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1. Introduction
1.1. Goal
This thesis aims to develop algorithms capa-
ble of teaching human-like learners how to play
games with strict competition (two-player zero-
sum games) while interacting with them in an
online fashion. Properly modeling a human
presents many challenges; indeed, humans have
different learning abilities, thus, we cannot make
assumptions on the exact algorithm the oppo-
nent employs. Moreover, such algorithms must
incentivize humans to keep playing the game
since, in principle, they could interrupt the
learning dynamic due to easy victories or catas-
trophic defeats. This incentive will be modeled
through a constraint on the utility obtained by
the players, namely, the per-round reward will
always be bounded over an interval (please note
that in zero-sum games, a bound on the utility
of one of the player guarantees a bound on the
utility of the opponent). As concerns the mean-
ing of teaching, we want our algorithm to carry
the human to the Nash Equilibrium (Minmax
equilibrium for zero-sum games).
Our work will present the pseudo code of this
type of algorithms and their theoretical guaran-
tees in two different settings. In the first one,
we will assume that players have expert feed-

back, namely, every player knows the reward he
could have achieved playing any discrete distri-
bution over his actions. In the latter, we will
consider that the teacher can only observe the
single action played by the human (the so-called
partial semi-bandit feedback).

1.2. Related Work
This thesis relies on the framework proposed by
Dinh et al. [2021], which developed LRCA (Last
Round Convergence in Asymmetric algorithm),
an algorithm that achieves convergence (see def-
inition 2.1) to minmax equilibrium against an
entire family of No-Regret algorithms (namely,
FTRL). Dinh et al. assume that the algorithm is
employed by a player (in our thesis, the teacher)
with full knowledge of the game, that is, he
knows the equilibrium. To conclude, LRCA
achieves a sublinear dynamic regret (see defini-
tion 2.3) in games where there exists a fully-
mixed equilibrium strategy for the opponent.

1.3. Original Contribution
We propose two versions of LRCA algorithm: E-
LRCA (algorithm 1) and PAUSE E-LRCA (al-
gorithm 2). The first one deals with the Expert
feedback setting and guarantees Last Round
Convergence (see definition 2.1) and Sublinear
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Dynamic Regret (see definition 2.3) against the
entire Online Mirror Descent (OMD) family in
games with any kind of equilibrium (fully-mixed,
partially-mixed, pure); in addition it guarantees
safety (see definition 2.2) at each round, with a
constraint on the upper bound of the safety re-
gion when there is not a fully-mixed equilibrium
strategy for the row player.
The latter works in setting where the human re-
ceives an expert feedback while the teacher re-
ceives the index of the action played by his op-
ponent. In this case, PAUSE E-LRCA guaran-
tees Last Round Convergence (see definition 2.1)
with high probability and Sublinear Dynamic
Regret with respect to the value of the game (see
definition 2.4) with high probability against the
entire OMD family in games with fully-mixed
equilibrium strategy for the row player (while
experimentally, these properties are valid even in
absence of fully-mixed equilibrium); as concerns
safety, it is guaranteed with high probability in
case of fully-mixed equilibrium, otherwise it is
guaranteed with probability equal to one adding
a constraint on the upper bound of the safety
region.
The results are summarized in table 1.

Result Table

Fully-mixed Equilib-
rium

Not Fully-Mixed
Equilibrium

Expert Feed-
back

E-LRCA:
• Safety
• Last Round Con-

vergence
• Sublinear Dynamic

Regret

E-LRCA:
• Safety when

||Uy∗||∞ < ξ2
• Last Round Con-

vergence
• Sublinear Dynamic

Regret

Partial
Semi-Bandit
Feedback

PAUSE E-LRCA:
• Safety with high

probability
• Last Round Con-

vergence with high
probability

• Sublinear Dy-
namic Regret with
respect to the
MaxMin with high
probability

PAUSE E-LRCA:
• Safety when

||Uy∗||∞ < ξ2
• Experimental Last

Round Conver-
gence

• Experimental Sub-
linear dynamic re-
gret with respect to
the MaxMin

Table 1: Table with the algorithms developed
during the thesis and the final results obtained

2. Preliminaries
Consider a repeated two-player zero-sum game.
This game is described by a n×m payoff matrix
U scaled in [0, 1]. The rows and columns of U
represent the pure strategies of the row and col-
umn players, respectively. We define the set of
feasible strategies of the row player, at round t,
by ∆n := {xt ∈ Rn |

∑n
i=1 xt(i) = 1,xt(i) ≥ 0

∀i ∈ {1, . . . , n}}. The set of feasible strategies of
the column player, denoted by ∆m, is defined in
a similar way. At round t, if the row (resp. col-
umn) player chooses a mixed strategy xt ∈ ∆n

