di codice necessaria all’utente per
l’utilizzo del pacchetto offrendo vari esempi utili alla comprensione dei metodi e degli
algoritmi relativi.

Parole chiave: Pacchetto R, Metodi Sempi parametricis,Modelli a effetti misti, Alberi
di regressione e classificazione, Foresta casuale
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1| Introduction

Mixed effects models, also known as multilevel models or hierarchical models, have become
increasingly popular in various fields of research due to their ability to handle complex data
structures [25]. These models are particularly useful when analyzing data with multiple
levels of variation, such as repeated measurements on individuals or data collected from
different sites. When dealing with hierarchical data, compared to traditional methods,
mixed effects models allow for accurate estimation of fixed and random effects, provide
more precise predictions, and account for dependencies among observations. This brief
introduction highlights the potential of mixed effects models in handling complex data
structures. However, a more in-depth investigation of these models can reveal even greater
power and versatility, enabling researchers to analyze increasingly challenging datasets.
In the R package we present in this thesis we implement and show the latest advance-
ment of mixed effect models to study different types of hierarchical data. The material
of the package derive from two strands of research. The first one presented in [6] and
[24] investigate the idea of joining a generalized mixed models with a tree based meth-
ods. As we already said Multilevel models are designed to account for the hierarchical
structure of data, however, Generalized Linear Mixed Models (GLMM) assume a linear
relationship between the covariates and the expected value of the response variable. On
the other hand, tree-based methods like the classification and regression tree (CART)
[15] or random forest [4] models identify dominant patterns in the training data to es-
tablish the relationship between the response and predictor variables. In particular, the
first research stream consists in the development of tree-based mixed-effects models under
two different setting. In the first case, a tree structure is assumed for the fixed-effects
part [6], while in the second case, a Random Forest (RF) is assumed [24]. This approach
allows to create a novel method, for a non-Gaussian response variable, which is able to
preserve the flexibility of the CART and the random forest models and to extend it to
a clustered data structure, where multiple observations can be viewed as being sampled
within groups. In the literature, similar methods have been proposed in this context. The
first one, called Mixed Effects Regression Tree (MERT) [8] and it substitutes the linear
combination of the covariates in the fixed effects part of a LMM with a regression tree,
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built with the same set of covariates. In [31], the authors present an analogous method,
but with a different estimation procedure, called Random Effects Expectation Maximiza-
tion tree (RE-EM tree), that deals with both multilevel and longitudinal data. With the
aim of improving the accuracy in predictions, regression trees are replaced by a RF in
[9], where the authors develop a method called Mixed Effects Random Forest (MERF).
All these methods deal with a Gaussian response variable and they are not suitable for
classification problems. Nonetheless, some developments for different types of response
variables have also been done. In [10], the MERT approach is extended to non-gaussian
data and a Generalized Mixed Effects Regression Tree (GMERT) is proposed. This algo-
rithm is basically the Penalized Quasi Likelihood (PQL) algorithm used to fit Generalized
Linear Mixed Models (GLMMs) where the weighted linear mixed effect pseudo-model is
replaced by a weighted MERT pseudo-model. In [5], the authors propose a generalized
linear mixed-effects model tree (GLMER tree) algorithm, that alternates the estimates of
a GLM tree and a mixed-effects model until convergence. Lastly, the most recent work is
proposed in [32], where the authors develop a decision tree method for modelling clustered
and longitudinal binary outcomes using a Bayesian setting.

The second research stream shifts attention to the random component of the model. In
fact, in articles [16], [17], [18] and [19] a change is proposed regarding the distribution of
random parameters, which is no longer intended to be treated as a continuous distribution
but a discrete one with an unknown finite number of mass point. The advantage of this
approach is that it allows the mixed-effects model to be used both as a predictive model
and as an unsupervised classification method. In fact, it is possible to reduce the support
of the discrete distribution by detecting a latent structure among the higher level of
hierarchy. This type of approach is conjugated in 3 case histories that are identified by
the shape of the response variable, specifically Semi-Parametric Estimation Maximization
(SPEM) [16] deals with the case where the response variable is continuous and univariate,
Bivariate Semi-Parametric Estimation Maximization (BSPEM) [17] deals wit the case
where the response variable is continuous and bivariate, and finally, Multinomial Semi-
Parametric Estimation Maximization and Joint Multinomial Semi-Parametric Estimation
Maximization ([18] and [19] respectively) that deal with the case where the response is
univariate multinomial.

In the methodological literature, two lines of research about the identification of subpop-
ulations are Growth Mixture Models (GMM) [21], [22] and Latent Class Mixture Models
[20], [23], [34]. Conventional growth modelling is applied to longitudinal data and it is
used to estimate the average growth, the amount of variation across individuals in growth
intercept and slopes and the influence of covariates on this variation. It can be described
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as a random effect model where intercept and slope vary across individuals. However,
conventional growth models assume that individuals come from a single population and
that a single growth trajectory can approximate the entire population. Growth mixture
models relax this assumption and assume that there are differences in growth parameters
across unobserved subpopulations. They allow for the existence of latent trajectory classes
where different groups of individual growth trajectories vary around different behaviors.
In other words, the average association between covariates and the outcome varies across
latent classes and also, within classes, individuals also vary randomly in their coefficients.
The results are separate growth models for each latent class. Latent Class Growth Anal-
ysis (LCGA) is a special case of GMM where the variance and covariance parameters are
assumed to be zero, implying that all the individuals within a latent class are homoge-
neous. Individuals within a latent class are assumed to have identical random effects.
Conceptually, these methods are very similar to the one that we propose, especially the
special case of LCGA, since we also assume that individuals within latent classes have
identical random effects. Nonetheless, there are two main differences between our ap-
proach and the one of GMM and LCGA. First GMM/LCGA are thought for modelling
longitudinal changes and not variation within groups. Second GMM/LCGA need to fix a
priori the number of latent classes, while our approach estimates it together with the other
unknown parameters. There are numerous extensions and applications of GMM, [12], [26],
but none of them includes the estimation of the number of latent classes. Indeed, these
past methods require that the analysts estimate a series of models, where each model
assumes a different number of clusters, and then use model fit statistics to compare these
models to select the best fitting model. In our approach, the analyst specifies a caliper,
the maximum distance between two clusters such that the two can be collapsed, and the
algorithm then estimates the number of clusters. Latent class mixture models are even
more related to our approach since they consider linear mixed models where the assump-
tion of normality of random effects is relaxed. They also assume a discrete distribution
for the random effect coefficients and they are used to uncover distinct subpopulations
(latent classes) and to classify individuals. But also this approach requires a fixed number
of latent classes, chosen a priori. In the framework of latent structure analysis, an other
branch of research related to ours is the one about Latent Trait Analysis (LTA) [3], LTA,
also called Item Response Theory (IRT), is used for the analysis of categorical data. It
performs the reduction of a set of binary or ordered-category variables into a smaller set
of classes and it is used both to calibrate items and to derive latent trait estimates that
are then used in subsequent analysis. The common aspect of this method with the ones
described above and, at the same time, the main difference with our method is, again,
the fact that they need to fix a priori the number of latent subpopolations. The choice
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of the number of latent classes (mass points) is not trivial when the sample is very big or
the knowledge about possible different trends across the individuals (groups) is limited.
Our case study represents a clear example of a sample composed by hundreds of groups,
within which we do not know how many different subpopulations exist. For this reason,
in the perspective of performing dimensionality reduction without any assumption about
the final dimension, estimates, together with the other parameters, also the number of
existing subpopulations, a significant value-added with respect to the existing literature.

1.0.1. Overview of the paper

The paper is structured as follows:

• In Chapter 2, we provide a more in-depth introduction to the previously mentioned
methods, with a focus on the algorithmic composition and the theoretical definition
of the models.

• In Chapter 3 we get into the core of the explanation of the package. All the main
functions related to the aforementioned statistical methods are explained in detail
with emphasis on each of the inputs and outputs that comprise it. Next, all the
auxiliary functions related to each method that make up a very important tool for
understanding the outputs are listed.

• In Chapter 4 of the thesis presents some cases through which an example of the use
of various package functions can be seen. In the first part, the process of generating
data is explained, while in the second we show the applications of the functions to
the toy dataset.

All chapters of the thesis are dissected into five parts one for each statistical model.
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2.1. Generalised Mixed-Effects tree-based model

Consider a general GLMM linear predictor in this model, which is an extension of a
generalized linear model [1], includes both fixed and random effects. For a GLMM with
a two-level hierarchy, each observation j, for j = 1, . . . , ni, is nested within a group i, for
i = 1, . . ., N. Let yi = (y1i, . . . , ynii) be the ni-dimensional response vector for observations
in the i-th group. Conditionally on random effects denoted by bi, a GLMM assumes that
the elements of yi are independent, with density function from the exponential family, of
the form

fi (yij | bi) = exp

[
yijηij − a (ηij)

ϕ
+ c (yij, ϕ)

]
where a(·) and c(·) are specified functions, ηij is the natural parameter and ϕ is the
dispersion parameter. In addition, we have

E [yij | bi] = a′ (ηij) = µij

Var [yij | bi] = ϕa′′ (ηij)

A monotonic, differentiable link function g(·) specifies the function of the mean that the
model equates with the systematic component. Usually, the canonical link function is
used, i.e., g = a′−1. From now on, without loss of generality, the canonical link function
is used. In this case, the model is the following:

µi = E [Yi | bi] i = 1, . . . , N

g (µi) = ηi

ηi = Xiβ + Zibi

bi ∼ Nq(0,Ψ) ind.

(2.1)
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where i is the group index, N is the total number of groups, ni is the number of obser-
vations within the i-th group and

∑N
i=1 ni = J. ηi is the ni-dimensional linear predictor

vector. In addition, Xi is the ni× (p+1) matrix of fixed-effects regressors of observations
in group i,β is the (p+1)-dimensional vector of their coefficients, Zi is the ni×q matrix of
regressors for the random effects, bi is the (q + 1)-dimensional vector of their coefficients
and Ψ is the q × q within-group covariance matrix of the random effects. Fixed effects
are identified by parameters associated with the entire population, whereas random ones
are identified by group-specific parameters.

The innovation in the two methods proposed in [6] and [24], is to extend the application of
tree-based mixed models to other classes of exponentially distributed response variables..
The two methods share the matrix formulation of the model that is now presented. The
response variable Y from an exponential family distribution makes up the model’s random
element. The fixed effect part is replaced by the function f (Xi), which is evaluated using a
tree-based approach, as opposed to being linear as in Eq.(1). Thus, the matrix formulation
of the model is the following:

µi = E [Yi | bi] i = 1, . . . , N

g (µi) = ηi

ηi = f (Xi) + Zibi

bi ∼ Nq(0,Ψ) ind.

(2.2)

As in a GLMM, bi and bi′ are independent for i ̸= i′. The difference between the two
methods consist in the estimation of the fixed effect, in particular the the difference relies
on the type of tree based method they use. GMET (Generalised Mixed-Effects Tree) model
estimates it using a non-parametric CART model applied to the entire population, while
the GMERF (Generalised Mixed-Effects Random Forest) uses a random forest model.

2.1.1. Generalised Mixed-Effects Tree

Let’s consider the model in the Eq.(2.2), the function f (Xi) representing the fixed ef-
fect part is estimated using a non-parametric CART tree model applied to the entire
population, whilst group-specific parameters are used to identify random effects.

The fundamental goal of the algorithm, which is similar to the RE-EM tree’s methodology
[30], is to separate the estimation of fixed effects from random effects. However the GMET
process is not iterative. The structure of the algorithm is the following:

1. Initialise the estimated random effects bi to zero.
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2. Estimate the target variable µij through a generalised linear model (GLM), given
fixed-effects covariates xij = (xij1, . . . , xijp)

T for i = 1, . . . , N and j = 1, . . . , ni. Get
estimate µ̂ij of target variable µij.

3. Build a regression tree approximating f using µ̂ij as dependent variable and xij =

(xij1, . . . , xijp)
T as vector of covariates. This regression tree identifies a number L of

terminal nodes Rℓ, for ℓ = 1, . . . , L, and each observation ij, described by its set of
covariates xij, belongs to one of the terminal nodes. Through this regression tree,
we define a set of indicator variables I (xij ∈ Rℓ), for ℓ = 1, . . . , L, where I (xij ∈ Rℓ)

takes value 1 if observation ij belongs to the ℓ-th terminal node and 0 otherwise.

4. Fit the mixed effects model in Eq.(2), using yij as a response variable and the
set of indicator variables I (xij ∈ Rℓ) as fixed-effects covariates (dummy variables).
Specifically, for i = 1, . . . , N and j = 1, . . . , ni, we have g (µij) = I (xij ∈ Rℓ) γℓ +

zT
ijbi. Extract b̂i from the estimated model.

5. Replace the predicted response at each terminal node Rℓ of the tree with the esti-
mated predicted response g (γ̂ℓ) from the mixed-effects model fitted in step 4 .

