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Abstract

Quantum machine learning is a recent discipline that brings together notions from quan-
tum computing and machine learning, providing speedups and improved performances
over classical solutions. In this work, we study possible applications of quantum machine
learning in cybersecurity by analyzing its possible advantages and disadvantages. We
simulate quantum machine learning algorithms to solve intrusion detection problems as
we were using a fault-tolerant quantum computer. The quantum machine learning al-
gorithms we consider are formalized by the researchers in theorems that describe their
running time, the probability of failure, and the approximation error that we have to
tolerate. The approximation error and the probability of failure appear as running time
parameters. We study the trade-off between the approximation error and the running
time. We find cases of errors to tolerate to best match classical performances and, at
the same time, observe a reasonable number of samples and features to get a quantum
speed-up over classical machine learning. With this study, we derive possible conditions
for which quantum machine learning can play a role in cybersecurity in the next years. To
simplify the process of simulation of quantum machine learning algorithms, we develop
an open-source framework.

Keywords: quantum computing; unsupervised machine learning; PCA; K-Means; pure
state tomography; phase estimation; consistent phase estimation; amplitude estimation;
quantum machine learning; cybersecurity; anomaly detection.





Abstract in lingua italiana

Il machine learning quantistico è una disciplina recente che unisce concetti del calcolo
quantistico e del machine learning classico, in modo da garantire vantaggiosi speed-ups
rispetto al caso classico per risolvere vari tipi di problemi. In questo lavoro proponi-
amo uno studio su possibili applicazioni del machine learning quantistico per risolvere
problemi di sicurezza informatica, analizzandone i relativi vantaggi e svantaggi. Per
fare questo simuliamo algoritmi di machine learning quantistico per rilevare intrusioni
di rete. In questa tesi, assumiamo di simulare gli algoritmi quantistici come se avessimo
a disposizione un computer quantistico fault-tolerant. Gli algoritmi di machine learning
quantistico che utilizziamo possono essere considerati come algoritmi di approssimazione
randomizzati. Infatti essi sono formalizzati in teoremi che ne descrivono la probabilità di
fallimento, l’errore di approssimazione che dobbiamo tollerare e il tempo di esecuzione.
L’errore di approssimazione e la probabilità di fallimento sono parametri del tempo di
esecuzione. Per questo, l’obiettivo principale è quello di studiare il trade-off tra l’errore
di approssimazione e il tempo di esecuzione degli algoritmi quantistici considerati. In
particolare, troviamo casi di errore che ci permettano di ottenere le stesse performance
dei rispettivi algoritmi classici e, allo stesso tempo, di osservare un numero ragionevole di
dati e features tali da garantire uno speed-up quantistico rispetto agli algoritmi classici.
In questa tesi quindi vogliamo studiare se e come il machine learning quantistico potrà
impiegare un ruolo importante nella sicurezza informatica del futuro. Per semplificare
il processo di simulazione degli algoritmi quantistici, abbiamo sviluppato un framework
open-source.

Parole chiave: calcolo quantistico; machine learning non supervisionato; analisi delle
componenti principali; K-Means; tomografia di stati puri; stima di fase; stima di fase
consistente; stima delle ampiezze; apprendimento automatico quantistico; sicurezza infor-
matica; rilevamento di anomalie.
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1

Introduction

Quantum machine learning is a novel discipline that combines concepts from quantum
computing and machine learning, providing speed-ups and improved performances over
classical solutions. The link between the fields of quantum computing and machine learn-
ing begins to become concrete in 2009, when Harrow, Hassidim, and Lloyd [20] proposed
a quantum algorithm that prepares a quantum representation |x⟩ of the desired vector
x⃗ such that A |x⟩ = |b⟩, with A ∈ Cn×d and b ∈ Cn, in time ∼ O(log(n)). This was
the major breakthrough towards the discovery of new quantum linear algebra routines
that led to the advent of quantum machine learning. The first works in this direction
concerned many algorithms to perform linear regression [10], support vector machine [37],
K-nearest neighbors [50], or execute K-Means [26] providing exponential speed-up over its
classical implementation. To date, quantum machine learning is still currently studied on
a theoretical level but has not yet found practical application to solve real problems. This
is mainly because, nowadays, we are in the noisy intermediate-scale quantum (NISQ) era
[36]. Intermediate-scale is related to the size of quantum computers that will be available
in the next years. These will be quantum computers with a maximum of 50-100 physical
qubits which is enough to code interesting problems such as testing quantum error correc-
tion. However, these qubits are noisy, meaning that we do not have perfect control over
them. The noise in the qubits affects the accuracy with which we can execute quantum
gates. Moreover, since noise tends to scale with the circuit depth, it limits the maximum
depth of the quantum logic circuits we can execute and, therefore, also the computational
power of quantum computers. This is the main problem of modern quantum comput-
ers. Indeed, to solve complex problems and applications, we need large-scale quantum
computers with more than 100 physical qubits and large depth circuits. For example,
breaking 1024-bit RSA encryption would require a 2000-qubit quantum computer [31].
However, due to the noise in quantum gates, we are not yet able to perform useful circuits
for complex applications. For this reason, the application of quantum machine learning is
also difficult in practice and this pushes us towards a theoretical approach in this field by
assuming a fault-tolerant quantum computer. Despite their still purely theoretical study,
quantum machine learning and, more generally, quantum computing are very promising



2 | Introduction

in many application fields. One of these is certainly cybersecurity given that quantum
computing has strongly influenced cryptography. Indeed, a quantum-enabled attacker can
make classical cryptosystems, whose security relies on the difficulty of solving hard math-
ematical problems with a classical computer, vulnerable. For instance, using the Shor
algorithm, which enables factoring integers and finding discrete logarithms in polynomial
time [44], one could break the RSA encryption since it exploits the difficulty of factorizing
prime numbers with classical computations. Also cryptographic protocols such as Elliptic
Curve Cryptography (ECC) and Diffie-Hellman (DH) are no longer safe being based on
the difficulty of finding discrete logarithms.
Another quantum algorithm that threatens symmetric-key cryptography is the Grover
one, which enables searching an element with a known property in a search space of
length N in time O(

√
N) [16]. By exploiting Grover’s algorithm, an attacker can reduce

the time of a bruteforce attack to its square root, therefore, for a classical n-bit block
cipher, it reduces the time from 2n to

√
2n = 2

n
2 . For example, it can reduce the security

level of a 128-bit block cipher, such as AES-128, to a 64-bit one. Grover’s algorithm can
also be used to find a collision in a hash function. Indeed, given an n-hash function, a
preimage attack can be performed in 2

n
2 steps, making hash algorithms vulnerable [31].

While it is true that a quantum-enabled attacker can jeopardize the security of cryp-
tographic systems, it is equally true that a quantum-enabled defender can build secure
cryptography systems against quantum and classical computers. One of the main exam-
ples in this direction is the Quantum Key Distribution (QKD) which, based on quantum
communication, provides a secure method for key exchange over an insecure channel
[39]. It exploits a fundamental concept in quantum mechanics: quantum communication
between two parties cannot be intercepted without producing a detectable interference.
Therefore, a third party that tries to eavesdrop information about the key exchange in-
troduces a disturbance, leaving a trace of intrusion and alerting the two parties that were
exchanging keys.
Moreover nowadays, to better prepare for the quantum computers era, cybersecurity
experts search for post-quantum cryptography algorithms that are used to build quantum-
resistant cryptographic systems. An example of a quantum-resistant cryptographic algo-
rithm is the lattice-based one which avoids the weakness of RSA by exploiting the shortest
vector problem which involves finding the non-zero shortest vector in a lattice [32]. Also
multivariate-based algorithms are quantum-resistant since they rely on the difficulty of
solving systems of multivariate polynomials over finite fields [14].
With the previous examples, it is even more clear that quantum computing in cryptogra-
phy is very promising and finds a lot of applications. However, cryptography is not the
only field in cybersecurity. Indeed, there are different cybersecurity tasks such as intrusion
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detection, malware detection, and many others. In these tasks, machine learning is used
a lot both to perform attacks and build automated defense systems. That said, and given
that quantum machine learning is a field that is becoming more and more popular, we
ask ourselves: can a quantum machine learning-enabled attacker or defender change the
dynamics of future cybersecurity?
In this thesis, to answer this question, we develop an open-source framework that simpli-
fies the process of simulation of quantum algorithms. We focus on defender-side quantum
machine learning cases. We simulate quantum machine learning algorithms over real in-
trusion detection datasets as we were using fault-tolerant quantum computers.
The quantum machine learning algorithms that we consider can be seen as randomized
approximation algorithms. Indeed, they are formalized in theorems and proofs in which
a theoretical analysis of their running time, probability of failure γ, and the approxima-
tion error ϵ that we have to tolerate is reported. Indeed, in these algorithms, we might
not know exactly the real solution s of our problem but we can approximate it with an
absolute error such that ∥s − s∥2 ≤ ϵ with a probability of 1 − γ. The approximation
error is expected by the quantum computational paradigm and is not due to technological
limits since we assume fault-tolerant quantum computers. The approximation error and
probability of failure are running time parameters. In this work, to simulate quantum
machine learning algorithms means to simulate their approximation errors. We insert
ϵ error in the correct steps, as described in the proofs of the corresponding algorithms,
to obtain estimates ϵ-close to the exact solution, following the theoretical guarantees of
the error bounds. In this way, we see how the error, and more precisely the approxi-
mated solution of quantum machine learning algorithms used to solve intrusion detection
problems, affects the accuracy in detecting intrusion with respect to the exact solution
of classical machine learning algorithms. Once we find the errors that we can tolerate
to best match classical performances, we fix the corresponding error parameters and we
evaluate the running times as the number of samples and features change. We see which
is the number of samples and features for which we observe a speed-up of quantum over
classical machine learning, asking ourselves in which cybersecurity tasks we deal with data
of that size. Therefore the core part of this work is the study of this trade-off between
approximation error and running time, searching for cases of approximation errors that
allow us to match classical performances and, at the same time, to observe a reasonable
number of samples and features for which we have a quantum speed-up over classical
machine learning.
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Main contributions

The main contributions of this thesis can be summarized as follows:

• We build the Sqlearn framework. It simplifies the process of classically simulat-
ing quantum algorithms as we were using a fault-tolerant quantum computer. The
framework allows us to simulate quantum routines such as phase estimation, am-
plitude estimation, and pure state tomography with realistic error models. By
exploiting the main quantum routines, the framework also simulates more complex
algorithms such as q-PCA and q-Means [7, 26].

• We simulate quantum state tomography, phase estimation, consistent phase estima-
tion, and amplitude estimation to demonstrate that they actually work as expected.
Moreover, we show that the number of measures we need to perform of a quantum
state in ℓ2-state tomography to reach the desired accuracy in the estimates is often
much less than N = 36d log d

δ2
in practice [24].

• We extend a classical PCA-based anomaly detection algorithm, improving its per-
formance over the CICIDS dataset [43]. In particular, we get an improvement of
≈ 15% on F1-score and ≈ 10% on accuracy.

• We do an analysis of the error of quantum machine learning algorithms to see how
it affects the performances of quantum intrusion detection models.

• We report a critical analysis of the running times of quantum machine learning
models compared to the classical ones under a future practical perspective.

Thesis outline

The thesis is organized into six chapters:

• Machine learning preliminaries: first, we describe the PCA and K-Means algo-
rithms, which are the machine learning models implemented in our framework, to
give a general overview of how they work classically. Then, we report the concept
of anomaly detection and how machine learning can tackle this type of problem.
Finally, we describe the anomaly detection models that we use in our experiments
that are based on PCA and K-Means algorithms. We do not consider state-of-the-
art anomaly detection models. Instead, we start from machine learning models that
are already present in literature and still achieve competitive performances.

• Quantum preliminaries: we introduce quantum computation. We start from the
main quantum postulates and we show their application in quantum computing.
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We introduce the notation used that is useful to better understand the rest of this
work. We report some useful notions in quantum machine learning such as quantum
data representation, quantum data loading, and the QRAM concept. Finally, we
describe the main quantum algorithms used in this work (i.e., phase estimation,
consistent phase estimation, pure state tomography, amplitude estimation, median
evaluation, inner product estimation, singular value estimation, and spectral norm
estimation).

• The Sqlearn framework: we describe the Sqlearn framework with all the imple-
mented quantum routines and their integration with q-PCA and q-Means. Further-
more, we present experiments and numerical simulations for quantum routines such
as tomography, phase estimation, consistent phase estimation, and amplitude esti-
mation. In this way, we verify their correct functioning and show some interesting
insights into tomography.

• Application to cybersecurity: we describe the goal of our experiments, the
datasets used, and the experiments done over those datasets both in their classical
and quantum version. We show the improvements in performance for the extended
classical model over the CICIDS dataset. Finally, we report a comparative study
between the classical and quantum running times of the proposed models.

• Open research directions: we summarize the main contributions of this work,
discussing the main limitations.

• Conclusions: we summarize our conclusions and promote future works on the topic
of this thesis.
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In this chapter, we start with a description of the PCA and K-Means algorithms since
the anomaly detection models that we successively describe are based on them. Then, we
report the concept of anomaly detection and the role of machine learning to tackle this
problem.

1.1. Machine Learning algorithms

1.1.1. Principal Component Analysis

Principal Component Analysis (PCA) is a technique used for many applications such
as dimensionality reduction, lossy data compression, feature extraction, and data visual-
ization. It is defined as the orthogonal projection of the data onto the subspace which
accounts for most of the variance. It builds new features that are obtained by linear com-
binations of the original ones. The basic idea of PCA is to identify the directions on which
the points spread more. More formally, given a dataset X ∈ Rn×d, the goal of PCA is to
project those data into a new feature space Rn×k, where k ≤ d, maximizing the variance
of the projected data. In Figure 1.1, we report, just for demonstrative example, an appli-
cation of the PCA model over 200 randomly sampled data points, showing the direction
in which the points spread more, that corresponds to the first 2 principal components
that PCA found. With PCA, we are able to visualize and work with a lower-dimensional
dataset retaining the most important information. In real scenarios, since we deal with
high-dimensional datasets, the procedure of projecting the data in a lower-dimensional
space is very useful.
Now, more formally, we report the most important steps of the PCA procedure, assuming
to start with a data matrix X ∈ Rn×d.
First of all, it is important to center the data. To do this, we compute the sample mean

µ =
1

n

n∑
i=1

d∑
j=1

xij (1.1)
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Figure 1.1: The first two principal components of 200 synthetic data points.

and remove it from all the data

X =X − µ1n1
T
d (1.2)

where 1n is a column vector that contains n entries, all equal to 1.
Then, we compute the covariance matrix S

S =
1

n− 1

n∑
i=1

d∑
j=1

(xij − µ)(xij − µ)T .

Finally, we compute the eigenvalues and eigenvectors of S. The eigenvector e1 associated
with the largest eigenvalue λ1 is the first principal component, and eigenvector ek with the
k-th largest eigenvalue λk is the k-th principal component. The eigenvectors of a matrix
have the property of being a basis, so they are orthogonal to each other. Eigenvalues,
instead, describe how much data are spread in the direction of eigenvectors. To select the
number of principal components that explain the most of the variance of the data, we can
use the factor score ratio given by the formula

λk∑n
j λj

(1.3)

where
∑n

j λj = 1. So, just to clarify, if we want to reduce the dimensionality of the data
and we want to explain the 95% of the original variance, we take all the eigenvectors,
starting with the one associated with the largest eigenvalue, and we try to add eigenvectors
until the sum of eigenvalues reaches the 95% of the sum of all the eigenvalues.
The last step, once found the principal components, is to project the data onto the new
reduced space. The projection of original data onto the first k principal components
e1, . . . , ek gives a reduced dimensionality representation of the data. This is done by
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multiplying the original data matrix with the top-k principal components

X ′ =XE(k)

where X ∈ Rn×d and E ∈ Rd×k.

It is important to underline that PCA is strictly related to Singular Value Decomposition
(SVD). SVD is a method to factorize a matrix such that, given any matrix X ∈ Rn×d,
we can decompose it as

X = UΣV T (1.4)

where U ∈ Rn×k and V ∈ Rd×k are orthogonal matrices and Σ ∈ Rk×k is a diagonal
matrix, with k ≤ min(n, d). The columns of U and V are called left and right singular
vectors respectively, while the values of the diagonal matrix Σ are the corresponding
singular values. Now, the right singular vectors V of A are the principal components
that, before introducing SVD, we indicate with E.
In practice, to perform PCA, we can compute the singular value decomposition of the
original matrix, after removing the mean from the data, as in Equation 1.4. Then, we
can compute the percentage of explained variance using the singular values since

λk∑n
j λj

=
σ2
k

(n− 1)

(n− 1)∑n
j σ

2
j

=
σ2
k∑n

j σ
2
j

and obtaining the new feature space by multiplying the top-k left singular vectors with
the singular values, since

X ′ =XV (k) = (UΣV T )V (k) = U (k)Σ(k)

The computational complexity of PCA is O(min(n2d, nd2)), which is the time complexity
of performing the full SVD, with n number of samples and d number of features. There
are many randomized algorithms for SVD that, by computing an approximated matrix
decomposition, help in extracting principal components in a faster way than the full SVD.
For instance, if the input data matrix X is dense, there is a randomized algorithm that
runs in O(nd log(k)), with k number of principal components retained [18].

1.1.2. K-Means

K-Means is a clustering algorithm that aims to identify groups or clusters of data points in
a multidimensional space. Let us suppose to have a dataset X ∈ Rn×d of n d-dimensional
observations. The goal of K-Means is to partition those data into K cluster C1, . . . , CK ,
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for a given K.
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(a) K-Means initialization.
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(b) K-Means initial data assign-
ment.
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(c) K-Means centroids update.
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(d) Final K-Means clustering af-
ter the last centroids update.

Figure 1.2: K-Means example over synthetic data with K=2.

More formally, we define a d-dimensional vector µk (also called centroid) with k =

1, . . . , K, that is a representative of the k-th cluster (from here we can also define K-
Means as a representative-based clustering algorithm). Basically, each of the k clusters
can be represented with the corresponding µk. We write

µi =
1

ni

∑
xj∈Ci

xj

where ni are the number of observations in the i-th cluster. Our goal, when executing
K-Means is to assign each data point to a cluster, such that the sum of square distances
of each data point to its closest vector µk is a minimum. So giving a clustering C =
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{C1, . . . , Ck}, we define the SSE

SSE(C) =
k∑

i=1

∑
xj∈Ci

∥xj − µi∥2

and the goal is to find the clustering that minimizes the SSE score

C∗ = argmin
C
SSE(C).

In Figure 1.2, we report a sketch of K-Means execution over synthetic generated data,
choosing K=2. At the beginning, we initialize the two centroids, the red and blue crosses
in Figure 1.2a. Then, there is the assignment step, in Figure 1.2b, where we assign every
single observation to one of the two centroids based on the distance between the data and
the representative object. In Figure 1.2c, we update the centroids based on the previous
data assignment, making the average of all data in each cluster. In Figure 1.2d, we report
the last snapshot of the K-Means algorithm, after some iterations, showing the resulting
clustering.
So, the first step of the K-Means algorithm is the centroids initialization. There are many
ways of doing it: the easiest one is to generate randomly k points in the data space,
or using an initialization algorithm as kmeans++ [4], or even using another clustering
algorithm such that we cluster a sample data in k clusters and, from each one of those,
we pick one point as a centroid.
K-Means is an iterative algorithm, where each iteration consists of two steps: cluster
assignment and centroid update. So, given the k initial centroids, we assign each d-
dimensional point xj to the closest cluster Cj∗ where

j∗ = arg
k

min
i=1

∥xj − µi∥2

Then, after the cluster assignment, new mean values are computed considering the points
in each of the k clusters, resulting in new updated centroids. This procedure is repeated
iteratively until K-Means has converged, which means until the cluster centroids do not
change between two consecutive iterations. A possible stopping condition can be

k∑
i=1

∥µt
i − µt−1

i ∥2 ≤ ϵ

where ϵ is the convergence threshold and t is the current iteration of the algorithm.

For what concern the computational complexity, it is given by O(tnkd), with t number
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of iterations, n number of samples, k number of clusters, and d number of features. K-
Means clustering has some limitations since it has problems with clusters of different sizes,
and densities, or with non-globular-shaped ones. Another problem that might affect K-
Means clustering is the presence of outliers in the data because they could condition the
centroids’ computation. Indeed, if all the data are grouped together, like a globular shape,
the average makes sense since it is a good representation of all those points. With the
presence of outliers, instead, the centroids computation is biased and the cluster centers
are pushed towards the outliers.

1.2. Machine Learning for anomaly detection

Anomaly detection is the problem of identifying patterns, events, observations, or data
that differ significantly from the expected behavior. In Figure 1.3, we report a very simple
example to introduce the anomaly detection problem. As we can see, the blue data are
very close to each other, while the red squares are very distant from them. For this reason,
the latter could be considered anomalies or outliers. The goal of anomaly detection is to
find patterns that well describe the behavior of the data and, given new data, to be able
to determine if they conform to the normal behavior or are anomalies. In Figure 1.3, the
ellipsis that surrounds the blue data exemplifies the expected normal behavior. Clearly,

−5−4−3−2−1 1 2 3 4 5
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−4
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1
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3
4
5
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Figure 1.3: Anomaly detection example. Blue dots represent normal observations while
red squares are anomalies.

this is a very straightforward approach, in which we circumscribe an area representing the
normal behavior and we describe as an anomaly any observation which is not included in
this normal region. But in real scenarios, the distribution of data is more complex and,
very often, there are no such clear-cut regions, which means that the anomalies are not
so different from the normal observations. Of course, this makes the process of finding
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patterns conforming to the normal behavior more complex.
There are many types of anomaly detection applications like health anomaly detection,
bank fraud, and many others.
In this work, we concentrate on intrusion detection, more precisely on network intrusion
detection, whose main purpose is to analyze network traffic to detect anomalies in the
network flow or intrusions by an attacker. We assume to deal with point anomalies : in
our experiments, we consider data independent of each other and, in the classification
stage, we analyze every single observation by itself, trying to figure out if it is an anomaly
or not. Anomalies can be categorized also in contextual and collective anomalies, as
reported by Chandola et al. [11].
In general, one of the main problems of anomaly detection intrusion detection systems
(IDS), which is the family of the models that we use in this work, is that they are very
prone to errors, in particular generating false positive (FP) or false negative (FN) results.
FP means that the system detects as anomalous a point that, instead, is normal and
legitimate. FN is the opposite, meaning that the system does not raise an alarm for a
point that is anomalous. The high false-negative problem, at first sight, may seem more
threatening because it means that a system exposed to attacks is unable to detect them.
Anyway, also the high false-positive problem is not to be underestimated, as a system that
continuously raises alarms for points that in reality are not attacks, it no longer becomes
reliable and will be ignored. In all the anomaly detection IDS models, we have to deal
with false-negative and false-positive problems. Indeed, one of the main objectives when
building such systems is precisely that of limiting the false-negative and false-positive
rates to the minimum. The latter is not an easy task since, generally, a decrease in the
number of false positives leads to an increase in false negatives and viceversa. Therefore,
we need to find a trade-off between the two. Generally, also in our work, the metrics used
to evaluate the performance of the system are:

• precision: p = TP
TP+FP

that is, how many points classified as anomalies are actually
anomalies?

• recall: r = TP
TP+FN

that is, how many points are classified as anomalies among all
anomalous points?

• accuracy: a = TP+TN
TP+FP+TN+FN

, that is the number of correctly predicted points out
of all the points.

• F1-score: F1 = 2
1
p
+ 1

r

, that is the harmonic mean of precision and recall.

Therefore, when we talk about the trade-off between false positive and false negative, we
refer, more precisely, to the balance between precision and recall. Indeed, as we can see,
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an increase in false positives results in a decrease in precision. Viceversa, an increase of
false negatives corresponds to a decrease in recall. As we are going to show also in our
experiments, it is important to consider all these metrics together. For instance, taking
into account only the accuracy can be misleading in the case of a high-unbalanced dataset
and, since one of the most frequent problems in anomaly detection is the fact that the
data we deal with are unbalanced, this might be a problem. About that, let us consider
a dataset with the unbalancing ratio between anomalies and normal samples of 1:100,
which means that each anomaly sample has a corresponding 100 normal samples. We
have seen that, in anomaly detection, we want that our systems are able to detect the
anomalies, which are the minority class. If we wrongly build a system that detects always
the normal samples, we would find an accuracy of 99%, which, at first sight, might seem
very good. But, in this case, we would have precision and recall of 0, meaning that the
model is completely useless. Of course, this is an extreme case, but it is to convey the
idea that it is very important to consider all those metrics together in the evaluation of
the performance of a model.

Another important challenge for intrusion detection problems is that data, in general, are
not labeled. This is because there is a huge amount of data, and people should manually
label every single observation, which is a very time consuming process. Moreover, labeling
anomalies is not easy as the types of attacks are constantly evolving. In our experiments,
the datasets used are labeled both because they are small and in some cases fictitious
datasets and because, otherwise, we could not measure the performance of our models if
we did not have a ground-truth to compare with. Generally, anomaly detection problems
are not easy as the one depicted in Figure 1.3. Therefore, we need more complex and
powerful models to solve these problems and, depending on whether we have labeled data
or not, we can use three different machine learning paradigms to tackle anomaly detection
problems: supervised, semi-supervised, and unsupervised anomaly detection.
In our work, despite the presence of the labels in the data that we use to have a ground-
truth to compare with, the algorithms that we are going to use are part of the unsupervised
anomaly detection family. Unsupervised machine learning is a good solution to discover
the underlying structure of the data. Algorithms of this type try to find hidden patterns
or clusters within the data, without the need for a human to label the data. This method
is typically used when the data are unlabeled.
The main problems that unsupervised machine learning tackles are: clustering, which is
the problem of searching for natural grouping or structure in unlabeled data according
to some distance measures, dimensionality reduction, which is the problem of reducing
the dimension of a dataset from a high-dimensional space to a lower one maintaining the
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most important properties of the data, and association rules that is the problem of finding
frequent patterns, correlations, or causal structures among sets of items in information
repositories.
The anomaly detection models that we are going to introduce in the next sections and
that we use in our cybersecurity experiments in Chapter 4 are already present in literature
and they are based on PCA dimensionality reduction and K-Means clustering algorithms.
We also extend one of the classical models, adding some novelties (Section 1.2.2) which
bring improvements in the performance.

1.2.1. Principal components classifier

The first anomaly detection model that we present is the one described by Shyu et al.
[45]. It is a PCA-based model for intrusion detection, where anomalies are treated as
outliers. The intrusion predictive model is built over the major and minor components
of the normal observations. The major (or principal) components are the ones that
account for the majority of the variance, while the minor components are the ones whose
corresponding eigenvalues are less than a specific value. We exploit these components,
extracted by the PCA model fitted only on normal observations, to compute the outlier
thresholds, which we use to classify if a sample is normal or an anomaly. More precisely,
for each new incoming observation, we compute the anomaly score using, also in this
case, the majors and minors components. Then, if this score is greater than the outlier
threshold, we classify the corresponding observation as an anomaly, meaning that its
anomaly score is suspicious compared to the normal one (which is represented by the
anomaly threshold). Now let us describe more formally this model.

The first thing that we have to do is to perform PCA on the correlation matrix of the
normal observations which is equivalent to perform PCA on the covariance matrix with
standardized features, so features normalized to zero mean and unit variance. So, what we
have done is just standardize the features before performing PCA on the input matrix. It
is important to be sure that the training data do not contain outliers. A way of ensuring
this is the so called trimming, which is a procedure designed to remove outliers. Let
us suppose to have an initial data matrix X ∈ Rn×d that contains n observations of d
variables X1, . . . Xd. Let us suppose also that S ∈ Rd×d is the sample covariance matrix.
Starting from the samples mean x = (x1, x2, . . . , xd) and from the samples covariance
matrix S−1, we define the Mahalanobis distance as

d2i = (xi − x)TS−1(xi − x) (1.5)
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for each sample xi, with i = 1, . . . n. Once computed the Mahalanobis distance for
each sample, we find the ξ ∗ n largest values of {d2i , i = 1, . . . , n} and remove the cor-
responding observations. For example, let us suppose for simplicity that n = 4 and
d2 = [1.2, 3.4, 0.3, 5.6]. Let us suppose also that n ∗ ξ = 2, so we want to find the two
largest values of d2 which, in this case, are 5.6 and 3.4 that correspond to the indexes i = 3

and i = 1. Therefore, from the initial training set, we remove the samples corresponding
to that indexes: x1 and x3.
In this work, we use ξ = 0.005 as done in Shyu et al. [45] since we want to be able to
replicate their experiments. After removing the outlier from the training set as explained
before, we obtain new trimmed estimators x and S from the remaining observations. From
the elements of this new matrix S, we can extract a robust estimator of the correlation
matrix.

That said, let us go into more details of the models. Let R ∈ Rd×d be the correlation
matrix computed from the d featuresX1, . . . , Xd of the n samples. Let (λ1,v1), . . . , (λd,vd)
be the d eigenvalue-eigenvector pairs of R, with λ1 ≥ λ2 ≥, . . . , λd ≥ 0. Then, we can
define the i-th coordinate of an observation sample x = (x1, x2, . . . , xd)

T expressed with
respect to the principal components as

yi = v
T
i z = vi1z1 + vi2z2 + · · ·+ vidzd, i = 1, . . . , d (1.6)

where
vi = (vi1, vi2, . . . , vid)

T is the i-th eigenvector

and
z = (z1, z2, . . . , zd)

T

is the vector of standardized observations defined as

zj =
xj − xj√

sjj
, j = 1, . . . , d

where xj and sjj are respectively the sample mean and sample variance of the variable
Xj as defined previously.
The main elements of this anomaly detection model are the two summations (also called
principal components scores)

T1 =
k∑

i=1

y2i
λi
, T2 =

d∑
i=d−r+1

y2i
λi
, (1.7)



1| Machine Learning preliminaries 17

where k indicates the number of major components and r corresponds to the minor ones.
The scopes of those two summations are different. Indeed, the first summation aims to
detect outliers with large values on some original features, while the second one aims to
help the first one in detecting the observations that deviate from the normal behavior. The
whole outlier detection scheme is based on those two summations in the following way: we
compute, for a new observation w for which we want to determine if it is an anomaly or
not, the two principal components scores given by the results of two summations reported
in Equation 1.7, and we classify w as an attack if

T1 > c1 or T2 > c2 (1.8)

or as normal if
T1 <= c1 and T2 <= c2 (1.9)

where c1 and c2 are the outlier thresholds. To compute them, we use the equation from
[45]

α = α1 + α2 − α1α2, (1.10)

where α is the false alarm rate (which in statistic is defined as FAR= FP
FP+TN

), α1 =

P (T1 > c1|x is normal instance), and α2 = P (T2 > c2|x is normal instance). We assume
that α1 = α2, so that Equation 1.10 becomes a second degree equation. In this way,
specifying the value of α, we are able to compute α1 = α2. For example, taking α = 2%,
we found α1 = α2 = 0.0101. At this point, we set the outlier thresholds using the empirical
distribution of T1 and T2 in the training data. Therefore, c1 and c2 are the 1−α1 = 0.9899

quantile of the empirical distribution of
∑k

i=1
y2i
λi

and
∑d

i=d−r+1
y2i
λi

respectively, which
means the data point that is bigger than 98.99% of all the other points. To make this
more clear, we describe briefly how we implement this concept, focusing on c1. For each
training data, we compute the corresponding summation score

∑k
i=1

y2i
λi

. In this way, we
find a list of length n of scores, with n number of samples in the training set. Then,
we simply sort the data in ascending order and find the 0.9899 (in this example) largest
value, that will be c1.
We report the Principal Component Classifier (PCC) procedure in Algorithm 1.1.
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Algorithm 1.1 PCC.
Input: Training set X of normal samples, test set W of normal/anomalies, 0 ≤ p ≤ 1,
0 ≤ ν ≤ 1.
Output: Classify each test observation either as normal or anomaly.

1: Fit PCA model with training set X, specifying the retained variance p.
2: Extract k major components such that their factor score ratios sum matches the

retained variance p.
3: Extract the r minor components such that their corresponding eigenvalues are less or

equal than ν.
4: Compute outlier thresholds c1 and c2 that refer to the major and minor components

summations respectively, using the training samples X.
5: for each new observation w ∈ W do
6: Compute T1 =

∑k
i=1

y2i
λi

and T2 =
∑d

i=d−r+1
y2i
λi

.
7: if T1 > c1 or T2 > c2 then
8: Classify w as attack.
9: else if T1 ≤ c1 and T2 ≤ c2 then

10: Classify w as normal.
11: end if
12: end for

Just to point out, we can use this model in two ways: either using both major and minor
summations or using only the major summations. In the latter case, we classify a new
observation as attack if

∑k
i=1

y2i
λi
> c1 or as normal if

∑k
i=1

y2i
λi
<= c1.

1.2.2. Ensemble of principal components classifiers

Taking a cue from the previous model, we extend it using cosine similarity and correlation
measure, as we are going to show. Our idea derives from the basic concept of the previous
model which is

k∑
i=1

y2i
λi

where
yi = v

T
i z = vi1z1 + vi2z2 + · · ·+ vidzd, i = 1, . . . , d.