(resp. yt ∈ ∆m), then the row player’s payoff (or
utility) is −x⊤

t Uyt, while the column player’s
payoff (or utility) is x⊤

t Uyt. Thus, the row
(resp. column) player aims to minimise (resp.
maximise) the quantity x⊤

t Uyt. We recall that
in zero-sum games:

max
y∈∆m

min
x∈∆n

x⊤Uy = min
x∈∆n

max
y∈∆m

x⊤Uy = v (1)

for some v ∈ R. We call a point (x∗,y∗) satis-
fying equation 1 the Minmax (or Maxmin) equi-
librium of the game, that in zero-sum games is a
Nash Equilibrium [2]. The equilibrium strategy
x∗ is fully-mixed if x∗(i) > 0 ∀i ∈ {1, . . . , n}.
As specified in section 1 we developed algorithms
for different settings. In section 3 both play-
ers have the so called expert feedback [3], that
is, the complete gradient is received by every
player at the end of the round. To be pre-
cise, row player will receive −Uyt after hav-
ing played xt while column player will receive
x⊤
t U after having played yt. In section 4 the

column player will receive a semi-bandit feed-
back, namely, the index of the action played by
the opponent (sampled according to discrete dis-
tribution xt). We will refer to this feedback as
"Partial Semi-Bandit", or simply "Partial Ban-
dit" feedback.
Throughout the entire thesis, the payoff ma-
trix U is known by the column player (the
teacher), that is, he perfectly knows the equi-
librium (Asymmetric information), while row
player (the learner/human) employs an algo-
rithm of the OMD family (which for linear
losses, as in our setting, is equivalent to FTRL).
Next, we define the main properties the algo-
rithms developed during the thesis will guaran-
tee.
Definition 2.1. (Last Round Convergence) A
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sequence of strategies xt is convergent in last
round if and only if:

lim
t→∞

xt = x∗

with x∗ equilibrium strategy of the player.

Definition 2.2. (Safety) Given two bounds ξ1
and ξ2 with ξ1 < ξ2, an Online algorithm applied
to games guarantees safety if and only if u(t) ∈
[ξ1, ξ2] ∀t, with u(t) opponent’s payoff at time
t.
We now introduce the notion of Dynamic Regret
for the column player as:

DRT :=
T∑
t=1

(
max
y∈∆m

x⊤
t Uy − x⊤

t Uyt

)
(2)

Definition 2.3. (No-Dynamic Regret) An al-
gorithm is no-dynamic regret (or has the no-
dynamic regret property) if limT→∞

DRT
T = 0.

To conclude, we introduce the notion of Dy-
namic Regret with respect to the Maxmin value
of the game:

DReq
T :=

T∑
t=1

|x⊤
t Uyt − v| (3)

From which:
Definition 2.4. (No-Dynamic Regret with re-
spect to the MaxMin) An algorithm is no-
dynamic regret with respect to the MaxMin if
limT→∞

DReq
T

T = 0.

3. Safe Guide with Expert
Feedback

3.1. Algorithm
We underline the main ideas behind algorithm
1.
In odd rounds column player plays the equi-
librium so that, if the row player’s equilibrium
strategy is fully-mixed, it is possible to predict
his next strategy (for stability, it will be the
same as in the previous round). If row player’s
equilibrium strategy is not fully-mixed, playing
the equilibrium will push the opponent towards
the support of the equilibrium, not invalidating
final result of Last Round Convergence.
In even rounds column player computes the
best response (et−1) and the value of the best

response f(xt−1) at the previous round (note
that if the equilibrium is fully-mixed we have
et−1 = et and f(xt−1) = f(xt)). Then, column
player plays a convex combination between the
equilibrium and the best response of the previ-
ous round, built using a parameter αt, which
must be dependant on the distance between the
opponent strategy and the equilibrium (αt =
f(xt−1)−v

β ); in case this parameter would lead to
an utility outside the safety bounds (checked by
the min operator) we scale f(xt−1)−v

β by a factor
γt ∈ (0, 1] obtaining αnew (the multiplication
γt

f(xt−1)−v
β is implicit in the algorithm).

To conclude, it is important to underline that
the scaling factor γt depends on the equilibrium
the game has; in case there exists a fully-mixed
equilibrium, we find a γt such that the next
round utility will be exactly the upper bound
ξ2, otherwise we need a γt that is safe for every
strategy of the opponent (the smallest possible),
which will lead to a deceleration of the teaching
dynamic.