2.1.2. Generalised Mixed-Effects Random Forest

The GMERF model estimates the function f (Xi) of the model presented in Eq.(2.2) with
a random forest. To implement GMERF model, we need to decouple the estimation of
fixed and random effects parts, alternating them until convergence. To this purpose, we
note that, if random effects were known, the GMERF model implies that we could fit a
RF to estimate f using ηij − ZT

ijbi as dependent variable. Similarly, if the population-
level effects f were known, then we could estimate the random effects using a traditional
mixed-effects linear model with response corresponding to ηij − f (Xij). As neither the
random effects nor the fixed effects are known, we implement an iterative method that
alternates, until convergence, the estimation of the RF, relative to the fixed effects part,
with the estimation of the random effects. The convergence is reached when the difference
between the random effects estimates at two consecutive iterations is lower than a fixed
tolerance. A second important aspect to be faced is that ηi is not known and it cannot be
directly deduced from data. In line with the one proposed in [7], is estimating it by means
of a standard GLM model using as covariates the fixed effects covariates. The pseudo-
code of the estimation procedure is shown in Algorithm 1. To predict a new observation
[xij; zij] we use the formula:

η̂ij = f̂ (xij) + zTij b̂i (2.3)
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where f̂ is the RF estimated by the algorithm and bi is the vector of the random effects
coefficients related to the i th group. The prediction of µ̂ij is obtained by applying to the
corresponding η̂ij the inverse link function g−1.
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Algorithm 2.1 GMERF model estimation procedure
Input:

y- vector with responses yij
cov- data frame with all covariates
gr- vector with the grouping variable for each observation
znam- vector with names of covariates to be used as random effects
xnam- vector with names of covariates to be used as fixed effects
fam- distribution of y (must be part of the exponential family)
b0- optional matrix of initial values for each bi

toll threshold to decide whether our estimation converged or not
itmax maximum number of iterations

Z ← (1; cov[znam]) {to include also the random intercept}
Initialize b to a matrix of zero (if b0 is not given) {Each column b[i, ] of b will be the i-th
random coefficients bi}
all.b[0] = b

fit a GLM model using y as response and cov as matrix of covariates
eta← estimated ηij by the GLM model
it← 1

while it < itmax and not conv do
targ ← eta− Z × b

fit a random forest model using targ as target and cov as predictor matrix
fx← fitted values of the forest model
fit the GLMM ηij − f(xij) = zTij × bi

all.b[it]← b← the estimated b from the model
M ← max(abs(b− all.b[it− 1]))

(i, j)← argmax(abs(b− all.b[it− 1]))

tr ←M/all.b[it− 1](i, j)

if tr < toll then
conv ← true

else
conv ← false

end if
it++

end while
if not conv then

give a warning
end if
Output:

the final GLMM fitted
the final forest model fitted
b, the final estimation of the random coefficients
it, the number of iterations
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2.2. SemiParametric Mixed Effects Models For Un-

supervised Classification

Consider a general mixed-effects (two-level) linear model, where each observation j, for
j = 1, . . . , ni, is nested within a group i, for i = 1, . . . , N . The model takes the following
form:

yi = Xiβ + Zibi + ϵi i = 1, . . . , N

ϵi ∼ N (0, σ2
1ni

) ind.
(2.4)

where i is the group index, N is the total number of groups, ni is the number of obser-
vations within the i-th group and

∑N
i=1 ni = J . yi = (y1i, . . . , ynii) is the ni-dimensional

vector of response variable within the i−th group, Xi is the ni× (p+1) matrix of covari-
ates having fixed effects, β is the (p+1)-dimensional vector of fixed coefficients, Zi is the
ni× (r+1) matrix of covariates having random effects, b is the (r+1)-dimensional vector
of random coefficients and ϵi is the vector of errors.

In the parametric framework of mixed-effects linear models, random coefficients are as-
sumed to be distributed according to a Normal distribution with unknown parameters
that, together with the coefficients of fixed effects and σ2, can be estimated through
methods based on the maximization of the likelihood or the restricted likelihood func-
tions [25].

The main novelty first introduced in [16] and then further developed in the next two
articles([17],[18]) of the second branch of research is that we move to a semi-parametric
framework, assuming the coefficients bi to be distributed according to a discrete distri-
bution P∗, assuming M sets of values (c0l, . . . , crl) for l = 1, . . . ,M , where M ≤ N and
it is unknown a priori. This means that each group i, for i = 1, . . . , N , is assigned to
a subpopulation l, that is characterized by random parameters (c0l, . . . , crl). This semi-
parametric modelling enables to identify a latent structure among the groups, that are
clustered by the model into an unknown number of discrete masses. Therefore, the two
main advantages are that, first of all, we can identify how many latent subpopulations
exist within the groups of data and, second, we can estimate the parameters associated
to each subpopulation, pointing out their differences.

Under these assumptions, the semi-parametric mixed-effects model takes the following
form:
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yi = Xiβ + Zicl + ϵi i = 1, . . . , N l = 1, . . . ,M

ϵi ∼ N (0, σ2
1ni

) ind.
(2.5)

This formulation is the general formulation to describe all the model of the second strand
of research. The differences between the methods presented is in the response that vary
both in dimension and type. We present the case in which the response variable is
univariate considering one random effect and one fixed effect. While the latter situation
just presents the formulation model, the former case is thoroughly investigated. Since the
algorithms are a generalization of the SPEM (Semi Parametric Estimation Maximixation)
method, they are taught through the sketches.

The formulation of this first case is:

yi = xiβ + 1c0l + zic1l + ϵi i = 1, . . . , N l = 1, . . . ,M

ϵi ∼ N (0, σ2
1ni

) ind.
(2.6)

where 1 is the ni-dimensional vector of 1, M ≤ N is the number of subpopulations (mass
points) unknown a priori. Coefficients cl, for l = 1, . . . ,M , are distributed according to
a probability measure P∗ that belongs to the class of all probability measures on R2. P∗

is a discrete measure with M support points that can then be interpreted as the mixing
distribution that generates the density of the stochastic model in Eq. (2.6). The ML
estimator P̂∗ of P∗ is obtained following the theory of mixture likelihoods in [13] and
[14]. So, the ML estimator of the random effects distribution can be expressed as a set
of points (c1, . . . , cM), where M ≤ N and cl ∈ R2 for l = 1, . . . ,M , and a set of weights
(w1, . . . , wM), where

∑M
l=1 wl = 1 and wl ≥ 0 for each l = 1, . . . ,M .

Given this, the algorithm proposed for the joint estimation of σ2, β, (c1, . . . , cM) and
(w1, . . . , wM), that is performed through the maximization of the likelihood, mixture by
the discrete distribution of the random effects,

L(β, σ2|y) = p(y|β, σ2) =

M∑
l=1

wl

(2πσ2)
J
2

exp

{
− 1

2σ2

N∑
i=1

ni∑
j=1

(yij − βxij − c0l − c1lzij)
2

}
,

(2.7)

with respect to the fixed coefficient β, the error variance σ2 and the random effects
distribution (cl, wl), for l = 1, . . . ,M . For each l = 1, . . . ,M , cl represents the group-
specific parameters and wl the corresponding weight.
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2.2.1. Semi-parametric mixed-effects models for a continuous

response

The proposed EM algorithm is an iterative algorithm that alternates two steps: the ex-
pectation step (E step) in which we compute the conditional expectation of the likelihood
function with respect to the random effects, given the observations and the parameters
computed in the previous iteration; and the maximization step (M step) in which we
maximize the conditional expectation of the likelihood function. The observations are the
values of the answer variable yij and of the covariates zij and xij, for j = 1, . . . , ni and
i = 1, . . . , N . The parameters to be estimated are the random coefficients cl with their
weights wl, for l = 1, . . . ,M , the fixed coefficient β and the variance σ2. The algorithm
allows the number ni, for i = 1, . . . , N , of observations to be different across groups, but,
within each group missing data are not handled, i.e. missing values of y, z and x for the
ni units are not allowed. At each iteration, the EM algorithm updates the parameters in
order to increase the likelihood in (2.7) and it continues until the convergence or until a
fixed number of iterations (it) is reached. In particular, the update is given by:

w
(up)
l =

1

N

N∑
i=1

Wil for l = 1, . . . ,M (2.8)

(β(up), c
(up)
1 , . . . , c

(up)
M , σ2(up)) = argmax

β,cl,σ2

M∑
l=1

N∑
i=1

Wil ln p(yi|β, σ2, cl) (2.9)

where

Wil =
wl p(yi|β, σ2, cl)∑M

k=1wk p(yi|β, σ2, ck)
(2.10)

and

p(yi|β, σ2, c) =
1

(2πσ2)
ni
2

exp

{
− 1

2σ2

ni∑
j=1

(yij − βxij − c0l − c1lzij)
2

}
. (2.11)

The weight w(up)
l is the mean over the N groups of their weights related to the l−th sub-

population. Coefficients Wil represent the probability of bi being equal to cl conditionally
to observations yi and given the fixed coefficient β and the variance σ2. Refer to [16] for
further details on the derivation of the process.
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The maximization (M step) in equation (2.9) involves two steps and it is done iteratively.
In the first step, we compute the arg-max with respect to the support points cl, keeping
β and σ2 fixed to the last computed values. In this way, we can maximize the expected
log-likelihood (computed in the E step) with respect to all support points cl separately,
that means

c
(up)
l = argmax

c

N∑
i=1

Wil ln p(yi|β, σ2, c) l = 1, . . . ,M. (2.12)

Since we are considering the linear case, it is possible to perform this maximization step in
closed-form. With regard to model (2.6), the estimates of the random effects are obtained
by means of the weighted least squares method and are the following:

ĉ0l =

∑N
i=1wil

∑ni

j=1(yij − β̂xij − ĉ1lzij)∑N
i=1wilni

(2.13)

and

ĉ1l =

∑N
i=1 wil

∑ni

j=1 yijzij −
(
∑N

i=1 wil
∑ni

j=1 yij)(
∑N

i=1 wil
∑ni

j=1 zij)

ni
∑N

i=1 wil∑N
i=1 wil

∑ni

j=1 z
2
ij −

(
∑N

i=1 wil
∑ni

j=1 zij)
2∑N

i=1 wilni

+

β̂(
∑N

i=1 wil
∑ni

j=1 zij)(
∑N

i=1 wil
∑ni

j=1 xij)

ni
∑N

i=1 wil
− β̂

∑N
i=1wil

∑ni

j=1 xijzij∑N
i=1wil

∑ni

j=1 z
2
ij −

(
∑N

i=1 wil
∑ni

j=1 zij)
2∑N

i=1 wilni

.

(2.14)

In the second step, we fix the support points of the random effects distribution computed
in the previous step and we compute the arg-max in equation (2.9) with respect to β and
σ2. Again, this step can be done in closed-form and the estimates of the parameters, with
regard to model (2.6), obtained by means of the weighted least squares method, are:

β̂ =

∑M
l=1

∑N
i=1wil

∑ni

j=1(yijxij − ĉ0lxij − ĉ1lzijxij)∑M
l=1

∑N
i=1wil

∑ni

j=1 x
2
ij

(2.15)

and

σ̂2 =

∑M
l=1

∑N
i=1wil

∑ni

j=1(yij − β̂xij − ĉ0l − ĉ1lzij)
2

ni

∑M
l=1

∑N
i=1wil

. (2.16)
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Notice that, since wl = p(bi = cl), then

Wil =
wl p(yi|β, σ2, cl)∑M

k=1 wk p(yi|β, σ2, ck)
=

p(bi = cl) p(yi|β, σ2, cl)

p(yi|β, σ2)
=

=
p(yi,bi = cl|β, σ2)

p(yi|β, σ2)
= p(bi = cl|yi, β, σ

2).

(2.17)

Therefore, in order to compute the point cl for each group i, for i = 1, . . . , N , we maximize
the conditional probability of bi given the observations yi, the coefficient β and the error
variance σ2. The estimation of the coefficients bi of the random effects for each group is
obtained maximizing Wil over l, that is

b̂i = cl̃ where l̃ = argmax
l

Wil i = 1, . . . , N. (2.18)

As anticipated before, the initialization of the support points is done in a robust and
generalizable way. The algorithm starts considering N support points for the coefficients
of random effects and a starting estimate for the coefficients of fixed effects. In particular,
the initialization of all these parameters is done in the following way:

• random effects: the starting N support points are obtained fitting a simple linear
regression within each group and estimating the couple of parameters (both the
intercept and the slope) for each one of the N groups. The weights are uniformly
distributed on these N support points;

• fixed effects: the starting values of β and σ2 are estimated by fitting a unique linear
regression on the entire population (without distinction among the groups).