We notice that yi is computed with the dot product between the i-th eigenvector vi and
the normalized sample z. The dot product can be interpreted geometrically as projecting
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a vector onto the other as if we wanted to compare them. From here we wondered: why
not use similarity measures or the correlation between the two vectors instead of the dot
product to compute yi?

In particular, we consider:

• the cosine similarity, which is defined as u·m
∥u∥2∥m∥2 , with vectors u,m ∈ Rn.

• the correlation measure defined as Rij =
Cij√
Cii∗Cjj

, with covariance matrix C (by

Numpy [19]).

In this way, we have three different ways of computing the principal components scores
T1 and T2 reported in Equation 1.7: in the first, we use the classical dot product, in the
second the cosine similarity, and in the last one the correlation measure. We can think of
it as having three different models and our extension to the basic model is exactly this:
to merge together all those three different "models" like an ensemble. In general, the
ensemble is a method in which we aggregate predictions made by multiple classifiers to
boost the performances. The ensemble exploits the fact that there is not much chance that,
if a model fails, also the others fail. We call our model ensemble principal components
classifiers, just because it recalls the use of different models, but it is not exactly an
ensemble model in the true sense of the term. Indeed, we do not fit three different models
with three different training sets. We just fit a PCA model with a training set (composed
of only normal samples) and then, using the major and minor components extracted by
the PCA model, we compute different outlier thresholds using the dot product, the cosine
similarity, and the correlation measure. Finally, all these thresholds are put together like
a voter to predict the class of a new observation.

In Figure 1.4, we report a sketch of this new model, in case of using only major components
to classify new observations. We mainly have three steps: in the first one, we fit PCA with
normal training data, extracting all the eigenvalues and eigenvectors that retain a specified
percentage of variance. In the second step, we compute all the thresholds using the three
different approaches. For example, c1cos is the threshold computed with the summation
that involves the major components, where yi is computed using the cosine similarity
between the top-k eigenvectors, extracted by the fitted PCA, and the normalized training
samples (i.e., yi = vi·z

∥vi∥·∥z∥). The same goes for c2cos but using the summation of the
minor components (the same for the other thresholds, with c1dot and c1cor that refer to the
computation of the thresholds using dot product and correlation measure respectively).
Then, in the last step, we put all the conditions of prediction in OR, considering that s1cos,
for example, corresponds to the anomaly score of a new observation sample, computed
using

∑k
i=1

y2i
λi

, where, as before, yi is computed using the cosine similarity. In the case
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of using both major and minor components, we need to add, in the OR control, also the
conditions relative to the thresholds c2. Finally, if the condition in the green square is
true, we classify the new observation as an attack, otherwise as normal. So, just to clarify,
let us suppose that c1cos, c1corr, and c1dot are the threshold computed using the summation
involving the major components considering the cosine similarity, the correlation measure,
and the dot product respectively in the computation. Using only the major components,
we classify a sample as an attack if

s1cos > c1cos or s1corr > c1corr or s1dot > c1dot

or as normal if

s1cos ≤ c1cos and s1corr ≤ c1corr and s1dot ≤ c1dot

where s1cos, for example, is the anomaly score of the current sample computed using
only the major components in the summation and considering the cosine similarity in
the computation. As said before, in case we use also the minor components, we need to
consider also the corresponding thresholds c2 and anomaly scores s2.

The strength of this model is the fact that in the case that a malicious sample escapes the
dot product control, which means that we are not able to detect the bad sample with the
threshold computed using the dot product, perhaps it may not get out of control where
we use correlation or cosine, resulting in a more robust classifier. On the other side,
there could be the problem of an increase in the false-positive rate. Indeed, using more
thresholds in OR conditions to assess whether an action is anomalous or not increases
the possibility to classify the action as an attack, increasing the risk of false-positive,
especially in unbalanced datasets.

1.2.3. PCA with reconstruction loss

We report this PCA-based model from Verkerken et al. [49]. We always assume to fit our
PCA model with a training set composed only of normal data. We project each new sample
into the PCA feature space. To do this, we compute the dot product between the sample
and the principal components transposed. Indeed, let us consider a new sample w ∈ Rd

and the principal components (or equivalently right singular vectors, as we have seen in
Section 1.1.1) matrix V ∈ Rk×d. By performing the dot product between w and V T , we
map the new observation from the d-dimensional feature space to the k-dimensional one,
with k ≤ d. Then, we reconstruct the original sample. This can be done by computing the
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PCA fitted with normal samples

Compute c1dot and c2dot Compute c1cor and c2corCompute c1cos and c2cos

s1dot > c1dot || s1cos > c1cos || s1cor > c1cor

Attack Normal
Yes No

Figure 1.4: Sketch of the ensemble of principal components classifier model with "only
major components".
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dot product between the transformed sample and the principal components, projecting
back the transformed sample from the k-dimensional feature space to the d-dimensional
one. We call this reconstructed sample ŵ. The process of transforming the original data
into a lower-dimensional feature space and then projecting them back into the original
feature space inevitably brings with it a reconstruction error. Therefore, the final step,
after the re-projection into the original feature space, is the computation of the loss
between the original sample test and the reconstructed one using the residual sum of
square (RSS) error

RSS =
d∑

i=1

(wi − ŵi)
2.

We use this loss value as anomaly score. In theory, if a sample is anomalous is more
likely to have a higher reconstruction error with respect to a normal one. Therefore,
using a threshold that we find with hyperparameter tuning, we can classify if a sample is
anomalous or not, based on the corresponding reconstruction error.

1.2.4. PCA and K-Means

One of the biggest challenges when doing clustering is clustering evaluation. So, with this
in mind, we did an experiment following the work reported by Peng et al. [35] since it is
one of the most cited documents in this regard. In this paper, different approaches are
described and one of them is the usage of K-Means after having reduced the dimension-
ality of the data with PCA. The objective is to compute the CH index of the K-Means
clustering that, basically, indicates if the clustering is good or not. CH index refers to the
Calinski-Harabasz index, which measures how an element conforms to its cluster (cohe-
sion) compared to other clusters (separation). It is defined as (from the definition reported
in Sklearn [34]):

CH =
tr(Bnk

)

tr(Wnk
)
× nE − nk

nk − 1

where tr(Bnk
) and tr(Wnk

) are the trace of the between group dispersion matrix and the
trace of the within-cluster dispersion matrix:

Wk =

nk∑
q=1

∑
x∈Cq

(x− cq)(x− cq)
T

Bk =

nk∑
q=1

nq(cq − cE)(cq − cE)
T
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with nk number of centroids, Cq set of points in cluster q, cq center of q-th cluster, cE
center of dataset E and nq, nE number of points in cluster q and in dataset E respectively.
So, this model is not a true anomaly detection model where recall, precision, and accuracy
are computed to see the anomaly detection capabilities of the model. However, we also
report it to see the K-Means algorithm applied even in its quantum counterpart.
The procedure is very simple: firstly, we apply PCA to reduce the dimensionality of the
dataset. Then, on that lower-dimensional projected data, we fit K-Means with different
number of clusters nk = [10, 20, 30, . . . , 100]. Finally, we extract the CH value of the
resulting clustering.
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2| Quantum preliminaries

In this chapter, we describe in detail the theory relative to the world of quantum com-
puting. We start from the notation up to the main algorithms. This is an introductory
chapter that is useful if one has no experience or confidence with quantum computing. If
this is the case, we still recommend consulting the book of Kaye et al. [22]. The reader
might need a basic knowledge of quantum computing to understand the rest of this work.

2.1. Quantum information

We start with the basic notation in quantum computing, and then we present the main
postulates of the quantum mechanics to show their application in quantum computing.
Finally, we report how we can represent, load, and retrieve data in a quantum computer,
introducing the important concept of QRAM and KP-trees.

2.1.1. The bra-ket notation

The bra-ket (or Dirac) notation is at the base of quantum information and it is used
to denote quantum states. The notation |·⟩, which is called ket, denotes a vector in a
complex space. Instead, ⟨·|, which is called bra, denotes the complex conjugate (that we
indicate with the symbol *) transpose of the ket elements. Just to clarify, if

|x⟩ =

1− 2i

1 + 3i

4− 9i


then

⟨x| = [1 + 2i, 1− 3i, 4 + 9i]

In the case of a real vector, the conjugate transpose is just the transpose of the vector.
Similarly, the complex conjugate of a real number is the number.

We can define three important and very useful linear algebra operations using the bra-ket
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notation. Let us take two vector x,y ∈ Cn, the inner product of the two can be written
as:

⟨x|y⟩ = [x∗1 . . . x
∗
n]


y1
...
yn

 =
n∑

i=1

x∗i yi.

Considering now two vectors x ∈ Cn and y ∈ Cm, the outer product is defined as:

|x⟩ ⟨y| =


x1
...
xn

 [y∗1 · · · y∗m] =


x1y

∗
1 · · · x1y

∗
m

...
...

xny
∗
1 · · · xny

∗
m

 .
Finally, we define the tensor product in this way:

|x⟩ ⊗ |y⟩ =



x1


y1
...
ym


...

...

xn


y1
...
ym




=



x1y1

x1y2
...

xn−1ym−1

...
xnym


.

2.1.2. The qubit

In quantum information, the qubit is the basic unit of information, as the bit in classical
information. It is important to underline the first substantial difference between the two
units: if it is true that the bit can only be worth 0 or 1, this is not generally true for the
qubit, which can be in the state |0⟩, |1⟩, or in a superposition of two states |0⟩ and |1⟩ at
the same time, as it is a form of a linear combination of the two states. More formally, a
qubit is a vector in C2 and can be specified as

α |0⟩+ β |1⟩ , (2.1)

where α, β ∈ C are called amplitudes and are such that |α|2 + |β|2 = 1.
A single qubit can be seen as a unit vector in the Hilbert space H1 (indeed Hn ≃ C2n), in
which the states

|0⟩ =

[
1

0

]
, |1⟩ =

[
0

1

]
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form an orthonormal basis called computational basis.
Indeed,

⟨1|1⟩ = 1, ⟨0|0⟩ = 1

⟨1|0⟩ = ⟨0|1⟩ = 0.

These properties come from the first postulate of quantum mechanics.

First postulate of quantum mechanics [33]

Associated to any isolated physical system is a complex vector space with inner
product (that is, a Hilbert space) known as the state space of the system. The system
is completely described by its state vector, which is a unit vector in the system’s state
space.

It can be shown [22], that we can rewrite a qubit in C2 as

|ψ⟩ = cos
θ

2
|0⟩+ eiφ sin

θ

2
|1⟩ (2.2)

with eiφ that represents the phase of the state. In this way, we can visualize the qubit on
the Bloch sphere, reported in Figure 2.1. The points on the surface of the Bloch sphere
represent the so called pure states, which are the ones whose sum of the squares of the
amplitudes is one. The points intern to the sphere, instead, are called mixed states and
are the ones whose sum of squares of the amplitudes is not one. In this work, when we
talk about quantum states, we always implicitly refer to pure states.

φ

θ

x̂

ŷ

ẑ = |0⟩

−ẑ = |1⟩

|ψ⟩

Figure 2.1: Visualization of a qubit through the Bloch sphere [51].

The computational basis is also called z-basis. Obviously, there are also other orthonormal
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basis than the z one as, for example, the x-basis, which we write as

|+⟩ = |0⟩+ |1⟩√
2

=

[
1√
2
1√
2

]
, |−⟩ = |0⟩ − |1⟩√

2
=

[
1√
2

− 1√
2

]
(2.3)

or the y-basis

|R⟩ = |0⟩+ i |1⟩√
2

=

[
1√
2
i√
2

]
, |L⟩ = |0⟩ − i |1⟩√

2
=

[
1√
2

− i√
2

]
. (2.4)

Of course, a quantum state written with respect to a specific computational base can be
written also in another basis, as for example

|0⟩ = |+⟩+ |−⟩√
2

, |1⟩ = |+⟩ − |−⟩√
2

(2.5)

so that the state |ψ⟩ = α |0⟩+ β |1⟩ can be rewritten as

|ψ⟩ = α
|+⟩+ |−⟩√

2
+ β

|+⟩ − |−⟩
2

=
α + β√

2
|+⟩+ α− β√

2
|−⟩ . (2.6)

2.1.3. Multiple qubits and quantum systems

We can extend the discussion for a single qubit to the multiple qubits one. We can consider
a quantum state with n-qubits, which can be seen as a vector in a complex Hilbert space
of dimension 2n and can be written as

|x⟩ =
2n−1∑
i=0

αi |i⟩ (2.7)

with αi ∈ C and
∑2n−1

i=0 |αi|2 = 1. It is important to note that |i⟩ is binary encoded which
means that, for example, |7⟩ = |0111⟩ with 4 qubits. Multiple qubits together are often
called quantum register.
The fourth postulate of quantum mechanics is the one that describes how to define a
quantum system.
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Fourth postulate of quantum mechanics [33]

The state space of a composite physical system is the tensor product of the state
spaces of the component physical systems. Moreover, if we have systems numbered
from 1 through n and each state is described as |ψi⟩ , the join state of the total
system is

⊗n
j=1 |ψi⟩ = |ψ1⟩ |ψ2⟩ . . . |ψn⟩.

For example, we can describe a system of 2 qubits with vectors in C4. In this case, we
can write the computational basis as

|00⟩ = |0⟩ ⊗ |0⟩ =


1

0

0

0

 , |01⟩ = |0⟩ ⊗ |1⟩ =


0

1

0

0



|10⟩ = |1⟩ ⊗ |0⟩ =


0

0

1

0

 , |11⟩ = |1⟩ ⊗ |1⟩ =


0

0

0

1

 .
Therefore, we can express every state of a 2-qubit system as

|ψ⟩ = α0 |00⟩+ α1 |01⟩+ α2 |10⟩+ α3 |11⟩ .

2.1.4. Evolution of quantum states

To process qubits and quantum registers, we use quantum gates. These are unitary
operators in the Hilbert space that can be seen as unitary matrices U , which are norm-
preserving and map a unit-norm vector to a unit-norm vector:

U |ψ⟩ → |ψ′⟩ . (2.8)

A unitary U ∈ Cn×n has the property U †U = UU † = I, with U † that is the conjugate
transpose of U . Equation 2.8 describes the evolution of quantum states through unitary
operators, which is the concept described in the second postulate of quantum mechanics.
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Second postulate of quantum mechanics [33]

The evolution of a closed quantum-mechanical system is described by a unitary
transformation. That is, the state |ψ⟩ of the system at the time t1 is related to the
state |ψ′⟩ at time t2 by the unitary operator U(t1, t2) from the relation |ψ′⟩ = U |ψ⟩.

The unitary matrices preserve the inner products between vectors, as well as the norm
of the vectors. Indeed, a unitary matrix applied to a vector takes the vector and rotates
it, without changing the vector norm. Therefore, the application of unitary matrices to
vectors corresponds to a rotation of the state representing the vector on the Bloch sphere,
represented in Figure 2.1. We can see any unitary matrix as a valid reversible quantum
circuit.
There are lots of quantum logical gates. For a single qubit, it is important to mention
first the Pauli-X gate. It applies over a single qubit and it corresponds to the classical
NOT operator. It is defined in this way:

X =

[
0 1

1 0

]
.

So, for example, it is easy to see that by taking |ψ⟩ = α |0⟩ + β |1⟩ and applying the
Pauli-X operator to it, we obtain

X |ψ⟩ = α |1⟩+ β |0⟩ . (2.9)

Indeed,

X |0⟩ =

[
0 1

1 0

][
1

0

]
=

[
0

1

]
= |1⟩

X |1⟩ =

[
0 1

1 0

][
0

1

]
=

[
1

0

]
= |0⟩ .

If we want to visualize the quantum NOT gate operator, we can think of it as a rotation
of 180◦ for the θ angle in the Bloch sphere.

Another important single-qubit operator is the Hadamard gate:

H =
1√
2

[
1 1

1 −1

]

which maps |0⟩ → |0⟩+|1⟩√
2

= |+⟩ and |1⟩ → |0⟩−|1⟩√
2

= |−⟩, thus creating an equal superpo-
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sition of the two basis states. Indeed,

H |0⟩ = 1√
2

[
1 1

1 −1

][
1

0

]
=

1√
2

[
1

1

]
=

|0⟩+ |1⟩√
2

= |+⟩

H |1⟩ = 1√
2

[
1 1

1 −1

][
0

1

]
=

1√
2

[
1

−1

]
=

|0⟩ − |1⟩√
2

= |−⟩ .

A multiple-qubits Hadamard gate allows creating an n-qubit state in a uniform superpo-
sition of all the states in the computational basis

Hn |0⟩⊗n =
1√
n

n∑
i

|i⟩ . (2.10)

There also exist the so called controlled quantum gates, which are operators that act on
two or more qubits, of which one or more act as control for some quantum operation. For
instance, the controlled-NOT gate (or CNOT) over two qubits applies the NOT operator
on the second qubit only when the first qubit is |1⟩ and does nothing otherwise. The
CNOT operator can be represented with the following matrix

CNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 . (2.11)

More generally, let U be a unitary that acts on a single qubit with matrix representation

U =

[
u00 u01

u10 u11

]
. (2.12)

The controlled-U gate operates over two qubits, with the first one that acts as control.
It maps the basis states |00⟩ , |01⟩ , |10⟩ , |11⟩ in this way

|00⟩ → |00⟩

|01⟩ → |01⟩

|10⟩ → |1⟩ ⊗U |0⟩ = |1⟩ ⊗ (u00 |0⟩+ u10 |1⟩)

|11⟩ → |1⟩ ⊗U |1⟩ = |1⟩ ⊗ (u01 |0⟩+ u11 |1⟩).
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So the CU -matrix is 
1 0 0 0

0 1 0 0

0 0 u00 u01

0 0 u10 u11

 .

Let us consider taking as U the Pauli gate X =

[
0 1

1 0

]
. If we substitute this into

the previous found CU -matrix, it results in the CNOT matrix operator reported above
(indeed the CNOT operator is also called controlled Pauli-X operator[52]). The controlled
operators are very useful and we refer to these many times in the various algorithms that
we report, calling them controlled rotations since we apply an operator (that reflects in a
rotation of the vector over which we apply the unitary) only if some conditions over the
control qubits are met (controlled). As we are going to see, quantum algorithms can be
described by a set of quantum logical gates, or unitary operators, and some measurements.

2.1.5. Measurements of quantum states

An important property to underline is that quantum states are measurable, and this
derived from the third postulate of quantum mechanics.

Third postulate of quantum mechanics [33]

Measurements are described through a set {Mm} of measurements operator, where
index m identifies one of the possible outcomes of the experiment. The probability of
measuring the outcome m from the state |ψ⟩ is defined as p(m) = ⟨ψ|M †

mMm |ψ⟩
(with the completeness equation

∑
mM

†
mMm = I, which ensures that

∑
m p(m) = 1.

The state after the measurements is altered, as a matter of fact, if the mea-
surements yields outcome m, the quantum states after the measurements becomes
|ψ′⟩ = Mm|ψ⟩√

⟨ψ|M†
mMm|ψ⟩

.

The first thing to do when we want to measure a quantum register is to choose an orthog-
onal basis for the Hilbert space. Then, we can measure the quantum register in this base.
Once measured, the quantum register is not any more in superposition and it collapses
in one of the quantum states of the chosen basis. Each of these possible states can be
measured with probability equal to its corresponding squared amplitude.
As a proof-example of this concept, we take the quantum state |ψ⟩ = α |0⟩ + β |1⟩.
Suppose we want to measure the state with respect to the orthonormal basis {|0⟩ , |1⟩}.
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Considering that

M †
0M0 = |0⟩ ⟨0|0⟩ ⟨0| = |0⟩ ⟨0| =M0

M †
1M1 = |1⟩ ⟨1|1⟩ ⟨1| = |1⟩ ⟨1| =M1,

we can write:

P (|0⟩ | |ψ⟩) = ⟨ψ|M †
0M0 |ψ⟩ = ⟨ψ|M0 |ψ⟩ = ⟨ψ| (|0⟩ ⟨0|) |ψ⟩ = | ⟨0|ψ⟩ |2 = |α|2,

since
⟨0|ψ⟩ = ⟨0| (α |0⟩+ β |1⟩) = α ⟨0|0⟩+ β ⟨0|1⟩ = α.

This means that the probability to measure |0⟩, given the state |ψ⟩ is |α|2. Therefore, in
this example, we can see that the amplitudes are linked to the probabilities of observing
0 or 1 when measuring the qubit, since

P (0) = |α|2, P (1) = |β|2.

More generally, if we have a quantum state |ψ⟩ and we want to perform the measurements
with respect to |ϕ⟩ (state of the orthogonal basis), the probability of measuring |ϕ⟩ is:

p(ϕ) = ⟨ψ|ϕ⟩ ⟨ϕ|ϕ⟩ ⟨ϕ|ψ⟩ = ⟨ψ|ϕ⟩ ⟨ϕ|ψ⟩ = | ⟨ϕ|ψ⟩ |2

So for example, taking the quantum state |ψ⟩ = 1√
n

∑n
i |i⟩, we can retrieve each state

|j⟩ , j ∈ [n], with uniform probability 1
n
:

p(j) = |⟨j|ψ⟩|2 =

∣∣∣∣∣⟨j| 1√
n

n∑
i

|i⟩

∣∣∣∣∣
2

=

∣∣∣∣∣ 1√
n
⟨j|j⟩+ 1√

n

n∑
i

⟨j|i⟩

∣∣∣∣∣
2

=

∣∣∣∣ 1√
n

∣∣∣∣2 = 1

n
.

In the classical setting, one can easily verify if a bit is either 0 or 1, but in the quantum
case, since a qubit can be in a superposition of orthogonal states of the complex vector
space, one cannot immediately retrieve the information about the amplitudes of the states
for a particular basis.
Furthermore, there is a fundamental theorem in quantum computing, called no-cloning
theorem, which states that if we have only a copy of a quantum state it is impossible to
reconstruct it because, as said before, when we perform a measurement on a quantum
state, it collapses to one of the states of the measurement basis.

Theorem 2.1. (No Cloning [33]) There is no quantum algorithm that can create a copy
of a general quantum state.



34 2| Quantum preliminaries

So we need a large number of copies of the quantum state that has to be measured. As
we are going to show, there are some routines, like the pure state tomography, that help
in retrieving information from quantum states (in Section 2.2.2, we report an algorithm
that helps in this function).

2.2. Quantum tools for machine learning

Now we introduce the concepts of quantum algorithms complexity, data representation,
loading, and retrieving data, which are arguments more related to quantum machine
learning. Then, we describe the main quantum routines that we implement and use in
this work.

Complexity of quantum algorithms In the following theorems and algorithms, we
use the notation T (U), that indicates the time complexity needed to implement the uni-
tary operator U measured in terms of depth of the circuit. Furthermore, in the time
complexity formula we use the notation Õ to hide polylogarithmic factors in the stan-
dard O notation since those terms do not impact too much in the runtime complexity.
Therefore, Õ(1) = polylog(n).

2.2.1. Quantum data representation

Previously, we have seen how we can represent a vector in a complex Hilbert space of
dimension 2n. Now, we explain how we can represent data in quantum computers. There
are basically two ways of representing data: the amplitude and the binary encodings. In
the first one, we store our data in the amplitudes of a quantum state, therefore we can
encode n real values using O(log(n)) qubits. In the binary encoding instead, we store a
bit in the state of each qubit. Considering the latter, we can say that if we have a scalar
x ∈ N and we consider its binary expansion, that for example can be 1010 · · · 11, encoded
in n qubits, then we can write

|x⟩ =
n⊗

i=0

|xi⟩ . (2.13)

We can also use one more qubit for the sign. For what concern vectors and matrices, we
have already seen that, taking a vector x ∈ R2n , we can write it as

|x⟩ = 1

∥x∥

2n−1∑
i=0

xi |i⟩ =


x0

∥x∥2
...

x2n−1

∥x∥2


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using the amplitude encoding. It is important to underline that to represent a vector of
dimension N = 2n, we just need log(N) = n qubits: we encode each value of the classical
vector in the amplitudes of a state. To highlight this concept, consider a general vector
state

|ψ⟩ = 1√
4
|0⟩+ 1√

4
|1⟩+ 1√

4
|2⟩+ 1√

4
|3⟩

with uniform probability 1
4

to measure a specific state. To represent this vector of length
N = 4, we just need n = 2 qubits. Indeed,

|ψ⟩ = 1√
4

22−1∑
i=0

|i⟩ .

The same applies for matrix representation. Let X ∈ Rn×d be a data matrix of dimension
n× d. We can use amplitude encoding and write it as

1√∑n
i=0∥x(i)∥2

n∑
i=0

∥x(i)∥ |i⟩ |x(i)⟩

or equally
1√∑n,d

i,j=0∥Xij∥2

n,d∑
i,j=0

Xij |i⟩ |j⟩ .

In this case we just need O(log(nd)) qubits to store a matrix of dimension n× d.

QRAM model A concept that now it is interesting to mention is the one related to
the QRAM model. QRAM recalls the random access memory (RAM) in the classical
computer and, indeed, it addresses the data in memory using a tree structure. It is like a
classical data structure that stores classical information but that is able to answer queries
in quantum superposition. It is a data structure that allows to efficiently encode classical
data structure in quantum states, using KP-tree structure [23]. In this way, we can store
a dataset with a space complexity that scales linearly in the dimension and number of
data points (indeed the KP-tree structure has a linear number of leaves). Moreover, we
can perform update, insert, and delete operations in time that is poly-logarithmic in the
dimension and number of data points (indeed the tree structure has logarithmic depth).

Definition 1. (QRAM model, Definition 3.4 in [30])

A QRAM is a device that stores indexed data (i, xi) for i ∈ [n] and xi ∈ R. It allows
query in the form |i⟩ |0⟩ → |i⟩ |xi⟩ and has circuit depth O(ploylog(n)).
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Theorem 2.2 (Theorem 5.1 in [23]). Let X ∈ Rn×d be a matrix. Entries (i, j,Xij) arrive
in the system in some arbitrary order, and w denotes the number of entries that have
already arrived in the system. There exists a data structure to store the matrix X with
the following properties:

• The size of the data structure is O(w log2(nd)).

• The time to store a new entry (i, j,Xij) is O(log2(nd)).

• A quantum algorithm that has quantum access to the data structure can perform the
mapping Ũ : |i⟩ |0⟩ → |i⟩ |Xi⟩, for i ∈ [n], corresponding to the rows of the matrix
currently stored in memory and the mapping Ṽ : |0⟩ |j⟩ → |X̃⟩ |j⟩, for j ∈ [d],
where X̃ ∈ Rn has entries X̃i = ||Xi|| in time poly log(nd)

In this work, we assume that matrices are stored in QRAM.

The concept we have not discussed yet is how to retrieve the data from a quantum
computer. As mentioned in Section 2.1.5, quantum pure state tomography helps in this
problem. In the next section, we describe this quantum task.

2.2.2. Quantum state tomography

Quantum pure state tomography is a useful quantum task that enables reconstructing
classically the information that a quantum state brings with it through measurements.
Clearly, the more measures we make, the closer we get to the true state and, also for this
reason, the tomography is considered a bottleneck of quantum algorithms.
Given a vector x ∈ R2n , we have seen that we can write it as |x⟩ = 1

∥x∥
∑2n−1

i=0 xi |i⟩,
using the amplitude encoding. When we measure this state, it results in one of the |i⟩
registers, depending on the specific probability. Therefore, performing a large number of
measurements allows us to forecast the probability distribution of the |i⟩ registers and
so to forecast also the amplitudes x20, . . . , x22n−1. Of course, the number of measurements
cannot be infinite and so, being able to perform only a large but finite number of measures,
the final estimates bring with them some error. Depending on the guarantees on the
error that we want, we need to perform different number of measurements. As states in
Kerenidis and Prakash [24], we can have both ℓ2-norm and ℓ∞-norm guarantees for the
tomography. This means that, given a vector x ∈ Rd, we can obtain an estimate x such
that ∥x− x∥2 ≤ δ with a probability at least 1− 1

poly(d)
, or equivalently ∥x− x∥∞ ≤ δ for

the ℓ∞-norm defined as ∥x∥∞ = maxi(∥xi∥).

Theorem 2.3 (ℓ2 Vector state tomography, Theorem 4.2 in [28]). Let U be a unitary
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operator that creates copies of the vector state |x⟩ for a unit vector x ∈ Rd in time T(U).
We also assume that we can apply the controlled version of U in the same time. The
tomography algorithm outputs a unit vector x such that ∥x−x∥2 ≤ δ in time O(T (U)d log d

δ2
)

with probability at least 1− 1
poly(d)

.

We also report the statement for the ℓ∞-tomography.

Theorem 2.4 (ℓ∞ Vector state tomography, Theorem 4.3 in [28]). Let U be a unitary
operator that creates copies of the vector state |x⟩ for a unit vector x ∈ Rd in time T(U).
We also assume that we can apply the controlled version of U in the same time. The
tomography algorithm outputs a unit vector x̂ such that ∥x−x∥∞ ≤ δ in time O(T (U) log d

δ2
)

with probability at least 1− 1
poly(d)

.

Algorithm 2.1 Vector state tomography [24].
Require: Access to unitary U such that U |0⟩ = |x⟩ =

∑
i∈[d] xi |i⟩ and to its controlled

version.
1. Vector values estimation

(a) Measure N = 36d log(d)
δ2

copies of |x⟩ in the standard basis and obtain estimates
pi =

ni

N
where ni is the number of times outcome i is observed.

(b) Store √
pi, i ∈ [d] in QRAM data structure so that |p⟩ =

∑
i∈[d]

√
pi |i⟩ can be

prepared efficiently.
2. Sign estimation

(a) Create N = 36d log(d)
δ2

copies of the state 1√
2
|0⟩

∑
i∈[d] xi |i⟩+

1√
2
|1⟩

∑
i∈[d]

√
pi |i⟩

using a control qubit.
(b) Apply Hadamard gate on the first qubit of each copy of the state to obtain

1
2

∑
i∈[d][(xi +

√
pi) |0, i⟩+ (xi −

√
pi) |1, i⟩].

(c) Measure each copy in the standard basis and maintain counts n(b, i) of the
number of times outcome |b, i⟩ is observed for b ∈ 0, 1.

(d) Set σi = 1 if n(0, i) > 0.4piN and -1 otherwise.
3. Output the unit vector x, with xi = σi

√
pi.

In Algorithm 2.1, we report the procedure presented in Kerenidis and Prakash [24] that
we use to implement vector state tomography. It describes the tomography of pure states
with real amplitudes (complex amplitudes could be tackled in a similar way). Let U be
a unitary operator that creates copies of the vector state |x⟩ for a unit vector x ∈ Rd

in time TU . The tomography algorithm outputs a unit vector x such that ∥x − x∥2 <√
7δ with probability 1 − 1/poly(d), as reported in Section 4 by Kerenidis and Prakash

[24]. The algorithm runs in time O(TUN), with N = Õ
(

d
δ2

)
. Basically, it takes N
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copies of the initial quantum state |x⟩ =
∑

i∈[d] xi |i⟩. Once we have measured the N
copies, we are able to build the state |p⟩ =

∑
i∈[d]

√
pi |i⟩, with pi = ni

N
where ni is

the number of times outcome i is observed. Then, by applying an Hadamard gate on
the first qubit of the state 1√

2
|0⟩

∑
i∈[d] xi |i⟩ +

1√
2
|1⟩

∑
i∈[d]

√
pi |i⟩, we obtain the state

1
2

∑
i∈[d][(xi+

√
pi) |0, i⟩+(xi−

√
pi) |1, i⟩]. By measuring N copies of that state, we obtain

the number of times outcome |b, i⟩ is observed (with b ∈ 0, 1). Based on this number,
we set the sign of each estimated value xi using the logic reported in step d. Finally, we
return the estimated vector x.

