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Abstract
The last decades have been characterized by the explosive growth of available data and

computational resources. This has led to stunning advances in the field of Deep Learning and
also to significant improvements in the numerical approximation of physical problems via

PDEs. Despite their parallel success, the two fields have maintained a clean separation margin,
at least until the last few years; recently, indeed, some works addressing an integration between
those have started to appear and PDE-aware DL models have been introduced. These models
proved to be successful in the so-called small data regime, i.e. in frameworks characterized by a

scarcity of precise and easily retrievable data, which is anyway compensated by proper
knowledge of some of the physical laws that govern the problem of interest. A context of this
kind is the one of the Inverse Problem of Electrocardiography, whose aim is to estimate the

electric potential at the epicardium from its knowledge in a discrete set of points in the torso.
Such problem has become central in contemporary biomedical research, configuring as the

theoretical basis of ECGI, but, due to its ill-posedness, all State-Of-Art numerical algorithms
feature severe weaknesses. Because of this, we present here a PDE-aware DL model, named

Space-Time Reduced-Basis Deep Neural Network (ST-RB-DNN), which estimates the solution
to the Inverse Potential Problem both leveraging available data and exploiting the knowledge
of some underlying physical laws. This last goal is carried out in two ways: predicting the
epicardial potential as projected onto a Space-Time-Reduced subspace, generated from the
training dataset, and inserting a RB-solver of the Forward Problem within the network

architecture. The project proposes itself as a methodological analysis and additional efforts
should be made in order to apply it in the clinical setting. Several numerical tests have been
conducted, both on a simplified test case, employing idealized geometries and using 12-lead
ECG signals as input, and in a slightly more realistic setting, making use of human-shaped
geometries and processing surface potentials, recorded by electrodes placed on the torso.

Keywords: Deep Learning, Partial Differential Equations, PDE-aware Deep Learning,
Cardiac Electrophysiology, Inverse Problem of Electrocardiography, ECGI
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Sommario
Gli ultimi decenni sono stati caratterizzati da un’enorme crescita sia della quantità di dati

utilizzabili che di risorse computazionali. Ció ha portato ad incredibili sviluppi nel campo del
Deep Learning, nonché a significativi miglioramenti nell’approssimazione numerica di fenomeni

fisici, tramite PDE. Nonostante i contemporanei progressi, tra i due campi è stato sempre
mantenuto un chiaro margine di separazione; nell’ultimo decennio, tuttavia, sono stati

realizzati diversi lavori mirati ad una loro integrazione ed i PDE-aware DL models sono stati
introdotti. Tali modelli si sono dimostrati efficaci nel cosiddetto regime degli small data, i.e. in
contesti caratterizzati da una povertà di dati precisi e facilmente misurabili, la quale viene peró
compensata dalla conoscenza di alcune delle leggi fisiche governanti il fenomeno d’interesse. Un
esempio in tal senso è offerto dal Problema Inverso dell’Elettrocardiologia, il cui obiettivo è

stimare il potenziale all’epicardio a partire dalla sua conoscenza in alcuni punti del torso. Tale
problema è divenuto centrale nella ricerca biomedica contemporanea, configurandosi come la
base teorica dell’ECGI, ma gli algoritmi numerici correntemente utilizzati sono caratterizzati
da significative lacune. In ragione di ció, presentiamo un PDE-aware DL model, chiamato
Space-Time Reduced-Basis Deep Neural Network (ST-RB-DNN), che stima la soluzione del

Problema Inverso dell’Elettrocardiologia sfruttando sia l’abbondanza di dati sia la conoscenza
di alcune delle leggi fisiche sottostanti. Quest’ultimo obiettivo è realizzato per mezzo di due
elementi: la predizione del potenziale epicardico proiettato su un sottospazio ridotto sia in

spazio sia in tempo, generato a partire dal training dataset, e l’inserimento di un solutore RB
del Problema Diretto nell’architettura della rete. Il progetto si propone come un’analisi

metodologica. Vari test numerici sono stati condotti, sia in un caso benchmark semplificato,
impiegando geometrie idealizzate ed utilizzando segnali 12-lead ECG come input, sia in un
contesto piú realistico, facendo uso di migliori geometrie e processando 158 segnali, misurati

tramite elettrodi posizionati sul torso.

Parole Chiave: Deep Learning, Equazioni alle Derivate Parziali, PDE-aware Deep Learning,
Elettrofisiologia Cardiaca, Problema Inverso dell’Elettrocardiografia, ECGI
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Chapter 1

Introduction

The 21st century has been unarguably characterized by the stunning growth of machine learning
and data analytics, which has been made possible thanks to the abundance of available data and
to the progresses in terms of computational power and resources. In particular, Deep Learning
(DL) and Artificial Intelligence (AI) have established themselves as pillars of the contemporary
scientific development and they have already yielded several breakthrough results in a variety of
fields, as image recognition [3], text classification [4] or Natural Language Processing (NLP) [5]
just to name a few. Beside of DL progresses, recent years have also witnessed significant ad-
vances in the numerical approximation of Partial Differential Equations (PDEs) and Ordinary
Differential Equations (ODEs), which have led to an overall consolidation of such field. Indeed,
nowadays many physical phenomena can be simulated employing classical numerical methods in
a variety of fields (from thermodynamics to fluid mechanics, from electromagnetism to quantum
physics) and incredible levels of accuracy have been reached, again thanks to the improvements
in terms of computational power and also to the enhancement of imaging techniques.

Despite the parallel upgrades of the two aforementioned fields, few attempts aimed at integrat-
ing them have been performed, at least until the last decade. On the one side, indeed, the
lack of solid theoretical foundations of DL has hindered its use in the well-established field of
numerical analysis; on the other side, instead, the efficient application of classical numerical
methods within the DL framework appeared to be a non-trivial task. In the very recent years,
anyway, several works aimed at merging DL and classical numerical methods have started to
appear (see [1, 2, 6–9] for instance). The general idea is that numerical methods, which are able
to encode the physics of the phenomena of interest, can ease the learning process of DL models,
at least in frameworks where the problem dynamics are well-known and can be precisely sim-
ulated, whereas the availability of precise and non-invasively measured data is scarce (i.e. the
so-called small data regime). In simpler terms, equipping a DL-based model with the knowledge
of the physical laws underlying the phenomenon at hand should ease its ultimate predictive task,
especially in contexts where data abundance cannot be exploited.

A relevant instance of small data regime is the one of the Inverse Problem of Electrocardiog-
raphy (see Section 4.3), which aims at estimating the electric potential at the heart epicardial
surface from the knowledge of its value in a discrete set of points in the torso. Indeed, in order
to train a classical DL model in this context, it would be necessary to collect a huge amount of
data, made of measurements of the electric potential both over the torso (easy collectable via
non-invasive techniques) and at the epicardium (hardly collectable with invasive procedures);
in actual practice assembling such a dataset is unfeasible. The important role of the Inverse
Problem of Electrocardiography in nowadays biomedical research is justified by the fact that,
as extensively presented in [10], it serves as theoretical basis for Electrocardiographic Imaging
(ECGI), a novel imaging modality for non-invasive mapping of cardiac electrical activity, which
makes use of body-surface ECG signals and of ECG-gated thoracic Computed Tomography (CT)
scans. While the employment of classical DL models is prevented by data scarcity, the usage of
classical numerical methods is the State-Of-Art in the field; anyway, as it will be made clear in

11



0 20 40 60 80 100 120
Time [ms]

-1.5

-1

-0.5

0

0.5

1

1.5

V
ol

ta
ge

 [m
V

]

ECG




l11 l12 . . . l1m
l21 l22 . . . l2m
...

...
. . .

...
ln1 ln2 . . . lnm







u1
u2
...

um


 =




f1
f2
...
fn




1

0 20 40 60 80 100 120
Time [ms]

-1.5

-1

-0.5

0

0.5

1

1.5

V
ol

ta
ge

 [m
V

]

ECG

Input OutputModel

RBNN

1

Figure 1.1: Basic structure of the developed PDE-aware DL model

Section 4.3, such methods are effective in approximating the Forward Problem (i.e. the estima-
tion of the potential in the torso, being given the one at the epicardium), but they feature severe
lacks and weaknesses when they come to the Inverse Problem, because of its ill-posed nature.

The Inverse Problem of Electrocardiography appears then as an ideal framework for taking
advantage of the integration between DL models and classical methods for the numerical ap-
proximation of the cardiac electrical activity. In this project we made a first attempt in this
direction, by developing a PDE-aware DL model, inspired by the Reduced Basis Deep Neural
Networks (RB-DNNs) introduced by Dal Santo et al. in [2]; the basic structure can be visualized
in Figure 1.1. Our model tries to approximate the solution of the Inverse Problem, by mapping
signals recorded on (or inside) the torso to epicardial potentials (from which the activation map
is lately derived, at post-processing stage). In doing this, it does not just exploit classical DL
paradigms (encoded by the model section in blue, named "NN"), but it also takes advantage
of the knowledge of the problem physics, which is involved by means of the numerical approxi-
mation of the Forward Problem. In particular, the Finite Elements (FE) approximations of the
heart electrophysiology (EP) and of the Forward Problem of Electrocardiography are employed
to:

1. Generate the training dataset, made of both the input signals (model section in red, named
"Input"), measured on the torso, and of the epicardial potentials returned in output (model
sections in green and purple, as a whole named "Output")

2. Generate a Reduced Basis in space for the potentials in the torso and a Reduced Basis in
Space-Time for the ones at the epicardial surface. This configures as a fundamental aspect
of the model, since it allows on the one side to lighten its complexity and on the other side
to estimate the desired potential as projected onto a subspace generated from "physical"
solutions, thus belonging by construction to a lower-dimensional and physically-consistent
manifold.

3. Reconstruct the input signals from the estimated epicardial potentials within the network
architecture, via an embedded tensorial Reduced Basis solver (encoded by the model sec-
tion in cyan, named "RB"). In this way, the loss functional can be constructed as the
weighted average between the error on the (reduced) epicardial potentials and the one on
the reconstructed signals; the second contribution configures as a physically-aware regu-
larization term and it allows to visualize the neural network (NN) as a deep autoencoder.
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All the methodological details and the results of the numerical tests can be found in Chapter 5.
What is important to underline from the very beginning is that this work proposes itself as a
preliminary research and it is not oriented towards the development of models that can be used in
the clinical setting. Because of this, we have restricted ourselves to simplified benchmark cases,
employing idealized geometries and coarse meshes, making several simplifying assumptions and
keeping the complexity of the DL architectures as low as possible. Several upgrades should be
made in order to develop models that can be used in actual practice, especially at data generation
stage; the main ones will be discussed in Section 6.2. Anyway, the reduced complexity of the
proposed models and the limited amount of computational resources employed for their training
(see Appendix C) suggest them to be potentially used with success even in more detailed and
complex frameworks.

Project Outline

Chapter 2 is devoted to the presentation of the most important preliminary concepts, which
are necessary for a full understanding of the analysis carried out alongside the report. In par-
ticular: Section 2.1 contains a brief description of Deep Neural Networks, with a more specific
focus on Multiple Layer Perceptrons (Subsection 2.1.1) and on Convolutional Neural Networks
(Subsection 2.1.2). Section 2.2 presents the Reduced Basis Method, which allows to efficiently
solve parametrized PDEs (see Subsection 2.2.1) by projecting them onto a suitably constructed
lower-dimensional subspace; the method is analyzed both in the stationary case (Subsection
2.2.2) and in the time-dependent one (Subsection 2.2.3).

Chapter 3 is dedicated to PDE-aware DL models, i.e. DL models that take advantage of the
knowledge of the physics of the problem at hand (expressed via PDEs) to improve their learning
capabilities. In particular: Section 3.1 offers an overview on the field of PDE-aware Neural Net-
works. Section 3.2 presents the RB-DNNs introduced in [2], focusing both on their structure and
goals (Subsection 3.2.1) and on the numerical results that have been achieved (Subsection 3.2.2).

In Chapter 4, the heart electrophysiology is analyzed, both from the clinical point of view and
from the one of its numerical approximation. In particular: Section 4.1 provides a clinical de-
scription of the cardiac electrical activity, describing the heart conduction system (Subsection
4.1.1) and the techniques used to measure and evaluate it, with particular focus on the ECGs
(Subsection 4.1.2). Section 4.2 features the description of the models (Subsection 4.2.1) and of
the numerical methods (Subsection 4.2.2) employed to approximate the heart electrophysiology
and Forward Problem of Electrocardiography; also Subsection 4.2.3 presents the numerical re-
sults obtained adopting a Full Order Model (FOM) approximation of the heart electrophysiology
(via the FE method), while Subsection 4.2.4 discusses how Model Order Reduction techniques
can be put in place while solving the Forward Problem and presents some additional numerical
results in this sense. Finally Section 4.3 is devoted to the Inverse Problem of Electrocardiography
and to ECGI; specifically Subsection 4.3.1 provides the mathematical definition of the Inverse
Potential Problem and discusses its main properties, while Subsection 4.3.2 presents the most
widely employed numerical methods.

Chapter 5 presents the PDE-aware DL models (called Space-Time Reduced Basis Deep Neural
Networks (ST-RB-DNNs)) that have been built in order to provide a physically-consistent and
data-driven approximation of the solution to the Inverse Problem of Electrocardiography. In
particular: Section 5.1 features a general presentation of ST-RB-DNN models, highlighting the
main motivations that have driven us towards their development (Subsection 5.1.1) and provid-
ing a description of their general architecture (Subsection 5.1.2). Section 5.2 is devoted to the
presentation of the models that have been actually tested in the project; specifically Subsections
5.2.1 and 5.2.2 present the two different ST-RB-DNN models that have been implemented, while
Subsection 5.2.3 presents the numerical results obtained with such models, both on a simplified
benchmark case, using ECG signals as input, and on a more realistic one, where Body Surface
Potentials coming from 155 different electrodes are processed.
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In Chapter 6 the conclusions are drawn. In particular: Section 6.1 offers a final summary, high-
lighting the main motivations and findings of the work, while Section 6.2 lists the most relevant
limitations of the project and discusses some possible further developments.

Also, Appendix A offers a more detailed overview on the functionalities of the cardiovascular
system; Appendix B presents other important numerical methods employed in the project as
the (Randomized) Singular Value Decomposition and the Fast Fourier Transform Algorithms;
Appendix C describes the computational environment in which the numerical tests have been
carried out.

Finally, at the beginning of each Section of Chapters 2, 3 and 4 is reported a scheme analogous to
the one of Figure 1.1, where the portions of the model that are related to the concepts discussed
within the Section are highlighted. This should allow the reader to better orientate in the report,
following the common thread.
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Chapter 2

Preliminary Concepts

The aim of this short chapter is to provide a brief overview on Deep Neural Networks (DNNs)
(Section 2.1) and on PODs and the Reduced Basis (RB) method (Section 2.2). We refer the
interested reader to [11] for a more extensive and exhaustive explanation of DNNs and to [12]
and [13] for a more detailed analysis of the RB method. Many of the concepts presented here,
as well as the basic notation, are borrowed from [2], which sets as our starting point for the
development of this project.

2.1 Deep Neural Networks
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Figure 2.1: Basic structure of the developed PDE-aware DL model, where the NN is highlighted

From a very general point of view, Artificial Neural Networks (ANNs) are Machine Learning
(ML) models that are designed to simulate the way the human brain analyzes and processes
information; those are the foundation of AI and proved to be able to solve problems, in a variety
of fields, that would prove otherwise impossible for standard ML models and even for humans.
ANNs are characterized by having a self-learning ability, which makes them able to produce bet-
ter and better results, as long as more and more data are available. The learning process occurs
during a so-called training phase, where a set of trainable parameters is computed in a way that,
given a dataset for which both input and output values are known, a precise reconstruction of
the underlying I/O relationship can be derived.

Among ANNs, DNNs represent the widest subclass and they are characterized by the flanking
of several non-linear modules, each of whom is composed by multiple units, called neurons or
nodes. In particular, the input layer processes the raw data, the output layer gives the final
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Figure 2.2: Structure of a MLP neural network with 1 hidden layer (so L = 3), Nin = 3 and Nout = 2. Image
adapted from [2]

output and the internal hidden layers perform suitable non-linear operations on the data, so
that an accurate functional representation of the I/O relationship is (hopefully) achieved in the
end.

2.1.1 Multiple Layer Perceptron (MLP) Networks

Among the family of DNNs, we will consider two sub-families: Multiple Layer Perceptron (MLP)
Networks and Convolutional Neural Networks (CNNs). MLPs configure as the baseline models
among the set of DNNs: indeed they are simple feed-forward networks (i.e. networks without
any feedback loop) in which several layers, made of a variable number of neurons, are composed
together, side-by-side, in such a way that all nodes of layer l − 1 are connected to all nodes of
layer l. Figure 2.2 provides a graphical representation of the structure of a MLP network.

Here we introduce some basic notation.
• Each layer is made of N (l) neurons

(
l ∈ {1, . . . , L}

)
, being L the total number of layers

of the network. Readily, the dimensionality of the input Nin must match the number of
nodes in the first layer N (0) and the dimensionality of the output Nout must match the
number of nodes of the last layer N (L).

• x(l) denotes the set of input values of layer l; notice that, because of the structure of this
network, x(l) also coincides with the set of output values of layer l − 1. It belongs to
RN(l−1)

. Trivially, x(0) coincides with the set of raw input data to be processed.
• y(l) denotes the set of output values of layer l. It belongs to RN(l)

. Trivially, y(L) coincides
with the final output of the network.

• w(l)
ij is a scalar, representing the value of the weight associated to the edge going from

neuron i
(
i ∈ {1, · · · , N (l−1)}

)
of layer l − 1 to neuron j

(
j ∈ {1, · · · , N (l)}

)
of layer l.

Weights from layer l − 1 to layer l can be then stored in a matrix W (l) ∈ RN(l−1)×N(l)

.
• b(l) is a vector, belonging to RN(l)

, representing a bias term, i.e. a zero-order term to be
summed up to the linear combination of the inputs by the weights inside the argument of
the layer activation function, as it will be made clear by equation (2.3)

• σ(l) represents the so-called activation function of neurons in layer l. Typically, but not
compulsorily, all neurons in the same layer feature the same activation function. Classical
choices, that proved to be very successful in terms of approximating power of the network,
are the ReLU (Rectified Linear Unit) function

ReLU(x) = x+ = max(0, x) (2.1)
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and the sigmoid function

sigmoid(x) =
1

1 + e−x
(2.2)

In particular the sigmoid function (or its multi-label generalization, called softmax func-
tion) is used as activation function of the output layer of networks that aim at performing
binary (or multiple) classification tasks, being it able to map real inputs into probabilities,
i.e. into the interval [0; 1]

The working pipeline of MLPs is summarized by the following equation:

y(l) = σl(W (l)x(l) + b(l)) = σl(W (l)y(l−1) + b(l)) (2.3)

Notice that the extension to the case in which multiple input datapoints are processed together
is straightforward; in such a situation, indeed, it is enough to define x(l) and y(l) no longer as
vectors but as matrices, featuring a number of rows coinciding with the dimensionality Nµ of
the input.

During the training phase, the MLP network (and, in general, any NN) tries to learn optimal
values for its trainable parameters, i.e. the weights and biases of its layers; those can be embodied
into a single vector Θ = {θ(0), . . . ,θ(L)}, with θ(l) =: (W (l), b(l)) for simplicity of notation. Such
learning process is carried out by minimizing, in the trainable parameters’ space, a loss function,
whose aim is to give a measure of the discrepancy between the desired output values (available
for the training dataset) and the ones predicted in output by the network. A generic expression
of the loss function is:

L(Θ;Y ,Y (L)) =
1

Nµ

Nµ∑
i=1

l(Θ;Y ,Y (L)) (2.4)

i.e. the loss function is computed as the average loss across the Nµ different training datapoints.
Here Y denotes the matrix storing the desired output and Y (L) the matrix storing the output
predicted by the NN. A classical choice is to rely on the quadratic loss function defined as:

L(Θ;Y ,Y (L)) = MSEΘ(Y ,Y (L)) =
1

Nµ

Nµ∑
i=1

Nout∑
j=1

(Yij − Y (L)
ij (Θ))2 (2.5)

The search for global minima of L, with respect to Θ, is far from being trivial, since it is in
general non-convex and it shows multiple local-minima points, in which classical iterative min-
imization algorithms (Gradient Descent (GD), Stochastic Gradient Descent (SGD), Coordinate
Descent (CD)...) can get stuck. However, the problem can be circumvented by performing the
optimization task employing optimized versions of the SGD algorithm, among which the Adap-
tive Moment Estimation (Adam) method (see [14]) and the Root Mean Squared Propagation
(RMSProp) method (see [15]) are by far the most widely used. Additionally, the training pro-
cess of NNs can be very efficiently carried out by exploiting the backpropagation algorithm, i.e.
a specialized version of the chain rule, discovered in the 60s, popularized by Rumelhart et al.
in [16] and easily applicable to NNs; for a detailed description of this breakthrough algorithm
in the context of NNs and for a more detailed overview on DL models and algorithms, we refer
the reader to [11].

2.1.2 Convolutional Neural Networks (CNNs)

Convolutional Neural Networks (CNNs or ConvNets) are a well-known family of DL architec-
tures, which have been inspired by the natural visual perception mechanism; indeed the prede-
cessor of CNNs can be identified in the neocognitron developed by Fukishima in [17], which has
been clearly influenced by the discovery of receptive fields in animals visual cortex. A detailed
and precise description of the history, characteristics, recent developments, current applications
and limitations of CNNs can be found in [18]; most of the material present in this section is
borrowed from such work. The very first CNN, called LeNet-5, has been developed by LeCun
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et al. in 1990 [19] in the context of handwritten digits recognition. From such point on, and
especially after the starting of the new millennium, work on CNN architectures (and, more in
general, in the field of DL) has flourished, giving birth to many different and successful models,
that have been applied in a broad variety of contexts. Among those, AlexNet [20], VGGNet [21],
GoogleNet [22] and ResNet [23] surely deserve a special mention, having proved extremely suc-
cessful and having identified the progressive State-Of-Art in the field.

A great advantage of CNNs with respect to more standard feed-forward MLP-like models lies in
the fact that they have been successfully employed in many different areas. Surely the field of
image processing and computer vision (thus including image analysis, image classification, object
detection, text detection and recognition, action recognition, scene labeling...) is the one where
CNNs have been mostly used and have shown their best performances; this is somehow natural
if we recall that these models set their roots in biological discoveries linked to animals visual
perception. Anyway, CNN models have been also used for speech recognition and NLP (where
anyway Recurrent Neural Network (RNN) showed better performances) and for the analysis of
time series. This last applicative area is the one of most interest to us, since we would like to
extract useful information from ECG signals, that are actually an example of time series. At
this aim, it surely deserves a mention the work of Rajpurkar et al. [24]; the authors, using a
34-layers CNN featuring a ResNet-like architecture, managed to develop an algorithm able to
exceed the performances of a board of certified cardiologist in detecting a wide range of heart
arrhythmias, just being given ECG signals. Such a result allows us to recognize CNNs as models
potentially able to extract lots of useful information from ECG signals, thus being useful in
epicardial activation maps reconstruction, as it will be made clear in Chapter 5.

The structure of a generic CNN model can be seen in Figure 2.3. CNN architectures are char-
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acterized by the presence of different types of layers, as convolutional layers (from which the
name), pooling layers and classical fully-connected layers. Convolutional layers take their name
from the fact that they perform convolutional operations along specified dimensions of the in-
put, using several convolutional kernels (or channels); each entry of each kernel is learned via
the backpropagation algorithm [16]. Via different convolutional kernels, CNN models compute
different feature maps; every feature map is obtained by first convolving the input, along speci-
fied dimensions, with a learned kernel and lately applying, point-wise, an activation function to
the results of the convolution operation. In mathematical terms, supposing a 2D-convolutional
layer is considered, we can write the feature value at location (i, j) in the k-th feature map of
the l-th layer as:

y
(l)
(i,j);k = σ(l)

(
W

(l)
k ∗ x

(l)
(i,j) + b

(l)
k

)
(2.6)

whereW (l)
k and b(l)

k are the weight vector and bias term of the k-th filter of the l-th layer, while
x

(l)
(i,j) is the input patch centered at location (i, j) of the l-th layer. A very important observation

is that, in generating a feature map, the kernel is shared by all the locations of the input (indeed
W

(l)
k does not depend on the location (i, j)); this is a key point, since such weight sharing allows

to drastically reduce the number of hyperparameters (easing in turn the training process) and
to force the training algorithm to extract globally-relevant features. Each convolutional layer
is furthermore characterized by different hyperparameters, as the activation function (which is
commonly taken equal across the different channels), the dimensionality of the kernel, the num-
ber of channels, the type of padding (i.e how to pad the input if, at certain locations, the kernel
does not fit inside it) and the regularization strategy and parameters.

Pooling layers aim at reducing the resolution of the feature maps, by performing operations
that map every patch of the input into a single numerical value. The dimensionality of the
patches and the amount of stride (i.e. how many entries of the input have to be "skipped"
when passing from a patch to the subsequent one) configure as the main hyperparameters of
such layers; the bigger the dimensionality of patches and strides, the more significant the overall
complexity reduction. Pooling layers are usually placed between one convolutional layer and
the subsequent one, so that the feature map of a pooling layer is connected to the one of the
preceding convolutional layer. Denoting the pooling function as fpool, the operation done in a
pooling layer can be written as:

y
(lp)

(i,j);k = fpool(y
(l)
(m,n);k) ∀ (m,n) ∈ R(i,j) (2.7)

being y(lp)

(i,j);k the output of the pooling layer placed after the l-th convolutional layer and R(i,j)

a local neighborhood around location (i, j). Typical pooling operations are average pooling (i.e.
take the average value of the patch) and max pooling (i.e. take the maximum value of the patch).
Notice that pooling layers are deterministic layers.

Finally, convolutional layers and pooling layers can be complemented by fully-connected layers
(typically ReLU -activated), which aim at performing some more high-level reasoning. They can
be either placed before or after the convolutional+pooling block; in case they are placed before
(pre-convolutional fully-connected layers), they behave as pre-processing layers who extract from
the input features on top of which the convolutional operations are expected to act better (like,
for instance, removing noise that does not carry any useful information). In case, instead, they
are placed after the convolutional+pooling block (post-convolutional fully-connected layers), they
take all neurons of the previous layer and connect them all together, with the goal of generating
some global semantic information, that allows to better reconstruct the input-output mapping.
Ultimately, in most applications, the output layer of a CNN architecture is yet a fully-connected
layer, but whose activation function depends of the type of task to be carried out, as in the case
of MLPs.
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2.2 Reduced Basis Method
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Figure 2.4: Basic structure of the developed PDE-aware DL model, where the RB-solver is highlighted

Reduced Order Modeling (ROM) techniques, like the Reduced Basis (RB) method, find their
main applicative field in the context of parametrized PDEs. Thus, in this Section, we first intro-
duce parametrized PDEs (Subsection 2.2.1) and we lately move towards the description of the
RB method, both applied to steady (Subsection 2.2.2) and unsteady (Subsection 2.2.3) problems.

2.2.1 Parametrized Partial Differential Equations

Let us consider some parameter space P ∈ Rp, p ≥ 1 and denote as µ ∈ P a parameter
vector, whose entries encode some physical and/or geometrical properties of the problem at
hand. Then, defining as Ω the computational domain and as ∂Ω its boundary, we can define a
steady parametrized PDE as: N [u;µ] = f(µ) in Ω

c1
∂u

∂n
+ c2u = ū(µ) on ∂Ω

(2.8)

where N [·,µ] denotes the differential operator modeling the problem, f(µ) the forcing term,
ū(µ) the boundary datum and u = u(µ) the parameter-dependent solution that we are looking
for.

For each value of µ, the solution of (2.8) can be approximated employing a FOM, like, for
instance, the FE method. Such an approach leads to the solution of a system of the form

N(µ)u = f(µ) (2.9)

whereN(µ) represents a parameter-dependent Nh×Nh matrix and f(µ) a parameter-dependent
Nh-dimensional vector, being Nh the number of DOFs resulting after the FOM approximation
and discretization. The information coming from the boundary conditions are somehow embed-
ded in N(µ) and f(µ). Solving such a big system (that, in real applicative fields, can reach
dimensions of the order of millions/billions) for several distinct parameter values could be very
expensive from the computational point of view. ROM techniques allow then for the compu-
tation of a good approximation of the FOM solution for any parameter value, just being given
a set of FOM solutions, computed for some carefully pre-selected parameter values and able to
show the range of all (or at least of most of) the possible outcomes of the problem at hand.
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2.2.2 Reduced Basis Method for Steady Parametrized PDEs

The RB method lies on the assumption that the parameter-dependent and Nh-dimensional
FOM solutions of the PDE can be expressed as a linear combination of nh basis functions, with
nh � Nh; such functions can be derived from solutions of the PDE itself, computed for some
suitably selected parameter values. Here we provide an outline of the method, as divided in two
phases: an offline phase and an online phase.

During the offline phase, a numberNµ of FOM solutions is computed, at some selected parameter
values {µi}Nµi=1; the underlying idea is that such solutions are representative of the vast majority
of the possible outcomes of the system. These solutions are then assembled into the so-called
snapshots matrix S ∈ RNh×Nµ , where they are stored column-wise, so that S can be written as
S = [u(µ1)|u(µ2)| . . . |u(µNµ)]. Since the final aim is to express the solution of the PDE, for any
parameter value, as a linear combination of basis functions deriving from the offline-computed
FOM solutions, the next step in the algorithm consists in building up a (lower-dimensional)
basis, starting from such solutions. This task can be carried out in different ways; the approach
followed in this work is to perform a Singular Value Decomposition (SVD) on the snapshots
matrix S, which amounts at writing S as:

S = UΣZT (2.10)

with U ∈ RNh×Nh , Z ∈ RNµ×Nµ orthogonal matrices and Σ = diag(σ1, . . . , σNµ) ∈ RNh×Nµ
being the diagonal matrix storing the singular values of S in descending order. The final Reduced
Basis, which is also an orthonormal one, is then derived by selecting the first nh � Nh columns
of U and it is usually denoted as V ∈ RNh×nh . The number nh, more than being selected a
priori, is obtained in such a way that the approximation error is minimized in Euclidean norm;
this is achieved by selecting nh as the minimum value of j ∈ {1, . . . , Nµ} such that:

1−
∑j
i=1 σ

2
i∑Nµ

i=1 σ
2
i

≤ ε2POD (2.11)

being εPOD a tolerance value, selected by the user and whose value typically depends of the
complexity and the characteristics of the problem at hand. This part is known as the POD
construction of the Reduced Basis and it constitutes the final step of the offline phase of the
RB method. According to [25], which discusses the SVD algorithm implemented in MATLAB,
the computational complexity of the procedure is O(max(Nh, Nµ)2), thus equaling in our case
O(N2

h), being typically Nh > Nµ. The computational burden can be anyway reduced by relying
on probabilistic algorithms for the construction of approximate matrix decompositions, as the
ones described in [26]; in the case of the SVD, an extremely fast computation of a truncated
decomposition (considering only K < min(Nh, Nµ) singular values/vectors) is possible via the
Randomized SVD algorithm. Few additional details on the SVD and a brief description of the
Randomized SVD algorithm can be found in Appendix B.1. Incidentally, a Reduced Basis can
be generated in different ways rather than by leveraging the SVD of the snapshots’ tensor; for
instance, greedy algorithms can be employed, as discussed in [27].

The online phase of the RB method consists in solving the PDE at hand, for any parameter
value µ̃ ∈ P, exploiting the fact that the solution can be expressed in terms of the pre-computed
lower-dimensional basis, encoded in V . From the algebraic point of view, this just amounts at
solving the linear system of equations:

NRB(µ̃)uRB = fRB(µ̃) (2.12)

where

NRB(µ̃) = V TN(µ̃)V ∈ Rnh×nh (2.13a)

fRB(µ̃) = V Tf(µ̃) ∈ Rnh (2.13b)

uRB = V Tu ∈ Rnh (2.13c)
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The unknown uRB which is computed by solving (2.12) contains the expansion coefficients of
the approximate solution with respect to the Reduced Basis encoded in matrix V . To project
again such a solution onto the FOM space, a pre-multiplication by V is therefore necessary, so
that:

u ≈ V uRB (2.14)

Finally, notice that such a construction is yet not completely independent from the FOM dimen-
sion Nh; indeed, while the dimensionality of the linear system to be solved is actually nh � Nh,
the assembling procedure of such linear system requires, for every new parameter value, the
execution of the matricial operations described in (2.13), which are definitely depending on Nh.
This bottleneck can be overcome if the problem at hand shows an affine dependence of the FOM
arrays on the parameter values, meaning that:

N(µ) =

Qn∑
qn=1

Θqn
n (µ)N qn (2.15a)

f(µ) =

Qf∑
qf=1

Θ
qf
f (µ)f qf (2.15b)

with N qn ∈ RNh×Nh , qn ∈ {1, . . . , Qn} and f qf ∈ RNh , qf ∈ {1, . . . , Qf}. This readily implies
that also the RB arrays show an affine dependence on the parameter values, so that:

NRB(µ) =

Qn∑
qn=1

Θqn
n (µ)N qn

RB (2.16a)

fRB(µ) =

Qf∑
qf=1

Θ
qf
f (µ)f

qf
RB (2.16b)

with N qn
RB = V TN qnV ∈ Rnh×nh , qn ∈ {1, . . . , Qn} and f

qf
RB = V Tf qf ∈ Rnh , qf ∈

{1, . . . , Qf}. In this way, all the operations with computational complexity depending on Nh
can be executed during the offline phase; indeed, if the µ-independent RB affine components
of N and f are pre-computed (i.e. {N qn

RB}Qnqn=1, {f
qf
RB}

Qf
qf=1), during the online phase only

suitable linear combinations of those, with weights given by µ-dependent scalar coefficients (i.e.
{Θqn

n (µ)}Qnqn=1, {Θ
qf
f (µ)}Qfqf=1), have to be performed. Notice that such a procedure can be fol-

lowed only if the affine parametrization of the FOM arrays holds true for the problem at hand.
In case, instead, no affine decomposition takes place on eitherN or f , it is yet possible to derive
an approximated one relying on the Empirical Interpolation Method (EIM) (see [28]) or on its
discrete version Discrete Empirical Interpolation Method (DEIM) (see [29]) and then basically
stick to the same pipeline.

2.2.3 Reduced Order Modeling Techniques for Unsteady Parametrized
PDEs

ROM techniques can be also applied to time-dependent parametrized PDEs, which in a general
form read as: 

∂u

∂t
+N [u;µ] = f(t;µ) in Ω× [t0;T ]

c1
∂u

∂n
+ c2u = ū(t;µ) on ∂Ω× [t0;T ]

u(t = 0) = u0(µ) in Ω

(2.17)

where N [u;µ], f(t;µ) and ū(t;µ) are defined as in (2.8) (aside of the time dependency), while
u0(µ) encodes the initial condition. Notice that here we assume the differential operator in
space N [·;µ] to be independent of time. Upon a discretization in space, for instance via the FE
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method, (2.17) writes as: 
du

dt
+N(µ)u = f(t;µ) in [t0;T ]

u(t = 0) = u0(µ)
(2.18)

The FOM solution can be retrieved performing a partition of the time domain
{

[t(l); t(l+1)]
}Nt−1

l=0
,

such that t(0) = t0 and t(Nt) = T and choosing some time marching scheme (as linear multistep
methods or Runge-Kutta multistage methods) for the approximation of the time derivative.

The Standard RB Method

The more classical way of proceeding involves the application of model order reduction along the
space dimension only, basically replicating what is done in the steady case for all the timesteps
{t(l)}Ntl=0. Before getting there, it is necessary to introduce an additional concept, which is the
one of mode-n unfolding of a tensor. Consider to be given tensor T of order N , which can be
visualized as a matrix inN dimensions. Given then a positive number n ≤ N , we can perform the
mode-n unfolding of the tensor T by reshaping it into a 2D matrix, having a number of rows equal
to the cardinality of T along the n-th dimension and a number of columns equal to the product
between all the cardinalities of T in the dimensions different from n. For instance, suppose to
have a tensor T ∈ RN1×N2×N3 ; its mode-1 unfolding leads to a 2D matrix T(1) ∈ RN1×N2N3 that
can be so written as:

T(1) =


t111 · · · · · · t1N21 t112 · · · · · · t1N22 · · · t11N3

· · · · · · t1N2N3

t211 . . . . . . t2N21 t212 . . . . . . t2N22 . . . t21N3
. . . . . . t2N2N3

...
. . .

. . .
...

...
. . .

. . .
... . . .

...
. . .

. . .
...

tN111 . . . . . . tN1N21 tN112 . . . . . . tN1N22 . . . tN11N3
. . . . . . tN1N2N3


The mode-2 and mode-3 unfoldings of T can be constructed in a similar way.

So, suppose to compute the solution to (2.18), using some time-marching scheme, forNµ different
parameter values and to store it in a third-order tensor S ∈ RNµ×Nh×Nt . The Reduced Basis
along the spatial dimension can be computed performing a POD over the mode-1 unfolding
of the snapshots’ tensor, which corresponds at reshaping S such that the Nh spatial degree of
freedom (DOF) span over the rows, while both the time DOFs Nt and the number of snapshots
Nµ vary over the columns. By doing so, we get:

S(1) = UsΣsZ
T
s ∈ RNh×NtNµ (2.19)

φi = uis, i ∈ N(nh) (2.20)

with uis identifying the i-th column of Us and with nh � Nh provided that only a minority
of relevant singular values is kept at the reduction stage, if the spatial POD tolerance εsPOD is
taken sufficiently high in (2.11). This computation requires nhNh storage, since the final Re-
duced Basis in space is represented by a matrix Vs ∈ RNh×nh .

Once the Reduced Basis in space Vs is computed, the classical RB method can be applied
also to the unsteady parametrized PDE (2.18), just by projecting all the quantities onto the
dimensionality reduced subspace in space. Thus, (2.18) can be rewritten as:

duRB
dt

+NRB(µ)uRB = fRB(t;µ) in [t0;T ]

uRB(t = 0) = u0RB (µ)
(2.21)
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where

NRB(µ) = V T
s N(µ)Vs ∈ Rnh×nh (2.22a)

fRB(t;µ) = V T
s f(t;µ) ∈ Rnh , t ∈ [t0;T ] (2.22b)

uRB = V T
s u ∈ Rnh (2.22c)

u0RB (µ) = V T
s u0(µ) ∈ Rnh (2.22d)

Then, choosing a time marching scheme to approximate the time derivative of uRB , it is pos-
sible to compute a solution to (2.21) by solving a linear system of dimension nh � Nh at any
discrete time instant. Denoting by C(N) the cost of solving a linear system of dimension N
(with N ∈ N), which depends on the type of solver that is used and that monotonically grows
with N , the overall computational complexity of the online phase of the proposed method is
CRB = C(nh)Nt. Such quantity is significantly smaller compared to the corresponding one got
using the FOM approximation, which is CFOM = C(Nh)Nt. As a side remark, notice that,
under the assumptions that N |= t and that the time step ∆t is constant over time (so, definition
of a homogeneous partition of the time interval [t0;T ] and usage non-adaptive time marching
schemes), the matrix of the linear system is time-independent too. Thus, it is possible to leverage
LU/Cholesky decompositions to speed up the computation of the solution.

Leveraging Dimensionality Reduction in Time

The straightforward application of the classical RB approach to unsteady problems features the
evident drawback that no dimensionality reduction is performed across the temporal dimension,
thus attaining a complexity that depends on the number of timesteps Nt. Several methods
have been proposed to overcome this issue, among which the Space-Time Least-Squares Petrov-
Galerkin (ST-LSPG) projection approach proposed by Choi, Carlberg in [30] is definitely worth
a mention; indeed it allows to compute the solution to the unsteady parametrized PDE at hand
at all Space-Time DOFs and for any µ ∈ P just by solving an underdetermined linear system,
arising from the minimization of the residual in a weighted l2-norm. A detailed description of
the algorithm goes beyond the aim of the project and it won’t be provided in here; anyway it
is crucial to understand how the authors managed to reduce the time dimensionality, encoding
the information coming from the spatio-temporal solutions to the unsteady PDE at hand in a
bunch of coefficients. In particular, three different ways to compute a Reduced Basis along the
time dimension have been proposed.

1. Fixed Temporal Subspaces via T-HOSVD (Temporal High-Order SVD): this
approach is the most straightforward and it just consists in performing the SVD of the
mode-2 unfolding of the snapshot tensor S (i.e. a SVD on the matrix that has the time
DOFs organized over rows and with both spatial DOFs and training parameters spanning
over the columns). Hence, we get:

S(2) = UtΣtZ
T
t ∈ RNt×NhNµ (2.23)

ψj = ujt j ∈ N(nt) (2.24)

with ujt identifying the j-th column of matrix Ut and with nt � Nt provided that only a
minority of relevant singular values is kept at reduction stage, if the temporal POD toler-
ance is taken sufficiently high in (2.11). In simpler terms, this procedure derives a basis for
the time dynamics of the problem by observing the evolution of the FOM solution at all
the spatial DOFs. This approach requires ntNt storage, since the Reduced Basis in time
is represented by the matrix Vt ∈ RNt×nt .

2. Fixed Temporal Subspaces via ST-HOSVD (Spatio-Temporal High-Order SVD):
this approach is maybe more complex than the previous one, but definitely less expensive
from the computational point of view, since it leverages the previously computed spatial
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Reduced Basis Vs. In particular, the temporal Reduced Basis is computed by performing a
SVD on the mode-2 unfolding of the projection of the snapshots’ tensor S onto the reduced
spatial subspace, with respect to its first component. Formally, this means that we have
to compute the following "reduced" tensor:

SVs =: S ×1 Vs ∈ Rnh×Nt×Nµ (2.25)

(S ×1 Vs)ijk =

Nh∑
l=1

Sljkφil (2.26)

being φil the l-th component of the i-th spatial basis vector, thus equaling Vsli . Basically,
this computation can be seen as the unsteady counterpart of the multiplication by the
transpose of the basis matrix V , which is done when performing the projection onto the
RB space in the steady case. Given this new tensor SVs , performing the SVD on its mode-2
unfolding, we get that:

SVs(2) = Ut,VsΣt,VsZ
T
t,Vs ∈ RNt×nhNµ (2.27)

ψj = ujt,Vs j ∈ N(nt) (2.28)

being ujt,Vs the j-th column of the matrix Ut,Vs and nt � Nt provided that only a minor-
ity of relevant singular values is kept at reduction stage, if the temporal POD tolerance is
taken sufficiently high in (2.11). In simpler terms, the current approach computes a reduced
temporal basis by observing the dynamics over time of all the coefficients resulting from
the projection of the solutions onto the dimensionality reduced subspace in space; heuris-
tically, those are expected to be less subject to noise than the plain values of the solution
at all the spatial DOFs, thus suggesting this method to be able to provide a better encod-
ing of the information relative to time-evolution. The storage requirement is again ntNt,
but a significant saving of computational resources is achieved in the POD, by means of
the projection step, since nh � Nh; the temporal basis is stored in the matrix Vt ∈ RNt×nt .

3. Tailored Temporal Subspaces via ST-HOSVD (Spatio-Temporal High-Order
SVD): this last approach is a further generalization of the previous one and it allows to
compute a different temporal basis, depending on the corresponding spatial basis vector
φi. In other words, each element of the spatial Reduced Basis is equipped with its own
"customed" temporal basis. Such a method performs again the SVD on the space-projected
snapshots’ tensor S, but it does so independently for each element of the Reduced Basis in
space. Thus, for each i ∈ {1, . . . , nh}, first the projection of the snapshots’ tensor S onto
the space spanned by φi ≡ Vsi (i-th column of Vs) is computed, i.e.

SVsi =: S ×1 Vsi ∈ RNt×Nµ (2.29)

(S ×1 Vsi)jk =

Nh∑
l=1

SljkVsil (2.30)

Then its SVD is derived, so that:

SVsi = Ut,VsiΣt,Vsi
ZTt,Vsi

∈ RNt×Nµ (2.31)

ψij = ujt,Vsi
i ∈ N(nh), j ∈ N(nit) (2.32)

being ujt,Vsi the j-th column of the matrix Ut,Vsi and n
i
t � Nt the cardinality of the tem-

poral Reduced Basis corresponding to the spatial Reduced Basis element φi ≡ Vsi . Notice
that, in this case, the storage required is

∑nh
i=i n

i
tNt =: nstNt, which is higher with respect

to the previous cases (nst is expected to be quite much higher than nt) since a different
temporal Reduced Basis is computed for each element of the Reduced Basis in space. Any-
way, precisely because the temporal bases are tailored to each element of the spatial one,
it is reasonable to expect them to be lower-dimensional with respect to the ones of the
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previous approaches. This entails that the information coming from each spatio-temporal
solution to the PDE at hand can be encoded in a lower number of coefficients, i.e. in∑nh
i=i n

i
t =: nst < nhnt coefficients. Incidentally, the fact that the temporal reduced bases

are obtained from the coefficients resulting from the dimensionality reduction in space, and
not from the plain values of the solution at the spatial DOFs, allows this method to be
relatively robust to noise, as highlighted also for the second approach. The temporal bases
are ultimately stored in the matrices {V i

t }nhi=1 such that V i
t ∈ RNt×nit , i ∈ {1, . . . , nh}.

As it will be made clear in Chapters 4 and 5, in the context of this project we have not exploited
the spatio-temporal dimensionality reduction in solving a time-dependent parametrized PDE
(as done by the ST-LSPG projection method for instance). Conversely, we faced the need of
encoding the information coming from spatio-temporal FOM solutions into the lowest number
of coefficients, yet retaining a good degree of accuracy. Because of this, as better reported in
Subsection 4.2.4, on the one side we employed the standard RB method to solve a steady gener-
alized Laplace equation at different discrete time instants and on the other side we encoded the
information coming from spatio-temporal solutions to the heart EP problem using the Tailored
Temporal Subspaces via ST-HOSVD approach. In the last part of the current section, we thus
consider such approach to properly define the spatio-temporal reduced subspace, its basis func-
tions and the operations needed to perform the projection of a FOM solution onto such space
and the re-projection of a reduced solution back onto the FOM space.