Algorithm 1 Engaged - Last Round Convergence
in Asymmetric algorithm (E-LRCA)
1: for t = 1 to T do
2: if t = 2k − 1, k ∈ N then
3: yt = y∗

4: end if
5: if t = 2k, k ∈ N then
6: et−1 := argmaxe∈{e1,e2,...em} x

⊤
t−1Ue

7: f (xt−1) := maxy∈∆m x⊤
t−1Uy

8: if game has a fully-mixed equilibrium
then

9: αnew =
ξ2 − v

x⊤
t−1Uet−1 − v

10: end if
11: if game has not a fully-mixed equilib-

rium then

12:

αnew = min

(
ξ2 − ||Uy∗||∞
||U ||max − v

,

ξ1 − v

||U ||min − ||Uy∗||∞

)
13: end if
14: αt := min

(
αnew,

f (xt−1)− v

β

)
15: yt := (1− αt)y

∗ + αtet−1

16: end if
17: end for
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3.2. Theoretical Results
We start stating the result in terms of safety.
The requirement ||Uy∗||∞ < ξ2 is necessary only
for games in which there is not a fully-mixed
equilibrium strategy for the row player, other-
wise it is implicit in taking v ∈ (ξ1, ξ2). More-
over, for games with fully-mixed equilibrium, we
can choose v ∈ [ξ1, ξ2). To conclude, note that
if the utility of the column player is bounded
in [ξ1, ξ2], the utility of the row player will be
bounded in [−ξ2,−ξ1].
Theorem 3.1. Given two bounds ξ1, ξ2 on the
Utility such that v ∈ (ξ1, ξ2) and ||Uy∗||∞ < ξ2,
if column player follows E-LRCA (algorithm 1),
the Utility of the column Player will be bounded
in [ξ1, ξ2] at each round.
We proceed with the convergence result, which
requires similar assumptions to theorem 3.1.
Theorem 3.2. Assume that the row player fol-
lows an algorithm of the OMD family, then if the
column player follows the Algorithm E-LRCA
with ξ1, ξ2 s.t. v ∈ (ξ1, ξ2) and ||Uy∗||∞ < ξ2,
there will be last round convergence to the min-
max equilibrium.
We conclude with the Dynamic Regret, stat-
ing the main theorem and then reporting the
corollary for games with fully-mixed equilibrium
strategy for the row player. In the latter, it is
possible to express the Regret without exploit-
ing the dynamic of the opponent learning rate
µ.
Theorem 3.3. Assume that the row player
follows an algorithm of the OMD family,
then by following E-LRCA, the column player
will achieve the no-dynamic regret property
with the dynamic regret satisfying DRT =

O
(

n2
√
γmin

T 3/4
)

in games without fully-mixed
minmax strategy for the row player.

Corollary 3.1. Assume that the row player fol-
lows an algorithm of the OMD family. If there
exists a fully-mixed minmax strategy for the row
player, then by following E-LRCA, the column
player will achieve the no-dynamic regret prop-
erty with the dynamic regret satisfying DRT =

O
(√

log(n)√
γmin

T 3/4

)
. Furthermore, in the case the

row player uses a constant learning rate µ, we
have DRT = O

(
n√

µγmin
T 1/2

)
.

4. Safe Guide with Partial
Semi-Bandit Feedback

4.1. Algorithm

Algorithm 2 Engaged - Last Round Conver-
gence in Asymmetric algorithm with partial
semi-Bandit feedback (PAUSE E-LRCA)
1: for t = 1 to T do
2: Play yt = y∗ for K(t) := ln

(
3
δ

)
tλ times

3: Compute x̄K(t) as the average of the K(t)
samples of the row player strategy

4: Build X̃t using Devroye formula and flat-
tening expansion

5: et := argmaxe∈{e1,e2,...em}maxx∈X̃t
x⊤Ue

6: fmax (xt) := maxe∈{e1,e2,...em}maxx∈X̃t
x⊤Ue

7: xmin := argminx∈X̃t
x⊤Uet

8: if game has a fully-mixed equilibrium
then

9: if x⊤
minUet < ξ1 then

10: α := min
(

ξ2−v
fmax(xt)−v ,

ξ1−v
x⊤
minUet−v

)
11: end if
12: if not then
13: α := ξ2−v

fmax(xt)−v
14: end if
15: end if
16: if game has not a fully-mixed equilibrium

then

17:

α = min

(
ξ2 − ||Uy∗||∞
||U ||max − v

,

ξ1 − v

||U ||min − ||Uy∗||∞

)
18: end if
19: αt := min

(
fmax(xt)−v

β , α
)

20: yt := (1− αt)y
∗ + αtet

21: end for

We underline the main ideas behind algorithm 2
(we consider the equilibrium to be fully-mixed,
as the results for other kinds of equilibrium are
mainly experimental).
Column player plays the equilibrium K(t) times
in order to estimate the opponent strategy at
high probability. Please note that due to fully-
mixed equilibrium, row player will keep choosing
the same strategy, which implies that round af-
ter round we are collecting data from the same
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discrete distribution. Then, column player com-
putes the optimistic best response (et) and opti-
mistic value of the best response fmax(xt) with
respect to the estimated region in order to play
a convex combination between et and the equi-
librium, built using a parameter αt.
αt must be dependant on the distance between
the optimistic value of the best response and
the value of the equilibrium (αt =

fmax(xt)−v
β ),

but, in case this parameter would lead to an
utility outside the safety bounds (checked by
the min operator), we scale fmax(xt)−v