2.2.3. Phase estimation

Quantum phase estimation has the goal to output an estimation of the phase of the
eigenvectors of a unitary operator. It is based on the Quantum Fourier Transform (QFT),
which is a basic routine also used in other quantum algorithms, like amplitude estimation
(which we explain in Section 2.2.5). Let us suppose that a unitary U has an eigenvector
|ψ⟩ associated to the eigenvalue e2πiω. With phase estimation, we want to estimate the
unknown phase ω. More formally, given a unitary matrix U and a quantum state |ψ⟩ such
that U |ψ⟩ = e2πiω |ψ⟩, phase estimation estimates ω with high probability, to additive
error ϵ.
In Nielsen and Chuang [33] and Cleve et al. [13], there is a long discussion which explains
this algorithm and here we report the main points. Quantum phase estimation routine
uses two registers: the first store n qubits initially in the state |0⟩ and the second starts in
the state |ψ⟩. It is important to notice that the number of qubits n depends both on the
ϵ accuracy we want to have in the estimate of ω and on the 1− γ probability of success of
the routine we wish. Indeed, as described by Nielsen and Chuang [33], we can compute
n = t+m, where t =

⌈
log2

(
1
ϵ

)⌉
and m =

⌈
log2

(
2 + 1

2γ

)⌉
, that results in

n =

⌈
log2

(
1

ϵ

)⌉
+

⌈
log2

(
2 +

1

2γ

)⌉
. (2.14)

So we can increase or decrease the number of qubits in the algorithm, increasing or
decreasing ϵ and γ parameters. More precisely, fixed a value of γ, if we want more accurate
estimates we need to increment the accuracy, which means decreasing ϵ value because we
want estimates with a lower error. This results in an increasing of the log2

(
1
ϵ

)
value and,

consequently, in an increasing of n. The same reasoning applies for the probability of
success 1− γ: fixed an accuracy value ϵ, we can increase the probability of success 1− γ,
which means decreasing the value of γ that, as for ϵ, results in an increasing of the number
of qubits n. Going deeper in the procedure, phase estimation requires two stages. Firstly,
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a n-bit Hadamard gate is applied to the first register, obtaining the state

1

2n/2
(|0⟩+ |1⟩)⊗n |ψ⟩ ,

followed by a controlled-U operations on the second register, with U raised to successive
powers of two, that apply unitary operator U on the target register only if its correspond-
ing control bit is |1⟩. Being |ψ⟩ the eigenvector of U , such that U |ψ⟩ = e2πiω |ψ⟩, we
can formalize the application of the controlled-U operations, with U raised to successive
power of two, in this way:

U 2j |ψ⟩ = U 2j−1U |ψ⟩ = U 2j−1e2πiω |ψ⟩ = · · · = e2πi2
jω |ψ⟩ .

Applying all the controlled-U 2j operations, with 0 ≤ j ≤ n− 1, and taking into account
the equality

|0⟩ ⊗ |ψ⟩+ |1⟩ ⊗ e2πiω |ψ⟩ = (|0⟩+ e2πiω |1⟩)⊗ |ψ⟩

at the end of the first stage, the state of the first register can be seen in this way:

1

2n/2
(|0⟩+ e2πi2

n−1ω |1⟩)⊗ (|0⟩+ e2πi2
n−2ω |1⟩)⊗ · · · ⊗ (|0⟩+ e2πi2

0ω |1⟩)⊗ |ψ⟩ =

=
1

2n/2

2n−1∑
k=0

e2πiωk |k⟩ ⊗ |ψ⟩ (2.15)

During the first stage, the second register does not change and remains always in the state
|ψ⟩.
Then the inverse Quantum Fourier Transform is applied to the first register, reversing
the circuit of the QFT at the cost of Θ(n2). This allows to translate the state from the
Fourier to the computational basis: 1

2n/2

∑2n−1
k=0 e2πiωk |k⟩ ⊗ |ψ⟩ → |ω⟩ |ψ⟩, where ω is the

estimate of the phase. More formally:

1

2n/2

2n−1∑
k=0

e2πiωk |k⟩ ⊗ |ψ⟩ QFT−1

−−−−→ 1

2n

2n−1∑
x=0

2n−1∑
k=0

e−
2πik
2n

(x−2nω) |x⟩ ⊗ |ψ⟩ .

Finally, given this new quantum state, we perform a measurement on the computational
basis to read the state of the first register that contains the estimate ω of the true phase.
Indeed, QFT−1 returns an integer x, encoded in binary by an n-qubit state, with a certain
probability and the output x corresponds to the estimate ω = x

2n
. How likely it is that a

value x is returned as output, is explained in the following theorem.

Theorem 2.5. (Lemma 7.1.2 in [22]) Let ω = x
2n

= 0.x1x2 . . . xn be some fixed number.
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The phase estimation algorithm applied to the input state |ψ⟩ = 1√
2n

∑2n−1
x=0 e2πiωx |x⟩

outputs the integer x with probability:

p(x) =
1

22n
sin2(π(2nω − x))

sin2(π(ω − x
2n
))

(2.16)

Following what the previous theorem states, for each possible estimate value x, the prob-
ability to output an estimate of ω is given by Equation 2.16. Basically, this computation
assigns a higher probability to x, the more x

2n
is closer to the real value ω. We see better

this concept in Section 3.3, where we show a numerical simulation of phase estimation so
that one can better understand what is going on in this procedure.
In case 2nω is an integer, measuring in the computational basis gives the phase in the
auxiliary register with high probability:

|2tω⟩ ⊗ |ψ⟩ .

If 2nω is not an integer, that happens when ω is not a fraction of a power of two, the phase
estimation will output an estimate with a probability better than 4

π2 . In the following two
theorems we report more formally these cases.

Theorem 2.6. (Theorem 7.1.4 in [22]) Let ω = x
2n

be an integer multiple of 1
2n

closest
to ω. The phase estimation algorithm returns x with probability at least 4

π2

Basically, Theorems 2.6 states that with probability at least 4
π2 , the phase estimation

algorithm outputs an estimate x such that
∣∣ x
2n

− ω
∣∣ ≤ 1

2n+1 . But if ω lies exactly in
between x

2n
and x+1

2n
, then phase estimation outputs one of the two closest value of ω with

probability at least 8
π2 .

Theorem 2.7. (Theorem 7.1.5 in [22]) If x
2n

≤ ω ≤ x+1
2n

, then the phase estimation
algorithm returns one of x or x+ 1 with probability at least of 8

π2 .

Therefore, with probability at least 8
π2 , the phase estimation will return x such that∣∣ x

2n
− ω

∣∣ ≤ 1
2n

.

We summarize phase estimation with the following theorem.

Theorem 2.8 (Phase estimation, Theorem 4.1 in [30]). Let U be a unitary operator with
eigenvectors |vj⟩ and eigenvalues eiωj , ωj ∈ [−π, π], i.e we have U |vj⟩ = eiωj |vj⟩ for
j ∈ [n]. For a precision parameter ϵ > 0, there exist a quantum algorithm that runs
in O(T (U)log(n)

ϵ
) and with probability 1 − 1

poly(n)
maps a state

∑
j∈[n] αj |vj⟩ to the state
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∑
j∈[n] αj |vj⟩ |ωj⟩ such that |ωj − ωj| < ϵ for all j ∈ [n].

To illustrate and explain better how the algorithm works at high level, we make use of
a circumference, by representing each phase value on this circle. In Figure 2.2, we make
the assumption that n = 3, so we get 23 = 8 possible phase values. As we will see, we are
going to approximate the phase with one of these 2n values. Here is important to remark
that each possible estimate is 1

2n
distant from the others. Indeed, each point in the circle

is distant ± 1
2n

from its neighbors. The larger is n, the more numerous and closer to each
other the points in the circumference are. Therefore, with a large n, also the estimates
would be more accurate since it is very likely that there is an estimate value very close
to ω. This is because we have seen in Theorem 2.5 that we can express the phase in
binary notation as ω = x

2n
= 0.x1x2 . . . xn, that means x1 · 2−1 + x2 · 2−2 + · · · + xn · 2−n

where x1, . . . , xn ∈ 0, 1. For example, let us consider n = 1 qubit. In this case, w can
be expressed as 0.x1. If we increase the number of qubit to n = 3 as in our example, we
can express ω as 0.x1x2x3. Therefore, if we increase the number of qubit n we are able to
discretize better the phase value.

0
2n

1
2n

2
2n

3
2n

4
2n

5
2n

6
2n

7
2n

ω

Figure 2.2: Representation of phase ω as a red cross in a circle where the black dots are
the possible outputs of phase estimation procedure.

A constraint that is important to underline is that ω ∈ [0, 1). Indeed, also in the cir-
cumference, the points on the circle have values that go from 0 to 2n−1

2n
(so potentially

ω=1 would be exactly in the same position of 0
2n

, and this is one of the main reason why
1 is not included in the interval, otherwise our estimate would be exactly 0). The fact
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that ω cannot be 1 is also because by expressing ω in binary notation exactly in n bits,
as ω = x

2n
= 0.x1x2 . . . xn, we can never have ω = 1. As we can see in Figure 2.2, the

phase ω that we want to estimate is represented with a red cross and, since a real phase
parameter may not be an integer of 1

2n
, it can lie between two nodes representing the

possible phases.
Therefore, phase estimation approximates ω, with one of those points in the circumfer-
ence: the more a point is near to ω, the more likely it is to be output as best estimate. The
probability that phase ω will be approximated with a point x in the circle is reported in
Equation 2.16. Basically, we calculate the distance between ω and x and, the closer they
are, the higher is the probability associated to that specific x. If ω = 0, phase estimation
returns 0 with certainty.

We summarize the procedure in Algorithm 2.2.

Algorithm 2.2 Phase estimation.
Input: ω ∈ [0, 1), ϵ, γ > 0.
Output: estimate of the phase ω.

1: Compute n =
⌈
log2(

1
ϵ
)
⌉
+
⌈
log2(2 +

1
2γ
)
⌉
.

2: for x in range(2n) do
3: p(x) = 1

22n
sin2(π(2nω−x))

sin2(π(ω− x
2n

))
.

4: end for
5: Sample x ∼ p.
6: Return ω = x

2n
.

2.2.4. Consistent phase estimation

In our framework, we also study and implement a variant of the quantum phase estimation,
called consistent phase estimation [46]. We have seen that phase estimation can output
an estimate with a certain probability, given by the formula in Equation 2.16. This means
that, across multiple executions, the output of phase estimation can change, since each
possible value has a probability to be extracted as output. In this extended routine,
instead, the estimates across multiple runs are consistent in the true sense of the world,
meaning they are almost always the same. This means that the error between different
executions of the phase estimation is almost deterministic.
But why almost always? Now we try to clarify this sentence, going into more theoretical
details.
To explain better this concept, we introduce the probabilistic machine with deterministic
outputs. This is because making these machines deterministic is equivalent to make phase
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estimation consistent. Suppose that there exists a value u = u(x) ∈ R, that is determined
by an input x ∈ {0, 1}n, and there exists a probabilistic Turing machine M defined as
M(x, y), where y is a fixed random input that makes the machine probabilistic. M takes
x and y as input and outputs an estimate, such that:

∀x ∈ {0, 1}n,Py[|M(x, y)− u(x)| ≤ ϵ] ≥ 1− γ

where ϵ and γ are the accuracy of the estimate and the probability of failure respectively.
It means that, given the input value x, the probability that the random input value y
causes M to approximate u(x) with with an accuracy at least of ϵ, is at least 1− γ. But
being a probabilistic machine, changing the randomness value y, it may return different
results. To ensure that the output of M depends only by the input x alone and not by the
randomness value y of the probabilistic machine, a shift and truncate method is applied
[38, 46], which is formalized in the following theorem and proof.

Theorem 2.9 (from Lemma 2.1 in [46]). Suppose M(x,y), with x ∈ {0, 1}n and ran-
dom input y, approximates u(x) with with ϵ accuracy and γ error using O(log( n

ϵγ
)) space.

Let ζ > 0 be an arbitrary constant. Then there exist another probabilistic algorithm
M ′(x, y; s), which takes x, y as input and outputs the shift s, with |y| = O(log( n

ϵγζ
)) and

|s| = O(log(1/ζ)) and there exist a function u′(x, s) such that:

• For all s: |u′(x, s)− u(x)| ≤ ϵ;

• Prs[Pry(M
′(x, y; s) = u′(x, s)) < 1− γ] ≤ ζ

Proof (from Ta-Shma [46]).
Set ϵ′ = ϵζ

2
and let L = 2

ζ
= ϵ

ϵ′ . Pick the shift s randomly from {1, . . . , L} and fix it.
Divide R to the consecutive sections sϵ′ ± [kϵ, (k + 1)ϵ] for k ∈ Z (e.g. [sϵ′ − ϵ, sϵ′) and
[sϵ′, sϵ′ + ϵ) are sections). Then run M with ϵ′ accuracy and return the section to which
M(x, y) belongs. For correctness, say a shift s is good for u if u is ϵ′ away from a boundary,
i.e, there exists a section [c, d) such that u ∈ [c+ ϵ′, d− ϵ′). As Lϵ′ < ϵ, for every u there
exist at most 2 shifts that bring it ϵ′ close to a boundary, and therefore the probability
a shift is not good is at most 2

L
≤ ζ. For a good shift, the probability over the random

coins of M that the output is the section to which u belongs is at least 1− γ (because u
is ϵ′ away from a boundary), the section number depends only on u and the shift s, and
any point within the section (in particular, say, its middle point) is ϵ close to u.

Basically, the first four lines of the previous proof describe the main steps of consistent
phase estimation algorithm, considering that M plays the role of phase estimation. To get
a better understanding of this routine, we report in Figure 2.3 a high-level representation
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of consistent phase estimation algorithm. In this way, the reader can better comprehend
the link between the previous proof and this quantum routine. First of all, a little bit
of context: the upper dotted line is a modified version of Figure 2.2, representing the
unrolled circle of phases, where each dot is a possible estimate. Therefore, the upper line
represents the phase estimation procedure. Instead, in the bottom ticked line, we show
the n sections (corresponding to the sections sϵ′ ± [kϵ, (k + 1)ϵ] for k ∈ Z reported in the
proof), each of dimension ϵ as reported in the proof, in which we map the output of phase
estimation. Suppose we want to estimate ω, represented graphically with the red cross.
We execute phase estimation with accuracy ϵ′ ≪ ϵ, as required by the algorithm, and the
values close to ω are the ones with the highest probability of being extracted as output.
In this case, the cyan and the blue dots represent the most likely values (the rightmost
dot is filled with a darker color and it is bigger than the left one since the red cross is
nearer to this value). For how phase estimation works, we are pretty sure that both the
cyan and the blue estimates are ϵ′-close to the real value ω. These two values have a good
chance to be extracted as output and, if we execute phase estimation more than once, it
is probable that the output of different runs differs sometimes. But since ϵ′ ≪ ϵ, we map
all those estimates, even if different, in the same section which we assume to be s2 (this
means that, considering s2 = [c, d), ω ∈ [c+ ϵ′, d− ϵ′)). We can see that, using s2 section
to extract the final consistent estimate of ω and considering the section’s middle point
as estimate [46], we are almost always sure that all the estimates are the same and, not
least, even ϵ-close to ω, being ϵ the accuracy required at the beginning of the algorithm.

1
2n

s1 s2 s3 s4 . . . . . . sn

ϵ

Figure 2.3: Consistent phase estimation procedure.

We said that consistent phase estimation is consistent almost always, but why almost
always? Let us try to see what are the cases in which it failed to be consistent. Since the
output depends on the input value and on the shift s (which, in the previous proof, we saw
to be a random integer that determines the sections), surely one of the most important
things to be consistent is to obtain a good shift because there might be the case in which
the possible phase estimation’s outputs lie ϵ′-close to a border between two consecutive
sections, as the following example in Figure 2.4.
As we can see, the two more likely estimates of phase estimation (now in orange and
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1
2n

s1 s2 s3 s4 . . . . . . sn

ϵ

Figure 2.4: Case of "no" consistent phase estimation procedure.

violet) are always ϵ′-close to ω but, with this particular fixed shift (assumed to be the
same of the one in Figure 2.3), they are mapped into two different sections s1 and s2,
resulting in two different outputs of consistent phase estimation. Therefore, we can say
that this particular shift is good for the input ω in Figure 2.3, while is not so good for
the ω in Figure 2.4. In the proof of Theorem 2.9, it is established that a shift is not good
with a probability of nζ ≤ γ.
Another case in which consistent phase estimation can fail to be consistent is if the
constraint ϵ′ ≪ ϵ is not verified. Indeed, if this is the case, the sections are not so wide
with respect to the closeness between ω and ω, and so there are potentially more cases
of estimates between two consecutive sections, as the case reported in Figure 2.4. This
last case can happen in case of "failure" of phase estimation. This is because, potentially,
phase estimation can output any values with a certain probability (clearly, the lower the
probability, the less likely it is to be extracted, but there is still a little chance). Therefore,
if phase estimation fails, so if it returns a value that is no ϵ′-close to the real one, the
condition ϵ′ ≪ ϵ can be violated.
We have shown at high level how consistent phase estimation works. Now, we conclude
this section with a more formal explanation of this quantum routine.
The problem clearly is pretty similar to the phase estimation one. We want to map each
eigenvector vi to a unique vector |vi⟩ ⊗ |s(i)⟩, where s(i) is the section relative to the
eigenvalue λi, whose value depends on the input value and on a fixed shift (in the previous
proof we define what a section is). It is important to keep in mind that consistent phase
estimation is based on phase estimation. Therefore, it is as if phase estimation were a
subroutine of this algorithm. So, fixed a shift s, an eigenvector v, and the corresponding
eigenvalue λ, after the phase estimation routine, we are in the state

|ψ⟩ = |v⟩ ⊗ [
∑
j

βj |j⟩ ⊗ |s(j)⟩],

where j is the output of the phase estimation and s(j) is the section to which j belongs.
Considering s a good shift for the eigenvector v, we can say that the corresponding
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eigenvalue λ is ϵ′-close to the section boundary and so we can assert that s(j) = s(λ)∀j,
where s(λ) is the section to which eigenvalue λ belongs [46]. We can say that, with a
confidence of 1− γ, we have the ideal state

|ψ′⟩ = |v⟩ ⊗ [
∑
j

βj |j⟩]⊗ |s(λ)⟩ .

Finally, reversing the phase estimation process on |ψ′⟩ we can obtain the state

|v⟩ ⊗ |0̂⟩ ⊗ |s(λ)⟩ .

Summing up, consistent phase estimation maps the state

|v⟩ ⊗ |0̂⟩ ⊗ |0̂⟩ → |v⟩ ⊗ |0̂⟩ ⊗ |s(λ)⟩ ,

with s(λ) which depends only on the input v and on the shift s and is the section from
which we can extract the estimate λ, that is ϵ-close to the real eigenvalue λ.

2.2.5. Amplitude estimation

Amplitude estimation relies on phase estimation. Indeed, as we are going to show, ampli-
tude estimation implicitly executes phase estimation.
The goal of the amplitude estimation is to estimate the probability that a measurement
over a quantum state yields a good state.
Let us suppose that we have an operator A such that

A |0⟩ :
√

1− p |ψ0⟩+
√
p |ψ1⟩ (2.17)

where ⟨ψ0|ψ1⟩ = 0, which means that the two states ψ0 and ψ1 are orthogonal. Amplitude
estimation outputs an estimate for the amplitude p of the state |ψ1⟩:

p = ∥⟨ψ1|ψ1⟩∥2. (2.18)

Theorem 2.10 (Amplitude estimation, Theorem 12 in [9]). Given a quantum algorithm

A : |0⟩ → √
p |y, 1⟩+

√
1− p |G, 0⟩

where |G⟩ is some garbage state, then the amplitude estimation algorithm, using exactly
P iteration of the algorithm A, for any positive integer p, outputs p (0 ≤ p ≤ 1), such
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that:

|p− p| ≤ 2π

√
p(1−p)

P
+ ( π

P
)2

with probability at least of 8/π2. If p=0 then p = 0 with certainty and if p=1, and P is
even, then p = 1 with certainty.

We also state a simplified version from Theorem II.2 in Kerenidis and Prakash [25].

Theorem 2.11 (Amplitude amplification and Amplitude estimation [25]). Taking an
operator U such that U |0⟩l = |ϕ⟩ = sin(θ) |x, 0⟩ + cos(θ) |G, 0⊥⟩, then sin2(θ) can be
estimated to multiplicative error η in time O( T (U)

η sin(θ)
) and |x⟩ can be generated in expected

time T (U)
sin(θ)

, where T(U) is the time to implement U .

Algorithm 2.3, reported by Kaye et al. [22], describes the steps of quantum amplitude
estimation. We can notice that the steps are almost the same of phase estimation. Indeed,
here, we want to estimate θp in order to estimate p = sin2(θp). The problem of estimating
θp =

yπ
M

is the phase estimation problem, with integer y ∈ [0, . . . ,M − 1] and M number
of iterations.
Let us suppose that at the beginning, we have |ψ⟩ = A |0⟩ (Equation 2.17), where A
denotes the unitary operator applied to the initial zero state. After step 4 is executed, so
after applying the operator Q = A−1U0⊥AUf j times to boost the probability of success
p (see Equation 2.18), we get the state [9]:

Qj |ψ⟩ = 1
√
p
sin((2j + 1)θp) |ψ1⟩+

1√
1− p

cos((2j + 1)θp) |ψ0⟩ , 0 ≤ θp ≤
π

2
. (2.19)

We see that the amplitudes of |ψ0⟩ and |ψ1⟩ are sinusoidal functions, both of period π
θp

.
Recalling that p = sin2(θp), from Theorem 2.11, an estimation of θp gives an estimate of
p.

Lemma 1. (from Brassard et al. [9]) Let p = sin2(θp), and p = sin2(θp), with 0 ≤ θp, θp ≤
2π, then ∣∣θp − θp

∣∣ ≤ ϵ⇒ |p− p| ≤ 2ϵ
√
p(1− p) + ϵ2

Therefore, the core part of amplitude estimation is taking the value p that we want to
estimate, computing the value θp = sin−1(

√
p), and applying phase estimation to estimate

θp. In Brassard et al. [9], which is our main source of information for amplitude estimation,
they state the following theorem to compute the probability to extract each of the M
samples as an estimate of the true value θp. It is a procedure very similar to the one that
we report in Theorem 2.5.
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Theorem 2.12. (Theorem 11 in [9]) Let X be a discrete random variable corresponding
to the classical result of measuring F−1

M |SM(ω)⟩ in the computational basis, where ω is
the true phase, F−1

M is the inverse Fourier transform and |SM(ω)⟩ = 1√
M

∑M−1
x=0 e2πiωx |x⟩,

with M integer ≥ 1. If Mω is an integer then Prob(X = Mω)=1. Otherwise, letting
∆ = d(ω, x/M),

Prob(X = x) = sin2(M∆π)

M2 sin2(∆π)

The ∆ parameter in the probability formula is the minimal wrap-around distance function.

Definition 2. (Minimal wrap-around distance, Definition 9 in [9]) For any two real
numbers ω0, ω1 ∈ R, let ∆ = d(ω0, ω1) = minz∈Z{|z + ω1 − ω0|}

Once completed phase estimation, after step 7, amplitude estimation returns the output
as p = sin2(θp).
An important fact to underline for amplitude estimation is that depending on the guar-
antee we have on the error ϵ, the running time will be different. If we have a relative
error guarantee, so |p − p| ≤ pϵ, then the running time is the one specified in Theorem
2.11. Instead, if we have a guarantee such that |p−p| ≤ ϵ, then the running time is O

(
1
ϵ

)
(consult Table 3.1 in [28] for major details).
Returning for a moment to the phase estimation algorithm, we have seen that we can in-
crease the probability of success, which results in a higher number of qubits used, playing
with the γ parameter that represents the probability of failure of the routine. Instead, if
we want to boost the success and the accuracy of the estimates of the amplitude estima-
tion (or any other quantum procedure), we can make use of the median evaluation, which
we describe in the following section.

To better understand amplitude estimation, we can think to a problem that is a special
case of this quantum algorithm application, that is the quantum counting.
Let us take a function f(x) and a set X of n values, indexed by {0,. . . , n − 1}. Let us
consider the problem of finding t of those n elements, for which f(x) = 1. So in this
problem, we can make a clear distinction between the set of elements considered good, the
ones that gives 1 as result, and the set of elements considered bad. We can define them
for simplicity as Xgood and Xbad, where

Xgood ⊆ X, Xbad ⊆ X, Xgood ∩Xbad = 0, Xgood ∪Xbad = X.
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Considering Theorem 2.10, by choosing an operator A such that

A |00 . . . 0⟩ = 1√
n

n−1∑
j=0

|j⟩ (2.20)

the counting problem can be seen as a particular case of amplitude estimation. If A |0⟩ =
1√
n

∑n−1
j=0 |j⟩ and 0 < t < n, we can define the following states, representing the state

associated to the good elements and the state associated to the bad ones:

|ψgood⟩ =
∑

j∈Xgood

1√
t
|j⟩

|ψbad⟩ =
∑

j∈Xbad

1√
n− t

|j⟩ .

Then,

A |00 . . . 0⟩ =
√
t

n
|ψgood⟩+

√
n− t

n
|ψbad⟩ .

Referring to Theorem 2.11, we can notice that, in this case, sin2(θ) = t
n

and applying
amplitude estimation, we can get an estimate of the amplitude t

n
, and so an estimate of

the good elements t.

Algorithm 2.3 Amplitude estimation [22].
Input: The unitary operators A,Uf and the precision parameter m.
Output: An estimate of the amplitude p = sin2(θp).

1. Set the number of iteration M.
2. Let Q = A−1U0⊥AUf (where U0⊥ , Uf are the Grover phase shift operators).
3. Prepare an m-qubit control register, and a second register containing the state

|00 . . . 0⟩.
4. Apply QFT to the first register.
5. Apply controlled Qj.
6. Apply QFT−1 to the first register.
7. Measure the first register to obtain a string representing some integer x ∈ {0, . . .M−

1}.
8. Output sin2(πx

M
).

2.2.6. Median evaluation

Median evaluation is the quantum version of the well-known powering-lemma described
by Jerrum et al. [21]. It is not one of the main quantum algorithms, over which we can
build other quantum routines (as phase estimation is). Instead, it is a very important
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technique that allows us to boost the success probability of a quantum algorithm. At high
level, it consists in repeating Q times the routine we want to boost, and take the median
result of the Q outputs.

More formally, we state the theorem that describes this technique.

Theorem 2.13. (Median evaluation [28, 50]) Let A be a unitary operator that maps

A : |0⟩ → √
p |y, 1⟩+

√
1− p |G, 0⟩

for 1/2 < p ≤ 1 in time T. Then, there exists a quantum algorithm that uses Q copies of
the above state, and for any ∆ > 0 and for any 1/2 < p0 ≤ p, produces a state |ψ⟩ such
that

∥∥∥|ψ⟩ − |0⟩⊗Q |y⟩
∥∥∥
2
≤

√
2∆ using a number of queries bounded above by

2T

⌈
log(1/∆)

2(|p0| − 1
2
)2

⌉
. (2.21)

At this point, one might be asking: why do we take the median and not the mode, for
example?

The first important consideration is that, for sure, we can use the mode instead of the
median. Indeed, there are no general conditions that can lead us to conclude that one
statistic is better than another. The choice to use the median is due to many reasons
deriving mainly from classical computer science.
First of all, the median is a statistic which is more robust to outliers. So, with skewed
distributions, the median is the one that is less influenced by the extreme values, while
this is not true for the mean or the mode. Confirming this fact, in Figure 2.5a, we report a
fictitious distribution with the corresponding mode and median (the black and the green
vertical lines respectively). As we can see, the median is the statistic that better matches
the central tendency of the distribution in contrast with the mode that, by definition, is
the most frequent value. The more the data are skewed, the more this fact is evident.
Moreover, the mode does not provide us a good measure of central tendency when the
most frequent item is far away from the rest of the data. Indeed, as we can see from
Figure 2.5b, we have all the data distributed in the range [20, 50] and the mode at the
leftmost of the picture. In this case, the mode would be misleading to describe the central
tendency and it would not be representative for the data.
The last case, represented in Figure 2.5c, shows the problem of having data with not
unique frequency. In this case, we would have two or more values with the same frequency
while the median always matches the central tendency of the data.
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(a) Fictitious distribution with mode and me-
dian reported.
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(b) Fictitious distribution with all data very dis-
tant from the mode.
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(c) Fictitious distribution with two values with
equal frequencies.

Figure 2.5: Data distributions which show that median matches better the central ten-
dency of the data with respect to the mode.

Summing up, the choice of the median is principally due to the fact that, with skewed
distributions, it provides a more reliable measure of the central tendency of the data.
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2.2.7. Inner product estimation

The inner product estimation routine uses internally both amplitude estimation and me-
dian evaluation. It is very useful since the inner product is a basic operation in linear
algebra and it can be used in the distance estimation procedure, which is one of the main
steps in the q-Means algorithm (see step 1 of Algorithm 3.4).
In this section, we report the corresponding theorem which describes this algorithm
and the pseudocode of the algorithm that we follow from Subroutine 4 in Kerenidis
et al. [2]. Basically, we assume to have a unitary operator that creates the state

Algorithm 2.4 IPE [2].
Input: x, y ∈ Rn, ϵ, γ > 0, Q.
Output: s ∈ R.

1: Compute a = ∥x∥2+∥y∥2−2⟨x,y⟩
2(∥x∥2+∥y∥2) , θa = sin−1(

√
a), ϵa = ϵmax{1,|⟨x,y⟩|}

∥x∥2+∥y∥2 , M = ⌈ π
2ϵa

(1 +√
1 + 4ϵa)⌉.

2: Amplitude Estimation
3: for j in range(M) do
4: aj = sin2( jπ

M
).

5: p(aj) =
∣∣∣ sin(Md(j/M,θa/π))
M sin(d(j/M,θa/π))

∣∣∣2.
6: end for
7: Median Evaluation
8: for q in range(Q) do
9: Sample a(q) ∼ p.

10: end for
11: Compute a = median(a(1), . . . , a(Q)).
12: Compute inner product estimate
13: Return s = (∥x∥2 + ∥y∥2)(1− 2a)/2.

|ϕ⟩ = ∥x∥|0⟩|x⟩+∥y∥|1⟩|y⟩√
∥x∥2+∥y∥2

. Then, an Hadamard gate is applied to the first register producing

the state

|ψ⟩ =
√
a |1⟩ |ψ1⟩+

√
1− a |0⟩ |ψ0⟩

with a = ∥x∥2+∥y∥2−2⟨x,y⟩
2(∥x∥2+∥y∥2) .

We want to get an estimate of a, such that, reversing the formula, we can get an estimate
of the inner product. For this purpose, we perform amplitude estimation of |ψ⟩ with
log(M) qubits, so that it returns â such that |a− â| ≤ π

M
+( π

M
)2 with probability at least

of 8
π2 . Taking M =

⌈
π
2ϵa

(1 +
√
1 + 4ϵa)

⌉
ensures that |a− â| ≤ ϵa.

By repeating the above procedure Q =
⌈

log(1/γ)

2(8/π2− 1
2
)2

⌉
odd

times, where ⌈z⌉odd denotes the
smallest odd integer greater or equal to z, and taking the median (as we saw in the median
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evaluation procedure) ensures that the result a satisfies |a− a| ≤ ϵa, with probability at
least 1− γ.

Summing up IPE algorithm computes s, such that

|s− ⟨x, y⟩ | ≤ max{ϵ| ⟨x, y⟩ |, ϵ}

with probability at least 1−γ, for input vectors x, y ∈ Rn. It is important to notice that,
in this procedure, we have an exact knowledge of the norms ∥x∥ and ∥y∥ of x and y.

Theorem 2.14 (Distance/Inner product estimation [26]). Assume for a data matrix X ∈
Rn×d and a centroid matrix C ∈ Rk×d that the following unitaries |i⟩ |0⟩ → |i⟩ |xi⟩, and
|j⟩ |0⟩ → |j⟩ |cj⟩ can be performed in time T and the norms of the vectors are known. Let
d(xi, cj) be the Euclidean distance between vectors xi and cj. For any ∆ > 0 and ϵ1 > 0,
there exist a quantum algorithm that computes

|i⟩ |j⟩ |0⟩ → |i⟩ |j⟩ |d2(xi, cj)⟩ ,where |d2(xi, cj)− d2(xi, cj)| ≤ ϵ1,with probability ≥ 1− 2∆

or

|i⟩ |j⟩ |0⟩ → |i⟩ |j⟩ |(xi, cj)⟩ ,where |(xi, cj)− (xi, cj)| ≤ ϵ1with probability ≥ 1− 2∆

in time Õ(∥xi∥∥cj∥T log(1/∆)

ϵ1
).

2.2.8. Singular value estimation

This routine enables estimating singular values using phase estimation. We report the
theorem that describes this procedure, highlighting the main steps. The interested reader
can check the detailed algorithm described by Kerenidis and Prakash [25].

Theorem 2.15. (Singular Value Estimation [25]) Let there be quantum access to X ∈
Rn×d, with singular value decomposition X =

∑r
i σiuiv

T
i and r = min(n, d). Let ϵ >

0 be a precision parameter. It is possible to perform the mapping |b⟩ =
∑

i αi |vi⟩ →∑
i αi |vi⟩ |σi⟩, such that | σi

µ(X)
− σi| ≤ ϵ with probability at least 1 − 1

poly(d)
, in time

Õ
(
1
ϵ

)
, where µ(X) = minp∈[0,1](∥X∥F ,

√
s2p(X)s2(1−p)(XT )) and sp(X) = maxi∥xi,·∥pp.

Similarly, we can have |σi − σi| ≤ ϵ in time Õ
(

µ(X)
ϵ

)
.

Basically, the routine described in Theorem 2.15 performs phase estimation to estimate
singular values with an ϵ error. We note, in Algorithm IV.1 by Kerenidis and Prakash
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[25], that singular values can be described in the following way

σi = cos

(
θi
2

)
µ(X). (2.22)

This relationship between σi and θi comes from Lemma 5.3 in Kerenidis and Prakash [23]
which we report in Lemma 2.