The space spanned by the Nµ FOM snapshots defining the training dataset can be expressed as:

ST = u0(µ)⊗O + span{u(·,µi)− u0(µi)}Nµi=1; (2.33)

where O : {t(l)}Ntl=0 → 1Nt is a functional that maps the set of all time instants into a Nt-
dimensional vector of ones. Basically, the operation u0(µ)⊗O has the effect of giving as output
a Nh × Nt matrix, where the initial condition is replicated over each column (i.e. over each
time instant). Notice that the initial condition is subtracted from the solution at each time
instant in the "spanned space" and summed up with a separate term; this can be very useful
when lately performing PODs to find the dimensionality reduced subspaces. Indeed, resorting
to homogeneous initial conditions may be of help in finding a better reduced subspace, since the
phenomenon of inertia that the initial condition exerts on the solution at the first time instants
is "hidden".

The idea is to write the spatio-temporal reduced subspace as an outer product between a reduced
subspace in space and reduced subspace in time, plus a term encoding the initial condition
contribution. Thus, we aim at getting something of the form:

ST ≈ ST red = u0(µ)⊗O + S ⊗ T (2.34)

being S =: span{φi} ⊂ RNh the reduced subspace in space and T =: span{ψj}ntj=1 ⊂ RNt the
reduced subspace in time. Following the last of the proposed alternatives, we end up defining a
different temporal reduced subspace for each basis function φi of the reduced subspace in space
S. Thus we can express the spatio-temporal reduced subspace as:

ST ≈ ST red = u0(µ)⊗O +⊕nhi=1span(φi)⊗ Ti; (2.35)

with Ti = span{ψij}
nit
j=1 ⊂ RNt and nit denoting the number of temporal basis functions cor-

responding to the spatial basis function φi. Given this formulation of the space-time reduced
subspace, the generic space-time basis function can be written as:

πF(i,j)
= φi ⊗ψij ∈ RNh×Nt i ∈ N(nh), j ∈ N(nit) (2.36)

where F : (i, j)→∑i−1
k=1 n

k
t + j is a mapping from the spatial-basis and temporal-basis indexes

to the spatio-temporal-basis indexes. Finally, the generic parametrized solution to the unsteady
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PDE at hand u(µ) can be approximated as:

u(µ) ≈ u0(µ)⊗ 1Nt +

nst∑
i=i

πiûi (2.37)

where nst defines the total number of spatio-temporal basis functions and {ûi}nsti=1 are the so-
called generalized coordinates, which represent the expansion coefficients of u(µ) with respect
to the spatio-temporal basis functions. So, considering that the basis is orthonormal, we can
write the k-th generalized coordinate of u(µ) as:

ûk =

Nh∑
i=1

Nt∑
j=1

πkiju(µ)ij k ∈ N(nst) (2.38)

where πkij denotes the coordinates i (in space) and j (in time) of the k-th space-time ba-
sis element πk. Equation (2.38) expresses then how a FOM solution can be projected onto
the spatio-temporal dimensionality reduced subspace, while equation (2.37) allows to re-project
onto the FOM space a spatio-temporal reduced solution, expressed via its generalized coordi-
nates {ûk}nstk=0.
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Chapter 3

PDE-aware Neural Networks and
RB-DNN models

As anticipated in Chapter 1, a key element of the present work is the idea of merging together in
a unique model data-driven DL techniques and more classical physics-aware numerical methods.
Such a choice is motivated by the recent growth of both fields, which ended up intersecting in a
common area that we ultimately wish to explore. On the one side, indeed, in recent times, with
the abundance of available data, ML and data analytics techniques have drawn significant at-
tention and have yielded several breakthrough results in the more disparate fields. On the other
side, classical numerical methods for the modeling of physical phenomena via PDEs/ODEs have
undergone a significant stage of development too; nowadays the dynamics of many physical
systems can be simulated with high degree of accuracy and precision and at reasonable compu-
tational cost thanks to such recent advances. Thus it seems reasonable to try to join these two
fast-growing components, trying to take from both the best parts, in a sort of mutual relation-
ship by means of which the weaknesses of one approach are mitigated by the strengths of the
other. Such a strategy provided to give an appreciable pay-off in the so-called small data regime,
i.e. in contexts characterized by data scarcity, where the application of baseline DL techniques
features an increased complexity. Indeed, if underlying physical laws explaining the behaviour
of some of the variables involved in the system are known, then the performances of data-driven
approaches can be significantly improved by taking advantage of those.

This chapter will be divided in two Sections; in Section 3.1 a more detailed overview on the
field of PDE-aware ML models will be given, posing particular attention to Physically Informed
Neural Networks (PINNs) (see [1]) and to RB-DNNs (see [2]). In Section 3.2, instead, a more
exhaustive description of RB-DNN models will be given, discussing their structure and goals
(see Subsection 3.2.1) and showing the results of their application to both steady and unsteady
parametrized PDE problems (see Subsection 3.2.2). This choice is motivated by the fact that
the architectures of the PDE-aware DL models developed within this project have been inspired
by the ones of the RB-DNNs.
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3.1 PDE-aware Neural Networks: a Brief Overview
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Figure 3.1: Basic structure of the developed PDE-aware DL model, where the model highlighted

Recent years have been unarguably characterized by the explosive growth of available data and
of computing resources; this has induced major advances in the context of machine learning and
data analytics, which have yielded several breakthrough results in the most disparate fields, from
image recognition [3] to text categorization [4] and natural language processing (NLP) [5]. In
particular, DL-based algorithms have experienced a huge success in the last decade, being able to
provide (approximate) data-driven solutions to problems on top of which "classical" algorithmic
paradigms used to experience lots of difficulties and showed many lacks and weaknesses.

Among the fields where DL-based models have opened the way towards new horizons and per-
spectives, anyway, there’s no place for the one related to the numerical approximation of PDEs.
Surely a reason for that relies in the fact that classical numerical methods for the modeling
of physical phenomena via PDEs have experienced a massive development too in recent times,
reaching stunning degrees of accuracy and precision in a variety of heterogeneous contexts. An-
other motivation may be surely found in the reluctance of the numerical analysis community
to adopt algorithms that suffer of a lack of theoretical foundations, as the DL-based ones. In-
deed, while classical Finite Elements and Finite Volumes methods are equipped with theorems
and corollaries delivering precise errors bounds and stability constraints, the properties of NNs
have only been partially discovered, especially when they come to the applicative stage. It is
in fact true that the characterization of NNs as universal functions approximators has been
well-known for many years (see [31]), but it is still obscure and often demanded to heuristics
and personal intuition how to design optimal NN architectures, choosing the hyperparameters
so that an ideal trade-off between model complexity and efficiency is achieved. Recent advances
in defining a (not yet rock) solid mathematical theory of NNs can be for instance found in [32,33].

This mutually exclusive trend has started being reverted only in the very recent years, where sev-
eral studies bringing proposals for the integration of DL-based models into the well-established
and precise world of numerical analysis have appeared. The general key point of such proceeding
relies in the fact that it may be possible to establish a win-win mutual relationship between the
two fields. On the one side, indeed, DL could benefit of numerical analysis because it would be
enriched with a solid theoretical foundation that would make it less inclined towards reasonings
based on heuristics and experience. On the other side, instead, classical numerical analysis could
take advantage of DL models to accomplish all those tasks on top of which it has always shown
its limitations and that, instead, proved to be carried out efficiently by leveraging data abun-
dance. Clearly, the merging process could be boosted if more rigorous theoretical results on the
integration between DL models and classical numerical methods were available; at this aim it
surely deserves a mention [6] by Kutyniok et al., where the authors analyze, both theoretically
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and numerically, the properties of ReLU -activated DNNs in approximating the solution maps
of parametrized PDEs, also leveraging ROM techniques.

According to [1], an ideal situation in which the aforementioned integration can be performed is
the so-called small-data regime i.e. situations in which the amount of data at disposal is either
limited or partial or subject to a high degree of inaccuracy, because of the high cost/complexity
of data acquisition procedures. In such a context, all classical DL-based methods (DNNs, CNNs,
RNNs, etc...) traditionally feature severe problems in terms of robustness, generalization and
convergence. If the phenomenon generating the data is anyway characterized by the presence of
some underlying physical laws, expressible by means of PDEs/ODEs, then classical numerical
methods can come to the rescue of the newborn DL-based ones. Indeed the knowledge of the
physics of the problem at hand can be, somehow, made available to the NN model, acting as
a physically-aware regularization agent, that (hopefully) eases the NN design and training, im-
proving in turn the overall model performances.

Among all the works on PDE-aware NNs, surely [1] by M. Raissi, P. Perdikaris, G.E. Karni-
adakis deserves a special mention, representing somehow the State-Of-Art in the field. In such
work, the authors, leveraging the property of NN as universal functions approximators, train
simple Tanh-activated MLP networks in such a way that they provide data-driven solutions to
PDEs, estimating also some of the underlying characteristic parameters. Such networks take
the name of Physically Informed Neural Networks (PINNs) and they have been presented in the
form of two different models. In the continuous-in-time model, the network takes as input the
coordinates of a point (x, t) in the computational domain and it produces as output the value of
the solution to the PDE at that point; the awareness of the physics of the problem is achieved by
minimizing, in the loss function, the Mean Squared Error on the residuals of the PDE at hand,
computed via the technique of automatic differentiation (see [34]), together with the coupled
initial and boundary conditions. Conversely, the discrete-in-time model exploits Runge-Kutta
time marching schemes with very high number of stages (of the order of 100) in order to pro-
vide the solution to the PDE at a certain point x and at several discrete time instants {tj}sj=0

with tj = t0 + j∆t, just being given (x, t0) as input; in this case the loss is constructed as the
Sum Squared Error over the values of the solution at {(x, tj)}sj=0. PINNs’ performances proved
to reach incredible levels of accuracy for both the continuous-in-time and the discrete-in-time
model on a broad variety of problems, from the simple 1D Burgers’ equation to the much more
complicated cases of the Navier-Stokes equations or of the complex-valued Schrodinger equation.

As explained in Chapter 1, the aim of this project is to develop physically-aware DL models that
could provide approximate solutions to the inverse problem of electrocardiography (see Section
4.3). Thus, we would like our model to receive as input "external" measurements (like ECG
signals for instance) and to produce an output descriptive of the time evolution of the epicardial
extracellular potential. In view of this, PINNs seem not too adequate to the task: indeed it
could be possible to design a PINN-inspired model that receives as input both the coordinates
of a point (x, t) and the body surface potentials (eventually just in a time window including the
target time instant t), and that gives as output the value of the epicardial extracellular potential
at (x, t). This may configure as a possible extension of the present work, but at first we preferred
to accomplish the task at hand by leveraging a different type of PDE-aware architectures, which
combine DL with ROM techniques. Several works have been already made in this sense (as
[7–9] for instance), but the one we took inspiration from is Data Driven Approximation of
Parametrized PDEs by Reduced Basis and Neural Networks by N. Dal Santo, S. Deparis, L.
Pegolotti, where DL-based models, embedding a Reduced Basis solver as a deterministic layer
within the architecture, are presented. Such models take the name of Reduced Basis Deep Neural
Networks (RB-DNNs) and, having exerted a significant influence on our work, we have devoted
the entire subsequent Section to their description and to a brief discussion on their performances.
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3.2 RB-DNN models
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Figure 3.2: Basic structure of the developed PDE-aware DL model, where the model highlighted

3.2.1 Description, Structure and Goals of RB-DNN models

The aim of the current Subsection is to provide a more detailed description of RB-DNN models,
focusing on their structure and architecture and highlighting their main points of strength and
goals. The discussion provided here is in large part borrowed from [2] and it just takes into
account the case of steady parametrized PDEs (see Subsection 2.2.1), admitting an affine de-
composition of the FOM/ROM arrays with respect to the parameter values (see (2.15) - (2.16)).
The transition towards the case of unsteady problems, will be faced in Subsection 3.2.2; the
hypothesis of affine parametrization, as said in Section 2.2, can be relaxed by taking advantage
of EIM (see [28]) and DEIM (see [29]) algorithms.

Let us suppose we are given:
• A steady parametrized PDE, as the one in (2.8); let us call µ ∈ P ⊂ Rp, p ≥ 1 the

vector whose entries encode the characteristic parameters and let us suppose that the
measurement of such quantities is either not available or very inaccurate or very com-
plex/expensive/invasive.

• A set of points Pin = {pi}Nini=1 at which we know the value of the solution to the PDE
• A set of points Qout = {qj}Noutj=1 at which we desire to estimate the value of the solution

The final aim is, given the values of the solution to the PDE at the input points Pin for Nµ
unknown parameter values, to compute the values of the solution at the desired output points
Qout for the corresponding parameter values as well as the values of the parameters themselves.
The choices of the sets of locations Pin and Qout can be different; for instance, it is possible to
set Pin ≡ Qout, thus designing a PDE-aware autoencoder able to reconstruct the values of the
underlying parameters. Conversely, we may also choose Pin as made of points placed in regions
of the computational domain where measurements are expected to be less complex and/or more
precise, while Qout defines regions where measurements of the solution values are typically diffi-
cult or very inaccurate. In this setting, the RB-DNN architecture is expected to perform a sort
of extrapolating task, reconstructing the values of the solution in regions of the domain where
no data was originally available.

The idea presented in [2] is to carry out this task by means of a combination of ROM numerical
methods (in particular, using the RB method introduced in Section 2.2) and DL techniques; this
finally results in the assembling of the RB-DNN architecture. As anticipated in the previous
Subsection, the element of novelty of this approach with respect to already proposed ones, in
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Figure 3.3: Structure of a simple RB-DNN architecture, with Nin = 3, Nout = 3 and 2 characteristic parameters
{Oµi }

2
i=1 "internally" estimated by the trainable MLP part of the model. The numbers reported as subscript

of the input and output entries represent the indices associated to the DOFs chosen to assemble the input and
output datapoints. Image taken from [2]

the context of data-driven numerical approximation of PDEs (like PINNs, for instance), is to
exploit the underlying physics of the problem at hand not in the expression of the loss function,
but in a self-structured deterministic layer, which uses the RB method as its exotic non-linear
activation function.

The structure of a simple RB-DNN can be found in Figure 3.3; it is immediate to visualize it as
made of two distinct parts, placed one after the other. In the first part, we find a MLP network
made of L− 1 layers, each of whom can be constituted by a different number of neurons; in [2]
they are all said to exhibit a ReLU as activation function, but different choices can be made
in this sense, according to the problem at hand. The MLP part of the NN takes as input the
values of the solution at the input locations Pin and it is responsible for providing, as output, the
values of the characteristic parameters of the PDE. In other words, the presence of a mapping
between the values of the solution measured at the input locations Pin and the values of the
characteristic parameters is postulated, i.e.

M : Sin → P
{ũ(pi;µ)}pi∈Pin 7→ µ

(3.1)

with Sin identifying the space spanned by the values of the solution measured at the input lo-
cations {ũ(pi;µ)}pi∈Pin . The aim of the trainable part of the model is then to estimate such
mapping from the data, leveraging the well-established capability of NNs as universal function
approximators (see [31]).

The following remarks are in order. First the MLP part of the RB-DNN could produce esti-
mates of either the parameter values µ or of the parameter-dependent coefficients of the affine
parametrization of the FOM/RB arrays, i.e. {Θqn

n (µ)}Qnqn=1 and {Θqf
f (µ)}Qfqf=1, eventually ap-

proximated via EIM-DEIM methods. Second, the architecture of the trainable part of the
RB-DNN does not have to be compulsorily a simple MLP, just made of several flanked fully-
connected layers. As it will be discussed in the next Subsection, for instance, in case unsteady
problems are faced and input data are organized as time series, placing either a CNN or a RNN
in the trainable part may be of great help, since it can allow to exploit the temporal dynamics
characterizing the input data and thus to extract features that are more effective for the ultimate
prediction task.

Following the notation adopted in Section 2, we can express the operations done by the MLP
among its fully-connected layers as:

y(l) = σ(l)(W (l)x(l) + b(l)) (3.2)
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In the end, the model returns either p or Qf + Qn final outputs in layer L − 1, depending on
the nature of the quantities that it is expected to estimate; whichever the case, following the
notation of [2], let us denote such quantities as Oµi .

In the second part of the network we find the real element of novelty: a RB solver, embedded
inside the NN architecture as a non-trainable layer (also called lambda-layer). In a perfectly
deterministic way, then, this last layer takes as input the values given as output by the MLP
(so either the parameters or the parameter-dependent coefficients of the affine parametrization
of the FOM/RB arrays) and it efficiently computes the values of the solution at the output
locations Qout. We can synthesize the action of the RB-layer as:

{ũ(qi; ξ̃(µ̃))}qi∈Qout = y(L) = σRB(y(L−1)) = σRB(W (L−1)x(L−1) + b(L−1)) (3.3)

being ξ̃(µ̃) = µ̃ or ξ̃(µ̃) = [Θ1
n(µ̃), . . . ,Θqn

n (µ̃),Θ1
f (µ̃), . . . ,Θ

qf
f (µ̃)] the vector containing either

the inputs to the deterministic RB-solver layer and σRB : Rs → RNout , with s = p or s = Qn+Qf ,
the functional representation of the RB method. Actually, the last layer does not just solve a
dimensionality reduced problem, since this alone would not be enough to retrieve the values of
the solution at the output locations; indeed, once the approximated reduced solution ũRB is
available, it is also re-projected onto the FOM space and evaluated/interpolated at the desired
output locations. As a whole, then, the action of the output layer can be written as:

σRB(ξ̃) = RT
outV ũRB(ξ̃) = RT

outV N
−1
RB(ξ̃)fRB(ξ̃) (3.4)

being Rout a matrix belonging to RNh×Nout which allows to evaluate the solution at the target
output locations in Qout.

It is crucial to underline that the choice of resorting to a ROM technique to solve the PDE
at hand is almost compulsory, if the solver layer is embedded inside the network architecture
and thus involved in the overall training process via backpropagation algorithm. Indeed, the
computation of the solution to the PDE, given the values of the characteristic parameters, has
to be performed NµNepochs times, being Nµ the number of training datapoints, generated for
different parameter values, and Nepochs the number of training epochs. In standard applicative
contexts this number can be very high, thus leading to an exceed of both memory and wall time
constraints, at least on "standard" machines, if the FOM problem has to be solved. Reducing
the dimensionality of the problem at hand via ROM techniques, instead, makes it feasible to
embody the computation of the parametrized PDE approximated solution within the NN model.
Readily, the choice of the RB method, among the set of ROM techniques, is not mandatory, but
it seems to be the most straightforward, at least in a general framework. Also, the hypothesis
of affine parametrization (or of its approximation via EIM/DEIM algorithms) allows to further
minimize the amount of computations needed to assemble the RB-projected linear system to be
solved, thus ultimately leading to a significant speed up in the training/testing wall times.

Finally, the loss functional to be minimized is defined simply as the Mean Squared Error (MSE)
on the values of the solution at the output locations Qout, i.e.

L(Θ;y,y(L)) = MSEΘ(y,yL) = MSEΘ({u(pj ;µ)}j∈Qout , {ũ(pj ; µ̃}j∈Qout) (3.5)

where {u(pj ;µ)}j∈Qout are the real values of the solution, measured at the output locations,
while {ũ(pj ; µ̃}j∈Qout are the estimated values of the solution at the output locations, corre-
sponding to the estimated parameter values. The major observation that can be made looking
at the formulation of the loss functional is that it does not contain any explicit information
regarding the values of the characteristic parameters µ; thus, such values do not have to be
known neither at training stage and they configure as a physically-aware by-product, estimated
by the hidden layers of the RB-DNN model.
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Few remarks are worth to follow.
• The value of the solution at the input/output locations may not coincide with the nu-

merical value encoded in its vectorial representation; this may happen either because the
FOM basis is not interpolatory (think about high-order splines in IsoGeometric Analysis
(IGA)) or because, even with classical P1 FE, the sensors which are supposed to detect the
input values are located in points of the domain that cannot be "traced" efficiently with a
reasonably simple mesh. Such an issue can be tackled employing interpolation techniques;
in the case of interest, anyway, the usage of Lagrangian basis functions and the selection
of the grid points as locations of the input/output values prevents us from any effort in
this direction.

• The structure of the RB layer must be adapted to whether the trainable part of the NN
provides an estimate of the parameters µ or directly of the parameter-dependent coefficients
{Θqn

n (µ)}Qnqn=1 and {Θqf
f (µ)}Qfqf=1.

• In case the training dataset comes from numerical simulations rather than from real phys-
ical measurements (as in our case of interest), it is immediate to observe that it can be
used both as NN training dataset and as the snapshots’ set for the construction of the Re-
duced Basis via POD in the offline phase of the RB method, thus lightening significantly
the overall computational burden. Also, in case the training appears to require a larger
amount of data, it is possible to follow a two-steps data generation pipeline; in a first phase,
the FOM problem is solved for NFOM

µ different parameter values and from such solutions
the Reduced Basis is computed via POD. Once this is done, provided that the accuracy
of such basis matches the requirements in terms of accuracy, it is possible to solve (at low
cost) the ROM problem for other different NROM

µ parameter values; the union of the two
datasets can be ultimately used as training dataset for the RB-DNN model.

• The dimensionality of the proposed models is reasonably small, being typically made of
4 − 5 fully-connected layers featuring from 512 to 32 neurons each. Thus, the training
phase can be carried out in few minutes in a simple computational environment as the one
described in Appendix C, while the testing on fresh data samples just takes fractions of a
second, involving only the evaluation of a feed-forward model and the resolution of a small
linear system.

3.2.2 Applications of RB-DNN models: an overview on the obtained
results

This Subsection is devoted to a brief discussion of the results obtained with RB-DNN mod-
els on several test cases. In particular, in the first part a summary of the results on steady
parametrized PDEs contained in [2] is given; in the second part, instead, an extension of the
model to handle unsteady parametrized problems, named Reduced Basis Convolutional Neu-
ral Network (RB-CNN), is presented and few numerical results obtained on a simple affinely
parametrized benchmark problem are discussed.

RB-DNN model on Steady Parametrized PDEs

In [2], the performances of the RB-DNN model have been evaluated on 3 different test cases,
with increasing level of complexity, namely a simple affinely parametrized advection-diffusion
problem, a non-affinely parametrized elliptic problem and the steady Navier-Stokes problem. In
the last two test cases, an approximated affine parametrization of the FOM/RB arrays has been
retrieved via EIM/DEIM algorithms. In all cases, the performances of the model have been
evaluated for different settings of its main hyperparameters, i.e. the number of layers and of
nodes per layer in the trainable MLP part of the network, the number of input and output loca-
tions Nin and Nout, the number of training snapshots Nµ and, for the non-affinely parametrized
problems, the number of affine basis functions chosen in the EIM/DEIM algorithms.

The RB-DNN model proved to give very good results on all the problems it has been tested on,
both in terms of estimation of the underlying parameters and of reconstruction of the values of the
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Figure 3.4: Estimation of the two parameters of the affinely parametrized advection-diffusion test case ν (top
row) and α (bottom row) (normalized over the respective ranges), for different POD tolerances of the RB problem
and different number of training samples. The results refer to the test dataset, which is composed of 600 data
points, and are averaged over 30 trainings of the RB-DNN network. The regions between dashed lines display
the 95% confidence intervals corresponding to the average lines with the matching colors. Image taken from [2].

solution at the output locations. As explanatory test case, Figure 3.4 shows the results of the esti-
mation of the two parameters involved in the formulation of the affinely parametrized advection-
diffusion problem; in particular ν ∈ [0.5; 10] represents the diffusion coefficient, while α ∈ [0;π/6]
defines the characteristic angle of the advection field b(x;α) =: sin(α)b1(x) + cos(α)b2(x). It is
immediate to see that the errors on both parameters are small (quantitatively, they are of the or-
der of 10−2−10−3 for both ν and α), with the only exception of the ones got on ν for high values
of ν itself; a heuristic justification for this is provided in the paper. Moreover, the accuracy of
the model increases as the number of training samples increases and as the tolerance of the POD
used to generate the Reduced Basis decreases; these trends are both expected and reasonable.
Average relative errors on the values of the solution at the output locations (which are taken in a
portion of the domain where no input point has been sampled, so that Pin∩Qout = ∅) are of the
order of 10−3 − 10−4 for all the considered architectures, thus indicating again an appreciable
degree of accuracy.

Another relevant test performed in [2] aims at comparing the behaviour of the RB-DNN archi-
tecture with the one of other two architectures, that do not show any embedded RB-solver layer.
In particular, the comparison of the RB-DNN model is performed, again on the simple affinely
parametrized test case, with the following three networks:

1. MLPall: a simple MLP network. It takes as input the values of the solution at some
randomly sampled locations Pin and it gives, as output, the values of the solution at some
different locations Qout as well as the values of the parameters; those must be involved
explicitly in the loss function in this case, since there’s no physical layer allowing for an
implicit retrieval.

2. MLPµ: a MLP network, identical to the previous one, except the fact that it gives as
output only the values of the characteristic parameters.

3. MLPout: a MLP network, identical to the first one, except the fact that it gives as output
only the values of solution at the output locations.

The findings are very important: indeed it has been observed that, regardless of the number of
input-output locations and of the size of the training dataset, the behaviour of the RB-DNN
model is very close to the one of the MLP networks in terms of the estimation of both the
parameters (where MLPall and MLPµ have been considered) and of the values of the solution
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(where MLPall and MLPout have been considered). Such a result tells us that the RB-DNN
model is able to provide a very good approximation of the characteristic parameters, comparable
to the one of a NN featuring them as output, despite retrieving them just a a by-product. Also, a
strong dependency on the size of the training dataset has been found in terms of accuracy (both
for RB-DNN and MLP-based networks), while the number of input-output locations appeared
to play a minor role. Finally, the time taken by the training process is very short (of the order
of 10 minutes on a simple laptop as the one described in Appendix C); this configures as an
unquestionable strength.

Other than the results discussed in [2], further investigations on the performances of RB-DNN
models have been carried out by the author of the present work in [35]. In particular, the study
of the dependency of the model performances on the network sizing and the possibility of adding
a trainable regularizer layer in parallel to the RB-solver have been analyzed, considering a simple
affinely parametrized elliptic problem as test case.

RB-CNN model on Unsteady Parametrized PDEs

While PINNs have been developed and tested on time-dependent PDE problems from the very
beginning (see [1]), in [2] the performances of RB-DNNs have been evaluated only on steady
problems. The author of the present report, anyway, has already investigated the possibility
of employing RB-DNN architectures on problems showing a dependency with respect to time.
In particular in [35] an initial feasibility study on the theme has been carried out, discussing
how time dependent data could be processed and how a dimensionality reduced solver couls be
embedded within the already developed RB-DNN architecture; in [36] such reasoning has been
enriched with further observations and some preliminary tests have been performed.

Two main ways of realizing the extension of RB-DNNs models to unsteady problems, depending
on the way the dimensionality reduction of the parametrized PDE problem is tackled.

1. Spatial Dimensionality Reduction & Multistep Time Marching Scheme: the
first possibility is represented by the usage of ROM techniques that allow to perform a
dimensionality reduction along the spatial dimension only, keeping unchanged the num-
ber of DOFs along the temporal one. The "time-iterated" RB method described in the
beginning of Subsection 2.2.3 represents the most straightforward choice in this sense. In
such a context, the idea would be to develop a model that takes as input the values of the
solution for a pre-defined number of initial equispaced time instants; extracts from such
values the relevant features of the parametrized problem at hand (i.e. the parameters or
the parameter-dependent coefficients); using a multistep time marching scheme, predicts
the values of the solution at one or more subsequent timesteps and returns them in output.
Notice that the data given as input would be used by the RB-projected multistep solver
to predict the values of the solution at the desired subsequent timesteps; because of this,
either FOM data in Pin ≡ Qout ≡ Ωh or RB-projected data have to be passed, yielding to
a significant applicative limitation with respect to the steady models.

2. Spatio-Temporal Dimensionality Reduction: the second possibility would be to use
a spatio-temporal dimensionality reduction technique (as the ST-LSPG method by Choi
& Carlberg ; see [30]). In this case, the value of the solution at all the spatio-temporal
FOM locations would be available just by solving, in the Least-Squares sense, an underde-
termined linear system, that can be also fast-assembled at online stage taking advantage
of affine parametrization (eventually approximated via EIM-DEIM algorithms). Thus, the
overall structure and application of the model would be similar to the one of the RB-
DNNs described in [2]. Also, the input data would be used only to infer the parameter
values, not being directly employed by the RB solver: this allows to potentially choose
Pin 6= Qout 6= Ωh. The model complexity may be anyway increased if the parameters are
time-dependent; in such case, smart ways of estimating their trends over time should be
designed, in order to reduce as much as possible the amount of quantities to be estimated.
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Figure 3.5: Architecture of the RB-CNN model, developed in [36] as first extension of the RB-DNN model to
handle unsteady problems. It is based on spatial dimensionality reduction via classical RB method and the time
marching is achieved via implicit Backward Differentiation Formulas (BDF) multistep methods. Image taken
from [36]

Among the two, the second alternative features unquestionable advantages, as the possibility of
"freely" choosing the input data and of performing a one-shot estimation, even if the parameters
are time-dependent (provided that a smart way of estimating their trends is found). Surely, then,
the implementation of a network of such kind configures as the most straightforward extension
in the context of RB-DNNs towards the goal of handling unsteady problems. Anyway, designing
an efficient and robust ST-LSPG solver, able to deal with both linear and non-linear problems
and that can be embodied within the structure of a trainable NN, is not an easy task to carry
out; because of this, in [36] the author of the present work has started tackling the problem
of the extension of RB-DNN models to unsteady problems implementing and testing the first
alternative.

The developed model has been called Reduced Basis Convolutional Neural Network (RB-CNN),
since convolutional layers have been employed; its architecture can be visualized in Figure 3.5
and it is structured as follows:
• Input (Red in figure): the NN takes as input the FOM solutions to the PDE at hand,

projected over the RB subspace generated from the training data and for Min consecutive
equispaced timesteps

• Trainable Part of the Network (Blue in figure): the trainable part of the architecture
is made of three regions. In the first region, several ReLU -activated fully-connected layers
process the data, extracting features on top of which convolutional operations can be more
effective. In the second region, 1D convolutional layers perform convolutions on the data,
along their temporal dimension, in order to extract features representative of the time evo-
lution process; additionally max-pooling operations, put in series to the convolutions, allow
to reduce the dimensionality of the data and to provide a regularizer effect. Finally, in the
third region, another set of flanked ReLU -activated fully-connected layers combines the
quantities estimated by the convolutions to ultimately estimate the characteristic parame-
ters (Green in figure). The usage of CNN architectures, able to exploit the time-dependent
nature of the input data, justifies the change in the name of the model.

• Reduced Solver Layer (Cyan in figure): the deterministic solver layer takes as input
the estimated parameters and the values of the RB-projected solution at the previous
Msteps ≤ Min timesteps; then, using an implicit BDF time marching scheme with Msteps

steps (with 2 ≤ Msteps ≤ 6), it estimates the value of the RB-projected solution at the
subsequent timestep

• Output: the network returns the values of the RB-projected solution at the timestep
following the ones given as input and the values of the estimated characteristic parameters
at such timestep. The loss is built as the MSE over the estimated values of the solution.
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Errors trend over time for the BDF6+RB solver and the RB-CNN model
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Figure 3.6: Trend of the relative errors (with respect to a reference FOM solution) in L2(Ω)-norm for the
BDF6+RB solver fed with the "real" parameter values (in Green), the BDF6+RB solver fed with the parameter
values estimated by a RB-CNN model applied over the first Min = 30 timesteps (in Orange) and the RB-CNN
model applied iteratively over time (in Blue). Image taken from [36]

Readily, this model needs to be applied iteratively over time and, in order to be started, it is
necessary to know the values of the solution at least for Min ≥ Msteps initial equispaced time
instants. This poses severe limitations on its applicability. In [36] the model performances have
been evaluated on top of a simple affinely parametrized elliptic problem, characterized by a piece-
wise constant diffusivity coefficient over the computational domain (i.e. the so-called thermal
block problem). Figures 3.7-3.8 show the performances of the model in terms of both parame-
ters’ estimation and solution reconstruction at one-step, using the BDF6 time marching scheme.
Figure 3.6 displays instead the trend of the errors arising from the application of the RB-CNN
model either iteratively over time (predicting new parameter values at every cycle - Blue) or
only at the first timestep (the value of the solution at the subsequent ones is then obtained by
applying the RB-projected BDF method, using the parameter values originally estimated by the
model - Orange).

It quite immediate to observe that the RB-CNN performances are very good in terms of one-
step prediction; in particular the relative error on the solution equals 0.094% in L2(Ω)-norm,
while the one on the parameters is of the order of 1.5%. Anyway, when the model is applied
starting from a set of solutions known only at some initial time instants, then the errors increase;
for instance, the relative L2(Ω)-norm errors on the solution values relax at the 1% level if the
parameters (assumed to be constant) are estimated just once, while they show a diverging trend
if the RB-CNN model is applied iteratively over time. Such a behavior, also considering that it
has been obtained on a problem that does not show too complicated dynamics, clearly drives
towards the choice of second alternative of the ones proposed before; the implementation and
testing of a ST-LSPG-based model will be the subject of a future study by the author of this
work. Finally, the training time is of the order of 45 minutes in a computational environment
as the one described in Appendix C, thus being absolutely feasible even on machines featuring
constraints in terms of memory occupation and of computational power.
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One-step parameters estimation for the RB-CNN model with BDF6
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Figure 3.7: Results of the estimation of the 3 characteristic parameters of the unsteady thermal block problem
by the RB-CNN model, with BDF6 method in the RB-solver layer and optimal hyperparameters choice. On the
right, the plot shows the estimated values of the parameters (in y) vs the true ones (in x). On the left, the plot
shows the absolute error on the parameters estimation (in y) vs the true values of the parameters (in x). Image
taken from [36]

One-step solution estimation for the RB-CNN model with BDF6

Figure 3.8: Results of the one-step estimation of the solution of the unsteady thermal block problem by the
RB-CNN model, with BDF6 method in the RB-solver layer and optimal hyperparameters choice. The reported
solutions refer to a parameter value and to a time instant which have been randomly sampled from the ones
available in the test set. On the right, the plot shows the reconstructed solution; on the left, the reference FOM
solution is displayed. Image taken from [36]
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Chapter 4

Heart Electrophysiology

In this chapter, we recall the fundamentals of cardiac electrophysiology and we describe the
State-Of-Art numerical methods that are employed to approximate it.

In particular, Section 4.1 provides an illustration of the cardiac electrical activity (Subsection
4.1.1) and an explanation of how such activity can be non-invasively recorded and analyzed
via ECGs (Subsection 4.1.2). Additionally, Appendix A contains an overview on the heart
anatomy and on the cardiovascular system. In Section 4.2 the numerical methods employed
in this project to approximate heart EP are reported. Specifically Subsection 4.2.1 describes
how heart EP can be modeled via PDEs; Subsection 4.2.2 explains how the considered models
have been approximated numerically and Subsection 4.2.3 shows the achieved numerical results,
both in terms of epicardial activation maps and of ECG signals. Additionally, Subsection 4.2.4
provides an explanation of how ROM techniques across both space and time dimensions have
been put in place to reduce the overall computational burden; numerical results to assess their
performances are also reported. Finally, Section 4.3 defines and discusses the Inverse Problem of
Electrocardiography; in particular Subsection 4.3.1 provides the mathematical description of the
problem, while Subsection 4.3.2 features a small literature review, listing and briefly detailing
the most relevant numerical methods.

4.1 Electrical Activity of the Heart
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Figure 4.1: Basic structure of the developed PDE-aware DL model, where the input and the outputs are high-
lighted

The vast majority of the information contained in this Section are taken from the book Fisiologia,
by Cindy L. Stanfield [37].
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Figure 4.2: Structure of the heart electrical conduction system. 1.SA node 2.Atrio-ventricular (AV) node 3.His
bundle 4.Left bundle branch 5.Left Posterior Fascicle 6.Left anterior fascicle 7.Left ventricle 8.Interventricular
septum 9.Right ventricle 10.Right bundle branch
Image by J. Heuser - Own work, based upon https://commons.wikimedia.org/wiki/File:Heart_anterior_view_
coronal_section.jpg by Patrick J. Lynch (Patrick J. Lynch; illustrator; C. Carl Jaffe; MD; cardiologist Yale
University Center for Advanced Instructional Media), CC BY 2.5, https://commons.wikimedia.org/w/index.
php?curid=1734607

4.1.1 The Heart Electrical Conduction System

In order for the heart to adequately pump the blood into the vascular system, the cardiac muscle
has to contract in a synchronous way; the two atria have to contract first and lately the two
ventricles. Such contractions are coordinated by a complex electrical conduction system, which
determines the sequence of the excitation of the cardiac muscular cells and that will be described
in the following.

The Structure of the Cardiac Conduction System

The cardiac muscle does not receive commands from the central nervous system in order to con-
tract; indeed all its contractions generate from signals that originate within the cardiac muscle
itself. Because of this peculiar property, the contractile activity of the cardiac muscle is referred
to as myogenous. The capability of the heart to generate signals that periodically activate its
contractions, auto-generating its own rhythm, is called autorhytmicity. Such a property is
due to the action of a small fraction of "modified" muscular cells, called autorhytmic cells, that
are essential for the pumping activity of the heart, coordinating all its beats. As a whole, the
autorhytmic cells constitute the heart conduction system, which can be visualized in Figure
4.2; the cells that generate the contractile force are instead called contractile cells.

There are two types of autorhytmic cells:
1. Pacemaker Cells: as suggested by their name, these cells determine the rhythm (or

pace) of the cardiac beat, generating the regular train of action potentials. Despite being
distributed almost everywhere across the heart, pacemaker cells are mainly located in two
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distinct regions of the myocardium: the sino-atrial (SA) node (on the superior wall of
the right atrium) and the AV node (close to the tricuspid valve in the interatrial septum).
The discharge frequencies of the SA node and of the AV node are anyway different; indeed
the former are higher than the latter, which in turn implies, being the two nodes themselves
connected by conduction fibers, that the SA node coordinates the depolarization of the
AV node and, ultimately, of the whole heart.

2. Conduction Fibers: they are specialized in quickly conducting the action potentials gen-
erated by the pacemaker cells from one point of the myocardium to another one, triggering
in this way the contractions of the different regions of the cardiac muscle. It is worth
clarifying, at this point, that all the fibers of the cardiac muscle are able to lead action
potentials; anyway, the conduction fibers differ from the contractile ones since they have a
larger diameter, thus being able to perform a much faster electrical conduction (≈ 4 m/s
vs. ≈ 0.5 m/s).

Origin and Conduction of the Electrical Impulse during a Heart Beat

The rapid transmission of the action potentials from the pacemaker cells to the conduction and
contractile fibers is made possible by the presence of gap junctions, that allow the ions to
flow from one cell to another. Other than by gap junctions, the cardiac muscular fibers are
also connected by desmosomes, areas where protein fibers adhere one with the other, creating a
physical link that gives a good mechanical resistance.

The sequence of electrical events that, in physiological circumstances, are responsible for the
heart beat is the following:

1. An action potential is started at the SA node. From such node, the action potential travels
towards the AV node via the internodal ways, which are part of the heart conduction
system. While moving along the internodal ways, the signal also diffuses through the
atrial muscular mass, via the interatrial ways, triggering the atrial contraction.

2. The impulse is conducted by the cells of the AV node, which anyway transmit the action
potential at a lower velocity compared to the one of the other cells of the conduction
system. This implies that, before advancing towards the ventricles, the electrical impulse
is delayed by approximately 100 ms (AV nodal delay); such a delay is fundamental, since
it allows the atrial contraction to have been completed before the ventricular one gets
started.

3. From the AV node, the impulse travels through the AV bundle (also called His bundle),
which is located in the interventricular septum. Notice that the AV node and the His
bundle are the only electrical connections between the atria and the ventricles, which are
otherwise separated by the fibrous skeleton.

4. The signal briefly travels through the His bundle and then it spreads into the branches of
the left bundle and of the right bundle, which lead the impulse to the left and right
ventricle respectively.

5. From the left and right bundles, the impulse travels through a dense net of conduction
fibers, called Purkinje fibers, which become more and more numerous and small as their
distance from the original branches increases. Such a net diffuses through the ventricular
myocardium, ascending from the apex of the heart to the semi-lunar (SL) valves, and it
allows the electrical impulse to reach all the ventricular cells, ultimately triggering the
ventricular contraction.

The cardiac beat is almost always triggered by the action potentials that are originated at the
SA node; this is due to two reasons. The first one is that the SA node discharge frequency
is higher than the one of the AV node (70 impulses/min vs. 50 impulses/min). Secondly, the
action potentials that are originated at the SA node have to travel through the AV node before
reaching the ventricles; when such passage happens, the pacemaker cells of the AV node enter
in a refractory period that prevents them from generating other action potentials. Anyway, it is
important to remark that, if the SA node stops generating action potentials, then the AV node
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is actually able to generate them on its own, triggering the ventricular contraction; in the same
way, the AV node can take over the heart beat in case the internodal ways connecting it to the
SA node are for some reason blocked. Additionally, if even the AV node is not able to trigger the
ventricular contraction, then the heart has another emergency system; indeed some cells of the
Purkinje fibers, called idioventricular pacemaker cells, can take over the heart beat, yet being
characterized by a lower discharge frequency (≈ 30− 40 impulses/min).

Apart from describing how the electrical impulse travels through the heart conduction system,
it is also important to depict how it spreads in the whole heart, reaching the contractile fibers
and triggering the muscular contractions of the atria (first) and of the ventricles (lately). At this
aim, it is possible to say that the ordered propagation of the electrical impulses in the cardiac
muscle generates a depolarizing wavefront, commonly called "excitation wave". The term
"depolarizing" is used because the potential lies at about−65mV at rest, while it reaches at most
30− 40 mV upon excitation, thus moving towards 0 mV and reducing its magnitude. Muscular
contraction follows the propagation of this wave. According to the sequence of events described
before, the excitation wave originates at the SA node and then diffuses from the endocardium to
the epicardium, fully depolarizing the atria. After that, the wave travels towards the AV node,
following the conduction fibers of the AV bundle. The AV node acts as a bottleneck, inducing a
delay of about 100 ms that allows atrial contraction to be completed before the ventricular one
is started; this is fundamental, in order for the blood to pass from the atria to the ventricles,
through the AV valves, obeying to the pressure gradients. Once the electrical impulses reach the
left and the right bundles and, lately, the Purkinje fibers, they are quickly driven down to the
apical region of the ventricles. During such travel, the interventricular septum is depolarized and
several studies, as the one reported in [38], have assessed that this activation proceeds from the
left surface to the right surface of the septum; this phenomenon has implications also in terms
of ECG waves, as it will be made clear in Subsection 4.1.2. Lastly, the depolarization wavefront
spreads through the whole ventricular myocardium, ascending until the basal region; such a
bottom-top progression actually makes sense, considering that the blood leaves the ventricles
from the SL valves, that are located at their top.

Epicardial Breakthroughs (EBTs) Localization

In this paragraph we discuss the localization of Epicardial Breakthroughs (EBTs), defined as the
sites of emergence of a radially propagating wavefront at the epicardial surface. Our references
are [38] and [39], where, despite under different working hypothesis, the authors managed to
reconstruct epicardial activation maps, from which both the EBTs positions and the areas of
Latest Epicardial Activation (LEA) can be identified.

In the work by Durrer et al. [38], the information regarding the time course and the instanta-
neous distribution of the excitation of the normal human heart have been obtained by studying
reperfused isolated hearts, taken from seven individuals who died from various cerebral condi-
tion, but who had no history of any cardiac disease. Upon exciting the hearts synchronously in
three endocardial areas for 5 ms, their activation maps have been obtained, both at the endo-
cardium and at the epicardium. Focusing on epicardial activation, that serves us as a reference
to assess the consistency of the numerical simulations, early EBTs have been found in the area
pretrabecularis (i.e. the anterior paraseptal area) of the right ventricle, 20 − 25 ms after the
initial endocardial activation. From such area an almost radial spread of the excitation towards
both the apex and the base has been observed, with LEAs having been identified at the pos-
terobasal area of the right ventricle. The isochrones are not concentric, but rather activation
proceeds tangentially, ultimately reaching the aforementioned LEAs. Larger variations have
been instead noticed in the epicardial activation of the left ventricle; indeed three EBT areas
have been identified, namely (1) a small anterior paraseptal area, close to the AV sulcus; (2)
an anterior paraseptal area, located halfway between apex and base; (3) a posterior paraseptal
area, about halfway between the apex and the base. Also, a small EBT area at the posterior
apex has been sometimes detected; EBT areas tended to become confluent after 30 ms and,
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apart from individual variability, concentric isochronic lines of propagation of the depolarizing
wavefront have been observed. The LEAs of the left ventricle reflected the variability of its
activation pattern; in most cases, anyway, they have been found in the posterobasal paraseptal
region, despite having been sometimes detected also in a more lateral location, basically at the
left ventricle free wall. Finally, it is worth remarking that the isochronic lines encoding the
propagation of the depolarizing wavefront have been found to be quite irregular. This is mainly
due to the fact that the excitation does not spread over the epicardial surface, but rather from
the endocardium to the epicardium; as a consequence, slight variations in the wall thickness
induce relevant differences in the epicardial activation of adjacent areas.

The study of Wyndham et al. [39] aims at describing only the ventricular epicardial activation.
As stated by the authors, the study proposes itself to resolve the question whether the data
collected in [38] on reperfused hearts actually reflected the epicardial activation in the intact
human heart; the findings have given an overall positive answer to such question, despite some
elements of novelty have been brought to light. In particular, the data have been obtained
by recording the epicardial potentials of 11 patients featuring ECG signals with normal QRS
complex (so, somehow, healthy ECGs) and undergoing open heart surgery due to a coronary
artery disease. Upon constructing epicardial activation maps from the collected data, EBTs
have been identified in three to five sites for each patient; the earliest EBT has been always
found in the anterior paraseptal area of the right ventricle (as in [38]). Subsequent EBTs have
been then found in the inferior right ventricle (often closer to the base than to the apex), in the
anterolateral left ventricle (paraseptally, closer to the base than to the apex) and in the inferior
left ventricle (paraseptally, somehow halfway between the apex and the base). Notice that all
such EBT areas have been also found in [38], apart from the one located in the inferior right
ventricle; this configures as the main novelty element of this study. Regarding the timing, all
EBT sites appeared 7−48 ms after the QRS onset, with the earliest one occurring at 7−25 ms.
LEAs have always occurred at the basal segments, in accord with [38] and confirming the fact
the human heart tends to activate in a more or less apex-to-base direction (other than from
the endocardium to the epicardium). Specifically 5 patients showed LEAs at the anterior right
ventricle (ARV), while 4 featured it at the inferior right ventricle (IRV) and 2 at the inferior left
ventricle (ILV). None featured LEA at the anterior left ventricle (ALV).