Nonetheless, if the number of starting support points N is extremely large, the algorithm
is relatively slow and using N starting support points becomes not strictly necessary. In
this case, the initialization of the support points of the random effect distribution is done
in the following way:

• we choose a number N* < N of support points;

• we extract N* points from a uniform distribution with support on the entire range
of possible values, that is estimated by fitting N distinct linear regressions for each
one of the N groups, as before, and identifying the minimum and the maximum
values;

• we uniformly distribute the weights on these N* support points.
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During the iterations, the EM algorithm performs the support reduction of the discrete
distribution, in order to identify M < N mass points in which the N groups are clustered.
The support reduction is made standing on two criteria. The former is that we fix a
threshold D and if two points cl and ck are closer than D, in terms of euclidean distance,
they collapse to a unique point cl,k, where cl,k = cl+ck

2
with weight wl,k = wl + wk.

The first two masses collapsing to a unique point are the two masses with the minimum
euclidean distance, among the couples of masses with euclidean distance less than D,
and so on so forth. The latter is that, starting from a given iteration up to the end,
we fix a threshold w̃ and we remove mass points with weight wl ≤ w̃ or that are not
associated to any subpopulation. D and w̃ are two tuning parameters that tune the
estimates of the subpopulations. The choice of D depends on how much we want to
be sensitive to the differences among subpopulations: the higher is D, the lower is the
number of subpopulations and the less homogeneous are the groups within subpopulations.
D depends also on the order of magnitude of the data. The choice of w̃ depends on the
minimum number of groups that we allow within each subpopulation. When one or more
mass points are deleted, the remaining weights are reparameterized in such a way that
they sum up to 1:

Sw =
Mnew∑
l=1

wold
l

wnew
l =

wold
l

Sw

∀l = 1, . . . ,Mnew

(2.19)

where Mnew is the total number of masses after deleting the ones associated to weight
wl ≤ w̃ or not associated to any subpopulation, wold are the old remaining weights and
wnew are the new reparameterized weights.
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Algorithm 2.2 EM algorithm for semi-parametric mixed-effects models
input : Initial estimates for (c

(0)
1 , . . . , c

(0)
M ) and (w

(0)
1 , . . . , w

(0)
M ), with M = N ;

Initial estimates for β(0) and σ2(0);
Tolerance parameters D, w̃, tollR, tollF, it, it1, itmax.

output: Final estimates of c(it)l , w(it)
l , for l = 1, . . . ,M , β(it) and σ2(it).

k=1; conv1=0; conv2=0;
while (conv1 == 0 or conv2 == 0 & k < it) do

compute the distance matrix DIST (where DISTst =
√

(c0s − c0t)2 + (c1s − c1t)2 is the
euclidean distance between each couple of mass points s, t ∀s, t = 1, . . . ,M, s ̸= t);
if (DISTst < D & DISTst = min(DIST ) (∀s, t = 1, . . . ,M, s ̸= t)) then

collapse masses s and t to a unique mass point;
compute the new distance matrix DIST;

if conv1 == 1 or k ≥ it1 then
if w

(k)
l ≤ w̃ (∀l = 1, . . . ,M) then
delete mass point l;
reparameterize the weights according to Eq. (2.19);

if no changes are done then
conv2=1;

given c
(k−1)
l , w

(k−1)
l for l = 1, . . . ,M , β(k−1) and σ2(k−1), compute the matrix W

according to Eq. (2.10);
update the weights w

(k)
1 , . . . , w

(k)
M according to Eq. (2.8);

β(k,0) = β(k−1);
σ2(k,0) = σ2(k−1);
c
(k,0)
l = c

(k−1)
l ;

w
(k,0)
l = w

(k−1)
l ;

keeping β(k,0) and σ2(k,0) fixed, update the M support points c(k,1)1 , . . . , c
(k,1)
M according

to Eq. (2.13) and (2.14);
keeping c

(k,1)
l , w

(k,0)
l for l = 1, . . . ,M fixed, update β(k,1) and σ2(k,1) according to Eq.

(2.15) and (2.16);

j=1;
while (|β(k,j−1) − β(k,j)| ≥ tollF or |σ2(k,j−1) − σ2(k,j)| ≥ tollF or |c(k,j−1)

l −
c
(k,j)
l | ≥ tollR) & j ≤ itmax do
j=j+1; keeping β(k,j−1) and σ2(k,j−1) fixed, update the M support points
c
(k,j)
1 , . . . , c

(k,j)
M according to Eq. (2.13) and (2.14);

keeping c
(k,j)
l , w

(k,j−1)
l for l = 1, . . . ,M fixed, update β(k,j) and σ2(k,j) according

to Eq. (2.15) and (2.16);

set c
(k)
l = c

(k,j)
l for l = 1, . . . ,M , β(k) = β(k,j), σ2(k) = σ2(k,j);

estimate subpopulation l for each group i according to Eq. (2.18);
if (β(k) − β(k−1) < tollF ) & (σ2(k) − σ2(k−1) < tollF ) & (c(k)l − c

(k−1)
l < tollR) then

conv1=1;
k= k+1;
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2.2.2. Semi-parametric mixed-effects models for a bivariate con-

tinuous response

In this subsection we show the extension of the SPEM method to the case of a bivariate
response variable.

Consider a bivariate two-level linear model, where each bivariate observation j, for j =

1, . . . , ni, is nested within a group i, for i = 1, . . . , N . The model takes the following form:

(
y1,i

y2,i

)T

= Xi

(
β1

β2

)T

+ Zi

(
δ1,i

δ2,i

)T

+

(
ϵ1,i

ϵ2,i

)T

i = 1, . . . , N,

ϵTi =

(
ϵ1,i

ϵ2,i

)
∼ N2(0,Σ) ind .

(2.20)

where :

−Yi =

(
y1,1i, . . . , y1,nii

y2,1i, . . . , y2,nii

)T

is the (ni × 2)-dimensional matrix of response variable within

the i-th second level group 3,

−Xi is the (ni × (P + 1))-dimensional matrix of covariates relative to fixed coefficients,

−B =
(

β1 β2

)
is the ((P + 1)× 2)-dimensional matrix of coefficients of X,

−Zi is the (ni × (R + 1))-dimensional matrix of covariates relative to random coefficients,

−1i =
(

δ1,i δ2,i

)
is the ((R + 1)× 2)-dimensional matrix of random coefficients of Zi

−ϵi =
(

ϵ1,i ϵ2,i

)
is the (ni × 2)-dimensional matrix of errors and Σ is its variance/co-

variance matrix.

For each response variable, this parametric distribution allows to associate each group i

to a different set of coefficients δ∗,i =
(
δ∗,i1, . . . , δ∗,i(R+1)

)
, where * can be eqaul to 1 or 2,

for the (R + 1) covariates of the random effects, extracted from the normal distribution.

In subscript of each variable/parameter, we indicate by the number before the comma
whether the variable/parameter is referred to the first or the second response variable
(for example, y1,ji and y2,ji are the j-th first and second response variables within (level
2)-group i, respectively).

As with the previous case we relax the parametric assumptions about the coefficients of
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the random effects and we assume the bivariate coefficients 1i =
(

δ1,i δ2,i

)
to follow a

bivariate discrete distribution S∗, assuming M ×K mass points (C11, . . . ,CMK), where
each Cmk is the 2 × (R + 1)-dimensional matrix of coefficients of random effects for the
bivariate mass point related to the index (m, k), for each m = 1, . . . ,M and k = 1, . . . , K,
where both M and K are smaller than N. The total number of mass points, that is
M × K, is unknown a priori and it is estimated together with the other parameters of
the model. This modelling allows the identification of a bivariate clustering distribution
among the N groups, where each group i is associated to a bivariate cluster, standing
on the linear relationships between the two response variables and their covariates. In
other words, the model identifies a bivariate latent structure among the groups, that also
reveals the dependence among the two response variables. Under these assumptions, the
semi-parametric bivariate model with random coefficients takes the following form:

(
y1,i

y2,i

)T

= Xi

(
β1

β2

)T

+ Zi

(
c1,m

c2,k

)T

+

(
ϵ1,i

ϵ2,i

)T

i = 1, . . . , N m = 1, . . . ,M k = 1, . . . , K

ϵTi =

(
ϵ1,i

ϵ2,i

)
∼ N2(0,Σ) ind .

(2.21)

Even in this case the algorithm follows the idea presented in [17] considering, without
loss of generality, the case of a semi-parametric bivariate twolevel linear model, with one
random intercept, one random covariate and P fixed covariates 4, reducing the previous
model in the following form:

(
y1,i

y2,i

)T

= 1ni

(
c1,1m

c2,1k

)T

+
P∑

p=1

xip

(
β1p

β2p

)T

+ zi

(
c1,2m

c2,2k

)T

+

(
ϵ1,i

ϵ2,i

)T

i = 1, . . . , N m = 1, . . . ,M k = 1, . . . , K

ϵTi =

(
ϵ1,i

ϵ2,i

)
∼ N2(0,Σ) ind

(2.22)

where 1ni
is the ni-dimensional vector of 1,M is the total number of mass points for the

first response and K is the total number of mass points for the second response and both
of them are unknown a priori. Coefficients Cmk, for m = 1, . . . ,M and k = 1, . . . , K are
distributed according to a discrete probability measure S∗ that belongs to the class of all
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probability measures on R4. S∗ can then be interpreted as the mixing distribution that
generates the density of the stochastic model in 2.22. For further details it is possible to
look at the Algorithm 2.3
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Algorithm 2.3 EM algorithm for bivariate semi-parametric models with random coeffi-
cients
input : Initial estimates for (C

(0)
11 , . . . ,C

(0)
MK) and (w

(0)
11 , . . . , w

(0)
MK), with M = N and K = N ;

Initial estimates for B(0) and Σ(0);
Tolerance parameters D1, D2, w̃1, w̃2, tollR, tollF, it, it1, itmax.

output: Final estimates of C(a)
mk, w

(a)
mk, for m = 1, . . . ,M , k = 1, . . . ,K, B(a) and Σ(a).

a=1; conv1=0; conv2=0;

while (conv1 == 0 or conv2 == 0 & a < it) do
compute the distance matrices DIST1 and DIST2 for both the subpopulations distribution (where,
e.g.,for the first response variable, DIST1st =

√
(c1,1s − c1,1t)2 + (c1,2s − c1,2t)2 is the euclidean

distance between each couple of mass points s, t ∀s, t = 1, . . . ,M, s ̸= t);
if (DIST1st < D1 & DIST1st = min(DIST1) (∀s, t = 1, . . . ,M, s ̸= t)) then

collapse marginal masses s and t to a unique mass point;
if (DIST2st < D2 & DIST2st = min(DIST2) (∀s, t = 1, . . . ,K, s ̸= t)) then

collapse marginal masses s and t to a unique mass point;
compute the new distance matrices DIST1 and DIST2;

if conv1 == 1 or a ≥ it1 then
if w

(a)
1,m ≤ w̃1 (∀m = 1, . . . ,M) then
delete marginal mass point m;
reparameterize the weights;

if w
(a)
2,k ≤ w̃2 (∀k = 1, . . . ,K) then
delete marginal mass point k;
reparameterize the weights;

if no changes are done then
conv2 = 1;

given C
(a−1)
mk , w

(a−1)
mk for m = 1, . . . ,M and k = 1, . . . ,K, B(a−1) and Σ(a−1), compute the matrix

W according to Eq. (??);
update the weights w

(a)
11 , . . . , w

(a)
MK according to Eq. (2.8);

B(a,0) = B(a−1);
Σ(a,0) = Σ(a−1);
C

(a,0)
mk = C

(a−1)
mk ;

w
(a,0)
mk = w

(a−1)
mk ;

keeping B(a,0) and Σ(k,0) fixed, update the M × K support points C
(a,1)
11 , . . . ,C

(a,1)
MK according to

Eq. (2.9);
keeping C

(a,1)
mk , w

(a,0)
mk for m = 1, . . . ,M and k = 1, . . . ,K fixed, update B(a,1) and Σ(a,1) according

to Eq. (2.9);

j=1;
while (|B(a,j−1) − B(a,j)| ≥ tollF or |Σ(a,j−1) − Σ(a,j)| ≥ tollF or |C(a,j−1)

mk − C
(a,j)
mk | ≥

tollR) & j ≤ itmax do
j=j+1; keeping B(a,j−1) and Σ(a,j−1) fixed, update the M ×K support points C

(a,j)
11 , . . . ,C

(a,j)
MK

according to Eq. (2.9);
keeping C

(a,j)
mk , w

(a,j−1)
mk for m = 1, . . . ,M and k = 1, . . . ,K fixed, update B(a,j) and Σ(a,j)

according to Eq. (2.9);

set C
(a)
mk = C

(a,j)
mk for m = 1, . . . ,M and k = 1, . . . ,K, B(a) = B(a,j), Σ(a) = Σ(a,j);

estimate subpopulation mk for each group i according to Eq. (2.18);
if (B(a) −B(a−1) < tollF ) & (Σ(k) −Σ(k−1) < tollF ) & (C(a)

mk −C
(a−1)
mk < tollR) then

conv1 = 1;
a= a+1;
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2.2.3. Semi-parametric mixed-effects models for a multinomial

response

In this section we describe the case int which the response variable has a multinomial
form. Let’s consider a multinomial logistic regression model for nested data with a two-
level hierarchy [1? ], where each observation j, for j = 1, . . . , ni, is nested within a
group i, for i = 1, . . . , I. Let Yi = (Yi1, . . . , Yini

) be the ni-dimensional response vector
for observations within the i−th group. The multinomial distribution with K categories
relative to Yij is the following:

Yij =



1 πij1

2 πij2

. . .