Lemma 2. Let X ∈ Rn×d be a matrix with singular value decomposition X =
∑

i σiuiv
T
i

stored in QRAM. Then, there exist matrices P ∈ Rnd×n, Q ∈ Rnd×d such that

• The matrices P,Q are a factorization of X, i.e. X
∥X∥F

= P TQ. Moreover, P TP =

In,QTQ = Id, and multiplication by P,Q, i.e. the mappings |y⟩ → |P y⟩ and
|x⟩ → |Qx⟩ can be performed in time O(polylog(nd)).

• The unitary W = U · V , where U,V are the reflections U = 2PP T − Ind and
V = 2QQT − Ind can be implemented in time O(polylog(nd)).

• The isometry Q : Rd → Rnd maps a row singular vector vi of X with singular value
σi to an eigenvector Qvi of W with eigenvalue eiθi such that cos(θi/2) = σi/∥X∥F .

Basically, the main idea of the singular value estimation algorithm is to map the input
vector

∑
i αi |vi⟩ →

∑
i αi |Qvi⟩ by applying Q. Then, using phase estimation with

unitary W to compute an estimate of θi and therefore of σi. Indeed, by inverting the
formula reported in Equation 2.22, for each singular value σi, we get the corresponding
θi. In this way, we can get the estimate of each singular value by estimating θi with phase
estimation and substituting this value into the previous formula to get σi = cos

(
θi
2

)
µ(X).

We describe our approach to simulate SVE in the quantum machine learning algorithms
that use this routine in q-PCA.

2.2.9. Spectral norm estimation

This routine simulates the estimation of the spectral norm, which corresponds to the
greatest singular value of an input matrix stored in QRAM. Here below we report the
algorithm that we take into account to implement it (Algorithm IV.3 in [25]).

It is like a binary search where, at the end of the O (log(1/ϵ)) iterations, we obtain a value
of τ that, multiplied by ∥X∥F , allows us to obtain an estimate of the spectral norm of
matrix X. Thanks to the QRAM structure, the Frobenious norm ∥X∥F can be retrieved
in constant time. The steps are principally based on Singular Value Estimation (SVE)
(described in Theorem 2.15), on conditional rotations, and on amplitude estimation, which
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Algorithm 2.5 Spectral norm estimation [25].
Input: Input data matrix X ∈ Rn×d, ϵ error for the SVE, and ϵ′ error for the amplitude
estimation step.
Output: Returns an estimate for η := ∥X∥/∥X∥F with additive error ϵ.

1. Let l = 0 and u = 1 be the upper and lower bounds for η, the estimate τ = (l+u)/2
is refined using binary search in steps 2-5 over O(log(1/ϵ)) iterations.

2. Prepare |ϕ⟩ = 1
∥X∥F

∑
i,j xij |i, j⟩ =

1
∥X∥F

∑
i,j σi |ui, vi⟩ and perform SVE with pre-

cision ϵ to obtain 1
∥X∥F

∑
i,j σi |ui, vi, σi⟩, where |σi − σi

∥X∥F
| ≤ ϵ.

3. Append single qubit register |R⟩ and set it to |1⟩ if σi ≥ τ and |0⟩ otherwise.
Uncompute the SVE output from step 2.

4. Perform amplitude estimation on 1
∥X∥F

∑
i,j σi |ui, vi, R⟩ conditioned on R = 1 to

estimate
∑

i:σi≥τ σ
2
i /∥X∥2F to relative error (1± ϵ′).

5. If estimate in step 4 is 0 then u = τ else l = τ . Update τ = (u+ l)/2.

involve a total time complexity of Õ (log(1/ϵ)/ϵη).
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3| The Sqlearn framework

In this chapter, we present the open-source Sqlearn framework. We introduce and describe
how we simulate the quantum algorithms presented in Chapter 2. To better describe our
implementation, we report code snippets. Then, we show some experiments and numerical
simulations for the main quantum tasks and routines implemented, such as pure state
tomography, amplitude estimation, phase estimation, and consistent phase estimation to
verify their correctness. In particular, we are going to see interesting insights into vector
state tomography that we exploit in its application in real machine learning problems.
With this framework, which is an expansion of Sklearn API [34], we can perform in a
simple way machine learning experiments both in the classical way and by simulating
their quantum counterpart. In this way, we can have an efficient way to compare the
performances between classical and quantum machine learning models.
All the framework is developed using the Python language.

Stucture of the framework The framework follows the same structure as Sklearn.
Therefore, users already confident with this famous classical framework will find Sqlearn
very familiar. Basically, the framework rests on a Python module, called QuantumUtili-
ties.py, which contains the implementation of the main quantum routines such as tomog-
raphy, amplitude estimation, phase estimation, consistent phase estimation, and median
evaluation. Therefore, a user, by exploiting this module, is able to simulate these quantum
functions separately. Then, we extend the PCA and K-Means modules, already present
in Sklearn, implementing the quantum machine learning algorithms that we are going to
describe in Section 3.8 that exploit the quantum routines implemented in QuantumU-
tilities.py. In this way, we provide the q-PCA.py and q-Means.py Python modules that
enable simulating the corresponding machine learning algorithms both in their classical
and quantum version.
Together with the framework, we provide a complete documentation, generated with
Sphinx [8], that describes in detail all the implemented quantum routines to make this
framework even more user-friendly.
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3.1. Quantum state simulation

Since quantum routines such as state tomography are based on the implementation of a
quantum state, we need to have a way to simulate the quantum state object (indeed, in
state tomography, we perform a fixed number of measures of a specific quantum state).
For this purpose, we implement a class that simulates a pure quantum state

|x⟩ = 1

∥x∥

n∑
i

xi |i⟩ .

We initialize the quantum state object, passing in the constructor of QuantumState class
the list of registers values and the list of the corresponding amplitudes. In this work,
we assume to deal with a generic quantum register of n-qubits, so we do not specify its
precision n as it is not fundamental in the execution of the experiments. For this class
implementation, we refer to the code reported by Bellante [6].
The implemented class exposes two important methods:

• get_state() that returns a dictionary which has as key the value of the register and
as value the corresponding probability.

• measure() that simulates the measurements of the state using a weighted random
choice according to the probabilities of the registers. It is also possible to specify
the number of measurements with the parameter n_times.

1 class QuantumState(object):

2 """This class simulates a simple Quantum State

3

4 Parameters

5 ----------

6

7 registers: list, ndarray.

8 List of values that represents the superposition of the states of

the quantum state.↪→

9

10 amplitudes: list, ndarray.

11 List of values that represents the amplitudes of each register.

12 """

13
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14 def __init__(self, registers, amplitudes):

15 super(QuantumState, self).__init__()

16 self.registers = registers

17

18 # Amplitudes must be normalized to have the right probabilities

for each register↪→

19 self.norm_factor = math.sqrt(sum([pow(x, 2) for x in

amplitudes]))↪→

20 self.amplitudes = [x / self.norm_factor for x in amplitudes]

21

22 # Each register_i appears with probability amplitude_i^2

23 self.probabilities = [pow(x, 2) for x in self.amplitudes]

24 assert (len(self.registers) == len(self.amplitudes))

25 assert (abs(sum(self.probabilities) - 1) < 0.0000000001)

26

27 def measure(self, n_times=1):

28

29 return np.random.choice(self.registers, p=self.probabilities,

size=n_times)↪→

30

31 def get_state(self):

32 return {self.registers[i]: self.probabilities[i] for i in

range(len(self.registers))}↪→

Source Code 3.1: Quantumstate class from Bellante [6].

Another important method implemented but not included in the QuantumState class is
the estimate_wald() that, given a list of measurements, estimates the probabilities of
each value of a quantum register. This is the usual frequentist estimator, which can be
simply seen as the number of measurements for each specific register value divided by the
total number of measurements done.

1 def estimate_wald(measurements):

2 counter = Counter(measurements)

3 estimate = {x: counter[x] / len(measurements) for x in counter}

4 return estimate
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3.2. Vector state tomography

Algorithm 2.1 in Section 2.2.2 describes the steps of this quantum task. Now, we describe
our approach to classically implement it. We remember the goal: given a quantum state
|x⟩ = 1

∥x∥
∑d−1

i=0 xi |i⟩, with unit vector x ∈ Rd, vector state tomography outputs an
estimate x such that ∥x− x∥2 ≤ δ.
The first important thing to check is that the input vector x has unitary norm since it
is a requirement of the algorithm. For non-unitary norm vector, we normalize it at the
beginning of the routine, dividing it for its ℓ2-norm. After that, we build the quantum state
|x⟩ (using the implementation reported in Section 3.1), passing as registers the indexes of
the vector {0,. . . , d-1} and as amplitudes the values of the vectors corresponding to that
indexes {x0,. . . , xd−1}.
The main task of tomography is to measure copies of a given quantum state to retrieve
classical information about it. The number of measurements N , that need to be performed
in order to guarantee that ∥x−x∥2 ≤ δ, is computed using the formula 36d log(d)

δ2
[24]. Then,

to obtain the estimates of the amplitudes of the state |x⟩, we make use of the measure()
and estimate_wald() methods of the created quantum state object: with the first, we
can simulate the measurements of N copies of |x⟩, and with the latter, we can extract
the estimates of the amplitudes as pi = ni

N
, as required in the first step of the algorithm.

Clearly, the bigger is N, the more consistent are the estimates.
To complete the first part of the algorithm, we fill an empty vector with the amplitudes
√
pi, based on the index i. Therefore, in this way, we store the estimates of the amplitudes,

as described by the algorithm with the state |p⟩.

1 def real_tomography(V, N=None,

delta=None,stop_when_reached_accuracy=False, norm='L2'):↪→

2 """ Official version of the tomography function.

3

4 Parameters

5 ----------

6 V: array-like that has to be estimated.

7

8 N: int value, default=None.

9 Number of measures to be performed for the quantum state. If

None, it is computed in the function itself.↪→
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10

11 delta: float value, default=None.

12 It represent the error that you want to introduce to estimate the

representation of the vector V.↪→

13

14 stop_when_reached_accuracy: bool, default=True.

15 If True it stops the execution of the tomography when the L2-norm

of the↪→

16 difference between V and its estimation is less or equal then

delta. Otherwise↪→

17 N measures are performed (very memory intensive for large

vectors).↪→

18

19 norm: string, default='L2'.

20 If 'L2':

21 perform L2-norm tomography.

22 If 'inf':

23 perform L-inf tomography.

24

25 Returns

26 -------

27 dict_res: dictionary of shape {N_measure: vector_estimation}.

28

29 """

30

31 if np.isclose(np.linalg.norm(V), 1, rtol=1e-2):

32 pass

33 else:

34 V = V / np.linalg.norm(V, ord=2)

35 d = len(V)

36 index = np.arange(0, d)

37 if N is None:

38 if norm == 'L2':

39 N = int((36 * d * np.log(d)) / (delta ** 2))

40 elif norm == 'inf':

41 N = int((36 * np.log(d)) / (delta ** 2))

42
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43 q_state = QuantumState(amplitudes=V, registers=index)

44 P = estimate_wald(q_state.measure(n_times=int(N)))

45 P_i = np.zeros(d)

46

47 P_i[list(P.keys())] = np.sqrt(list(P.values()))

Source Code 3.2: Implementation of the first step (vector values estimation step in
Algorithm 2.1) of vector state tomography algorithm.

For what concern the implementation of sign estimation part (part 2 of Algorithm 2.1),
the tricky part is to obtain the state

1

2

∑
i∈[d]

[(xi +
√
pi) |0, i⟩+ (xi −

√
pi) |1, i⟩].

The amplitudes of this state can be easily computed since we have both the values xi and
√
pi. To encode the values of the registers |0, i⟩ and |1, i⟩, we use strings with either 0 or 1

as initial bitstring. For example, suppose the vector length d = 4, we generate as registers
values the strings 00,01,02,03 and 10,11,12,13. Then, we create a new quantum state
object with these registers and (xi +

√
pi) and (xi −

√
pi) as amplitudes. We create and

measure N copies of this state using the measure() function, registering in a dictionary
(using the Counter() function) the times each outcome is observed n(b, i), with b ∈ 0, 1.
At the very end, we can estimate the sign σi of each value, checking if n(0, i) > 0.4piN

or not, and return the estimated vector x, composed by the estimated values xi = σi
√
pi.

1 max_index = max(index)

2 digits = len(str(max_index)) + 1

3 registers = [str(j).zfill(digits) for j in index] + [re.sub('0', '1',

str(j).zfill(digits), 1) for j in index]↪→

4

5 amplitudes = np.asarray([V[k] + P_i[k] for k in range(len(V))] +

[V[k] - P_i[k] for k in range(len(V))])↪→

6

7 amplitudes *= 0.5

8

9 new_quantum_state = QuantumState(registers=registers,

amplitudes=amplitudes)↪→
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10

11 measure = new_quantum_state.measure(n_times=int(N))

12

13 str_ = [str(ind).zfill(digits) for ind in index]

14 dictionary = dict(Counter(measure))

15

16 if len(dictionary) < len(registers):

17 keys = set(list(dictionary.keys()))

18 tot_keys = set(registers)

19 missing_keys = list(tot_keys - keys)

20 dictionary.update({l: 0 for l in missing_keys})

21

22 d_ = list(map(dictionary.get, str_))

23

24 P_i = [P_i[e] if x > 0.4 * P_i[e] ** 2 * N else P_i[e] * -1 for e, x

in enumerate(d_)]↪→

25

26 return P_i

Source Code 3.3: Implementation of the second step (sign estimation step in Algorithm
2.1) of vector state tomography algorithm.

The procedure described up to now refers to ℓ2-tomography but we also provide the
possibility to simulate ℓ∞-tomography (described in Theorem 2.4). The fundamental
difference is in the number of measurements that we perform: instead of 36d log(d)

δ2
, we

perform 36 log(d)
δ2

measures.

That said, we have verified the correctness of this algorithm with the experiments that
we are going to describe. We perform vector state tomography onto 4 randomly gen-
erated vectors of length 784: the first one generated with a uniform distribution using
np.random.uniform() functionality of Numpy and the second one with an exponential dis-
tribution, always using Numpy. Regarding the other two vectors, we generate two sparse
vectors with different percentages of sparsity: the first one with 80% of sparsity and the
other one with the 50%. All four vectors are of unitary norm.
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3.2.1. The error-measurements trade-off

The goal of this test is to see how the error of the vector estimates decreases as the
number of measures performed by tomography increases, comparing the results between
the four different vectors. In this test, we fix the error δ such that, taking an initial
state |x⟩, the estimated vector x ensures that ∥x− x∥2 ≤ δ. To be able to perform this
type of experiment, instead of computing the number of measurements N = 36d log(d)

δ2
and

performing at once these measures, we can execute the routine with different values of
N and see how the estimates change. In Figure 3.1, we report the curves resulting from
the simulation of the ℓ2-tomography over the four vectors, where on the x-axis we report
the number of measurements performed by tomography, and on the y-axis we report the
error of the estimate as ∥x− x∥2.
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Figure 3.1: Decreasing of the error as the number of measurements increases performing
tomography on four different vectors. The coordinates reported in the legends are relative
to the colored dots in the plot, which represent the number of necessary measures, for
each vector, to reach the desired accuracy in the estimates of the vectors.
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As we can see, we compute the total number of measures N using δ = 0.05 as error. We
represent the desired level of accuracy with a dashed horizontal black line. The colored
dots highlight, for each vector, what is the number of measures for which we obtain
estimates with an error of 0.05. For example, let x ∈ R784 be the uniform vector. We
can see that by performing tomography with a number of measures equal to 102,867, we
obtain an estimate x such that ∥x − x∥2 ≤ 0.05. Therefore, also from this picture, we
can see an insight into tomography that we analyze better in the next experiment: we
see that the number of measures N = 36d log(d)

δ2
(represented with the vertical magenta

line) is very large and we can reach the desired accuracy also with a smaller number of
measurements. Indeed, if we perform the number of measures N stated by the theory, we
obtain an estimate very close, practically equal to the real vector with an error almost
equal to zero (as we can see at the intersection of the curves with the magenta dashed
line). Another interesting thing that we can notice is that the sparser the vector the more
the error curves decrease rapidly. This is an expected result since the more a vector is
sparse, the more by definition it contains zeros and so we need fewer measurements to
retrieve the classical values of this vector since we start always our estimation procedure
with a zero-filled vector, as shown in our implementation.

3.2.2. Insights into the measurements bound

With this experiment, we confirm the insights into the number of measurements that
we find in the previous experiment. Indeed, we show that, by performing N = 36d log d

δ2

measures (with approximation error δ), ℓ2-tomography outputs estimates that are closer
to the true values with respect to the approximation error δ.
In Figure 3.2, we report how many measures (x-axis) are necessary to get a vector estimate
with a specific error (y-axis) both considering the theoretical bound (represented with the
blue curve) and by actually performing the tomography (represented with the orange
curve) over the uniform vector. We obtain the theoretical curve by substituting each
of the δ value of the y-axis into N = 36d log(d)

δ2
. In this way, we compute exactly how

many measures we need, in theory, to get an estimate with error δ. In this experiment,
the choice of considering the uniform vector has no particular motivation. The same
experiment could be executed using the other vectors obtaining the same results.
We can notice that the shape of the two curves is almost equal. However, the magnitudes
of the values between the curves are very different. Indeed, we see that we need a smaller
number of measurements to reach the desired accuracy with respect to what the theory
expects. Let us take, for example, the orange and blue dots that indicate where the two
curves intersect the horizontal line corresponding to δ = 0.05: the orange curve intersects
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Figure 3.2: Comparison between real and theoretical decrease of the error by performing
the ℓ2-tomography over the uniform vector with δ = 0.05.

it at N=102,867, while the blue one at N = 75,238,512 (that corresponds rightly to the
intersection of the magenta vertical line with the horizontal black line). We see that,
by effectively performing tomography with this big N number, we get a vector estimate
very close to the true vector, with error δ near to 0, as shown by the orange curve at the
intersection with the magenta line. To reach the same value, we would need almost 1011

measurements, according to the theoretical bound which, therefore, can be considered as
an upper bound (also in Kerenidis and Prakash [24] it is reported as upper bound).
As we are going to see in the next chapter, we exploit this property into quantum machine
learning algorithms that execute tomography internally. Basically, we relax the error
bound ∥x − x∥2 ≤ δ by considering larger error δ. This is because we still obtain
tomography estimates with lower error than δ (as we have seen in this experiment by
inserting δ = 0.05 and getting as output an estimate with δ almost zero) and, at the same
time, we impact less on the running time since it scales as O( d

δ2
).
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For completeness, we repeat the same experiment for the ℓ∞-tomography, as reported in
Figure 3.3. In this case, we report two plots, one for δ = 0.3 and the other for δ = 0.003.
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(a) Comparison between real and theoretical
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Figure 3.3: Two cases example of ℓ∞-tomography application.

If we take a look at Figure 3.3a, we notice a strange thing. We see that we only need 16
measures to obtain an estimate with an error of 0.3 of a vector long 784. At a first sight,
this is not possible because it would mean that we do not measure all the values of the
vector. The reason for this result is that the values of the vector are very small, in the
order of 10−2, and so an error of 0.3 is very big with respect to the values of the vector.
This means that if the tomography estimates a value as 0, which in our case is equivalent
to saying that it does not measure this specific value since we start the tomography
procedure with a zero-filled vector (as reported also in the code), we are consistent with
the error bound, since |0 − 10−2| ≤ 0.3. For this reason, with the ℓ∞-tomography, if we
use an error too big with respect to the values that we need to estimate, we obtain this
"strange" result. In Figure 3.3b, we show, indeed, that decreasing δ to 0.003 results in
a larger number of necessary measures, more than the vector length. Also for the ℓ∞-
tomography, we can see that the theoretical bound is very large with respect to the real
measures needed in our experiments.
The fact that tomography returns vector estimates with an error lower than δ is probably
caused by specific vectors with particular distributions for which we need to perform
exactly N measurements to obtain the desired accuracy. We tried to reach the theoretical
bound by changing the vector distributions but the results that we found show the same
behavior. Finding the vectors for which exactly N measurements are necessary to get an
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estimate with error δ could be a topic for future investigation.

3.2.3. Distribution of the tomography error

The last type of experiment for the vector state tomography involves finding the distribu-
tion of the error in the estimates of the tomography. Once fixed the approximation error
δ, we repeat R = 1000 times the tomography over the same vector (for simplicity and
consistency we took always the uniform vector) and we plot the ℓ2-norm of the difference
between the estimated vector and the real one, for all the trials. In this way, we can
see how the error of the estimates is distributed among different tomography executions.
This is very useful because, by knowing that distribution, one might not even perform
exactly the true tomography routine but a faster approximation of it. For instance, one
might directly extract the estimates of the tomography by adding a random noise value,
extracted from the specific error distribution found, to the true values that we need to
estimate.

To find the distribution that fits better, we make use of the Python library Fitter, which
is a package that provides a simple class to identify the distribution from which a data
sample is generated, choosing from the 80 distributions present in Scipy. To choose the
best distribution, we use as metric the sum of square error (SSE) between the data and
the fitted distribution. We remark that we perform all the following experiments using the
uniform vector vuni and fixing the error to δ = 0.05. At a first sight, we can observe that,
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Figure 3.4: Tomography error distribution with different number of measures N over a
uniform vector.
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in general, as the number of measurements N increases, the distribution is increasingly
skewed. Going into more details, we have seen that the number of real measure N, for
which we get an estimate such that ∥vuni − vuni∥2 ≤ 0.05, is N=102,867 (see the results
in Figure 3.2). Therefore, fixing the number of measurements to N=102,867, we repeat
the tomography routine 1000 times in order to have enough samples to get a consistent
estimate of the error distribution. What the plot in Figure 3.4a tells us is coherent with the
result reported in Figure 3.2. Indeed, we can see that we have a skewed Gaussian shaped
distribution almost centered in 0.05. This means that in 1000 trials, with this specific
uniform vector and N=102,867, we have 0.05 as estimate error on average. Obviously, not
being a deterministic procedure, it can happen that with that number of measures, we
get an estimate vuni such that ∥vuni−vuni∥2 > 0.05, but this is clearly less likely since we
find the values relative to those estimates at the tails of the Gaussian distribution. For
instance, it is very unlikely that with 102,867 measures we get an error of 0.065.
For what concern the results reported in Figure 3.4b, we execute tomography without
specifying N, thus letting the procedure calculates it as N = 36d log d

δ2
. We can see that the

distribution is increasingly skewed towards the left and it is much narrower almost like a
normal distribution. Even in this case, we are consistent with the experiments reported
in the previous sections. Indeed, the error found is in the order of 0.001 which is much
less than 0.05.
This last plot is the most faithful since, in reality, we cannot know how many measures
we need to estimate a certain value with a specific accuracy and so we need to perform
all the N measures computed by the tomography procedure in the function of δ (in the
first case, the error δ does not affect N since the number of measures is fixed by us). We
report these two cases both to show how the tomography error distribution changes at
the increase of N and to show, with the first plot, that with a number of measures much
less than N (in this case 102,867), on average, we get an estimate v that guarantees the
required error δ. In both cases, we have seen, using Fitter library, that the most promising
distribution is the skewednorm distribution.

3.3. Phase estimation

We summarize the phase estimation procedure in Algorithm 2.2.
For what concerns our implementation, first we compute the number of qubits n as re-
ported in Equation 2.14 using the specified error parameter ϵ and the probability of failure
γ. If desired, the user can directly specify the number of qubits n to use in the routine.
If this is the case, the parameters ϵ and γ have no effect in the computation of n. In the
Source Code 3.4, we also show our implementation for the core part of phase estimation
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that refers to steps 2-5 of Algorithm 2.2. Basically, we compute the probability for each
of the 2n possible values (computed as x

2n
, with x ∈ [0, . . . , 2n − 1]) using the formula

reported in Equation 2.16. Practically, we end up with two lists: in the first (named
omega_x in the code), we have all the possible 2n values, while in the second (named
p in the code), we have all the probabilities associated with those values. Then, with a
weighted random choice using the list of probabilities as weights, we extract the estimate
ω = x

2n
(omega_tilde in the code).

1 def phase_estimation(omega, epsilon, gamma=0.1, n=None):

2 """ Official version of the phase estimation function.

3

4 Parameters

5 ----------

6 omega: float or int value.

7 Value that has to be estimated by the phase estimation. It

must be in the range of [0,1).↪→

8 epsilon: float value.

9 Precision that you want to have in the phase estimation

procedure.↪→

10 gamma: float value, default=0.1.

11 It represent the probability of failure of the routine.

12

13 n: int value, default=None.

14 The number of qubits you want to use for the computation.

15

16 Returns

17 -------

18 omega_tilde: float value.

19 Estimate of the true omega value.

20

21 """

22 if n == None:

23 n = int(np.ceil(np.log2(1 / epsilon)) + np.ceil(np.log2(2 + 1 /

(2 * gamma))))↪→

24

25 M=2**n

26 omega_x=[]
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27 p=[]

28 for x in range(M):

29 omega_est = x / M

30 omega_x.append(omega_est)

31 try:

32 p.append(np.abs((math.sin((M * omega - x) * np.pi)) / (M *

(math.sin((omega - x / M) * np.pi)))) ** 2)↪→

33 except:

34 # if the division is 0/0 -> case when M*omega is an integer.

35 p.append(1)

36 omega_tilde = random.choices(omega_x, weights=p, k=1)[0]

37 return omega_tilde

Source Code 3.4: Implementation of the phase estimation algorithm.

In our implementation, we can increase or decrease the probability of success of the routine
playing with the γ parameter.

Once implemented this routine in the framework, we simulate it to verify its correct
functioning. We report two numerical examples: the first one aims to show the probability
distribution of the outputs of phase estimation, showing that the value closer to the real
one is the one that is most likely to be extracted. In the second, we report a numerical
simulation of phase estimation since we think it is useful to understand better how the
implemented phase estimation algorithm works.

Probability distribution of phase estimation outputs With this example, we show
that given the true phase ω that we want to estimate, phase estimation associates the
higher probability to the value closest to ω so that this will be the most likely estimate.
We take ω = 0.3 (it is important to take a value between [0, 1) as required by the algo-
rithm) and we perform phase estimation routine with error ϵ = 0.001 and probability of
failure γ = 0.1. This results in a number of qubits n = 13 (by computing it with Equation
2.14 reported in Section 2.2.3) from which we get 213 = 8192 possible estimate values.
For each of the possible 8192 values, we compute the corresponding probability as speci-
fied in Theorem 2.5 and in the Source Code 3.4 that we reported previously. Therefore, we
get two lists: the first with all the possible values x

2n
(with x ∈ [0, . . . , 2n−1]) that we can

extract as estimate by a weighted random choice and the second with all the probabilities
of each value to be extracted as estimate. We report the distribution probability in Figure
3.5 where on the x-axis is represented each possible estimate ω = x

2n
and on the y-axis is
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represented the probability associated to each sample. In the plot, we also report the true
value ω that we are estimating, represented with a vertical yellow dashed line, and the
relative error with red vertical dashed lines, given by ω ± ϵω. It is interesting to notice
that the distribution is almost Gaussian shaped, with the maximum value corresponding
to the value which can be extracted with a higher probability that is the value closer to
ω. Moreover, the further we move away from ω, the more the probabilities decrease. We
compute also the actual percentage of sampled points that lay within the desired range,
represented by the two red vertical lines, and we call it F . In this case, we have that
F = 0.061%, so a very small percentage of the total number of samples. This indicates
that our estimates are very precise since there are few values in this good range and those
values are very close to the true one.
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Figure 3.5: Probability distribution of phase estimation outputs with ω = 0.3, ϵ = 0.001,
and γ = 0.1.

We also notice that our estimate will be more likely 0.3 with a probability of 0.57, as
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depicted in the plot. This is a very good result considering that we are estimating ω = 0.3.

Numerical simulation The phase estimation algorithm has been explained in the
previous sections, but we think that a numerical simulation of the procedure is very
useful to better understand it.
We report a simple example, where we choose ω = 0.035 and ϵ = γ = 0.1, with ϵ accuracy
and γ probability of failure. We report the possible estimate values and the associated
probabilities in Table 3.1. Each column represents the integer x, such that ω = x

2n
while, in

the first row, we report all the possible estimate values and, in the last row, the associated
probabilities. Depending on the magnitude of each probability, each cell is filled with a
more or less dark red.

x=0 x=1 x=2 x=3 x=4 x=5 x=6 x=7 · · · x=127

ω 0.0 0.0078 0.0156 0.0234 0.0312 0.0390 0.0468 0.0546 · · · 0.9921

p 0.0050 0.0083 0.0164 0.0460 0.4380 0.3732 0.0437 0.0159 · · · 0.0033

Table 3.1: Snapshot of the phase estimation procedure, where ω are the possible estimates
and p are the associated probabilities to be extracted as output of the phase estimation
routine.

We can see that the most highlighted values are the ones corresponding to ω = 0.0312 and
ω = 0.0390, with the first as the most promising estimate value. This makes sense since
our value ω is equal to 0.035. Thinking of the circle of phases represented in Figure 2.2
in Section 2.2.3, it is as if ω were between two dots, that in this case correspond to x = 4

and x = 5, but closer to the first one since |0.035− 0.0312| = 0.0038 < |0.035− 0.0390| =
0.0039. The distance between ω and the two values is very small and, indeed, also the
corresponding probabilities are very similar, with the one associated to x = 4 higher with
respect to the other, precisely because 0.0312 is closer to 0.035 with respect to 0.0390.
Therefore, the most likely value for ω is 0.0312. From these reported values, we can notice
also another important thing relative to the number of qubits. Indeed, we have specified
the accuracy ϵ = 0.1 and the probability of failure γ = 0.1, and this, considering Equation
2.14, results in a number of qubits n = 7 which gives 27 = 128 possible values. Given that,
we can notice that each ω value is distant 1

27
= 0.0078 from its neighbors. This means

that, if we boost the probability of success or increase the accuracy ϵ, this results in a
bigger n and consequently in a smaller value of 1

2n
, allowing us to be even more precise

in the estimates.
Moreover, with this experiment, we confirm what we report in the previous experiment.
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Indeed, the red color scale in the table can be seen as the Gaussian shaped distribution
shown in Figure 3.5. We can notice that, from the value associated with the highest prob-
ability (the strong red one), we go towards the tails of the distribution with probability
values smaller and smaller (represented by the fading of the red color going on the left
and on the right of the brighter one).

As a last note, it is important to remark that if ω = 0, phase estimation returns ω = 0

with certainty since the probability value associated to x = 0 would be exactly 1, as
reported in the theory section.

3.4. Consistent phase estimation

To implement this algorithm, we follow the logic described in Section 2.2.4, where we
theoretically describe the consistent phase estimation algorithm. As we can notice in
Source Code 3.5, if we do not provide the number of qubits n as a parameter, we compute
it using the error ϵ and the probability of failure γ specified at the beginning, as in phase
estimation. Then, we compute the constant ζ = γ

n
(C in the code), ϵ′ = ϵζ

2
, and L =

⌊
2
ζ

⌋
.

Now, we have to extract the shift s randomly from {1, . . . , L} and fix it to compute the
sections of length ϵ as [−1 − sϵ′, 1 + ϵ − sϵ′] [46]. In these sections, we map the output
of phase estimation that we execute internally with error ϵ′. In the code, if the user
does not provide the shift value, we fix it to L

2
+ 1 (this specific value has no particular

meaning, it is just to show that the shift value must be fixed during the whole execution).
We compute each section using the arange() function of Numpy which returns evenly
spaced values within the given interval. We set the step to ϵ since each section must be
ϵ in length. After executing phase estimation with accuracy ϵ′, we map the output of
phase estimation (pe_estimate in the code) into the section to which it belongs using the
bisect() functionality of Python that returns the position of a specific value in a sorted
list (named index in the code). Using that index, we can retrieve the two extreme values
of the section to which the value belongs and return the output as the middle value of
the section found using np.mean() functionality.

1 def consistent_phase_estimation(omega, epsilon, gamma, n=None,

shift=None):↪→

2 """Official version of the Consistent Phase Estimation routine.

3

4 Parameters

5 ----------
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6 omega: float value.

7 Value that you want to estimate. It must be in the range of

[0,1).↪→

8

9 epsilon: float value.

10 The error that you want to have in the estimates.

11

12 gamma: float value.

13 Probability of failure of the routine.

14

15 n: int value, default=None.

16 Number of qubits that you want to use in the routine. If None,

this value is computed using the error and the probability of

failure.

↪→

↪→

17

18 shift: int value, default=None.

19 If not None, the shift is fixed to this value, otherwise it is

computed and fixed inside the function.↪→

20

21 Returns

22 -------

23 estimate: float value.

24 Estimate of the omega value.

25 """

26 if n == None:

27 n = int(np.ceil(np.log2(1 / epsilon)) + np.ceil(np.log2(2 + 1 /

(2 * gamma))))↪→

28 C = gamma / n

29 epsilon_prime = (epsilon * C) / 2

30 L = np.floor(2 / C)

31 # shift = random.randint(1, L)

32 if shift == None:

33 shift = int(L / 2) + 1

34 intervals = np.arange(-1 - shift * epsilon_prime, 1 + epsilon - shift

* epsilon_prime, epsilon)↪→

35 intervals = np.append(intervals, 1 + epsilon - shift * epsilon_prime)
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36 pe_estimate = phase_estimation(omega=omega, epsilon=epsilon_prime,

gamma=gamma)↪→

37 index = bisect(intervals, pe_estimate)

38 section = (intervals[(index - 1)], intervals[index])

39 estimate = np.mean(section)

40

41 return estimate

Source Code 3.5: Implementation of the consistent phase estimation algorithm.

