
Executive Summary of the Thesis

The Illusion of Randomness: Demystifying the Entropy of ASLR on
Common Operating Systems

Laurea Magistrale in Computer Science Engineering - Ingegneria Informatica

Author: Gregorio Barzasi

Advisor: Prof. Mario Polino

Co-advisor: Lorenzo Binosi

Academic year: 2022-2023

1. Introduction
ASLR is a crucial defense mechanism employed
by modern operating systems to mitigate ex-
ploits that rely on precise object location by ran-
domizing the memory layout of processes. Un-
fortunately, the performance of this system is
very platform-dependent and often proven insuf-
ficient [2]. This work analyzes the performance
of this mechanism by assessing the degree of Ab-
solute Entropy, or randomness, in memory ob-
ject placement, and highlighting the Correlation
Entropy between objects. We identified many
weaknesses in various OS mainly related to the
fixed position of executable objects, the most
easily exploitable.

2. Motivation
The examination of Address Space Layout Ran-
domization (ASLR) performance is of crucial im-
portance in the study of operating system secu-
rity as it serves as a last line of defense along
with NX and Stack Protection mechanism. The
effectiveness of ASLR implementation can be as-
sessed by considering three key aspects: when it
randomizes memory, what components it ran-
domizes, and how it executes randomization.

The results of this behavior can be captured by
estimating the entropy of each memory object.
A common weakness in ASLR implementation
is the presence of low Absolute Entropy; this is
often attributed to fixed address bits, the ex-
istence of sections that can grow dynamically,
memory fragmentation, and non-uniform proba-
bility distributions within memory sections. An-
other vulnerability is low Correlation Entropy
between memory objects, which can potentially
reduce the effort needed by an attacker to guess
the position of an executable object in the pres-
ence of a memory address leak. We call these
Positive Correlation Paths. Existing research
predominantly focuses on Linux as it’s the most
common kernel used in enterprise systems [4];
however, this left many consumer OSes without
evaluation, exposing many final users to secu-
rity risks. Our study starts with Ubuntu and
proceeds to consider multiple consumer oper-
ating systems such as MacOS (specifically the
ARM version), Windows 11, and Android 13.
To facilitate our research, we developed a novel
ASLR analyzer tool. Even though it’s not the
first time that some of the mentioned OS have
been analyzed, it must be noted that previous
research has some limitations, such as insuffi-

1



Executive summary Gregorio Barzasi

cient sampling sizes, and a lack of Correlation
Entropy estimation, moreover, they considered
only a narrow scope of OS system. Addressing
these limitations is vital for conducting a com-
prehensive and robust ASLR analysis.

3. Approach
The analysis of ASLR implementation can be
approached in two ways. The first involves read-
ing the implementation code inside the kernel of
the operating system to evaluate the randomiza-
tion algorithm. However, this approach is chal-
lenging due to closed-source operating systems
like Windows and MacOS, making it difficult to
access the source code. Even for open-source
kernels like Linux, runtime interactions between
memory objects complicate the analysis. The
second approach, which we have chosen, involves
empirical analysis, using an ad-hoc script to col-
lect many samples and then perform statistical
analysis on the data.
To perform the sampling and analysis a new
ASLR analyzer tool has been developed, able to
run on many of the considered OS with minor
tuning and sharing most of the code; the only ex-
ception was Android which due to its peculiarity
required an ad-hoc approach. The sampling fo-
cuses on collecting addresses of multiple memory
objects from various allocation flows. It uses an
ad-hoc C program to allocate objects and print
their addresses to standard output for collection;
this approach is significantly faster than using
virtual memory mapping information provided
by OS-embedded tools. After careful testing,
we identified a suite of 6 allocation sizes able to
stress each OS memory allocation system: 16B,
512B, 4KB, 256KB, 4MB, and 128MB.
To analyze slow entropy sources, such as system
reboots, we needed to work using as less sam-
ples as possible to complete the data collection
in a reasonable time. The number of samples
needed is directly dependent on the entropy es-
timator chosen in the analysis process. Unlike
many other researchers, we used the NSB esti-
mator [3], an estimator specifically developed to
work with under-sampled sources, able to pro-
vide robust results even with few samples com-
pared to full source sampling. To determine
the minimum sample requirements for different
operating systems and scenarios we conducted
multiple tests with few samples and then used

the posterior standard deviation to quantify the
uncertainty in the result. The resulting sample
sizes for having bias less than 5% range from
3,8 Mln for Linux to just 10,000 for Android 13.
Also, the reboot number was estimated with the
same method giving results in the range of 3,000
reboots for Android 13 to 10,000 for Windows
11.