4.1.2 Recording of the Heart Electrical Activity: the Electrocardio-
gram (ECG)

The electrocardiogram (ECG) is a non-invasive means of monitoring the electrical activity of the
heart, that consists in the recording of the flux of electrical current that crosses the heart during
a cardiac cycle. In particular, ECG signals are recorded by means of electrodes placed on the
skin of the patient; since the heart EP is highly synchronized (as already described in Subsection
4.1.1), relatively high potentials can be detected even at skin level and, thus, a partitioning of
the different phases of the cardiac cycle can be inferred.

All the information given in the following are borrowed from [37], [40] and [41].

Placement of the ECG Electrodes

Several different ECG lead systems have been developed throughout the medical history; among
those the 12-lead ECG system is definitely the most used in actual practice. As the name
suggests, the 12-lead system features 12 leads, that are derived by means of 9 (or 10) electrodes
placed on the patient skin; at this point it is also useful to clarify the difference between ECG
leads and ECG electrodes. An electrode is an conductive pad which is attached to the skin,
enabling in this way the recording of the electrical currents; a lead, instead, is a graphical
description of the electrical activity of the heart and it is obtained by comparing the information
coming from different electrodes. Thus the number of electrodes and of leads is typically different,
as it happens for instance in the 12-lead ECG system.
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Figure 4.3: Positions of the 6 chest electrodes in the 12-lead ECG system. Recall that the 4 limb leads can be
placed both far down the limbs (arms/legs) and closer to the hips/shoulders.
Image by Mikael Häggström - Own work, CC0, https://commons.wikimedia.org/w/index.php?curid=20064293

The positioning of the electrodes in the 12-lead ECG system can be visualized in Figure 4.3.
The electrodes can be clearly divided into two groups:

1. Limb or Peripheral Electrodes: those are 4 electrodes, placed at the "periphery" of the
human body, i.e. at the left and right arms, avoiding thick muscle (respectively left arm
(LA) and right arm (RA)) and at the left and right legs, avoiding bony prominences
(respectively left leg (LL) and right leg (RL)). These electrodes can be placed both far
down on the limbs or closer to the hips/shoulders, as long as they are symmetric. Actually,
the RL electrode can be omitted, reducing to 3 the number of peripheral electrodes; by
doing so, the remaining three electrodes form what is referred to as the Einthoven’s
triangle, an imaginary equilateral triangle built around the heart, that takes its name
from Willem Einthoven, the dutch physiologist who developed the first "rudimental" ECG
machine in 1895, winning for that the Nobel Prize in Physiology or Medicine in 1924.

2. Chest or Precordial Electrodes: those are 6 electrodes, placed on the left half of the
chest. In particular their positions are the following:
• V1: at the 4th intercostal space, in the right parasternal line
• V2: at the 4th intercostal space, in the left parasternal line
• V3: midway between V2 and V4
• V4: at the 5th intercostal space, in the left mid-clavicular line.
• V5: horizontally even with V4, in the left anterior axillary line
• V6: horizontally even with V4, in the left mid-axillary line

Other than the 9 (or 10) physical electrodes, the 12-lead ECG system makes also use of a vir-
tual electrode, ideally recording the center-of-the-heart potential and located in the center of
Einthoven’s triangle. Such electrode is known as Wilson’s central terminal and its poten-
tial (called Wilson’s potential) is produced by averaging the measurements of the three limb
electrodes, so that

VW =
1

3
(RA+ LA+ LL)
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Definition of the ECG leads

The leads that characterize the 12-lead ECG system are obtained by combining the potentials
measured by the aforementioned electrodes; in particular they are all bipolar, i.e. they result
from the difference between the potential measured by an electrode (called positive or exploring
electrode) and the one measured by another electrode (called negative or reference electrode).
They can be classified as follows:

• Limb Leads (or Einthoven’s leads): Leads I, II and III are called limb leads and
are computed just by subtracting (in pairs) the electric potentials measured by the three
peripheral electrodes LA, RA and LL, which form the Einthoven’s triangle. In particular:
– Lead I is the difference between the left arm electrode LA and the right arm one RA,

so that
I = LA−RA

– Lead II is the difference between the left leg electrode LL and the right arm one RA,
so that

II = LL−RA
– Lead III is the difference between the left leg electrode LL and the left arm one LA,

so that
III = LL− LA

Notice that, by Kirchhoff’s law, it trivially holds that

I + III = II

so one of the leads is redundant and it does not bring any new amount of information with
respect to the other two.

• Augmented Limb Leads (or Goldberger’s Leads): Leads Augmented Vector Right
(aVR), Augmented Vector Left (aVL) and Augmented Vector Foot (aVF) are called aug-
mented limb leads; they are still derived from the three limb electrodes, but they all use
the Goldberger’s central terminal as their negative pole. The Goldberger’s central terminal
has actually a different value for each of the three augmented limb leads, being it com-
puted as the average of the potentials measured by the two "not-considered" electrodes.
In particular:
– Lead aVR is computed as the difference between the right arm potential RA and the

average of the remaining two peripheral electrodes LA and LL, so that

aV R = RA− 1

2
(LA+ LL) =

3

2
(RA− VW ) = −1

2
(I + II)

– Lead aVL is computed as the difference between the left arm potential LA and the
average of the remaining two peripheral electrodes RA and LL, so that

aV L = LA− 1

2
(RA+ LL) =

3

2
(LA− VW ) =

1

2
(I − III)

– Lead aVF is computed as the difference between the left left leg potential LL and the
average of the remaining two peripheral electrodes LA and RA, so that

aV F = LL− 1

2
(LA+RA) =

3

2
(LL− VW ) =

1

2
(II + III)

Deriving from the 3 limb electrodes, the augmented limb leads are redundant with respect
to the Einthoven’s leads, not adding any additional information about the cardiac electrical
activity; anyway, they allow to enlarge the field of view on the frontal plane, making it
easier and more immediate to evaluate the frontal cardiac electrical axis and, in a broader
sense, the electrical state of the heart.
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Figure 4.4: Directions of the electric vectors associated to the 12 ECG leads.
Image by Npatchett - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=39235260

• Chest or Precordial Leads: Leads V1, V2, V3, V4, V5 and V6 are called chest leads,
since they are all obtained by computing the difference between the potential recorded at
the corresponding chest electrode and the Wilson’s potential VW , so that

Vi = Ṽi − VW ∀ i ∈ {1, . . . , 6}

being Ṽi the potential recorded by the i-th precordial electrode.

The placement of the ECG electrodes and the computation of the ECG leads is obviously not
random; indeed all ECG leads are derived in such a way that they can give information about
the electrical activity of the heart from different angles, as represented in Figure 4.4. The 6 limb
leads (i.e. I, II, III, aVR, aVL and aVF) provide information about the electrical activity that is
happening at different angles across the vertical frontal plane; indeed they form the basis of the
hexaxial reference system (or Cabrera reference system), which is used to estimate the cardiac
electrical axis in the frontal plane. At this aim, it is worth remarking that often lead aVR is
replaced by its opposite (named -aVR), so that the gap between leads I and II is filled and a
uniform span of the angles from −30◦ (aVL) to 120◦ (III) is obtained. Based on their positions,
the 6 limb leads can be furthermore divided into two groups: the inferior (diaphragmal)
limb leads (II, aVF, III), which mainly observe the inferior aspect of the left ventricle, and
the lateral limb leads (aVL, I, -aVR), that primarily observe the lateral aspect of the left
ventricle. Conversely, the 6 precordial leads are characterized by electric vectors who span in the
horizontal plane, since their reference electrode, the Wilson’s central terminal, is ideally placed
in the center of the thorax; thus they allow to monitor the heart electrical activity somehow
horizontally from right to left, offering a different point of view with respect to the limb leads.
A possible classification of the precordial electrodes is the following:

• Septal Leads (V1-V2): they are located in front of the heart, thus primarily observing
the interventricular septum and occasionally displaying waves related to the aspect of the
right ventricle.

• Anterior Leads (V3-V4): they are basically in front of the left ventricle, thus mainly
observing the electrical activity of its anterior wall

• Anterolateral Leads (V5-V6): they are placed on the side of the thorax, thus moni-
toring the activity of the lateral wall of the left ventricle.
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Figure 4.5: Schematic view of two physiological ECG waveforms.
Image by OpenStax College - Anatomy &amp; Physiology, Connexions Web site. http://cnx.org/content/
col11496/1.6/, Jun 19, 2013., CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid=30148219

Notice that none of the 12 leads is adequate to monitor the electrical activity of the right
ventricle, which is partially seen only by the two septal precordial leads V1 and V2; this is
surely a limitation, since pathological conditions localized only at right ventricular level, as right
ventricular ischemia/infarction for instance, cannot be detected. On the other side, anyway, the
shapes of the body surface signals are mainly influenced by the electrical activity of the left
ventricle, since the thickness of its myocardial layer is much larger than the one of the right
ventricle and of the two atria, thus inducing a much larger flux of ions and, ultimately, much
larger currents. Because of this, monitoring the activity of the left ventricle alone is already able
to give a lot of information about the electrical state of the heart and it allows to detect a very
broad set of common pathological conditions.

Standard ECG Waves Morphology

A schematic view of a "standard" ECG signal is shown in Figure 4.5. The various deflections in
ECG signals are commonly denoted in alphabetic order, adopting uppercase letters for signifi-
cant deflections (P, Q, R, S, T, U) and lowercase letters for the ones having smaller amplitudes
(p, q, r, s, t ,u). The temporal sequence of these waves tends to remain constant (at least
in physiological conditions), reflecting the depolarization/repolarization cycle of the heart, but
their amplitude and polarity can vary, depending on the considered lead.

The following waves can be observed:
• P wave: the P wave is associated to atrial depolarization; its polarity is positive in all

leads but in aVR.
• QRS complex: the QRS complex is actually a sequence of waves and it represents the

largest deflection in the ECG signal. It is associated to ventricular depolarization and
it results in a succession of peaks, whose amplitude and polarity highly depend on the
considered lead. The three waves (Q, R and S) may not be detected in all leads and
that they can even merge; this induces a high degree of variability in the QRS complex
morphology.

• T wave: the T wave is associated to ventricular repolarization and, in physiological condi-
tions, it has the same polarity as the P wave (thus being positive in all leads but in aVR).
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More specifically, the start of the T wave is thought to correlate with the start of the
repolarization of epicardial cells (which repolarize first, despite having been depolarized
last); the peak of the T wave is related to the full repolarization of the epicardium; the
end of the T wave corresponds to the repolarization of the midmyocardial cells.

• U wave: after the T wave, it is sometimes present a small deflection known as U wave.
Its origin is yet not fully understood: some studies link it to the repolarization of the
papillary muscles or of the Purkinje fibers, while others relate it to late repolarization of
some midmyocardial cells or to afterpotentials due to the ventricular stretch.

Other than the waves themselves, also the duration of the intervals and the segments between
one wave and another carry a lot of information. The most relevant intervals and segments are
the following:
• PR interval: the PR interval is computed as the amount of time elapsed between the

onset of the P wave and the one of the R wave (or, more in general, of the QRS complex).
Since the P wave is associated to the depolarization of the atria and the QRS complex to
the one of the ventricles, the PR interval gives an estimate of the AV conduction time (i.e.
of the AV nodal delay).

• PR segment: the PR segment is defined as the fraction of ECG signal going from the
end of the P wave to the onset of the QRS complex; it is important since it defines the
isoelectric line of the ECG curve.

• QT interval: the QT interval is computed as the amount of time elapsed between the
onset of the Q wave (i.e. of the QRS complex) and the end of the T wave; thus it accounts
for an estimate of the total time needed by the ventricles to depolarize and repolarize and,
thus, to contract (ventricular systole).

• ST segment: the ST segment is defined as the part of the ECG curve going from the end
of the S wave (at the so-called J-point) to the onset of the T wave. It gives an estimate
of the duration of the plateau phase characterizing the action potential of all contractile
cells and it is important since it may be altered in a wide range of pathological conditions.
In particular, acute myocardial ischemia can be detected from the ST segment, since it
causes ST segment deviation (either elevation or depression); the amount of deviation
is determined by comparing the magnitude of the signal at the PR segment and at the
J-point.

• RR interval: the RR interval is computed as the distance (in time) between two sub-
sequent peaks of the R wave, thus representing the amount of time elapsed between two
consecutive heart beats.

An example of a healthy 12-lead ECG recording can be found in Figure 4.6, while Table 4.1
summarizes the main features of a physiological 12-lead ECG.

Figure 4.6: Sample of 12-lead ECG waveforms in physiological conditions.
Image by Ptrump16 - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=77817932
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Component Morphology Amplitude (mV) Duration
(ms) Notes

P wave

• positive in I,II,aVF,
v4 − V6

• diphasic in V1 − V3

• negative in aVR
≈ 0.2 ≤ 110

Shape is
generally
smooth

QRS
complex

• small Q waves in I,
aVL, V5, V6

• large upright R
waves in I, II,
V4 − V6

• large deep S wave in
aVR, V1, V2

• ≥ 0.5 in at
least one
limb lead

• ≥ 1 in at
least one
chest lead

• ≤ 3

• ≤ 120
• Q wave:
≤ 40

From V1 to V6

the R waves
get taller and
the S waves
get smaller

T wave

• same polarity as
QRS in at least 5
limb leads

• positive in I, II,
V2 − V6

• negative in aVR

• ≥ 0.2 in
V3 − V4

• ≥ 0.1 in
V5 − V6

160− 270

Rounded and
asymmetrical,
with more

gradual ascent
than descent

PR interval // // 120− 220 //

ST segment
isoelectric, with a slight
upward concavity towards

the T wave
// ≈ 80

It can be
elevated up to

0.2 mV in
some chest

leads and it is
never

depressed
more than
0.05 mV

QT interval // //

• ≤ 450 in
males
• ≤ 470 in

females
• ≥ 300

//

TQ interval // // 550− 700 //
RR interval // // 850− 1000 //

Table 4.1: Standard features of healthy 12-lead ECG recordings. In particular, the morphology, amplitude and
duration of each wave is reported, together with the duration of the most relevant intervals
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4.2 Numerical Approximation of Heart Electrophysiology
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Figure 4.7: Basic structure of the developed PDE-aware DL model, where the input and the outputs are high-
lighted

This section aims at describing the mathematical models that have been used for the numerical
approximation of the cardiac EP. Since a precise and exhaustive description of such models is
not the main goal of this work, we suggest the interested reader to refer to Mathematical Cardiac
Electrophysiology by Franzone et al. [41] or to Computing the Electrical Activity in the Heart by
Sundnes et al. [42] for a more complete and organic presentation.

Subsections 4.2.1, 4.2.2 and 4.2.3 investigate how heart EP can be modeled and approximated
numerically; thus they are linked to the dataset generation process (sections red, green and purple
of Figure 4.7). Conversely, Subsection 4.2.4 considers how ROM techniques can be applied to
reduce the computational burden of heart EP simulations, thus being related to the RB section
(in cyan) of the model in Figure 4.7.

4.2.1 Modeling

The human body consists of billion of cells, that are connected by means of various coupling
mechanisms. When constructing mathematical models for the electrical activity in the tissues,
one possible approach would be to model each cell as a separate unit and lately to couple them
together using proper models for the known coupling mechanisms. However, the significantly
large number of cells prevents from choosing this approach, unless a very small portion of tissue
is taken into account; also, this would lead to a level of detail which typically goes far beyond
what it is needed and useful at clinical level. Thus, it emerges the need of finding more efficient
techniques, that, rather than looking precisely at the microscopic cellular scale, are able to offer
a more macroscopic understanding of the phenomenon under investigation. At this aim, a stan-
dard approach is to study volume averaged quantities, i.e. identifying a quantity observed at
point P as the average of such quantity in some small volume centered around P . The choice of
the volume directly relates with the level of refinement that is desired and, as a rule of thumb,
it must be small compared to the scale of the problem to be studied, but big compared to the
microscopic cellular scale.

For the case of electrophysiology, applying a local volume averaging technique allows to model
the human body as a volume conductor, for which the Maxwell equation relating the electric
and the magnetic field is:

rot(E) +
∂B

∂t
= 0 in Ω× [t0, T ] (4.1)

where E and B represent the electric and of the magnetic fields respectively, Ω a reference
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domain and t0 and T the initial and final times respectively (for a more detailed description of
Maxwell’s equations, see e.g. [43]). Furthermore, we can add the hypothesis that the two fields
are quasi-static, meaning that the effect of their temporal variations may be disregarded, without
any significant loss in accuracy; under the quasi-static condition, equation (4.1) becomes:

rot(E) = 0 in Ω× [t0, T ] (4.2)

which in turn entails, via the Stokes theorem, that the electric field E is conservative, under
the hypothesis that the domain Ω is simply connected. Thus, we may write E as the negative
gradient of a potential u, i.e.

E = −∇u in Ω× [t0, T ] (4.3)

Finally, the current density in the volume conductor can be written as

J = DE = −D∇u in Ω× [t0, T ] (4.4)

where D is the conductivity tensor characterizing the considered medium.

The Heart Tissue: the Bidomain Model

The volume conductor modeling assumption introduced before can be efficiently used to model
the propagation of the electric signal from the heart to the torso (as it will be made clear in the
following), but it is definitely not suitable to model the depolarization/repolarization cycles that
characterize heart EP. Indeed, as already explained in Section 4.1, the heart muscular cells are
excitable cells, that are able to actively respond to an electrical stimulus and whose behavior
mainly depends on the potential difference that is established across the cell membrane. Thus,
in order to properly simulate the electrical activity of the heart, it is necessary to come up with
a mathematical model which is able to describe how the intracellular and the extracellular po-
tentials evolve over time.

A model of such kind is the bidomain model, introduced by Tung in [44]. The model makes use
of a volume-averaging approach similar to the one described before for the volume conductor, but
it additionally partitions the heart tissue in two distinct subdomains: the intracellular domain
Ωi and the extracellular domain Ωe. Anyway, upon a homogenization process, the two domains
can be assumed as continuous, so that they fill the complete volume of the heart muscle; the
justification for this comes from the fact that both domains are actually connected and spread
all over the cardiac tissue. On the one side, indeed, the extracellular domain is clearly connected,
since it is the "free space" between the cells; on the other side, instead, also the intracellular
domain can be viewed as connected, since the muscle cells are bridged by gap-junctions, that
allow ions and small molecules to pass from one cell to another without entering the extracellular
domain. Furthermore, the two domains are separated by the cell membrane Γ, which, acting as
an electrical insulator, allows to establish a potential difference at its borders; having anyway
assumed that both Ωi and Ωe are continuous and that fill the whole heart volume, we must
extend such hypothesis also to the cell membrane Γ.

The previous hypothesis brings with it the counter-intuitive entailment that each point in the
domain is simultaneously part of the intracellular domain, of the extracellular domain and of
the cell membrane. As a consequence, all points in the heart volume domain are associated to
three different potentials:

1. ui: the intracellular potential
2. ue: the extracellular potential
3. v := ui − ue: the transmembrane potential

Under the quasi-static assumption, we can define the currents in the two domains as:

Ji = −Di∇ui in ΩH × [t0;T ] (4.5a)
Je = −De∇ue in ΩH × [t0;T ] (4.5b)
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being Di and De the conductivity tensors in the intracellular and extracellular domains respec-
tively and ΩH the reference heart domain.

As said before, the cell membrane acts as an electrical insulator between Ωi and Ωe; therefore
it is natural to expect an accumulation of charge in the two domains. Anyway, due to the
small thickness of the membrane, any accumulation of charge on one side of it would induce
an accumulation of the same amount of charge, with opposite sign, on the other side; upon the
domain homogenization process, this yields to a null overall charge accumulation at any point
and at any time instant, i.e.

∂

∂t
(qi + qe) = 0 in ΩH × [t0;T ] (4.6)

being qi and qe the intracellular and extracellular charges, respectively.

In each domain, the net current into a point must be equal to the sum of the rate of charge
accumulation at that point and of the current exiting the domain at that point, since the cell
membrane behaves as a capacitor; in mathematical terms, this writes as:

−div(Ji) =
∂qi
∂t

+AmIion −AmIiapp in ΩH × [t0;T ] (4.7a)

−div(Je) =
∂qe
∂t
−AmIion +AmI

e
app in ΩH × [t0;T ] (4.7b)

where Iion is the ionic current across the cell membrane, assumed to be positive if directed from
the intracellular domain to the extracellular one and Ii,eapp are externally applied currents, typi-
cally responsible for the initial activation of the heart tissue in the intracellular and extracellular
domains. Notice that currents are typically measured per unit area of the cell membrane, while
the other quantities are measured per unit volume; thus current terms are pre-multiplied by the
constant Am, which represents the area of cell membrane per unit volume. Also, the following
compatibility condition must hold: ∫

ΩH

Iiapp =

∫
ΩH

Ieapp (4.8)

The combination of (4.6) and (4.7) yields to:

div(Ji) + div(Je) = Am(Iiapp − Ieapp) in ΩH × [t0;T ] (4.9)

which, in terms of electric potentials via (4.5), becomes:

− div(Di∇ui)− div(De∇ue) = Am(Iiapp − Ieapp) in ΩH × [t0;T ] (4.10)

Ultimately, the amount of charge separated by the cell membrane Γ relates to the transmembrane
potential v and to cell membrane capacitance per unit area Cm as:

v = ui − ue =
qi − qe

2AmCm
in ΩH × [t0;T ] (4.11)

Rearranging the terms and taking time derivatives, we find:

AmCm
∂v

∂t
=

1

2

∂(qi − qe)
∂t

in ΩH × [t0;T ] (4.12)

The combination of (4.5), (4.6), (4.7) and (4.12) yields to:

div(Di∇ui) = Am

(
Cm

∂v

∂t
+ Iion − Iiapp

)
in ΩH × [t0;T ] (4.13)

Equations (4.10) and (4.13) properly describe the variations of the potentials ui, ue and v.
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The last step, prior to the definition of proper boundary and initial conditions, is to rewrite the
equations so that the intracellular potential ui disappears and the only unknowns are ue and v.
In particular, performing the substitution ui = ue + v in (4.13) and in (4.10) and rearranging
the terms, we get:

Am

(
Cm

∂v

∂t
+ Iion

)
− div(Di∇v)− div(Di∇ue) = AmI

i
app in ΩH × [t0;T ] (4.14)

−div(Di∇v)− div((Di +De)∇ue) = Am(Iiapp − Ieapp) in ΩH × [t0;T ] (4.15)

This formulation of the bidomain equations, originally introduced in [45] and [46], has the great
advantage of being suitable to operator splitting techniques, that allow for an extremely fast and
efficient computation of the solution. Thus, it has become the standard formulation.

In order to develop a well-posed problem, we must enrich (4.14)-(4.15) with proper boundary
and initial conditions. Additionally, a model for the ionic current Iion must be introduced and
conductivity tensors able to account for the anisotropy of the heart tissue must be defined.

Boundary Conditions If we assume the heart to be surrounded by a non-conductive medium,
then the flux of both the intracellular and the extracellular potential at the domain boundary
∂ΩH must be set to 0; thus the boundary conditions to be set on the problem unknowns ue and
v are

nH · (Di∇v +Di∇ue) = 0 on ∂ΩH × [t0;T ] (4.16)
nH · (De∇ue) = 0 on ∂ΩH × [t0;T ] (4.17)

being nH the outward unit normal vector to ∂ΩH .

Initial Conditions Since only the time derivative of the transmembrane potential v is involved
in the problem formulation, the system must be supplemented only with an initial condition on
such variable, of the form:

v(·, t0) = v0 in ΩH (4.18)

Typically the heart is assumed to be "deactivated" at the initial time instant, thus v0 is taken
as constant and equal to a value between −80 mV and −90 mV . In case the transmembrane
potential is supposed to be normalized in [0; 1] (as required by many ionic models), then v0 is
chosen equal to 0.

Ionic Model The way the ionic current is computed configures as a very important aspect
for the modeling of cardiac EP. Over the last century, lots of research efforts have been devoted
towards the development of models which are able to describe how action potentials can be
initiated (by excitable cells as pacemaker cells in the heart or neurons) and propagated. In
particular, several physiology-based models have been developed; such models, among which
the Hodgkin-Huxley model (1952) appears as a milestone (see [47]), aim at investigating even
the most relevant sub-cellular processes, which bring to the actuation and propagation of action
potentials.

Because of their extreme level of refinement, these models are not suitable for the sake of the
investigation of phenomena on large spatial and temporal scales. Rather, simplified models are
preferred for providing phenomenologically consistent action potentials at the minimal compu-
tational cost. All the phenomenological ionic models are expressed in terms of the normalized
transmembrane potential ṽ and of the so-called gating variable w, that allows to model the
refractoriness of cells. They follow the general kinetics

dṽ

dt
= f(ṽ, w)

dw

dt
= g(ṽ, w)

(4.19)
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Different expressions of f and g define different ionic models. The actual transmembrane poten-
tial v can be then recovered by a rescaling of the normalized one ṽ as

v = 100ṽ − 80 [mV ] (4.20)

where it is assumed that v takes values in the interval [−80 mV ; 20 mV ].

The most famous and widely used reduced ionic model is the FitzHugh Nagumo (FHN) model,
of which multiple versions do exist; one of the most employed is characterized by the following
expressions for f and g.

f(v, w) = −Kv(v − a)(v − 1)− w;

g(v, w) = ε(v − γw)
(4.21)

Here a plays a key role in handling the fast dynamics due to the inward sodium current and it
acts as an oscillation threshold, above which an action potential is fired. In particular a is taken
in [0; 1] and a typically used value is a = 0.15; ε and γ are positive constants, whose values are
of the order of 10−1; K is a positive constant, commonly set to 8.

In the context of this project, we have employed a modified version of the FHNmodel, which takes
the name of Aliev-Panfilov (AP) model after Rubin Aliev and Alexander Panfilov, who developed
it in 1996 [48]. This choice is motivated by the fact that the AP model has been specifically
conceived as a variation of the FHN one, aimed at adequately describing the dynamics of the
electric pulse propagation in the canine myocardium. In particular, the authors noticed that
the FHN model and all its already developed variants where able to successfully describe lots of
qualitative aspects of the cardiac excitation, but they all failed in simulating many quantitative
aspects, such as the shape of the action potential or the restitution property of the cardiac tissue,
defined as the relation linking the action potential duration (APD) with the Cycle Length (CL).
This last property is crucial for a correct simulation of the pulse propagation in the myocardium
(especially if cases of cardiac arrhythmia are studied), since a quite strong dependency between
the two aforementioned quantities is present. The expressions of f and g in the AP model are:

f(v, w) = −Kv(v − a)(v − 1)− vw

g(v, w) =

(
ε0 +

µ1w

v + µ2

)
(−w − kv(v − b− 1))

(4.22)

where common values for the cell-related constants are K = 8, a = 0.15, b = 0.15, ε0 = 0.002.

The weighting term

(
ε0 +

µ1w

v + µ2

)
has been specifically added to account for a finer tuning

of the myocardial restitution curve; the values of µ1 and µ2 can be adjusted to obtain results
as close as possible to the experimental observations. Additionally, in order to get the desired
scaling properties, it is necessary also to scale the time variable as

t[ms] = 12.9 t[t.u.] (4.23)

As presented in [48], the AP model exceeds the performances of the classical FHN one on car-
diomyocites, leading to a much better approximation of the action potential shape and duration
and of the cardiac tissue restitution curve.

In the context of the modeling of the cardiac EP, the phenomenological ionic models are embed-
ded in the system by adding the equation describing the behavior of the dimensionless gating
variable w and by defining the ionic current as Iion(v, w) = −f(v, w). Thus, if the AP model is
considered, the following equations are added to the system:

Iion(v, w) = Kv(v − a)(v − 1) + vw (4.24)

∂w

∂t
= g(v, w) =

(
ε0 +

µ1w

v + µ2

)
(−w −Kv(v − b− 1)) (4.25)
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Readily, since the time derivative of the gating variable w is involved in the problem formulation,
a proper initial condition on such variable, of the form

w(·, t0) = w0 in ΩH (4.26)

must be added. w0 is commonly taken as constant and equal to 0.

Heart Tissue Anisotropy The conductive properties of the heart muscular tissue are signifi-
cantly anisotropic; indeed the heart muscle is made of fibers and the conductivity is much higher
in the direction of the fibers rather than in the cross-fiber one. Furthermore, the muscle cells are
organized in sheets; this allows, at every point in the heart volume, to define three characteristic
directions for the conductivity: parallel to the fibers, perpendicular and coplanar to the fibers
and orthogonal to the fibers "sheet". Thus, at any point in ΩH , it is possible to define a set
of orthonormal vectors al, at and an where al is longitudinal to the fibers, at is transversal to
the fibers and an is directed normally to the fibers sheet. Expressed in terms of this basis, the
intracellular and extracellular local conductivity tensors read as:

D∗i,e =

σli,e 0 0
0 σti,e 0
0 0 σni,e

 (4.27)

The coefficients σli,e , σti,e and σni,e may in general depend on the position x ∈ ΩH ; for the
sake of simplicity, anyway, we will assume them to be constant, working under the so-called
homogeneous anisotropy assumption.

Defining Af as the matrix featuring al, at and an as columns, at any x ∈ ΩH it holds that
J = AfJ

∗, being J and J∗ the current densities expressed with respect to the global and local
coordinate system respectively; additionally, A−1

f = AT
f , being Af orthogonal. Thus

Ji,e = AfJ
∗
i,e = AfD

∗
i,eE

∗
i,e = AfD

∗
i,eA

−1
f Ei,e = AfD

∗
i,eA

T
f Ei,e (4.28)

so that the intracellular and extracellular global conductivity tensors are defined at each point
x ∈ ΩH as:

Di = AfD
∗
iA

T
F (4.29)

De = AfD
∗
eA

T
f (4.30)

Also, taking advantage of the fact that the conductivity tensor is diagonal in the local coordinate
system, it is possible to write a generic entry of the conductivity tensor (both intracellular and
extracellular) in the global coordinate system as:

Dij = aila
j
lσl + aita

j
tσt + aina

j
nσn for i, j = 1, 2, 3 (4.31)

Finally, assuming σni,e = σti,e , we recover the axially isotropic case (see [49]) and the conducibil-
ity tensor can be ultimately written as

Di,e = σti,eI + (σli,e − σti,e)alaTl (4.32)

Coupling with the Torso

To model the transmission of the electric signal from the heart (epicardium) to the body surface,
we can rely on the volume conductor approximation introduced at the beginning of the Section;
indeed the torso is not made of excitable cells, as the heart, and thus there is no need of coming
up with a model able to simulate the behavior of the transmembrane potential.

So, we can consider a domain ΩT representing the human torso, whose boundary ∂ΩT is parti-
tioned into the epicardium ΓH ≡ ∂ΩH and the body surface ΓB . Differently than in the case of
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the heart, it is reasonable to assume that there are no current sources or sinks in the medium
and that there is no built-up of charge at any point in ΩT ; thus, for any small volume V ,the
net current leaving it must be zero. If S defines the surface of V , then it holds that:∫

S

n · JT dS = 0 ∀ S : S = ∂V ∀ V ⊂ ΩT (4.33)

being n the outward unit normal to S and JT the current density in the torso. By the divergence
theorem, it then holds that: ∫

V

div(JT ) dV = 0 ∀ V ⊂ ΩT (4.34)

which in turn entails that
− div(JT ) = 0 in ΩT (4.35)

Finally, recalling (4.4), we end up with the following generalized Laplace equation

− div(DT∇uT ) = 0 in ΩT (4.36)

which describes the diffusion of the electric potential uT in the torso. DT represents the torso
conductivity tensor; with respect to the case of the heart, an isotropic conduction can be as-
sumed in the torso, but the value of the conducibility may vary from point to point, depending
on the type of tissue present at each point.

Finally, regarding the boundary conditions, it is natural to assume a homogeneous Neumann
one at the body surface, which models the fact that the human body is surrounded by air or, in
general, by an electrical insulating medium. The boundary condition imposed at the heart-torso
interface ΓH , instead, depends on the type of model that has to be constructed. In this case,
we have worked under the isolated heart assumption (see [50] for additional details); this means
that the heart and the torso are seen as completely decoupled, as if the heart were surrounded by
an insulating medium when solving its EP. Under such an hypothesis, the boundary conditions
on the intracellular and extracellular potentials in the heart EP are imposed as homogeneous
Neumann ones (see (4.16) - (4.17)), while the one on the torso potential is expressed as a Dirichlet
boundary condition, that forces the torso potential to equal the extracellular cardiac one on ΓH .
In terms of equations, the aforementioned boundary conditions can be written as:

nB ·DT∇uT = 0 on ΓB (4.37a)
uT = ue|ΓH on ΓH (4.37b)

being nB the outward unit normal vector to ΓB .

Remark: Notice that the full-decoupling of the heart from the torso allows to solve the two
problems independently one from the other. Indeed the heart EP can be solved first, via the
bidomain equations completed with the ones coming from a phenomenological ionic model (as
the AP model in our case); then, once the extracellular potential at the epicardium is known,
it can be used as a Dirichlet boundary datum to solve the signal transmission problem at the
Torso. Such a simplification readily also has its drawbacks, as it is shown in [50]; indeed it does
not allow to impose the continuity of the electric potential fluxes at the heart-torso interface
(as it is instead done in the monolithic fully-coupled formulation), resulting in estimated ECG
signals that often show the correct shape, but that feature abnormal magnitudes. Additionally,
observe that the "torso problem" is a steady problem, just modeling the diffusion of the electric
potential from the epicardium through the human body at any time instant in [t0, T ]; thus no
initial condition on the torso potential uT has to be imposed.
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Model Summary

To summarize, we have modeled the human cardiac EP by choosing the bidomain model,
supplemented with the AP ionic model and under the isolated heart assumption. In par-
ticular, the bidomain equations, supplemented with the ones coming from the AP model and
closed by proper initial and boundary conditions, allow to compute the transmembrane potential
and the extracellular potential. Under the isolated heart assumption, we decoupled the torso
problem from the heart one, deriving the body surface potentials by solving at any time instant a
generalized Laplace equation with null forcing term, featuring homogeneous Neumann boundary
conditions at the body surface and a Dirichlet boundary condition at the epicardial heart-torso
interface. The complete set of equations is reported hereafter in Problem 4.1; equations related
to the heart are in red, while the ones set in the torso are in blue. As a further addition, we
have made explicit the parametric dependency of some of the terms involved in the formulation;
specifically, following the notation used by Pagani et al. in [51], we embodied all the scalar
parameters involved in the system (from the ones of the ionic model to the ones characterizing
the fibers orientation and conducibility) inside a single parameter vector µ ∈ P ⊂ Rp. Since all
our test cases have been run on a fixed geometric setting, we suppose the parameter vector µ
not to contain quantities relative to geometric properties of the domain; as a consequence both
domains ΩH and ΩT are assumed to be parameter-independent. Furthermore, we have supposed
Iiapp = Ieapp =: Iapp (which is trivially consistent with the compatibility condition (4.8)).

Problem 4.1: Forward Heart EP Problem with Bidomain Equations



Am

(
Cm

∂v

∂t
+ Iion(v, w;µ)

)
− div(Di(µ)∇v) −

div(Di(µ)∇ue) = AmIapp(µ)
in ΩH × [t0, T ]

−div(Di(µ)∇v)− div((Di(µ) +De(µ))∇ue) = 0 in ΩH × [t0, T ]

Iion(v, w;µ) = Kv(v − a)(v − 1) + vw in ΩH × [t0, T ]

∂w

∂t
= g(v, w;µ) =

(
ε0 +

µ1w

v + µ2

)
(−w −Kv(v − b− 1)) in ΩH × [t0, T ]

−div(DT (µ)∇uT ) = 0 in ΩT × [t0, T ]

nH · (Di(µ)∇v +Di(µ)∇ue) = 0 on ΓH × [t0, T ]

nH · (De(µ)∇ue) = 0 on ΓH × [t0, T ]

nB ·DT (µ)∇uT = 0 on ΓB × [t0, T ]

uT = ue|ΓH on ΓH × [t0, T ]

v(·, t0) = v0(µ) in ΩH

w(·, t0) = w0(µ) in ΩH

4.2.2 Numerical Methods

Weak Formulation

Before moving to the FOM approximation of Problem 4.1, that will be obtained by means of the
Galerkin FE method, we state its weak formulation. In particular, since Problem 4.1 features a
full-decoupling between the heart and the torso dynamics, the latter configuring just as a steady
diffusive problem with boundary conditions given by the former, we can handle the two weak
formulations separately.

The Heart For what concerns the heart, the weak formulation of the bidomain model, coupled
with any phenomenological ionic model, reads as follows:
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Problem 4.2: Bidomain Equations + Ionic Model Weak Formulation

Let t > t0. Given v0, w0 ∈ L2(ΩH), Iapp(t;µ) ∈ L2(ΩH), find ue(·, t;µ) ∈ H1(ΩH),
v(·, t;µ) ∈ H1(ΩH) and w(·, t;µ) ∈ L2(ΩH), with the constraint

∫
ΩH

ue = 0, such that
∂v

∂t
(·, t;µ) ∈ L2(ΩH),

∂w

∂t
(·, t;µ) ∈ L2(ΩH) and

Am

∫
ΩH

(
Cm

∂v

∂t
+ Iion(v, w;µ)

)
φ +

∫
ΩH

Di(µ)∇v · ∇φ +∫
ΩH

Di(µ)∇ue · ∇φ = Am

∫
ΩH

Iapp(µ)φ∫
ΩH

Di(µ)∇v · ∇ψ +

∫
ΩH

(Di(µ) +De(µ))∇ue · ∇ψ = 0∫
ΩH

∂w

∂t
η =

∫
ΩH

g(v, w;µ) η

v(t0;µ) = v0(µ); w(t0;µ) = w0(µ)

(4.38)

for all (φ, ψ, η) ∈ H1(ΩH)×H1(ΩH)× L2(ΩH) with
∫

ΩH
ψ = 0.

As a matter of notation, we can define the following space:

H1
M0

(ΩH) =:

{
ψ ∈ H1(ΩH) :

∫
ΩH

ψ = 0

}
(4.39)

which contains all the functions of H1(ΩH) that have zero mean in ΩH ; then ψ ∈ H1
M0

(ΩH).
Notice that the constraint

∫
ΩH

ue = 0 (which in turn implies the same one on the test function
ψ ∈ H1(ΩH)) is compulsory to ensure the well-posedness of (4.38); indeed the extracellular
potential ue appears in the equations only through its gradient, thus being known apart from
a constant value. A detailed analysis of the well-posedness of the bidomain equations can be
found, for instance, in [41], where a Faedo-Galerkin technique is used, and in [52], where only
the coupling with the FHN ionic model is anyway considered.

The Torso Regarding the torso problem, the weak formulation of the generalized Laplace equa-
tion (4.36) with boundary conditions (4.37a) - (4.37b) reads as follows.

Problem 4.3: Generalized Laplace Equation Weak Formulation

Let t > t0. Given uΓH
e (·, t;µ) ∈ H

1
2 (ΓH), find uT (·, t;µ) ∈ H1(ΩT ) such that

Tr (uT (·, t;µ); ΓH) = uΓH
e (·, t;µ) and∫

ΩT

DT (µ)∇uT · ∇φT = 0 (4.40)

for all φT ∈ H1
ΓH

(ΩT ). Tr( · ; ΓH) : H1(ΩT )→ H
1
2 (ΓH) denotes the trace operator onto

ΓH .

Under the hypothesis that ΓH is C1-continuous, it is possible to use the lifting operation to sim-
plify the expression of (4.40) by defining ũT =: uT − uΩT

e being uΩT
e (·, t;µ) ∈ H1(ΩT ) ∀ t > t0

such that Tr
(
uΩT
e ; ΓH

)
= uΓH

e ∈ H 1
2 (ΓH). In this way, the weak formulation of the torso prob-

lem reads as follows.
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Problem 4.4: Lifted Generalized Laplace Equation Weak Formulation

Let t > t0. Given uΩT
e (·, t;µ) ∈ H1(ΩT ) such that Tr

(
uΩT
e ; ΓH

)
= uΓH

e ∈ H 1
2 (ΓH), find

ũT (·, t;µ) ∈ H1
ΓH

(ΩT ) such that∫
ΩT

DT (µ)∇ũT · ∇φT = −
∫
ΩT

DT (µ)∇uΩT
e · ∇φT (4.41)

for all φT ∈ H1
ΓH

(ΩT ). Tr( · ; ΓH) : H1(ΩT )→ H
1
2 (ΓH) denotes the trace operator onto

ΓH .

Full Order Model: Galerkin Finite Element Approximation

We can now introduce the space and time discretizations of the problem at hand, starting from
the weak formulations (4.38) for the bidomain equations on the heart and (4.41) for the torso
problem. As before, the full heart-torso uncoupling allows us to handle the two problems sepa-
rately.

The Heart Let us first consider the bidomain equations for the heart EP, whose weak for-
mulation is given by (4.38). Let us consider three finite-dimensional spaces Xue

h ⊂ H1
M0

(ΩH),
Xv
h ⊂ H1(ΩH), Xw

h ⊂ L2(ΩH); they have (usually large) dimensions Nue
h , Nv

h and Nw
h respec-

tively. Here h represents a parameter related to the mesh size of the computational grid. Let us
denote {ψi}N

ue
h

i=1 a set of basis functions of the FE space Xue
h , {φi}N

v
h

i=1 a set of basis functions of
the FE space Xv

h , and {ηi}
Nwh
i=1 a set of basis functions of the FE space Xw

h . We can then express
the three variables involved in the problem as:

ueh(x, t;µ) =:

Nueh∑
i=1

ui(t;µ)ψi(x) (x, t) ∈ ΩH × [t0, T ] (4.42a)

vh(x, t;µ) =:

Nvh∑
i=1

vi(t;µ)φi(x) (x, t) ∈ ΩH × [t0, T ] (4.42b)

wh(x, t;µ) =:

Nwh∑
i=1

wi(t;µ)ηi(x) (x, t) ∈ ΩH × [t0, T ] (4.42c)

where the three vectors

ueh(t;µ) = [ue1(t;µ), ue2(t;µ), . . . , ueNue
h

(t;µ)]T

vh(t;µ) = [v1(t;µ), v2(t;µ), . . . , vNvh (t;µ)]T

wh(t;µ) = [w1(t;µ), w2(t;µ), . . . , wNwh (t;µ)]T

are obtained by solving the following discrete system:
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Problem 4.5: Bidomain Equations + Ionic Model Discrete Formulation

Given µ ∈ P ⊂ Rp, find ueh = ueh(t;µ), vh = vh(t;µ) and wh = wh(t;µ) such that:

AmCmM
∂vh
∂t

+A1,1
in (µ)vh +A1,2

in (µ)ueh +

AmIion(vh,wh;µ) = AmIapp(t;µ)
t ∈ [t0, T ]

A2,1
in (µ)vh +

(
A2,2
in (µ) +Aex(µ)

)
ueh = 0

∂wh
∂t

= g(vh,wh;µ) t ∈ [t0, T ]

vh(t0;µ) = v0(µ); wh(t0;µ) = w0(µ)

(4.43)

where we denote the stiffness matrices and the mass matrix as:(
M
)
ij

=

∫
ΩH

φi(x)φj(x) dx (4.44a)

(
A1,1
in

)
ij

=

∫
ΩH

Di(x;µ)∇φi(x) · ∇φj(x) dx (4.44b)

(
A1,2
in

)
ij

=

∫
ΩH

Di(x;µ)∇ψi(x) · ∇φj(x) dx (4.44c)

(
A2,1
in

)
ij

=

∫
ΩH

Di(x;µ)∇φi(x) · ∇ψj(x) dx (4.44d)

(
A2,2
in

)
ij

=

∫
ΩH

Di(x;µ)∇ψi(x) · ∇ψj(x) dx (4.44e)

(
Aex

)
ij

=

∫
ΩH

De(x;µ)∇ψi(x) · ∇ψj(x) dx (4.44f)

Also, we define: (
Iapp(t;µ)

)
j

=

∫
ΩH

Iapp(x, t;µ)φj(x) dx (4.45a)

(
Iion(vh,wh;µ)

)
j

=

∫
ΩH

Iion(vh, wh;µ)φj(x) dx (4.45b)

(
g(vh,wh;µ)

)
j

=

∫
ΩH

g(vh, wh;µ)ηj(x) dx (4.45c)

In order to simplify both the formulation of the problem and the computation of its solution,
we resorted to a formulation that is simpler than (4.43) and that has been derived under the
assumption that all the three unknowns involved in the problem (i.e. ue, v and w) belong to
the same subspace H1(ΩH). As it is, such a formulation cannot be well-posed, since we have
removed the zero-average constraint on ue; to recover it, we acted at post-processing stage,
where the computed value of the epicardial extracellular potential has been rescaled to ensure
that

∫
ΩH

ue = 0. Such a numerical procedure may easily bring to instability while solving the
resulting linear system; issues can be anyway prevented by employing stabilized iterative solvers,
as the bi-conjugate gradient stabilized (BiCGSTAB) method (i.e. a variant of the more classical
bi-conjugate gradient (BiCG) method, introduced by Van der Vorst in [53] and showing much
faster and smoother convergence properties).