K πijK

, (2.23)

where k = 1, . . . , K indexes the K support points of the discrete distribution of Yij and
πijk is the probability that observation j within group i assumes value k. Mixed-effects
multinomial models assume that the probability that Yij = k, i.e. πijk, is given by

πijk = P (Yij = k) =
exp(ηijk)

1+
∑K

k=2 exp(ηijk)
for k = 2, . . . , K

πij1 = P (Yij = 1) = 1

1+
∑K

k=2 exp(ηijk)

, (2.24)

where ηijk = x′
ijαk + z′ijδik is the linear predictor. xij is the p × 1 covariates vector

(includes a 1 for the intercept) of the fixed effects, αk is the p × 1 vector of regression
parameters of the fixed effects, zij is the q × 1 covariates vector of the random effects
(includes a 1 for the intercept) and δik is the q × 1 vector of regression parameters of the
random effects. Logit models for nominal response basically pair each category with a
baseline category. This formulation considers K − 1 contrasts, between each category k,
for k = 2, . . . , K, and the reference category1, that is k = 1. Consequently, each category
is assumed to be related to a latent “response tendency” for that category with respect
to the reference one. Each contrast k′, k′ = 1, . . . , K − 1, is characterized by the set of
contrast-specific parameters (αk′ ; δik′ , for i = 1, . . . , I), that models the probability of Yij

being equal to k ≡ k′ + 1 with respect to the probability of Yij being equal to 1 (the
1We consider the first category as the reference one but this choice is arbitrary and it does not affect

the model formulation.
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reference category)2. Starting from Eq. (2.24), the log-odds of each response with respect
to the reference category are:

log

(
πijk

πij1

)
= ηijk k = 2, . . . , K. (2.25)

For each contrast, the contrast-specific random-effects parameters describe the latent
structure at the highest level of the hierarchy.

The Maximum Likelihood Estimation (MLE) method allows to estimate the model pa-
rameters of this probability distribution.

Considering A = (α2, . . . ,αK) and ∆i = (δi2, . . . , δiK), the distribution of Yij, conditional
on the random effects distribution, takes the following form:

p(Yij|A,∆i) =π
1{Yij=1}

ij1 × π
1{Yij=2}

ij2 × . . .× π
1{Yij=K}

ijK =

=
K∏
k=1

π
1{Yij=k}

ijk =

=
K∏
k=1

(
exp(ηijk)

1 +
∑K

l=2 exp(ηijl)

)1{Yij=k}

. (2.26)

Assuming that Yij and Yij′ are independent for j ̸= j′, the conditional distribution of Yi

is:

p(Yi|A,∆i) =

(∑K
k=1

(∑ni

j=1 1{Yij=k}

))
!∏K

k=1

((∑ni

j=1 1{Yij=k}

)
!
) × ni∏

j=1

p(Yij|A,∆i) =

=

(∑K
k=1

(∑ni

j=1 1{Yij=k}

))
!∏K

k=1

((∑ni

j=1 1{Yij=k}

)
!
) × ni∏

j=1

K∏
k=1

π
1{Yij=k}

ijk =

=

(∑K
k=1

(∑ni

j=1 1{Yij=k}

))
!∏K

k=1

((∑ni

j=1 1{Yij=k}

)
!
) × ni∏

j=1

K∏
k=1

(
exp(ηijk)

1 +
∑K

l=2 exp(ηijl)

)1{Yij=k}

.

(2.27)

Even in this case we move to a semi parametric framework by assuming the coefficients
of the random effects to follow a discrete distribution with an a priori unknown number

2Note that k′ ≡ k − 1 for k = 2, . . . ,K and, therefore the sequence of parameters (αk′ ; δik′ , for
i = 1, . . . , I), for k′ = 1, . . . ,K − 1 is equal to the sequence (αk; δik, for i = 1, . . . , I) for k = 2, . . . ,K.
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of support points. Under this assumption, the multinomial logit takes the form:

ηijk = x′
ijαk + z′ijbmkk mk = 1, . . . ,Mk, k = 2, . . . , K, (2.28)

where Mk is the total number of support points of the discrete distribution of b relative
to the k−th category, for k = 2, . . . , K. The random effects distribution relative to each
category k, for k = 2, . . . , K, can be expressed as a set of points (b1k, . . . ,bMkk), where
Mk ≤ I and bmkk ∈ Rq for mk = 1, . . . ,Mk, and a set of weights (w1k, . . . , wMkk), where∑Mk

mk=1 wmkk = 1 and wmk
≥ 0:

B =



b12, b22, . . . , bM22

(w12), (w22), . . . , (wM22)

. . .

. . .b1K , b2K , . . . , . . . , bMKK

(w1K), (w2K), . . . , . . . , (wMKK)

. (2.29)

The discrete distributions P ∗
k , for k = 2, . . . , K, belong to the class of all probability

measures on Rq and are assumed to be independent. P ∗
k is a discrete measure with Mk

support points that can then be interpreted as the mixing distribution that generates the
density of the stochastic model in Eq.(2.28). In particular, wmkk = P (δik = bmkk), for
i = 1, . . . , I.

Given this formulation two patths open up, in [18] the authors propose the MSPEM
algorithm for the joint estimations of αk, (b1k, . . . ,bMkk) and (w1k, . . . , wMkk), for k =

2, . . . , K, which is performed through the maximization of the likelihood, mixture by
the discrete distribution of the random effects. In the MSPEM steps, under the indepen-
dence assumption across the contrast-specific random-effects, when estimating the support
points relative to each contrast, the other contrast-specific random-effects parameters are
fixed to the mean of the relative discrete distributions. In other words, when estimating
the random effects of a group with respect to a response category, the random effects
of this specific group with respect to the other categories are ignored. This assumption
simplifies the parameters estimation procedure, but it is often too strict and unrealistic.
For this reason the authors in [19] propose a different method in which the independence
across the random effects distributions relative to the (K − 1) categories is not assumed.
The JMSPEM method allows for greater flexibility therefore it is preferred to MSPEM in
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this thesis. The functions described in later chapters will refer to the method with joint
estimates. More details regarding the algorithms, differences between the two methods,
and further theoretical details can be found in the articles [18] and [19]
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3| Package structure and usage

In this section all the instructions useful to the user to use the package are presented.
To explain both the command useful to run the models and the default values of the
variables, a definition of the R function for each statistical model is provided. Next,
the output of the function is shown, followed by a list of all auxiliary functions. The
explanation of these functions will be differentiated for those related to the first branch
of research while for the second branch they will be explained only once given the small
amount of differences. It is significant to note that no relevant examples are provided
for either the auxiliary functions or outputs. This topic is postponed to the following
parts because the next chapter is concentrated on providing examples relevant to all the
statistical models discussed. The analysis of some parameters related to the convergence
of iterative algorithms is also referred to the next chapter. In fact, some significant
variations related to the change of parameters will be presented so only the theoretical
definition of the parameter is presented below. The installation of the package is made
through the following line of command

install.packages("SpMEMs")

. and then loaded to the workspace thorugh th following command:

library("SpMEMs")

3.1. Generalised mixed effect Tree

The R function relative to the GMET function is the following:

GMET(formula , dataset , random , subset = NULL ,

family = binomial ,

tree.control =rpart.control (),

cv=TRUE , cpmin = 0.01, verbose = FALSE)

The three necessary inputs are formula dataset and random while the other ones are
already initialized and fine-tune the algorithm. The description of the inputs is the fol-
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lowing

• formula: a formula expression as for regression models, of the form response ∼
predictors, for example: y ∼ x + z . The predicotrs variable must contain only
the name of the covariate that has to be treated as fixed.

• dataset: a data frame, list or environment in which to interpret the variables
occurring in formula.

• random: a formula expression for the random effects. Those terms are distinguished
by vertical bars (‘|’) separating expressions for design matrices from grouping factors.

• subset: a vector of index indicating the rows of the dataset that has to be used to
train the random forest. If the input is not filled all the dataset is used as training
dataset.

• family: a GLM family of the response, consult [28] for further details.

• tree.control :a list of options that control details of the Recursive Partitioning
and Regression Trees (rpart) algorithm. All the informations are contained in the
documentation of the rpart package [33].

• cv: a logical parameter. If it is equal to TRUE the cross validation is performed.

• cpmin: complexity parameter. Any split that does not decrease the overall lack of
fit by a factor of cp is not attempted. For instance, with anova splitting, this means
that the overall R-squared must increase by cp at each step. The main role of this
parameter is to save computing time by pruning off splits that are obviously not
worthwhile. Essentially, the user informs the program that any split which does not
improve the fit by cp will likely be pruned off by cross-validation, and that hence
the program need not pursue it.[33]

• verbose: a logical parameter. If it is equal to TRUE the summary of the general
linear model used to initialize the fixed effect is displayed.

The output of the function is an object of the my.mixed.tree class that is composed as
follow:

• Tree: a rpart object that describes the tree object used to estimate the fixed effects
[33].

• EffectModel: a merMod object containing the result of the Generalized linear mixed-
effect model obtained witht the tree object estimated in the function as fixed effect.
For further information about the functioning of a merMod consult the [2]
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• RandomEffects: a ranef.mer object containing a dataframe composed by the ran-
dom effect parameters for each group estimated in the model.

• BetweenMatrix: an object of class VarCorr.merMod containing the estimated vari-
ances, standard deviations, and correlations between the random-effects terms in a
mixed-effects model.

Below the auxiliary functions of the statiscal model are presented.

3.1.1. Recursive Partitioning and Regression Trees plot

The first auxiliary function is a graphical function. It allows to visualize the rpart plot
relative to the estimated mixed-effects tree. In this case the tree-object is used to estimate
the fixed effect part of the model i.e. the f (Xi) function of the model in Eq.(2.2). The
generic call of the function is the following:

plot.mymixedtree(x)

3.1.2. Dotplot of the estimated random intercept

The second function is also graphical therefore it consists of a graphical tool aimed at dis-
playing no longer the fixed component but rather the random component of the model pre-
sented in Eq.(2.2). It allows the visualization of the estimated random intercept toghether
with the 95% confidence interval for each group of the random effect. The generic call of
the function is the following:

dotplot.GMET(gmt ,rand_int=FALSE)

gmt is a GMET object while rand_int is a logical value. If it is equal to TRUE the function
displays the random intercept of the model.

3.1.3. GMET prediction function

The third function we present is no longer graphical but it gives the possibility to know
the predicted value of a new observation through the model obtained using the GMET
algorithm. The predict function has the following generic call:

predict.mymixedtree(object , newdata , type = "response")

where:

• object: is a GMET object.
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• newdata:is a data frame where one can search for variables to use in predictions.
The dataframe’s columns must bear the same names as those of the dataset used
in the call of GMET function.

• type: the type of prediction required. The default is on the scale of the linear
predictors; the alternative "response" is on the scale of the response variable. Thus
for a default binomial model the default predictions are of log-odds (probabilities on
logit scale) and type = "response" gives the predicted probabilities. The "terms"
option returns a matrix giving the fitted values of each term in the model formula
on the linear predictor scale.

3.2. Generalised mixed effect Random Forest

Let us consider a different version of the previous algorithm in which we use a random
forest model as a tree-object rather than a non parametric CART model for estimating the
f (Xi) function of the model presented in Eq.(2.2) The GMERF function can be invoked
with the following code

GMERF(y, cov , group , xnam=NULL , znam=NULL ,

family=’binomial ’, bizero=NULL ,

itmax=30, toll =0.02)

The explanation of the various input is the following:

• y: is a vector containing the response variable of the model.

• cov: a dataframe object containing all the covariates that has to be considered in
the model. It is important to note that it is not necessary to add a column of ones
in the cov dataframe since the code does it automatically.

• group: a factor element that contains the information about the group of the ob-
servations contained in y and cov.

• xnam: an array with the names of the columns of the cov dataset that has to be
considered as fixed elements.

• znam: an array with the names of the columns of the cov dataset that has to be
considered as random elements.

• family: a GLM family, consult [28].

• bizero: a matrix of dimension (q + 1) × N for the initialization of the random
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effects parameters. The first column is the intercept parameter while the other are
the ones concerning the other znam covariates. The default option creates a matrix
with a vector of ones in the first row and zeros in the other elements.