β by a fac-
tor γt ∈ (0, 1] obtaining α (the multiplication
γt

fmax(xt)−v
β is implicit in the algorithm). As

for the expert feedback algorithm, the scaling
factor γt depends on the equilibrium the game
has; in case there exists a fully-mixed equilib-
rium strategy for the row player, a γt such that
the next round utility will be safe with respect to
every strategy in the confidence interval is cho-
sen, otherwise a γt safe for every strategy in the
opponent simplex is needed, leading to a decel-
eration of the teaching dynamic.

4.2. Theoretical Results
We start with the safety result. Note that in
this subsection, theorems will be related only to
games with fully-mixed equilibrium strategy for
the row player. As concerns safety, it is still
guaranteed for games without fully-mixed equi-
librium strategy for the row player, but the the-
orem is the same as seen in the previous section.
Due to Semi-Bandit feedback, the next theorems
will be valid with high probability.
Theorem 4.1. Assume that the row player is
following a no-regret stable learning algorithm,
given two bounds ξ1, ξ2 on the Utility such that
v ∈ (ξ1, ξ2), if there exists a fully-mixed min-
max equilibrium strategy for the row player and
the column player follows PAUSE E-LRCA (al-
gorithm 2), the Expected Utility of the column
Player will be bounded in [ξ1, ξ2] at each round
with high probability.
We proceed with the convergence result, which
requires similar assumptions to theorem 4.1.
Theorem 4.2. Assume that the row player fol-
lows an algorithm of the OMD family and that
there exists a fully-mixed minmax equilibrium
strategy for the row player. Then, if the column
player follows the Algorithm PAUSE E-LRCA

(algorithm 2) with ξ1, ξ2 s.t. v ∈ (ξ1, ξ2), there
will be last round convergence to the minmax
equilibrium with high probability.
To conclude, we compute the Dynamic Regret
with respect to the Maxmin value of the game.
Note that the result is dependant on the param-
eter λ used in the computation of K(t) in algo-
rithm 2. For 0 < λ < 2, the Regret is sublinear
with high probability.
Theorem 4.3. Assume that the row player fol-
lows an algorithm of the OMD family. Then
by following PAUSE E-LRCA (algorithm 2),
the column player will achieve the no-dynamic
regret (with respect to the MaxMin) property
with the dynamic regret satisfying DReq

T =

O
(

n√
µγmin

T
max

(
−λ/2+1, 1

2
+

−λ/2+1
2

))
in games

with fully-mixed equilibrium strategy for the row
player, with high probability.

5. Experiments
We highlight significant experiments for PAUSE
E-LRCA (algorithm 2) in a game where there
is not a fully-mixed equilibrium strategy for the
row player, in order to show the empiric proper-
ties explained in table 1. As benchmarks for our
experiments, we implemented a not-safe version
of the algorithm (namely, PAUSE LRCA).
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Figure 1: Dynamic Regret with respect to the
maxmin of the column player in game with a
partially-mixed equilibrium
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Figure 2: Expected Utility of the column player
with the safety bounds in game with a partially-
mixed equilibrium
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Figure 3: Euclidean distance from the equilib-
rium of the row player’s strategy in game with
a partially-mixed equilibrium
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Figure 4: Row player’s strategy dynamics on the
simplex in game with a partially-mixed equilib-
rium

6. Conclusions
Convergence to Equilibria has often been stud-
ied in a self-play setting, that is, an agent aims
to compute the equilibrium playing repeatedly
against himself. We switched this perspective
developing algorithms capable of making the
opponent converge to the Nash of the game,
without making assumptions on the exact algo-
rithm the adversary employs. This framework
is particularly useful when the opponents are
human-like learners, which, by definition, may
have different learning abilities. In addition, we
introduced safety property in order to guaran-
tee engagement of the human. To summarize,
we developed two algorithms capable of teach-
ing a human-like learner with different feedback
(expert and partial semi-bandit) which guaran-
tee, with proper assumptions and in different
manners, Safety, Last Round Convergence and
Sublinear Dynamic Regret against one of the
most famous family of No-Regret learning algo-
rithms, the Online Mirror Descent. In conclu-
sion, we ran experiments on different types of
game in order to show the empiric validity of
our algorithms; in the case of bandit feedback,
we showed that PAUSE E-LRCA (algorithm 2)
achieves good performances even in setting (not
fully-mixed equilibrium) where the results are
not theoretically supported.
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