Also for this routine, we report a numerical simulation example mainly to highlight the
difference with phase estimation.

Numerical simulation We execute many times consistent phase estimation to estimate
the ω value and we check how the outputs, that the internally executed phase estimation
returns, differ from the outputs of the consistent algorithm. We report the results in
Figure 3.6 for better visualization and then we discuss it.

First a bit of context: the columns indexed by i are the different executions of the routine
(in this case we repeat for 5 times the experiment). In the rows, we report the estimates
of phase estimation (P.E), all indexed by the ω value that we are estimating. The ticked
line below the table, instead, represents all the sections computed in the consistent phase
estimation using the interval [−1−sϵ′, 1+ ϵ−sϵ′], after fixing the shift s and the accuracy
ϵ and ϵ′. For this experiment, we choose ϵ = γ = 0.1 which make ϵ′ = 0.00071.
Let us focus on ω = 0.1. As we can see, if we repeat the consistent phase estimation
procedure 5 times with accuracy ϵ, the internal phase estimation, executed with accuracy
ϵ′ << ϵ (as this is one of the constraints of the consistent phase estimation algorithm
showed in Section 2.2.4), reports 3 out of 5 different results. Indeed, if we execute phase
estimation multiple times, since all the possible outputs have a probability different from
zero to be extracted as estimates, we can get different results. To highlight better this
fact, for each row, we fill cells with equal values with the same color.
Then, all the phase estimation outputs are mapped to the section they belong to. As we
can notice, they are all mapped in the section [0.0492, 0.1492] (notice also that the section
length is equal to ϵ = 0.1). In this way, the result of consistent phase estimation is always
the same. Indeed, as we have also seen from the theory, we extract the intermediate
value of the section as the final estimate that, in the case of ω = 0.1, is ω0.1=0.09928,
which is a good estimate being ϵ-close to ω. We want to highlight that not necessarily
the estimate of consistent phase estimation is better than a possible output of the phase
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estimation. Indeed, if we look at the possible phase estimation outputs, we see, for
example, that 0.10003 is closer to ω = 0.1 with respect to 0.09928. This is because we
perform phase estimation with higher accuracy ϵ′, or equivalently lower error, with respect
to the accuracy ϵ of the consistent version. We repeat: what we want to show is the fact
of being consistent. So, over the 5 different executions, we obtain the same output, which
is a good output being ϵ-close to the true value. The fact to be consistent also depends
on the shift s, that we fix at the beginning of the experiment and, in this case, seems to
be a good shift. For ω = 0.35 the same reasoning applies.

i=0 i=1 i=2 i=3 i=4

ω = 0.1 P.E 0.10003 0.09997 0.10028 0.10003 0.09997
ω = 0.35 P.E 0.35034 0.35003 0.35003 0.35003 0.34997

0.0492 0.1492 0.34929 0.44929· · · · · ·

ω0.1 =0.09928 ω0.35 =0.39928

Figure 3.6: Numerical example of consistent phase estimation.

3.5. Amplitude estimation

From Section 2.2.5, we know that amplitude estimation is a direct descendant of phase
estimation. Therefore, also their implementations are very similar. The first difference we
can notice looking at the code below is that the number of iterations M can be a generic
integer specified by the user while, in the phase estimation, we can specify the number of
qubits n and the number of iterations is calculated as 2n. In amplitude estimation, we can
see that there is the parameter nqubit which, if set to True, causes the routine to return
the number of qubits used. Since we want to be able to express the number of iteration
M in the function of the error ϵ and since in Brassard et al. [9] (which is our main source
of information for this routine) is only specified that M can be a generic integer ≥ 1, we
use the definition of M reported by Allcock et al. [2] in their implementation of amplitude
estimation, that is

M =
⌈ π
2ϵ
(1 +

√
1 + 4ϵ)

⌉
. (3.1)
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In this way, we can specify the error that we expect in the estimate and the procedure
itself computes the number of iterations needed to achieve that error in its estimate. As
we already said in Section 2.2.5, we can use median evaluation (whose implementation is
reported in the next section) to boost the probability of success of this routine. Indeed,
by specifying the probability of failure γ (gamma parameter in the code), we implicitly
perform median evaluation which executes recursively amplitude estimation. We decide
to include this γ parameter in amplitude estimation since we think that it is very practical
for a user who wants to boost the probability of failure of amplitude estimation. Indeed, in
this way, the user does not have to explicitly execute median evaluation but just specifies
the γ parameter on which depends the number of iterations Q of median evaluation as
we will see in the next section.
Looking at the code, we can notice that the core part is almost equal to the phase
estimation routine. The only difference here is that, following the algorithm reported by
Brassard et al. [9], we use the minimal wrap around distance (made explicit in Definition
2) that in the code is defined as amplitude_est_dist(). The function takes in input the
true value that we want to estimate (theta_a, which is computed as sin−1(

√
a) where a is

the input value) and the possible estimate value (defined as j/M as in phase estimation).
Then, if the computed distance is different from 0, we compute the probability for each
value to be extracted as an estimate using the formula reported in Equation 2.18 otherwise
we set the probability to 1 since it means that we can exactly approximate the value with
certainty. Finally, once extracted with a weighted random choice the estimate of θa, we
return the output of amplitude estimation as a = sin2(θa).

For amplitude estimation, we show that, as a proof-example of the correctness of our
routine, if we want to estimate a = 0, we obtain with certainty a = 0. If we want to
estimate a = 1, we obtain a = 1 only if the number of iterations M is even, as reported
in Theorem 2.10.

1 def amplitude_estimation(a, epsilon=0.01, gamma=None, M=None,

nqubit=False):↪→

2 """ Official version of the amplitude estimation function.

3

4 Parameters

5 ----------

6 a: float or int value.

7 Value that has to be estimated by the amplitude estimation. It

must be in the range of [0,1].↪→
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8

9 epsilon: float value, default=0.01

10 Error that you want to tolerate in the estimate of amplitude

estimation.↪→

11

12 gamma: float value, default=None.

13 It represent the probability of failure of amplitude estimation.

If specified, median evaluation is performed↪→

14 to boost the probability of success of this routine.

15 M: int value, default=None.

16 The number of iteration executes in the routine.

17

18 nqubit: bool value, default=False.

19 If True, the routine returns also the number of qubits used.

20

21

22 Returns

23 -------

24 a_tilde: float value.

25 Estimate of the probability of measure a "good" state.

26 """

27 if gamma:

28 return median_evaluation(amplitude_estimation, gamma=gamma,

Q=None, a=a, epsilon=epsilon, M=M, nqubit=nqubit)↪→

29 if M == None:

30 M = (math.ceil((np.pi / (2 * epsilon)) * (1 + np.sqrt(1 + 4 *

epsilon))))↪→

31 n_qubits = np.ceil(np.log2(M))

32 else:

33 n_qubits = np.ceil(np.log2(M))

34 theta_a = math.asin(np.sqrt(a))

35 p = []

36 theta_j = []

37 for j in range(M):

38 theta_est = np.pi * j / M

39 theta_j.append(theta_est)

40 distance = amplitude_est_dist(theta_est / np.pi, theta_a / np.pi)
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41 if distance != 0:

42 p_aj = np.abs(math.sin(M * distance * np.pi) / (M *

math.sin(distance * np.pi))) ** 2↪→

43 else:

44 p_aj = 1

45 p.append(p_aj)

46 theta_tilde = random.choices(theta_j, weights=p, k=1)[0]

47 if nqubit:

48 return theta_tilde, n_qubits, M

49 a_tilde = np.sin(theta_tilde) ** 2

50 return a_tilde

Source Code 3.6: Implementation of the amplitude estimation algorithm.

Proof-example Inside amplitude estimation, we firstly compute θa = sin−1(
√
a) and

then we estimate θa which gives us the final estimate a = sin2(θa). For a = 0 and a = 1,
we obtain respectively θa = 0 and θa = 1.5707 that need to be estimated with phase
estimation procedure. Now, one might argue that phase estimation over θa = 1.5707

cannot be executed since it is a value greater than 1 and we have the constraint that
θa ∈ [0, 1). But we have to remember that the shape of the argument to be estimated
is θa = yπ

M
(we can check it also from the last step in Algorithm 2.3 and from line 40 in

Source Code 3.6). Therefore, we divide it by π obtaining a value less than 1. Indeed,
considering first θa = 0, dividing it by π does not change anything and we know that
phase estimation estimates θa = 0 with certainty. Instead, by dividing θa = 1.5707 by
π, we obtain 0.50 which is the value that needs to be estimated by phase estimation. In
this case, to be sure that phase estimation returns as estimate 0.50 with certainty and,
consequently, that amplitude estimation returns 1 with certainty, we need to consider
what Theorem 2.10 enunciates about amplitude estimation. It states that, if we want to
estimate a = 1, only if the number of iterations M is an even number, we can obtain
the estimate a = 1 with certainty. This is very simple to show: if we take any even
number, there is always an integer y ∈ [0, . . . ,M − 1], which makes y

M
= 0.5. Therefore,

the distance between that specific y value divided by M and our value that needs to be
estimated is zero, resulting in an exact estimate. Just to clarify better, if we take M = 32

(remembering that in amplitude estimation we can set M to be any integer ≥ 1), we see
that, for y = 16, we obtain y

M
= 0.5. We approximate our initial θa = 0.5 with 16

32
= 0.5

with certainty since the distance between those values is zero and so the probability to
approximate θa with 16

32
is equal to 1. This is not true if M is an odd value. Indeed, there
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is no integer y ∈ [0, . . . ,M − 1] which makes the fraction y
M

= 0.5 exactly. Consequently,
phase estimation does not estimate θa = 0.5 with certainty. Once phase estimation is
concluded, we reconstruct the final estimate by multiplying the phase estimation output
by π. For how the routine is built, we obtain the two values to θa = 0 and θa = 1.5707

with probability 1. This guarantees us that, when we compute the output of amplitude
estimation, as a = sin2(θa), we get back 0 and 1, with probability 1.

3.6. Median evaluation

For what concerns the implementation choices for the median evaluation algorithm [2]
(see Section 2.2.6 for more details), we basically think about which is the main feature of
this routine. To recap in short, median evaluation has the goal of boosting the probability
of success of quantum algorithms.
In our framework, we generalize this function such that every quantum routine can use
median evaluation as a bracket tool to improve the probability of success and therefore
the precision of the estimates. The logic behind our implementation is very simple as we
can see in the source code reported below. We just take a quantum routine (called func
in the code) and repeat its procedure Q times passing the necessary parameters args and
kwargs (for instance, for amplitude estimation the parameters args would be the value to
estimate a and the error ϵ). Q is a parameter that can be specified by the user or it can
be computed by specifying the failure probability γ in this way

Q =

⌈
log(1/γ)

2(8/π2 − 1
2
)2

⌉
odd

(3.2)

which is basically the formula in Theorem 2.13 in Section 2.2.6, where ⌈z⌉odd denotes the
smallest odd integer greater or equal to z (for major details check Subroutine 4 in [2]).
In this way, we obtain Q outputs from which we extract and report the median value as
the output of the median evaluation using the median Numpy functionality. Basically,
the key concept is that repeating a probabilistic procedure several times increases the
probability of success and the reliability of the experiment.

1 def median_evaluation(func, gamma=0.1, Q=None, *args, **kwargs):

2 """Median evaluation.

3

4 Parameters

5 ----------
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6 func: Callable.

7 The quantum routine that you want to execute Q times.

8

9 gamma: float value, default=0.1.

10 The probability of failure necessary to compute the number of

iteration Q if the user does not provide it.↪→

11

12 Q: int value, default=None.

13 Number of iterations to execute func.

14

15 Returns

16 -------

17 final_estimate : float value.

18 Median estimation of the quantum algorithm passed as argument.

19 """

20 if Q == None:

21 z = np.log(1 / gamma) / (2 * (8 / np.pi ** 2 - 0.5) ** 2)

22 Q = np.ceil(z)

23 if Q % 2 == 0:

24 Q += 1

25 estimates = [func(*args, **kwargs) for _ in range(int(Q))]

26 final_estimate = np.median(estimates)

27 return final_estimate

Source Code 3.7: Implementation of median evaluation algorithm.

3.7. Inner product estimation

In the inner product estimation algorithm, as we have seen in Section 2.2.7, we use median
evaluation to boost the probability of success of amplitude estimation. To implement this
routine, we refer to the Algorithm 2.4 that we report from Allcock et al. [2]. Given two
vectors x and y, we just compute

a =
∥x∥2 + ∥y∥2 − 2 ⟨x, y⟩

2(∥x∥2 + ∥y∥2)
(3.3)
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and

ϵa =
ϵmax{1, | ⟨x, y⟩ |}

∥x∥2 + ∥y∥2
(3.4)

as specified in Algorithm 2.4. The value reported in Equation 3.3 is the one that we want
to estimate with amplitude estimation with an error ϵa. Then, since the IPE algorithm
expects to perform median evaluation, we just perform amplitude estimation with the
probability of failure γ which is a parameter of IPE function. Indeed, we have seen that,
in our framework, specifying the parameter γ in amplitude estimation corresponds to
boosting the probability of success of amplitude estimation by executing median evalua-
tion. Once performed median evaluation, we obtain an estimate a that we use to compute
the estimation of the inner product as ⟨x|y⟩ = (∥x∥2 + ∥y∥2) ∗ (1− 2 ∗ a).

1 def ipe(x, y, epsilon, gamma=0.1):

2 """Official version of the Robust Inner Product Estimation Routine

((R)IPE).↪→

3 Parameters

4 ----------

5 x: ndarray of shape (n,).

6 One of the two vector needed to compute the inner product.

7

8 y: ndarray of shape (n,).

9 The second vector needed to compute the inner product.

10

11 epsilon: float value, default=None.

12 Error that you want to have in the estimate of the inner product.

13

14 gamma: float value, default=0.1.

15 Probability of failure to insert in median evaluation to compute

the number of iteration Q that amplitude estimation must be

performed.

↪→

↪→

16

17 Returns

18 -------

19 s: float value.

20 Estimate of the inner product between x and y vectors.

21 """
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22 a = (np.linalg.norm(x) ** 2 + np.linalg.norm(y) ** 2 - 2 *

np.inner(x, y)) / (2 * (↪→

23 np.linalg.norm(x) ** 2 + np.linalg.norm(y) ** 2))

24 epsilon_a = epsilon * max(1, np.abs(np.inner(x, y))) /

(np.linalg.norm(x) ** 2 + np.linalg.norm(y) ** 2)↪→

25 a_tilde = amplitude_estimation(a=a, gamma=gamma, epsilon=epsilon_a)

26 s = (np.linalg.norm(x) ** 2 + np.linalg.norm(y) ** 2) * (1 - 2 *

a_tilde) / 2↪→

27 return s

Source Code 3.8: Implementation of the inner product estimation algorithm.

3.8. q-PCA

Following the structure of Sklearn API [34], we extend the PCA class by implementing
state-of-the-art quantum procedures [7] that allow to classically estimate the top-k singu-
lar values, factor scores, and factor score ratios of a n×d matrix in time poly-logarithmic
in nd and the most relevant singular vectors sub-linearly in nd. These procedures can be
used to solve eigenproblems and problems that are classically solved with Singular Value
Decomposition (SVD). As we have seen in Section 1.1.1, PCA is strictly related to SVD,
therefore we can apply these novel quantum procedures to classically simulate this ma-
chine learning algorithm. Using these quantum routines we have theoretical guarantees
about their running time, their failure probability, and the error bound of the quantum
algorithms over which the routines are built. Now we describe the quantum procedures
that allow simulating q-PCA in our framework.
The following algorithms are all implemented inside the fit() function of q-PCA, indeed
they are related to the extraction of the model. The other basic methods that we have
"quantized" are the transform() and inverse_transform() ones.
With our implementation, the q-PCA class can be used both to execute classical and
quantum machine learning experiments.
It is important to note that in the quantum machine learning algorithms that require
phase estimation, we always use the consistent version of phase estimation.

Quantum check on factor score ratios’ sum

The first algorithm that we introduce is the one that checks the factor score ratios’ sum
(Algorithm 2 reported in Bellante et al. [7]). This algorithm estimates the percentage of
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variance given by the sum of the factor score ratio relative to singular values that are
greater or equal than a threshold parameter θ. With this quantum algorithm, given an

Algorithm 3.1 Quantum check on factor score ratios’ sum [7].
Input: Quantum access to matrix X ∈ Rn×d with singular value decomposition X =∑r

i σiuivi and rank r. A threshold parameter θ. Two precision parameter ϵ, η ∈ R>0 such
that the greatest singular value smaller than θ is not more than ϵ distant to it.
Output: An estimate p of the factor score ratios’ sum p =

∑
i:σi≥0 λ

(i)
i .

1. Prepare the state 1
∥X∥F

∑n
i

∑d
j xij |i⟩ |j⟩.

2. Apply SVE with precision ϵ to get 1√∑r
j σ

2
j

∑r
i σi |ui⟩ |vi⟩ |σi⟩.

3. Append a quantum register |0⟩ to the state and set it to |1⟩ if σi < θ
4. Uncompute the SVE

1√∑r
j σ

2
j

∑
i:σi≥θ

σi |ui⟩ |vi⟩ |0⟩+
1√∑r
j σ

2
j

∑
i:σi<θ

σi |ui⟩ |vi⟩ |1⟩

.
5. Perform amplitude estimation with precision η on the last register being |0⟩, to

estimate p =
∑

i:σi≥θ σ
2
i∑r

j σ
2
j

=
∑

i:σi≥θ λ
(i).

input matrixX ∈ Rn×d, we can estimate p =
∑

i:σi≥θ λ
(i), where |σi−σi| ≤ ϵ, to relative er-

ror η, in time Õ
(

µ(X)
ϵη
√
p

)
(we remember that µ(X) = minp∈[0,1](∥X∥F ,

√
s2p(X)s2(1−p)(XT ))

and sp(X) = maxi∥xi,·∥pp). Going more into the details of the algorithm, as we can see,
it is principally based on Singular Value Estimation (SVE), conditional rotations, and
amplitude estimation.
To implement it, first we classically decompose the input data matrixX using linalg.svd()
function of Numpy. Then, we apply SVE: for each singular value σi, we get

θi = 2arccos

(
σi

µ(X)

)
(3.5)

from Equation 2.22. We put all these θi values in input to the consistent phase estimation
procedure to estimate the corresponding θi with error ϵ specified at the beginning of the
procedure. By reversing the formula reported in Equation 3.5, we get the corresponding
estimates of singular values

σi = cos

(
θi
2

)
µ(X). (3.6)

Then, we select the singular values σi using the indices i such that σi ≥ θ (with θ defined
at the beginning). Finally, we can compute p =

∑
i:σi≥θ σ

2
i∑r

j σ
2
j

that we input to the amplitude
estimation to estimate it with error η.
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Quantum binary search for the singular value threshold

In the extraction of q-PCA, this algorithm is very useful and we use it many times. In
PCA, generally, we specify a certain percentage of variance that we want the principal
components to retain. This quantum algorithm, given that percentage of variance p, al-
lows estimating a threshold θ such that the estimated singular values greater than θ are
the ones corresponding to the components that retain p variance. Therefore, as we can
show later, using this algorithm together with the top-k singular vector extraction (de-
scribed in Algorithm 3.3) is the core part for the extraction of the principal components
and therefore of q-PCA model.
So, given a quantum access to a matrixX ∈ Rn×d and considering η, ϵ as precision param-
eters and θ as the smallest singular value to consider, the following quantum algorithm
runs in time Õ

(
µ(X) log(µ(X)/ϵ)

ϵη

)
and outputs an estimate θ such that |p−

∑
i:σi≥θ λ

(i)| ≤ η,
where |σi − σi| ≤ ϵ, or detects whether such θ does not exists.
We report this procedure in Algorithm 3.2. We can notice that it works exactly like a
classical binary search, where the value that we are searching for is τ which at the end,
by multiplying it for µ(A), gives the right magnitude of θ. Starting from τ = 0.5 (in step
4), we decrease τ if amplitude estimation outputs pτ < p, otherwise we increase it, until
we found the right τ which corresponds to the condition in step 10 (it can also happen
not to find it if the initial parameters are not compliant).
For what concerns our implementation choices, we can notice that steps 6,7,8, and 9 are
those performed also in the Algorithm 3.1. So, once done the initial checks in step 2 and
3, we repeat for log

(
µ(X)

ϵ

)
times the procedure reported in Algorithm 3.1, with precision

parameters ϵ = ϵ/µ(X) and η = η/2. Pay attention: what in Algorithm 3.1 is called
θ, now corresponds to τ . So, by performing the procedure described before, we get an
estimate pτ . Finally, we check if |pτ − p| ≤ η/2: if it is, we return θ = τµ(X), otherwise
we update τ according to whether pτ ≤ p or not, as in steps 10 and 11, and we perform
another iteration of the procedure.
We think that can be useful to report a simulation example to show better how this
algorithm works because it is used many times in our experiments.

Simulation example Let us suppose to have a training set of samples over which we
perform PCA, so implicitly we perform SVD extracting all the singular values, right/left
singular vectors, and factor scores. Now, let us suppose we want to estimate θ using
Algorithm 3.2, considering ϵ = 8, η = 0.2, and p = 0.30, which means that we want to
retain the 30% of the total variance. Let us also consider that µ(X) = 362.11. What
happens is the following: starting from τ = 0.5 (that corresponds to θ of Algorithm
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Algorithm 3.2 Quantum binary search [7].
Input: Quantum access to matrix X ∈ Rn×d with singular value decomposition X =∑r

i σiuivi and rank r. The desired amount of factor score ratio sum p ∈ [0, 1]. Two
precision parameters ϵ, η ∈ R>0.
Output: A threshold θ such that |p −

∑
i:σi≥θ λ

(i)
i | ≤ η where |σi − σi| ≤ ϵ or -1 if no

such θ exists.

1: Let l = 0 and u = 1 be upper and lower bounds for the binary search.
2: If |1− p| ≤ η, then return θ = 0.
3: If |0− p| ≤ η, then return θ = µ(X).
4: Initialize τ = (l + u)/2.
5: for O

(
log(µ(X)

ϵ
)
)
times do

6: Prepare the state |X⟩ and apply SVE to get 1√∑r
j σ

2
i

∑r
i σi |ui⟩ |vi⟩ |σi⟩ so that

|σi − σi

µ(X)
| < ϵ

µ(X)
.

7: Append a quantum register |0⟩ to the state and set it to |1⟩ if σi < τ .
8: Uncompute the SVE

1√∑r
j σ

2
j

∑
i:σi≥τ

σi |ui⟩ |vi⟩ |0⟩+
1√∑r
j σ

2
j

∑
i:σi<τ

σi |ui⟩ |vi⟩ |1⟩

.
9: Perform amplitude estimation with precision η on the last register being |0⟩, to

estimate pτ =
∑

i:σi≥τ σ2
i∑r

j σ
2
j

=
∑

i:σi≥τ λ
(i), such that |pτ − p| ≤ η/2.

10: If |pτ − p| ≤ η/2, then return θ = τµ(X).
11: If pτ < p, then set u = τ and set l = τ otehrwise.
12: Update τ = (u+ l)/2.
13: end for
14: Return -1.

3.1), we execute Algorithm 3.1 that returns an estimate of pτ , using ϵ = ϵ/µ(X) and
η = η/2. We get pτ = 0.0 and since 0.0 < 0.30, we set u = τ = 0.5. Therefore, we
update τ = (0.5+0)/2 = 0.25. We repeat the same procedure but, instead of τ = 0.5, we
estimate pτ=0.25. We obtain pτ = 0.52 that is greater than p = 0.30. Setting l = 0.25, for
the next iteration we have τ = 0.375, which leads to an estimate pτ = 0.34. Therefore,
the check |pτ − p| ≤ η/2 is successful and we return θ = 0.375 ∗ 362.11 = 135.7.

As we will see, we use many times this algorithm, principally in combination with the
following algorithm that we are going to describe.
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Quantum top-k singular vectors extraction

Up to now, the algorithms reported refer to procedures that have to do with the most
relevant singular values, factor scores, and factor score ratios of the input matrix X. This
new algorithm, instead, allows us to extract the corresponding right/left singular vectors.
The initial conditions are almost always the same. So, let us consider to have a quantum
access to the matrix X ∈ Rn×d, with singular value decomposition X =

∑r
i σiuiv

T
i with

r rank of the matrix X. Fixed the precision parameter δ > 0 for the singular vectors,
ϵ > 0 for the singular values and considering θ > 0 a threshold such that there exist k
singular values greater than θ, we define also p =

∑
i:σi≥θ σ

2
i∑r

i σ
2
j

. The algorithm that we are
going to show estimates:

• the top-k left singular vectors ui of X with unit vectors ui such that ∥ui−ui∥2 ≤ δ

with probability at least 1− 1/poly(n), in time Õ
(

∥X∥µ(X)kn
θ
√
pϵδ2

)
.

• the top-k right singular vectors vi ofX with unit vectors vi such that ∥vi−vi∥2 ≤ δ

with probability at least 1− 1/poly(d), in time Õ
(

∥X∥µ(X)kd
θ
√
pϵδ2

)
.

• the top-k singular values σi, factor score λi, and factor score ratios λ(i) of X to
precision ϵ, 2ϵ

√
λi, and ϵ σi

∥X∥2F
respectively, with probability at least 1 − 1/poly(d),

in time Õ
(

∥X∥µ(X)k
θ
√
pϵ

)
.

We implement this algorithm in the following way: once classically decomposed the input
data matrix X, we estimate all singular values using SVE such that |σi − σi| ≤ ϵ. To do
this, as seen in the quantum factor score ratios’ sum check algorithm, we use Equation
3.5 to get, for each singular value σi, its corresponding θi. Then, we apply consistent
phase estimation to get the estimate θi with error ϵ. We use Equation 3.6 to retrieve the
corresponding estimates of the singular values σi. Then, we select the top-k right/left
singular vectors by determining the corresponding estimated singular values greater than
θ. By applying vector state tomography over these singular vectors, we estimate the
top-k right/left singular vectors with error δ. Finally, we return all the estimates. As
previously said, in the extraction of q-PCA model, this algorithm is the one of the most
used together with the quantum binary search one. Indeed, given the percentage of
variance p that we want the principal components to retain, we are able, using these two
algorithms, to extract the corresponding principal components that retain p variance. We
report a possible use case of this algorithm, combined with Algorithm 3.2.

Simulation example First, we can use quantum binary search to estimate θ, given
a specified percentage of variance p. Then, the estimated θ, which corresponds to the
smallest singular value that needs to be considered to retain that percentage of variance,
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Algorithm 3.3 Quantum top-k singular vectors extraction [7].
Input: Quantum access to matrix X ∈ Rn×d. Two precision parameters ϵ, δ ∈ R>0 and
a threshold θ > 0.
Output:

• the top-k left singular vectors ui ofX with unit vectors ui such that ||ui−ui||2 ≤ δ.
• the top-k right singular vectors vi ofX with unit vectors vi such that ||vi−vi||2 ≤ δ.
• the top-k singular values σi, factor score λi, and factor score ratios λ(i) of X to

precision ϵ, 2ϵ
√
λi, and ϵ σi

∥X∥2F
.

1: Prepare the state 1
||X||F

∑n
i

∑d
j xij |i⟩ |j⟩.

2: Apply SVE to get 1√∑r
j σ

2
j

∑r
i σi |ui⟩ |vi⟩ |σi⟩, where |σi − σi| ≤ ϵ.

3: Append a quantum register |0⟩ to the state and set it to |1⟩ if |σi⟩ < θ.
4: Perform amplitude amplification for |0⟩, to get the state 1√∑k

j σ2
j

∑k
i σi |ui⟩ |vi⟩ |σi⟩.

5: Append a second ancillary register |0⟩ and perform the controlled rotation
C

||X(k)||F

∑k
i

σi

σi
|ui⟩ |vi⟩ |σi⟩ |0⟩+ 1

||X(k)||F

∑k
i

√
1− C2

σ2
i
|ui⟩ |vi⟩ |σi⟩ |1⟩, where C is a nor-

malization constant.
6: Perform again amplitude amplification for |0⟩ to get the uniform superposition

1√
k

∑k
i |ui⟩ |vi⟩ |σi⟩.

7: Measure the last register and, according to the measured |σi⟩, apply state-vector
tomography on |ui⟩ for the ith left singular vector or on |vi⟩ for the right one.

8: Repeat 3-9 until the tomography requirements are met.
9: Output the k singular vectors ui or vi and, optionally, the singular values σi.

is used as input parameter in top-k singular vector extraction algorithm. In this way, we
estimate the singular values and the ones greater than θ correspond to the top-k singular
values needed to retain the initial percentage of variance p. Clearly, in these algorithms,
the error parameters are fundamental and influence the final estimates. For instance,
a too large ϵ error could cause the quantum binary search to extract a wrong θ which
reflects in selecting the wrong top-k singular vectors in top-k singular vectors extraction.
As done for the previous algorithm, we report a numerical example to show the combined
procedure between the quantum binary search and the top-k singular vector extraction
algorithm. We want to estimate the top-k right singular vectors that explain the 30% of
the total variance. Therefore, we can estimate θ using the quantum binary search algo-
rithm. Using the example reported before, we found θ = 135.7. Then, we use this value
in the quantum top-k singular vectors extraction algorithm. We note that the estimated
singular values, retrieved with SVE, are 2. This means that the top-2 components corre-
sponding to those singular values are enough to retain the 30% of the variance. Indeed,
we see that the classical explained variance ratios of those two components are ≈ 0.17%

and ≈ 0.14%, resulting in ≈ 30% of total explained variance for the two first principal
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components. Therefore, we verify that by extracting the PCA model using quantum al-
gorithms, we are consistent with the classical case since in both cases we retain the first
two principal components to explain 30% of the variance.

Quantum least-k singular vectors extraction

The procedure described in Algorithm 3.3 can be slightly modified to extract the least-k
singular values and the corresponding singular vectors. This can be done by performing
amplitude amplification, in step 5, for the state |1⟩. This means that we consider all the
estimated singular values, computed with SVE, that are less than θ. We report only the
theorem that describes the procedure since the pseudocode of the algorithm is almost
equal to the one of Algorithm 3.3 as well as the implementation.

Theorem 3.1 (Least-k singular vectors extraction). Let there be efficient quantum access
to a matrix X ∈ Rn×d, with singular value decomposition X =

∑r
i σiuiv

T
i . Let δ > 0 be a

precision parameter for the singular vectors, ϵ > 0 a precision parameter for the singular
values, and θ > 0 be a threshold such that X has k singular values less than θ. Define
p =

∑
i:σi<θ σ

2
i∑r

j σ
2
j

. There exist quantum algorithms that estimate:

• The least k left singular vectors ui ofX with unit vectors ui such that ∥ui−ui∥2 ≤ δ

with probability at least 1− 1/poly(n), in time Õ
(

θ
σmin

1√
p
µ(X)

ϵ
kn
δ2

)
.

• The least k right singular vectors vi ofX with unit vectors vi such that ∥vi−vi∥2 ≤ δ

with probability at least 1− 1/poly(d), in time Õ
(

θ
σmin

1√
p
µ(X)

ϵ
kd
δ2

)
.

• The least k singular values σi, factor scores λi, and factor score ratios λ(i) of X to
precision ϵ, 2ϵ

√
λi, and ϵ σi

∥X∥2F
respectively, with probability at least 1− 1/poly(d), in

time Õ
(

θ
σmin

1√
p
µ(X)k

ϵ

)
or during any of the two procedures above.

We can notice that the algorithm is almost equal to the top-k one. There are little
differences, such as the definition of p which obviously changes since now we consider
the estimated singular values less than θ. In this case, p refers to the variance retained
by the least-k components. This fact has an impact on the running time since now the
term 1√

p
is bigger than the one in the Algorithm 3.3. Also the other term in the running

time changes from ∥X∥
θ

to θ
σmin

, where σmin can be obtained from the condition number
κ(X) = σmax

σmin
, which can be estimated using a variant of the spectral norm estimation

procedure described in Algorithm 2.5 [25].
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Quantum mapping in PCA space

The quantum procedures described up to this point refer to the fitting of q-PCA. In-
deed, they are principally used to classically describe the principal components and the
associated eigenvalues. Now, we describe the quantized method that allows performing
dimensionality reduction, projecting the original data into the new feature space described
by the extracted principal components of q-PCA.
Basically, in a quantum computer, what happens is that we fit a q-PCA model with
some noise obtaining vectors that are more or less close to the ones of the classical PCA.
Then, we use those vectors to transform the input data matrix and projecting it into the
new q-PCA feature space. As seen in Section 1.1.1, the way of doing this is the product
X ′ = XV

(k), where X ∈ Rn×d is the input data matrix and V (k) ∈ Rd×k is the matrix
representing the estimated top-k principal components (or right singular vectors) of the
fitted quantum model, with k ≤ d. In this way, we can mapX from the d-dimensional fea-
ture space to the k-dimensional one. Therefore, our quantum_transform() implemented
method only deals with multiplying the original data matrix by the estimated principal
components retrieved in the q-PCA model’s fitting.