So, under the last hypothesis, we can define a unique finite-dimensional subspace Xh ⊂ H1(ΩH)
of dimension Nh and denote as {φi}Nhi=1 the set of its FE basis functions. The unknowns involved
in the problem can be then all expressed as in (4.42a)-(4.42b)-(4.42c), but always using {φi}Nhi=1

as basis functions. Then the discrete-in-space, continuous-in-time system to be solved reads as
follows.
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Problem 4.6: Bidomain Equations + Ionic Model Discrete Formulation 2

Given µ ∈ P ⊂ Rp, find ueh = ueh(t;µ), vh = vh(t;µ) and wh = wh(t;µ) such that:

AmCmM
∂vh
∂t

+ Ain(µ)vh + Ain(µ)ueh +

AmIion(vh,wh;µ) = AmIapp(t;µ)
t ∈ [t0, T ]

Ain(µ)vh +
(
Ain(µ) +Aex(µ)

)
ueh = 0

∂wh
∂t

= g(vh,wh;µ) t ∈ [t0, T ]

vh(t0;µ) = v0(µ); wh(t0;µ) = w0(µ)

(4.46)

where the mass matrixM and the applied and ionic currents Iapp, Iion are defined as in
(4.44a) - (4.45a) - (4.45b) respectively, whereas the stiffness matrices are defined as

(
Ain(µ)

)
ij

=

∫
ΩH

Di(µ)φi(x)φj(x) dx (4.47a)

(
Aex(µ)

)
ij

=

∫
ΩH

De(µ)φi(x)φj(x) dx (4.47b)

The discretization of the non-linear term involved in the ionic model is(
g(vh,wh;µ)

)
j

=

∫
ΩH

g(vh, wh;µ)φj(x) dx (4.48)

Additionally, taking advantage of the axial isotropy assumption (see (4.32)), both stiffness ma-
trices Ain and Aex can be decomposed as:

Ain,ex(µ) = σti,eA
iso
in,ex(µ) + (σli,e − σti,e)Afibers

in,ex (µ) (4.49)

being (
Aiso
in,ex

)
ij

=:

∫
ΩH

∇φi(x) · ∇φj(x) dx (4.50a)

(
Afibers
in,ex

)
ij

=:

∫
ΩH

al(x)al(x)T∇φi(x) · ∇φj(x) dx (4.50b)

Regarding the treatment of the non-linear terms and the time discretization, we employed a semi-
implicit, first order, one-step time marching scheme; a detailed reference can be found in [49].
Suppose to partition the time interval [t0;T ] into Nt small sub-intervals {[t(l); t(l+1)]}Nt−1

l=0 such
that t(0) = t0 and t(Nt) = T ; suppose also the intervals to be all of the same length, equal to ∆t,
and small enough to capture the very fast dynamics of the electric impulse front propagation.
The solving process is then divided into three phases:

1. Solving the ODE associated to the ionic model: the first step amounts at computing
the solution to the ODE that models the behavior of the gating variable w, responsible for
cells refractoriness in the phenomenological ionic model. To do so, a simple implicit (back-
ward) Euler method is employed; the transmembrane potential involved in the expression
of the right-hand side g(·, ·;µ) can be either evaluated at the previous time instant t(l)
or extrapolated from its values at some previous k time instants {t(m)}lm=l−k. Whichever
strategy is used for the estimation of the value of vh at time t(l+1), defining such value as
ṽ

(l+1)
h , the value of w(l+1)

h is computed by solving:

w
(l+1)
h −w(l)

h

∆t
= g(ṽ

(l+1)
h ,w

(l+1)
h ;µ) (4.51)

Being g non-linear in its second argument, fixed point methods have to be employed.
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2. Evaluating the ionic current term: once w(l+1)
h is known, the ionic current term I

(l+1)
ion

can be evaluated at time t(l+1), performing the integration reported in (4.45b). Also in
this case, an approximated value of v(l+1)

h , denoted as ṽ(l+1)
h , is used.

3. Solving the PDEs associated to the bidomain model: as last step, once w(l+1)
h is

known, the PDEs associated to the bidomain model can be discretized in time, using the
implicit Euler method, and solved, so that both v(l+1)

h and u(l+1)
eh can be computed. Thus,

the discrete system of equations reads as:
AmCmM

v
(l+1)
h − v(l)

h

∆t
+ Ain(µ)v

(l+1)
h + Ain(µ)u

(l+1)
eh =

Am
(
I

(l+1)
app (µ)− I(l+1)

ion (ṽ
(l+1)
h ,w

(l+1)
h ;µ)

)
Ain(µ)v

(l+1)
h +

(
Ain(µ) +Aex(µ)

)
u

(l+1)
eh = 0

(4.52)

Ultimately, written in matricial form, the full-order bidomain equations read as:(
AmCm

∆t

[
M 0Nh×Nh

0Nh×Nh 0Nh×Nh

]
+

[
Ain(µ) Ain(µ)
Ain(µ) Ain(µ) +Aex(µ)

])[
v

(l+1)
h )

u
(l+1)
eh

]
=[

Am

(
I

(l+1)
app − I(l+1)

ion +
Cm
∆t
Mv

(l)
h

)
,0Nh

]T (4.53)

This first-order semi-implicit approach leads to the separate solution of one non-linear ODE (via
fixed points iterations) and of one linear system (via the Preconditioned BiCGSTAB method)
at each timestep. Additional improvements, like the usage of adaptive time stepping strategies
or possible parallel linear solver implementations, can be found in high detail in [49].

The Torso We can now consider the problem of the propagation of the electric signal from
the epicardium to the body surface; its weak formulation is given by (4.41). Let us consider a
finite-dimensional space Xt

h ⊂ H1
0 (ΩT ) of dimension N t

h. Let us denote {φti}
Nth
i=1 a set of basis

functions of the FE space Xt
h. The torso potential ut can be then approximated as:

uth(x, t;µ) =:

Nth∑
i=1

uti(t;µ)φti(x) (x, t) ∈ ΩT × [t0, T ] (4.54)

where the vector
uth(t;µ) = [ut1(t;µ), ut2(t;µ), . . . , utNe

h
(t;µ)]T

is computed by solving the following problem:

Problem 4.7: Lifted Generalized Laplace Equation Discrete Formulation

Given µ ∈ P ⊂ Rp, find uth = uth(t;µ) such that:

At(µ)uth(t) = −At(µ)uΩT
eh

(t) t ∈ [t0, T ] (4.55)

where (
At(µ)

)
ij

=

∫
ΩT

DT (x;µ)∇φti(x) · ∇φtj(x) dx (4.56)

(
uΩT
eh

(t)
)
j

=

∫
ΩT

uΩT
e (x, t)φtj(x) dx t ∈ [t0, T ] (4.57)

Furthermore, Problem 4.7 can be simplified by evaluating the right-hand side term only at the
DOFs involved in the Dirichlet boundary condition at ΓH , i.e.

At(µ)uth(t) = −At
ΓH (µ)uΓH

eh
(t) t ∈ [t0, T ] (4.58)

64



whereAt
ΓH

(µ) =: At(µ)[·, {jDir}], being {jDir} the set of DOFs at which the Dirichlet boundary
condition has been imposed.

Notice that Problem 4.7 is a steady problem; thus it has to be solved, independently, at all the
discrete time instances {t(l)}Ntl=1 at which the heart EP has been solved (via (4.52)) and at which,
thus, the approximated epicardial extracellular potential ueh |ΓH acting as Dirichlet boundary
condition is available. So, leveraging the time domain discretization employed to compute the
numerical solution of the bidomain equations, it is possible to derive the space-time discretized
torso potential {

u
(l)
th

}Nt
l=1

=:
{
uth(t(l))

}Nt
l=1

(4.59)

4.2.3 Numerical Results

This Subsection is devoted to a brief presentation of the numerical results obtained by solving
the heart bidomain equations and the problem of the transmission of the signal to the torso using
the Galerkin FE method (see (4.46) - (4.55)). Before moving to that, it is necessary to provide
a description of the geometries and of the computational meshes that have been employed and
of the values of the most relevant parameters and data that have been used. This will be done
in the next two paragraphs.

Geometries and Computational Meshes

In the context of this project, the FOM problem has to be solved many times, for many different
values of the model parameters and data, so that a sufficiently large and variable dataset can
be generated and, on top of that, a DL model can be successfully trained. Because of this, we
have chosen to run all our simulations using meshes made of a limited number of elements; as
a drawback, the results we got cannot be considered accurate and able to precisely reproduce
what actually happens in reality. Anyway, the core aim of the present work, as already dis-
cussed in Chapter 1, is not to build up a DL model able to effectively handle any kind of real
ECG signal, but more to identify a PDE-aware DL model architecture that proves to be able
to well estimate the mapping between ECG signals (or, more in general, body surface signals)
and epicardial potentials. Thus, a precise reproduction of real ECG signals (that proves to be a
very complex task, as discussed for instance by Boulakia et al. in [50]) is not actually desired,
while our interest is mainly oriented towards the possibility of simulating, in a physiologically
and phenomenologically consistent way, but yet with a limited consumption of computational
resources, the heart EP and the transmission of the signal to the body surface. Once a proper DL
architecture, able to fulfill all our requirements, is found, our ansatz (and hope) is that the same
architecture, trained with either real data or with more realistic "artificial" ones, will be also able
to provide a good mapping between real ECG signals and the corresponding epicardial potentials.

The mesh used to numerically approximate the heart EP via the bidomain equations coupled
with the AP ionic model is reported in Figure 4.8 from four different views (frontal, rear, left
lateral and inferior). It is made of 27′636 tetrahedral cells, which result in 7718 vertices; this
is a quite coarse mesh, especially in the context of heart EP, whose simulation necessitates
of a much higher degree of refinement (≈ 100′000 nodes) to be able to precisely capture the
fast dynamics of the depolarization wavefront. The geometry only considers the two ventricles
(heart biventricle model), excluding the atria; such an assumption is reasonable in the context of
electrocardiography, since the contribution of the atria becomes negligible once the depolarization
phase of the ventricles is started. In terms of ECG signals, neglecting the atria we cannot be
able to visualize the P wave (being it linked to atrial depolarization, see Subsection 4.1.2), but
all the other characteristic waves should be almost unaffected.
The mesh that has been used to solve Problem 4.7 is made of 73′607 tetrahedral elements and
of 16′793 vertices; its underlying geometry represents an idealized human torso, consisting of
a cylinder with ellipsoidal basis built around the heart and it is represented in Figure 4.9. In
this setting, the heart acts as a boundary condition, so only its epicardium is considered in
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(a) Frontal view (b) Rear view

(c) Left Lateral view (d) Inferior view

Figure 4.8: Computational mesh employed to numerically approximate the heart EP from four different points
of view

the geometry; additionally no design of the different organs of the human body (such as bones
or lungs) is made, so that the torso is assumed to be a perfectly isotropic and homogeneous
conductor. Differently from the heart geometry of Figure 4.8, the heart present in the torso
geometry does not only feature the epicardium of the two ventricles, but also the one of the two
atria; this may be problematic from the computational point of view, since the behavior of the
depolarization wavefront at the atria appears to be relevant while studying the propagation of
the signal through the torso. In order to minimize such contribution and thus to allow the torso
potential to be determined just by the ventricular epicardial one, we have decided to impose a
homogeneous Neumann boundary condition at the atria, thus rewriting problem (4.36) - (4.37a)
- (4.37b) as: 

−div (DT (µ)∇uT ) = 0 in ΩT

nB ·DT (µ)∇uT = 0 on ΓB

nHA ·DT (µ)∇uT = 0 on ΓHA
uT = ue|ΓHV on ΓHV

(4.60)

being ΓHA the atrial epicardial surface and ΓHV the ventricular epicardial surface, so that
ΓHA ∩ΓHV = ∅ and ΓHA ∪ΓHV = ΓH , and nHA the outward unit normal vector to ΓHA . Other
attempts have been made (for instance the imposition of a homogeneous Dirichlet boundary
condition, where homogeneity aims at preserving the zero-average constraint already satisfied
by the ventricular extracellular potential ue), but they all ended up giving rise to unrealistic
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Figure 4.9: Computational Mesh used to numerically approximate the transmission of the signal from the epi-
cardium to the body surface. The geometry represents an idealized torso, constructed as an ellipsoidal cylinder
built around the heart. The spheres identify the positions of the 9 ECG electrodes; the three limb electrodes are
marked in Black, while the six chest ones follow the AHA (American Heart Association) color coding system

waves in the initial part of the ECG traces; the choice of imposing homogeneous Neumann
boundary conditions at the atria has been so identified as the best one from a qualitative point
of view. Finally, since this geometry only represents the human torso, without arms and legs, it
has not been possible to place the three limb electrodes in their standard positions; as it can be
seen in Figure 4.9, the electrodes LA and RA have been placed on the left and right shoulder
respectively and the electrode LL has been placed in a position that can be thought as being
located below the navel. Anyway, as said in Subsection 4.1.2, these electrodes can be also placed
closer to the hips/shoulders, as long as their disposition is symmetric and that it allows to build
a triangle having its center in the middle of the thorax. Thus we do not expect the results to
dramatically change, in case arms and legs are involved in the geometry and the electrodes are
moved to their more classical locations.

Model Parameters and Data

All the numerical results presented in this Subsection, as well as the ones that will be shown in
Subsection 4.2.4, have been obtained by solving the bidomain equations, coupled with the AP
ionic model, and the torso transmission problem (see Problem 4.1). The solutions to this system
of PDEs - ODEs show a significant dependency on the model parameters (conducibilities, pa-
rameters of the ionic model, etc.) and data (initial and boundary conditions, externally applied
current, etc.); thus, before moving to a brief discussion of the results, it is worth reporting the
choices that have been made in this sense.

The values of the employed model parameters, that we have been synthetically embodied in the
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K a ε0 µ1 µ2 b Vmin Vmax

8 1.5 · 10−1 6.5 · 10−3 1.0 · 10−1 3.0 · 10−1 1.5 · 10−1 −80 mV 20 mV

Table 4.2: Values of the parameters used in the AP ionic model

Am[cm−1] Cm[µF ] σli [S cm−1] σti [S cm−1] σle [S cm−1] σte [S cm−1]
1.40 · 103 5.0 · 10−1 6.0 · 10−4 9.0 · 10−5 2.25 · 10−3 2.25 · 10−4

Table 4.3: Values of other parameters used in the numerical approximation of the bidomain equations

Figure 4.10: Structure of the heart conduction fibers

parameters vector µ ∈ P ⊂ Rp, are reported in Tables 4.2 (relative to the AP model parameters
only) and 4.3. Regarding the AP model, standard parameter values that can be retrieved in
literature have been adopted; concerning the other parameter values, instead, Am and Cm have
been set to standard values, while the heart conducibilities σl,ti,e have been chosen so that the
resulting ECG signals show waves durations and amplitudes as physiological as possible. The
structure of the heart conduction fibers is also reported in Figure 4.10.

Regarding the initial conditions, again standard ones have been imposed, so that

v(·, t0) = 0 w(·, t0) = 0 (4.61)

Recall that the transmembrane potential v is assumed to be normalized in [0; 1] by the AP ionic
model, thus setting it to 0 amounts at assuming a fully inactivated heart at the initial time
instant. Also, t0 = 0, while the simulation duration T has been set to 160 ms, so that only the
ventricular depolarization process is considered.

Finally, the externally applied current has been designed in such a way that the positions and
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timings of the EBTs are in accordance with the findings of Wyndham et al. in [39], already
described in a dedicated paragraph of Subsection 4.1.1. In particular, during the first 45 ms of
the simulation, different areas of the endocardial and sub-endocardial layers have been excited,
so as to reproduce a physiologically consistent EBT pattern; this has been done considering
both healthy cases (following [39]) and cases of patients affected by either Left Bundle Branch
Block (LBBB) (following [54]) or Right Bundle Branch Block (RBBB) (with an educated guess
on EBT locations and timings, based on the findings of the previously cited articles).

Results

In the following we present the ECG signals and the epicardial activation maps obtained simu-
lating the heart EP and the torso signal transmission in a healthy case and the case of a patient
affected by LBBB.

The epicardial activation maps and the ECG signals obtained by simulating an healthy case
can be found in Figures 4.11 and 4.12 respectively. Regarding the activation map, it is easy to
recognize the two earliest EBTs on the anterior part of the right ventricle (around 10 ms) and
of the left ventricle (around 25 ms). Also, later EBTs can be seen in the inferior part of the
right ventricle, close to the base and paraseptally, around 30 ms and on the left ventricle free
wall around 40 ms. The site of LEA is located at the base of the heart, anteriorly, near the
acute margin of the right ventricle; it has been activated ≈ 75 ms after the QRS onset. All these
observations are in accordance with the findings of Wyndham et al. in [39]. Concerning the
ECG signals, instead, an overall qualitative similarity with the target healthy ECG described in
Table 4.1 can be found; notice that, having simulated only the ventricular depolarization, only
the QRS complex is visualized. For instance the S and R waves progression in the precordial
leads is almost as expected (actually either in lead V3 or in lead V4 we should be able to observe
both a R and a S wave, with comparable amplitudes, while here only a R wave can be observed;
also the amplitude of the R wave in V6 should be smaller than the one in V5); the polarities
of all the leads match our expectations; the duration of the QRS complex (≈ 75 ms) is short,
but it falls in the physiological range. Readily, the simplifying assumptions both at modelis-
tic level and concerning the geometries and the meshes prevent us from reconstructing realistic
heart depolarization cycles and ECG signals; anyway, we managed to obtain physiologically and
phenomenologically consistent results with a reduced computational effort (the whole simulation
runs in ≈ 140 s on a laptop - for the specifics see Appendix C), which was our target.

The epicardial activation maps and the ECG signals obtained by simulating a LBBB case can
be found in Figures 4.13 and 4.14 respectively. For what concerns the activation map, also in
this case the results are in accordance with the findings of Wyndham et al. in [54]; in particular
2 EBTs can be visualized in the anterior paraseptal (at ≈ 15 ms) and inferior basal paraseptal
(at ≈ 25 ms) right ventricle, while the depolarizing wavefront must pass through the septum
from right to left to reach the left ventricle, whose conduction bundle is inactivated. The site of
LEA is located on the left ventricle and more specifically in its basal lateral region; the signal
reaches this area ≈ 110 ms after the QRS onset. Regarding the ECG signals, their similarity
with real ones of patients affected by LBBB is lower compared to the one got in the healthy
case; in particular, as reported for instance in [40], the signals of leads V1 − V2 − V3 should
show deep and steep Q waves (here they are not so deep and steep) and the duration of the
QRS complex should exceed 120 ms. These major issues could be imputed, other than to the
modelistic simplifications and to the coarseness of the employed computational meshes, also to
a not so precise and reliable representation of the way the depolarization wavefront moves from
the right ventricle to the left one if the left bundle branch is blocked. This is clearly a limitation
of our simulation setting and further efforts can be made in this sense, for instance referring to
the results presented by Boulakia et al. in [50].
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(a) Frontal view (b) Rear view

(c) Left Lateral view (d) Inferior view

Figure 4.11: Epicardial activation maps obtained by simulating a healthy heart depolarization process from four
different views
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Figure 4.12: 12-lead ECG signals obtained simulating a healthy heart depolarization process
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(a) Frontal view (b) Rear view

(c) Left Lateral view (d) Inferior view

Figure 4.13: Epicardial activation maps obtained by simulating a heart depolarization process affected by LBBB
from four different views
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Figure 4.14: 12-lead ECG signals obtained simulating a heart depolarization process affected by LBBB
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4.2.4 Model Order Reduction across Space and Time Dimensions

As anticipated in Chapter 1, the PDE-aware DL models that have been developed in this project
feature a deterministic layer that solves the generalized Laplace equation (4.36) at the torso,
being given as input the conducibility parameters (in case the employed torso geometry involves
the presence of multiple organs) and the value of the extracellular potential at the ventricular
epicardium. In doing that, it must be taken into account that the problem, at training stage, must
be solved many times, precisely, NµNepochs times, being Nµ the dimensionality of the training
dataset and Nepochs the number of training epochs. Thus, it is unfeasible and inconvenient for
the NN to solve the FOM problem, both in terms of memory occupation and of computational
time. It emerges then the need of resorting to ROM techniques, that allow to compute a solution
to the problem at hand which on the one side is less accurate than the one got with the FOM
approximation, but, on the other side, brings to a dramatic reduction of the computational
burden.

Application of the RB Method to the Generalized Laplace Equation at the Torso

The ROM technique chosen to handle the Forward Problem in the torso is the RB method,
already introduced in Section 2.2. More in detail, the problem at hand is steady, but it has to
be solved (independently) at many different time instants; thus it can be regarded as a time-
dependent problem and we can leverage the concepts introduced in Subsection 2.2.3, concerning
ROM techniques for unsteady parametrized PDEs. Since the different time instants are inde-
pendent one from the other, we have decided not to resort to complex Space-Time-Reduced
methods, such as the ST-LSPG one introduced in [30]; rather, we have employed the classical
RB method at all the different time instants, thus ultimately performing a dimensionality re-
duction across the spatial dimension only.

The construction of the Reduced Order Model is quite straightforward and it follows the steps
already discussed at the beginning of Subsection 2.2.3; for the sake of precision, we will briefly
report them here and fit them to the problem at hand. So, suppose to consider the third order
tensor X t ∈ RNµ×Nth×Nt storing the FOM solutions to the generalized Laplace equation at the
torso at all the Space-Time DOFs and for Nµ different parameter values. The basis in space,
encoded by the matrix V t

s ∈ RNth×nth , is computed by applying a truncated POD (with tolerance
on the cumulative squared singular values εt,sPOD to be decided) to the mode-1 unfolding of X t,
denoted as X t(1) ∈ RNth×NµNt . Figure 4.15 provides the visualization of some of the elements of
such basis from an anterolateral point of view.

Once the basis has been computed and all quantities have been projected onto the dimensionality
reduced space, Problem 4.7 can be written in reduced form as:

Ãt(µ)ũ
(l)
th

= ũΩT
(l)

eh
(µ) l ∈ {0, . . . , Nt} (4.62)

where:

Ãt(µ) =: V tT

s At(µ)V t
s ∈ Rn

t
h×n

t
h (4.63a)

ũ
(l)
th

=: V tT

s u
(l)
th

∈ Rn
t
h l ∈ {0, . . . , Nt} (4.63b)

ũΩT
(l)

eh
(µ) =: −V tT

s At(µ)uΩT
(l)

eh
(µ) ∈ Rn

t
h l ∈ {0, . . . , Nt} (4.63c)

Now, two additional steps can be made. First, exploiting the formulation of the FOM torso prob-
lem (4.58), we can perform a dimensionality reduction step also on the epicardial extracellular
potential. Indeed, let X e ∈ RNµ×Neh×Nt be defined as the third-order tensor storing the values
of the epicardial extracellular potential uΓH

eh
at all Space-Time DOFs of the epicardial surface

and for Nµ different parameter values; here Ne
h denotes the number of DOFs at the epicardial

surface. Then a reduced basis in space, stored by the matrix V e
s ∈ RNeh×neh , can be computed

by applying a truncated POD with tolerance εe,sPOD to the mode-1 unfolding of such tensor, i.e.
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(a) Torso Basis Function 1 (b) Torso Basis Function 5

(c) Torso Basis Function 10 (d) Torso Basis Function 20

(e) Torso Basis Function 40 (f) Torso Basis Function 80

Figure 4.15: Visualization, from an anterolateral point of view, of some of the basis functions for the torso
potential. A POD tolerance εt,sPOD = 10−3 has been chosen; randomized SVD algorithm has been used

to X e(1) ∈ RNeh×NµNt . In the end, problem (4.58) can be written in reduced form as:

Ãt(µ)ũ
(l)
th

= Ãt,e(µ)(µ)ũΓH
(l)

eh
(µ) l ∈ {0, . . . , Nt} (4.64)

where Ãt(µ) and ũ(l)
th

are defined as in (4.63a) and (4.63b) respectively, while

Ãt,e(µ) =: V tT

s At(µ)V e
s ∈ Rn

t
h×n

e
h (4.65a)

ũΓH
(l)

eh
(µ) =: −V e

s u
ΓH

(l)

eh
(µ) ∈ Rn

e
h l ∈ {0, . . . , Nt} (4.65b)
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(a) Epicardial Basis Function 1 (b) Epicardial Basis Function 5

(c) Epicardial Basis Function 10 (d) Epicardial Basis Function 20

(e) Epicardial Basis Function 40 (f) Epicardial Basis Function 80

Figure 4.16: Visualization, from a frontal point of view, of some of the basis functions for the epicardial ex-
tracellular potential. A POD tolerance εe,sPOD = 10−2 has been chosen; randomized SVD algorithm has been
used

A visualization, from a frontal point of view, of some of the basis functions for the epicardial ex-
tracellular potential, is offered by Figure 4.16. It can be easily noticed that the spatial frequency
of the basis elements increases as their index increases; so the first basis functions, able to explain
most of the problem dynamics and associated to the highest singular values, show simple and
smooth spatial patterns, while the last ones exhibit much more complicated and irregular shapes.

The second step, instead, consists in taking advantage of the affine parametrization of the torso
stiffness matrix At(µ). At this point, is is worth remarking that the set of parameters that
influence the torso stiffness matrix and the epicardial extracellular potential are disjoint; indeed
the former depends on the values of the conducibilities in the torso, while the latter on the
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set of parameters defined for the modeling of heart EP. Denoting these sets as Pt ⊂ RN
t
p and

Pe ⊂ RN
e
p respectively, we can rewrite problem (4.64) as:

Ãt(µt)ũ
(l)
th

= Ãt,e(µt)ũΓH
(l)

eh
(µe) l ∈ {0, . . . , Nt}, µt ∈ Pt, µe ∈ Pe (4.66)

We have assumed that the torso is made of different parts (like bones, lungs, ...) and that each
of these parts is characterized by a different value of the conducibility; anyway we have also
assumed the torso to behave like an isotropic conductor, so that the conducibility tensors can be
reduced to non-negative scalar values. Thus, if we suppose the torso to be partitioned into N t

p

parts, each one equipped with its own conducibility parameter {σtp}
Ntp
p=1, then the torso stiffness

matrix can be written as:

At(µt) ≡ At
(
{σtp}

Ntp
p=1

)
=

Ntp∑
p=1

σtpA
t
p (4.67)

where At
p is the stiffness matrix associated to the DOFs belonging to the part p of the torso and

computed assuming a default conducibility of 1. Readily, this applies also to the reduced torso
stiffness matrix, so that:

Ãt(µt) ≡ Ãt
(
{σtp}

Ntp
p=1

)
=

Ntp∑
p=1

σtpÃ
t
p (4.68)

where:
Ãt
p =: V tT

s At
pV

t
s ∈ Rn

t
h×n

t
h p ∈ {1, . . . , N t

p} (4.69)

Thus, as already explained in Subsection 2.2.2, all the affine components of the stiffness matrix
can be assembled during the offline phase of the RB method, saving a significant amount of
computational resources during the online phase.

In the end, the RB method applied to the generalized Laplace equation at the torso can be
schematized as follows.
• Offline Phase

1. The heart EP problem is solved Nµ times, for different values of the parameters stored
in µe. This allows to assemble the extracellular potential snapshots’ tensor X e.

2. The generalized Laplace equation at the torso is solved Nµ times, for the Nµ different
values of the epicardial extracellular potential computed while solving the heart EP
and for Nµ different values of the conducibilities in the torso. This allows to assemble
the torso potential snapshots’ tensor X t.

3. Truncated PODs applied to the mode-1 unfoldings of the snapshots’ tensors X t and
X e allow to compute the two Reduced Basis matrices V t

s and V e
s . The tolerances are

denoted as εt,sPOD and εe,sPOD respectively.
4. The reduced affine components of the torso stiffness matrix are assembled, using

(4.69).
• Online Phase

1. Given the torso conducibilities µt = {σtp}
Ntp
p=1, the reduced torso stiffness matrix

Ãt(µt) is obtained as a linear combination.
2. Given the epicardial extracellular potential at all time instants {uΓH

(l)

eh
(µe)}Ntl=0, its

projection onto the epicardial Reduced Subspace {ũΓH
(l)

eh
(µe)}Ntl=0 is computed

3. The torso potential, projected onto the torso Reduced Subspace, is computed at all
time instants by solving the set of linear systems (4.66)

4. The FOM torso potential at all time instants is retrieved from the reduced one by
computing u(l)

th
= V t

s ũ
(l)
th
∀ l ∈ {0, . . . , Nt}
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Space-Time RB Approximation of the Epicardial Extracellular Potential

As it will be made clear in Chapter 5, the PDE-aware DL models implemented in this project
aim at estimating the epicardial extracellular potential at all the Space-Time DOFs, starting
from body surface potentials given as input. Performing such an estimation in the FOM setting
is clearly unfeasible, since on the one side the NN would be required to learn a very high number
of quantities (much higher than the ones given as input) and on the other side the complexity of
the model would dramatically increase as the computational meshes get refined or as the order
of the method is increased, which is not desired. A first fix to this problem is to perform a
dimensionality reduction across the space dimension, employing the RB method as it has been
described in the previous paragraph; in this way, the model would be required to learn nehNt
coefficients, rather than Ne

hNt, thus reducing its complexity (neh � Ne
h). Anyway, the number

of trainable parameters still depends on the number of time instants Nt and a refinement of the
discretization of the time domain will lead to a significant increase of the NN complexity.

Such a problem can be then tackled by performing a Space-Time projection of the epicardial
extracellular potential, using the techniques already described in Subsection 2.2.3. In particular,
given the third-order tensor X e storing the epicardial potential at all the FOM Space-Time
DOFs, several truncated PODs are applied. A first one, with tolerance εe,sPOD, acts on the mode-
1 unfolding of the tensor X e(1) and it allows to compute the spatial basis V e

s ∈ RNeh×neh . Lately,
neh different PODs are applied to the projections of the snapshots’ tensor onto the spaces spanned
by the different spatial basis elements i.e. X e(V t

si) =: X e ×1 V
t
si ∈ RNt×Nµ , i ∈ {1, . . . , neh}.

These PODs allow to compute the temporal bases V e
ti ∈ RNt×nit ∀ i ∈ {1, . . . , neh}. Concerning

the tolerances, it is a common strategy to take them constant for all the neh PODs; a drawback we
noticed, anyway, is that, with this approach, we get lots of temporal basis functions associated
to the least informative spatial basis functions and just a few tailored to the most relevant ones.
Thus, in order to further reduce the overall number of Space-Time basis functions, we decided
to pick the tolerances for the temporal PODs as follows:

(
εe,tPOD

)
i

= 10 ε̂e,tPOD

∑i
j=1 σj

e,s∑neh
j=1 σj

e,s
i ∈ {1, . . . , neh} (4.70)

In this way, the first spatial basis function will be associated to a POD tolerance close to the
reference one ε̂e,tPOD, while the subsequent ones will be coupled to higher and higher tolerances
(whose trend depends on the singular values, representative of the basis importance), up to a
value equal to 10 times ε̂e,tPOD. With such approach, the number of temporal basis functions
associated to the different spatial basis ones is much more homogeneous and the loss in terms
of accuracy is minimal, since only the least informative elements are excluded from the final
spatio-temporal Reduced Basis. In the following, for simplicity, we will refer to ε̂e,tPOD as the
temporal POD tolerance on the epicardial potential.

The overall Space-Time Reduced Basis is then made of nst =:
∑neh
i=1 n

i
t elements of dimension

Ne
h ×Nt, each one being defined as the outer product between an element of the Reduced Basis

in space and an element of the associated Reduced Basis in time. For a more precise definition
of all these concepts we refer again to Subsection 2.2.3. Figure 4.17 displays the temporal basis
functions associated to the spatial ones (for the epicardial extracellular potential) represented
in Figure 4.16. Notice how the high frequency component increases both as the index of the
function itself increases (and this is a standard and expected trend) and also as the index of
the associated basis function in space increases. This last observation justifies the choice of the
"tailored" approach with respect to "non-tailored" one for the computation of the temporal basis.

In the end, any epicardial extracellular potential {uΓH
(l)

eh
(µe)}Ntl=0 can be expressed by means

of only nst coefficients, which are the ones that are ultimately estimated by our DL model.
In this way, on the one side the NN complexity is significantly reduced (since neh � Ne

h and
nit � Nt ∀ i ∈ {1, . . . , neh} if sufficiently high POD tolerances are chosen) and on the other side
the number of trainable parameters becomes much less sensitive to the level of refinement of the
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Figure 4.17: Visualization of the temporal reduced basis functions associated to the spatial basis functions of
Figure 4.16 for the epicardial extracellular potential. A reference POD tolerance ε̂e,tPOD = 5 ·10−2 has been chosen

Space-Time discretization (since, for a sufficiently good level of refinement, it can be assumed
independence between the number of FOM DOFs and the dimensionality of the Reduced Bases).

In this context, the computation of the solution to the generalized Laplace equation at the torso
basically proceeds as described in the previous paragraph, requiring to solve the set of linear
systems (4.66). The only difference is that now we are no longer given the FOM epicardial
potential uΓH

eh
(µe), but its projection onto the Space-Time Reduced Subspace ûΓH

eh
(µe), which,

exploiting orthonormality, is computed as:

(
ûΓH
eh

(µe)
)
k

=

Neh∑
i=0

Nt∑
j=0

πkij
(
uΓH
eh

(µe)
)
i,j

k ∈ N(nst) (4.71)

where πkij denotes the element in position (i, j) of the k-th Space-Time basis function. Thus,
instead of computing the ROM-in-Space FOM-in-Time epicardial potential {ũΓH

(l)

eh
(µe)}Ntl=0 by

projecting the FOM one onto the Reduced subspace in space, that same quantity is derived by
expanding in time the ROM-in-Space ROM-in-Time epicardial potential ûΓH

eh
(µe); this is done

with the formula(
ũΓH

(l)

(µe)
)
i

=

nit∑
j=0

ψi
(l)

j ûΓH
F(i,j)(µ

e) i ∈ {1, . . . , neh} l ∈ {0, . . . , Nt} (4.72)

77



Case Nb εt,sPOD εe,sPOD ε̂e,tPOD nth neh nst errECG errAM
1 10−1 10−1 10−1 36 80 259 4.34 · 10−2 4.27 · 10−2

2 10−1 10−1 10−2 36 80 1368 9.48 · 10−3 1.42 · 10−2

3 10−1 10−1 10−3 36 80 3303 5.17 · 10−3 1.44 · 10−2

4 10−1 10−2 10−1 36 293 555 4.34 · 10−2 3.79 · 10−2

5 10−1 10−2 10−2 36 293 7506 9.36 · 10−3 5.28 · 10−3

6 10−1 10−2 10−3 36 293 14947 4.98 · 10−3 3.45 · 10−3

7 10−1 10−3 10−1 36 320 581 4.34 · 10−2 3.76 · 10−2

8 10−1 10−3 10−2 36 320 8465 9.36 · 10−3 5.04 · 10−3

9 10−1 10−3 10−3 36 320 16526 4.99 · 10−3 3.07 · 10−3

10 10−2 10−1 10−1 194 80 259 4.34 · 10−2 4.27 · 10−2

11 10−2 10−1 10−2 194 80 1368 7.72 · 10−3 1.42 · 10−2

12 10−2 10−1 10−3 194 80 3303 2.47 · 10−3 1.44 · 10−2

13 10−2 10−2 10−1 194 293 555 4.34 · 10−2 3.79 · 10−2

14 10−2 10−2 10−2 194 293 7506 7.14 · 10−3 5.28 · 10−3

15 10−2 10−2 10−3 194 293 14947 7.78 · 10−4 3.45 · 10−3

16 10−2 10−3 10−1 194 320 581 4.34 · 10−2 3.76 · 10−3

17 10−2 10−3 10−2 194 320 8465 7.14 · 10−3 5.04 · 10−3

18 10−2 10−3 10−3 194 320 16526 7.72 · 10−4 3.07 · 10−3

19 10−3 10−1 10−1 316 80 259 4.34 · 10−2 4.27 · 10−2

20 10−3 10−1 10−2 316 80 1368 7.72 · 10−3 1.42 · 10−2

21 10−3 10−1 10−3 316 80 3303 2.47 · 10−3 1.44 · 10−2

22 10−3 10−2 10−1 316 293 555 4.34 · 10−2 3.79 · 10−2

23 10−3 10−2 10−2 316 293 7506 7.14 · 10−3 5.28 · 10−3

24 10−3 10−2 10−3 316 293 14947 7.33 · 10−4 3.45 · 10−3

25 10−3 10−3 10−1 316 320 581 4.34 · 10−2 3.76 · 10−2

26 10−3 10−3 10−2 316 320 8465 7.13 · 10−3 5.04 · 10−3

27 10−3 10−3 10−3 316 320 16526 7.21 · 10−4 3.07 · 10−3

Table 4.4: ECG and epicardial activation map errors for different values of the tolerances used in the truncated
PODs. ECG errors (errECG) are computed as absolute l1-norm errors (over all the signals and all the time
instants); activation map errors (errAM ) are computed as relative l1-norm errors. Errors are averaged over 25
different snapshots

being ψij the j-th basis function in time associated to the i-th basis function in space and

F :
(
N(neh),N(nit)

)
3 (i, j)→

i−1∑
k=1

nkt + j ∈ N(nst)

the index mapping from the Space and Time bases indexes to the Space-Time basis index.

Numerical Results

Here we present the results, in terms of epicardial activation maps and 12-lead ECG signals,
obtained by employing the Space-Time ROM techniques described before. As a caveat, we re-
call that the torso geometry we adopted does not feature the presence of different organs, thus
assuming a homogeneous and isotropic signal transmission; because of this, the torso stiffness
matrix is actually parameter independent and all the parametric contribution comes from the
epicardial boundary condition. Different Reduced Bases approximations have been tested, for
different values of the tolerances used in the three truncated PODs; they have all been computed
starting from the same dataset made of 400 solutions, that have been obtained solving the bido-
main equations (coupled with the AP ionic model) and the generalized Laplace equation at the
torso for different values of the model parameters and data. Additional details on the dataset
specifics can be found in Subsubsection 5.2.3.1.
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Table 4.4 reports the dimensionality of the Reduced Bases and the errors of the ROM approx-
imation of ECG signals and epicardial activation maps with respect to the FOM one, obtained
for 27 different values of the tolerances used in the three PODs. More specifically, values of
10−1, 10−2 and 10−3 have been chosen for the tolerances of each of the PODs; errors have been
computed as averaged over 25 different test cases; errors on ECG signals are l1-norm absolute
errors; errors on epicardial activation maps are l1-norm relative errors. Trivially, the errors on
both ECG signals and epicardial activation maps decrease as the tolerances of the PODs de-
crease; moreover the error on the epicardial activation maps is not influenced by the tolerance
used in the torso POD, since the propagation of the signal in the torso does not influence the
heart EP, under the isolated heart assumption.

Focusing on epicardial activation maps errors, we can observe that they are much higher (of
order ≈ 1%− 4%) if a tolerance of 10−1 is used either for the spatial POD or for the temporal
one on the epicardial potential. A significant decreasing of the errors is instead observed if the
tolerances are chosen to be equal to 10−2 or 10−3; readily the best value is got if they are both
equal to 10−3, but that is just ≈ 0.2% smaller than the one got with both tolerances equaling
10−2. On the other side, the dimensionality of the Space-Time Reduced Basis equals 259 in
case both tolerances equal 10−1, passing to 7′506 if they both equal 10−2 and to 16′526 if they
both equal 10−3. From a heuristic point of view, the best choice seems then to choose both
POD tolerances equal to 10−2; indeed this allows to get small errors (≈ 0.5%) at not too big
computational cost. Our purpose, anyway, is to get a fairly good reconstruction of the epicardial
activation maps with the smallest possible number of coefficients, since those will have to be
estimated by our DL model; thus picking tolerances of 10−1 for the spatial POD and of 5 · 10−2

for the temporal one, which gives 619 coefficients, appears to match our target. A qualitative
comparison of the results can be performed by looking at Figure 4.18, where the FOM and
the ROM (with the aforementioned POD tolerances) epicardial activation maps are reported,
side-by-side, from four different perspectives.

A similar scenario can be observed also for what concerns 12-lead ECG signals, with the only
major difference consisting in the fact that the errors are also influenced by the tolerance chosen
for the POD on the body surface potentials; such dependency is anyway not too marked. In
particular, if the epicardial POD tolerances are both chosen equal to 10−1, the errors on ECG
signals are constant at 4.34 · 10−2, whichever the torso POD tolerance. Instead, if the epicardial
POD tolerances are both equal to 10−2, then ECG errors pass from 9.36 · 10−3 for εt,sPOD = 10−1

to 7.14 · 10−3 for εt,sPOD = 10−2, 10−3. More in general, assuming epicardial POD tolerances to
be low enough, it can be observed that ECG errors feature a more significant decrease when
the body surface potential POD tolerance passes from 10−1 to 10−2, while staying more or
less stable when it passes from 10−2 to 10−3. As a consequence, it seems natural to choose
εt,sPOD = 10−2, which induces a dimensionality of 194 on the torso Reduced Basis. A qualitative
comparison between the FOM and ROM ECG signals (with εt,sPOD = 10−2, εe,sPOD = 10−1 and
εe,tPOD = 5 · 10−2) can be performed looking at Figure 4.19; in the eyeball norm, the two curves
are basically indistinguishable at all leads.
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FOM approximation ROM approximation

(a) FOM Frontal view (b) ROM Frontal view

(c) FOM Rear view (d) ROM Rear view

(e) FOM Left Lateral view (f) ROM Left Lateral view

(g) FOM Inferior view (h) ROM Inferior view

Figure 4.18: Epicardial activation maps obtained with the FOM approximation (left column) and with the ROM
approximation (right column), with tolerances of 10−1 for the spatial POD and of 5 · 10−2 for the temporal ones.
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FOM & ROM ECG signals
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Figure 4.19: ECG signals obtained with the FOM approximation and with the ROM approximation of the
generalized Laplace equation at the torso, with tolerances of 10−2 for the torso POD, 10−1 for the spatial PODs
at the epicardium and 5 · 10−2 for the temporal POD at the epicardium. Blue solid line represents the ECG got
with the ROM approximation; red dashed line represents the ECG signal got with the FOM approximation
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4.3 The Inverse Problem of Electrocardiography and ECGI
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Figure 4.20: Basic structure of the developed PDE-aware DL model, where the model is highlighted

Over the last 50 years, several techniques aimed at recording the body surface potential maps
(BSPMs) have spread out, since they have been proved to provide, in many heart diseases,
relevant diagnostic information that could not be obtained with more standard recording tech-
niques, as 12-lead ECG signals. Indeed, many features of the potential field on the chest are
correlated to the shape and pattern of the depolarization wavefront and of the repolarization
process. Anyway, the interpretation of BSPMs is a very difficult task, since they exhibit a highly
changeable surface pattern and a high variability of the signal magnitude over the entire heart-
beat. Thus, the problem of establishing a bidirectional link between the epicardial potential and
the BSPMs has become central in the field of numerical approximation of heart EP and several
techniques have been developed at this aim. In particular, the reconstruction of the epicardial
potential from BSPMs is called Potential-Based Inverse Problem (or Inverse Potential Problem)
of Electrocardiography and it is the subject of this Section.

As stated in [55], the Inverse Potential Problem is important since it serves as theoretical ba-
sis for ECGI, a novel imaging modality for non-invasive mapping of cardiac electrical activity.
ECGI is able to reconstruct epicardial potentials, activation maps and recovery sequences on
the epicardial surface from the knowledge of body-surface ECG signals and from ECG-gated
thoracic CT scans. In terms of clinical applications, ECGI has undergone extensive validation
tests on animals (mainly on canine hearts) [56, 57], before being actually applied to humans in
various clinical settings [58–61]. An interesting and extensive analysis of the State-Of-Art of
ECGI, focused on its validation in view of clinical applicability, is presented in [10].

This Section will be divided in two parts. In the first one (Subsection 4.3.1) the Potential-Based
Inverse Problem of Electrocardiography is defined and its properties are briefly discussed; most
of the material is taken from Chapter 6 of [41]. The second part (Subsection 4.3.2), instead,
offers a brief overview on the most relevant and widely used methods to solve such a (ill-posed)
problem.

4.3.1 Mathematical Definition of the Potential-Based Inverse Problem

The linkage the potential field on the thorax to the one at the epicardium can be expressed
by means of two different problems, named as the Forward and the Inverse problem of Elec-
trocardiography. The Forward problem reads as in (4.36), with boundary conditions given by
(4.37a)-(4.37b); thus it is a simple generalized Laplace equation, where the epicardium acts as
a "source" Dirichlet boundary condition and where the torso is approximated as an inhomoge-
neous isotropic volume conductor. Conversely, the (Potential-Based) Inverse Problem consists
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in estimating the epicardial extracellular potential from the knowledge of BSPMs. Its solution
would be remarkable from the clinical point of view, since, by measuring BSPMs in a fast and
non-invasive way, it would be possible to reconstruct the epicardial potential activation maps,
whose interpretation, in terms of the underlying cardiac events, is much easier and more directly
readable.

Let us follow the notation adopted in Subsection 4.2; also define Σ ⊂ ΓB as the portion of the
body surface where BSPMs are recorded (i.e. the region where the electrodes have been placed)
and call z(x) such recordings. Then, we have the following Cauchy problem:

−div(DT (x)5 uT (x)) = 0 in ΩT

uT (x) = z(x) on Σ
∂uT (x)

∂nB
= 0 on ΓB

(4.73)

being nB the outward unit normal vector to ΓB . The Inverse Problem consists in estimating the
potential uT (x) on the epicardial surface ΓH . So, let v ∈ L2(ΓH) define the state y(x; v) = y(v)

as the unique solution in H
1
2 (ΩT ) of
−div(DT (x)5 y(v)) = 0 in ΩT

y(v) = v on ΓH
∂y(v)

∂nB
= 0 on ΓB

(4.74)

Let us also define the operator A : L2(ΓH) −→ L2(Σ) such that

Av = y(v)|Σ (4.75)

and the cost function
J(v) =

∫
Σ

|y(v)− z|2 dσ = ||Av − z||2L2(Σ) (4.76)

for z ∈ L2(Σ). Then, the Inverse Problem can be written as:

find uH ∈ L2(ΓH) : J(uH) = min
v∈L2(ΓH)

J(v) (4.77)

If z ∈ A(L2(ΓH)) (i.e. (4.73) admits a unique solution), then uT would satisfy AuT = z and thus
it would be the unique minimizer of J(·). The big issue is that the problem is ill-posed (in the
sense of Hadamard) in usual Sobolev spaces, i.e. A admits an unbounded inverse operator in all
the spaces Hs, ∀ s ∈ R (see [62,63]). This implies that small perturbations (for instance due to
measurement errors) in the observed surface potential z(x) may lead to much larger variations of
the reconstructed epicardial potential uT (x)|ΓH . Thus, different techniques, somehow involving
stabilization and regularization, have to be put in place; an overview on the most relevant ones
is provided in the next Subsection.