• itmax: a integer that indicates the maximum number of the iteration performed by
the algorithm.

• toll: a real number that indicates the minimum difference between bi’s of two
consecutive iterations.

It is useful to highlight the fact that the group variable assume consistency with the
bizero matrix. The i column of the matrix bizero corresponds to the i group level of
the variable group. The call of the GMERF function generates a GMERF object that
has the following composition:

• glmer.model: a merMod object containing the result of the Generalized linear mixed-
effect model obtained with the tree object estimated in the function as fixed effect.
For further information about the functioning of a merMod consult the [2].

• forest: an object of class randomForest that describes the result of the estimation
of the fixed effect function used in the model. For further information about the
randomForest it is possible to consult the package documentation of the R package
rpart [33].

• rand.coef: a dataframe of dimension (q + 1) containing the estimated random
coefficient of the model , i.e. the bi of the model presented in Eq.(2.2).

• n.iteration: an integer that indicates how many iterations the algorithm did.

• converged: a logical value that indicates if the algorithm reached convergence or if
it stopped at the maximum number iteration indicated as input.

• all.rand.coef: a list of dataframes containing the bi’s obtained at every iteration.

• linkf: a function object containing the link function used in the model.

• linkinv: a function object containing the inverse of the link function used in the
model.

• forest.var: a vector of string containing the names of the covariates used to obtain
the random forest object.

• random.eff.var: a string vector providing the name of the covariates that was
utilized to create the random forest object.
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• family: a string containing the type of family used in the model.

There are 5 auxiliary functions useful to the user in understanding the output of the
algorithm.

3.2.1. Variable Importance Plot

The second auxiliary is a graphical function too. When dealing with a general random
forest, it is possibile to understand the importance of a variable in the prediction of the
response using the Variable Importance Plot (VIP). For further information about the
VIP it is possible to consult the R documentation of the VarImpPlot of the randomForest
package in [11] The generic call of the function is thee following:

VIP.GMERF(gmf ,covnames=NULL)

where gmf is a GMERF object while covnames is a string containing the names of the
covariates of the model. If covnames is not filled the names of the covariates will not be
displayed in the x-axes of the plot.

3.2.2. Dotplot of the estimated random intercept

The first function is a graphical tool aimed at displaying the random component of the
model presented in Eq.(2.2). It allows the visualization of the estimated random intercept
toghether with the 95% confidence interval for each group of the random effect. The
generic call of the function is the following:

dotplot.GMERF(gm ,rand_int=FALSE)

where gmf is a GMERF object while rand_int is a logical value. If it is equal to TRUE

the function displays the random intercept of the model.

3.2.3. GMERF fitted function

The third auxiliary function allow to obtain the fitted values of the algorithm. That are
the predicted values of the response obtained using as independent covariates the dataset
given as input in the GMERF function. The generic call of the function is:

fitted.GMERF(gmf , type=’response ’, alpha =0.5)

where :

• gm:is a GMERF object



3| Package structure and usage 31

• type:is the type of prediction required. The default is on the scale of the linear
predictors; the alternative "response" is on the scale of the response variable. Thus
for a default binomial model the default predictions are of log-odds (probabilities on
logit scale) and type = "response" gives the predicted probabilities. The "terms"
option returns a matrix giving the fitted values of each term in the model formula
on the linear predictor scale.

• alpha: a number between 1 and zero that, if type="response" and family="bynomial"

indicates the splitter to assign the element to the first or the second category of the
response variable.

3.2.4. GMERF prediction function

The function presented below gives the possibility to know the predicted values of a new
observation through the model obtained using the GMERF function. It is important to
highlight the difference with the previous function. The fitted function gives as output
the results related to the data used to build the model but it is not possible to predict
new observation. On the other hand, the goal of the predict function is to obtain the
predicted values of the response variable related to new observations.

predict.gmerf(gm , newdata , group , type=’response ’,

alpha =0.5, predict.all=FALSE ,

re.form=NULL ,

newparam=NULL ,terms=NULL , allow.new.levels=TRUE ,

na.action=na.pass ,random.only=FALSE)

where:

• object: is a GMERF object.

• newdata: isa data frame in which to look for variables with which to predict. The
colums of the dataframe has to be named with the same names of the dataset used
in the recall of GMERF function.

• type: is the type of prediction required. The default is on the scale of the linear
predictors; the alternative "response" is on the scale of the response variable. Thus
for a default binomial model the default predictions are of log-odds (probabilities on
logit scale) and type = "response" gives the predicted probabilities. The "terms"
option returns a matrix giving the fitted values of each term in the model formula
on the linear predictor scale.

• group: is a vector or dataframe or matrix object containing the categorical variable
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used for the random effects.

For all other inputs refer to the predict function of the stats package [28].

Summary of the GMERF function

The last auxiliary function is useful to have complete view of the output of the algorithm.
It is possible to know in the details all the element displayed at the console looking at the
documentation of the R package base, [27] The generic call of the function is the following

summary.gmerf(gmf)

where gmf is a GMERF .

3.3. Semi-parametric mixed-effects models for a con-

tinuous response

Consider the semi parametric method for unsupervised classification presented in the
second strand of research. The first function presented is SPEM that can be invoked
through the following code:

SPEM(case ,dataset ,resp_var_name ,ran_var_name=NULL ,

groups_var_name ,iteration =30, iteration_for_sup

port_reduction =20, iteration_fix=20,

tollweight =0.02, toll =0.5, toll_ran_eff =10^-3

,toll_fix_eff=10^-5, NumMinObs =9)

and the input are:

• case: a string describing the type of random effects to be considered. It can be equal
to ’int’,’slope’,’inteslope’.To further understand the distinctions between the
three cases, it is useful to look at the model in Eq.(2.4). In case of ’int’ the model is
modified in the following way: yi = Xiβ0+1c0l+Ziβ1+ϵi. In this case the matrix Zi,
that in the initial model contained the random covariates of the model, is treated as
a fixed component. Indeed if the choice of the case is ’int’ the input ran_var_name
will not be considered and all the covariates of the dataframe object given as input
in dataset will be treated as fixed components. Moreover, this is the only case in
which it is possible to use the function’s default setting for input ran_var_name, in
fact in all other cases the function will return an error. If the choose is ’slope’

the variable contained in ran_var_name will be considered as the random variable
of the model and it takes the following form: yi = 1β0 +Xiβ1 + Zic1l + ϵi. Finally
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in the case of ’inteslope’ both slope and intercept are considered and the model
takes the following form yi = Xiβ + Zic1l + 1c0l + ϵi

• dataset: a dataframe object containing all the statistical units to be considered.

• resp_var_name: a string holding the names of the columns in the dataset collection
that constitutes the model’s response variable.

• ran_var_name: a string containing the name of the covariates of dataset to be
considered as the random effect of the model.

• groups_var_name: a string with the name of the column of dataset to be consid-
ered as the one containing information regarding the groups of the various statistical
units.

• iteration: an integer indicating the maximum number of iteration that the algo-
rithm can perform.

• iteration_fix: an integer indicating the maximum number that the algorithm can
perform to estimate the fixed component of the model.

• iteration_for_support_reduction: an integer indicating the maximum number
of iterations the algorithm can perform for the support reduction.

• tollweight: a real number indicating the minimum value a weight can take.

• toll: a real number indicating the minimum Euclidean distance for two neighboring
nodes to be joined into one.

• toll_ran_eff:a real number that indicates the minimum difference between cl of
two consecutive iterations to stop the algorithm.

• toll_fix_eff:a real number that indicates the minimum difference between β’s of
two consecutive iterations to stop the algorithm.

• NumMinObs: An integer indicating the minimum number of observations a group
must have to be considered in the algorithm. The default settings are set to 9 so
that all groups with at least 10 observations are considered.

The SPEM function gives as output an object of the SPEM class that consists of the
following elements:

• knots: is a matrix containing the ckl’s parameter of the model in Eq.(2.4) .It is
important to notice that if the model was obtained by giving as input the ’int’

or ’slope’ case the dimension of the matrix are M × 1 matrix where M is the
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number of subpopolations identified by the algorithm. While if the chosen case is
’inteslope’ the dimensions will be M × 2.

• Param: is a vector containing the fixed parameters of the model, β.

• sig: is the estimated standard deviation of the errors of the model.

• groups: is a dataframe object of dimension N × 2 where N is the total number
of groups in the model. The first column is a list of all the groups into which
the observations were divided. While the second describes the new division into
subpopulations.

• weights: is a vector of double containing the weights of the discrete distribution of
the random parameters.

• case: is a string containing the case of the model.

• VarName: is a dataframe object containing the name of the variable of the dataset
divided in the two components, fixed and random.

3.4. Semi-parametric mixed-effects models for a bi-

variate continuous response

When the response variable is bivariate, we refer to the BSPEM function that can be
invoked with the following code:

BSPEM(case ,dataset ,resp_var_name1 ,resp_var_name2 ,

ran_var_name1=NULL ,ran_var_name2=NULL ,

fix_var_name1 ,fix_var_name2 ,

groups_var_name ,iteration =30,

iteration_for_support_reduction =20,

tollweight =0.05, toll =0.3,

toll_ran_eff=10^-2,toll_fix_eff=10^-2,

iteration_fix=20, NumMinObs =9)

Due to their absolute equality, the inputs are only stated for the first component:

• case:a string describing the type of random effects to be considered. It can be equal
to ’int’,’slope’,’inteslope’.To further understand the distinctions between the
three cases, it is useful to look at the model in Eq.(2.22). In case of ’int’ the model
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is modified in the following way:(
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In this case the matrix zi, that in the initial model contained the random covariates
of the model, is treated as a fixed component. Indeed if the choice of the case is
’int’ the inputs ran_var_name1 and ran_var_name2 will be considered as fixed
effect, moreover, this is the only case in which it is possible to use the function’s
default setting for inputs ran_var_name1 and ran_var_name2, in fact in all other
cases the function will return an error. If the choice is ’slope’ the variable contained
in ran_var_name1 and ran_var_name2 will be considered as the random variable
of the model and it takes the following form:(
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Finally in the case of ’inteslope’ both slope and intercept are considered and the model
takes the following form:(
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ran_var_name, in fact in all other cases the function will return an error. If the choose is
’slope’ the variable contained in ran_var_name will be considered as the random variable
of the model and it takes the following form: yi = 1β0 + Xiβ1 + Zic1l + ϵi. Finally in
the case of ’inteslope’ both slope and intercept are considered and the model takes the
following form yi = Xiβ + Zic1l + 1c0l + ϵi

• dataset: a dataframe object containing all the statistical units to be considered.

• resp_var_name1: a string holding the names of the columns in the dataset collection
that constitutes the model’s response variable.

• ran_var_name1: a string containing the name of the covariates of dataset to be consid-
ered as the random effect of the model.
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• fix_var_name1: a string containing the name of the covariates of dataset to be consid-
ered as the fixed effect of the model.

• groups_var_name: a string with the name of the column of dataset to be considered as
the one containing information regarding the groups of the various statistical units.

• iteration: an integer indicating the maximum number of iteration that the algorithm
can perform.

• iteration_fix: an integer indicating the maximum number that the algorithm can per-
form to estimate the fixed component of the model.

• iteration_for_support_reduction: an integer indicating the maximum number of it-
erations the algorithm can perform for the support reduction.

• tollweight: a real number indicating the minimum value a weight can take.

• toll: a real number indicating the minimum Euclidean distance for two neighboring
nodes to be joined into one.

• toll_ran_eff:a real number that indicates the minimum difference between cl of two
consecutive iterations to stop the algorithm.

• toll_fix_eff:a real number that indicates the minimum difference between β’s of two
consecutive iterations to stop the algorithm.

• NumMinObs: An integer indicating the minimum number of observations a group must
have to be considered in the algorithm. The default settings are set to 9 so that all
groups with at least 10 observations are considered.

The BSPEM function gives as output an object of the BSPEM class composed by the
following elements:

• knots:a list of 2 matrices containing the random coefficients of the model in Eq.(2.22).
If the model was obtained by giving as input the ’int’ or ’slope’ case case the
dimension of the matrices will be 1 ×M and 1 ×K respectively, where M and K

are the numbers of subpopolations identified by the algorithm. In contrast if the
chosen case is ’inteslope’ the dimensions of the matrices will be 2×M and 2×K.

• Param: a list ov vectors containing the fixed parameters of the model.

• sig: is the estimated covariance matrix of the errors of the model.

• groups: a vector of strings containing the new division of the subpopulation.
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• weights: a list of vectors of double containing the weights of the discrete distribution
of the random parameters.

• case: a string containing the case of the model.

• VarName: a dataframe object containing the name of the variable of the dataset
divided in the two components, fixed and random.