Quantum inverse mapping

The last procedure that we quantize is the mapping of a transformed vector into the origi-
nal feature space that in Sklearn is called inverse_transform(). We perform the following
operation: X̂ = X ′V

(k)T

+ µ, where X ′ ∈ Rn×k, V (k) ∈ Rd×k, and µ is the computed
sample mean that is initially removed from the data to have a centered zero mean data
matrix (we explained this concept in Section 1.1.1). We can easily see that, by performing
this dot product, we map back the data matrix from the k-dimensional feature space to the
original d-dimensional one. Even in this case, the quantum_inverse_trasform() method
is just about multiplying the transformed data matrix X ′ by the estimated principal
components V (k).

3.9. q-Means

q-Means is the quantum version of the K-Means clustering algorithm (see Section 1.1.2
for more theoretical details about it). At high level, q-Means algorithm follows the same
steps of the classical algorithm. The difference is that here, as for q-PCA, we use quantum
routines for distance estimation, matrix multiplication, and tomography. Firstly, we pick
k initial random centroids, or we use the efficient quantum version of k-means++ (see
Theorem 2.5 in [26]). Then, all the data points are assigned to clusters in superposition
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and not one after the other. In the last steps, we update the centroids of the cluster.
All these procedures are repeated until convergence (in Section 1.1.2 we report a possible
stopping condition for K-Means algorithm). q-Means can also be seen as the quantum
equivalent of the δ-k-means algorithm, which is a version of k-means with noise, as well
described by Kerenidis et al. [26].
For what concern the time complexity, q-Means depends poly-logarithmically on the num-
ber of elements in the dataset, differently from classical K-Means that runs in O (tndk),
with n number of elements in the dataset, d number of features, t number of iterations,
and k number of classes. Therefore, q-Means gives us an exponential speed-up over the
classical algorithm.

This is a brief explanation of q-Means, now we present its principal steps, as previously
done for the q-PCA, following Algorithm 3.4.

Centroid distance estimation

In the first step of the algorithm, we compute the square distances between all the data
points and the centroids using the quantum inner product procedure (that we described
in Section 2.2.7). The following theorem describes this procedure.

Theorem 3.2. (Theorem 2.1 in [26]) Let a data matrix X ∈ Rn×d and a centroid
matrix C ∈ Rk×d be stored in QRAM, such that the following unitaries |i⟩ |0⟩ → |i⟩ |xi⟩
and |j⟩ |0⟩ → |j⟩ |cj⟩ can be performed in time O (log(nd)) and the norms of the vectors
are known. For any ∆ > 0 and ϵ1 > 0 there exists a quantum algorithm that, given the
state 1√

n

∑n
i=1 |i⟩ ⊗j∈[k] (|j⟩ |0⟩), performs the mapping to

1√
n

n∑
i=1

|i⟩ ⊗j∈[k] (|j⟩ |d(xi, cj)2⟩),

where
∣∣∣d(xi, cj)2 − d(xi, cj)

2
∣∣∣ ≤ ϵ1 with probability at least 1− 2∆ in time Õ

(
kη log(∆−1)

ϵ1

)
where η = maxi(||xi||2).

Basically, what we have done to implement this step is to use the quantum inner product
estimation (IPE algorithm, reported in Algorithm 2.4). This is because, by taking two
vectors x, y ∈ Rd, we can define the squared Euclidean distance between the two as

d(x, y)2 = ∥x∥2 + ∥y∥2 − 2 ⟨x, y⟩ . (3.7)

As we can see, if we get an estimate of the inner product ⟨x, y⟩, we also get an estimate
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of the squared distance d(x, y)2. Therefore, for each different pair of vectors (xi, cj), with
xi i-th sample of matrix X ∈ Rn×d and cj j-th centroid vector, we compute the inner
product ⟨xi, cj⟩. Then, we use the IPE procedure to estimate ⟨xi, cj⟩ and, by substituting
it in Equation 3.7, we obtain the estimate

d(xi, cj)2 = ∥xi∥2 + ∥cj∥2 − 2⟨xi, cj⟩.

Cluster assignment

Once finished the first step, we obtain the squared distance between each point in the
dataset and the k centroids. Therefore, we assign the index j, corresponding to the closest
centroid to the data point under consideration, as label of that data point

ℓ(xi) = argmin
j∈[k]

(d(xi, cj)). (3.8)

In our framework, we implement this step by taking, for each sample i, the minimum
of the distances, and then checking which is its corresponding index (i.e., if we have 2
centroids, suppose that the i-th sample is closer to the first centroid, then the index that
we return as label assignment is 0). In the case we found more than one index, which
means that the corresponding sample has more than one centroid at the same minimum
distance, we choose at random the label.
Generally, we can easily extract the minimum thanks to the following Lemma.

Lemma 3. (Circuit for finding the minimum [26].) Given k different log p bit registers
⊗j∈[k] |xj⟩ there is a quantum circuit Umin that maps (⊗j∈[k] |xj⟩) |0⟩ → (⊗j∈[k] |xj⟩) |argmin(xj)⟩
in time O(k log p).

After applying the minimum lemma, we obtain the state

|ψt⟩ := 1√
n

n∑
i=1

|i⟩ |ℓt(xi)⟩ (3.9)

that contains all the necessary information to extract the new centroids in the following
step. Indeed, it is a uniform superposition, in which the two registers represent the index
of the data point and the corresponding assigned label respectively.
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Centroid state creation

In the previous step, we obtain the state reported in Equation 3.9, where in the first
register we have the index of the n data points while in the second register we have the
estimated labels for each data points at the current iteration. At this point, we need to
update the centroids |ct+1

j ⟩, which basically are the median positions of the data points
having the same label.

Lemma 4. (Claim 2.3 [26]) Let χt
j ∈ Rn be the scaled characteristic vector for Cj at

iteration t and X ∈ Rn×d be the data matrix, then ct+1
j =XTχt

j.

The above lemma allows us to extract the new centroids ct+1
j using quantum linear algebra

routines. Indeed, we can write the state |ψt⟩ as [26]

|ψt⟩ =
k∑

j=1

√
|Cj|
n

 1√
|Cj|

∑
i∈Cj

|i⟩

 |j⟩ =
k∑

j=1

√
|Cj|
n

|χt
j⟩ |j⟩ (3.10)

Then we can measure the label register |j⟩.

Centroid Update

In order to update the centroids, we need to retrieve classical information of the centroids
from the corresponding quantum states. Therefore, we apply vector state tomography
(refer to Algorithm 2.1 for more details) on the state |ct+1

j ⟩ created in the previous step
using Lemma 4. By applying tomography, we get an estimate of the centroids within
error ϵ4, so that ∥|cj⟩ − |cj⟩∥ < ϵ4.

Lemma 5. (Claim 2.4 in [26]) Let ϵ4 be the error we commit in estimating |cj⟩ such that
∥|cj⟩ − |cj⟩∥ < ϵ4 and ϵ3 the error we commit in estimating the norms, |∥cj∥ − ∥cj∥| ≤
ϵ3∥cj∥. Then ∥cj − cj∥ ≤ η(ϵ3 + ϵ4) = ϵcentroid.

Basically, we implement this step by computing the centroids as barycenters of all the
samples assigned with the same labels, and then applying tomography with error η(ϵ3+ϵ4).

Error analysis

The last important things to investigate is the determination of the values of the error
parameters. We express all the errors ϵ1, ϵ2, ϵ3, and ϵ4 in terms of δ. In the square
distances estimation, we have seen that we get an estimate d(xi, cj)2 such that |d(xi, cj)2−
d(xi, cj)

2| ≤ ϵ1 and in the second step, where we find the minimum of these distances,
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we do not add any additional error. To be consistent with the δ-k-means algorithm, we
ensure that:

∀j ∈ [k], |d(xi, cj)2 − d(xi, cj)
2| ≤ δ

2
(3.11)

which implies that no centroid with distance more than δ above the minimum distance
can be chosen as label by the q-Means algorithm. So, we have to take ϵ1 < δ/2.
Then, the other step in which we consider an approximation error is in the centroid
updates when we apply the vector state tomography to get a classical description of the
centroids. As show in Lemma 5, we get ϵcentroid =

√
η(ϵ3+ϵ4), with ϵ3 < δ

4
√
η

and ϵ4 < δ
4
√
η
.

Running time analysis

The following theorem summarizes the running time of q-Means.

Theorem 3.3. (Q-Means Theorem 5.1 in [26]) For a data matrix X ∈ Rn×d and param-
eter δ > 0, the q-Means algorithm with high probability outputs centroids consistent with
the classical δ-k-Means algorithm in time Õ

(
kd η

δ2
κ(X)(µ(X) + k η

δ
) + k2 η

1.5

δ2
κ(X)µ(X)

)
per iteration, where 1 ≤ ∥xi∥2 ≤ η, κ(X) is the condition number, and

µ(X) = min
p∈P

(∥X∥F ,
√
s2p(X)s2(1−p)(XT ))

, where P ⊂ [0, 1] such that |P| = O(1) and sp(X) := maxi∈[n]∥Xi∥pp

It is interesting also to report the case in which the data are well-clusterable.

Definition 3. (Well-clusterable dataset, [26]) A data matrix X ∈ Rn×d with rows xi ∈
Rd, i ∈ [n] is said to be well-clusterable if there exist constants ξ, β > 0, λ ∈ [0, 1], η ≤ 1,
and cluster centroids ci for i ∈ [k] such that:

• (separation of cluster centroids): d(ci, cj) ≥ ξ, ∀i, j ∈ [k]

• (proximity to cluster centroid): At least λn points xi, in the dataset satisfy d(xi, cl(xi)) ≤
β where cl(xi) is the centroid nearest to xi.

• (Intra-cluster smaller than inter-cluster square distances): The following inequality
is satisfied 4

√
η
√
λβ2 + (1− λ)4η ≤ ξ2 − 2

√
ηβ.

Basically, this definition states that most of the data can be easily assigned to one of the
k clusters since these points are close to the centroids and the centroids are sufficiently
far from each other. The runtime of q-Means over a well-clusterable dataset is described
in Theorem 3.4.
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Algorithm 3.4 q-Means [26].
Input: Data matrix X ∈ Rn×d stored in QRAM data structure. Precision parameters δ,
error parameters ϵ1 for distance estimation, ϵ2 and ϵ3 for matrix multiplication and ϵ4 for
tomography.
Output: Vectors c1, c2, . . . , ck ∈ Rd that correspond to the centroids at the final step of
the δ-k-means algorithm.

1: Select k initial centroids c01, . . . , c0k and store them in QRAM data structure and set
counter t = 0.

2: while convergence condition is not satisfied do
3: Step 1: Centroid Distance Estimation Perform the mapping

1√
n

n∑
i=1

|i⟩ ⊗j∈[k] |j⟩ |0⟩ →
1√
n

n∑
i=1

|i⟩ ⊗j∈[k] |j⟩ |d(xi, ctj)2⟩

where |d(xi, ctj)2 − d(xi, c
t
j)

2| ≤ ϵ1.
4: Step 2: Cluster Assignment Find the minimum distance among {d(xi, ctj)2}j∈[k],

then uncompute Step 1 to create the superposition of all points and their labels

1√
n

n∑
i=1

|i⟩ ⊗j∈[k] |j⟩ |d(xi, ctj)2⟩ →
1√
n

n∑
i=1

|i⟩ |ℓt(xi)⟩

.
5: Step 3: Centroid state creation

• Measure the label register to obtain a state |χt
j⟩ = 1√

|Ct
j |

∑
i∈Ct

j
|i⟩, with prob-

ability |Ct
j |
n

.
• Perform matrix multiplication with matrix XT and vector |χt

j⟩ to obtain the
state |ct+1

j ⟩ with error ϵ2 along with an estimation of ∥ct+1
j ∥ with relative error

ϵ3.
6: Step 4: Centroid Update

• Perform tomography for the states |ct+1
j ⟩ with precision ϵ4 using the operation

from Steps 1-3 and get a classical estimate ct+1
j for the new centroids such

that |ct+1
j − ct+1

j | ≤ η(ϵ3 + ϵ4) = ϵcentroids.
• Update the QRAM data structure for the centroids with the new vectors

ct+1
0 , . . . , ct+1

k .
7: Increment the counter t = t+ 1.
8: end while

Theorem 3.4. (Q-Means on well-clusterable data, Theorem 3.2 in [26]) For a well-
clusterable dataset X ∈ Rn×d stored in QRAM, the q-Means algorithm returns with high
probability the k centroids consistently with the classical δ-k-Means algorithm for a con-
stant δ in time Õ

(
k2dη2.5

δ3
+ k2.5 η

2

δ3

)
per iteration, for 1 ≤ ∥xi∥2 ≤ η.
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In this chapter, we describe the cybersecurity experiments done and the results found,
making a comparison between classical and quantum results. In the result tables, we
highlight the best F1-score results such that the reader can better check the best perfor-
mances. The models that we use to detect intrusions are classically described in Section
1.2.

Goals

We remark that the objective of the following experiments is not to compare the per-
formances of our anomaly detection models with the state-of-the-art ones. Our goal is
to show how the performances change, both in terms of capability to detect anomalies
and in terms of running time, between quantum and classical machine learning models.
In particular, with these experiments, we want to study how the error that we need to
consider in quantum machine learning algorithms affects the anomaly detection capabil-
ity and the running time of our models. We want to find cases of error that allow us
to match classical performances and, at the same time, obtain a reasonable number of
samples and features for which quantum machine learning is advantageous over classical
machine learning in terms of running time.
In the evaluation of the results, we need to take into account also the balancing of the
datasets. For this purpose, we present experiments over different combinations of datasets,
sometimes unbalanced towards the normal samples, sometimes towards the anomalies, to
see how the balancing affects the detection. We also remember that the objective of
our network intrusion detection models is to detect whether or not an action is an at-
tack. Therefore, we do not distinguish between different types of attacks, but the only
distinction that we make is between normal and anomaly actions.

Metrics

We compare the performances in terms of precision p = TP
TP+FP

, recall r = TP
TP+FN

, F1-
score f1 = 2

( 1
p
)+( 1

r
)
, and accuracy a = TP+TN

TP+FP+TN+FN
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where

• TP are the samples that we classify as attacks and they are effectively attacks;

• TN are the samples that we classify as normal and they are effectively normal;

• FP are the samples that we classify as attacks but they are normal samples;

• FN are the samples classified as normal but in reality, they are attacks.

Datasets description

We use three publicly available network intrusion datasets: KDDCUP 99 [47], CICIDS
2017 [43], and Darknet [17]. We report a brief description for each one of them to give
an overview and make the reader more comfortable with these datasets.

KDDCUP 99 This dataset is used for network-based anomaly detection systems. It
was originally intended for a competition where the goal was to build a network intrusion
detector, a system capable to distinguish between normal and anomaly connections. This
dataset includes different types of attacks simulated in a military network environment.
We use the kddcup.data_10_percent data to run our experiments, which is a 10% subset of
the total dataset. This is to make the experiments less burdensome from a computational
point of view. This subset of the KDDCUP dataset contains 494,021 samples described
by 41 features. Out of 494,021 samples, 97,278 are labeled as normal and 396,743 as
attack. In the attack category are included different types of simulated network attacks:

• Denial of Service attack (DoS): the attacker exploits seemingly-legitimate requests,
making some computing or memory resources too busy to handle legitimate requests
by other users, not allowing the users to access the machine.

• User To Root attack (U2R): the attacker exploits some vulnerabilities of a system
to gain root after logging into a normal system user account (perhaps gained by
sniffing passwords, a dictionary attack, or social engineering).

• Remote to Local attack (R2L): the attacker exploits some vulnerability to gain local
access as a user of a machine on which he/she does not have an account by sending
packets to that machine over a network.

• Probing attack: the attacker exploits some vulnerabilities to gather information
about a network of computers to jeopardize its security controls.
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CICIDS 2017 The CICIDS 2017 dataset is intended for network security and intrusion
detection purposes. It contains benign samples and some of the most common network
attacks. The data capturing period started at 9 a.m. Monday, July 3, 2017 and ended at
5 p.m on Friday, July 7, 2017, for a total of five days. On Monday only benign samples are
recorded. The attacks comprehend Brute Force FTP, Brute Force SSH, DoS, HeartBleed,
Web attack, BotNet, and DDoS. They have been executed both in the morning and
afternoon on Tuesday, Wednesday, Thursday, and Friday.
As we see better in the experiments, we use two different "versions" of this dataset: in
some experiments, we use samples composed only of benign and DDoS attacks (we call it
CICIDS_DDoS dataset), while, in other experiments, we consider all the possible types
of attacks (we call it CICIDS_ALL dataset).

Darknet A darknet is an overlay network within the internet that often use a customized
communication protocol. We can only access this network using specific software. This
dataset captures regular, VPN, and Tor traffic for seven diverse categories under respective
applications: Browsing, Chat, Email, File Transfer, FTP over SSL, Streaming, Voip, and
P2P. It consists of 158,659 total samples with 134,348 (≈ 85% of the total samples) benign
which refers to normal samples, and 24,311 (≈ 15% of the total samples) darknet samples
which are the anomalous ones (more precisely the samples labeled as TOR and VPN).

4.1. Principal components classifier over KDDCUP

This experiment is a reproduction of the experiment done by Shyu et al. [45]. We try to
reproduce the results of the paper to be able to compare them with our quantum version.
We described the principal components classifier model in Section 1.2.1.

Preprocessing As we have seen, in KDDCUP 99 there are 41 features, 34 of which
are numerical and 7 categorical. We consider only numerical features. Since the current
model requires that the training set is composed only by normal samples, we divide
the training and test set in this way: 5000 normal samples for the training set and a
test set of the remaining 92,278 normals and 39,674 attack samples (the proportions
are equal to the paper ones). To extract the training set, we use trimming (that is a
procedure described in the Section 1.2.1 to remove outliers from the training set) and
random systematic sampling. The latter is a probability sampling method in which a
random sample, with a fixed periodical interval, is selected from a larger population
without replacement so that a sample cannot be in the train and test sets at the same
time. The fixed periodic interval is calculated by dividing the population size by the
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desired sample size and extracting randomly a value in the range of this number1. The
last step of the preprocessing is the normalization since there are features of different
magnitudes. We use the StandardScaler() Python method to remove the mean and scale
to unit variance. Pay attention: before normalizing the training set, we compute the
sample mean and standard deviation, which we also use to normalize the respective test
samples since it is required that also the new observations, which are evaluated by the
model, are normalized with the sample mean and variance.

Classical model building We want to compare 5 different PCA-based models that
retain the 30%,40%,50%,60%, and 70% of the total variance respectively. Therefore,
from the preprocessing, we get 5 different normalized train/test sets pairs that we are
going to use for the 5 different models. From the train sets, we drop the class labels
as we use unsupervised machine learning algorithms. We see that fitting models with
these percentages of variance corresponds to retain the first 2,4,5,7, and 10 principal
components respectively. Then, we compute the quantiles that we use to extract the
outlier thresholds (we describe this procedure in Section 1.2.1) using six different values
of α, which correspond to the false alarm rates: 0.01, 0.02, 0.04, 0.06, 0.08, and 0.10. For
instance, taking α = 0.01 and considering Equation 1.10 with α1 = α2, we have that

α2
1 − 2α1 + 0.01 = 0

which gives, as a possible solution, α1 = 0.005. We can now compute the empirical
distributions of

∑k
i=1

y2i
λi

and
∑d

i=d−r+1
y2i
λi

in the training set, where k is the number of
the principal components that retain the specified percentage of variance in the model,
r is the number of the minor components whose corresponding eigenvalues are less than
0.20 [45], and d is the number of features of the input data. To compute yi, in this case,
we make the dot product between the extracted eigenvectors and the training samples.
Finally, we extract the 1 − α1 = 1 − 0.005 quantile of these two distributions to find
the outlier thresholds. Once computed the outlier thresholds, we are ready to verify the
performances on the test sets.

Quantum model building We know that we want to retain 30%, 40%, 50%, 60%, and
70% of the total variance in the five different q-PCA models. Therefore, we use quantum
binary search (reported in Algorithm 3.2) specifying the percentage of variance that we

1To make this more clear, let us consider the normal population size of our experiment that is
97,278. Since we want each training set composed of 5000 samples, we compute the periodic interval
as 97, 278/5000 ≃ 19. Therefore, we randomly select a number in the range of [0,19], let us say 4. Then,
to extract the training set, starting from the 4-th sample in the population and with a step of 19, we
select 5000 samples. The remaining will be part of the test set.
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q-PCA_fit

May 7, 2022

[ ]: import pandas as pd
from sklearn.decomposition import qPCA
from sklearn.QuantumUtility.Utility import *
import warnings

[ ]: qpca70 = qPCA(svd_solver='full', name='q-PCA70').fit(training_set,␣
↪→theta_estimate=True,eps_theta=1,p=0.70,estimate_all=True,delta=0.1, eps=1,␣
↪→true_tomography=True, eta=0.1,theta_minor=np.sqrt(0.20 * training_set.
↪→shape[0]),spectral_norm_est=True, estimate_least_k=True)

1

Figure 4.1: Example of q-PCA model building from a Jupiter notebook.

want to keep in the major components, the error parameters ϵθ for the SVE procedure and
η for the amplitude estimation internally executed to estimate θ, which corresponds to the
smallest singular value to consider to retain the specified percentage of variance. Then,
we use θ in quantum top-k singular vector extraction (Algorithm 3.3) to extract top-k sin-
gular values and singular vectors, with errors ϵ and δ respectively such that ∥vi−vi∥ ≤ δ

and ∥σi − σi∥ ≤ ϵ. In this way, we can compute both yi = vTi z, with vi which is the
i-th estimated eigenvector corresponding to the i-th estimated eigenvalue λi that we can
retrieve by squaring the corresponding estimated singular value σi. Therefore, we can
compute the summation

∑k
i=1

y2i
λi

both to extract the outlier threshold and to compute
anomaly scores. For the minor components, we use the quantum least-r singular vectors
extraction algorithm, described in Theorem 3.1, to get a classical estimate of least-r sin-
gular vectors. Basically, what changes from quantum top-k singular vectors extraction is
that, in this case, we retain all the estimated singular values that are less than θ. However,
we cannot use the same θ found in quantum binary search for top-k singular vectors since
it is related to the percentage of variance that top-k major components retain. Moreover,
in this case, we cannot apply quantum binary search to estimate θ since, by definition of
minor components, we do not know what variance the minor components retain. We only
know that the minor components are the ones whose corresponding eigenvalues are less
than a specific value ν. Since in PCA, eigenvalues are related to singular values by the
formula λi =

σ2
i

n−1
, where n is the number of samples of the input data matrix, and since

λi =
σ2
i

n−1
is an increasing monotone function, we can use θ =

√
ν(n− 1) in the least-

r components extractor to select the estimated singular values that are less than that
θ. This corresponds to estimate the least-r components whose corresponding estimated
eigenvalues are less than ν, as we do in the classical procedure. In this way, we are also
able to compute

∑d
i=d−r+1

y2i
λi

.
In Figure 4.1, we report two cells of a Jupiter notebook to show how easy it is to use
our framework to build quantum models. Indeed, just import the qPCA class from the
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decomposition.qPCA.py module and use the fit() method passing the necessary parame-
ters whose description is reported in the official Sqlearn documentation. Inside the fit()
method, we implement all the logic of the quantum procedures presented in Section 3.8
used to extract the q-PCA model.

Results comparison with only major components In this case, we classify a sample
as attack if

∑k
i=1

y2i
λi

> c1, as normal otherwise. For the quantum model, we use the
following parameters, remembering that p is the percentage of variance that we want the
principal components to explain, ϵθ is the error ϵ inserted in the SVE in quantum binary
search to estimate θ such that |σi − σi| ≤ ϵθ, η is the error in the amplitude estimation
internally executed in the quantum binary search such that |p− pτ | ≤ η/2, ϵ is the error
inserted to estimate singular values such that |σ − σi| ≤ ϵ, and δ is the error we tolerate
in estimating singular vectors such that |vi − vi| ≤ δ:

• q-PCA30: ϵθ = 8, p = 0.30, δ = 0.1, ϵ = 8 and η = 0.2.

• q-PCA40: ϵθ = 1, p = 0.40, δ = 0.1, ϵ = 1 and η = 0.16.

• q-PCA50: ϵθ = 1, p = 0.50, δ = 0.1, ϵ = 1 and η = 0.1.

• q-PCA60: ϵθ = 1, p = 0.60, δ = 0.1, ϵ = 1 and η = 0.1.

• q-PCA70: ϵθ = 1, p = 0.70, δ = 0.1, ϵ = 1 and η = 0.1.

Pay attention: we use the notation ϵθ to underline the ϵ error used in the quantum binary
search to estimate θ. However, since both ϵ and ϵθ refer to the error used in the SVE
to estimate singular values, it makes sense to use the same values for both. With those
parameters, we are able to retain respectively the top 2,4,5,6, and 10 components, which
are quite consistent with the numbers in the classical experiments, which are 2,4,5,7, and
10.

α PCA30 PCA40 PCA50 PCA60 PCA70
c q c q c q c q c q

1% 0.6713 0.6629 0.9577 0.9557 0.9328 0.9296 0.9354 0.9482 0.9314 0.9284
2% 0.6881 0.6820 0.9853 0.9815 0.9721 0.9753 0.9618 0.9799 0.9319 0.9299
4% 0.7117 0.7076 0.9857 0.9825 0.9846 0.9829 0.9861 0.9823 0.9604 0.9575
6% 0.7136 0.7104 0.9868 0.9828 0.9859 0.9838 0.9873 0.9830 0.9851 0.9812
8% 0.7138 0.7107 0.9872 0.9838 0.9872 0.9842 0.9880 0.9832 0.9867 0.9836
10% 0.7141 0.7110 0.9874 0.9845 0.9874 0.9843 0.9890 0.9844 0.9944 0.9912

Table 4.1: Recall comparison for classical (c) and quantum (q) principal components
classifier with major components over KDDCUP.

We can notice that, with these error parameters, we are able to match classical per-
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α PCA30 PCA40 PCA50 PCA60 PCA70
c q c q c q c q c q

1% 0.9849 0.9852 0.9846 0.9849 0.9930 0.9937 0.9901 0.9885 0.9863 0.9868
2% 0.9715 0.9696 0.9743 0.9738 0.9810 0.9829 0.9822 0.9796 0.9818 0.9823
4% 0.9428 0.9408 0.9573 0.9507 0.9587 0.9598 0.9595 0.9582 0.9651 0.9657
6% 0.9121 0.9134 0.9358 0.9311 0.9329 0.9400 0.9400 0.9384 0.9420 0.9421
8% 0.8889 0.8893 0.9199 0.9156 0.9114 0.9187 0.9289 0.9245 0.9201 0.9207
10% 0.8649 0.8644 0.8969 0.8969 0.8944 0.8963 0.9166 0.9082 0.9005 0.9010

Table 4.2: Precision comparison for classical (c) and quantum (q) principal components
classifier with major components over KDDCUP.

α PCA30 PCA40 PCA50 PCA60 PCA70
c q c q c q c q c q

1% 0.7984 0.7926 0.9709 0.9701 0.9620 0.9606 0.9620 0.9679 0.9581 0.9567
2% 0.8056 0.8007 0.9798 0.9776 0.9765 0.9791 0.9719 0.9798 0.9562 0.9548
4% 0.8111 0.8077 0.9713 0.9663 0.9715 0.9712 0.9726 0.9701 0.9628 0.9615
6% 0.8007 0.7992 0.9606 0.9562 0.9587 0.9614 0.9631 0.9602 0.9630 0.9612
8% 0.7918 0.7900 0.9524 0.9485 0.9478 0.9503 0.9576 0.9529 0.9522 0.9511
10% 0.7823 0.7802 0.9400 0.9386 0.9386 0.9382 0.9514 0.9448 0.9451 0.9440

Table 4.3: F1_score comparison for classical (c) and quantum (q) principal components
classifier with major components over KDDCUP.

formances. In general, we can notice that as α increases, recall increases and precision
decreases. This is an expected result since increasing α means increasing the false alarm
rate, which reflects in lowering the outlier threshold and therefore in classifying more ob-
servations as attacks. In this way, the false-positive rate increases and the false negative
one decreases, leading to an increase in recall and a decrease in precision. Moreover,
the increase of false positives naturally reflects in a decrease in the true negative rate
which decreases accuracy, as we can see in Tables A.1 in Appendix A. In Table 4.3, we
also report the corresponding classical and quantum F1-score results highlighting the best
results found for each model. In this way, the reader can better visualize the best perfor-
mances.
To see how the errors affect performances, we also try to change the values of the er-
ror parameters incrementing δ and ϵ and fixing the other ones. The error ϵ is related
to the estimates of singular values, so a big ϵ error leads to totally wrong estimates of
singular values. This is a problem in the quantum top-k singular vectors extraction al-
gorithm since we extract the components whose corresponding estimated singular values
are greater than θ. Therefore, if the estimates of singular values are totally wrong, we
extract the wrong principal components with error δ, resulting in subsequent wrong model
computations. For example, let us consider the following parameters:

• q-PCA30: ϵθ = 8, p = 0.30, δ = 0.9, ϵ = 8, and η = 0.2.
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• q-PCA40: ϵθ = 20, p = 0.40, δ = 0.9, ϵ = 20, and η = 0.16.

• q-PCA50: ϵθ = 20, p = 0.50, δ = 0.9, ϵ = 20, and η = 0.1.

• q-PCA60: ϵθ = 20, p = 0.60, δ = 0.9, ϵ = 20, and η = 0.1.

• q-PCA70: ϵθ = 20, p = 0.70, δ = 0.9, ϵ = 20, and η = 0.1.

So, we increment ϵ (and ϵθ) to 20 (singular values are in the range [0, 150]) for each model
except PCA30 (since it already retains few components and, by increasing too much ϵ,
we risk reducing the number of principal components to 0), and δ = 0.9. We report the
results in the following tables where we compare them always with the classical results.

α PCA30 PCA40 PCA50 PCA60 PCA70
c q c q c q c q c q

1% 0.6713 0.6881 0.9577 0.6699 0.9328 0.0001 0.9354 0.9471 0.9314 0.9281
2% 0.6881 0.6835 0.9853 0.6814 0.9721 0.0001 0.9618 0.9814 0.9319 0.9648
4% 0.7117 0.7076 0.9857 0.7062 0.9846 0.0001 0.9861 0.9828 0.9604 0.9823
6% 0.7136 0.7102 0.9868 0.7097 0.9859 0.0001 0.9873 0.9828 0.9851 0.9829
8% 0.7138 0.7106 0.9872 0.7104 0.9872 0.0001 0.9880 0.9838 0.9867 0.9847
10% 0.7141 0.7109 0.9874 0.7106 0.9874 0.0001 0.9890 0.9841 0.9944 0.9849

Table 4.4: Recall comparison for classical (c) and quantum (q) principal components
classifier with major components over KDDCUP increasing ϵ and δ.

α PCA30 PCA40 PCA50 PCA60 PCA70
c q c q c q c q c q

1% 0.9849 0.9848 0.9846 0.9867 0.9930 0.017 0.9901 0.9899 0.9863 0.9924
2% 0.9715 0.9703 0.9743 0.9759 0.9810 0.0079 0.9822 0.9791 0.9818 0.9837
4% 0.9428 0.9425 0.9573 0.9511 0.9587 0.0035 0.9595 0.9592 0.9651 0.9570
6% 0.9121 0.9155 0.9358 0.9167 0.9329 0.0026 0.9400 0.9430 0.9420 0.9402
8% 0.8889 0.8848 0.9199 0.8890 0.9114 0.0019 0.9289 0.9224 0.9201 0.9167
10% 0.8649 0.8649 0.8969 0.8603 0.8944 0.0015 0.9166 0.9033 0.9005 0.9019

Table 4.5: Precision comparison for classical (c) and quantum (q) principal components
classifier with major components over KDDCUP increasing ϵ and δ.