4.3.2 Numerical Methods for the Inverse Potential Problem

In the following we provide a brief overview on the most widely used methods to regularize and
stabilize the Inverse Potential Problem of Electrocardiography. We refer the interested reader
to [64–66] for a much more detailed and extensive discussion on the theme, under the assumption
that the FE method is used. Other than the presented approaches, it also deserves a mention
the work of Schuler et al. [67]; indeed the authors make use of Space-Time model order reduction
(MOR) (as we did) of body surface potentials to predict the epicardial one, in the context of an
improved version of the classical Tikhonov regularization algorithm (see [68]).
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1. Tikhonov Regularization

The most straightforward stabilization technique is given by Tikhonov regularization (see [69]),
were suitable L2(ΓH)-norm smoothing constraints, justified by the physical problem, are added
to the cost functional. The first applications of such technique in the context of the Inverse
Potential Problem of Electrocardiography date back to the 80s with the works by Colli-Franzone
et al. [70] and by Rudy and Oster [71]. So, problem (4.77) is stabilized by defining a regularized
cost functional of the form

Jλ(v) = J(v) + λ

∫
ΓH

|Bv|2 dσ, v ∈ U, λ ∈ R+ (4.78)

where B is the regularization operator and U is the space of admissible controls. Three main
choices can be made in this sense and they are reported in Table 4.5.

Order
Object Regularization Operator Space of Admissible Controls

Zero B = I|ΓH U = L2(ΓH)
First B = 5|ΓH U = H1(ΓH)
Second B = 4|ΓH U = H2(ΓH)

Table 4.5: Regularization operators and spaces of admissible controls for the Tikhonov regularization approaches
of zero, first and second order

The inverse problem (4.77) is then approximated by the following family of regularized problems:

find uλH ∈ U : Jλ(uλH) = min
v∈U

Jλ(v) (4.79)

In discrete form (for instance via the FE method), the solution to (4.79) can be written as:

v̂ = A†z = (ATA+ λ2BTB)−1ATz (4.80)

being A the discrete transfer matrix (i.e. the discrete counter-part of the operator A in (4.75)),
B the discrete regularization operator and z the discrete vector of recorded body surface poten-
tials. All details related to the numerical computation of A and B using a FE approximation
can be found for instance in [65].

[72] contains a detailed proof of the well-posedness of the problem and of the convergence of uλHto
uH as λ → 0+. Section 6.1 of [41] features a detailed analysis of the numerical approximation
of the solution to (4.79).

2. Total Variation Regularization

In [55], Ghosh and Rudy have proposed to use L1-norm penalties instead of the L2-norm ones
defined before in the context of Tikhonov regularization. In particular, they adopted L1-norm
regularization on the normal derivative of the epicardial potential (from which the name Total
Variation Regularization), thus minimizing the following cost functional:

Jλ(v) = J(v) + λ

∫
ΓH

| 5 v · nH | dσ, v ∈ U ; λ ∈ R+ (4.81)

being nH the outward unit normal vector to ΓH . The idea is that the L2-norm regularization
causes a too significant smoothing of the solution, which can be instead reduced by resorting
to L1-norm regularization; as a drawback, the resulting problem is non-linear and, thus, more
difficult to handle numerically.

84



3. Generalized Singular Value Decomposition

Coming back to the Tikhonov regularization framework, we can write the problem in discrete
form (for instance upon the usage of the FE method) as:

find v̂ ∈ RN
e
h : v̂ = min

v∈RN
e
h

{
||Av − z||2 + λ2||Bv||2

}
(4.82)

being A, B and z defined as in (4.80).

If B = I, it is possible to take advantage of the SVD on the discrete transfer matrix A (i.e.
A = UΣV ) to write the solution as:

v̂ = A†z = (ATA+ λ2I)−1ATz =

Neh∑
i=1

σ2
i

σ2
i + λ2

uiz

σi
vi (4.83)

being ui and vi the i-th columns of the left and right eigenvectors matrices U and V respectively
and σi the i-th singular value of A.

In case, instead, B 6= I, then the Generalized Singular Value Decomposition (GSVD) of the
matricial pair {A,B} has to be performed, i.e.

A = PCK−1; B = QSK−1 (4.84)

where P and Q are N t
h×Ne

h and Ne
h×Ne

h dimensional (respectively); C and S are the diagonal
matrices storing the singular values {ci}N

e
h

i=1 and {si}N
e
h

i=1 of A and B respectively (in increasing
order in C and in decreasing order in S); K is non-singular. Also, we define the generalized
singular values of the pair {A,B} as:

λ̄i =
ci
si

i ∈ {1, . . . , Ne
h} (4.85)

Then, the solution to (4.82) reads as:

v∗ = A†z = (ATA+ λ2BTB)−1ATz =

Neh∑
i=1

Φi
piz

ci
ki (4.86)

being pi and ki the i-th columns of the matrices P and K respectively and Φ ∈ RNeh×Neh the
diagonal matrix containing the filter factors, i.e.

Φi,i =
λ̄2
i

λ̄2
i + λ2

(4.87)

Incidentally, notice that small singular values of the transfer matrix A tend to result in large
expansion values for the epicardial potential; thus even small perturbations in z for modes with
small singular values may result in large errors in the computation of v̂ or v∗. Such problem
can be prevented by considering only a subset of relevant singular values in the SVD (GSVD),
thus resorting to a Truncated SVD (Truncated GSVD); the choice of the truncation tolerance
(typically defined as in (2.11)) is then another hyperparameter that sums up to the regularization
one λ.

4. Generalized Minimal Residual (GMRes)

A clear drawback of the previously reported methods is that their accuracy severely depends on
the choice of the regularization parameter λ; several methods to determine a sub-optimal value
of such parameter have been developed, but they are often non-consistent and furthermore they
are quite much sensitive to the level of noise in the data. In [73], Ramanathan et al. propose
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to fix this problem by employing the Generalized Minimal Residual (GMRes) method, which
belongs to the class of Krylov subspace iterative methods and that does not involve any regu-
larization hyperparameter.

Given z and A, the n-dimensional Krylov subspace K(n) is defined as:

K(n) = span
{
z,Az,A2z, . . . ,An−1z

}
(4.88)

At the n-th iteration, the GMRes method approximates the inverse of the transfer matrix A by
its projection pn(A) onto K(n), for which an orthonormal basis is computed; then the epicardial
potential at iteration n is reconstructed simply as:

v = pn(A)z (4.89)

For the sake of precision, we should say that the GMRes method only works on square matrices
and A is not square in this case; thus a pre-multiplication by AT is necessary, so that the matrix
that is ultimately considered is ATA ∈ RNeh×Neh .

Numerical results have shown that GMRes performs comparably to (and in some cases even
better than) Tikhonov regularization; anyway the number of iterations n should be kept low,
since, as it gets larger, the Krylov subspace K(n) approaches the whole space and noise compo-
nents start to be included in the solution. So, in the end, also the application of GMRes to the
problem at hand is not hyperparameter-free, since the value of n should be chosen properly to
mimimize the contamination of amplified noise components.

Notice that all the reported methods attempt at overcoming the ill-posedness of the Inverse
Potential Problem of Electrocardiography by means of various regularization techniques (addi-
tion of penalty terms, singular values truncation or reduction of the number of iterations). This
aspect has significantly influenced the design of the developed PDE-aware DL model, which
does exploit regularization in several ways; a much more detailed explanation on this aspect is
provided in Chapter 5.
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Chapter 5

PDE-aware Deep Learning models
for Inverse Problems in Cardiac
Electrophysiology

Chapter 5 is entirely devoted to the presentation of the PDE-aware DL models introduced in
Chapter 1, combining all the elements presented in Chapters 2, 3 and 4. Such models, leveraging
both physical knowledge and data availability, allow to estimate the epicardial depolarization
dynamics, just being given as input measurements of the electric potential in a finite set of
points for a discrete number of time instants (or quantities that can be derived from such mea-
surements). The model inputs can be of different nature, since the model has been conceived
as general; in the specific context of this project, body surface potentials have been used, thus
placing the work in the framework of the Inverse Potential Problem of electrocardiography. The
developed model has been given the name of Space-Time Reduced Basis Deep Neural Network
(ST-RB-DNN).

The Chapter is organized as follows: Section 5.1 presents the general idea of the ST-RB-DNN
model from a theoretical point of view, analyzing its goal (Subsection 5.1.1) and its general
structure and architecture (Subsection 5.1.2). Section 5.2 discusses instead the application of
ST-RB-DNNs to the Inverse Problem of electrocardiography; more specifically Subsections 5.2.1
and 5.2.2 present the two variants of the model, implemented dealing with either the raw signals
in the form of time series or with their lowest frequency Discrete Fourier Transform (DFT)
coefficients. Subsection 5.2.3 presents the numerical results obtained with the aforementioned
models on two benchmark test cases. In particular, a best-model is firstly identified via a grid
search process involving the most relevant hyperparameters, in a simplified simulation setting;
the average l1-norm relative error on the estimated epicardial activation maps is chosen as
reference metric. Once the best model has been found, its dependency with respect to other
minor hyperparameters is investigated, again on the same idealized test case. Finally, the best
model performances are assessed in a more realistic scenario.

5.1 ST-RB-DNN models: a Methodological Analysis

The current section is devoted to a purely methodological analysis of the proposed ST-RB-DNN
model, focusing on the motivations that have driven us towards its development (Subsection
5.1.1) and on the description of its general structure (Subsection 5.1.2).

5.1.1 Motivations

As discussed in Section 4.3, the development of a method able to provide a fast and accurate
solution to the Inverse Potential Problem would be remarkable. Indeed, it would allow to ap-
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proximate the epicardial electric potential from non-invasively collected data, whereas nowadays
it can be only measured via intrusive procedures. Anyway, the ill-posedness of the Inverse Po-
tential Problem makes it very sensitive to noise, so that finding out a method able to efficiently
solve it is far from being trivial.

In Subsection 4.3.2 we have listed some of the approaches that have been developed to tackle
the problem of interest. We have limited ourselves to the main ones, despite many "optimized"
variants of those have been developed as well in recent years (e.g. [68]). It is interesting to notice
that there is very little contamination by Machine Learning and Deep Learning techniques, since
the vast majority of the proposed methods falls in the the frameworks of Optimization and Opti-
mal Control Theory. At this point, it deserves a mention [74] by Wang et al., where the authors
build a NN which estimates the (sub-)optimal values of the regularization parameters involved
in the Alternating Direction Method of Multipliers iterative optimization algorithm, managing to
improve the overall performances. Also, several DL-based algorithms aimed at the classification
of ECG signals or at the identification of Myocardial Infarction areas from body surface poten-
tials (as [24, 75] for instance) have been constructed. Anyway, to the best of our knowledge, no
DL-based algorithm specifically aimed at solving the Inverse Potential Problem has ever been
implemented. The ST-RB-DNN model configures as a first attempt in this direction.

A crucial point that needs to be highlighted is the fact that the model we came up with is not
just a classical DL model that, leveraging data abundance, tries to learn a mapping between
the input and the output. Indeed, in the context of interest, we can exploit the knowledge of
the physics of the problem at hand, i.e. the fact that the propagation of the signal from the
epicardial surface through the human body can be modeled as a diffusion process, within an in-
homogeneous isotropic volume conductor (see Subsection 4.2.1). Thus, the ST-RB-DNN model
is a physically-aware DL model, inspired by the RB-DNNs introduced in [2], which leverages
the awareness of some physical laws to seek for the solution to the Inverse Potential Problem in
a lower-dimensional and physically-consistent manifold. The way this is achieved will be made
clear in the following of the Section.

Another important element to be underlined is that the ST-RB-DNN model takes advantage
also of the temporal dynamics of the input signals to extract information that can be useful in
the reconstruction of the epicardial extracellular potential. Such an aspect is totally absent in
the methods presented in Subsection 4.3.2, since they all try to perform a steady "reversion" of
the epicardium-to-torso diffusion process of the electric potential, simultaneously applying it at
all the time instants. This configures then as an additional novelty element of this work, despite
some optimized versions of Tikhonov and Truncated GSVD algorithms exploiting time dynamics
in the determination of the regularization parameter of the cost functional do exist (see [64]).

A final aspect that is worth a remark about is the fact that the ST-RB-DNN has been conceived
as a very general model; indeed, leveraging both data abundance and problem physics, it should
learn the mapping between some signals given as input and the epicardial extracellular potential.
The nature of the input signals can thus be different and the inner architecture of the model
can be adapted to it; readily, a conditio sine qua non to ensure a good model performance is
that a mapping between the input and the output does exist, i.e. that the input signals contain
enough information to make it possible to reconstruct the epicardial potential from those, with
a reasonable level of precision. Given this, the input signals can be either BSPMs measured
via the electrodes vests commonly used in ECGI applications or standard 12-lead ECG signals
or even signals measured inside the torso via catheters. In the latter case, the ST-RB-DNN
model is thus adapted to solve a Generalized Inverse Potential Problem, where the input data
are collected from inside the torso and not on the body surface.

In conclusion, the aim of the current work is to exploit the capabilities of DL in the framework
of the Inverse Potential Problem of Electrocardiography. As a result, we came up with a model
that, leveraging both data abundance and the knowledge of the problem physics, manages to
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learn the mapping between signals measured in a discrete set of points on the torso surface
and the epicardial extracellular potential, which is additionally assumed to belong to a lower-
dimensional and physically-consistent manifold, via a projection onto a Space-Time-Reduced
subspace (see Subsection 4.2.4).

5.1.2 General Model Description

The general structure of the Space-Time Reduced Basis Deep Neural Network (ST-RB-DNN)
model can be visualized in Figure 5.1. Before moving to a more detailed analysis of the dif-
ferent parts of the model, we give a macroscopic description of it, in order to identify its key
functionality principles.

Core Features

As discussed in the previous Subsection, the aim of the ST-RB-DNN model is to estimate the
epicardial extracellular potential, together with the values of some relevant scalar parameters
(such as the torso conducibilities, see Subsection 4.2.4), by processing input quantities related
to the measurement of the electric potential in a finite set of locations on the body surface for
a discrete number of time instants (red in figure). The I/O mapping is approximated by the
"Trainable NN" (blue in figure), which configures as a kind of black-box, whose architecture and
design severely depend on the nature of the input. In particular, the fact that this part of the
network estimates the epicardial potential from a contained number of signals collected on the
body surface allows to visualize it as a (deep) decoder.

Whichever the structure of the "Trainable NN", its last layer is always a fully-connected one,
that is split into two chunks: one is responsible for the estimation of the characteristic param-
eters (green in figure) and the other for the prediction of the epicardial extracellular potential
(orange in figure). For what concerns the parameters, their estimation is not "problematic",
meaning that their number is usually contained and so is their impact on the overall network
complexity. Definitely not the same can be said regarding the epicardial potential: indeed the
estimation of its FOM approximation would be unfeasible, since that would mean assembling a
fully-connected layer made of Ne

hNt neurons, quantity that may easily reach the order of billions
(the work by Kutyniok at al. [6] features a detailed theoretical analysis on this, that can be
eventually adapted to the case of interest). So, it appears natural to resort to the ROM tech-
niques discussed in Subsection 4.2.4: what is actually estimated by the model are the coefficients
arising from the projection of the epicardial extracellular potential onto a Space-Time-Reduced
Subspace. Furthermore, a basis for such subspace is computed from the same data that are used
to assemble the training dataset (as suggested in [2]), thus lightening the overall computational
burden. Incidentally, the choice of employing a Space-Time MOR, rather than keeping the FOM
dimensionality in time and building a model to be applied iteratively, is justified by two elements.
On the one side, the iterative application of ROM-in-Space FOM-in-Time RB-CNNs has lead to
not-so-good results even for the much simpler thermal block problem (see Subsection 3.2.2); on
the other side, a first attempt of developing a model of such kind in the context of the Inverse
Potential Problem has been made, but numerical results have been discouraging, with errors
dramatically growing after just few iterations.

Once the parameters and the (Space-Time-Reduced) epicardial potential have been estimated,
the model does not just return them in output; rather, a deterministic lambda-layer (cyan in
figure) takes them as input, reconstructs the ROM-in-Space FOM-in-Time epicardial potential
from the ROM-in-Space ROM-in-Time one via (4.72) and solves a RB-projected generalized
Laplace equation using (4.66) and taking advantage of the affine parametrization of the RB
arrays (see (4.68)). Also, the computed reduced potentials on the torso are re-projected onto
the FOM space in space (at least in a subset of DOFs of interest), in order to reconstruct signals
that match the ones given as input (purple in figure). In a purely deterministic way, then, the
quantities estimated by the "Trainable NN" (i.e. the Decoder) are employed to reconstruct the
original input signals; in this way, the second part of the ST-RB-DNN model can be seen as a
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(non-trainable) encoder.

In principle, the ST-RB-DNN model can then made working as a deep autoencoder, made by
a deep decoder followed by a non-trainable encoder; indeed it takes as input signals that can
be measured in a simple and non-invasive way and it produces as output an estimate of that
same signals. The output is assembled by solving the ROM-in-Space FOM-in-Time Forward
Problem of Electrocardiography, upon having estimated the epicardial extracellular potential
(projected onto a Space-Time-Reduced subspace) and some scalar parameters that may influence
the characteristics of the signals. In actual practice, as it will be discussed in Subsection 5.2.3,
involving only the reconstructed signals in the expression of the loss function results in a not
precise estimate of the epicardial potential; thus we have decided to penalize also the Space-Time-
Reduced epicardial potential and the parameters (with suitable weights to be tuned). In this way,
the RB-solver layer configures more as a physically-aware regularization agent, which drives the
predicted solutions to belong to a lower-dimensional and physically-consistent manifold. Thus,
the expression of the loss functional is as follows:

L(Θ) =Lsig(Θ) + LBC(Θ) + Lµ(Θ) (5.1)
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The quantities with apex r denote target values, the quantities with apex a denote approximated
values, Θ represents the vector of the NN trainable parameters, S#i encodes the ith input signal,
from a total of nsig signals, and wsig, wBC and wµ represents the loss weights of the signals, the
Space-Time-Reduced epicardial potential and the characteristic parameters respectively. The
choice of using the Mean Absolute Error (MAE) instead of the MSE for the loss term involving
the Space-Time-Reduced epicardial potential aims at forcing to 0 the least relevant coefficients
and it is justified by numerical experiments (see Subsection 5.2.3). Additionally, such MAE is
not only weighted by the non-negative scalar wBC , but also by the singular values associated to
the different coefficients, so that:
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where {σe,sj }
neh
j=1 are the singular values arising from the spatial POD applied to the epicardial

potential tensor, {σe,t,jk }n
j
t

k=1 are the singular values coming from the temporal POD applied to
the projection of the epicardial potential tensor onto the 1-dimensional subspace spanned by
the j-th spatial basis element, bs is the training batch size and F(·, ·) is defined as in (2.36).
In this way, the weight of the error on a Space-Time-Reduced epicardial potential coefficient in
the loss gets lower and lower as its relevance decreases; this allows to obtain better estimates of
the most relevant coefficients, easing the training process and ultimately improving the model
performances. The choice of taking the square root of the singular values (rather than their
plain values or their squares) is justified by numerical results.

In the end, two elements contribute to the physical awareness of the ST-RB-DNN model:
1. The estimation of the projection of the epicardial extracellular potential onto a Space-

Time-Reduced subspace, which is generated (via PODs) from a tensor storing various
solutions to the heart EP problem and which is also employed as training dataset. In this
way, indeed, the estimated epicardial potential is forced to belong to a lower-dimensional
manifold, which should configure as the one of physically-consistent solutions. This last
consideration assumes the training dataset to be made of realistic (if not real) data and
to be enough heterogeneous to represent the majority of the dynamics of the problem of
interest.

2. The reconstruction in output of the signals given in input, achieved by solving the ROM-
in-Space FOM-in-Time Forward Problem of Electrocardiography, within a deterministic
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Figure 5.1: Scheme of the general architecture of the ST-RB-DNN model; the Input Layer is in red and it contains
the signals to be processed; the trainable part of the NN is in blue and its actual architecture depends on the proper
nature of the input signals; the parameter estimator layer is in green and it contains the normalized estimated
values of some relevant scalar parameters; the epicardial extracellular potential estimator layer is in orange and
it contains the values of the coefficients arising from the projection of the epicardial extracellular potential onto
the dimensionality reduced subspace in both Space and Time dimensions; the epicardial extracellular potential
rescaler layer is in yellow and it allows to rescale the quantities estimated by the first part of the NN to actually
obtain the desired coefficients; the RB-solver layer is in cyan and it allows to make the NN aware of the physics
of the phenomenon of interest, by solving a reduced-order problem that reconstructs the signals given as input;
the signals reconstructor layer is in purple and it simply hosts the values of the signals reconstructed by the
RB-solver layer, configuring as the autoencoding portion of the output

layer, from the estimated epicardial potential. Indeed, by involving in the loss a term
which penalizes the signals’ reconstruction (see (5.1)), the model is driven to estimate
epicardial potentials which determine the onset of the desired signals. This further shrinks
the space of admissible solutions to a lower-dimensional and physically-aware manifold.

Additional Details

In the following, additional details that appear to be relevant in the design of the ST-RB-DNN
model are discussed. In particular, each part of the model is analyzed separately, following the
color-coded notation of Figure 5.1.

• Input Layer (in red): the input layer contains the quantities to be processed by the
network. In the general framework of inverse problems in cardiac EP, those are related
to the measurement of the electric potential in a finite set of points for a discrete num-
ber of time instants. It is important here to clarify that the input of the NN does not
have to be compulsorily made of the raw signals measured by the electrodes or by trivial
linear combinations between those (as ECG signals, for instance). Rather, the training
of the model may be eased if its input is made of quantities that are able to provide a
better, richer and more robust encoding of all the information that are ultimately neces-
sary to carry out the task at hand. In the field of ECGI, for instance, we may cite two
different works [75,76] in which DL models able to classify 12-lead ECG signals have been
developed. They both aimed at performing the same task, but in [75] the logarithmic
spectrum (upon application of a DFT) of the signals is processed by the network, while
in [76] the NN input is derived from the raw signals, just by extracting the heartbeats and
applying baseline normalization and band-pass filtering operations to reduce the effect of
noise. In mathematical terms, the single input datapoint is denoted as xin ∈ Rnsig×M ,
where M could represent either the number of time instants or the number of coefficients
extracted by performing some transform on the original signal. The overall training tensor
is then defined by X trainin ∈ RNtrain×nsig×M , while the test tensor analogously writes as
X testin ∈ RNtest×nsig×M .
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• Trainable NN (in blue): the input is then processed by a set of trainable layers, that as
whole constitute the "trainable part" of the ST-RB-DNN model. This part of the network
acts as a data-driven decoder and its architecture highly depends on the nature of the in-
put. For instance, if the input is made of data organized in the form of time series, then it
is common to insert, aside of classical fully-connected layers, also 1D-convolutional layers
that convolve the data along their temporal dimension, with the aim of extracting features
related to the time-dynamics of the problem at hand (see Subsection 3.2.2). Conversely,
if the input layer is assembled by applying suitable transforms to the original data that
already take into account the time dynamics (as the Fourier Transform, for instance), then
temporal convolutions are no longer useful and the trainable part of the model can consist
just of a simple MLP.

Two further aspects deserve a mention and they both go in the direction of preventing
overfitting:
1. In between fully-connected, convolutional or pooling layers, we have inserted also the

so-called dropout layers, that allow to ignore a fraction p of network nodes at each
forward and backward pass during the training process. This may be useful since neu-
rons tend to develop some sort co-dependency between each other during the learning
phase, which curbs their individual power and that easily leads to overfitting. By
randomly excluding a portion of neurons (that changes at every pass), this undesired
side effect is significantly reduced. Furthermore, the complexity of the NN to be
trained is decreased by a fraction p; this leads to training epochs that are on the one
side faster but on the other side less effective, so that a higher number of those is
needed in order to reach convergence.

2. A classical ML technique to reduce overfitting is to add to the loss function regu-
larization terms, which are given by some norm of the vector storing the trainable
parameters, pre-multiplied by a suitable regularization coefficient. Common choices
on the type of norm are the (squared) l2-norm (Ridge Regularization or zero-order
Tikhonov regularization, see [69]) and the l1-norm (Lasso Regularization, see [77]).
The former is the most widely used, since its quadratic expression makes it suitable
for optimizations tasks; the latter, instead, is typically adopted in contexts charac-
terized by a high degree of sparsity, since it tends to shrink to 0 all the coefficients
that appear to be non-relevant for the task at hand, while keeping the values of the
others almost unchanged. In the case of ST-RB-DNN models, we have applied Ridge
Regularization to all the weights and biases, thus ending up with a loss functional of
the form

L(Θ) = Lsig(Θ) + LBC(Θ) + Lµ(Θ) + λr||Θ||22 (5.3)

with all the quantities defined as in (5.1) and λr ∈ R+ denoting the regularization
coefficient, which configures an a hyperparameter of the model.

In principle, any architecture able to handle the given input tensor can be put in place in
this part; smart possibilities in the field of ECGI may be offered by the ResNet employed
in [76] or by the Convolutional Recurrent Neural Network (CRNN) used in [75]. Whichever
the architectural choices, the last layer of this black-box is always a fully-connected one,
split in two separated chunks; such layer is responsible for the estimation of the physical
quantities of interest i.e. the characteristic parameters and the Space-Time-Reduced epi-
cardial potential.

• Parameters’ Estimator Layer (in green): the parameters’ estimator layer is one of the
two chunks in which the last fully-connected layer of the Trainable NN is split into. As its
name suggests, it is responsible for the estimation of the scalar parameters that happen to
be relevant in reconstructing the original input signals, having knowledge of the epicardial
extracellular potential. In the context of inverse problems in cardiac EP, the signals’ recon-
struction is carried out by solving a generalized Laplace equation, featuring the epicardial

92



potential as "inner" boundary condition and a portion of the human body surrounding
the heart as computational domain. So the relevant parameters to be estimated are the
electric conducibilities in the different regions of the body (see (4.66)).

Two aspects have to be underlined:
1. Whichever the way the training snapshots are computed, within the NN the potential

in the body is recovered by solving a decoupled generalized Laplace equation, where
the epicardial potential plays the role of Dirichlet boundary datum. Thus, in terms of
conducibilities, what matters are their relative values and not their absolute ones. If
the human body is partitioned into N t

p parts, characterized by different conducibility

values {σtp}
Ntp
p=1, then only N t

p−1 values have to be estimated, since one can be always
normalized to a fixed value σ̄ > 0, typically chosen equal to 1. Readily, if the signal
transmission in the body (or in a portion of it) is perfectly isotropic, then N t

p = 1
and no parameters’ estimation is needed.

2. In [2], the authors state that the performances of the implemented RB-DNN model
are significantly better if the parameter values are normalized in the interval [0; 1],
by means of a simple Min-Max scaler. Indeed, the normalization allows to to use a
sigmoid as activation function of the estimator layer (see (2.2)) and this happens to
ease the model training. Borrowing this observation, we let the parameters’ estimator
layer compute the values µ̃ such that:

µ = µmin + (µmax − µmin)µ̃ (5.4)

with µmin and µmax being the vectors storing the lower and upper bounds for each
of the N t

p − 1 scalar parameters, respectively. The rescaling to the "original" values
via (5.4) is done in the RB-solver layer, so that the target parameters, in their proper
ranges, are returned in output.

• Epicardial Potential Estimator Layer (in orange): the second chunk of the last fully-
connected layer of the "Trainable NN" part is responsible for the estimation of the epicar-
dial potential.

As anticipated before, what is actually estimated is not the FOM approximation of such
potential, since that would imply putting in place a gigantic Ne

hNt-dimensional layer, but
rather its projection onto a Space-Time-Reduced subspace. In this way, the number of
quantities to be estimated reduces to nst � Ne

hNt, entailing in turn a significant lighten-
ing of the overall model complexity. Anyway, also performing a direct estimation of the
coefficients arising from the spatio-temporal projection features a significant drawback: in-
deed, their values span over a broad range of orders of magnitude, which gets broader and
broader as the values of the POD tolerances εe,sPOD and ε̂e,tPOD get lower. This issue could be
fixed by resorting to an affine rescaling process, which is performed in the Rescaler Layer
(yellow in Figure 5.1); so, the model estimates ũe

a,µ
ST , which relates to the actual value of

the Space-Time-Reduced epicardial potential ue
a,µ
ST as follows:

ue
a,µ
ST = ue

mean
ST + ue

std
ST ũe

a,µ
ST (5.5)

with uemeanST and uestdST representing the additive and the multiplicative terms of the affine
rescaler, which can be thought as a mean and as a standard deviation respectively. In
simpler terms, the NN estimates how far (in terms of the epicardial potential) the current
datapoint is from a target value, referred to as the "mean", with a scaling factor given by
what is referred to as the "standard deviation". Several choices can be made for the values
of these two quantities; for instance:
1. uemeanST and uestdST can be put equal to the mean and the standard deviation of the

epicardial potentials in the training dataset.
2. uemeanST can be set to 0 (totally inactivated heart) and uestdST can be computed as the

standard deviation of the epicardial potentials in the training dataset, assuming them
to have 0 mean.

93



3. uemeanST can be selected to be equal to the Space-Time projection of the epicardial
potential in a physiologically-activated heart and uestdST can be then computed as the
standard deviation of the epicardial potentials in the training dataset, assuming them
to have uemeanST as mean.

Other choices are obviously possible and they configure as another hyperparameter of the
model. In any case, this strategy allows to homogenize the orders of magnitude of the
quantities to be estimated by the model and this appeared to ease a lot the training pro-
cess, preventing to get stuck in some local minima of the loss function in the parameters’
space, after few epochs.

Despite having reduced significantly the complexity of this layer by resorting to spatio-
temporal ROM techniques, still its dimensionality happens to be non-negligible. Thus,
aside of the affine rescaling, other elements should be put in place to improve the model
performances and the following considerations are worth a mention.
1. High-dimensional layers (as well as very deep networks) tend to be subject to the

vanishing gradient problem, which consists in the gradient of the loss function with
respect to the trainable parameters (or to a portion of those) to be so small that no
significant improvements are achieved at optimization stage. The interested reader
may refer to [78, 79] for more detailed information on the topic. Such a problem is
very common with activation functions as the sigmoid (see (2.2)) or the hyperbolic
tangent Tanh, whose derivatives tend to "saturate" if the absolute value of the input
is too big; using ReLU as activation function significantly prevents this kind of issue,
since in such case the gradient saturates only in one direction. Anyway, in very big
layers, especially when the weights and biases are initialized in a non-optimal way
and/or the learning rate is set too high, also ReLU activation function may fail (this
is the so-called "Dying ReLU" problem), causing neurons to get completely stuck
in a perpetually inactive state (see [80]). In such cases, it is possible to resort to
optimized versions of ReLU , that try to circumvent this issue; in particular the most
widely used functions are Leaky-ReLu

Leaky −Relu(x) =

{
x if x > 0

ax if x ≤ 0
(5.6)

with a ∈ R typically chosen of the order of 10−1, and Exponential Linear Unit (ELU)

ELU(x) =

{
x if x > 0

a(ex − 1) if x ≤ 0
(5.7)

with a ∈ R+ typically chosen of the order of 1. Figure 5.2 shows the plots of these
functions; the scaling parameters have been set to the default values used by the
Tensorflow/Keras Python package. Also, other workarounds to prevent the vanishing
gradient problem are possible, as the usage of ResNets or the choice of different
weight initialization schemes; regarding the latter, numerical experiments have lead
us to the choice of a random uniform weights initialization in the interval [−0.05; 0.05],
while we have not performed any kind of investigation on ResNets.

2. What matters in terms of network complexity is not only the dimensionality of the
layer that predicts the Space-Time-Reduced epicardial potential, but also the one of
the preceding layer: indeed the weights matrix has dimension Npre × nst, being Npre
the number of neurons in such layer. Thus, a significant reduction of the complexity
can be achieved either by placing a low number of nodes in the last-but-one layer of
the "Trainable NN" or by inserting a 1D pooling layer between the last two fully-
connected layers of such part. In the case of the ST-RB-DNN model, we have chosen
the second alternative, inserting a 1D max-pooling layer, with pooling window of di-
mension 4.
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Figure 5.2: Plots of the rectifier activation functions (ReLU , Leaky −ReLU and ELU)

Finally, the rescaled values of the Space-Time-Reduced epicardial potential are inserted
into the output tensor Ytrainout by the Rescaler Layer.

• RB-solver Layer (in cyan): the RB-solver layer is a deterministic layer that is responsible
for the reconstruction of the signals given as input to the model, starting from the values
of the characteristic parameters and of the Space-Time-Reduced epicardial potential. Its
presence is inspired by the RB-DNN models introduced in Chapter 3 and it acts as a sort
of physically-aware regularization agent that prevents physically-meaningless solutions to
be predicted.

More in detail, the RB-solver layer assembles two out of the three portions of the output,
namely:
– The values of the characteristic parameters, which are rescaled to their proper ranges

via (5.4).
– The reconstruction of the signals, originally given as input to the NN, from the esti-

mated values of the epicardial potential and of the characteristic parameters.

While the first task is trivial, the second one is slightly more complicated, so it is worth
describing how it is carried out more in detail. The following steps are performed:
1. At each forward pass during the training, the RB-solver layer takes as input the nor-

malized values of the parameters µ̃a ∈ Rbs×N
t
p−1 and the estimated rescaled Space-

Time-Reduced epicardial potential ue
a,µ
ST ∈ Rbs×nst×1. Here bs denotes the batch size

used by the SGD algorithm. At testing stage, bs is substituted by Ntest, dimension-
ality of the test dataset.

2. The characteristic parameters are rescaled to their proper ranges via (5.4) and inserted
in the output tensor.

3. Taking advantage of the affine parametrization of the RB affine arrays (see (4.68)),
the left-hand side and right-hand side stiffness matrices of (4.66) are assembled. Being
both parameter-dependent, their dimensionalities are bs× nth × nth and bs× nth × neh
respectively, where nth and neh are the dimensions of the Reduced Bases in space for
the potential at the epicardium and at the torso respectively.

4. The Space-Time-Reduced epicardial potentials ue
a,µ
ST ∈ Rbs×nst×1 are expanded along

the temporal dimension only. Such operation has to be performed using tensorial
computations, in order to be compliant with the algorithms used for the training. So,
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two tensors have to be defined; on the one side, there must be a 3D tensor storing the
Reduced Basis in time for the epicardial potential, i.e. Vetime ∈ R1×nst×Nt such that

Vetime[1, ·, ·] =
[
ψ1

1 · · · ψ1
n1
t
· · · ψ

neh
1 · · · ψ

neh

n
ne
h
t

]T
(5.8)

On the other side, a logical tensor allowing to sum up all the quantities related to
the same spatial basis element must be defined; we call it Tselect ∈ R1×neh×nst and its
structure is as follows:

Tselect[1, ·, ·] =


1n1

t
· · · · · · · · ·

· · · 1n2
t
· · · · · ·

...
. . . . . .

...
· · · · · · · · · 1

n
ne
h
t

 (5.9)

being 1N a row vector of ones, of dimension N . The ROM-in-space FOM-in-time
epicardial potential ue

a,µ
S ∈ Rbs×neh×Nt is then recovered as:

ue
a,µ
S = Tselect

(
ue

a,µ
ST · Vetime

)
(5.10)

where · denotes the element-wise multiplication. Notice that the expansions of Vetime
and Tselect in their first dimensions allow to compute all the desired potentials, with
only one tensorial operation.

5. The ROM generalized Laplace equation (4.66) is solved for bsNt times (i.e. for all the
bs datapoints in the batch, for all the Nt time instants), so that the ROM-in-space
FOM-in-time torso potential ut

a,µ
S ∈ Rbs×nth×Nt is computed.

6. The last passage consists in the computation of signals that are analogous to the ones
received as input by the NN and in their insertion inside the output layer (purple in
Figure 5.1). The way this task is carried out readily depends on the nature of the input
signals. A common passage is anyway given by the re-projection of the ROM-in-Space
FOM-in-Time torso potential ut

a,µ
S ∈ Rbs×nth×Nt onto the FOM space in both Space

and Time, at least in a subset of DOFs of interest. Calling Vtspace ∈ R1×NDOFs×nth the
tensor storing the nth elements of the Reduced Basis in space for the torso potential,
evaluated at the desired N t

DOFs DOFs, the desired potentials ua,µt ∈ Rbs×NtDOFs×Nt
are computed as:

ua,µt = Vtspaceuta,µS (5.11)

Notice that the expansion of Vtspace in its first dimension allows to compute all the
desired potentials with only one tensorial operation.

• Output layer and Loss: the final output tensor, at each forward/backward pass during
training, is stored in the tensor Ytrainout ∈ Rbs×[(Ntp−1)+(nsigM)+(nst)]. It stores:
– The N t

p − 1 characteristic parameters, rescaled in their proper ranges via (5.4)
– The nst coefficients encoding the Space-Time Reduced epicardial potential
– The reconstruction of the signals given as input, of dimension nsigM , being M the

dimensionality of a single signal.

The loss is constructed as in (5.1) - (5.3), with wsig being normalized to 1 (unless it is
set to 0); the choices of the optimization algorithm and of the learning rate configure as
two key hyperparameters. As a baseline, the Adam optimizer (i.e. an optimized adaptive
version of the SGD algorithm introduced in [14]) with a learning rate of 10−3 is used.

Remark: as the ST-RB-DNN model has been conceived as general, also the nature of its
output can be modified and adapted to the case of interest. For instance, if one is interested
in localizing the LEA areas of the left ventricle, he could include in the loss the FOM-in-
Space ROM-in-Time epicardial potential, evaluated in a subset of sampled locations on
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the left ventricle, instead of the ROM-in-Space ROM-in-Time one. Readily, this can be
done only if suitable tensorial algorithms, able to turn the ROM-in-Space ROM-in-Time
epicardial potential into the desired output, are implemented, either in the RB-solver layer
or in the Rescaler layer.
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Figure 5.3: Scheme of the architecture of the ST-RB-DNN model with input signals organized as time series; the
Input Layer is in red and it contains the time-series signals to be processed; the trainable part of the NN is in
blue and its architecture is made of two sets of fully-connected layers, separated by some 1D convolutional layers;
the parameter estimator layer is in green and it contains the normalized estimated values of some relevant scalar
parameters; the epicardial extracellular potential estimator layer is in orange and it contains the values of the
coefficients arising from the projection of the epicardial extracellular potential onto the dimensionality reduced
subspace in both Space and Time dimensions; the epicardial extracellular potential rescaler layer is in yellow and
it allows to rescale the quantities estimated by the first part of the NN, to actually obtain the desired coefficients;
the RB-solver layer is in cyan and it allows to make the NN aware of the physics of the phenomenon of interest, by
solving a dimensionality reduced problem that reconstructs the signals given as input; the signals reconstructor
layer is in purple and it simply hosts the values of the signals reconstructed by the RB-solver layer, configuring
as the autoencoding portion of the output

5.2 ST-RB-DNN models: Application to the Inverse Prob-
lem of Electrocardiography

This Section is devoted to the presentation of the ST-RB-DNN models that have been actually
implemented and tested in the context of this thesis. In particular, we focused on the Inverse
Problem of electrocardiography (see Section 4.3), thus trying to reconstruct the epicardial extra-
cellular potential during ventricular depolarization, just being given as input measurements of
the body surface potential in a discrete set of points. Two different models have been developed
at this aim. The first one takes as input signals organized in the form of time series and it
leverages temporal convolution to extract from those useful and representative features (Sub-
section 5.2.1); the second one, instead, processes the lowest-frequency coefficients arising from
the application of a DFT to the original signals (Subsection 5.2.2). After having described the
two models, highlighting their main specifics with respect to the general ST-RB-DNN model de-
scribed in Subsection 5.1.2, numerical results achieved on two benchmark test cases (an idealized
one and a slightly more realistic one) are presented (Subsection 5.2.3).

5.2.1 The Time-Series-Based ST-RB-DNN Model

The first ST-RB-DNN model we implemented is characterized by taking as input body surface
potentials organized in the form of time series (as standard 12-lead ECG signals, for instance);
its structure can be visualized in Figure 5.3.

The main specifics with respect to the general ST-RB-DNN model described in the previous
Section are listed in the following.

• Input Layer (in red): the input is made of body surface potentials, or of linear combi-
nations between those (as ECG signals), evaluated at some discrete time instants within a
fixed observation window.

The processing of body surface potentials is made difficult by the fact that they feature
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high Signal-to-Noise Ratios (SNRs) (see [81, 82]). In the context of this project we only
dealt with numerically simulated signals, to which we have added a noise contribution, in
order to mimic a more "realistic" scenario. In particular, we added to all signals correlated
white Gaussian noise, constructed in order to get an average SNR of ≈ 19 dB.

As suggested in [75, 76], at pre-processing stage it is useful to remove the noise from the
signals as much as possible, since it eases the training process and it increases the represen-
tative power of DL models. Many works regarding the denoising of body surface potentials
(and especially of ECGs) are available, as [81, 82] for instance. Since we did not handle
real signals, just facing up to numerically simulated ones with artificially superimposed
Gaussian noise, we did not actually have the need of resorting to such complicated filter-
ing techniques; rather, we employed a simple low-pass Butterworth filter of order n = 3
(see [83]), whose gain function G(·) is given by

G2(ω) = |H(jω)|2 =
G2

0

1 +
(
jω
jωc

)2n (5.12)

being ω the angular frequency (in rad s−1), H(·) the filter’s transfer function, n the order
of the filter, ωc the cutoff frequency and G0 the DC gain. This allowed us to get rid of all
the high-frequency noise and to improve the performances of the network. Readily, in re-
alistic scenarios where real signals have to be processed, State-Of-Art denoising techniques
should be put in place to ameliorate the model behavior.

Additionally, the signals given as input have been normalized in the interval [−1; 1]; this is
a quite standard strategy in DL applications, since it happens to ease the training process.
More specifically, nsig different normalization constants have been computed as

S̄ = {s̄i}nsigi=1 such that s̄i = 1.1||vec(Strain#i )||∞ (5.13)

being vec(Strain#i ) ∈ RNtNtrain the vectorization of the matrix storing the i-th signal, for
all the Ntrain training datapoints at all the Nt time instants.

• Trainable NN(in blue): several choices can be made concerning the architecture of the
"Trainable NN". For instance, a Resnet similar to the one employed in [76] to perform
ECG classification could be put in place, having it proved to be able to extract relevant
features from complex and noisy input data, using a small number of hyperparameters and
taking extreme advantage of temporal convolutions. This configures as a possible extension
of the current project, but no efforts have been made in this direction.

Conversely, the architecture chosen for the Trainable NN is similar to the one employed
in [36], in the context of iterative RB-CNN models for unsteady parametrized PDEs. So,
two sets of fully-connected layers are separated by 1D convolutional layers, that convolve
the input signals over time, coupled with max-pooling layers. The roles of the three sets
of layers are the following:

– Pre-Convolutional Fully-Connected Layers: before the input data are fed to the 1D
Convolutional Layers, they are processed by some fully-connected layers; their aim is
to extract features on top of which the convolutional operations may exhibit better
performances. It is relevant to notice that these layers only combine quantities related
to the same time instant, using the same set of weights at all the time instants. In
simpler terms, the original input signals are combined together in a non-linear way,
so that signals characterized by a better encoding of the information that are relevant
for the ultimate task at hand can be derived. These layers are intended not to weigh
down the model complexity; for this reason either a single layer with no more than
128 neurons or two layers with no more than 64 neurons each have been considered.
The activation function is ReLU for all neurons and Ridge Regularization is employed.
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– 1D Convolutional Layers + Max-Pooling : after the initial "pre-processing" stage, the
resulting data are fed to 1D convolutional layers, that convolve them along the tem-
poral dimension. The number of layers and the dimensionality of the convolutional
kernel are two key hyperparameters of the model. Another important hyperparame-
ter is given by the number of convolutional filters; indeed, as discussed in Subsection
2.1.2, the representative power of CNNs can be increased by training multiple convo-
lutional kernels. In this way, different type of filters can be applied to the time-series
data given as input, extracting a higher and hopefully richer amount of features. Also,
each 1D-convolutional layer is followed by a Max-Pooling layer, with pooling window
of dimension 2×3 and with 2×2 stride; this means that, when passing from one pool-
ing window to another, two steps are performed both along the temporal dimension
and along the one of the different signals. As a result, with proper padding choices,
the dimensionality of the input is halved along both dimensions at each loop, reducing
in turn the number of trainable parameters of the model. Finally, all convolutional
kernels are subject to Ridge Regularization, to prevent overfitting.

– Post-Convolutional Fully-Connected Layers: after the data have been convolved over
time and subsampled via max-pooling operations, they are finally processed by a
second set of fully-connected layers. Their aim is to extract relevant features, that
allow to ultimately get a better estimation of both the N t

p − 1 characteristic param-
eters and of the nst "normalized" Space-Time-Reduced coefficients of the epicardial
extracellular potential. Since the data given as input to these layers are not so high-
dimensional (thanks to the Max-Pooling operations), it is possible to equip them with
a higher number of neurons, without significantly impacting the model complexity.
In our tests, we employed 3 to 7 layers, featuring a number of nodes that decreases
exponentially from 2n+2 to 23, being n the number of layers. All neurons of all layers
are ReLU -activated and Ridge Regularization is employed.

Additionally, dropout layers with p = 0.20 are placed both between the three aforemen-
tioned sets of layers and between each couple of convolutional and max-pooling layers. Also,
recall that the last layer of the Trainable NN is always a fully-connected layer of dimension
(N t

p − 1) + nst, which is responsible for the estimation of the characteristic parameters
and of the "normalized" Space-Time-Reduced coefficients of the epicardial extracellular
potential. The two estimator layers (green and orange in Figure 5.3) are analogous to the
ones described for the general ST-RB-DNN model in Subsection 5.1.2.