3.5. Semi-parametric mixed-effects models for a multi-

nomial response

Finally we present the MSPEM function which refers to the case where the response
variable is multinomial. The function can be invoked in the following way:

JMSPEM(case ,dataset ,resp_var_name ,ran_var_name=NULL ,

groups_var_name ,iteration =30, iteration_for_sup

port_reduction =20, iteration_fix=20,

tollweight =0.05, toll=1,toll_ran_eff =10^-2

,toll_fix_eff=10^-2, NumMinObs =9)

Where:

• case: is a string that describes the type of random effects to be considered. It can
be equal to ’int’,’slope’,’inteslope’. In case of ’int’ the model is modified
in the following way: ηik = α1kx1i + α2kx2i + δik. In this case the matrix Z1i, that
in the initial model contained the random covariates of the model, is replaced with
the matrix x2i and therefore treated as a fixed component. Indeed if the choice
of the case is ’int’ the input ran_var_name will not be considered and all the
covariates of the dataframe object given as input in dataset will be treated as
fixed components. Moreover, this is the only case in which it is possible to use
the function’s default setting for input ran_var_name, in fact in all other cases the
function will return an error. If the choose is ’slope’ the variable contained in
ran_var_name will be considered as the random variable of the model and it takes
the following form: ηik = α1k + α2kx1i + δikz1i. Finally in the case of ’inteslope’
both slope and intercept are considered and the model takes the following form
ηik = αkx1i + δ1ik + δ2ikz1i

• dataset: a dataframe object containing all the statistical units to be considered.

• resp_var_name: a string holding the names of the columns in the dataset collection
that constitutes the model’s response variable. It is important to note the fact that
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the algorithm is built to handle response variables with no more than 5 categories.

• ran_var_name: a string containing the name of the covariates of dataset to be
considered as the random effect of the model.

• groups_var_name: a string with the name of the column of dataset to be consid-
ered as the one containing information regarding the groups of the various statistical
units.

• iteration: an integer indicating the maximum number of iterations that the algo-
rithm can perform.

• iteration_fix: an integer indicating the maximum number of iterations that the
algorithm can perform to estimate the fixed component of the model.

• iteration_for_support_reduction: an integer indicating the maximum number
of iterations the algorithm can perform for the support reduction.

• tollweight: a real number indicating the minimum value a weight can take.

• toll: a real number indicating the minimum Euclidean distance for two neighboring
nodes to be joined into one.

• toll_ran_eff:a real number that indicates the minimum difference between random
parameters estimated in two consecutive iterations for convergence to have been
achieved.

• toll_fix_eff:a real number that indicates the minimum difference between β’s of
two consecutive iterations to stop the algorithm.

• NumMinObs: An integer indicating the minimum number of observations a group
must have to be considered in the algorithm. The default settings are set to 9 so
that all groups with at least 10 observations are considered.

The JMSPEM function generates a JMSPEM object containing the following elements:

• knots: is a list of K matrices containing the random parameters of the model in
Eq.(2.28). The number of columns in the matrices depends on the case chosen, 2
for the inteslope case 1 for the other two. While the number of rows is equal to
the number of subpopulations found for the relative contrast.

• Param: is a vector containing the fixed parameters of the model, δjik.

• weights: is a multidimensional matrix containing all the weights of the model. The
number of matrix dimensions depends on the number of contrasts the algorithm has
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to perform. While the dimensions are equal to the number of subpopulations found
for the relative contrast.

• weightsMarg: is a list of vectors of doubles containing the relative weights to the
nodes of the discrete distribution of random parameters for each contrast.

• case: is a string containing the case of the model.

• VarName: is a dataframe object containing the name of the variable of the dataset
divided in the two components, fixed and random.

3.6. Auxiliary functions

Associated with the three functions just presented are 3 auxiliary functions useful to the
user in studying the output of the models. Since all the functions use as input the output
object of the related statistical model, we will refer to the SPEM,BSPEM and JMSPEM
object as the output object.

3.6.1. Fitted function

The first function allows to visualize the results of the model intended as a method for
unsupervised classification. Indeed it takes as input a vector containing the groups related
to one or more new observations and returns a vector of the same length containing the
subpopulation related to each unit. The calls of the functions in the three cases are the
following:

fitted.SPEM(newdata ,mod)

fitted.BSPEM(newdata ,mod)

fitted.JMSPEM(newdata ,mod)

where newdata is a vector of string containing the group of the new observations and mod
is an output object.

3.6.2. Prediction function

The second auxiliary function we present is the predict function that allows to predict
new observations. This function takes in input an output object and a dataframe object
and gives as output a dataframe object containing the predicted values of the response
variable related to each new observations. In particular the call of the function is the
following:
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predict.SPEM(newdata ,mod)

predict.BSPEM(newdata ,mod)

predict.JMSPEM(newdata ,mod)

and the input are:

• newdata: a dataframe object containing the values of the independent variables
whose response is to be predicted. It is important to emphasize the fact that the
names of the columns in the dataset must be the same as those given as input to
the function used to obtain the output object that will be used.

• mod: an output object.

While the output is a vector containing as many elements as the rows of the dataset given
as input. The columns of the output are 2 for the predict.BSPEM function since the
response variable is binomial.

3.6.3. Discrete Mass Plot

The last auxiliary function is a graphical function useful to visualize the random com-
ponent of the model. In particular the plot obtained through the function is a dotplot
containing as many dots as the number of subpopolation found by the algorithm and they
represent the parameters of the random components. Specifically, in the case where the
SPEM function result is to be displayed, there will be a plot with M dots; in the case of
the BSPEM function, there will be a window divided into two plots containing M and K
dots, respectively. And finally in the multinomial case there will be K windows, where K
is the number of contrasts, containing as many dots as there are subpopulations found.
The width of the points is given by the relative weights while the position varies according
to the case chosen. If the case chosen is int or slope on the y-axis will be displayed the
values related to the intercept or the slope, respectively. In contrast, if the case chosen
is inteslope on the x-axis there will be the value of the intercept and on the y-axis the
one of the slope. The call of the function is the following:

DiscreteMassPlot.SPEM(mod)

DiscreteMassPlot.BSPEM(mod)

DiscreteMassPlot.JMSPEM(mod)

Where mod is an output object.
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This chapter will present examples through which we aim to facilitate understanding of
model outputs and auxiliary functions. In addition, attention will be paid to some of the
input parameters of the functions to explain both possible critical issues of the algorithms
and how to make the best use of its potentials. The datasets used for the examples have
two different natures depending on the branch of research they refer to. In the first case,
the dataset is inspired by the one presented in articles [6] and [24]; in the second case, it
is simulated. Also in this second case, inspiration was taken from the articles [16], [17]
and [19] but the simulations have slight differences and still do not refer to real cases. For
ease of understanding and to facilitate synthesis in the section below are presented the
simulations from which the datasets originated and the command lines needed to load
them to the workspace.

4.1. Data

The datasets used in the example related to the GMET and GMERF functions are inspired
to the ones presented in [24] and [6] and even if they are really similar they are treated
individually because there are some differences that it is good to point out. It is important
to notice that the all the datasets are ready to be used since the whole pre-processing
work has already been done. Finally all the lines of command used to load the data in
the workspace use the data() function from the R package utils, [29].

4.1.1. GMET dataset

The first dataset we present consists of 18612 rows and 10 columns. The statistical units
of the model are the students, the response variable Y is the career status, a two-level
factor we code as a binary variable:

• status = 1 for careers definitely completed with graduation;

• status = 0 for careers definitely concluded with a dropout.
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Instead, the categorical variable used to divide students into the 19 groups is the course
of study contained in the "Degree.Program.in" column. Finally all the other covariates
of the dataset that in the example will be used as fixed effects are described in Table.4.1.
It is possible to load the dataset into the workspace using the command

Variable Description Type of variable

Sex gender factor (2 levels: M, F)
Nationality nationality factor (Italian, foreigner)
PreviousStudies high school studies factor (Liceo Scientifico,

Istituto Tecnico, Other)
AdmissionScore PoliMi admission test result real number
AccessToStudiesAge age at the beginning of the natural number

BSc studies at PoliMi
WeightedAvgEval1.1 weighted average of the evaluations real number

during the first semester of the first year
AvgAttempts1.1 average number of attempts to be real number

evaluated on subjects during
the first semester of the first year
(passed and failed exams)

TotalCredits1.1 number of ECTS credits obtained natural number
by the student during the first
semester of the first year

Table 4.1: List and explanation of variables at student level to be included as covariates
in the GMET model

data(GMET.data ,package="SpMEMs")

4.1.2. GMERF dataset

The dataset useful for testing the GMERF function has 24736 rows and 8 columns. Again,
the statistical units are students divided into 19 courses of study. The response variable
and the variable allowing division into groups remain unchanged. All information regard-
ing the other covariates that will be used as fixed components in the example is explained
in the Table.4.2

Finally the command line to load the data is the following:

data(GMERF.data ,package="SpMEMs")
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Variable Description Type of variable

Sex gender factor (2 levels: M, F)
Nationality nationality factor (Italian, foreigner)
PreviousStudies high school studies factor (Liceo Scientifico,

Istituto Tecnico, Other)
WeiAvgEval1.1 weighted average of the evaluations real number

during the first semester of the first year
AvgAtt1.1 average number of attempts to be real number

evaluated on subjects during
the first semester of the first year
(passed and failed exams)

TotalCredits1.1 number of ECTS credits obtained natural number
by the student during the first
semester of the first year

Degree.Programme.in Degree program the student factor
is enrolled in (grouping variable)

Table 4.2: List and explanation of variables at student level to be included as covariates
in the GMERF model

4.1.3. SPEM datasets

The dataset available to test the SPEM function was created following the same DGP as
the one in article [16] changing only a few values. It is good to specify that for each of the
3 cases , namely int slope and inteslope, a slightly different dataset was simulated.
There are two factors common to all 3 datasets, the first being the simulation of the fixed
and random effects observations that are sampled from the following distribution:

x1 ∼ N (0.30, 0.16), z1 ∼ N (0.1, 0.16),

x2 ∼ N (0.28, 0.16), z2 ∼ N (0.12, 0.16),

x3 ∼ N (0.27, 0.16), z3 ∼ N (0.8, 0.16),

(4.1)

The second factor is the composition of the dataset, indeed the datasets are composed
by 855 observation nested within 9 groups. The first 3 groups have 100 observations the
second 3 have 90 observations and the last triplet have 95 observations each. Below all
datasets are explained by specifying which case they refer to:

• inteslope
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
yi = 3x1 + 5 + 10z1 + ϵi i = 1, 2, 3

yi = 3x2 + 2 + 5z2 + ϵi i = 4, 5, 6

yi = 3x3 + 0 + 2z3 + ϵi i = 7, 8, 9

(4.2)

• int 
yi = 10x1 + 5 + 2z1 + ϵi i = 1, 2, 3

yi = 10x2 + 2 + 2z2 + ϵi i = 4, 5, 6

yi = 10x3 + 0 + 2z3 + ϵi i = 7, 8, 9

(4.3)

• slope 
yi = 3x1 + 10z1 + ϵi i = 1, 2, 3

yi = 3x2 + 5z2 + ϵi i = 4, 5, 6

yi = 3x3 + 1z3 + ϵi i = 7, 8, 9

(4.4)

Once the data were simulated, the final dataset was constructed by merging previous
sampling in the manner shown in Eq.(4.5)

y x z groups

y11 x11 z11 ”1”

y21 x11 z11 ”1”

. . . . . . . . .

y100 1 x100 1 z100 1 ”1”

y12 x12 z12 ”2”

. . . . . . . . .

y95 9 x95 9 z95 9 ”9”

(4.5)

Finally it is possible to load the datasets in the worksspace throgh the following line of
commands:

data(SPEM.inteslope.data ,package="SpMEMs")

data(SPEM.int.data ,package="SpMEMs")

data(SPEM.slope.data ,package="SpMEMs")

4.1.4. BSPEM datasets

Now let us consider the datasets used to create the examples related to the BSPEM
function, again we can find similarities with the DGP from Article [17]. We also find,
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again, three slightly different datasets, one for each instance of the input case. The
three datasets have the same composition and the observations for the fixed and random
components are the same but the models are different. The distributions from which the
fixed and random observations were drawn are presented below:

zi ∼ N (0.1, 0.16) i = 1, 2, 3

zi ∼ N (0.12, 0.16) i = 4, 5, 6

zi ∼ N (0.8, 0.16) i = 7, 8, 9

(4.6)

xi ∼ N (0.3, 0.16) i = 1, 2, 3

xi ∼ N (0.28, 0.16) i = 4, 5, 6

xi ∼ N (0.27, 0.16) i = 7, 8, 9

(4.7)

and

ϵi ∼ N2

(
0,Σ =

(
1 0

0 1

))
i = 1, . . . , 9. (4.8)

While the composition of each of the three models is the following:

• inteslope (
y1,i

y2,i

)T

= 1ni

(
c1,1m

c2,1k

)T

+ xi

(
β1

β2

)T

+ zi

(
c1,2m

c2,2k

)T

+ ϵi

i = 1, . . . , 9 m = 1, . . . ,M k = 1, . . . , K

ϵTi =

(
ϵ1,i

ϵ2,i

)
∼ N2(0,Σ) ind.