α PCA30 PCA40 PCA50 PCA60 PCA70
c q c q c q c q c q

1% 0.7984 0.7961 0.9709 0.7980 0.9620 0.0003 0.9620 0.9680 0.9581 0.9592
2% 0.8056 0.8020 0.9798 0.8025 0.9765 0.0003 0.9719 0.9803 0.9562 0.9741
4% 0.8111 0.8083 0.9713 0.8106 0.9715 0.0003 0.9726 0.9709 0.9628 0.9695
6% 0.8007 0.7999 0.9606 0.8000 0.9587 0.0003 0.9631 0.9625 0.9630 0.9611
8% 0.7918 0.7882 0.9524 0.7897 0.9478 0.0003 0.9576 0.9521 0.9522 0.9494
10% 0.7823 0.7803 0.9400 0.7783 0.9386 0.0003 0.9514 0.9420 0.9451 0.9416

Table 4.6: F1_score comparison for classical (c) and quantum (q) principal components
classifier with major components over KDDCUP increasing ϵ and δ.
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As we can see, now the results for q-PCA40 and q-PCA50 are worse than the ones of
the previous experiment. The reason for this behavior is to be found in the number of
components extracted by quantum models considering the new errors. Indeed, the five
models retain 2,2,1,4, and 6 principal components respectively. So, all the models retain
less number of components with respect to the previous case (except for q-PCA30 that
we do not change) and this fact can only worsen the performances. We see that q-PCA50
has very low recall and precision near to zero. This is probably due to the fact that
q-PCA50 retains only the first principal component (with respect to the five principal
components retained by the corresponding classical model). For q-PCA40, things are a
little bit different. Indeed, we see that the performances decrease but not as in the q-
PCA50 model. This is because, in that model, we retain 40% of the variance, which is
a closer percentage to the model which retains 30%. Therefore, by keeping only the first
two principal components, we are very close to q-PCA30 model. As a matter of fact, the
results between the two are very similar. For what concerns q-PCA60 and q-PCA70, the
results are very similar to the previous ones since the number of principal components
retained by the two models is close to the previous case.
Also changing the η error parameter leads to a different number of components retained
and therefore to a worsening of the performances. Anyway, these experiments would need
further investigation to better understand the behavior of the quantum models at the
increase of ϵ and δ.

Results comparison with both major and minor components In this experiment,
we classify a sample as an attack if

k∑
i=1

y2i
λi
> c1 or

d∑
i=d−r+1

y2i
λi
> c2

and as normal if
k∑

i=1

y2i
λi

≤ c1 and
d∑

i=d−r+1

y2i
λi

≤ c2.

We maintain the same error parameters reported in the previous paragraph (the ones that
give better results) to estimate both major and minor components. To extract the minor
components, we also add, as previously said, θ =

√
0.20(n− 1) as a parameter in the

quantum least-r singular vectors extraction, where n is the number of training samples
(in this case n = 5000). With these error parameters, we obtain the following models that
both in terms of number of components retained and in terms of performances are very
consistent with the classical ones:
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• q-PCA30 with 2 major and 7 minor components (with respect to 2 major and 7
minor of the classical case).

• q-PCA40 with 5 major and 6 minor components (with respect to 4 major and 6
minor of the classical case).

• q-PCA50 with 5 major and 7 minor components (with respect to 5 major and 6
minor of the classical case).

• q-PCA60 with 6 major and 7 minor components (with respect to 7 major and 7
minor of the classical case).

• q-PCA70 with 10 major and 7 minor components (with respect to 10 major and 6
minor of the classical case).

α PCA30 PCA40 PCA50 PCA60 PCA70
c q c q c q c q c q

1% 0.9427 0.9490 0.9857 0.9826 0.9853 0.9861 0.9864 0.9862 0.9862 0.9868
2% 0.9610 0.9835 0.9870 0.9835 0.9865 0.9872 0.9875 0.9874 0.9866 0.9873
4% 0.9891 0.9847 0.9880 0.9847 0.9873 0.9881 0.9889 0.9889 0.9880 0.9890
6% 0.9901 0.9852 0.9894 0.9852 0.9877 0.9894 0.9895 0.9894 0.9884 0.9899
8% 0.9907 0.9867 0.9903 0.9867 0.9897 0.9918 0.9898 0.9899 0.9893 0.9927
10% 0.9915 0.9887 0.9917 0.9887 0.9909 0.9941 0.9919 0.9924 0.9959 0.9987

Table 4.7: Recall comparison for classical (c) and quantum (q) principal components
classifier with major and minor components over KDDCUP.

α PCA30 PCA40 PCA50 PCA60 PCA70
c q c q c q c q c q

1% 0.9758 0.9762 0.9712 0.9718 0.9786 0.9747 0.9764 0.9756 0.9726 0.9699
2% 0.9572 0.9570 0.9509 0.9505 0.9580 0.9578 0.9573 0.9534 0.9596 0.9558
4% 0.9160 0.9159 0.9187 0.9147 0.9120 0.9208 0.9207 0.9157 0.9161 0.9142
6% 0.8785 0.8782 0.8874 0.8915 0.8870 0.8885 0.8916 0.8841 0.8888 0.8825
8% 0.8483 0.8520 0.8599 0.8707 0.8580 0.8606 0.8788 0.8695 0.8611 0.8584
10% 0.8183 0.8213 0.8313 0.8460 0.8314 0.8374 0.8577 0.8440 0.8325 0.8314

Table 4.8: Precision comparison for classical (c) and quantum (q) principal components
classifier with major and minor components over KDDCUP.

Even in this case, we show that we are able to get the same performances in both cases. It
is evident that now, also for the PCA model that retains 30% of the variance, the results
are very similar to the others. We rightly notice a decrease in precision at the increase of
α, while recall increases. We can also notice that recall, in the case of using both major
and minor components, is higher with respect to the model in which we use only the
major ones (whose results are reported in Table 4.1), but precision is lower. We expect
this behavior since using two control summations in OR condition instead of one reflects
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α PCA30 PCA40 PCA50 PCA60 PCA70
c q c q c q c q c q

1% 0.9590 0.9624 0.9784 0.9772 0.9819 0.9803 0.9814 0.9809 0.9794 0.9783
2% 0.9591 0.9699 0.9686 0.9667 0.9720 0.9723 0.9722 0.9701 0.9729 0.9713
4% 0.9512 0.9495 0.9521 0.9484 0.9482 0.9533 0.9536 0.9509 0.9507 0.9501
6% 0.9310 0.9295 0.9356 0.9360 0.9347 0.9363 0.9380 0.9338 0.9360 0.9331
8% 0.9140 0.9149 0.9205 0.9251 0.9192 0.9216 0.9310 0.9258 0.9208 0.9207
10% 0.8966 0.8972 0.9045 0.9118 0.9042 0.9090 0.9199 0.9122 0.9069 0.9074

Table 4.9: F1_score comparison for classical (c) and quantum (q) principal components
classifier with major and minor components over KDDCUP.

in higher chance to classify an observation as an anomaly. This leads to an increase in the
false-positive rate and a decrease in false-negative cases (which results in an increase in
recall) since, as previously said, the test sets are unbalanced towards the normal samples.
Therefore, in this type of dataset, increasing the predictions of attacks increases the risk
of false positives.
As done for the previous experiment, by increasing the error parameters for the quantum
models, we found almost the same behavior that we discuss in the previous experiments.
We saw that the performances decrease when we increase both δ and ϵ error since not
only the principal components are more distant from the real ones due to the increase of
δ, but also their number differs considerably from the classical case.
The interested reader can also check Table A.3 to verify the accuracy results.

4.2. Principal components classifier over CICIDS 2017

Preprocessing Here we take into account the CICIDS 2017 dataset, considering only
DDoS as attacks (we called it CICIDS_DDoS). More precisely, we measure our perfor-
mances over a slightly unbalanced test set towards benign cases. We consider the training
set composed of 5000 benign samples and the test set composed respectively of 87,300
benign and 70,000 DDoS samples. First of all, we extract from the DateTime feature
the hours, minutes, month, and day, which become four new features. Then, we encode
the categorical features Flow ID, Source IP, Destination IP, and Timestamp using the
LabelEncoder() Python function, converting them into numerical features. With the Vari-
anceThreshold() function, we find the constant features, which are the ones that bring
no information with them or, equivalently, have 0 variance. After having normalized the
dataset, we remove these features together with the categorical ones as the Source IP or
the Source Port since they do not bring any useful or additional information with respect
to the others. The normalization process is equal to the one performed for KDDCUP 99
in the previous experiments: we standardize the features by removing the mean and scal-
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ing to unit variance. We have to consider also another important thing. In the CICIDS
dataset, there is the feature FLOW ID which is a unique index that corresponds to a
specific packet flow. Before removing it, we use it to be sure to not include observations
with the same Flow ID into the training and test sets. This is because, otherwise, it could
cause the model to make misleading predictions on the base of what it has learned in the
training. If we had two samples with the same Flow ID, one in the training and the other
in the test set, it is as if we had two equal samples in the two sets, leading to overfitting
problems.

Classical and quantum model building The fitting of classical and quantum models
is equal to the one reported in the previous experiment’s section. We always compare
five different PCA models that retain 30%, 40%, 50%, 60%, and 70% of the variance in the
principal components. In this experiment, we use only the principal components classifier
model (and q-PCC) with both minor and major components. We refer the reader to the
previous section for a more detailed explanation.

Results comparison First of all, we report the error parameters used in quantum
models:

• q-PCA30: ϵθ = 1, p = 0.30, δ = 0.1, ϵ = 1, and η = 0.1.

• q-PCA40: ϵθ = 1, p = 0.40, δ = 0.1, ϵ = 1, and η = 0.2.

• q-PCA50: ϵθ = 1, p = 0.50, δ = 0.1, ϵ = 1, and η = 0.1.

• q-PCA60: ϵθ = 1, p = 0.60, δ = 0.1, ϵ = 1, and η = 0.1.

• q-PCA70: ϵθ = 1, p = 0.70, δ = 0.1, ϵ = 1, and η = 0.1.

We also report the components retained for each model that, as we can see, are very
consistent with the classical ones:

• q-PCA30 with 1 major and 32 minor components (with respect to 2 major and 31
minor of the classical case).

• q-PCA40 with 2 major and 32 minor components (with respect to 2 major and 31
minor of the classical case).

• q-PCA50 with 3 major and 32 minor components (with respect to 3 major and 31
minor of the classical case).

• q-PCA60 with 4 major and 32 minor components (with respect to 5 major and 31
minor of the classical case).
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• q-PCA70 with 6 major and 32 minor components (with respect to 7 major and 31
minor of the classical case).

α PCA30 PCA40 PCA50 PCA60 PCA70
c q c q c q c q c q

1% 0.4086 0.4076 0.3506 0.3515 0.3487 0.3390 0.4107 0.4093 0.4084 0.3605
2% 0.4948 0.4371 0.4166 0.4167 0.4189 0.4113 0.5017 0.4861 0.4596 0.5897
4% 0.5919 0.5899 0.5613 0.6012 0.5588 0.5554 0.5945 0.5981 0.6326 0.6330
6% 0.6290 0.6271 0.6292 0.6587 0.6265 0.6227 0.6315 0.6320 0.6334 0.6337
8% 0.6371 0.6358 0.6931 0.7118 0.6320 0.6310 0.6993 0.6387 0.6384 0.6443
10% 0.6504 0.6529 0.7476 0.7621 0.6477 0.6449 0.6523 0.6548 0.6465 0.6590

Table 4.10: Recall comparison for classical (c) and quantum (q) principal components
classifier with major and minor components over CICIDS.

α PCA30 PCA40 PCA50 PCA60 PCA70
c q c q c q c q c q

1% 0.9759 0.9718 0.9700 0.9709 0.9689 0.9705 0.9746 0.9738 0.9695 0.9694
2% 0.9586 0.9429 0.9496 0.9492 0.9481 0.9492 0.9605 0.9564 0.9483 0.9654
4% 0.9277 0.9187 0.9300 0.9300 0.9312 0.9312 0.9375 0.9339 0.9396 0.9436
6% 0.9013 0.8937 0.9045 0.9052 0.9077 0.9059 0.9134 0.9093 0.9135 0.9161
8% 0.8777 0.8684 0.8880 0.8917 0.8846 0.8817 0.8883 0.8859 0.8854 0.8899
10% 0.8551 0.8400 0.8727 0.8751 0.8590 0.8593 0.8649 0.8623 0.8655 0.8692

Table 4.11: Precision comparison for classical (c) and quantum (q) principal components
classifier with major and minor components over CICIDS.

α PCA30 PCA40 PCA50 PCA60 PCA70
c q c q c q c q c q

1% 0.5760 0.5743 0.5150 0.5161 0.5129 0.5025 0.5779 0.5763 0.5747 0.5257
2% 0.6527 0.5973 0.5791 0.5792 0.5811 0.5739 0.6592 0.6446 0.6191 0.7322
4% 0.7227 0.7185 0.7001 0.7303 0.6985 0.6958 0.7276 0.7290 0.7561 0.7577
6% 0.7410 0.7370 0.7421 0.7625 0.7414 0.7381 0.7470 0.7457 0.7481 0.7492
8% 0.7383 0.7341 0.7785 0.7917 0.7373 0.7356 0.7435 0.7423 0.7419 0.7475
10% 0.7388 0.7347 0.8054 0.8147 0.7385 0.7368 0.7437 0.7444 0.7401 0.7497

Table 4.12: F1_score comparison for classical (c) and quantum (q) principal components
classifier with major and minor components over CICIDS.

Taking a look at Tables 4.10 and 4.11, that report the comparison between quantum and
classical recall and precision respectively, we can see that, by tolerating the previously
reported error, we are able to match classical performances. However, it is evident that
the performances have worsened compared to the results on KDDCUP reported in Tables
4.7 and 4.8. This is not surprising given that there is no machine learning model that
always performs well, but it depends on the specific problem and the data on which we
are evaluating it. This is a consequence of the famous No free lunch theorem, stated by
Wolpert and Macready [53] in which it is demonstrated that, in absence of any assumptions
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on the data, there is no reason to prefer one model over another.
In Table A.4, we report the corresponding results of the accuracy comparison.

4.3. Ensemble of principal components classifiers over

CICIDS 2017

We described this model in Section 1.2.2. We just remember briefly that this model is
an extension to the principal components classifier model by adding the cosine similarity
measure and the correlation measure to compute yi which is used to calculate the anomaly
thresholds and scores.

Preprocessing In this experiment, we use the same training and test sets of the pre-
vious experiment, so that we can compare performance between the two models over the
same data. Therefore, the preprocessing is the same as the one reported in the previous
experiment. We remember the proportions of the dataset: 5000 benign samples in the
training set and 87,300 benign plus 70,000 DDoS samples in the test set.

Classical model building Also the fitting of the model is almost identical to the one
of the principal components classifier model with both major and minor components.
The difference is that here, we have to extract also the outlier thresholds computed with
the cosine similarity and with the correlation between eigenvectors and training samples.
As before, we fit always five different models with 30%, 40%, 50%, 60%, and 70% of vari-
ance retained in the principal components and we extract the minor components whose
corresponding eigenvalues are less than 0.20.

Quantum model building We briefly report this description since it is equal to the
case of the fitting of quantum principal components classifier model with major and minor
components described before. Indeed, to extract the major components we execute the
quantum binary search, specifying ϵθ, η, and p to estimate θ which is used, in the quantum
top-k singular vector extraction, to retrieve a classical description of top-k singular values
and singular vectors, with error ϵ and δ respectively. To extract the minor components,
we use the least-r singular vectors extraction, always using θ =

√
0.20 ∗ (n− 1). Once

estimated the principal components, we need to compute the estimate yi using the dot
product, the cosine similarity, and the correlation measure. Then, as before, since after
fitting q-PCA we are also able to get an estimate of the eigenvalue λi, we can compute
all the thresholds and all the anomaly scores, as in the classical case.
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Results comparison We execute all the five q-PCA models with the following error
parameters:

• q-PCA30: ϵθ = 1, p = 0.30, δ = 0.1, ϵ = 1 and η = 0.1.

• q-PCA40: ϵθ = 1, p = 0.40, δ = 0.1, ϵ = 1 and η = 0.2.

• q-PCA50: ϵθ = 1, p = 0.50, δ = 0.1, ϵ = 1 and η = 0.1.

• q-PCA60: ϵθ = 1, p = 0.60, δ = 0.1, ϵ = 1 and η = 0.1.

• q-PCA70: ϵθ = 1, p = 0.70, δ = 0.1, ϵ = 1 and η = 0.1.

We obtain the following models:

• q-PCA30 with 1 major and 32 minor components (with respect to 2 major and 31
minor of the classical case).

• q-PCA40 with 2 major and 32 minor components (with respect to 2 major and 31
minor of the classical case).

• q-PCA50 with 3 major and 32 minor components (with respect to 3 major and 31
minor of the classical case).

• q-PCA60 with 4 major and 32 minor components (with respect to 5 major and 31
minor of the classical case).

• q-PCA70 with 7 major and 32 minor components (with respect to 7 major and 31
minor of the classical case).

α PCA30 PCA40 PCA50 PCA60 PCA70
c q c q c q c q c q

1% 0.4962 0.4758 0.5302 0.5862 0.3727 0.3570 0.4976 0.4846 0.4410 0.3980
2% 0.6278 0.5714 0.6388 0.6854 0.5375 0.5104 0.6341 0.6263 0.5805 0.7384
4% 0.8468 0.8493 0.8523 0.8822 0.7775 0.7368 0.8488 0.8688 0.8525 0.8961
6% 0.9510 0.9541 0.9112 0.9127 0.9458 0.9206 0.9518 0.9629 0.9499 0.9696
8% 0.9660 0.9673 0.9415 0.9419 0.9646 0.9570 0.9666 0.9682 0.9729 0.9756
10% 0.9749 0.9770 0.9780 0.9766 0.9740 0.9717 0.9779 0.9779 0.9752 0.9778

Table 4.13: Recall comparison for classical (c) and quantum (q) ensemble principal com-
ponents classifiers over CICIDS.

It is very interesting to notice that by exploiting the ensemble model, we have a boost
in performance, particularly in recall. Indeed, as we can note, we have an increase of
≈ 30% over the principal components classifier model with major and minor components
(except for α = 1%), reported in Table 4.10. We can also see that the precision results,
in Table 4.14, are lower than the ones reported in Table 4.11. But, in comparison, the
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α PCA30 PCA40 PCA50 PCA60 PCA70
c q c q c q c q c q

1% 0.9580 0.9431 0.9565 0.9611 0.9244 0.9194 0.9545 0.9446 0.9459 0.9530
2% 0.9228 0.9075 0.9241 0.9279 0.8982 0.8935 0.9295 0.9180 0.9196 0.9407
4% 0.8921 0.8868 0.8919 0.8947 0.8847 0.8783 0.8960 0.8915 0.8972 0.9079
6% 0.8718 0.8669 0.8607 0.8607 0.8619 0.8623 0.8702 0.8687 0.8648 0.8725
8% 0.8429 0.8383 0.8368 0.8365 0.8402 0.8392 0.8394 0.8432 0.8296 0.8345
10% 0.8167 0.8074 0.8169 0.8143 0.8111 0.8126 0.8144 0.8156 0.8014 0.8044

Table 4.14: Precision comparison for classical (c) and quantum (q) ensemble principal
components classifiers over CICIDS.

α PCA30 PCA40 PCA50 PCA60 PCA70
c q c q c q c q c q

1% 0.6538 0.6325 0.6823 0.7283 0.5312 0.5143 0.6542 0.6406 0.6015 0.5615
2% 0.7473 0.7013 0.7554 0.7884 0.6726 0.6497 0.7539 0.7446 0.7117 0.8274
4% 0.8689 0.8676 0.8717 0.8884 0.8276 0.8013 0.8718 0.8800 0.8743 0.9019
6% 0.9097 0.9084 0.8852 0.8859 0.9019 0.8905 0.9091 0.9134 0.9054 0.9185
8% 0.9003 0.8982 0.8860 0.8861 0.8981 0.8942 0.8985 0.9014 0.8955 0.8995
10% 0.8888 0.8842 0.8902 0.8881 0.8851 0.8850 0.8876 0.8894 0.8798 0.8827

Table 4.15: F1_score comparison for classical (c) and quantum (q) ensemble principal
components classifiers over CICIDS.

increase in recall is much higher than the decrease in precision and this makes the F1-
score increases with respect to the previous case, as reported in Table 4.15. The fact
that the precision is lower depends always on the fact that using more conditions in
OR in the classification procedure (since now we have to consider also the conditions
relative to the cosine and correlation measures) increases the probability of classifying a
sample as an attack increasing the risk of false-positive cases. But we can see that, with
this type of data, the gain in recall is much higher than the risk of increasing the false
positive. In Table A.5, we also see that the accuracy benefits from this model. Indeed, it
increases, such as for PCA30 with α = 6%, more than 10% with respect to the accuracy
corresponding to the PCC model reported in Table A.4.

4.4. PCA with reconstruction loss over CICIDS 2017

and Darknet

In this section, we report the experiments done with the PCA with reconstruction loss
model over CICIDS and Darknet datasets. For what concerns the CICIDS dataset, we
use two different versions: the CICIDS_ALL and the CICIDS_DDoS datasets. In the
first one, we use a test set very unbalanced towards the anomaly samples with the same
proportions used in Verkerken et al. [49]. In the second, we use an unbalanced test set but
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towards the benign samples, considering as anomalies only the DDoS attacks, as reported
by Yulianto et al. [54]. It is important to underline that, for this model, we need also a
validation set since we need to tune some hyperparameters to choose the best model.
We briefly remember how this model works: we project the original data into the PCA
feature space that we obtain by fitting PCA over normal samples. Then, we map back the
transformed data into the original feature space. We compute the loss (or anomaly score)
ℓ between the original and reconstructed sample and we classify a sample as anomalous
if the corresponding anomaly score ℓ > t, where t is the outlier threshold that we find in
the hyperparameter tuning.

Preprocessing We follow the preprocessing procedure reported by Verkerken et al. [49].
Therefore, we encode the categorical features, we find the constant features and we remove
them, paying attention to consider training and test sets with no observations with the
same Flow ID. For what concern the normalization, we can use many normalizers such as
StandardScaler(), QuantileTransformer(), and many others. The choice of which to use is
made through hyperparameter tuning, looking at which one results in better performance
on the validation set.

Validation process We use the Optuna library [1] of Python to perform hyperparame-
ter optimization. It works by executing many times the function that we want to optimize,
searching for the global minimum of that function. Therefore, we specify all the param-
eters that we want to optimize, which in our case are: the normalization methods, the
classification threshold, the number of components that the PCA model retains, and the
number of quantiles, in the case we choose the QuantileTransformer as normalization pro-
cess. Then, Optuna chooses a normalization method (for example, QuantileTransformer
with the relative number of quantiles) and normalizes the dataset. After that, we fit the
PCA model with nc number of components over the normalized training set. Finally,
we apply the procedure of the PCA with reconstruction error model on the validation
set. So, we map each observation of the validation set in the PCA feature space and we
map back the projected data in the original feature space using the fitted PCA. Then, we
compute the loss using the residual sum of square between all the original observations
and the reconstructed ones. Based on a threshold t, we classify the specific observation
as an anomaly or not. This process is repeated many times by Optuna (we can specify
the number of iterations) that, as said, tries to minimize the objective value, which in
our case is the F1-score (we choose this metric since, being the harmonic mean of the
precision and recall, it is like if we minimize together those two metrics). Obviously, we
want to maximize the F1-score, so we minimize the negative F1-score, which is the same
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as maximizing the aforementioned metric.

Classical model building. Once finished with the validation step, we fit a PCA model
with the training set composed only of normal instances and normalized with the nor-
malizer found in the validation phase, specifying the best number of components found in
the optimization step. This is the final model we use to transform and reconstruct each
sample.

Quantum model building We fit the q-PCA model with the normalized training set
composed of only normal instances specifying the number of components to retain. Here
there is a little difference with respect to the usual procedure. Indeed, the quantum bi-
nary search requires the percentage of variance p that we want to retain (together with
the error parameters ϵθ and η), and it provides an estimate of θ. Now, since we have the
number of principal components that we want to keep from the classical hyperparameter
tuning, we can classically compute what percentage of total variance it corresponds to,
using the factor score ratio of each component. More precisely, after classically decom-
posing the input data matrix with SVD, we get a description of singular vectors, singular
values, factor scores, and factor score ratios. Therefore, if we want to retain nc principal
components, the sum of the first nc factor score ratios corresponds to the percentage of
variance retained by the first nc components. Then, we use that percentage as input
parameter p into the quantum binary search. In this way, we retrieve θ that we use in
quantum top-k singular vectors extraction to extract an estimate of top-k principal com-
ponents with error δ. Once the principal components have been extracted, we are able to
map and re-project back the data using quantum mapping and inverse quantum mapping
methods respectively to compute the reconstruction loss and perform the detection (we
described these two methods in the previous chapter).

Results comparison over CICIDS_ALL dataset with a test set unbalanced
towards anomalies In this experiment, we consider a training set of 50,000 normal
samples, a validation of 60,000 normal and 166,966 attacks, and a test set of 140,000
normal and 389,590 attacks [49]. In the hyperparameters tuning, we found that the best
PCA model has 12 principal components (which retain 94.88% of the variance) and it is
fitted with a training set normalized with QuantileTransformer with 751 quantiles. The
outlier threshold is t = 0.4259394035517815. Therefore, each sample whose anomaly score
is higher than t is classified as anomalous.
The error parameters used in the quantum model are ϵθ = ϵ = 3, p = 94.88%, and η =

0.04. With these error parameters, we are able to extract the top-11 principal components
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in the quantum model. For this type of experiments, it is even more important to be sure
to be consistent, with the classical case, in the number of principal components retained
since all the other parameters such as the number of quantiles and the outlier threshold
are optimized together with the number of principal components. Therefore, since in the
quantum models we reuse the parameters found in the classical hyperparameters tuning, it
is important that also the number of principal components is consistent with the classical
case.

Recall Precision F1-Score Accuracy

0.9585 0.9203 0.9390 0.9085

Table 4.16: Results of PCA with reconstruction loss over unbalanced CICIDS 2017 to-
wards anomaly samples.

δ Recall Precision F1-Score Accuracy

0.01 0.9643 0.9072 0.9349 0.9012
0.1 0.9644 0.9071 0.9349 0.9012
0.9 0.9649 0.9015 0.9321 0.8966
2 0.9807 0.8743 0.9244 0.8821

Table 4.17: Results of q-PCAs with reconstruction loss over CICIDS 2017 unbalanced
towards anomalies with different values of δ error.

As we can see, by increasing the error δ, precision and accuracy decrease while recall
increases. In this experiment, we can notice the impact of the balancing of the dataset
in the performance. Indeed, even inserting δ = 2 as error, the performance do not
decrease so much compared to the classical one. There are two main reasons. The first is
related to the fact that tomography returns estimates with an error lower than the error
δ inserted, as shown in Section 3.2.2. This allows us to increase the error and still get
good performances. The second reason is related to the balancing of the dataset. Indeed,
in this case, anomalies are much more than normal samples in the test set. Therefore, the
unbalancing towards anomalies still helps to achieve good performance even with larger
errors.
In this experiment, we also report the cumulative anomaly score distribution for different
types of attacks. In this way, we can see which are the type of attacks well recognized
by this model and which are not. Here we only report the plot of the distribution of two
types of attacks: DDoS, in Figure 4.2a, and SQL Injections, in Figure 4.2b, since they
well describe two extreme cases. In Section A.2 in Appendix A, we report the plots for
all the other types of attacks present in CICIDS dataset. On the x-axis, we report the



116 4| Applications to cybersecurity

0 1 2 3 4 5
anomaly score

0.0

0.2

0.4

0.6

0.8

1.0

pe
rc

en
til

e

(a) Cumulative anomaly score distribution for
DDoS attack.
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(b) Cumulative anomaly score distribution for
SQL Injection attack.

Figure 4.2: Cumulative anomaly score distribution for DDoS and SQL-Injection attacks.
The red vertical line indicates the outlier threshold. The blue points at the right of the
threshold are the ones correctly classified as attacks by the model. On the x-axis, we report
the anomaly scores for each observation, while the y-axis represents the corresponding data
percentile.

anomaly score for each observation, while the y-axis represents the corresponding data
percentile. Therefore, taking a specific anomaly score value x, we can see, by checking
its corresponding percentile value y, how many data (y%) have an anomaly score less
than x. Moreover, these plots indicate that if a blue dot is at the right of the threshold
is correctly classified as an attack from the model (indeed, the model classifies a sample
as an attack if its anomaly score is greater than the outlier threshold). If not, it is a
false-negative observation, which means that it is classified as a normal sample but, in
fact, it is an anomaly. We can notice that this model is able to detect the majority of
the DDoS attacks, while it is more difficult to detect attacks like SQL-Injections. For this
reason, in the next experiment, we test this model over a test set where we consider only
DDoS as attacks.

Results comparison over CICIDS_DDoS dataset with the test set unbalanced
towards normal samples Considering a training set of 158,000 normal samples, a test
set of 50,000 normal samples and 12,000 anomalies (as said, we use the same train/test
split reported in [54]) and a validation set of 50,000 normal and 10,000 anomaly samples
where, in this case, we consider only the DDoS attack as anomaly. With the hyperpa-
rameter tuning, we found that the best PCA model has 32 principal components (that
retain 99.75% of the variance) and is fitted on a training set normalized with Quantile-
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Transformer with 24 quantiles. The outlier threshold is t = 0.06632108379654125. For
the quantum case, we are able to extracts exactly 32 principal components, as in the clas-
sical case, with the following error parameters in quantum binary search: ϵθ = ϵ = 0.3,
p = 99.75%, and η = 0.00075.

Recall Precision F1-Score Accuracy

0.9912 0.9128 0.9504 0.9808

Table 4.18: Results of PCA with reconstruction loss over unbalanced CICIDS 2017 to-
wards normal samples.

δ Recall Precision F1-Score Accuracy

0.01 0.9912 0.9128 0.9504 0.9808
0.1 0.9917 0.9123 0.9503 0.9808
0.9 0.9979 0.7131 0.8318 0.9252
2 1.0 0.2730 0.4289 0.5066

Table 4.19: Results of q-PCAs with reconstruction loss over CICIDS 2017 with different
values of δ error.

Here the interesting thing to notice is that comparing quantum results with the ones in
Table 4.18, we see that, also with an error δ = 0.1, we can achieve almost the same
performances as the classical version of the model. This is mainly due to the fact that
tomography returns an estimate with an error that is smaller than δ, as seen in the previous
experiment. However, in this case, by having more normal samples than anomalies, the
balancing does not help in maintaining good performances as δ increases. Indeed, as
expected, at the increase of δ, precision and accuracy decrease much more than that
reported in Table 4.17. With δ = 2, we get 1.0 of recall and about 0.27 of precision.
This means that the model almost always predicts attack and it is also confirmed by the
accuracy which goes to 50%. We remember that, when we estimate a vector, an error of
δ = 2 means that the estimated vector goes in the opposite direction with respect to the
real one and so it is the maximum error that we can have when estimating a vector.
Comparing also with the results reported by Yulianto et al. [54], where they use the
AdaBoost model fitted over a training set and evaluated over a test set with the same
proportions as ours, we found that our model outperforms the best AdaBoost. We can also
see that, with a test set composed of much more normal samples than anomalies (like in a
real scenario) and considering only the DDoS attacks, we obtain very good performances.
A very high accuracy, which in this case means that 98 out of 100 observations are correctly
classified, together with a 95% of F1-score indicate very good performances. These results
confirm the goodness of this model in detecting DDoS attacks, as shown in Figure 4.2a.
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Results comparison over Darknet dataset We show the results obtained with PCA
with reconstruction loss model over the Darknet dataset. More precisely, we use a test set
of 21,000 normal plus 14,000 anomalies samples (remember that in this dataset we consider
Tor and VPN as the same anomalies), using a PCA model fitted over a training set of
50,000 normal samples tuned over a validation set of 20,000 normal plus 10,000 anomalies.
In this case, the best hyperparameters found are nc = 35 principal components (which
retain 99.65% of the variance) and outlier threshold t = 0.4438816547139376. We do
not report the number of quantiles since the best normalizer found is the StandardScaler
which takes no input parameters. For the quantum model, we use the following error
parameters: ϵθ = ϵ = 0.35, η = 0.0011, and p = 99.65%. With these error parameters, we
extract 34 principal components which is very consistent with the classical case.

Recall Precision F1-Score Accuracy

0.8417 0.7371 0.7859 0.8135

Table 4.20: Results of PCA with reconstruction loss over Darknet dataset.

δ Recall Precision F1-Score Accuracy

0.1 0.8440 0.7318 0.7839 0.8107
0.9 0.8708 0.6812 0.7644 0.7817
2 0.9147 0.5997 0.7244 0.7169

Table 4.21: Results of q-PCA with reconstruction loss over Darknet dataset.

Looking at the classical results reported in Table 4.20, we can see that they are slightly
better than the one of the 1D-CNN model reported in Table 6 by Habibi Lashkari et al.
[17] (only the precision is slightly worst), where deep learning models over the Darknet
dataset are used. Of course, we do not know how they preprocess data and how they split
training and test set. So, this is not a true faithful comparison, but it is just to have an
idea of the goodness of this model. For what concerns the comparison between classical
and quantum results, we can notice the same behavior of the previous experiments with
the CICIDS 2017 dataset. Indeed, we can see that with δ = 0.1, we achieve almost
the same classical performances and as δ increases, recall increases while precision and
accuracy decrease.
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4.5. PCA and K-Means over KDDCUP

The last shown experiment is the one in which we use both PCA and K-Means. We
replicate the experiments reported by Peng et al. [35]. As said in the corresponding
paragraph in Section 1.2, this is not a true anomaly detection model since the goal is
to evaluate the goodness of the clustering by extracting the CH index: higher values of
CH indicate that clusters are dense and well-separable. The score is defined as the ratio
between the within-cluster dispersion and the between-cluster dispersion. So it is not a
classification model but the objective is to find the best clustering between the data.