• RB-solver Layer (in cyan): the RB-solver layer is equivalent to the one described in the
previous Section, concerning the general ST-RB-DNN model. The only caveat is related
to the output. Indeed, if the signals to be returned in output coincide with the values of
the body surface potential at some DOFs, then nothing has to be changed. Conversely, it
may happen that:
– The output values do not coincide with the potential got in a subset of the mesh

DOFs, either because the electrodes are located in places that do not host a mesh
node or because the chosen FOM basis is not interpolatory. In such cases, spatial
interpolation has to be performed.

– The target signals are computed as combinations of the body surface potentials eval-
uated in a subset of the mesh DOFs, as in the case of ECG signals employing an
interpolatory FOM basis (see Subsection 4.1.2). In such cases, the obtained signals
have to be suitably combined in order to reconstruct the desired ones.

• Output Layer and Loss: the output and the loss function are analogous to the ones
described for the general case. The only remark is that the value ofM , representing the di-
mensionality of the signals, in this case equals Nt, i.e. the number of FOM temporal DOFs.
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Figure 5.4: Scheme of the architecture of the ST-RB-DNN model with input signals expressed via their lowest-
frequency DFT coefficients; the Input Layer is in red and it contains the lowest-frequency DFT coefficients of
the signals to be processed; the trainable part of the NN is in blue and its architecture coincides with the one
of a simple MLP; the parameter estimator layer is in green and it contains the normalized estimated values
of some relevant scalar parameters; the epicardial extracellular potential estimator layer is in orange and it
contains the values of the coefficients arising from the projection of the epicardial extracellular potential onto
the dimensionality reduced subspace in both Space and Time dimensions; the epicardial extracellular potential
rescaler layer is in yellow and it allows to rescale the quantities estimated by the first part of the NN to actually
obtain the desired coefficients; the RB-solver layer is in cyan and it allows to make the NN aware of the physics
of the phenomenon of interest, by solving a dimensionality reduced problem that reconstructs the signals, whose
lowest-frequency DFT coefficients have been given as input; the signals reconstructor layer is in purple and it
simply hosts the values of the lowest-frequency DFT coefficients of the signals reconstructed by the RB-solver
layer, configuring as the autoencoding portion of the output

5.2.2 The DFT-Based ST-RB-DNN Model

The second ST-RB-DNN model we implemented is characterized by taking as input the lowest-
frequency coefficients, arising from the application of a Discrete Fourier Transform (DFT) to the
body surface potentials; its structure can be visualized in Figure 5.4.

Two main reasons have driven us towards the development of this model. On the one side,
giving as input to the NN quantities that are already "aware" of the temporal dynamics of
the problem at hand prevents from designing suitable layers (as the 1D-Convolutional ones) to
capture such dynamics; this results in the possibility of developing simpler architectures, eas-
ing and shortening the training, without (hopefully) sacrificing accuracy. On the other side, a
drawback of the model that takes as input signals organized in the form of time series is that
it can work only at a fixed acquisition frequency; in our test cases, for instance, we sampled
the signals at 500 Hz, which is the standard ECG acquisition frequency in modern machines.
Thus, if the time-series-based model has to be tested on signals sampled at 100 Hz, then those
have to be interpolated in time before being used as input. Conversely, if a DFT is applied to
the signals, the values of the resulting lowest-frequency coefficients feature low sensitivity with
respect to the acquisition frequency; thus, using them as input, it allows to develop a model that
works independently of the acquisition frequency, without any interpolation being required at
pre-processing stage. Notice, as an important caveat, that the low sensitivity occurs only with
respect to the lowest-frequency coefficients; higher-frequency ones are instead more sensitive to
changes in the acquisition frequency and they should not be given as input to the model. In-
cidentally, such coefficients are typically not much informative, thus the model accuracy should
not be affected too much by their removal from the input.

The main differences/specifics with respect to both the general ST-RB-DNN model and the
time-series-based one are listed in the following.

• Input Layer (in red): the input is made by the first M coefficients, arising from the
application of a 1D DFT to the original signals.
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Regarding the DFT and the Fast Fourier Transform (FFT) algorithm employed for its
efficient computation, we refer the reader to Appendix B.2 and to [84] for further details
and information. Here, it is enough to say that the 1D DFT is the discrete counterpart
of the uni-variate Fourier transform and that it turns a sequence of N complex numbers
{xn}N−1

n=0 into another sequence of N complex numbers {Xk}N−1
k=0 such that:

Xk =

N−1∑
n=0

xn e
− 2πi

N kn

=

N−1∑
n=0

xn

[
cos
(2π

N
kn
)
− i sin

(2π

N
kn
)] (5.14)

It is a linear transform and an important property is that the DFT of real-valued signals is
Hermitian, i.e. the component at frequency fk is the complex conjugate of the component

at frequency −fk. This implies that, out of the N entries of Xk, only
⌊N

2

⌋
+ 1 actually

carry relevant information, where the 1 refers to the zero-frequency component. Thus,
being Nt the length of the measured signals, the dimension of the resulting DFT is at most

M̄ =:
⌊Nt

2

⌋
+1; the length of the signals given as input to the model is thenM ≤ M̄ , upon

having excluded a certain fraction of coefficients, related to the highest-frequency modes.
The choice of M is a hyperparameter of the model.

Despite NNs can be trained also with complex-valued inputs and outputs, the vast ma-
jority of the models processes real-valued data; indeed this approach appears to be more
robust and also less subject to implementation bugs of the employed DL packages. Be-
cause of this, the DFT-based ST-RB-DNN model is not given as input M complex-valued
coefficients, but 2M real-valued ones, obtained just by splitting the real and the imaginary
parts. More specifically, the input is organized in such a way that its first M entries are
the real parts of the M complex-valued DFT coefficients, while the the last M ones are
their imaginary parts; clearly this is just a matter of choice and the performances of the
model should not be affected by changes in this sense.

Finally, it is worth observing that, as the RB coefficients, also the DFT ones span over
a broad range of orders of magnitude, which gets broader and broader as the number
of considered modes gets larger. Such a behavior has been found to hinder the learning
process, since performances of DL models are enhanced if the input/output datapoints are
of the same order of magnitude and hopefully even normalized either in [0; 1] or in [−1; 1].
An adjustment in this direction, that proved to give better estimation results, has been
obtained by applying the following bi-symmetric logarithmic transform to the real and
imaginary parts of the chosen DFT coefficients

x̂ = sign(x) log10

(
1 +

∣∣∣ x
C

∣∣∣) (5.15)

with C =
1

ln(10)
, so that a unity slope is achieved in the region near the origin. This

transform has been taken from [85], it is diplayed in Figure 5.5 (in red) and its inverse,
power transform reads as:

x = sign(x̂)C(−1 + 10|x̂|) (5.16)

• Trainable NN (in blue): since the NN is fed with values that already take into account
the time dynamics of the problem at hand, there is no need of constructing layers aimed
at capturing such dynamics. Thus, the "Trainable NN" in this case simply consists of a
MLP, with several fully-connected layers flanked one after the other.

More precisely, such layers are divided into two subsets. A first set of layers combines
only the DFT coefficients (or better, their real and imaginary parts) relative to the same
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Figure 5.5: Plot of the bi-symmetric logarithmic transform used to scale the DFT coefficients. In particular
the plot features a logarithmic scale along the x-axis and it displays: the identity transform (in blue), a non-
symmetric logarithmic transform (in orange), a bi-symmetric logarithmic transform (in green) and the final scaled
bi-symmetric logarithmic transform (in red)

signal, without merging information coming from different signals and using the same set
of weights for all the signals; these are called pre-flattening fully-connected layers. Upon
the application of a Flatten layer, that reduces the data dimensionality from being 3D to
2D, a second set of fully-connected layers combines without distinction all the available
information, with the aim of ultimately performing the best possible prediction of both the
characteristic parameters and the "normalized" Space-Time-Reduced epicardial potential;
these are called post-flattening fully-connected layers. Also, Dropout layers with p = 0.20
are placed both between the two aforementioned sets of fully-connected layers and between
the post-flattening fully-connected layers and the RB-solver one. All layers are subject to
Ridge Regularization.

In terms of complexity, we may expect this model to be simpler than the one taking time-
series data as input; indeed, on the one side the dimensionality of the input is smaller (since
2M should be quite much lower than Nt, if a many high-frequency DFT coefficients are
discarded). On the other side, both pre-convolutional and 1D convolutional layers are no
longer needed, thus leading to a reduction of the number of trainable parameters. Beware,
anyway, that this is just a heuristic hypothesis: indeed it is possible that the DFT-based
ST-RB-DNN model requires much more fully-connected layers than the time-series-based
one in order to reach a comparable degree of accuracy, thus ultimately resulting as or more
complex.

• RB-solver layer (in cyan): the major difference of the RB-solver layer with respect to
the one of the time-series-based ST-RB-DNN model consists in the fact that the lowest-
frequency DFT coefficients of the target signals have to be computed and stored in the
output tensor. Thus, after having derived such signals (proceeding as described in Sub-
section 5.2.1), a DFT is applied to those (via a tensorial version of the FFT algorithm),
the M lowest-frequency coefficients are extracted, their real and imaginary parts are split
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and the bi-symmetric logarithmic transform (5.15) is applied, in order to homogenize their
range of values.

• Output Layer and Loss: in terms of output and loss function, the only difference is that
the log-scaled real and imaginary parts of the M lowest-frequency DFT coefficients have
to be returned and penalized, instead of the plain time-series signals.

5.2.3 Numerical Results

This Subsection is devoted to the presentation of the numerical results got on two benchmark
test cases with the ST-RB-DNN models described before.

5.2.3.1 Datasets construction

As discussed in Chapter 4, the data used for the training and testing of the ST-RB-DNN model
have been generated artificially; indeed DL models need a quite massive amount of data to be
trained with success, while the procedures to acquire epicardial potentials are costly and invasive.

For the first test case, the numerical setup is analogous to the one described in Subsection 4.2.3.
We approximated the heart EP by means of the bidomain equations, coupled with the phe-
nomenological AP ionic model (see Problem 4.6), on a fixed reference bi-ventricular geometry
(see Figure 4.8); we reconstructed the 12-lead ECG signals by solving a generalized Laplace
equation (see Problem 4.7) in an idealized geometry of the human torso (see Figure 4.9), ap-
proximated as a homogeneous and isotropic volume conductor.

The second test case has been carried out in a slightly more realistic setting. In particular, the
approximation of the heart EP has been performed as in the first test case, solving the same set
of equations (see Problem 4.6) and employing the same geometry and computational mesh (see
Figure 4.8). Conversely, the generalized Laplace equation to estimate the potential field in the
torso (see Problem 4.7) has been solved in a more realistic geometry taken from [86] (see Figure
5.6), on top of which a computational mesh made of 498′992 tetrahedral cells, which result in
94′976 vertices, has been assembled. Furthermore, the input dataset has not been constructed
from 12-lead ECG signals, but from 158 leads, which are generated from the values of the body
surface potential recorded by 155 different electrodes, placed on the human torso. The goal was
to reproduce the data, collected via electrodes vests, that are employed in modern ECGI appli-
cations. Notice that the geometry of Figure 5.6 does not feature the presence of multiple organs;
thus the human torso is still approximated as a homogeneous and isotropic volume conductor.

The last step in order to generate a dataset that can be used for the training/testing of the pro-
posed ST-RB-DNN models is the one of adding variability. Indeed, on the one side the training
datapoints must differ one from the other, so that the model can learn from them the widest
possible amount of dynamics and conditions; on the other side, also the testing datapoints should
show differences both within each other and with respect to the training ones, so that a proper
assessment of the performances of the model can be made. It is then clear that the behavior of
the model highly relies on the way the dataset is constructed. In our case, we are aware of the
fact that the simplifying modeling assumptions we made (in both test cases) prevent us from
performing realistic simulations and thus from employing our model with success on real data.
Despite that, anyway, we tried to enrich the data generation process with several sources of ran-
domness, in order to construct a sufficiently variable dataset, able to challenge the capabilities
of the developed physics-aware DL model.

Since the torso problem consists simply in a generalized Laplace equation in a homogeneous and
isotropic volume conductor, no randomness has been imposed at such stage. Actually, apart
from considering a non-homogeneous case where some variability on the different conducibilities
could be imposed, an interesting possibility would be to take into account the position of the
heart in the thorax, performing different simulations for different values of the cardiac axis. This
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(a) Frontal View (b) Rear View

(c) Left Lateral View (d) Right Lateral View

Figure 5.6: View of the human torso geometry employed in the second test case from four different perspectives
(frontal, rear, left lateral and right lateral). The black spheres (frontal view) denote the positions of the three
reference electrodes, which are analogous to the ones used by the standard 12-lead ECG system. The colored
spheres (frontal and left lateral views) denote the positions of the 12-lead ECG electrodes, which are part of the
dataset; the colors follow the American Heart Association (AHA) color-coding system. The lilac squares denote
the positions of the electrodes that, together with the 12-lead ECG ones, allow to assemble the dataset

configures as a possible update of the project, but no investigation has been made in this sense.
Incidentally, notice that the choice of a homogeneous torso implies that no parameters’ estimator
layer is present in the developed models.

Regarding the heart EP, instead, several sources of randomness have been added. Since the
geometry and the computational mesh of the heart is the same in the two test cases, the same
choices have been made. Tables 5.1 and 5.2 report the values of the parameters used in the
AP model and in the bidomain system of equations, respectively. Notice that only ε0 has been
chosen random, following a normal distribution, for what concerns the ionic model. Conversely
all the heart conducibilities (longitudinal and transversal to the fibers direction, intracellular and
extracellular) have been sampled from a uniform distribution, since they appeared to massively
influence the problem dynamics both in terms of epicardial activation maps and, in turn, of body
surface potentials.
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K a ε0 µ1 µ2 b Vmin Vmax

8 1.5 · 10−1 N (6.5, 1.0) · 10−3 1.0 · 10−1 3.0 · 10−1 1.5 · 10−1 −80 mV 20 mV

Table 5.1: Values of the parameters used in the AP ionic model to construct the training/testing datasets. N (µ, σ)
denotes a normal distribution with mean equal to µ and standard deviation equal to σ.

σli [S cm−1] σti [S cm−1] σle [S cm−1] σte [S cm−1]
U(4.5, 7.5) · 10−4 U(0.75, 1.05) · 10−4 U(1.80, 2.70) · 10−3 U(1.80, 2.70) · 10−4

Table 5.2: Values of other random parameters used in the numerical approximation of the bidomain equations
to construct the training/testing datasets. N (µ, σ) denotes a normal distribution with mean equal to µ and
standard deviation equal to σ. U(a, b) denotes a uniform distribution over the interval [a; b].

Nb. Position Pr(Healthy) Pr(LBBB) Pr(RBBB) Times[ms] Incompatible
1. ALV paraseptal 0.70 0.00 1.00 U(0, 10) //
2. ALV apex 0.30 0.00 0.40 U(0, 20) 3
3. ALV free wall 0.30 0.00 0.40 U(10, 30) 2
4. ILV apex 0.30 0.00 0.40 U(0, 20) //
5. ILV base 0.30 0.00 0.40 U(0, 20) 6
6. ILV base lateral 0.20 0.00 0.30 U(0, 20) 5
7. ARV paraseptal 1.00 1.00 0.00 U(0, 15) //
8. IRV base 0.40 0.20 0.00 U(5, 25) 9
9. IRV base lateral 0.50 0.20 0.00 U(5, 25) 8
10. IRV apex 0.10 0.40 0.00 U(5, 25) //

Table 5.3: Positions, sampling probabilities, activation times and incompatibilities of the 10 selected initial
stimulation areas for both test cases. The column named "Incompatible" lists the indices of the areas that
cannot be stimulated together with the considered one. U(a, b) denotes a uniform distribution in the interval
[a; b].

Another crucial source of randomness is given by the initial activation pattern that, as already
said in Subsection 4.2.3, is inspired by the works of Wyndham et al. on EBTs localization in
both healthy [39] and LBBB-affected [54] patients. In particular, a thin endocardial and sub-
endocardial layer is activated, for a duration of 5 ms, in 10 possible different ventricular regions,
localized on both the left and the right ventricle. If the patient is healthy, then all these 10
regions could possibly activate (at different times), with the constraint that no more than 5
EBTs should appear; if, instead, the patient is affected by LBBB (RBBB), then only the regions
located on the right (left) ventricle can be involved in the stimulation protocol and no more than
3 EBTs should be observed. The "choice" between healthy, LBBB and RBBB cases is governed
by a discrete uniform random variable, so that the dataset is equi-partitioned with respect to
the three categories. Furthermore, the position of the point around which the initial stimula-
tion is applied can vary within a sphere of 2 mm radius, obeying to a 3D uniform distribution,
and the time instants at which the different regions are activated are sampled from a uniform
distribution, with ranges having been defined according to [39, 54]. Table 5.3 summarizes the
positions of the initial activation areas, their probabilities of sampling in the healthy, LBBB and
RBBB cases and the ranges of time instants at which stimulation could occur. Also, eventual
incompatibilities between different activation regions are reported.

Ultimately, the two datasets have been obtained by solving the FOM problem for Nµ = 400 and
Nµ = 180 different values of the aforementioned parameters, respectively. Training and Test
datasets have been separated via a 90% − 10% splitting and the validation datasets have been
assembled by picking the 10% of the training datapoints. Furthermore, the training and valida-
tion datasets have been subject to on-the-fly data augmentation, by superimposing a correlated
white Gaussian noise, so that an average SNR of ≈ 19 dB is achieved.
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5.2.3.2 Test Case 1: The Time-Series-Based ST-RB-DNN Model

In the following, the discussion of the results achieved with the application of the time-series-
based ST-RB-DNN model to the first benchmark case is provided.

Grid Search

As a starting point, a grid search involving the most relevant model hyperparameters is per-
formed; more specifically the considered hyperparameters are the number of neurons in the
pre-convolutional layers, the number of convolutional filters, the dimension of the 1D convo-
lutional kernel, the number of neurons in the post-convolutional layers and the weight of the
Space-Time-Reduced epicardial potential in the loss functional. A total of 288 models has been
tested. All the other model hyperparameters have been kept fixed to values that proved to give
satisfactory results in some preliminary numerical tests; in particular:

• POD tolerances: the tolerances of the PODs on both the torso (in space) and the
epicardial (in space and in time) potential are two key hyperparameters; the dependency
of the model performances on those will be investigated lately. For the first tests, we have
kept the tolerances fixed at εt,sPOD = 10−3, εe,sPOD = 10−1 and ε̂e,tPOD = 5 · 10−2; with such
choices, the spatial Reduced Basis for the torso potential is made of 316 elements, while
the spatio-temporal Reduced Basis for the epicardial one has a cardinality of 619. The
relative l1-norm error on epicardial activation maps is equal to 3.98 ·10−2, while the one on
ECG signals is of 4.34 · 10−2; errors are computed as averaged over 25 different snapshots.

• Optimizer: the choice of the optimizer (i.e. the method used to minimize the loss func-
tional) is crucial in DL models. We chose the Nesterov adaptive moment estimation
(Nadam) algorithm, a variant of the classical Adam algorithm, where Nesterov momentum
is incorporated; all details can be found in [87].

• Learning Rate: also the choice of the learning rate is very important in order to properly
train a NN and to ensure that it converges adequately. Too small learning rates may indeed
cause the training to get stuck in a fixed point of the parameters’ space, while too large
ones may prevent the model to converge towards its minima. As a first guess, we chose
the learning rate ν = 10−3.

• Regularization: the value of the regularization parameter can be important in ensuring
a good training, which does not suffer of overfitting and that features a remarkable gener-
alization power. As anticipated in Section 5.1, we chose to apply Ridge Regularization to
all the fully-connected and 1D convolutional layers; we set the regularization parameter
to 10−7 in the fully-connected layers and to 10−4 in the convolutional ones.

• Activation Functions: another key hyperparameter is the choice of the activation func-
tions. We decided to employ the ReLU function to all the layers, but to the one responsible
for the estimation of the epicardial potential, since we experienced the so-called "Dying
ReLU" problem. Such layer has been then activated with the Scaled Exponential Linear
Unit (SELU) i.e. a scaled version of ELU (see (5.7)) with scale factor s > 1. In particular
we chose a = 1.67326324 and s = 1.05070098, being the default values provided by the
Tensorflow/Keras Python package.

Other hyperparameters, as the value of the dropout fraction, have been kept fixed to the values
reported in the previous Subsection. All models have been trained for a maximum of 100 epochs;
training has been stopped if the loss on the validation dataset did not show any improvement
for 20 consecutive epochs; the learning rate has been reduced by a factor of 4, for no more than
4 times and up to a minimum value of 10−6, if the validation loss did not show any improvement
for 10 consecutive epochs. Tables 5.4, 5.5, 5.6 report the results of the grid search, in terms
of l1-norm relative errors on the epicardial activation maps, for three values of the weight of
the Space-Time-Reduced epicardial potential in the loss functional. All errors are computed
with respect to the optimal Space-Time ROM approximation. Figures 5.7-5.9 and 5.8-
5.10 display the epicardial activation maps and the ECG signals reconstructed by the best model
(in terms of activation maps average l1-norm relative error) for two different test datapoints.
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Dense
1D Conv. (5) - 15 (5) - 25 (10) - 15 (10) - 25 (5,5) - 15 (5,5) - 25 (10,10) - 15 (10,10) - 25

(32) - (64,32,16,8) 9.95e-2 1.58e-1 1.26e-1 1.11e-1 1.64e-1 1.57e-1 1.36e-1 1.30e-1
(32) - (128,64,32,16,8) 1.13e-1 1.07e-1 1.46e-1 9.04e-2 1.40e-1 1.75e-1 1.46e-1 1.02e-1
(32) - (256,128,64,32,16,8) 1.04e-1 1.14e-1 1.21e-1 1.02e-1 1.37e-1 1.05e-1 1.42e-1 1.26e-1
(64) - (64,32,16,8) 1.29e-1 9.39e-2 1.13e-1 1.22e-1 1.11e-1 1.41e-1 1.25e-1 1.26e-1
(64) - (128,64,32,16,8) 1.16e-1 1.14e-1 1.18e-1 1.09e-1 1.29e-1 1.33e-1 1.03e-1 1.38e-1
(64) - (256,128,64,32,16,8) 1.05e-1 1.02e-1 1.03e-1 8.10e-2 1.22e-1 1.25e-1 1.11e-1 1.07e-1
(32,32) - (64,32,16,8) 1.06e-1 1.30e-1 1.27e-1 1.06e-1 1.36e-1 1.16e-1 1.29e-1 1.29e-1
(32,32) - (128,64,32,16,8) 1.00e-1 9.89e-2 1.19e-1 1.02e-1 1.30e-1 1.25e-1 1.34e-1 1.41e-1
(32,32) - (256,128,64,32,16,8) 1.08e-1 1.18e-1 1.03e-1 1.27e-1 1.38e-1 1.40e-1 1.15e-1 1.16e-1
(64,64) - (64,32,16,8) 1.06e-1 9.38e-2 8.89e-2 9.43e-2 1.06e-1 1.31e-1 1.26e-1 1.28e-1
(64,64) - (128,64,32,16,8) 9.42e-2 1.01e-1 9.30e-1 9.80e-1 1.27e-1 8.29e-1 1.30e-1 1.22e-1
(64,64) - (256,128,64,32,16,8) 1.04e-1 9.90e-2 8.11e-2 8.34e-2 1.05e-1 1.16e-1 1.54e-1 1.18e-1

Table 5.4: Average relative errors in l1-norm on the epicardial activation maps of the test dataset with the time-
series-based ST-RB-DNN model, using epicardial potential loss weight equal to 100. The green cell displays
the best model; the red cell displays the worst model; the yellow cells display the best 5 models (except from the
very best one). Rows label are of the form Pre-Layers - Post-Layers, where the first entry defines the layers of the
pre-convolutional fully-connected block and the second one the layers of the post-convolutional fully-connected
block. Columns labels are of the form NF - Kdim, being NF the number of convolutional filters and Kdim the
dimension of the 1D convolutional kernel.

Dense
1D Conv. (5) - 15 (5) - 25 (10) - 15 (10) - 25 (5,5) - 15 (5,5) - 25 (10,10) - 15 (10,10) - 25

(32) - (64,32,16,8) 9.31e-2 8.90e-2 1.00e-1 1.01e-1 1.21e-1 1.07e-1 1.25e-1 1.02e-1
(32) - (128,64,32,16,8) 1.13e-1 7.83e-2 1.06e-1 9.89e-2 1.09e-2 1.04e-1 9.23e-2 1.12e-1
(32) - (256,128,64,32,16,8) 8.89e-2 9.32e-2 9.56e-2 9.49e-2 1.08e-1 1.17e-1 1.08e-1 1.00e-1
(64) - (64,32,16,8) 8.24e-2 9.14e-2 7.58e-2 9.54e-2 9.74e-1 9.08e-2 9.72e-2 1.08e-1
(64) - (128,64,32,16,8) 8.50e-2 7.48e-2 7.89e-2 9.06e-2 9.93e-2 8.46e-2 1.15e-1 8.71e-2
(64) - (256,128,64,32,16,8) 1.01e-1 7.37e-2 7.75e-2 6.26e-2 9.23e-2 8.50e-2 9.73e-2 7.41e-2
(32,32) - (64,32,16,8) 1.14e-1 9.19e-2 9.21e-2 8.38e-2 1.10e-1 1.08e-1 9.98e-2 1.10e-1
(32,32) - (128,64,32,16,8) 9.34e-2 7.99e-2 8.12e-2 8.83e-2 1.14e-1 8.32e-2 1.10e-1 1.02e-1
(32,32) - (256,128,64,32,16,8) 9.76e-2 7.81e-2 8.03e-2 7.45e-2 7.75e-2 9.47e-2 1.14e-1 8.47e-2
(64,64) - (64,32,16,8) 9.62e-2 7.74e-2 1.01e-1 6.91e-2 1.06e-1 8.34e-2 8.30e-2 9.33e-2
(64,64) - (128,64,32,16,8) 8.28e-2 8.21e-2 8.04e-2 8.37e-2 9.60e-2 1.11e-1 8.81e-2 9.22e-2
(64,64) - (256,128,64,32,16,8) 8.10e-2 7.29e-2 7.62e-2 6.36e-2 9.72e-2 8.39e-2 9.27e-2 7.32e-2

Table 5.5: Average relative errors in l1-norm on the epicardial activation maps of the test dataset with the time-
series-based ST-RB-DNN model, using epicardial potential loss weight equal to 500. The green cell displays
the best model; the red cell displays the worst model; the yellow cells display the best 5 models (except from the
very best one). Rows label are of the form Pre-Layers - Post-Layers, where the first entry defines the layers of the
pre-convolutional fully-connected block and the second one the layers of the post-convolutional fully-connected
block. Columns labels are of the form NF - Kdim, being NF the number of convolutional filters and Kdim the
dimension of the 1D convolutional kernel.

Dense
1D Conv. (5) - 15 (5) - 25 (10) - 15 (10) - 25 (5,5) - 15 (5,5) - 25 (10,10) - 15 (10,10) - 25

(32) - (64,32,16,8) 9.21e-2 8.87e-2 8.43e-2 9.84e-2 1.35e-1 9.18e-2 9.57e-2 1.04e-1
(32) - (128,64,32,16,8) 9.84e-2 7.18e-2 7.67e-2 8.78e-2 9.13e-2 1.02e-1 1.42e-1 1.10e-1
(32) - (256,128,64,32,16,8) 9.99e-2 6.70e-2 8.93e-2 8.31e-2 9.06e-2 1.25e-1 8.65e-2 9.35e-2
(64) - (64,32,16,8) 9.35e-2 9.70e-2 7.47e-2 8.88e-2 1.04e-1 1.21e-1 1.04e-1 9.97e-2
(64) - (128,64,32,16,8) 8.73e-2 8.85e-2 9.21e-2 7.28e-2 1.24e-1 1.13e-1 7.71e-2 1.08e-1
(64) - (256,128,64,32,16,8) 9.20e-2 6.44e-2 7.06e-2 8.57e-2 8.52e-2 8.83e-2 1.04e-1 8.86e-2
(32,32) - (64,32,16,8) 8.74e-2 7.42e-2 7.16e-2 9.72e-2 1.02e-1 1.03e-1 1.26e-1 1.16e-1
(32,32) - (128,64,32,16,8) 9.82e-2 7.42e-2 7.93e-2 8.27e-2 9.22e-2 8.45e-2 9.15e-2 1.21e-1
(32,32) - (256,128,64,32,16,8) 8.83e-2 8.07e-2 7.92e-2 9.51e-2 1.15e-1 1.08e-1 1.11e-1 1.12e-1
(64,64) - (64,32,16,8) 9.12e-2 9.40e-2 7.56e-2 8.53e-2 8.06e-2 9.56e-2 1.08e-1 8.81e-2
(64,64) - (128,64,32,16,8) 8.39e-2 6.76e-2 9.22e-2 6.78e-2 9.90e-2 7.97e-2 7.60e-2 6.94e-2
(64,64) - (256,128,64,32,16,8) 8.03e-2 6.66e-2 6.96e-2 7.33e-2 9.59e-2 8.80e-2 9.88e-2 7.77e-2

Table 5.6: Average relative errors in l1-norm on the epicardial activation maps of the test dataset with the time-
series-based ST-RB-DNN model, using epicardial potential loss weight equal to 1000. The green cell displays
the best model; the red cell displays the worst model; the yellow cells display the best 5 models (except from the
very best one). Rows label are of the form Pre-Layers - Post-Layers, where the first entry defines the layers of the
pre-convolutional fully-connected block and the second one the layers of the post-convolutional fully-connected
block. Columns labels are of the form NF - Kdim, being NF the number of convolutional filters and Kdim the
dimension of the 1D convolutional kernel.
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ST-RB-DNN estimation ROM approximation

(a) ST-RB-DNN Frontal view (b) ROM Frontal view

(c) ST-RB-DNN Rear view (d) ROM Rear view

(e) ST-RB-DNN Left Lateral view (f) ROM Left Lateral view

(g) ST-RB-DNN Inferior view (h) ROM Inferior view

Figure 5.7: Epicardial activation maps obtained, on test datapoint 1, with the best time-series-based ST-RB-DNN
model (left column) and with Space-Time ROM reconstruction (right column) from four different perspectives
(frontal, rear, left-lateral and inferior). The l1-norm relative error equals 2.49 · 10−2.
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ST-RB-DNN estimation ROM approximation

(a) ST-RB-DNN Frontal view (b) ROM Frontal view

(c) ST-RB-DNN Rear view (d) ROM Rear view

(e) ST-RB-DNN Left Lateral view (f) ROM Left Lateral view

(g) ST-RB-DNN Inferior view (h) ROM Inferior view

Figure 5.8: Epicardial activation maps obtained, on test datapoint 2, with the best time-series-based ST-RB-DNN
model (left column) and with Space-Time ROM reconstruction (right column) from four different perspectives
(frontal, rear, left-lateral and inferior). The l1-norm relative error equals 6.39 · 10−2.

110



Figure 5.9: ECG signals obtained, on test datapoint 1, with the best time-series-based ST-RB-DNN model
and with Space-Time ROM reconstruction. The Red solid line represents the ECG signal got with the ROM
approximation; the Blue dashed line represents the ECG signal got with the best time-series-based ST-RB-DNN
model. The l1-norm absolute error (averaged on all the leads) equals 2.81 · 10−2 mV .

Figure 5.10: ECG signals obtained, on test datapoint 2, with the best time-series-based ST-RB-DNN model
and with Space-Time ROM reconstruction. The Red solid line represents the ECG signal got with the ROM
approximation; the Blue dashed line represents the ECG signal got with the best time-series-based ST-RB-DNN
model. The l1-norm absolute error (averaged on all the leads) equals 4.83 · 10−2 mV .
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Looking at the results, the following considerations can be made:

• At first, we analyze the behavior with respect to the weight of the Space-Time-Reduced
epicardial potential in the loss functional. At this aim it is worth recalling that the loss
functional is built as in (5.3), with wsig being kept fixed at 1 and with the regulariza-
tion term deriving from the Ridge Regularization applied to all fully-connected and 1D-
convolutional layers. It can be clearly seen that the errors are higher if wBC = 100, while
they get lower if wBC = 500 or if wBC = 1000. To see it from a different perspective,
choosing wBC = 100 determines a 80% − 20% split of the loss (discarding the regular-
ization term contribution) into the MAE on the Space-Time-Reduced epicardial potential
and the MSE on the ECG signals, while with wBC = 500 the splitting is of the order of
90%−10% and with wBC = 1000 it is of the order of 99%−1%. Comparing the results got
with weights of 500 and 1000, no significant differences can be observed, with the average
activation maps errors being quite similar. Actually, the best model is got with wBC = 500
and it features an error that is 0.18% lower than the one achieved by the best model with
wBC = 1000; this is an indication of the physically-aware regularization properties of the
RB-solver layer, since increasing its "contribution" allows, to some extent, to improve the
model performances.

• Concerning the hyperparameters related to the fully-connected layers preceding and fol-
lowing the 1D convolutional ones, it can be noticed that, whichever the value of wBC ,
the best results have been achieved with a single layer made of 64 neurons before the
convolutions and 6 layers, with a number of nodes exponentially decreasing from 28 to 23,
after the convolutions. This outcome may suggest that even better results can be achieved
placing more neurons in a unique pre-convolutional layer and/or increasing the number
of layers following the convolutional one; no further investigations have been made in this
sense. Results concerning the usage of more than 8 nodes in the last post-convolutional
layer (which could induce a dramatic increase of the number of trainable parameters) will
be instead discussed in the following of the report.

• Finally, if we focus on the model performances with respect to the hyperparameters relative
to the 1D-convolutional layers (i.e. the number of channels and the dimension of the
kernel), we notice that the best model always features a unique convolutional layer, with
kernel of dimension 25, whichever the value of wBC . The number of channels, instead,
seems to exert a smaller influence, being the errors quite similar between the cases with
NF = 5 and NF = 10. More in detail, models trained with lower values of wBC show better
performances if NF = 10, while, for wBC = 1000, choosing NF = 5 leads to lower errors.
Also in this case, the outcome may suggest that better results can be achieved taking even
larger convolutional kernels, but no investigations have been made in this sense.

• The model exhibiting the lowest errors on the epicardial activation maps is also the best
one in terms of l1-norm absolute errors on the ECG signals, featuring an average error
of 4.87 · 10−2 mV . This observation allows to say that increasing the contribution of
the signals in the expression of the loss functional does not necessarily bring to a better
reconstruction of those; rather, a more careful calibration of the loss contributions enables
the optimization algorithm to perform a smarter minimization, ultimately attaining better
results both in terms of activation maps and of ECG signals.

• Test Datapoint 1: numerical results got by the best model on the first test datapoint
are remarkably good, both in terms of activation map (Figure 5.7) and of ECG signals
reconstruction (Figure 5.9). Indeed, on the one side all the 3 EBTs (paraseptal both at
ALV and ARV, inferior, lateral and close to the base at ILV) have been identified correctly,
both in terms of positions and timings; the l1-norm relative error equals 2.49 · 10−2 in this
case. On the other side, the traces of the predicted ECG signals are close (at least in the
eyeball norm) to the target ones at all leads; the l1-norm absolute error (averaged on all
the leads) equals 2.81 · 10−2 mV .

• Test Datapoint 2: the results got on the second test datapoint are worse, both in terms
of epicardial activation map (Figure 5.8) and of reconstructed ECG signals (Figure 5.10).
Regarding the activation map, the errors are concentrated in the inferior part of the heart,
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more on the left than on the right ventricle, and on the lateral side of the left ventricle;
the l1-norm relative error is 6.39 · 10−2. Such an outcome can be imputed to the fact that,
reconstructing the dynamics of the predicted epicardial potential, these regions are crossed
by more than one depolarization wavefront. Indeed errors in the reconstruction of the epi-
cardial potential coefficients, together with the intrinsic oscillatory nature of the elements
of the Space-Time Reduced Basis, may reflect in the estimation of "artificial" wavefronts.
If the errors are small, then other wavefronts than the "target" one are negligible and do
not leave any trace on the activation map. Conversely, if errors are larger, then it may
happen that one of the "artificial" wavefronts induces, in some points, a time derivative
larger than the one due to the passage of the "target" wavefront; this, in turn, leads to
the generation of a "noisy" activation map. Aside of the pure NN design and training,
several post-processing routines can be thought in order to reduce such disturbing effects;
for instance, suitable filters could be applied to ROM-in-Space FOM-in-Time epicardial
potential or more clever and robust methods to compute the activation map can be devel-
oped, rather than just associating each DOF to the time instant at which the local time
derivative is maximal. Also in terms of ECG signals the worsening of the results is evident,
with more significant estimation errors occurring especially at leads III, aVF (which look
at the inferior part of the heart) and aVR (which monitors the lateral aspect of the left
ventricle); the l1-norm absolute error (averaged on all the leads) equals 4.83 · 10−2 mV .
Incidentally, despite being affected by clear errors, the shape of the target activation map
can be qualitatively inferred from the estimated one; the physically-aware regularization
achieved via the RB-solver layer may play a central role in this.

Effect of other model hyperparameters

In the following, we provide a brief analysis on the dependency of the time-series-based ST-RB-
DNN model performances on other hyperparameters. In particular, we always start from the
"best" model architecture derived before and we proceed by one hyperparameter at a time, in
order to illustrate its effect.

1. Epicardial Potential POD Tolerances

ε̂e,tPOD

εe,sPOD 10−1 5 · 10−2 10−2

10−1 1.05e-1 9.89e-2 9.93e-2
5 · 10−2 6.26e-2 7.30e-2 8.69e-2

10−2 8.25e-2 7.64e-2 1.18e-1

Table 5.7: Average activation maps relative errors in l1-norm on the test dataset for differ-
ent values of the spatial and temporal POD tolerances on the epicardial potential in the
time-series based ST-RB-DNN model (with its "best" architecture)

ε̂e,tPOD

εe,sPOD 10−1 5 · 10−2 10−2

10−1 181′285 210′336 242′940
5 · 10−2 256′525 389′031 726′566

10−2 413′066 749′347 1′696′953

Table 5.8: Number of trainable parameters of the time-series-based ST-RB-DNN model
(with its "best" architecture) for different values of the POD tolerances

ε̂e,tPOD

εe,sPOD 10−1 5 · 10−2 10−2

10−1 259 398 554
5 · 10−2 619 1253 2868

10−2 1368 2977 7511

Table 5.9: Dimensionality of the Space-Time Reduced Basis for the epicardial potential
for different Space-Time POD tolerances
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Table 5.7 summarizes the average activation maps l1-norm relative errors on the test
dataset for different POD tolerances both in space and in time. Tables 5.8 and 5.9 show
the number of trainable parameters and the dimensionalities of the Space-Time Reduced
Basis, respectively, for the same models.

The best result is achieved for εe,sPOD = 10−1 and ε̂e,tPOD = 5 · 10−2, which leads to a model
that has to estimate nst = 619 coefficients by training the values of 256′525 parameters.
Such a choice seems to offer an optimal compromise; indeed, on the one side in models that
have to estimate a lower number of coefficients, the impact of an estimation error is higher,
since it is more difficult to "compensate" it. On the other side, instead, models featuring
a higher value of nst are more complex and thus more difficult to train, ultimately leading
to worse estimates of the activation maps.

2. Optimizer
SGD AGD SGD Nesterov Adam RMSProp Nadam L-BFGS
3.86e-1 2.41e-1 2.56e-1 7.01e-2 6.56e-2 6.26e-2 5.33e-1

Table 5.10: Average activation maps relative errors in l1-norm on the test dataset using
different optimizers in the time-series based ST-RB-DNN model (with its "best" architec-
ture)

Table 5.10 reports the average activation maps relative errors in l1-norm on the test dataset
for the best model, trained using different optimizers. The best result is got with the Nadam
optimizer, i.e. an improved version of the more classical Adam optimizer (see [14]), which
incorporates Nesterov momentum, introduced by T.Dozat in [87]. Good results are also
achieved with the RMSProp algorithm [15], while the standard SGD algorithm and its vari-
ants with either plain momentum (i.e. Accelerated Gradient Descent (AGD)) or Nesterov
momentum did not perform well. Additionally, a training attempt has been made with
the Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) full-batch algorithm,
as it has been employed by Raissi et al. with PINNs in [1]; anyway significantly worse
estimation results have been achieved.

3. Learning Rate
10−4 5 · 10−4 10−3 5 · 10−3 10−2

1.13e-1 6.69e-2 6.26e-2 6.71e-2 8.90e-2

Table 5.11: Average activation maps relative errors in l1-norm on the tets dataset us-
ing different learning rates in the time-series based ST-RB-DNN model (with its "best"
architecture)

Table 5.11 reports the average activation maps relative errors in l1-norm on the test dataset
for different values of the learning rate ν. Recall that the learning rate is reduced by a
factor of 4 on plateaus of the validation loss, for no more than 4 times; no exponential
decay has instead been taken into account.

The best result has been obtained with ν = 10−3; also results with ν = 5 · 10−3 and
ν = 5 · 10−4 are below the threshold of 7% and, thus, good. If, instead, the value of ν is
taken too low (i.e. 10−4) the training struggles to converge and it gets stuck in some less
optimal local minima of the loss in the parameters’ space. Conversely, if ν is chosen too
high (i.e. 10−2), then the optimization algorithm, which is Nadam in this case, is not able
to well identify the positions of the loss functional minima and it is ultimately less precise.

4. Regularization Parameter
0 10−6 10−5 10−4 10−3 10−2 10−1

6.90e-2 7.51e-2 7.02e-2 6.26e-2 7.09e-2 8.52e-2 1.05e-1
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Table 5.12: Average activation maps relative errors in l1-norm on thetest dataset for dif-
ferent values of the regularization parameter in the time-series based ST-RB-DNN model
(with its "best" architecture)

Table 5.12 reports the average activation maps l1-norm relative errors on the test dataset
for different values of the regularization parameter λr (see (5.3)). Recall that all fully-
connected and 1D-convolutional layers are subject to Ridge Regularization (i.e. l2-norm
penalty of weights and biases). Also, the reported parameter refers to the regularization
level of the convolutional layers only, since in fully-connected ones a downscale of 10−3 is
performed.

The best model is got for λr = 10−4, which means that the regularization level is 10−4 on
the entries of the convolutional kernels and of 10−7 on the weights and biases characteriz-
ing the fully-connected layers. In general, good results are achieved for all the values of λr
smaller than or equal to 10−3, while for λr = 10−2, 10−1 model performances are worse,
producing an average error even higher than 10% in the latter case.

5. Activation Function of the Epicardial Potential Estimator Layer
ReLU Leaky-ReLU ELU SELU Linear
3.85e-1 7.36e-2 9.13e-2 6.26e-2 6.65e-2

Table 5.13: Average activation maps relative errors in l1-norm on the test dataset for
different activation functions of the epicardial potential estimator layer in the time-series
based ST-RB-DNN model (with its "best" architecture)

Table 5.13 shows the average activation maps l1-norm relative errors on the test dataset,
obtained employing different activation functions in the epicardial potential estimator layer,
i.e. the high-dimensional fully-connected layer responsible for the estimation of the Space-
Time-Reduced epicardial extracellular potential.

The best results have been achieved employing the Scaled Exponential Linear Unit (SELU)
function, i.e. a scaled version of ELU (see (5.7)) with scale factor s > 1. Also results
achieved with Leaky-ReLU (see (5.6)) are good and the ones got with the simplest linear
activation function (i.e. a(x) = x) are even better. Conversely, the outcome with ELU is
worse, with an error almost reaching 10%. Finally, employing the "standard" ReLU as
activation function, the majority of the Space-Time-Reduced epicardial potential entries
are predicted to 0, as a consequence of the "Dying ReLU" problem discussed in Subsection
5.1.2; the relative error, then, explodes up to 38.5%.

6. Number of Neurons Prior to the Epicardial Potential Estimator Layer
4 8 16 32 64

Error 9.85e-2 6.26e-2 6.20e-2 5.87e-2 6.79e-2
# Trainables 192′185 256′525 385′141 642′117 1′155′055

Table 5.14: Average activation maps relative errors in l1-norm on the test dataset and
model complexity for different numbers of neurons in the last post-convolutional fully
connected layer, in the time-series based ST-RB-DNN model (with its "best" arcitecture)

Table 5.14 contains the average activation maps l1-norm relative errors on the test dataset
and the number of trainable parameters, corresponding to a different number of neurons in
the last post-convolutional fully-connected layer. More specifically, the post-convolutional
fully-connected layers have been designed to feature a number of neurons that decays expo-
nentially, with a factor of 2, from a starting value of 256; thus if, for instance, we indicate
that the number of neurons in the last layer is 32, then it means that we have considered
4 layers made of 256, 128, 64, 32 neurons respectively.

First of all, it can be noticed how big is the impact of the considered hyperparameter on
the overall model complexity, with the number of trainable parameters increasing from just
192′185 if 4 neurons are considered to 1′155′055 if 64 neurons are instead used. This is due
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to two reasons. On the one side, the dimension of the subsequent fully-connected layer (i.e.
the epicardial potential estimator layer) is always high and equal to nst = 619 in the current
case. On the other side, the number of neurons in the last layer preceding the epicardial po-
tential estimation is not actually equal to the values reported in the Table 5.14, but to those

values multiplied by
⌈
Nt −Nmp + 1

Lmp

⌉
, being Lmp the stride and Nmp the dimension of the

window of the 1D Max-Pooling layer, that acts along the data temporal axis. In the case of
interest, Nt = 80, Nmp = 4 and Lmp = 3, so the last layer is made of 26N neurons, being
N the value inserted in Table 5.14. So, doubling the number of neurons (from N to 2N)
in the considered layer (still following the exponential-decaying design introduced before),

the number of trainable parameters increases of ∆N =

⌈
Nt −Nmp + 1

Lmp

⌉
Nnst−N − 2N2,

where the first positive term considers the "new" weights related to the epicardial potential
estimator layer, while the two negative ones account for the decrease in trainable parame-
ters due to the removal of one post-convolutional layer.