(4.9)

and the value of the parameter can be consulted in Table.4.3.

• int (
y1,i

y2,i

)T

= 1ni

(
c1,1m

c2,1k

)T

+ xi

(
β1,1

β1,2

)T

+ zi

(
β1,2

β2,2

)T

+ ϵi

i = 1, . . . , 9 m = 1, . . . ,M k = 1, . . . , K

ϵTi =

(
ϵ1,i

ϵ2,i

)
∼ N2(0,Σ) ind.

(4.10)

and the value of the parameter can be consulted in Table.4.4.
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• slope (
y1,i

y2,i

)T

= 1ni

(
β0,1

β0,2

)T

+ xi

(
β1,1

β1,2

)T

+ zi

(
c1,2m

c2,2k

)T

+ ϵi

i = 1, . . . , 9 m = 1, . . . ,M k = 1, . . . , K

ϵTi =

(
ϵ1,i

ϵ2,i

)
∼ N2(0,Σ) ind.

(4.11)

and the value of the parameter can be consulted in Table.4.5.

First response parameters Second response parameters
c1,11 = 5 c2,11 = 50

i = 1, 2, 3 c1,21 = 10 c2,21 = 100
β1 = 3 β2 = 30
c1,12 = 2 c2,11 = 20

i = 4, 5, 6 c1,22 = 5 c2,21 = 50
β1 = 3 β2 = 30
c1,13 = 0 c2,12 = 10

i = 7, 8, 9 c1,23 = −2 c2,22 = 20
β1 = 3 β2 = 30

Table 4.3: Set of parameters used to simulate the response variable following the model
in Eq.(4.9). The intercepts and the coefficients of z differ across subpopulations, while
the coefficients β of x are fixed. We impose a structure with three subpopulations in both
the responses (M=3,K=3).

First response parameters Second response parameters
c1,11 = 5 c2,11 = 50

i = 1, 2, 3 β1,1 = 10 β2,1 = 10
β1,2 = 3 β2,2 = 3
c1,12 = 2 c2,11 = 50

i = 4, 5, 6 β1,1 = 10 β2,1 = 10
β1,2 = 3 β2,2 = 3

c1,13 = −2 c2,12 = 20
i = 7, 8, 9 β1,1 = 10 β2,1 = 10

β1,2 = 3 β2,2 = 3

Table 4.4: Set of parameters used in Eq. (4.10) to simulate data. We impose a structure
with three subpopulations in the first response (M=3) and two subpopulations in the
second one (K=2).

Once the data were simulated, the final dataset was constructed by merging previous
sampling in the manner shown in Eq.(4.12)
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First response parameters Second response parameters
c1,11 = 10 c2,11 = 1

i = 1, 2, 3 β0,1 = 0 β0,2 = 0
β1,1 = 3 β1,2 = 3
c1,12 = 5 c2,11 = 1

i = 4, 5, 6 β0,1 = 0 β0,2 = 0
β1,1 = 3 β1,2 = 3

c1,13 = −2 c2,12 = −3
i = 7, 8, 9 β0,1 = 0 β0,2 = 0

β1,1 = 7 β1,2 = 3

Table 4.5: Set of parameters used in Eq. (4.11) to simulate data. We impose a structure
with three subpopulations in the first response (M=3) and two subpopulations in the
second one (K=2).

y1 y2 x1 x1 z1 z2 groups

y11,1 y21,1 x11,1 x21,1 z11,1 z21,1 ”1”

y12,1 y22,1 x12,1 x22,1 z12,1 z22,1 ”1”

. . . . . . . . . . . . . . . . . .

y1100,1 y2100,1 x1100,1 x2100,1 z1100,1 z2100,1 ”1”

. . . . . . . . . . . . . . . . . .

y11,2 y21,2 x11,2 x21,2 z11,2 z21,2 ”2”

. . . . . . . . . . . . . . . . . .

y195,9 y295,9 x195,9 x295,9 z195,9 z295,9 ”9”

(4.12)

Finally it is possible to load the datasets in the workspace with the following line of
command:

data(BSPEM.inteslope.data ,package="SpMEMs")

data(BSPEM.int.data ,package="SpMEMs")

data(BSPEM.slope.data ,package="SpMEMs")

4.1.5. JMSPEM datasets

To conclude this first part of the chapter, let us consider the JMPSEM function that is
useful if the response variable is a multinomial variable. This last DGP is slightly different
from the previous ones, but still very similar to the one in Article [19]. Again the simulated
datasets will be three as many as the possible input parameter case options. There are
945 observations divided into 10 groups. The first 3 groups have 100 observations each,
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the next 4 groups have 90 observations each and the last 3 groups count 95 observations
each. The response variable consists of three different categories which implies 2 contrasts
therefore two η are simulated following the models given below.

(i) Random intercept case (ηik = α1kx1i + α2kx2i + δik)

ηi2 =


+4x1i − 3x2i − 7 i = 1, 2, 3

+4x1i − 3x2i − 4 i = 4, 5, 6, 7

+4x1i − 3x2i − 2 i = 8, 9, 10

ηi3 =

−2x1i + 2x2i − 5 i = 1, . . . , 7

−2x1i + 2x2i − 2 i = 8, 9, 10
(4.13)

(ii) Random slope case (ηik = α1k + α2kx1i + δikzi)

ηi2 =


−1− 3x1i + 5zi i = 1, 2, 3

−1− 3x1i + 2zi i = 4, 5, 6, 7

−1− 3x1i − 1zi i = 8, 9, 10

ηi3 =

−2 + 2x1i − 2zi i = 1, . . . .7

−2 + 2x1i − 6zi i = 8, 9, 10
(4.14)

(iii) Random intercept and slope case (ηik = αkx1i + δ1ik + δ2ikzi)

ηi2 =


−5x1i − 6 + 5zi i = 1, 2, 3

−5x1i − 4 + 2zi i = 4, 5, 6, 7

−5x1i − 8− 1zi i = 8, 9, 10

ηi3 =

+2x1i + 1− 4zi i = 1, . . . , 7

+2x1i − 1 + 2zi i = 8, 9, 10
(4.15)

Variables x1, x2 and z are normally distributed with mean equal to 0 and standard
deviation equal to 1. Then the relative πijk of each category of the response variable y

are calculated following the formula given in Eq.(2.24) and the category k is assigned if
relative πijk is the highest. Finally, the simulated data with the corresponding response
variable are merged, differentially for the inteslope, slope and int cases, to form the



4| Examples 49

final result. inteslope, slope:

y x1 z groups

y11 x11 z11 ”1”

y21 x11 z11 ”1”

. . . . . . . . .

y100 1 x100 1 z100 1 ”1”

y12 x12 z12 ”2”

. . . . . . . . .

y95 10 x95 10 z95 10 ”10”

(4.16)

int:
y x1 x2 groups

y11 x111 x211 ”1”

y21 x111 x211 ”1”

. . . . . . . . .

y100 1 x1100 1 x2100 1 ”1”

y12 x112 x212 ”2”

. . . . . . . . .

y95 10 x195 10 x295 10 ”10”

(4.17)

Finally it is possible to load on the workspace the datasets with the following line of
command:

data(JMSPEM.inteslope.data ,package="SpMEMs")

data(JMSPEM.int.data ,package="SpMEMs")

data(JMSPEM.slope.data ,package="SpMEMs")

4.2. Examples

4.2.1. GMET example

The first of the examples presented proposes the analysis of the GMET.dataset using the
GMET function. We first load the dataset into the workspace via the previously presented
commands. Then we give as input to the GMET function the formula considering "Status"
as the response variable , "Degree.Name.out" as the random term and the remaining ones
as fixed variables.
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TotalCredits1.1 < 13

WeiAvgEval1.1 < 20

TotalCredits1.1 < 4 PrevStudies = O,T

Nationality = foreigner

TotalCredits1.1 < 24

PrevStudies = T

0.63
100%

0.16
33%

0.07
25%

0.044
22%

0.27
3%

0.45
8%

0.32
3%

0.44
5%

0.86
67%

0.44
3%

0.88
64%

0.75
17%

0.69
3%

0.76
14%

0.95
47%

yes no

Figure 4.1: The RPART object obtained from the algorithm used to estimate the fixed
component function of the model

df=data(GMET.data ,package="SpMEMs")

gmt <- GMET(formula = Status ~ Sex +Nationality+PrevStudies +

AdmissionScore +AccessAge +WeiAvgEval1 .1

+AvgAtt11 +TotalCredits1 .1,dataset = df ,

random = ~ (1| DegreeName.out))

By doing so we obtain a GMET object through which the outputs of some of the auxiliary
functions can be shown. We use the plot.mymixedtree function to display the RPART
obtained by the algorithm to estimate the f (Xi) function of the model in Eq.(2.2). The
code is as follows:

plot.mymixedtree(gmt)

And it plots the graph in Fig.4.1. Each node reports the percentage of observations be-
longing to the node (second line of the node) and the estimated probability that responses
relative to these observations are equal to 1 (first line of the node). Regarding the split-
ting criteria, left branches correspond to the case in which the condition is satisfied, while
right branches correspond to the complementary case. It is also possible to get graphical
feedback of the random component of the model. In fact, the dotplot.GMET function
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allows the display of a dotplot containing estimates of the random intercepts along with
a confidence interval of 95%. Also in showing the example the input rand.int will be set
to TRUE so that the values of the estimated intercepts will be shown in the console. The
call of the function is the following:

dotplot.GMET(gmt ,rand.int=TRUE)

and we obtain the plot in Fig4.2 and the following lines on the console:

$DegreeName.out

$DegreeName.out

(Intercept)

DegPro_1 -0.10806958

DegPro_2 0.36280643

DegPro_3 0.11735336

DegPro_4 -0.39717633

DegPro_5 -0.39812985

DegPro_6 0.52893174

DegPro_7 -0.63827252

DegPro_8 -0.62426716

DegPro_9 -0.07346035

DegPro_10 -0.13081838

DegPro_11 -0.52540271

DegPro_12 1.13881126

DegPro_13 0.49686298

DegPro_14 0.46896147

DegPro_15 -0.08721831

DegPro_16 0.05331538

DegPro_17 -0.21046631

DegPro_18 0.21469630

DegPro_19 -0.21130454

4.2.2. GMERF example

Consider now the second function of the first research branch, GMERF. The dataset
GMERF.data was loaded into the workspace using the above commands. The columns
were divided into the various components and then given as input to the function in the
following way:

df=data(GMERF.data , package="SpMEMs")
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Figure 4.2: For each Engineering programme, the blue dot and the horizontal line marks
the estimate and the 95% confidence interval of the corresponding random intercept

VarResp=df$Status

FixCov=df[,c("Sex","Nationality","PreviousStudies",

"WeiAvgEval1 .1","AvgAtt1 .1","TotalCredits1 .1")]

groups=factor(df$DegreeProgramme.in)

gmf=GMERF(var_resp_gmerf ,cov_gmerf ,gruppi_gmerf)

These lines of code give as output an object of class GMERF that can be used as input
for auxiliary functions. We use the function summary.GMERF to get a complete picture of
the model’s output, via the following command:

summary.GMERF(gmf)

obtaining as output the following:

[1] "Mixed␣effects␣model"

Generalized linear mixed model fit by maximum likelihood (Laplace

Approximation) [’glmerMod ’]

Family: binomial ( logit )
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Formula: y ~ (1 | group)

Data: glmer.data

Offset: f.x_ij

AIC BIC logLik deviance df.resid

12946.3 12962.5 -6471.1 12942.3 24734

Scaled residuals:

Min 1Q Median 3Q Max

-487.57 -0.11 0.17 0.30 12.91

Random effects:

Groups Name Variance Std.Dev.

group (Intercept) 1.055 1.027

Number of obs: 24736, groups: group , 19

Fixed effects:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.01197 0.23720 -0.05 0.96

[1] "Converged␣after␣9␣iterations"

Next, we begin the graphical analysis of the model starting with the VIP related to the
random forest used to estimate the fixed component of the model. This graphical tool
allows us to understand which variable has greater weight in predicting the response
variable. The call of the function is the following:

VIP.GMEF(gmf ,covnames=c("Sex","Nationality","PrevStudies",

"WeiAvgEval","AvgAtt","TotalCredits"))

and we obtain the plot in Fig.4.3a. The plot in Fig.4.3b is useful to show what happens
if the default settings of the input covnames are left, in particular you can see the lack of
labels on the x-axis.
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(a) Variable importance plot without covnames default option

(b) Variable importance plot with covnames default option

Figure 4.3: VIP showing the importance of the variable in the prediction of the response.
The height of the bar is the increase of the residual sum of squares (RSS) when the values
of the corresponding variable are randomly permuted

Finally, the graphical function dotplot.GMERF can be used to display the random inter-
cept estimated by the model along with a 95 percent confidence interval. The command
is as follows:

dotplot.GMERF(gmf ,rand.int=TRUE)

and we obtain the plot in Fig.4.4. Since the input rand.int is set on TRUE the following
will be displayed:

$group

(Intercept)

DegPro_1 0.32954564

DegPro_2 -0.03897417

DegPro_3 -0.76485897
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Figure 4.4: Random intercepts relative to the degree programmes estimated by the
GMERF model with their confidence intervals.