Preprocessing As depicted before, for this experiment, we use the KDDCUP 99 dataset.
We follow the preprocessing reported by Peng et al. [35]: we encode the categorical fea-
tures with random numbers and then normalize the dataset using the MinMaxScaler to
get all the values between [0,1].

Classical model building By trial and error, we find that to reproduce the paper’s
results, we need to set the number of principal components n_components = 1. Once
fitted the PCA model over all the preprocessed data, we project all the data into the new
1-dimension PCA space using the transform() method. Over these transformed data, we
apply the K-Means clustering with different number of clusters nk = [10, 20, 30, . . . , 100].
Using the already implemented calinski_harabasz_score() method of Sklearn, we compute
the specific CH index and we plot the results.

Quantum model building In this case, we know that the PCA model has to retain
only the first principal component. Therefore, we classically compute the percentage of
variance to which the first principal component corresponds to by looking at the cor-
responding factor score ratio that we found to be ≈ 0.6. We use this value as input
parameter p = 0.6 into the quantum binary search, with ϵθ = ϵ = 5 and η = 0.1. Then,
the procedure is always the same: once retrieved θ, we use it to extract top-k components
with error δ = 0.1. After retrieving a classical description of the first principal component,
we use it to project the data into the q-PCA feature space, using the quantum_transform()
method. Now, we apply the q-Means algorithm over these 1-dimensional data with error
δ = 0.0005, as required in Algorithm 3.4, specifying the number of clusters nk. Finally,
once obtained a classical description of the clustering, we compute the CH score as in the
classical case.
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Comparison results If we take a look at Figure 4.3a, we can see that we are able to
classically reproduce the CH results reported by Peng et al. [35] in Figure 14. Moreover,
also with quantum models with the error parameters previously specified, we are able to
get almost the same CH results with respect to the classical case.
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Figure 4.3: CH comparison between PCA and K-Means and q-PCA and q-Means.

4.6. Runtime comparison and analysis

We conclude this experiment chapter with the comparison of the running time between
the classical and quantum extraction of anomaly detection models. This topic is very
important because it is the conclusion of our work. Indeed, in the previous sections, we
report our study about the error that we have to consider in quantum algorithms and how
it affects the detection capabilities of our models. Therefore, after demonstrating that
we can obtain the same performances as the classical model, the last part of our research
concerns the study of the running time to see when quantum models offer advantages in
terms of time with respect to the classical ones. We already know from the theory that
with high-dimensional data quantum machine learning shows a running time advantage
over classical machine learning. In our experiment, we start to quantify the number
of samples and features needed to observe such a quantum speed-up. We compare the
running times by plotting the classical and quantum time complexity as the number of
samples and features increases, keeping fixed all the error parameters previously found
and fixing the probability of failure to γ = 1

d
(therefore probability of success 1− 1

d
), with

d number of features of the input data matrix X ∈ Rn×d, as reported in the description
of Algorithm 3.3 for the extraction of top-k singular vectors.
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We report three case studies: one for the principal components classifier model with only
major components, one for the principal components classifier model with major and
minor components, and the other for PCA with reconstruction loss since they cover all
the main case studies. For each one of these cases, we analyze the results found with a
practical perspective.
An important thing to remark is that we make a comparison between the time complexity
of the model’s extraction. For example, the time required to store the normalized input
data matrixX in the QRAM, in the quantum case, is not considered. Instead, we consider
the cost of the necessary steps for the fitting of the model, as the cost of the quantum
binary search and the top-k singular vectors extraction procedures. In the same way, we
do not consider the classical way to load the data matrix X on the hard disk. Therefore,
the quantum and classical running times are comparable.

Principal component classifier with major components over KDDCUP In this
first case, we report the running time comparison between the fitting of the principal com-
ponents classifier model and its quantum version with only major components over the
KDDCUP dataset. Just to clarify, we are referring to the experiments whose results are
reported in Tables 4.1 and 4.2. We consider PCA models that retain 50% and 70% of the
total variance, called PCA50 and PCA70 (or q-PCA50 and q-PCA70 in quantum case).
For what concerns the time complexity for the classical case, since in the model’s fitting we
search for the principal components that retain 50% and 70% of the variance respectively,
there is no need to perform the full SVD. Indeed, we compare with a randomized version
of SVD, also present in the Sklearn implementation, which has a cost of O (nd log(k))

[18], where n, d are respectively the number of samples and features of the dataset and k
is the number of principal components. In this way, we compare the running time of the
quantum model with a faster classical algorithm with respect to the classical full SVD.
For the quantum running time, we consider the time complexity of quantum routines
used in the fitting of the model, which are the quantum binary search and the quan-
tum top-k singular vector extraction. The first has a cost of Õ

(
µ(X) log(µ(X)/ϵ)

ϵη

)
while

the latter requires O
(

∥X∥µ(X)k log(k)
θ
√
pϵ

)
steps to estimate the top-k singular values, factor

score, and factor score ratios, and O
(

∥X∥µ(X)k log(k)d log(d)
θ
√
pϵδ2

)
to estimate the top-k right

singular vectors. We remember that ϵ and δ are the error that we tolerate in estimating
singular values and singular vectors respectively, θ is the value estimated in the quantum
binary search, p is the variance that we want to retain in the principal components, ∥X∥
is the spectral norm of the input matrix X that we can estimate using the procedure
described in Algorithm 2.5, and µ(X) = minp∈[0,1](∥X∥F ,

√
s2p(X)s2(1−p)(XT )) where
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sp(X) = maxi∥xi,·∥pp. Therefore, by fixing these parameters we compare the running
times at the increasing of n and d. In Figure 4.4, we can see the comparison between
the running time of the quantum fitting model (blue) and the randomized classical one
(green). We report two plots: one for the model that retains 50% of the total variance
(in Figure 4.4a), and the other for the model that retains 70% of the variance (in Fig-
ure 4.4b). We remember the quantum parameters that we use in these experiments:
δ = 0.1, ϵ = 1, p = 0.70, ϵθ = 1, and η = 0.1 for the q-PCA70 model and the same, but
with p = 0.50, for q-PCA50. As said, we fix the probability of failure to γ = 1

d
. In general,

(a) Running time comparison between classical
(green) and quantum (blue) principal compo-
nents classifier model with only major compo-
nents over KDDCUP with 50% of the retained
variance.

(b) Running time comparison between classical
(green) and quantum (blue) principal compo-
nents classifier model with only major compo-
nents over KDDCUP with 70% of the retained
variance.

Figure 4.4: Running time comparison between classical and quantum principal compo-
nents classifier model with only major components with different percentages of retained
variance over KDDCUP.

these results confirm the already known fact that, with high dimensional data, quantum
machine learning is advantageous over the classical one in terms of running time. Indeed,
the blue plane at high dimension is below the green one.
But let us see more precisely when we start to have a quantum advantage. Let us focus
on Figure 4.4b. We see that, even with a dataset of ≈ 4 ∗ 106 samples and ≈ 50 features
(or even less), we note an advantage in using quantum instead of classic machine learning.
These number of samples and features are reasonable in intrusion detection tasks since
they are in line with samples and features of publicly available datasets. For example,
KDDCUP, which was one of the main dataset used in IDS literature before becoming
obsolete, contains more than 4 million samples with 41 features. Another frequently used
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dataset of that dimension is NSL-KDD, which derives from KDDCUP. With a dataset
of that dimension, we find that the classical model’s fitting requires ≈ 4.6 ∗ 108 steps
against ≈ 3.5 ∗ 108 of the quantum one. We can see that the difference is minimal and,
considering the fact that we do not have considered in our computations things like stor-
ing the input data matrix in the QRAM, we can say that in real case scenarios, with a
dataset of this dimension, probably, is always convenient to use classical machine learning
to extract the model. Fixing the number of features to 50 and incrementing the number of
samples to 100,000,000, we find that the quantum model requires ≈ 2.3∗107 steps against
≈ 1.1 ∗ 1010 of the classical model. Now, with this number of samples, the quantum
advantage becomes clearer. Even in this case, 100,000,000 samples are reasonable in in-
trusion detection tasks. Indeed, we can think of big companies such as Netflix or Amazon
which count more than 200 million subscribers. Considering that even non-subscribers
can perform intrusions or attacks on the servers of these companies, we can say that, for
these big companies, 100,000,000 samples are realistic. Let us suppose that most users
are provided with optical fiber with a connection of 10Gbps in upload. Considering the
maximum size of a TCP/IP packet which is about 65000 bytes. We can say that, on
average, users send 19,230 packets every second. This means that to reach 100,000,000
packets, almost 5000 users have to send packets around the same time, which, as said,
is a reasonable number (indeed, 5000 users is almost 0.0025% of the total Amazon or
Netflix subscribers). Furthermore, we have to take into account that, nowadays and even
more so in the future, with the optic fiber there will be the possibility to reach more than
10Gbps transmission rate and also that network packets rarely reach the dimension of
65K. Therefore, some users could send more than 19,230 packets per second.
In Figure 4.5, we report statistics about the total visit in November 2021 for the most
popular websites worldwide. As we can see, companies like Google, YouTube, Facebook,
or Amazon deal with billions of visits in just a month. This is to highlight even more
that the amount of data and network traffic that these companies have to manage is very
high and, in the future, it is destined to grow more and more. For instance, in the case
of Google, if we assume to fit the model whose running time is reported in Figure 4.4b
"only" with the data relative to the visits in November 2021 (therefore 45,000,000,000
samples, assuming always data described by 50 features), we find that quantum model
requires ≈ 3.5 ∗ 108 steps against ≈ 5.1 ∗ 1012 of the approximated classical one.
Returning to the plots in Figure 4.4, by fixing the number of features to 500 and incre-
menting the number of samples, we can see that the advantage of using quantum increases
even more. However, these dimensions do not conform to those of the publicly available
intrusion detection dataset. In this case, a more complex task such as malware detection
could fit better. For instance, Shabtai et al. [42] in their analysis for classifying Android
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Figure 4.5: Ranking of the most accessed websites in November 2021 by Clement [12].

applications with machine learning used 100, 200, 300, 500, and 800 features showing that
with 800 features they achieve the best performances. Furthermore, if we consider the
Drebin dataset [3], which is one of the most famous malware detection datasets, we see
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that it is composed of 545,356 features which is one of the main obstacle for building a
classical machine learning classifier to detect Android malware applications. In a survey
of machine learning for malware detection, reported by Gibert et al. [15], we can see that
there are some malware detection models that use 4000 or even 50,000 features to detect
malware. These data confirm that, due to the increasing complexity of malware, we might
need even more features to describe them, resulting in high-dimensional data. This could
be the subject of future research.
A final comment on the comparison between running times reported in Figures 4.4a and
4.4b. As expected, we notice that the running time of PCA/q-PCA50 is lower than the
one of PCA/q-PCA70. We expect this result since PCA50, retaining only 50% of the
variance instead of 70%, is a lighter model than PCA70. Therefore, with the same per-
formance (as shown in Table 4.1), in a real scenario, one might consider using the lighter
model since it requires less time to fit.

Principal component classifier with both major and minor components over
CICIDS 2017 The second comparison is between the principal components classifier
model with both major and minor components and its quantum counterpart, retaining
70% of the variance. We refer to the models whose results are reported in Table 4.12.
In this case, to measure the classical running time, we consider the classical full SVD
time complexity O (nd2), with n and d number of samples and features respectively. This
is because we need all the components that we will then divide in major and minor
components. Indeed, the model initially retains all the components and then, based on
the retained variance that we specify and on the magnitudes of the specific eigenvalues, we
distinguish the major components from the minor ones. For the quantum computation,
instead, we consider the running time of quantum binary search and of the quantum top-k
singular vectors extractor, to estimate the top-k components, plus the running time of
the quantum least-r singular vectors extractor to estimate the minor components which
is Õ

(
θminor

σmin

µ(X)
ϵ

rd√
pmin

)
, where θminor is the custom θ passed to the function to extract the

least singular values and pmin is the variance retained from the least components.
In this case, the quantum parameters are: δ = 0.1, ϵ = ϵθ = 1, p = 0.70, η = 0.1, γ = 1

d
,

and θminor =
√

0.20(n− 1), with n = 5000.

The first thing to notice is that, with respect to Figures 4.4a and 4.4b, we reach higher
values of the running time. We expect this result since we compare quantum running
time with the classical full SVD complexity instead of the randomized one. Moreover,
for the quantum case, we not only use the binary search and the top-k right singular
vectors extraction but also the least-r one, which increases the quantum running time.
We can note, as expected, an advantage in using quantum model extraction with a dataset
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Figure 4.6: Running time comparison between classical (green) and quantum (blue) prin-
cipal components classifier with both major and minor components over CICIDS 2017
data.

composed of a large number of samples at very high dimensions. But we need to take
into account that we compare quantum time complexity with the classical full SVD one.
Indeed, the fact that we do not have an advantage in using quantum with respect to the
classical full SVD with a dataset of ≈ 3 ∗ 107 samples of ≈ 500 features shows us that,
for this type of problem where we need to extract also the minor components, quantum
machine learning is not so advantageous over the classical machine learning. Moreover,
it is very likely that if we use a more effective classical algorithm to extract the least
components (such as Minor Component Analysis (MCA) [29]) as we do for the principal
ones with the randomized SVD, the quantum advantage we have would be reduced even
more, making its practical application in intrusion detection very difficult in this specific
case. It would be interesting to consider this type of model in complex tasks that expect
higher dimensional data, such as malware detection.
Finally, we remember that the study of the running time for the ensemble model is equal
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to the current one since, as described in Section 4.3, the extraction of the ensemble model
is equal to the principal components classifier model one.

PCA with reconstruction loss over CICIDS 2017 This is the last case of running
time comparison that we report. For the classical computation, since we want to compare
our quantum results with a faster classical top-k principal components extraction method
than the full SVD one, we use the randomized version of SVD which has a time complexity
of O (nd log(k)).
For the quantum counterpart, we use the same computation of the first case shown:
Õ
(

µ(X) log(µ(X)/ϵ)
ϵη

)
for the quantum binary search and Õ

(
∥X∥µ(X)k

θ
√
pϵ

)
to estimate the top-

k singular values, factor score, and factor score ratios, plus Õ
(

∥X∥µ(X)kd
θ
√
pϵδ2

)
to estimate the

top-k right singular vectors. The quantum parameters that we use are δ = 0.1, ϵ =, ϵθ =

0.3, γ = 1
d
, and η = 0.00075, which are the errors we tolerate to best match classical

performances, as reported in Table 4.19. We do not consider δ = 0.01 since we have seen
that, with δ = 0.1, we obtain the same performances and, at the same time, we impact
less on the running time. As we can see in Figure 4.7, the trend of the running time is
very similar to the one reported in the first case example. Here, we can notice how the
error parameters influence the quantum running time. Indeed, the order of magnitude
in the z-axis is much greater with respect to the one reported in Figures 4.4a and 4.4b.
For instance, just by taking look at η, we can see that from 0.1 it goes to 0.00075, with
a difference of almost three orders of magnitude, which reflects in a higher running time
with respect to the ones reported in Figures 4.4a and 4.4b. We have to underline that
even the greater number of principal components retained by this model with respect
to the one reported in the first running time comparison case makes the running time
increase. Indeed, we go from 10 components retained in the model which retains 70% of
the variance in the first case example to 32 components (that retain p = 99.75% of the
variance) in the current model. As we can see, the increase in the running time reflects
in observing a quantum speed-up at higher number of samples and features with respect
to the cases reported in Figure 4.4a and 4.4b.
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Figure 4.7: Running time comparison between PCA (green) and q-PCA (blue) with
reconstruction loss model fitting over CICIDS 2017 data.
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It is fair to say that this work cannot be taken as an absolute demonstration that quantum
machine learning will surely pay off cybersecurity in the future, even for the simple fact
that we have not compared ourselves with the state-of-the-art anomaly detection models
such as autoencoders and neural networks. However, with this work, we pave the way
towards a more in-depth study and research of the use of quantum machine learning in
cybersecurity, starting to quantify the advantages and disadvantages of quantum over
classical machine learning on real data.
In this chapter, we report a brief discussion for each of the main contributions of this
work, trying to clarify the limitations and the possible future developments.

Sqlearn framework We help the future research in this field, by providing an open-
source framework to simulate quantum algorithms. As we have seen, we can simulate
quantum machine learning algorithms by simulating the approximation error to see how
it affects the performance with respect to classical machine learning. Moreover, with this
framework, one can also study the probability of failure of quantum algorithms by play-
ing with the γ parameter as we have done with the parameters ϵ, δ, and η to study the
approximation error. We have focused only on the study of the error since to study the
probability of failure we should have domain knowledge of the problem that we are dealing
with. For instance, in intrusion detection, we can accept a specific probability of failure of
the models that, maybe, we could not accept in fraud detection in banking transactions,
as it may require a much more stringent failure probability. An in-depth study of the
failure probability would allow an even more detailed assessment of the running time of
quantum machine learning algorithms.
Another development concerning the framework would be to integrate it with new quan-
tum machine learning algorithms and simulate them to solve intrusion detection problems.

Tomography insights We verify the correctness of the Sqlearn framework by simu-
lating the main quantum routines such as amplitude estimation, phase estimation, and
state tomography. Precisely for the latter, we find interesting insights into the number of
measurements that are needed to get estimates with error δ: we find that by performing



130 5| Open research directions

tomography with N = 36d log d
δ2

measures, as specified by the theoretical bound, we get
estimates with much lower error than δ. We show that even performing tomography with
far fewer measurements than N, we get estimates that are δ-close to the true values. This
does not mean that the theoretical bound is not correct also because it is reported by
Kerenidis and Prakash [24] which is one of the most cited papers on this subject. Possible
future work in this direction could be exactly to understand if there are cases of vectors
for which tomography requires exactly N measures to estimate vectors with error δ.

Application to cybersecurity We exploit the Sqlearn framework to simulate quantum
machine learning algorithms to solve intrusion detection problems. We propose many
anomaly detection models by comparing their classical performances with their quantum
counterparts. We show that we can find cases of approximation errors to best match
classical performances. We have also seen that the performances decrease as the error
increases. We also show the importance of balancing the dataset: increasing the error
over a very high unbalanced dataset does not affect the performance as in a more balanced
dataset.
Surely, future work will be to simulate other quantum machine learning algorithms, such
as quantum Gaussian mixture models or SVM, to see the behavior of the error in the
application of these algorithms to solve intrusion detection problems. Indeed, we have
focused on PCA and K-Means algorithms but there are much more efficient algorithms to
solve anomaly detection problems. The point of arrival will be to simulate the quantum
counterpart of the state-of-the-art anomaly detection models.
One of the main limitations in doing these experiments is the scarcity of intrusion detection
data publicly available. Therefore, simulating quantum machine learning algorithms also
on other datasets than KDDCUP, CICIDS or Darknet would be appropriate.

Ensemble extension In simulating quantum machine learning models, we also extend
the model initially proposed by Shyu et al. [45] by adding cosine similarity and correlation
measures in the computation of the model. We have seen that this has great benefits as
performances improve on the CICIDS dataset. Trying other similarity measures instead
of cosine or correlation would be interesting to see how they affect the results.

Running time results For what concerns the running time, we have seen with our
experiments that it is not a utopia to think of companies that build their network defense
systems on quantum machine learning in the near future. Just think, for example, of
companies such as Netflix or Amazon Prime which today have more than 200 million
subscribers. Considering that even non-subscribers can send packets, connect, or perform
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intrusions and attacks on the servers of these companies, we can understand how the
network traffic that these companies must and will have to manage will be increasingly
high. Confirming this, recently, big companies such as Microsoft [48] and Amazon [5],
or services such as GitHub [27] and WordPress [41] reported large-scale cyberattacks, in
the order of millions of packets per second. Moreover, in general, these cyberattacks not
only create temporary inconvenience to both companies and users but also huge losses of
money as reported by Bandwith, which estimated a loss of 9-12 million dollars due to a
cyberattack [40]. With the advent of new technologies that provide a very high transfer
rate (such as 5G technology) and with a world that is digitizing more and more thanks to
IoT, the network connections and the cyberattacks will become more frequent and even
larger. As a consequence, we will be dealing with millions and millions of network data
that, as we have seen in our running time results, make quantum machine learning very
promising in this type of field.
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Contributions In this thesis, we try to combine quantum machine learning with cy-
bersecurity by studying if and how quantum machine learning algorithms can be useful to
solve cybersecurity tasks. To simplify the simulation of quantum machine learning algo-
rithms, we provide an open-source framework. The framework rests on the implementa-
tion of the main quantum routines such as phase estimation, consistent phase estimation,
amplitude estimation, and state tomography. We perform experiments and numerical
simulations for these implemented quantum routines to verify their correct functioning.
We find interesting insights about vector state tomography which we also exploit in its
applications in real machine learning cases. We use these quantum routines in quantum
machine learning algorithms that we simulate to solve intrusion detection tasks. We de-
rive possible advantages and disadvantages of using quantum machine learning algorithms
in this type of field by studying their running time. We evaluate the running time by fix-
ing the failure probability and by studying the approximation error of quantum machine
learning algorithms since they are both running time parameters. We study how the error
affects the accuracy in detecting intrusions showing that, with quantum machine learning
models, we can achieve the same performances as classical machine learning.
In reproducing anomaly detection experiments already reported in the literature, we also
extend an anomaly detection model, showing an improvement in performance over the
CICIDS dataset.

Experiments We have performed two types of experiments: in the first one, we sim-
ulate quantum algorithms implemented in the Sqlearn framework, such as tomography
and phase estimation, to verify their correct functioning. The other experiments regard
the previous quantum routines applied to machine learning models used to solve anomaly
detection problems. We use three different datasets (KDDCUP, CICIDS2017, and Dark-
net) to test the performances and the time complexity of our quantum models over those
data. In particular, we study the trade-off between approximation error and running
time of quantum machine learning algorithms applied in intrusion detection tasks. We
discuss the running times with a practical perspective: we find the number of samples
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and features for which we get a quantum speed-up over classical machine learning trying
to understand in which cybersecurity tasks we deal with datasets of that size.

Future works Surely future work will be to complete the Sqlearn framework with other
quantum machine learning algorithms and simulate them to solve intrusion detection
problems. We think it can also be useful to concentrate on other cybersecurity problems
such as malware detection. This is because nowadays malware have an ever-increasing
complexity that could make them suitable for quantum machine learning study. An
accurate study of the failure probability of quantum machine learning, as we have done
for the error, would be interesting to study running time even more in detail.
Finally, an in-depth study about quantum state tomography to search for cases of vector
for which tomography requires exactly N = 36d log d

δ2
measures to get estimates with an

error of δ would be interesting to complete the experiments for vector state tomography.

Conclusions With this thesis, we pave the way toward new research and discoveries in
the quantum machine learning area applied in cybersecurity. We think that the framework
that we have made available will help to simplify future research in this field. Furthermore,
for what concerns our experiments, we found reasonable results that lead us to conclude
that quantum machine learning seems to be promising in intrusion detection tasks and,
even more so, in more complex tasks such as malware detection. For these reasons, we
encourage even more research in these directions.
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A.1. Supplementary results

In this supplementary section, we complete the results reported in Chapter 4, showing
the accuracy results for each experiment.

Principal components classifier with only major components over

KDDCUP

We report the error parameters used in quantum models.

• q-PCA30: ϵθ = 8, p = 0.30, δ = 0.1, ϵ = 8, and η = 0.2.

• q-PCA40: ϵθ = 1, p = 0.40, δ = 0.1, ϵ = 1, and η = 0.16.

• q-PCA50: ϵθ = 1, p = 0.50, δ = 0.1, ϵ = 1, and η = 0.1.

• q-PCA60: ϵθ = 1, p = 0.60, δ = 0.1, ϵ = 1, and η = 0.1.

• q-PCA70: ϵθ = 1, p = 0.70, δ = 0.1, ϵ = 1, and η = 0.1.

α PCA30 PCA40 PCA50 PCA60 PCA70
c q c q c q c q c q

1% 0.8980 0.8956 0.9827 0.9823 0.9778 0.9770 0.9777 0.9811 0.9755 0.9747
2% 0.9001 0.8979 0.9877 0.9856 0.9859 0.9875 0.9833 0.9878 0.9743 0.9735
4% 0.9003 0.8987 0.9825 0.9794 0.9826 0.9825 0.9833 0.9818 0.9776 0.9769
6% 0.8932 0.8927 0.9756 0.9729 0.9744 0.9762 0.9772 0.9755 0.9772 0.9772
8% 0.8871 0.8864 0.9703 0.9967 0.9673 0.9690 0.9737 0.9708 0.9702 0.9696
10% 0.8805 0.8795 0.9621 0.9613 0.9696 0.9610 0.9890 0.9654 0.9653 0.9646

Table A.1: Accuracy comparison for classical (c) and quantum (q) principal components
classifier with major components over KDDCUP.

By increasing ϵ and δ in the following way

• q-PCA30: ϵθ = 8, p = 0.30, δ = 0.9, ϵ = 8, and η = 0.2.
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• q-PCA40: ϵθ = 20, p = 0.40, δ = 0.9, ϵ = 20, and η = 0.16.

• q-PCA50: ϵθ = 20, p = 0.50, δ = 0.9, ϵ = 20, and η = 0.1.

• q-PCA60: ϵθ = 20, p = 0.60, δ = 0.9, ϵ = 20, and η = 0.1.

• q-PCA70: ϵθ = 20, p = 0.70, δ = 0.9, ϵ = 20, and η = 0.1.

we obtain

α PCA30 PCA40 PCA50 PCA60 PCA70
c q c q c q c q c q

1% 0.8980 0.8971 0.9827 0.8980 0.9778 0.6963 0.9777 0.9912 0.9755 0.9762
2% 0.9001 0.8985 0.9877 0.8991 0.9859 0.6927 0.9833 0.9881 0.9743 0.9846
4% 0.9003 0.8991 0.9825 0.9007 0.9826 0.6846 0.9833 0.9822 0.9776 0.9814
6% 0.8932 0.8931 0.9756 0.8933 0.9744 0.6793 0.9772 0.9770 0.9772 0.9760
8% 0.8871 0.8852 0.9703 0.8862 0.9673 0.6716 0.9737 0.9702 0.9702 0.9685
10% 0.8805 0.8796 0.9621 0.8783 0.9696 0.6645 0.9890 0.9635 0.9653 0.9632

Table A.2: Accuracy comparison for classical (c) and quantum (q) PCA with major
components over KDDCUP increasing ϵ and δ.

Principal components classifier with both major and minor com-

ponents over KDDCUP

We use the same error parameters of the previous experiment:

• q-PCA30: ϵθ = 8, p = 0.30, δ = 0.1, ϵ = 8, and η = 0.2.

• q-PCA40: ϵθ = 1, p = 0.40, δ = 0.1, ϵ = 1, and η = 0.16.

• q-PCA50: ϵθ = 1, p = 0.50, δ = 0.1, ϵ = 1, and η = 0.1.

• q-PCA60: ϵθ = 1, p = 0.60, δ = 0.1, ϵ = 1, and η = 0.1.

• q-PCA70: ϵθ = 1, p = 0.70, δ = 0.1, ϵ = 1, and η = 0.1.
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α PCA30 PCA40 PCA50 PCA60 PCA70
c q c q c q c q c q

1% 0.9757 0.9777 0.9869 0.9862 0.9891 0.9881 0.9887 0.9884 0.9875 0.9868
2% 0.9753 0.9816 0.9807 0.9796 0.9829 0.9831 0.9830 0.9817 0.9835 0.9824
4% 0.9694 0.9685 0.9701 0.9678 0.9675 0.9708 0.9710 0.9692 0.9691 0.9688
6% 0.9558 0.9549 0.9591 0.9595 0.9585 0.9595 0.9607 0.9578 0.9578 0.9573
8% 0.9439 0.9447 0.9485 0.9519 0.9476 0.9492 0.9559 0.9523 0.9488 0.9485
10% 0.9313 0.9319 0.9370 0.9425 0.9369 0.9402 0.9480 0.9426 0.9385 0.9387

Table A.3: Accuracy comparison for classical (c) and quantum (q) principal components
classifier with major and minor components over KDDCUP.

Principal components classifier with both major and minor com-
ponents over CICIDS 2017

Here below the error parameters for quantum models:

• q-PCA30: ϵθ = 1, p = 0.30, δ = 0.1, ϵ = 1 and η = 0.1.

• q-PCA40: ϵθ = 1, p = 0.40, δ = 0.1, ϵ = 1 and η = 0.2.

• q-PCA50: ϵθ = 1, p = 0.50, δ = 0.1, ϵ = 1 and η = 0.1.

• q-PCA60: ϵθ = 1, p = 0.60, δ = 0.1, ϵ = 1 and η = 0.1.

• q-PCA70: ϵθ = 1, p = 0.70, δ = 0.1, ϵ = 1 and η = 0.1.

α PCA30 PCA40 PCA50 PCA60 PCA70
c q c q c q c q c q

1% 0.7260 0.7248 0.6993 0.6999 0.6983 0.6943 0.7267 0.7260 0.7247 0.7036
2% 0.7602 0.7316 0.7242 0.7242 0.7249 0.7219 0.7637 0.7559 0.7425 0.8035
4% 0.7931 0.7895 0.7810 0.7978 0.7803 0.7788 0.7973 0.7975 0.8142 0.8156
6% 0.7997 0.7962 0.8009 0.8132 0.8009 0.7987 0.8051 0.8037 0.8057 0.8068
8% 0.7943 0.7903 0.8204 0.8294 0.7949 0.7934 0.7991 0.7980 0.7977 0.8017
10% 0.7906 0.7853 0.8354 0.8421 0.7911 0.7902 0.7952 0.7952 0.7933 0.7996

Table A.4: Accuracy comparison for classical (c) and quantum (q) principal components
classifier with major and minor components over CICIDS 2017.

Ensemble principal components classifier over CICIDS2017

As always, we report the error parameters for quantum models:

• q-PCA30: ϵθ = 1, p = 0.30, δ = 0.1, ϵ = 1 and η = 0.1.
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• q-PCA40: ϵθ = 1, p = 0.40, δ = 0.1, ϵ = 1 and η = 0.2.

• q-PCA50: ϵθ = 1, p = 0.50, δ = 0.1, ϵ = 1 and η = 0.1.

• q-PCA60: ϵθ = 1, p = 0.60, δ = 0.1, ϵ = 1 and η = 0.1.

• q-PCA70: ϵθ = 1, p = 0.70, δ = 0.1, ϵ = 1 and η = 0.1.

α PCA30 PCA40 PCA50 PCA60 PCA70
c q c q c q c q c q

1% 0.7606 0.7482 0.7751 0.8008 0.7004 0.6929 0.7604 0.7523 0.7339 0.7169
2% 0.8066 0.7783 0.8116 0.8325 0.7616 0.7493 0.8115 0.8043 0.7858 0.8597
4% 0.8836 0.8820 0.8857 0.8991 0.8525 0.8336 0.8863 0.8921 0.8883 0.9113
6% 0.9140 0.9124 0.8924 0.8930 0.9063 0.8969 0.9134 0.9169 0.9096 0.9216
8% 0.9025 0.9002 0.8897 0.8897 0.9003 0.8969 0.9006 0.9036 0.8966 0.9008
10% 0.8889 0.8834 0.8902 0.8879 0.8849 0.8850 0.8875 0.8893 0.8786 0.8816

Table A.5: Accuracy comparison for classical (c) and quantum (q) ensemble of principal
components classifier over CICIDS 2017.
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A.2. Anomaly scores distributions of CICIDS 2017

attacks
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(a) Cumulative anomaly score distribution for
Bot attack.
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(b) Cumulative anomaly score distribution for
Dos-GoldenEye attack.
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(c) Cumulative anomaly score distribution for
Dos-hulk attack.
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(d) Cumulative anomaly score distribution for
Dos-slowhttptest attack.

Figure A.1: Cumulative anomaly score distribution for different type of attacks. The red
vertical line indicates the outlier threshold. The blue points at the right of the threshold
are the one correctly classified as attack by the model.
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(a) Cumulative anomaly score distribution for
Heartbleed attack.
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(b) Cumulative anomaly score distribution for
Infiltration attack.
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(c) Cumulative anomaly score distribution for
PortScan attack.
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(d) Cumulative anomaly score distribution for
SSH-Patator attack.
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(e) Cumulative anomaly score distribution for
BruteForce attack.
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(f) Cumulative anomaly score distribution for
XSS attack.

Figure A.2: Cumulative anomaly score distribution for different type of attacks. The red
vertical line indicates the outlier threshold. The blue points at the right of the threshold
are the one correctly classified as attack by the model.
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(a) Cumulative anomaly score distribution for
Dos-slowloris attack.
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(b) Cumulative anomaly score distribution for
FTP-Patator attack.

Figure A.3: Cumulative anomaly score distribution for different type of attacks. The red
vertical line indicates the outlier threshold. The blue points at the right of the threshold
are the one correctly classified as attack by the model.
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