Looking at the activation maps average relative errors, we can recognize a monotonically
decreasing trend from N = 4 to N = 32, for which the best result of 5.87 ·10−2 is achieved.
Anyway, if N = 64, then the model becomes very complex and also the vast majority of its
trainable parameters is localized in a single couple of fully-connected layers; as a result, it
is more difficult for the NN to learn and it is much more likely for it to perform overfitting,
ultimately producing worse estimates. Despite the best result is achieved for N = 32, the
best compromise between model complexity and model performances is (heuristically) got
for N = 8; indeed, with respect to the best case, the model complexity is more than halved,
while model performances are improved just of 6.64%.

7. Loss Composition

ECG
ueST MAEσ MSEσ

MAE 7.16e-2 6.84e-2
MSE 6.26e-2 6.81e-2

Table 5.15: Average activation maps relative errors in l1-norm on the test dataset for
different loss compositions in the time-series based ST-RB-DNN model (with its "best"
arcitecture). In particular MAE and MSE on both ECG signals and Space-Time-Reduced
epicardial potential have been considered, with a rescaling driven by the singular values
(see (5.2)) on the latter

Table 5.15 reports the average activation maps l1-norm relative errors on the test dataset,
achieved for different compositions of the loss functional (5.1). In particular, the MAE and
the MSE on both the ECG signals and the Space-Time-Reduced epicardial potential have
been considered, with a rescaling driven by the singular values (see (5.2)) in the latter case.
The weight wBC of the epicardial potential has been re-calibrated every time, so that the
contribution of ECG signals in the loss is of the order of 5%.

The best result has been achieved using the MSE on the ECG signals and the (scaled)
MAE on the Space-Time-Reduced epicardial potential. Anyway, also the results of the
other tested combinations are close, meaning that the choice of the composition of the loss
functional does not seem to play a major role.

Autoencoder Model

As last test on the time-series-based ST-RB-DNN model in the framework of the first benchmark
case, we have evaluated its performances by setting wBC = 0 in the loss functional (5.1). This
implies that, apart from regularization, the loss is built just as the MSE on the reconstructed
ECG signals, so that the model attempts at estimating the epicardial extracellular potential
acting as a pure autoencoder. The clear advantage of this approach is that the model can be
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trained being completely unaware of the values of the epicardial potential.

Results, anyway, are significantly worse than the ones presented before; Figures 5.11 and 5.12
report the estimated activation map and the reconstructed ECG signals respectively, for the first
test datapoint. While the errors on the ECG signals (measured as averaged in absolute l1-norm)
are comparable with the ones made by the "best" model (6.06 ·10−2 mV vs. 4.87 ·10−2 mV ), the
estimated epicardial activation maps feature an average error (relative, in l1-norm) of 40.63%
and even qualitatively it is very difficult to reconstruct the propagation pattern of the depo-
larizing wavefront from it. More in detail, the predicted potential field exhibits a much higher
variability both in space and in time with respect to the target one, with several small EBTs,
rather than few larger ones, arising over the epicardial surface. Thus, the ST-RB-DNN model
has not learned the actual epicardial activation pattern, but an alternative (and more complex)
one, which anyway ends up bringing to a very similar outcome in terms of 12-lead ECG signals.
The ill-posedness of the Inverse Problem of electrocardiography and the limited amount of in-
formation on the epicardial potential carried by the 12-lead ECG signals surely play a key role
in this.

Several ways of reducing such errors could be put in place; in the context of this project we have
taken two of them into account. The first one is quite straightforward and it is inspired by the
classical Tikhonov regularization technique described in Subsection 4.3.2; it consists in inserting
into the loss functional a novel regularization term, which explicitly penalizes the l2-norm of the
epicardial potential (zero-order) or the one of its spatial derivatives (first-order or second-order),
at all time instants. In our case, anyway, what is estimated by the model is not the FOM
approximation of the epicardial potential field, but its projection onto a Space-Time-Reduced
subspace, computed starting from a set of FOM snapshots. Also, we would like not to expand
the solution to the FOM space, in order to limit the memory occupation and the training time.
Thus, as a very basic attempt, we simply inserted in the loss a term that penalizes the l2-norm of
the Space-Time-Reduced epicardial potential coefficients and that sums up, with a given weight,
to the regularization terms relative to the model trainable parameters.

In particular, two different tests have been performed. In the first one, the plain l2-norm of
the Space-Time-Reduced epicardial potential has been penalized, with a loss weight of 10−4; the
average activation maps error decreased to 35.72%, but yet qualitatively very small improvements
could be observed. In the second one, the loss has been instead enriched with the weighted l2-
norm of the epicardial potential coefficients, with weights given by {1− wi}nsti=1, being

wi =

√√√√σe,sj σe,t,jk

σe,s1 σe,t,11

such that : F(k, j) = i (5.17)

defined as in (5.2). The loss weight has been kept fixed to 10−4. The idea is that, in this way,
the coefficients associated to the least important basis elements are more penalized, hopefully
mitigating the spurious and undesired oscillating components, that lead to such imprecise acti-
vation maps, as the one of Figure 5.11. Anyway, also in this case no significant improvements
could be appreciated, with an average error on activation maps equal to 33.21%.

The second approach, instead, focuses on the fact that 12-lead ECG signals carry only a limited
amount of information regarding the epicardial potential field, which is instead well encoded
by BSPMs, measured via suitable electrodes vests (see Section 4.3). In particular, all recent
relevant works in the framework of ECGI have been carried out starting from the measurement
of the body surface potential at least in 100 different locations over the human torso, rather
than just in 9, as we have done so far. Thus, we have decided to evaluate the performances of
the ST-RB-DNN model on a second benchmark case, employing a more realistic geometry of the
human torso (see Figure 5.6) and taking the body surface potential measured at 155 different
locations as input. In this context, we have tested both the best time-series-based ST-RB-DNN
model (i.e. the one derived via the previous grid search process) and the autoencoder one; the
obtained results will be presented later, in Subsubsection 5.2.3.4.
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(a) Frontal view (b) Rear view

(c) Left Lateral view (d) Inferior view

Figure 5.11: Epicardial activation maps obtained, on test datapoint 1, with the time-series-based ST-RB-DNN
model trained as an autoencoder (i.e. wBC = 0 in (5.1)) from four different perspectives (frontal, rear, left-lateral
and inferior). The l1-norm relative error equals 4.28 · 10−1.

Figure 5.12: ECG signals obtained, on test datapoint 1, with the time-series-based ST-RB-DNN model trained
as an autoencoder (i.e. wBC = 0 in (5.1)). The Red solid line represents the ECG signal got with the ROM
approximation; the Blue dashed line represents the ECG signal got with the considered time-series-based ST-
RB-DNN model. The l1-norm absolute error (averaged on all the leads) equals 5.60 · 10−2 mV .
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5.2.3.3 Test Case 1: The DFT-Based ST-RB-DNN Model

After having analyzed the performances of the time-series-based model, here we focus on the ones
of the model which takes as input the lowest-frequency coefficients, arising from the application
of a DFT to the body surface signals. All the analysis is carried out in the framework of the
first idealized test case.

Grid Search

As before, we first perform a grid search involving the most relevant model hyperparameters; in
this case, the considered hyperparameters are the number of neurons in the pre-flattening layers,
the number of neurons in the post-flattening layers, the number of considered DFT coefficients
and the weight of the Space-Time-Reduced epicardial potential in the loss functional wBC . A
total of 240 models has been tested. All the other model hyperparameters (POD tolerances, op-
timizer, learning rate, regularization parameters, dropout fraction, activation functions, training
epochs, early stopping condition) have been kept fixed to the same values we adopted in the
analysis of the time-series-based model, since those proved to give satisfactory results in some
preliminary numerical tests.

Tables 5.16 - 5.17 - 5.18 report the results of the grid search, in terms of average l1-norm rel-
ative errors on the epicardial activation maps, for three different values of the weight of the
Space-Time-Reduced epicardial potential in the loss functional. All errors are computed
with respect to the optimal Space-Time ROM approximation. Figures 5.13- 5.15 and
5.14-5.16 display the epicardial activation maps and the ECG signals reconstructed by the best
model (in terms of activation maps average l1-norm relative error) for the same test cases con-
sidered in the analysis of the time-series-based model.

Dense
DFT modes 9 17 25 33

(32) - (256,256,128,64,32,16) 1.69e-1 1.67e-1 1.59e-1 1.55e-1
(32) - (256,256,128,64,32) 1.54e-1 1.49e-1 1.49e-1 1.19e-1
(32) - (256,256,128,64) 9.63e-2 9.24e-2 9.65e-2 1.07e-1
(32) - (256,256,128) 8.05e-2 7.84e-2 7.94e-2 9.00e-2
(32) - (256,256) 8.20e-2 9.83e-2 8.47e-2 8.43e-2
(64) - (256,256,128,64,32,16) 1.68e-1 1.56e-1 1.75e-1 1.68e-1
(64) - (256,256,128,64,32) 1.28e-1 1.19e-1 1.19e-1 1.16e-1
(64) - (256,256,128,64) 1.08e-1 9.00e-2 8.81e-2 9.52e-2
(64) - (256,256,128) 8.19e-2 9.18e-2 7.52e-2 8.05e-2
(64) - (256,256) 8.03e-2 7.77e-2 8.39e-2 8.00e-2
(32,32) - (256,256,128,64,32,16) 1.79e-1 1.79e-1 1.60e-1 1.66e-1
(32,32) - (256,256,128,64,32) 1.38e-1 1.34e-1 1.26e-1 1.33e-1
(32,32) - (256,256,128,64) 1.06e-1 9.46e-2 8.36e-2 1.05e-1
(32,32) - (256,256,128) 9.37e-2 8.41e-2 8.74e-2 8.24e-2
(32,32) - (256,256) 8.26e-2 8.12e-2 8.56e-2 9.25e-2
(64,64) - (256,256,128,64,32,16) 1.79e-1 1.41e-1 1.60e-1 1.51e-1
(64,64) - (256,256,128,64,32) 1.26e-1 1.25e-1 1.06e-1 1.32e-1
(64,64) - (256,256,128,64) 9.19e-2 9.43e-2 8.34e-2 8.36e-2
(64,64) - (256,256,128) 8.09e-2 8.44e-2 7.70e-2 8.12e-2
(64,64) - (256,256) 7.06e-2 6.81e-2 7.46e-2 7.15e-2

Table 5.16: Average relative errors in l1-norm on the epicardial activation maps of the test dataset with the
DFT-based ST-RB-DNN model, using epicardial potential loss weight equal to 5. The green cell displays the
best model; the red cell displays the worst model; the yellow cells display the best 5 models (except from the very
best one). Rows labels are of the form Pre-Layers - Post-Layers, where the first entry defines the layers of the
pre-flattening fully-connected block and the second one the layers of the post-flattening fully-connected block.
Columns labels represent the number of DFT coefficients given as input to the model.
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Dense
DFT modes 9 17 25 33

(32) - (256,256,128,64,32,16) 1.42e-1 1.55e-1 1.41e-1 1.53e-1
(32) - (256,256,128,64,32) 1.21e-1 1.28e-1 1.24e-1 1.21e-1
(32) - (256,256,128,64) 8.27e-2 8.87e-2 8.65e-2 9.70e-2
(32) - (256,256,128) 8.35e-2 8.49e-2 8.04e-2 8.51e-2
(32) - (256,256) 7.23e-2 7.36e-2 7.23e-2 7.78e-2
(64) - (256,256,128,64,32,16) 1.50e-1 1.43e-1 1.50e-1 1.66e-1
(64) - (256,256,128,64,32) 1.12e-1 1.09e-1 1.18e-1 1.08e-1
(64) - (256,256,128,64) 9.12e-2 7.94e-2 9.55e-2 8.61e-2
(64) - (256,256,128) 7.64e-2 8.89e-2 8.22e-2 7.20e-2
(64) - (256,256) 7.25e-2 7.15e-2 6.62e-2 6.78e-2
(32,32) - (256,256,128,64,32,16) 1.62e-1 1.64e-1 1.65e-1 1.54e-1
(32,32) - (256,256,128,64,32) 1.36e-1 1.41e-1 1.28e-1 1.26e-1
(32,32) - (256,256,128,64) 9.16e-2 8.69e-2 8.31e-2 9.59e-2
(32,32) - (256,256,128) 8.26e-2 8.27e-2 8.45e-2 7.53e-2
(32,32) - (256,256) 6.89e-2 7.26e-2 7.27e-2 7.89e-2
(64,64) - (256,256,128,64,32,16) 1.49e-1 1.42e-1 1.35e-1 1.62e-1
(64,64) - (256,256,128,64,32) 1.31e-1 1.03e-1 1.21e-1 1.06e-1
(64,64) - (256,256,128,64) 8.27e-2 7.81e-2 8.40e-2 8.00e-2
(64,64) - (256,256,128) 7.43e-2 7.07e-2 7.22e-2 7.83e-2
(64,64) - (256,256) 5.75e-2 6.00e-2 6.81e-2 6.18e-2

Table 5.17: Average relative errors in l1-norm on the epicardial activation maps of the test dataset with the
DFT-based ST-RB-DNN model, using epicardial potential loss weight equal to 10. The green cell displays
the best model; the red cell displays the worst model; the yellow cells display the best 5 models (except from the
very best one). Rows labels are of the form Pre-Layers - Post-Layers, where the first entry defines the layers
of the pre-flattening fully-connected block and the second one the layers of the post-flattening fully-connected
block. Columns labels represent the number of DFT coefficients given as input to the model.

Dense
DFT modes 9 17 25 33

(32) - (256,256,128,64,32,16) 1.35e-1 1.27e-1 1.30e-1 1.46e-1
(32) - (256,256,128,64,32) 1.02e-1 1.08e-1 1.17e-1 1.05e-1
(32) - (256,256,128,64) 8.98e-2 7.84e-2 1.03e-1 9.15e-2
(32) - (256,256,128) 7.01e-2 7.68e-2 7.43e-2 7.35e-2
(32) - (256,256) 6.50e-2 7.36e-2 7.01e-2 6.85e-2
(64) - (256,256,128,64,32,16) 1.23e-1 1.35e-1 1.25e-1 1.17e-1
(64) - (256,256,128,64,32) 1.00e-1 1.06e-1 9.14e-2 1.06e-1
(64) - (256,256,128,64) 8.14e-2 9.08e-2 8.10e-2 8.84e-2
(64) - (256,256,128) 7.04e-2 6.84e-2 7.80e-2 6.80e-2
(64) - (256,256) 7.18e-2 6.81e-2 6.29e-2 6.48e-2
(32,32) - (256,256,128,64,32,16) 1.37e-1 1.43e-1 1.24e-1 1.10e-1
(32,32) - (256,256,128,64,32) 9.73e-2 1.10e-1 1.08e-1 1.07e-1
(32,32) - (256,256,128,64) 7.11e-2 1.07e-1 8.46e-2 7.50e-2
(32,32) - (256,256,128) 7.71e-2 7.50e-2 7.99e-2 7.36e-2
(32,32) - (256,256) 6.27e-2 5.54e-2 6.14e-2 7.70e-2
(64,64) - (256,256,128,64,32,16) 1.25e-1 1.48e-1 1.45e-1 1.50e-1
(64,64) - (256,256,128,64,32) 9.83e-2 1.04e-1 1.02e-1 1.02e-1
(64,64) - (256,256,128,64) 8.06e-2 7.74e-2 7.62e-2 8.32e-2
(64,64) - (256,256,128) 7.38e-2 6.86e-2 7.07e-2 6.78e-2
(64,64) - (256,256) 4.72e-2 5.55e-2 6.86e-2 4.92e-2

Table 5.18: Average relative errors in l1-norm on the epicardial activation maps of the test dataset with the
DFT-based ST-RB-DNN model, using epicardial potential loss weight equal to 50. The green cell displays
the best model; the red cell displays the worst model; the yellow cells display the best 5 models (except from the
very best one). Rows labels are of the form Pre-Layers - Post-Layers, where the first entry defines the layers
of the pre-flattening fully-connected block and the second one the layers of the post-flattening fully-connected
block. Columns labels represent the number of DFT coefficients given as input to the model.
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ST-RB-DNN estimation ROM approximation

(a) ST-RB-DNN Frontal view (b) ROM Frontal view

(c) ST-RB-DNN Rear view (d) ROM Rear view

(e) ST-RB-DNN Left Lateral view (f) ROM Left Lateral view

(g) ST-RB-DNN Inferior view (h) ROM Inferior view

Figure 5.13: Epicardial activation maps obtained, on test datapoint 1, with the best DFT-based ST-RB-DNN
model (left column) and with Space-Time ROM reconstruction (right column) from four different perspectives
(frontal, rear, left-lateral and inferior). The l1-norm relative error equals 2.49 · 10−2.
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ST-RB-DNN estimation ROM approximation

(a) ST-RB-DNN Frontal view (b) ROM Frontal view

(c) ST-RB-DNN Rear view (d) ROM Rear view

(e) ST-RB-DNN Left Lateral view (f) ROM Left Lateral view

(g) ST-RB-DNN Inferior view (h) ROM Inferior view

Figure 5.14: Epicardial activation maps obtained, on test datapoint 2, with the best DFT-based ST-RB-DNN
model (left column) and with Space-Time ROM reconstruction (right column) from four different perspectives
(frontal, rear, left-lateral and inferior). The l1-norm relative error equals 5.02 · 10−2.
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Figure 5.15: ECG signals obtained, on test datapoint 1, with the best DFT-based ST-RB-DNN model and
with Space-Time ROM reconstruction. The Green solid line represents the ECG signal got with the ROM
approximation; the Red solid line represents the ROM ECG signal, reconstructed via the selected DFT coefficients
through an Inverse DFT; the Blue dashed line represents the ECG signal got with the best DFT-based ST-RB-
DNN model. The l1-norm absolute error (averaged on all the leads) equals 5.29 · 10−2 mV .

Figure 5.16: ECG signals obtained, on test datapoint 2, with the best DFT-based ST-RB-DNN model and with
Space-Time ROM reconstruction.The Green solid line represents the ECG signal got with the ROM approxima-
tion; the Red solid line represents the ROM ECG signal, reconstructed via the selected DFT coefficients through
an Inverse DFT; the Blue dashed line represents the ECG signal got with the best DFT-based ST-RB-DNN
model. The l1-norm absolute error (averaged on all the leads) equals 4.47 · 10−2 mV .
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Looking at the results, the following considerations can be made:

• The first important observation is that the performances of the DFT-based ST-RB-DNN
model are better than the ones of the time-series-based one; indeed, the best DFT-based
model features a relative error on activation maps of 4.75%, which is significantly lower
(−1.51%) than the one of best time-series based model (6.26%). Additionally, the com-
plexities of the two best models are very similar, since the best time-series-based model has
256′525 trainable parameters, while the best DFT-based one has 267′371. This suggests
that equipping the ST-RB-DNN model with information that already take into account
the time evolution of the available signals makes it easier for it to learn the desired I/O
mapping, allowing to get better results.

• If we focus on the trend with respect to the weight wBC of the Space-Time-Reduced
epicardial potential in the loss functional, we can observe that results tend to get better
as such weight increases. Indeed, if wBC = 5 (which leads to a loss split of approximately
60% − 40% between epicardial potential and ECG errors) then only one model features
a relative error on activation maps that is lower than 7%, while if wBC = 10 (loss split
≈ 75%− 25%) the best model presents an error lower than 6% and if wBC = 50 (loss split
≈ 95% − 5%) the error goes even below the threshold of 5%. This outcome may imply
that the contribution of the RB-solver layer is useless; in order to clarify this, we have
made further tests, considering the best model architecture (Table 5.18), but increasing
the weight wBC to 100 and to 500. In such cases, the loss split is extremely unbalanced
towards the epicardial potential, but the average relative errors on the activation maps we
got are respectively 5.06 · 10−2 and 5.89 · 10−2. Thus, if the contribution of the RB-solver
layer is very small, the model loses part of its physical awareness and its performances get
worse.

• Concerning the hyperparameters related to the architecture of the MLP, a dramatic de-
pendency with respect to the number of neurons in the last layer can be observed. Indeed
the average activation maps errors, whichever the value of the loss weight and the number
of input DFT coefficients, drop from values always above 10% in case the last layer is made
of 16 nodes to values at most equaling 8.20% if it consists of 256 neurons. The justification
for this is analogous to the one given while considering the time-series-based model. For
fixed POD tolerances, the dimensionality of the last fully-connected layer is the parameter
that mostly affects the network complexity; thus, by increasing it of just few units, we end
up getting a much bigger and more powerful model that, if trained properly in order to
avoid overfitting, could deliver better results. Starting from the best model architecture
(Table 5.18), we have made other tests increasing the number of neurons in this last layer,
up to 512; the resulting activation maps errors have always been of the order of 5%, thus
telling that placing more than 256 neurons does not induce major improvements, while it
severely affects model complexity. It may be also possible that a lower number of neurons
(but higher than 128) is able to guarantee errors around the 5% threshold; no investigations
have been made in this sense. Aside of this major effect, it can also be noticed that models
tend to exhibit better performances as their complexities get higher. Indeed, keeping fixed
the architecture of the post-flattening layers, the lowest errors are often got by placing
two layers made of 64 neurons each in the pre-flattening block, which is the most complex
scenario that has been taken into consideration in this grid search. Incidentally, the three
best models (for the three different loss weights) all feature a pre-flattening block having
structure (64, 64) and a post-flattening block having structure (256, 256).

• Finally, the investigation of the model performances with respect to the number of DFT
coefficients (both given as input and returned in output) reveals that no dramatic differ-
ences are appreciable. More in detail, it can be observed that less complex models (i.e.
models with few neurons in the last fully-connected layer) tend to have better performances
if more DFT coefficients are involved, while more complex models deliver better results if
just few DFT coefficients are considered. This can be explained by the fact that, if the
model is too simple, then it benefits of being given more information, since its ability of
extracting useful ones is somehow limited. Conversely, if the model is more complex, then
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it manages to pull out of the input features that are useful to accomplish the ultimate
predictive task at hand; equipping it with the knowledge of higher frequency components
with low informative content only has a disturbing effect, hindering and slowing down the
training process.

• Test Datapoint 1: numerical results achieved by the best DFT-based model on the first
test datapoint are good, both in terms of epicardial activation maps (Figure 5.13) and
of reconstructed ECG signals (Figure 5.15). In particular, the error on the epicardial
activation map (relative in l1-norm) is identical to the one got with the best time-series
based model (i.e. 2.49 ·10−2) and all the three EBTs are identified correctly, both in terms
of positions and timings. Similarly, the predicted ECG traces are close, at all leads, to
the target ones (red in Figure 5.15), that have been constructed by applying an Inverse
DFT to the set of the 9 lowest-frequency coefficients considered in the model; the absolute
l1-norm error (averaged on all the leads) equals 5.29 · 10−2 mV .

• Test Datapoint 2: as with the time-series based ST-RB-DNN model, also with the DFT-
based one the results on the second test datapoint are worse, both in terms of epicardial
activation map (Figure 5.14) and of reconstructed ECG signals (Figure 5.16). Focusing
on the activation map, the l1-norm relative error is lower than the one got with the best
time-series based model (5.02 ·10−2 vs. 6.39 ·10−2), indicating that the DFT-based models
appear to have, globally, better performances. Also visually (Figures 5.8 and 5.14), it can
be inferred a smaller prediction error; indeed, while the best time-series-based model fails
in estimating the propagation of the depolarization wavefront in the inferior part of both
ventricles and on the lateral margin of the left one, the DFT-based model only suffers of
bad accuracy in the latter area. More specifically, both the ARV paraseptal and the ILV
paraseptal basal EBTs are affected by the presence of small "noisy" regions around them,
but the prediction errors are only evident on the lateral margin of the left ventricle, since
the EBT occurring at around 30 ms is not precisely identified. This leak of precision in
the EBT identification induces spurious oscillations in the predicted epicardial potential;
those, in turn, give rise to "artificial" wavefronts that lead to time derivatives higher that
the one due to the passage of the "target" wavefront, ultimately leading to "noise" in the
activation map. As proposed in the analysis of the performances of the time-series-based
model, either suitable filtering techniques to be applied to the estimated epicardial potential
or more complex algorithms to derive the activation map could be developed in order the
reduce these disturbing effects and to improve the overall model outcome. Regarding ECG
signals, no significant reconstruction errors can be actually observed; anyway, as for the
time-series-based model, the most problematic leads are III, aVF and aVR, since they
"look" at the inferior and lateral areas of the left ventricle, that appear to be the most
problematic ones to reconstruct. The absolute l1-norm error (averaged on all the leads)
equals 4.47 · 10−2 mV

Effect of other model hyperparameters

In the following, we provide a brief analysis on the dependency of the DFT-based ST-RB-DNN
model performances on other hyperparameters. We always start from the "best" model archi-
tecture derived before and we proceed by one hyperparameter at a time, in order to illustrate
its effect.

1. Epicardial Potential POD Tolerances

ε̂e,tPOD

εe,sPOD 10−1 5 · 10−2 10−2

10−1 9.17e-2 8.95e-2 9.23e-2
5 · 10−2 4.72e-2 6.43e-2 6.08e-2

10−2 5.15e-2 7.11e-2 7.43e-2

Table 5.19: Average activation maps relative errors in l1-norm on the test dataset for
different values of the spatial and temporal POD tolerances on the epicardial potential in
the DFT-based ST-RB-DNN model (with its "best" architecture)
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ε̂e,tPOD

εe,sPOD 10−1 5 · 10−2 10−2

10−1 174′851 210′574 259′666
5 · 10−2 267′371 430′309 854′364

10−2 459′864 873′377 2′038′615

Table 5.20: Number of trainable parameters of the DFT-based ST-RB-DNN model (with
its "best" architecture) for different values of the POD tolerances

Table 5.19 summarizes the average activation maps l1-norm relative errors on the test
dataset for different POD tolerances both in space and in time. Table 5.20 shows the
number of trainable parameters of the considered models. The dimensionalities of the
Space-Time Reduced Bases computed for the different POD tolerances can be found in
Table 5.9.

As for the time-series-based model, the best result is achieved for εe,sPOD = 10−1 and
ε̂e,tPOD = 5 · 10−2, which leads to a Reduced Basis of dimension 619 and to a model featur-
ing 267′371 trainable parameters. Again, on the one side models obtained at high POD
tolerances offer worse performances compared to the ones of the best model (in terms of
epicardial activation maps reconstruction), because there is less margin to compensate an
estimation error on a relevant coefficient via estimation errors on the least relevant ones.
On the other side, models characterized by low POD tolerances have to estimate a lot of
coefficients and thus they feature a great number of hyperparameters; this entails that the
training process is more complicated and, in turn, that the activation maps estimation is
not optimal.

2. Optimizer
SGD AGD SGD Nesterov Adam RMSProp Nadam L-BFGS
5.54e-1 4.62e-1 4.42e-1 5.79e-2 5.73e-2 4.72e-2 2.55e-1

Table 5.21: Average activation maps relative errors in l1-norm on the test dataset using
different optimizers in the DFT-based ST-RB-DNN model (with its "best" architecture)

Table 5.21 reports the average activation maps l1-norm relative errors in on the test dataset
for the best model, trained using different optimizers.

As in the time-series-based case, the Nadam optimizer is the one that guarantees the best
results in terms of activation maps errors. In general, all adaptive optimization algo-
rithms (i.e. Adam, Nadam and RMSProp) exhibit good performances. Conversely, the
standard SGD algorithm and its accelerated versions (i.e. AGD and SGD with Nesterov
momentum) experience struggle in converging, as well as the full-batch L-BFGS algorithm.

3. Learning Rate
10−4 5 · 10−4 10−3 5 · 10−3 10−2 5 · 10−2

1.16e-1 6.45e-2 4.72e-2 5.86e-2 5.67e-2 1.30e-1

Table 5.22: Average activation maps relative errors in l1-norm on the test dataset using
different learning rates in the DFT-based ST-RB-DNN model (with its "best" architecture)

Table 5.22 reports the average activation maps l1-norm relative errors on the test dataset
for different values of the learning rate ν. Recall that the learning rate is reduced by a
factor of 4 on plateaus of the validation loss, for no more than 4 times; no exponential
decay has instead been taken into account.

The best result has been achieved at the "intermediate" value of ν = 10−3. At lower learn-
ing rates (and especially for ν = 10−4) the training happens to get stuck in some shallow
local minima of the loss functional in the trainable parameters’ space, being unable per-
form a good optimization. Conversely, results at higher learning rates (up to ν = 10−2)
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are still good, with the error on activation maps increasing just of ≈ 1%; the reduction of
ν on plateaus of the validation loss surely helps in this sense. For ν = 5 · 10−2, instead,
the error is much larger, since the length of the step done by the Nadam optimization
algorithm, despite being adaptive, is yet too big to properly detect the minima of the loss
and also its reduction on plateaus of the validation loss is not effective.

4. Regularization Parameter
0 10−9 10−8 10−7 10−6 10−5 10−4

4.50e-2 5.47e-2 5.03e-2 4.72e-2 6.61e-2 9.59e-2 1.99e-1

Table 5.23: Average activation maps relative errors in l1-norm on the test dataset for
different values of the regularization parameter in the DFT-based ST-RB-DNN model
(with its "best" architecture)

Table 5.23 reports the average activation maps l1-norm relative errors on the test dataset
for different values of the regularization parameter λr (see (5.3)).

The best result is achieved without any regularization, i.e. setting λr = 0; in general,
models featuring with low values of λr have good performances, with errors of the order
of 4 − 5%. As the regularization parameter increases, instead, results tend to get worse
and worse, with the average error on activation maps reaching 19.9% for λr = 10−4. This
is due to the fact that the contribution of the regularization term in the loss functional
becomes too big, so that the model "cares" more at reducing the magnitudes of its weights
and biases than at producing an output which is close to the target one.

5. Activation Function of the Epicardial Potential Estimator Layer
ReLU Leaky-ReLU ELU SELU Linear
3.27e-1 7.27e-2 6.45e-2 4.72e-2 6.04e-2

Table 5.24: Average activation maps relative errors in l1-norm on the test dataset for
different activation functions of the epicardial potential estimator layer in the DFT-based
ST-RB-DNN model (with its "best" architecture)

Table 5.24 shows the average activation maps l1-norm relative errors on the test dataset,
obtained employing different activation functions in the epicardial potential estimator layer,
i.e. the high-dimensional fully-connected layer responsible for the estimation of the Space-
Time-Reduced epicardial extracellular potential.

As for the time-series-based model, the best result is got employing the Scaled Exponential
Linear Unit (SELU) activation function, i.e. a scaled version of ELU (see (5.7)) with scale
factor s > 1; the values of the parameters a and s have been set to the default ones of
the Tensorflow/Keras Python package. Again, results got with improved versions of ReLU
(as ELU and Leaky-ReLU ) or even with a simple linear activation function, are good
(≈ 6−7%), since those are all able to circumvent the "Dying ReLU" problem and to allow
the optimization algorithm to properly converge. Conversely, the usage of the standard
ReLU activation function does not allow to achieve the desired convergence, with the vast
majority of the Space-Time-Reduced epicardial potential coefficients being estimated as 0.

6. Loss Composition

F(ECG)
ueST MAEσ MSEσ

MAE 5.45e-2 6.80e-2
MSE 4.72e-2 7.26e-2

Table 5.25: Average activation maps relative errors in l1-norm on the test dataset for
different loss compositions in the DFT-based ST-RB-DNN model (with its "best" archi-
tecture). In particular MAE and MSE on both the DFT coefficients of ECG signals and
Space-Time-Reduced epicardial potential have been considered, with a rescaling driven by
the singular values (see (5.2)) on the latter
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Table 5.25 reports the average activation maps l1-norm relative errors on the test dataset,
achieved for different compositions of the loss functional (5.1). In particular, the MAE and
the MSE on both the DFT coefficients of ECG signals and the Space-Time-Reduced epi-
cardial potential have been considered, with a rescaling driven by the singular values (see
(5.2)) in the latter case. The weight wBC of the epicardial potential has been re-calibrated
every time, so that the contribution of ECG signals in the loss is of the order of 5%.

Results show that the best model is obtained using the MSE on the DFT coefficients of
the 12-lead ECG signals and the MAE (weighted by the singular values - see (5.2)) on
the Space-Time-Reduced epicardial potential coefficients. Also, it appears that using the
(weighted) MAE, rather than the (weighted) MSE, on the epicardial potential gives better
results, with average relative errors being ≈ 2% lower. The choice of the loss metric on
ECG signals, instead, seems to play a minor role.

Autoencoder Model

The last test to be performed on the DFT-based ST-RB-DNN model is the analysis of its be-
havior in case it is trained as an autoencoder, i.e. if wBC is set to 0 in (5.1).

Results are shown in Figures 5.17 and 5.18, which display the estimated epicardial activation
map and the reconstructed ECG signals (respectively), for the first test datapoint. As in the
time-series-based case, the outcome is not optimal. Indeed, on the one side the average errors on
the reconstructed ECG signals are comparable to the ones done by the best DFT-based model
(6.42 · 10−2 mV vs. 5.90 · 10−2 mV ), entailing that the autoencoding process is carried out with
discrete success. On the other side, anyway, the reconstruction of the epicardial activation maps
is much worse; the relative l1-norm average error on the test dataset equals 36.33% (on test
datapoint 1 it is 39.66%) and even qualitatively it is difficult to infer from it the propagation
pattern of the depolarization wavefront. The reasons that lead to such a bad estimation are
basically analogous to the ones discussed for the time-series-based ST-RB-DNN model in the
previous Subsubsection.

As in the time-series-based case, we have tried to reduce the epicardial potential estimation errors
by inserting in the loss functional a regularization term, inspired by the Tikhonov regularization
technique (see Subsection 4.3.2), which penalizes the l2-norm of the Space-Time-Reduced epi-
cardial potential coefficients. Actually, two tests have been executed. In the first one, the plain
l2-norm of the Space-Time-Reduced epicardial potential is penalized, with a loss weight of 10−4;
the average error on epicardial activation maps decreases down to 32.58%, but no major qualita-
tive improvements can be noticed. The second test, instead, features a loss with a penalization
of a weighted l2-norm of the Space-Time-Reduced epicardial potential, with weights expressed as
in (5.17) and with a loss weight again set to 10−4. Anyway, results are again discouraging, with
the average error on activation maps (38.23%) that increases with respect to the previous tests.
Clearly, several other attempts could be made, at least for different values of the loss weight;
anyway, in view of the bad results we got, we preferred not to investigate these regularization
strategies any longer.

Rather, as discussed also in the analysis of the time-series-based model, we preferred to carry
out additional tests in a different simulation setting, i.e. employing a more realistic geometry of
the human torso (see Figure 5.6) and taking body surface potentials measured by 155 different
electrodes, instead of the 12-lead ECG signals, as input. In this context, we have tested both the
best DFT-based ST-RB-DNN model (derived via the grid search process) and the autoencoder
one; the obtained results will be presented later, in Subsubsection 5.2.3.4.
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(a) Frontal view (b) Rear view

(c) Left Lateral view (d) Inferior view

Figure 5.17: Epicardial activation maps obtained, on test datapoint 1, with the DFT-based ST-RB-DNN model
trained as an autoencoder (i.e. wBC = 0 in (5.1)) from four different perspectives (frontal, rear, left-lateral and
inferior). The l1-norm relative error equals 3.97 · 10−1

Figure 5.18: ECG signals obtained, on test case 1, with the DFT-based ST-RB-DNN model trained as an
autoencoder (i.e. wBC = 0 in (5.1)). The Green solid line represents the ECG signal got with the ROM
approximation; the Red solid line represents the ROM ECG signal, reconstructed via the selected DFT coefficients
through an Inverse DFT; the Blue dashed line represents the ECG signal got with the DFT-based ST-RB-DNN
model. The l1-norm absolute error (averaged on all the leads) equals 7.56 · 10−2 mV
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5.2.3.4 Test Case 2: Evaluation of the Best Models Performances

As anticipated in Subsubsection 5.2.3.1, the second test case features three main differences with
respect to the first one:

1. The usage of a realistic geometry for the human torso (taken from [86] - see Figure 5.6),
equipped with a more refined computational mesh made of 498′992 tetrahedral cells

2. The construction of the I/O dataset from 158 leads (instead of just 12), which derive from
recordings of the body surface potential made by 155 different electrodes, placed over the
torso

3. The presence of just Nµ = 180 datapoints in the overall dataset (instead of 400). This is
due to the much heavier computational effort required by the FOM simulations and it is
expected to have a non-negligible impact on the model performances.

The simulation framework of the second test case represents a small step in the direction of
considering more realistic scenarios where to evaluate the model performances. Anyway, we
have still worked under several simplifying hypothesis (as the approximation of the torso as a
homogeneous isotropic volume conductor, for instance), so that further efforts should be made
in order to employ the model on clinical data.

While in the first test case we investigated the dependency of the implemented ST-RB-DNN
models with respect to their main hyperparameters, in the second one we carried out just few
different trainings. Specifically, we limited ourselves at evaluating the performances of the best
time-series-based and DFT-based models, as identified via the grid search processes described
in the two previous Subsubsections. For both models, three different "scenarios" have been
considered and compared:

1. Standard scenario: as in the first test case, the model takes 12-lead ECG signals as input
and the loss functional (besides of regularization terms) is built as the weighted average
between the MSE on the reconstructed signals and the MAE on the Space-Time-Reduced
epicardial extracellular potential.

2. Augmented input scenario: the model takes as input 158 signals, derived from mea-
surements of the body surface potential made by 155 electrodes placed over the human
torso, rather than 12-lead ECG signals. The loss is constructed as the usual weighted
average, with weights tuned in order to get a 95% − 5% split between the MAE on the
Space-Time-Reduced epicardial potential and the MSE on the torso signals.

3. Augmented input & Autoencoder scenario: the model takes as input 158 signals,
derived from measurements of the body surface potential made by 155 electrodes placed
over the human torso, and the loss functional is constructed just as the MSE on the re-
constructed signals.

Remark: Since we have maintained the same specifics of the best models identified in the pre-
vious Subsubsections, we have also chosen the same tolerances for the PODs, i.e. εt,sPOD = 10−3,
εe,sPOD = 10−1 and ε̂e,tPOD = 5 · 10−2. On the considered dataset, made of Nµ = 180 datapoints,
this has led to the generation of a Reduced Basis in Space on the torso potentials of dimension
80 and to a Reduced Basis in Space-Time on the epicardial potential of dimension 434 (68 basis
functions in space, ≈ 6− 7 basis functions in time for each basis function in space).

All errors are computed with respect to the optimal Space-Time ROM approxima-
tion
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The Time-Series-Based ST-RB-DNN Model

Figure 5.19 shows the epicardial activation maps for the 9th datapoint of the test dataset, which
have been either obtained via the Space-Time ROM approximation or estimated by the (best)
time-series-based ST-RB-DNN model. The model performances have been analyzed both if the
input is generated from 12-lead ECG signals or from 158 signals, recorded by 155 electrodes
placed over the torso. Figures 5.20 and 5.21 display the 12-lead ECG signals reconstructed by
the two considered time-series-based ST-RB-DNN models, compared to the target ones obtained
via the ROM approximation. Looking at the results, the following considerations can be made:

• The performances of the time-series-based ST-RB-DNN model which is given as input 158
signals are better than the ones of the model processing 12-lead ECGs. Indeed, the average
activation maps l1-norm relative error on the test dataset equals 6.73 · 10−2 for the former
and 7.91 · 10−2 for the latter. This is expected, since BSPMs recorded via electrodes vests
carry much more information on the epicardial potential field than 12-lead ECG signals

• The errors on the activation maps are higher if compared to the ones got in the first test
case, even if 158 signals are given as input to the model. Despite the increased complexity
of the FOM simulations may play a role, the main reason for this is that the dataset is
made of less than half datapoints (180 vs 400). This should highlight how fundamental is,
in DL applications, to have at disposal a big amount of training data, able to represent
the vast majority of the possible dynamics that could occur in the system.

• The number of trainable parameters in the two models are similar (228′040 vs 217′860).
This is an important aspect to be underlined, as the model is designed to keep its complexity
almost independent of the dimensionality of the datapoints to be processed.

• Looking at the epicardial activation maps of Figure 5.19, we can recognize how the perfor-
mances of the model receiving in input 158 signals are better than the ones of the model
which processes only 12 signals. Quantitatively, the l1-norm relative error of the former
equals 5.70 · 10−2, while the one of the latter is 1.03 · 10−1. In particular, a better estima-
tion is evident in the inferior part of both ventricles (with the only EBT being localized
in much more precise way both in space and in time) and at the apical region of the left
ventricle (where the EBT is predicted in a less "noisy" way).

• Looking at the ECG signals of Figures 5.20 and 5.21, not so significant differences can be ap-
preciated. Quantitatively, the average l1-norm absolute reconstruction error on the signals
equals 4.05 ·10−2 mV for the model which is provided with 158 signals and 5.64 ·10−2 mV
for the one processing 12-lead ECGs; for the considered test datapoint the errors are
5.78 · 10−2 mV and 8.27 · 10−2 mV respectively. In both cases, the most "problematic"
leads are V1, V2 and V3 and the "new" model does not precisely estimate also III and aVR.
Its error is anyway lower since it is averaged over all the 158 leads and not only over the
12 ones displayed here, whose approximation appears to be slightly more complicated.

Finally, we have trained the (best) time-series-based ST-RB-DNN model as an autoencoder
which takes as input BSPMs. This trial configures as an upgrade of the ones discussed in the
first test case: indeed the physically-aware deep autoencoder is expected to work better if it is
provided with data that carry more information on the epicardial potential field than 12-lead
ECG signals. Anyway, results are again discouraging. Despite the error on the reconstructed
signals is close to the one done by the "best" model (5.86 · 10−2), the estimated potential fields
feature several depolarizing wavefronts, that collide one with the other and who give rise to
"noisy" epicardial activation maps. The average activation maps l1-norm relative error on the
test dataset equals 3.22 ·10−1. Surely the reduced amount of data has an influence, but the good
estimation of the torso signals suggests the problem being that different epicardial potential
fields manage to give rise to very similar signals in the torso (i.e. ill-posed nature of the Inverse
Problem of Electrocardiography). Thus, other than increasing the dataset dimensionality, more
advanced strategies should be put in place to train the model as an autoencoder; in particular
the manifold where to seek for the epicardial potential should be further restricted, somehow
preventing solutions as the one of Figure 5.11 to be predicted.
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ROM approximation ST-RB-DNN with 12-lead
ECGs

ST-RB-DNN with 158
body surface signals

(a) Frontal view (b) Frontal view (c) Frontal view

(d) Rear view (e) Rear view (f) Rear view

(g) Left Lateral view (h) Left Lateral view (i) Left Lateral view

(j) Inferior view (k) Inferior view (l) Inferior view

Figure 5.19: Epicardial activation maps obtained, on test datapoint 9 of the second test case, with the Space-
Time ROM approximation (left column) and the time-series-based ST-RB-DNN model, being given as input both
12-lead ECG signals (central column) and signals recorded by 155 different electrodes placed on the torso (right
column). The l1-norm relative error equals 1.03 · 10−1 for the former and 5.70 · 10−2 for the latter.
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Figure 5.20: ECG signals obtained, on test datapoint 9 of the second test case, with the time-series-based ST-
RB-DNN model, being given as input 12-lead ECG signals, and with Space-Time ROM reconstruction. The Red
solid line represents the ECG signal got with the ROM approximation; the Blue dashed line represents the ECG
signal got with the considered ST-RB-DNN model. The l1 norm absolute error (averaged on all the leads) equals
8.27 · 10−2 mV .

Figure 5.21: ECG signals obtained, on test datapoint 9 of the second test case, with the time-series-based ST-RB-
DNN model, being given as input 158 signals recorded by 155 electrodes placed over the human torso, and with
Space-Time ROM reconstruction.The Red solid line represents the ECG signal got with the ROM approximation;
the Blue dashed line represents the ECG signal got with the considered ST-RB-DNN model. The l1 norm absolute
error (averaged on all the leads) equals 5.78 · 10−2 mV .
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The DFT-Based ST-RB-DNN Model

Figure 5.22 shows the epicardial activation maps for the 2nd datapoint of the test dataset, which
have been either obtained via the Space-Time ROM approximation or estimated by the (best)
DFT-based ST-RB-DNN model. The model performances have been analyzed both if the input
is generated from 12-lead ECG signals or from 158 signals recorded by 155 electrodes placed
over the torso. Figures 5.23 and 5.24 display the 12-lead ECG signals reconstructed by the
two considered DFT-based ST-RB-DNN models, compared to the target ones obtained via the
Space-Time ROM approximation. Looking at the results, the following considerations can be
made:

• The performances of the DFT-based ST-RB-DNN model whose input is generated from the
signals recorded by 155 electrodes are better than the ones of the model which processes
the lowest-frequency DFT coefficients of 12-lead ECG signals. In particular, the average
activation maps l1-norm relative error on the test dataset of the former is 7.24 ·10−2, while
the one of the latter is 8.02 · 10−2. As discussed before, the trend is expected as BSPMs
are more informative than 12-lead ECG signals in terms of epicardial potential fields.

• The performances of both DFT-based models are worse than the ones of the corresponding
time-series-based ones. This is opposite to what happened in the first test case and it
suggests that the choice between one model or the other may severely depend on the dataset
at disposal (both in terms of the type of data that it stores and of its dimensionality).

• Also the DFT-based ST-RB-DNN model has been designed to have a complexity which
is almost independent of the dimensionality of the input datapoints. Indeed, the number
of trainable parameters of the two considered models are 219′826 (if 12-lead ECGs are
processed) and 263′862 (if 158 signals are considered).

• Looking at the epicardial activation maps of Figure 5.22, it is possible to recognize the best
performances of the model processing 158 signals with respect to the ones of the model
receiving 12-lead ECGs in input. Quantitatively, the l1-norm relative error of the former
is 5.18 · 10−2, while the one of the latter equals 6.95 · 10−2. Qualitatively, instead, a better
estimation can be observed on the left ventricle, especially at the free wall, in the anterior
paraseptal area (where the EBT is better localized) and in the inferior basal region (where
the model processing 12-lead ECGs predicts an "artificial" elongated EBT).

• Focusing on signals reconstruction, again the model processing 158 signals features lower l1-
norm absolute errors, both averaged on the test dataset (4.50 ·10−2 mV vs 6.21 ·10−2 mV )
and for the test datapoint considered in Figures 5.23 and 5.24 (4.09 · 10−2 mV vs 6.26 ·
10−2 mV ). Qualitatively, very small differences can be anyway appreciated, with both
models being able to well reconstruct the limb leads, but experiencing more difficulties on
the chest ones.