DegPro_4 -0.31434808

DegPro_5 -0.48828902

DegPro_6 1.89198922

DegPro_7 -1.33198113

DegPro_8 -0.12593889

DegPro_9 -0.17658030

DegPro_10 -0.52295826

DegPro_11 -1.47557781

DegPro_12 2.77339301

DegPro_13 1.63024023

DegPro_14 -0.15466802

DegPro_15 -0.21278833

DegPro_16 -0.05719709

DegPro_17 -0.15444244

DegPro_18 -0.22216773

DegPro_19 -0.62917500

4.2.3. SPEM example

Consider the SPEM function related to the second line of research. The example for
this function has a section on the input parameter toll that is useful in explaining any
problems behind the setting of this parameter. Begin as usual by importing the three
datasets simulated in the previous section, then they are given as input to the function.
The codes for this first part divided for the three cases are given below:
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df.inteslope=data(SPEM.inteslope.dataset ,package="SpMEMs")

df.int=data(SPEM.int.dataset ,package="SpMEMs")

df.slope=data(SPEM.slope.dataset ,package="SpMEMs")

smpIs=SPEM(case=’inteslope ’,dataset=df,resp_var_name="y",ran_var_name="z",groups="groups")

smpI=SPEM(case=’int’,dataset=df,resp_var_name="y",groups="groups")

smpS=SPEM(case=’slope’,dataset=df ,resp_var_name="y",ran_var_name="z",groups="groups")

Thus obtaining three SPEM objects that can be used as inputs in auxiliary functions. A
first assessment of the work done by the algorithm is possible by looking at the estimated
parameters via output visualization. Therefore through the following code:

print("Knots␣inteslope")

spmIs$knots

print("Fixed␣params␣inteslope")

spmIs$param

print("Knots␣int")

spmI$knots

print("Fixed␣params␣int")

spmI$param

print("Knots␣slope")

spmS$knots

print("Fixed␣params␣␣slope")

spmS$param

we obtain:

Knots inteslope

[,1] [,2]

[1,] 10.03691 5.056259

[2,] 5.131829 2.182689

[3,] 2.092389 0.157803

Fixed param inteslope

[1] 3.137923

Knots int

[,1]

[1,] 5.149303

[2,] 2.182922
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[3,] 0.018273

Fixed param int

[1] 1.993742 10.002846

Knots slope

[,1]

[1,] 10.033149

[2,] 4.980654

[3,] 0.891233

Fixed param slope

[1] 3.92342 0.002846

The algorithm was applied on simulated data, therefore it is possible to see the successful
outcome by contrasting the values in the previous table with those in equations 4.2, 4.3 and
4.4. It is crucial to note that the toll option was left empty, hence the default parameter of
0.5 was utilized to get the results shown above. 50 simulations were performed, with the
toll parameter increasing by 0.1 each time from 0 to 5, to demonstrate how the algorithm’s
findings change as the parameter varies. The number of subpopulations discovered in
response to the tolerance parameter’s value is shown in Figure 4.5.We can see that the
algorithm has issues at the two extremes; in fact, if toll is set to 0, there will be no
support reduction and the number of subpopulations will remain the same. In contrast,
a tolerance value of 5 would cause all nodes to collapse into one, resulting in an error.It
should be noted that the example given here is for simulated data and therefore the choice
of parameter is easy since the number of subpopulations is known a priori but in a real
case this is not possible. It is therefore recommended to try various values of the tolerance
parameter and choose the one that is believed to be most valid based on a preliminary
analysis of the data.

To conclude the section on examples related to the spem function, we present a method
of using the function dotplot.SPEM. By running the code below it is possible to get a
graphical feedback of the random parameter values estimated by the algorithm for all
three cases of the parameter case.

dotplot.SPEM(spmIs)

dotplot.SPEM(spmI)

dotplot.SPEM(spmS)

The result is the plot presented in Fig. 4.6. To be precise, the first quadrant of the plot
refers to the inteslope case, the second to the int case, and the last to the slope case.
It is worth noting that the three plot points have a same magnitude because the three
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Figure 4.5: Plot of the identified subpopolation in relation to change with the toll param-
eter.

relative weights have the same value as can be seen with the following code:

> spmIs$weights

[1] 0.3333333 0.3333333 0.3333333

> spmI$weights

[1] 0.3333333 0.3333333 0.3333333

> spmS$weights

[1] 0.3333333 0.3333333 0.3333333

4.2.4. BSPEM examples

Following the structure of the previous section, we start the work on the BSPEM function
examples by loading the previously simulated data into the workspace and then give it
as input to the BSPEM function to obtain three BSPEM objects through the following
code:

df.inteslope=data(BSPEM.inteslope.dataset ,package="SpMEMs")

df.int=data(BSPEM.int.dataset ,package="SpMEMs")
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Figure 4.6: Dotplot of the random discrete distributions related to the 3 models in equa-
tions 4.2, 4.3 and 4.4. The positions of the dots are the ckl’s parameters while the diameter
of the dot is the weight.

df.slope=data(BSPEM.slope.dataset ,package="SpMEMs")

bsmpIs=BSPEM(case=’inteslope ’,dataset=df ,resp_var_name1="y1",resp_var_name2="y2",ran_var_name1="z1",ran_var_name2="z2",fix_var_name1="x1",fix_var_name2="x2",groups="groups")

bsmpI=BSPEM(case=’int’,dataset=df,resp_var_name1="y1",resp_var_name2="y2",fix_var_name1=c("x1","z1"),fix_var_name2=c("x2","z1"),groups="groups")

bsmpS=BSPEM(case=’slope’,dataset=df,resp_var_name1="y1",resp_var_name2="y2",ran_var_name1="z1",ran_var_name2="z2",fix_var_name1="x1",fix_var_name2="x2",groups="groups"))

Having obtained the three BSPEM objects, it is possible to check the work done by the
algorithm by looking at the outputs knots and param

print("Knots␣inteslope")

bspmIs$knots

print("Fixed␣params␣inteslope")

bspmIs$param

print("Knots␣int")

bspmI$knots

print("Fixed␣params␣int")

bspmI$param

print("Knots␣slope")

bspmS$knots

print("Fixed␣params␣␣slope")

bspmS$param

we obtain:

Knots inteslope

[[1]]
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[,1] [,2]

[1,] 10.018411 5.120146

[2,] 5.060082 2.074978

[3,] -1.974125 -0.099550

[[2]]

[,1] [,2]

[1,] 100.132501 49.831277

[2,] 49.949651 19.893713

[3,] 20.070452 9.899769

Fixed param inteslope

[1] 2.98483 30.11415

Knots int

[[1]]

[,1]

[1,] 5.060082

[2,] 1.990875

[3,] -0.023199

[[2]]

[,1]

[1,] 50.13250

[2,] 19.796969

Fixed param int

[1] 9.897868 3.111224

Knots slope

[[1]]

[,1]

[1,] 10.026473

[2,] 4.99262

[3,] -2-172738

[[2]]

[,1]

[1,] 1.002452
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[2,] -2.998364

Fixed param slope

[1] 0.025362 3.236743

Again, it is possible to see the correctness of the result by comparing it with the parameters
in the Tables 4.3,4.4 and 4.5.

To display the random parameters estimated by the algorithm we use the function dotplot.BSPEM

which is invoked via the following code.

dotplot.BSPEM(bspmIs)

dotplot.BSPEM(bspmI)

dotplot.BSPEM(bspmS)

The result is presented in Fig.4.7. In detail the plot in Fig.4.7a is related to the inteslope
case, the one in Fig.4.8b to the int case and finally the one in Fig.4.8c to the slope case.

(a) Dotplot of the knots ob-
tained through the algorithm
with the case input set to
inteslope

(b) Dotplot of the knots ob-
tained through the algorithm
with the case input set to int

(c) Dotplot of the knots ob-
tained through the algorithm
with the case input set to
slope

Figure 4.7: Dotplot of the random parameters of the model, the width of the dot depends
on the related weight of the knot

4.2.5. JMPSPEM example

Finally, we present the case concerning the JMPSEM function. The structure remains
unchanged from the previous two. Therefore, we load the data into the workspace and
then use it to obtain three JMSPEM objects via the JMSPEM function. The related code
is the following:

df.inteslope=data(JMSPEM.inteslope.dataset ,package="SpMEMs")
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df.int=data(JMSPEM.int.dataset ,package="SpMEMs")

df.slope=data(JMSPEM.slope.dataset ,package="SpMEMs")

jsmpIs=JMSPEM(case=’inteslope ’,dataset=df ,resp_var_name="y",ran_var_name="z",groups="groups")

jsmpI=JMSPEM(case=’int’,dataset=df,resp_var_name="y",groups="groups")

jsmpS=JMSPEM(case=’slope’,dataset=df,resp_var_name="y",ran_var_name="z",groups="groups")

Having obtained the three BSPEM objects, it is possible to check the work done by the
algorithm by looking at the outputs knots and param

print("Knots␣inteslope")

jspmIs$knots

print("Fixed␣params␣inteslope")

jspmIs$param

print("Knots␣int")

jspmI$knots

print("Fixed␣params␣int")

jspmI$param

print("Knots␣slope")

jspmS$knots

print("Fixed␣params␣␣slope")

jspmS$param

we obtain:

Knots inteslope

[[1]]

[,1] [,2]

[1,] 5.102350 -6.320131

[2,] 2.389102 -4.021823

[3,] -0.896743 -7.736252

[[2]]

[,1] [,2]

[1,] 1.91526 -0.891627

[2,] -3.987543 1.072563

Fixed param inteslope
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[1] -4.986543 2.086578

Knots int

[[1]]

[,1]

[1,] -7.094356

[2,] -4.012635

[3,] -2.956234

[[2]]

[,1]

[1,] -4.756789

[2,] -2.547890

Fixed param int

[1] 4.098789 -2.876123 2.009432 -2.290912

Knots slope

[[1]]

[,1]

[1,] 5.124987

[2,] 2.123647

[3,] -0.876542

[[2]]

[,1]

[1,] -2.130599

[2,] -6.270398

Fixed param slope

[1] -1.200498 -3.270368 -2.271070 2.128908

The correctness of the result is easily seen by looking at the models in equations 4.13,
4.14 and 4.15. It is possible to display the random parameters through the function
dotplot.JMSPEM. In fact via the following command line:

dotplot.JMSPEM(jspmIs)

dotplot.JMSPEM(jspmI)

dotplot.JMSPEM(jspmS)
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we get the plots in Fig.4.8

(a) Dotplot of the knots
obtained through the algo-
rithm with the case input
set to inteslope

(b) Dotplot of the knots
obtained through the algo-
rithm with the case input
set to int

(c) Dotplot of the knots
obtained through the algo-
rithm with the case input
set to slope

Figure 4.8: Dotplot of the random parameters of the model, the width of the dot depends
on the related weight of the knot

Finally, it is important to make one last point about the width of the points in the plots
in the Fig.4.8. In fact, in this case the weights do not all have the same value, as we can
discover with the code below:

> jspmIs$weights_marg

[[1]]

[1] 0.279082 0.401053 0.319865

[[2]]

[2] 0.284533 0.715467
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The R package described in this thesis makes it easier to deal with various case histo-
ries involving mixed-effects models. In particular, through to the GMERF and GMET
functions, it proposes an alternative approach by estimating the fixed component of the
model via tree-object. Applications of the SPEM function and its derivatives, on the other
hand, allow the relaxation of the Gaussianity assumptions of the random component of
the model giving the possibility of applying mixed-effects models to a larger number of
cases. It’s crucial to remember that the examples provided are merely a brief introduction
to the approaches’ possibilities; one more illustration is the use of SPEM techniques with
datasets pertaining to Italian education ([16], [17], [18] and [19]). The SPEM and associ-
ated methods are distinctive because they are also unsupervised classification techniques,
providing these models a dual value. The R SpMEMs package, therefore, represents an
important tool for the user that will have the ability to easily access these innovative
models. In addition, having presented all the necessary tools for both the theoretical
understanding of the methods behind the functions and the understanding of the outputs
of the algorithms, users will be facilitated in the analysis by being able to approach it
with less difficulty. The next steps involve more attention and explanation of all the var-
ious types of errors that can be encountered in using the package and to correcting and
improving the functions so that they can also be used in other case studies that received
less attention during the thesis work.
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