Finally, also in this case we have tried to train the model as a deep autoencoder which takes as
input the lowest-frequency DFT coefficients of 158 leads, computed from the signals recorded by
155 electrodes placed over the torso. As we could expect, results have been discouraging, showing
a good reconstruction of the signals on the torso (average l1-norm absolute error: 4.27·10−2), but
a very bad estimation of the epicardial potential fields (average l1-norm relative error: 2.13·10−1).
The same considerations made for the time-series-based model do hold and the need of putting
in place more sophisticated techniques to regularize the predicted epicardial potential fields does
emerge.
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ROM approximation ST-RB-DNN with 12-lead
ECGs

ST-RB-DNN with 158
body surface signals

(a) Frontal view (b) Frontal view (c) Frontal view

(d) Rear view (e) Rear view (f) Rear view

(g) Left Lateral view (h) Left Lateral view (i) Left Lateral view

(j) Inferior view (k) Inferior view (l) Inferior view

Figure 5.22: Epicardial activation maps obtained, on test datapoint 2 of the second test case, with the Space-Time
ROM approximation (left column) and the DFT-based ST-RB-DNN model, whose input is generated both from
both 12-lead ECG signals (central column) and from signals recorded by 155 different electrodes placed on the
torso (right column). The l1-norm relative error equals 6.95 · 10−2 for the former and 5.18 · 10−2 for the latter.
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Figure 5.23: ECG signals obtained, on test datapoint 2 of the second test case, with the DFT-based ST-RB-DNN
model, whose input is generated from 12-lead ECG signals, and with Space-Time ROM reconstruction. The
Green solid line represents the ECG signal got with the ROM approximation; the Red solid line represents the
ROM ECG signal, reconstructed via the selected DFT coefficients through an Inverse DFT; the Blue dashed line
represents the ECG signal got with the considered DFT-based ST-RB-DNN model. The l1-norm absolute error
(averaged on all the leads) equals 6.26 · 10−2 mV .

Figure 5.24: ECG signals obtained, on test datapoint 2 of the second test case, with the time-series-based ST-
RB-DNN model, whose input is generated from 158 signals recorded by 155 electrodes placed over the human
torso, and with Space-Time ROM reconstruction. The Green solid line represents the ECG signal got with the
ROM approximation; the Red solid line represents the ROM ECG signal, reconstructed via the selected DFT
coefficients through an Inverse DFT; the Blue dashed line represents the ECG signal got with the considered
DFT-based ST-RB-DNN model. The l1-norm absolute error (averaged on all the leads) equals 4.09 · 10−2 mV .
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Chapter 6

Conclusion

The last chapter is devoted to a final overview of the project, summarizing its main motivations,
the methods that have been put in place and the most relevant findings and results. Additionally,
the major limitations are underlined and some possible ways of overcoming those are proposed.

In detail, Section 6.1 features the conclusive summary of the project, while Section 6.2 discusses
its main limitations and proposes some possible further developments.

6.1 A Conclusive Summary

In this project we tried to develop a PDE-aware DL model, able to provide physically-consistent
and data-driven solutions to Inverse Problems in cardiac electrophysiology.

Two kinds of motivations guided us. On the one side, there is the clinical need of estimating,
via simple and non-invasive procedures, data that nowadays can be collected only via intrusive
and expensive measurements. On the other side, instead, there is the mathematical ambition
of coming up with DL models that manage to learn relevant mappings even from a small or
imprecise amount of data, by exploiting the knowledge of some of the physical laws underlying
the phenomenon of interest. Indeed, as said alongside the thesis, the fields of Deep Learning and
of Numerical Approximation of PDEs/ODEs have undergone an extensive development in the
last 50 years; anyway, a clean separation margin between those has been maintained, at least
until the last decade. In recent years, indeed, some works aimed at developing DL models that
manage to ease and speed up their training, by leveraging the knowledge of the physics of the
problem at hand via PDEs, started to appear (e.g. [1,2]). Such models proved to be successful in
the so-called small data regime, i.e. in situations where the amount of data at disposal is either
limited or imprecise, but an accurate description of some of the physical laws characterizing the
problem is present. The Inverse Potential Problem of Electrocardiography is a context of such
kind; thus making a first attempt in this direction appeared both challenging and reasonable.

After having compensated the leak of data by numerically approximating the heart EP and the
Forward Problem of Electrocardiography (see Section 4.2), we developed a physical-aware DL
model for Inverse Problems in cardiac EP, called ST-RB-DNN. The DL part is due to the fact
that the model learns, via classical DL paradigms and techniques, the epicardial extracellular
potential, from signals measured in a finite number of points on the human torso; this constitutes
the "Trainable NN" portion of the model, whose actual architecture depends on the nature of
the signals to be processed. The physical-awareness, instead, is achieved in two ways:

1. Estimating the epicardial potential as projected onto a Space-Time-Reduced subspace,
generated via PODs from solutions to the heart EP problem

2. Reconstructing in output (and penalizing in the loss functional) the signals given as input,
by solving the ROM-in-Space FOM-in-Time Forward Problem of Electrocardiography, in-
side a deterministic layer, using the predicted epicardial potential as Dirichlet boundary
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datum
Both elements allow to shrink the space of admissible solutions to a lower-dimensional and
physically-consistent manifold, easing and speeding up the overall training process.

In the numerical tests we conducted, we considered two different models:
1. The time-series-based ST-RB-DNN model, which processes raw signals, organized in the

form of time series, by leveraging temporal convolution
2. The DFT-based ST-RB-DNN model, which processes the M lowest-frequency coefficients,

arising from the application of a DFT to the original input signals. M is a model hyper-
parameter

Also, we tested the aforementioned models in two different settings: a simplified one, employing
an idealized geometry and a coarse mesh for the human torso and providing 12-lead ECG sig-
nals in input, and a slightly more realistic one, where we used a human-shaped geometry and
a refined mesh for the torso and we provided the model with 158 signals, generated from the
measurements of 155 different electrodes.

The reduced computational effort required by the FOM simulations, the generation of the Re-
duced Bases and the model training in the first test case allowed us to carry out an extensive
cost-benefit analysis. For both the time-series-based model and the DFT-based one, we per-
formed several trainings, for different values of the most important hyperparameters. Ultimately,
we derived a set of optimal hyperparameters, which allowed us to identify the "best models".
They both exhibited good performances, attaining l1-norm relative errors of the order of 4− 6%
on the activation maps of the test dataset and featuring low complexities (which allowed them to
be trained in ≈ 30− 45 min in a computational environment as the one described in Appendix
C). Actually, the best DFT-based model managed to attain an average l1-norm relative error
on the activation maps equal to 4.72 · 10−2, while the best time-series-based one only reached
an error of 6.26 · 10−2. Finally, we tried to train the models (with their "best" architecture) as
pure autoencoders, removing the (weighted) MAE on the Space-Time-Reduced epicardial po-
tentials from the loss. Results have been anyway discouraging, as both models managed to well
reconstruct the input signals, but they estimated "noisy" and "non-physical" activation maps,
characterized by the presence of many depolarizing wavefronts, colliding one with the other.

The increased computational burden characterizing the second test case (especially in terms
of FOM simulations and of Reduced Bases generation) forced us generate a smaller dataset
and to perform fewer trainings of the ST-RB-DNN models. In particular, we have fixed the
architectures of both the time-series-based model and the DFT-based one, employing the optimal
sets of hyperparameters identified in the first test case, and we compared the performances of
the models in two scenarios. In the first one, they receive in input 12-lead ECGs, while in the
second one they process 158 signals, that are generated from the measurement of the electric
potential in 155 different locations on the body surface. Results clearly revealed that providing
the model with more informative data on the epicardial potential field allows to improve its
performances; in both cases, indeed, the l1-norm relative error on the activation maps decreased
when passing from 12 input signals to 158 (−1.18% and −0.78% for the time-series-based model
and the DFT-based one, respectively). Errors, anyway, were higher if compared to the ones
got in the first test case; this is mainly due to the much reduced dimensionality of the input
dataset. Finally, also in this case we tried to train the models as pure autoencoders, with
the hope that providing in input more informative data would allow to better reconstruct the
epicardial potential field, without involving it in the loss. Anyway, results have been similar to
the ones got in the first test case, thus suggesting more sophisticated techniques to be put in
place to regularize the estimated Space-Time-Reduced epicardial potential and to further shrink
the physically-consistent manifold where the model seeks for a solution to the Inverse Problem.
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6.2 Limitations and Further Developments

As pointed out throughout the report, the current project proposes as a first methodological at-
tempt of tackling the Inverse Potential Problem of Electrocardiography, both taking advantage
of DL techniques and of the knowledge of the problem physics, expressed by means of suitable
PDEs/ODEs. In view of this, it is reasonable that it features some limitations, which prevent it
from being used in the actual clinical setting on real data.

In the following, the main limitations of the project are listed and discussed; also, some ways of
overcoming those, configuring as possible further developments, are presented.

• Simplified Dataset: the training of the ST-RB-DNN model, unless it is designed as a
pure autoencoder, requires lots of epicardial activation maps to be available. As discussed
in Chapters 4 and 5, nowadays this is possible only via invasive measurement techniques
and it is then unfeasible to build a dataset of the dimensions required by standard DL
applications. Because of this, we have been forced to train and test our models with "ar-
tificially generated data", i.e. by numerically approximating the heart electrophysiology
(via the bidomain equations, coupled with the AP ionic model) and the Forward Problem
of Electrocardiography (via a generalized Laplace equation) - see Problem 4.1. Further-
more, since the project configures as a methodological proof-of-concept, we decided to
restrict ourselves to simplified settings. Thus, we employed coarse meshes (apart from the
torso one in the second test case), made just of some thousands of DOFs both for the
heart and for the human torso (see Figures 4.8 and 4.9) and we neglected the presence
of conducibility inhomogeneities, for instance due to the presence of different organs (see
Subsection 4.2.3). Despite having made some efforts in reproducing signals exhibiting the
expected polarities and amplitudes (see Subsection 4.1.2 and, in particular, Table 4.1 for
some reference values in this sense), the results we obtained are far from being realistic.
As a consequence, the ST-RB-DNN models we presented cannot be employed with success
on real data. In view of a possible clinical application, it is then evident the need for the
development of a fast and accurate solver (even on relatively coarse meshes) for both the
Heart Electrophysiology and the Forward Problem of Electrocardiography; in this way,
a variety of realistic scenarios could be numerically reproduced in a reasonable amount
of time and the ST-RB-DNN model could learn from data which are similar to the ones
it would process in the clinical setting. This is not a direct development of the current
project, but it rather wants to underline how much the presented models can benefit from
advances in the field of numerical approximation of the Heart Electrophysiology and of the
Forward Problem of Electrocardiography.

• Reference Geometry: another important limitation lies in the fact that all the data
the ST-RB-DNN model has been trained and tested on have been generated (in both
test cases) on the same, reference, geometry. In general, it could be possible to derive a
parametrization of the Forward Problem with respect to the heart and the torso geome-
tries; in this case, anyway, such geometric parameters would have to be estimated by the
model, significantly increasing the level of complexity of the task to be performed. Thus,
we may assume at first to consider fixed geometries for the heart and the torso. Even in
this simplified setting, it is broadly known that the position and the rotation of the heart
inside the torso can vary a lot, both from patient to patient and, for the same patient,
from heartbeat to heartbeat, exerting a non-negligible impact on the measured BSPMs.
Several ways of taking these effects into account could be figured out, readily all subject
to the fact that the data used for the training are obtained for different positions and
rotations of the heart inside the torso. For instance, we could take advantage of already
developed methods to track the position of the heart from body surface potentials (as
the one presented in [61]). Once the heart position is (approximately) known, we could
then provide it as input to a ST-RB-DNN model together with the body surface poten-
tials. The model would be analogous to the ones described in Chapter 5, but for the fact
that the information on the heart position are used within the RB-solver layer to properly
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assemble the Forward Problem to be solved; in this sense, deriving a parametrization of
such problem with respect to the heart position would be extremely useful. A one-step
alternative could instead consist in performing the estimation of the heart position within
the ST-RB-DNN model, together with the one of the epicardial potential and, if any, of
the torso conducibility parameters. The implementation of the RB-solver layer would be
the same as in the previous approach, but in this case the model would end up being more
complex and, thus, more difficult to train and more likely to fail in convergence. Among
the two, then, the first approach seems to be (potentially) the best one, provided that the
selected heart position tracking algorithm is accurate enough.

• Unrealistic Noise: another key aspect that differentiates clinically measured body sur-
face potentials from numerically approximated ones is the presence of noise. As briefly
discussed in Subsubsection 5.2.3.1, we have augmented the available dataset by superim-
posing some correlated white Gaussian noise, constructed in order to get an average SNR
of ≈ 19 dB. Anyway, this is a very simplistic approach, real body surface potentials fea-
ture the presence of different sources of noise, which are due to various aspects as muscular
contraction/relaxation, breathing or measurement instruments and procedures. Because
of this, several ad hoc filtering techniques have been developed, in order to reduce as much
as possible the effect of noise components and to visualize the "clean" signals due to the
heart electrical activity only (see [81, 82]). Thus, provided that a fast and accurate solver
of the Heart EP and of the Forward Problem of Electrocardiography is developed and that
the heart position is somehow taken into account in the model, a subsequent update would
be to enrich the numerically simulated signals with realistic noise components.

• Missing Atria: another limitation, related to the numerical approximation of the heart
EP, is the fact that we have never considered the presence of the atria, just focusing on the
two ventricles. Overcoming this issue is absolutely feasible, since it would suffice to include
the atria in the numerical simulations, as done for instance by Schenone et al. in [88], and
it would allow to potentially detect pathological conditions due to atrial defects. Anyway,
numerical methods to solve the Inverse Potential Problem perform way better on the ven-
tricles than on the atria since, being thicker and wider, they induce larger potentials on
the body surface, so that even small variations could be detected. As a starting point,
then, it is preferable to focus on the ventricles only; the inclusion of the atria configures
as a more advanced development.

• Limited Design Research: an additional limitation, which is anyway common to all
works in the field of AI and DL, lies in the fact that only a limited amount of NN archi-
tectures has been taken into account in the project. In particular, the presented models
are all based on the design choices made in [36] in the context of RB-CNNs for unsteady
parametrized PDEs (see Subsection 3.2.2). During the first stages of development, some
tests have been done also considering ResNets and CRNNs, as those have been employed
in [76] and in [75] respectively, in the context of ECG heartbeat classification; anyway, no
significant improvements have been observed, so no further efforts in this sense have been
made. In general, the field of NNs offers plenty of possibilities in terms of architectural
design and of optimization algorithms, so additional efforts in this sense are very likely to
result in the development of better models.
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Appendix A

The Heart Anatomy and the
Cardiovascular System

This Appendix Chapter provides an overview on the anatomy of the heart and on the cardio-
vascular system. As in Section 4.1, the vast majority of the information is taken from [37].

In particular, Section A.1 features a description of the anatomy of the human heart; Section A.2
focuses on the other elements of the cardiovascular system (i.e. the blood vessels and the blood);
Section A.3 illustrates the main aspects of the operation of the cardiovascular system.

A.1 The Heart Anatomy

The cardiovascular system is made of three main elements: the heart - a muscular organ that
pumps blood throughout the body; the blood vessels - ducts through which blood circulates;
the blood - a fluid that, traveling along the blood vessels, brings nourishment to the cells and
takes waste products away from them.

The heart is a muscle that generates the force which is needed to pump the blood into the blood
vessels, so that it can reach all the cells of the human body, bringing substances as oxygen and
nutrients and taking away the waste products as carbon dioxide. It is located in the middle of
the chest cavity, just above the diaphragm, a muscle that separates the chest cavity from the
abdominal cavity. Its dimensions are of the order of the ones of a fist and its weight is around
300-350 g in males and 250-300 g in females.

The anatomy of the heart can be visualized in Figure A.1. The heart is made of four chambers:
the two superior chambers, called atria, receive the blood that comes back to the heart from
the veins, while the two inferior chambers, called ventricles, take the blood from the atria and
generate the pressure that is needed to push it into the arteries. Other than a superior/inferior
division, the heart can be also seen as divided into a left and a right part, typically called the left
heart (made of the left atrium and the left ventricle) and the right heart (made of the right
atrium and the right ventricle). The left heart and the right heart are divided by the septum,
which prevents the blood of the one side to mix up with the one of the other side; in particular,
the portion of septum which separates the atria is called interatrial septum, while the one that
separates the ventricles is called interventricular septum.

The four cardiac chambers are involved in phases of contraction and relaxation, that are con-
tinuously repeated and that constitute the cardiac cycles. During such cycles, it is crucial
that the atrial contraction happens before the ventricular one, so that the blood flow proceeds
in a unique direction, driven by the pressure gradients; thus it is necessary to prevent the blood
from flowing in the opposite direction and this function is accomplished by the cardiac valves.
More precisely, the four cardiac valves allow the blood to circulate according to a unique specific
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Figure A.1: Schematic view of the anatomy of the human heart.
Image by Wapcaplet - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=830253

direction both within the heart itself and between the heart and the arteries directly connected
to it (the aorta and the pulmonary arteries). The atria and the ventricles of both the left and
the right side are separated by the AV valves, which allow the blood to flow from the atria
to the ventricles only. The left AV valve is also called bicuspid valve or mitral valve, being
it made by two flaps (called leaflets or cusps); the right AV valve, instead, is called tricuspid
valve, since it is made of three different flaps. The valves that regulate the flow between the
ventricles and the arteries are instead called SL valves, due to their "half-moon" shape; in par-
ticular the aortic valve is located at the opening between the left ventricle and the aorta, while
the pulmonary valve is located at the opening between the right ventricle and the pulmonary
trunk.

The heart wall is made of three different layers: the external layer, called epicardium, is made
of conjunctive tissue; the intermediate layer, called myocardium, is made of cardiac muscular
tissue; the internal layer, called endocardium, is made of epithelial cells. Additionally, the
heart is surrounded by a membranous double-walled sac, called pericardium; it contains the
pericardial fluid, that provides lubrication to the heart during its beats.

A.2 Other Elements of the Cardiovascular System

Other than the heart, the circulatory system is made of two additional elements: the blood
vessels and the blood.

The blood vessels form a closed system of ducts that allows to transport the blood from the
heart to the different organs and from the different organs back to the heart; this system is
commonly referred to as the vascular system. The blood which leaves the heart is carried to
the different organs and tissues of the human body via big vessels, called arteries; these vessels
tend to sequentially branch out, becoming more and more numerous and tiny as their distance
from the heart increases. The smallest arteries, called arterioles, branch out in vessels which are
even smaller, called capillaries; from the capillaries, the blood comes back to the heart, flowing
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Figure A.2: Schematic view of the cardiovascular system.
Image by OpenStax College - Anatomy &amp; Physiology, Connexions Web site. http://cnx.org/content/
col11496/1.6/, Jun 19, 2013., CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid=30148241

in vessels which get bigger and bigger - the venules and then the veins.

The blood is a fluid, despite almost half of its volume is made of cells. The biggest cells are
called erythrocytes (or red blood cells), which contain hemoglobin, a protein that allows to
transport the oxygen. The other cells are the leukocytes (or white blood cells), which allow
the organism to defend itself against the aggression of microorganisms. Additionally, the blood
contains the platelets, fragments of cells which play a key role in blood coagulation. The liquid
portion of the blood is called plasma and it is made of water in which proteins, electrolytes and
other solutes are dissolved.

A.3 Blood Flow through the Heart and the Blood Vessels

A schematic representation of the circulatory system can be found in Figure A.2. The circulatory
system consists of two different circuits: the pulmonary circulation, made by the pulmonary
blood vessels and by the vessels that connect the lungs to the heart, and the systemic circula-
tion, that contains all the blood vessels directed from/to the other parts of the body to/from the
heart. The systemic circulation has to supply with oxygen and nourishment all the organs, in-
cluding also the lungs (via the bronchial arteries) and the heart itself (via the coronary arteries).
These two circulations get blood from different parts of the heart; indeed the right heart provides
blood to the pulmonary circulation, while the left heart supplies the systemic one. It is worth
noticing that the blood of the one side of the heart must not mix up with the one from the other
side; because of this, the heart consists of two distinct pumps, yet located within the same organ.

Both the pulmonary and the systemic circulation are equipped with dense nets of capillaries,
known as capillary beds, where the exchange of nutrients and gases (oxygen and carbon dioxide)
physically happens. In particular, at the pulmonary capillaries, the oxygen coming from the air
present in the lungs is transferred to the blood, while the carbon dioxide leaves the blood and
goes into the lungs; thus, when the blood leaves the pulmonary capillaries, it is relatively rich in
oxygen and it is then called oxygenated blood (or red blood). Conversely, at the capillary beds of
the systemic circulation the cells consume oxygen and produce carbon dioxide; thus, when the
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blood flows in such vessels, the oxygen leaves it and carbon dioxide enters it. The blood leaving
the systemic capillaries is then poor in oxygen, thus being referred to as deoxygenated blood (or
blue blood).

Let’s now follow the blood flow through the systemic and pulmonary circulations, supposing to
start from the left ventricle.

1. The left ventricle, contracting, pumps the oxygenated blood into the aorta (passing
through the aortic valve); its branches then carry the blood up to the capillary beds
of all the organs and tissues of the human body.

2. The blood gets deoxygenated at the systemic capillary beds and it goes back to the heart
via the caval veins, two big veins that bring the blood to the right atrium. More specif-
ically, the superior caval vein carries the blood from the parts of the body above the
diaphragm, while the inferior caval vein carries the blood from the parts of the body
below the diaphragm.

3. Upon a contraction of the right atrium, the blood passes through the tricuspid valve and
it reaches the right ventricle.

4. The right ventricle, contracting, pumps the blood into the pulmonary trunk (passing
through the pulmonary valve), which branches out immediately into the pulmonary ar-
teries; such arteries carry the deoxygenated blood to the lungs and they are the only
arteries which contain poorly oxygenated blood.

5. The blood gets oxygenated at the pulmonary capillary beds and then, through the pul-
monary veins, reaches the left atrium. Such veins are the only ones containing blood
that has a high quantitative of oxygen.

6. Finally, upon a contraction of the left atrium, the blood reaches again the left ventricle,
passing through the mitral valve.

It is interesting to notice how the organization of the blood flow through the systemic and pul-
monary circulations reflects into the anatomy of the heart; indeed the thickness of the wall (i.e.
its muscular mass) of each heart chamber is directly proportional to the distance that the blood
contained in such chamber has to cover. For instance, the atria only have to pump blood into the
ventricles, through the AV valves, thus atrial walls are quite slim; conversely, the blood pumped
by the ventricles has to reach all the organs and tissues of the body, thus ventricles must have
a much higher muscular mass than the atria, which results in having much thicker walls. More-
over, the left ventricle has to push the oxygenated blood to all the body, from the brain to the
feet, while the right ventricle only has to push the deoxygenated blood to the lungs, which are
pretty close to it; this reflects in the left ventricle having a muscular mass which is significantly
bigger than the one of the right ventricle. This plays an important role in electrocardiography
(see in Subsections 4.1.1 and 4.1.2).

Finally, it is worth observing that the blood flow through the systemic and pulmonary circulations
does not happen only in series, but also in parallel. Indeed it is true that, on the one side, the
blood has to go through both the systemic and the pulmonary circulations before getting back
to the starting point (i.e. in series), but it is also true, on the other side, that the systemic
and the pulmonary circulations happen simultaneously (i.e. in parallel). The right heart pumps
deoxygenated blood to the lungs at the same time as the left heart pumps oxygenated blood to
all the organs and tissues; because of this, the left and the right heart contract and relax almost
simultaneously, so that we can speak about systole (i.e. ventricular contraction) and diastole
(i.e. ventricular relaxation), without making a distinction between the left and the right halves
of the heart. Also, the systemic circulation in itself features an organization in parallel, as all
the organs are nourished simultaneously by different arteries. This has two main advantages:
on the one side every organ receives fully oxygenated blood, that has not been already depleted
in oxygen by another one. On the other side, the blood flux towards each organ can be tuned
almost independently and adapted to the constant variations of the metabolic demands; at any
time it is then possible to increase the blood flow towards the most active organs and to reduce
the one towards the least active ones.
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Appendix B

Additional Numerical Methods

B.1 POD, SVD and Randomized SVD

Proper Orthogonal Decomposition

Proper Orthogonal Decomposition (POD), also known as Principal Component Analysis (PCA)
or Karhunen-Loéve Transform (KLT) is a statistical procedure, originally introduced by K.
Pearson in [89], which aims at obtaining low-dimensional approximate descriptions of high-
dimensional processes. A general overview can be found in [90]; here we will just summarize
the most relevant aspects, which proved to be useful in carrying out the current project. In
mathematical terms, if a process is described by the function f ∈ V such that f : RN → RM ,
the POD aims at identifying n� N functions {φk}nk=1, φk : RN → RM such that

f(x;µ) ≈
n∑
k=1

ak(µ)φk(x) (B.1)

with the reasonable expectation that the approximation becomes exact (almost everywhere) as
n approaches infinity. Here µ ∈ P denotes a vector of parameters that influence the expression
of f . Furthermore, the name POD comes from the fact that the functions {φk}nk=1 are chosen
to be orthonormal, i.e.

〈φk1 ,φk2〉 = δk1k2 (B.2)

where δij is the Kronecker Delta function and 〈·, ·〉 is an inner product of the considered vector
space V . Under (B.2), the expansion coefficients {ak(µ)}nk=1 can be computed as

ak(µ) = 〈f(µ),φk〉 ∀ k ∈ {1, . . . , n} (B.3)

Singular Value Decomposition

The Singular Value Decomposition (SVD) configures as the discrete version of the POD. Indeed
consider a system (in a steady state for the sake of simplicity) where we take measurements
of N different quantities for M different times (i.e. for M different values of the parameters
characterizing the system). Statistically, we can say that we collect M different realizations of
the random vector a ∈ RN and we can arrange all the data in a matrix A ∈ RN×M . Then, we
can compute the SVD of such matrix, which writes as

A = UΣV T (B.4)

where U ∈ RN×N and V ∈ RM×M are orthogonal matrices and Σ ∈ RN×M is a diagonal matrix,
whose diagonal elements {σi}min(N,M)

i=1 , stored in decreasing order, are called singular values of
A. U is also the matrix of the eigenvectors of the symmetric matrix AAT = UΣ2UT ∈ RN×N ,
while V is the matrix of the eigenvectors of ATA = V Σ2V T ∈ RM×M ; Σ2 denotes the diagonal
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matrix storing the squared singular values of A. The rank of A is equal to the number r of
non-zero singular values and its SVD can be also rewritten in compact form as

A = ŨΣ̃Ṽ T (B.5)

being Σ̃ the r × r diagonal matrix storing the non-zero singular values {σi}ri=1; U ∈ RN×r and
V ∈ Rr×M the truncated matrices of the left and right eigenvectors.

It is evident that (B.4) is the discrete version of (B.1); indeed we can write (B.4) (and also (B.5))
as:

A = UQ =

N∑
k=1

ukq
T
k (B.6)

being uk the k-th column of U and qk the k-th row of the matrix Q = ΣV T . Then A is
equivalent to f(x;µ), {qk}Nk=1 to {ak(µ)}nk=1 and {uk}Nk=1 to {φk(x)}nk=1.

Notice that, in this case, the decomposition is exact; to get an approximated one only a subset
of singular values/vectors n < r should be considered. In fact, it can be proved that the matrix

An = UΣnV
T (B.7)

being Σn obtained from Σ by setting σn+1 = σn+2 = · · · = σr = 0, is the best rank-n approxi-
mation of A, i.e.

An = argmin
B∈RN×M : rank(B)=n

||A−B||F (B.8)

where || · ||F denotes the Fröbenius norm. Additionally, the approximation error is defined
through the "extra" singular values as

||A−An||2F =

N∑
k=n+1

σ2
i (B.9)

Thus, the first n < r ≤ N columns of matrix U define an optimal orthonormal basis to approx-
imate the data stored in A; such columns are called Proper Orthogonal Modes. This result is
known as the Eckart-Young theorem and the proof can be found directly in the seminal paper [91].

The optimality properties of the SVD can be deduced also considering that AAT is proportional
to the empirical sample covariance matrix of the random vector a ∈ RN , of which M realiza-
tions are stored column-wise in matrix A. Indeed, it has been proved (see again [89, 90]) that
the eigenvectors of the empirical covariance matrix Cov(A) (and thus of AAT ) coincide with
the Principal Axes, defined as solutions of the following problem.

Problem 1: Find e1, e2, . . . , eN such that

V ar[eTi A] = sup
e∈RN :||e||=1

V ar[eTA] (B.10)

and such that Cov[eTi A, e
T
j A] = 0 ∀ i, j ∈ {1, . . . , N}, i 6= j

The so-called Principal Components of A are then derived just by projecting it onto the Prin-
cipal Axes {ei}Ni=1. Since U stores, column-wise, the eigenvectors of AAT , it ends up that the
Proper Orthogonal Modes and the Principal Axes of A are equivalent, thus featuring the same
optimality properties.
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Randomized Singular Value Decomposition

Coming to the numerical approaches, the SVD of a matrix A ∈ RN×M is typically computed
via a two-steps procedure and this is done also in MATLAB, which in turn employs a LAPACK
implementation (see [92]). In the first step, the matrix A is reduced to a bi-diagonal matrix Ā
at a cost of O(max(N,M)2) flops. The second step consists then in the computation of the SVD
of Ā and it can be done only via iterative methods. In the LAPACK routine used by MATLAB,
the method proposed by C.F. Van Loan & G.H. Golub in [25], based on solving a sequence of
2× 2 SVD problems, is employed and, if the computation is stopped once machine precision is
reached, it costs only O(M) flops. Thus, the overall computational cost of the MATLAB SVD
routine is O(max(N,M)2) flops and it is due to the initial "reduction" step. Also, if the rank,
say k, of the desired matrix approximation is chosen a priori, there exist algorithms based on
rank-revealing QR factorization which feature a computational cost of O(NMk) flops (see [93]).

In many DL applications, SVD has to be applied to very large and dense matrices, sometimes
so large that they cannot even fit in memory. During the last decade, optimized techniques
to compute low-rank matrix approximations have been developed, leveraging randomness as a
powerful tool in this sense. In particular, in the context of this project we have employed the
Randomized SVD introduced by Halko et al. in [26], which allows to efficiently compute an
accurate approximation of the best rank-2k approximation of a matrix, being k a target number
of singular vectors. As classical algorithms, also this one features a two-steps procedure; consid-
ering a matrix A ∈ RN×M it works as follows.

• Step 1: Random sampling is employed to identify a subspace which captures most of the
action of the matrix. In particular, a matrix Q such that A ≈ QQTA is derived. The
steps of the algorithm are:
1. Generate an M × 2k random Gaussian test matrix Ω
2. Form Y =

(
AAT

)q
AΩ ∈ RN×2k, with q = 1 or q = 2. The pre-multiplication

by
(
AAT

)q allows to circumvent problems arising from a slow decay of the singular
values of A, which is common in many applications.

3. Construct the matrix Q ∈ RN×2k, such that its columns form an orthonormal basis
for the range of the random matrix Y

• Step 2: The SVD of the projection of the original matrix onto the reduced subspace spanned
by the columns of Q is computed. The steps of the algorithm are:
1. Form B = QTA ∈ R2k×M

2. Compute the SVD of B with classical algorithms, i.e. B = ŨΣV T

3. Set U = QŨ ∈ RN×2k and assemble the desired rank-2k approximation of A as
A2k = UΣV T .

A theoretical result proved in [26] tells that

E
(
||A−UΣV T ||

)
≤
[

1 + 4

√
2 min(N,M)

k − 1

]1/(2q+1)

σk+1 (B.11)

where E denotes the expectation with respect to the Gaussian random test matrix Ω, 2 ≤ k ≤
1

2
min(N,M) and σk+1 is the (k + 1)-th singular value of A. Additionally, if the approximate

SVD is truncated, retaining only the first k singular values and vectors, then the error bound
becomes

E
(
||A−UΣkV

T ||
)
≤ σk+1 +

[
1 + 4

√
2 min(N,M)

k − 1

]1/(2q+1)

σk+1 (B.12)

So, we only pay no more than an additive term equal to the (k+ 1)-th singular value of A if we
perform the truncation step.
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Numerical results on finding the k dominant components of a N × M dense matrix (which
fits in memory) showed that the proposed algorithm features a computational complexity of
O(MN log(k)) flops, which improves the one of O(NMk) flops of classical deterministic algo-
rithms.

All additional details, proofs and specifics of the presented algorithm can be found in [26].
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B.2 Discrete Fourier Transform and Fast Fourier Transform
Algorithms

Fourier Transform

In [94], J. Fourier showed, in the context of heat transfer, that some functions could be writ-
ten as an infinite sum of harmonics. This lead to the definition of the Fourier Transform, a
mathematical transform that maps a function into its complex-valued constituent frequencies.
In mathematical terms, the Fourier Transform F of a real-valued function f : Rn → C such that
f ∈ L1(Rn) (so, f must be Lebesgue integrable in Rn) is defined as

F(f)(ξ) =: f̂(ξ) =

∫
Rn
f(x)e−2πi〈x,ξ〉 dx (B.13)

where 〈·, ·〉 represents the standard inner product in Rn. Also, it is possible to define an Inverse
Fourier Transform F−1 of a function f̂ : Rn → C as

F−1(f̂)(x) = f(x) =

(
1

2π

)n ∫
Rn
f̂(ξ)e2πi〈ξ,x〉 dξ (B.14)

The domain of the function f to be transformed is typically referred to as the time domain,
since a classical application of the Fourier Transform is on functions of time (in case n = 1); the
domain of the transformed function f̂ is instead called the frequency domain (being it "inverse"
to the time domain) or the Fourier domain.

Given f, g ∈ L1(Rn), the most important properties of the Fourier Transform are:
• Linearity: F(af(x) + bg(x)) = af̂(ξ) + bĝ(ξ) ∀ a, b ∈ C
• Translation: F(f(x− x0)) = e−2πi〈x0,ξ〉f̂(ξ) ∀ x0 ∈ Rn

• Modulation: F(e2πi〈x,ξ0〉f(x)) = f̂(ξ− ξ0) ∀ ξ0 ∈ Rn

• Scalar Scaling: F(f(ax)) =
1

|a| f̂
(
ξ

a

)
∀ a ∈ R : a 6= 0

• Scaling: F(f(Ax)) = |det(A)|−1f̂(A−1ξ) ∀ A ∈ Rn×n : det(A) 6= 0

• Conjugation: h(x) = f(x) =⇒ ĥ(ξ) = f̂(−ξ)

• Convolution Theorem: F(f(x) ∗ g(x)) = f̂(ξ)ĝ(ξ) and F(f(x)g(x)) = f̂(ξ) ∗ ĝ(ξ)

• Parseval’s Theorem:
∫
Rn f(x)g(x) dx =

∫
Rn f̂(ξ)ĝ(ξ) dξ

• Plancherel’s Theorem:
∫
Rn |f(x)|2 dx =

∫
Rn |f̂(ξ)|2 dξ

• Differentiation: F
(
dn

dxnk
f(x)

)
= (2πiξk)nf̂(ξ) and

dnf̂(ξ)

dξnk
= F ((−2πixk)nf(x))

Notice that Plancherel’s Theorem allows to identify the Fourier Transform as an isometry be-
tween L2(Rn) and itself, with respect to the norm of L2(Rn). Because of its many interesting
properties, the Fourier Transform has become a very important tool in a variety of fields, from
the analysis of PDEs and ODEs to signal/image processing and quantum mechanics. Additional
information about the Fourier Transform, its properties and its applications can be found in [95].

Discrete Fourier Transform

The Discrete Fourier Transform (DFT) is the discrete counterpart of the Fourier Transform and
it acts on finite-dimensional sets made of equally-spaced samples of a complex-valued function.
In the one-dimensional case, it turns a sequence of N complex numbers x = {x0, x1, . . . , xN−1}
into another sequence of complex numbers X = {X0, X1, . . . , XN−1} as follows:

Xk =

N−1∑
n=0

xne
− 2πi

N kn

=

N−1∑
n=0

xn

[
cos

(
2π

N
kn

)
− i sin

(
2π

N
kn

)] (B.15)
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∀ k ∈ 0, . . . , N − 1. Actually the equation can be evaluated also outside the domain k ∈
{0, . . . N − 1} and the resulting sequence is N -periodic, i.e. Xk+cN = Xk ∀ c ∈ Z, because
of the N -periodicity of all the complex exponential terms. As for the Continuous Fourier Trans-
form, also the discrete one admits an inverse transform which reads as:

xn =
1

N

N−1∑
k=0

Xke
2πi
N kn

=
1

N

N−1∑
k=0

Xk

[
cos

(
2π

N
kn

)
+ i sin

(
2π

N
kn

)] (B.16)

An important observation is that the DFT is actually nothing more than a "smart" linear
application from Cn to Cn. Indeed it can be fully encoded in the so-called DFT matrix, which
reads as follows:

F =


1 1 . . . 1

1 e−
2πi
N ·1·1 . . . e−

2πi
N ·1·(N−1)

...
...

. . .
...

1 e−
2πi
N ·(N−1)·1 . . . e−

2πi
N ·(N−1)·(N−1)

 (B.17)

such that X = Fx and x =
1

N
F ∗X, being F−1 =

1

N
F ∗ the inverse DFT matrix (F ∗ denotes

the Hermitian transpose of F ). Moreover, the columns of F form an orthogonal basis for CN
and they all have norm equal to

√
N ; thus, by dividing F by

√
N , we get a unitary matrix

U =
1√
N
F that defines the so-called Unitary DFT. In particular, it holds that:

Xu = Ux

x = U−1Xu = U∗Xu
(B.18)

where U∗ denotes the Hermitian transpose of U and Xu the Unitary DFT of x.

Clearly, it is possible to extend the DFT to handle multidimensional inputs, thus defining the
Multidimensional DFT. So, if {xn1,n2,...,nd} is a d-dimensional array storing

∏d
l=1Nl equally-

spaced samples of a function f : Rd → C, then the Multidimensional DFT of it is defined
as

Xk1,k2,...,kd =

N1−1∑
n1=0

(
e−

2πi
N1

n1k1
N2−1∑
n2=0

(
e−

2πi
N2

n2k2 · · ·
Nd−1∑
nd=0

e
− 2πi
Nd

kdndxn1,n2,...,nd

))
(B.19)

where {Xk1,k2,...,kd} is the d-dimensional array storing the
∏d
l=1Nl complex values of the Mul-

tidimensional DFT of {xn1,n2,...,nd}. In compact vectorial form, (B.19) can be rewritten as:

Xk =

N−1∑∑∑
n=0

e−2πi〈k,n/N〉xn (B.20)

where n = (n1, n2, . . . , nd), k = (k1, k2, . . . , kd) and N = (N1, N2, . . . , Nd). Analogously, the
inverse Multidimensional DFT writes as:

xn =
1∏d

l=1Nl

N−1∑∑∑
k=0

e2πi〈n,k/N〉Xk (B.21)

Finally, sticking to the same notation, the Unitary Multidimensional DFT writes as

Xu
k =

1∏d
l=1

√
Nl

N−1∑∑∑
n=0

e−2πi〈k,n/N〉xn (B.22)
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The DFT inherits all the properties listed before for the Continuous Fourier Transform, upon an
adaptation to the discrete domain. Among those, the (Discrete) Convolution Theorem makes
it an extremely useful tool in the field of image and signal processing (since all basic filtering
techniques are based on convolutions and, thus, can be easily carried out in the Fourier domain),
while properties linked to Differentiation are widely used in the numerical approximation of PDEs
and ODEs. Additionally, if the entries of the input x are all real, then its DFT is symmetric,
i.e.

Xk1,k2,...,kd = X∗−k1%N1,−k2%N2,...,−kd%Nd
(B.23)

∀ kl ∈ {0, . . . Nl−1}, ∀ l ∈ {1, . . . , d}, where ∗ denotes complex conjugation and % the modulo
operation.

Fast Fourier Transform Algorithms

As seen before, the 1D DFT consists in a matrix-vector product between a N ×N matrix and a
N -dimensional vector; thus its "natural" computational cost is O(N2) flops. Anyway, starting
from the 60s, several algorithms able to compute the DFT of a finite dimensional array in just
O(N log(N)) flops have been developed. All such algorithms go under the name of Fast Fourier
Transform (FFT) algorithms and they all exhibit the same complexity score, despite no proof
that a lower one is impossible has ever been performed.

In the following we will limit ourselves in presenting the first and by far the most commonly used
FFT algorithm, which is the Cooley-Tukey algorithm, introduced by J.W. Cooley & J.W. Tukey
in [96] (1965), despite having it already been developed by C.F. Gauss around 1805 in [97]. A
more detailed and exhaustive presentation of other relevant FFT algorithms (as Prime-Factor
FFT, Bruun’s FFT, Rader’s FFT, Bluestein’s FFT, Goertzel’s FFT and others) can be found
in the review work [84] by P. Duhamel & M. Vetterli.

So, the most basic FFT algorithm is the radix-2 decimation in time (DIT) Cooley-Tukey algo-
rithm and it has been introduced in [96]. From a general point of view, it is a divide-and-conquer
algorithm that, recursively, breaks a DFT of size N into two DFTs (from which the name "radix-
2") of size N/2. Readily, this is possible only if N is a power of 2 but, since the number of sample
points can be typically chosen freely in the vast majority of applications, this is not a major
issue. More in detail, the radix-2 DIT algorithm rearranges the DFT of a N -dimensional vector
x into two parts, one related to the even-numbered indices and one related to the odd-numbered
ones; thus

Xk =

N/2−1∑
m=0

x2me
− 2πi

N (2m)k +

N/2−1∑
m=0

x2m+1e
− 2πi

N (2m+1)k (B.24)

Then, (B.24) can be rewritten as

Xk =

N/2−1∑
m=0

x2me
− 2πi
N/2

mk + e−
2πi
N k

N/2−1∑
m=0

x2m+1e
− 2πi
N/2

mk = Ek + e−
2πi
N kOk (B.25)

being Ek and Ok the DFTs on the even-numbered and odd-numbered input indices, respectively.

Thanks to the
N

2
-periodicity of the complex exponential term, the following equalities hold

Xk = Ek + e−
2πi
N kOk

Xk+N
2

= Ek − e−
2πi
N kOk

(B.26)

Thus, the DFT of length N can be expressed by means of two DFTs of size
N

2
and, by applying

this trick recursively and by re-using results of intermediate computations, the algorithm ulti-
mately reaches a complexity score of O(N log(N)) flops.

Several variations of the radix-2 DIT Cooley-Tukey algorithm do exist.
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• First of all, despite the algorithm has been conceived recursively, the vast majority of its
implementations perform a rearranging to avoid explicit recursion, getting non-negligible
computational gains.

• Secondly, the general Cooley-Tukey algorithm recursively re-expresses a DFT of composite
size N = N1N2 as:
1. Perform N1 DFTs of size N2

2. Multiply by the complex exponential terms
3. Perform N2 DFTs of size N1

This way of proceeding basically amounts at reshaping the 1D input vector of size N =
N1N2 into a 2D matrix of size N1×N2 and then at sequentially performing a row-wise and
a column-wise DFT to such matrix, with an intermediate element-wise multiplication step.
Typically, either N1 or N2 is chosen small and it is called the radix; if N1 is the radix, the
algorithm is called DIT, while if N2 is the radix is called decimation in frequency (DIF).
In this way, the Cooley-Tukey algorithm can be generalized to any not-prime input length
N . In case the length of the signals is, instead, a prime number, different algorithms have
to be employed, as the Rader’s FFT (see [98]).

• The fact that the Cooley-Tukey algorithm proceeds recursively by breaking a DFT into
smaller ones allows it to be potentially combined with other FFT algorithms.

• Finally, if the input data is real-valued, so that its DFT satisfies the symmetry condition
(B.23), additional computational resources can be saved. Some specific and extremely ef-
ficient FFT algorithms have been designed at this aim, but simply removing the useless
parts of the computation with the Cooley-Tukey algorithm already allows to approximately
halve the overall computational burden.

The final step to be performed is the extension of the FFT algorithms to the multidimensional
case. Such passage, anyway, is quite straightforward, since the d-dimensional DFT (see (B.19))
is nothing more than the composition of a sequence of d sets of 1D DFTs, performed along one
dimension at a time. Thus, employing any of the available FFT algorithms and performing the
transformation over one dimension at a time, we get an overall computational complexity of
O(N log(N)) flops, being N =

∏d
l=1Nl the total number of datapoints of the input. This way

of proceeding is known as the row-column multidimensional FFT algorithm.
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Appendix C

Computational Environment

The majority of the numerical simulations has been carried out on a Lenovo ThinkPad T490s
mounting Ubuntu 18.04.4 LTS, with 16 GB RAM and an Intel i7-8565U processor with 4 cores
at 1.80 GHz.

The numerical simulations needed to assemble the dataset for the second test case were instead
executed on the IHeart cluster (Lenovo SR950 8x24-Core Intel Xeon Platinum 8160, 2.10 GHz
and 1.7 TB RAM) at MOX, Dipartimento di Matematica, Politecnico di Milano.

The following programming languages, packages, libraries and programs have been used:
• In Python (version 3.7.4) [99] programming language, the main used packages are:

– NumPy (version 1.17.2) [100], the fundamental package for scientific computing in
Python

– SciPy (version 1.4.1) [101], a Python library for scientific computing and technical
computing

– Tensorflow (version 2.2.0) [102], a system for large-scale machine learning in Python
– Keras (version 2.3.1) [103], a Python open-source neural-network library

• In MATLAB (version R2019b) [104] programming language, we employed the redbKIT
library [105], which handles reduced-order modeling of parametrized PDEs. It has been
developed at Ecole Polytechnique Fédérale de Lausanne (EPFL), it is currently maintained
by Federico Negri and it is distributed under BSD 2-clause license.

• ParaView (version 5.8.0) [106], an open-source, multi-platform data analysis and visual-
ization application, has been employed for results visualization purposes.
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