4. Results Discussion
We analyzed various operating system config-
urations: Linux 5.17.15, Linux 6.4.9, MacOS
M1 Ventura, MacOS M1 Ventura using Rosetta,
Windows 11, and Android 13. To better under-
stand how effectively they randomized memory
and protected against attacks we evaluated the
memory layout, probability distributions, abso-
lute entropy, and correlation entropy between al-
located objects.
Examining the memory layout of the various
OSs confirmed that all of them utilize the so-
called partial-VM randomization, a technique
that divides the memory into sections and then
randomizes the objects inside them. Look-
ing at probability distributions, Linux is the
best-performing kernel, having a uniform shape
across all sections. Windows 11 follows by em-
ploying a triangular shape, that hints at the
use of two random variables to increase entropy.
Other OSs have an unknown distribution shape,
with spikes and some high probability zones that
suggest a low absolute entropy. To evaluate the
entropy performance we compared our results to
the commonly accepted 20 bit threshold used to
indicate sufficient randomness. In the analysis,
Linux was revealed to be the only Kernel to ran-
domize all executable objects with an excellent
entropy of 27 bit. On the contrary, MacOS M1
Ventura and Android 13 randomized only the
text object, with insufficient entropy of around
13 bit. Windows 11 was the worst of all, having
all executable objects fixed. When we sampled
multiple reboots of the devices the performance
improved with every executable object now ran-
domized: libraries now experience around 10 bit
of entropy on Android, 13 bit on Windows, and
12 bit on MacOS. Still insufficient in provid-
ing any kind of protection as a remote attacker
could still brute force the addresses in less than
10,000 tries and also exploit the byte-for-byte
cracking technique as the address changes only

2



Executive summary Gregorio Barzasi

path ent diff path ent diff
Linux 5.17.15
text ← heap_object 13.00 -14.41 lib ← thread_heap_object 15.15 -12.25
text ← global_var 0.00 -27.41 lib ← mmap_object 0.00 -27.41
lib_1 ← lib_2 0.00 -27.41 lib ← shared 0.00 -27.41
Linux 6.4.9
text ← heap_object 13.00 -14.41 lib_2 ← thread_heap_object 15.15 -12.25
text ← global_var 0.00 -27.41 lib_2 ← mmap_object 0.00 -27.41
lib_2 ← lib_1 9.00 -18.41 lib_2 ← shared 0.00 -27.41
lib_1 ← tls_var_thread 0.00 -19.02 lib_1 ← thread_heap_object 6.38 -12.79
lib_1 ← huge_mmap_object 0.00 -19.02 lib_1 ← mmap_object 9.00 -10.02
lib_1 ← stack_thread 9.00 -10.02 lib_1 ← shared 9.00 -10.02
MacOS M1 Ventura
text ← shared 0.00 -11.58 text ← mmap_object_thread 2.16 -9.42
text ← global_variable 0.00 -11.58 text ← mmap_object 0.01 -11.58
MacOS M1 Ventura Rosetta
text ← shared 0.00 -13.58 text ← mmap_object_thread 1.19 -12.39
text ← global_var 0.00 -13.58 text ← mmap_object 0.00 -13.58
Android 13
text ← global_variable 0.00 -13.10 text ← malloc_128MB_from_main 9.55 -3.55

Table 1: Positive Correlation Paths to executable objects

at boot time. When we compare the absolute en-
tropy performance on various Linux versions we
clearly observe a reduction in the latest updates.
In fact, after Linux 5.17.15 a new memory man-
agement structure was introduced, Linux Folios,
that improved performance at the cost of less en-
tropy on objects greater than 2MB; this resulted
in a reduction from 27.4 bit to 19 bit entropy,
around 8.5 bit loss on the big code libraries like
glibc, thus decreasing the effort needed to build
a working ROP by almost 400x. The reduction
is still present in the last available version 6.4.9.
and no clear way to disable this system is known.
Overall, the other objects are well randomized
on Linux, with the worst performance belong-
ing to thread allocation and "second-time" allo-
cation, enforcing the theory that allocation pat-
terns have a significant impact on randomization
capabilities on Linux. On this aspect Windows
11 was the best, appearing immune to those
pattern dynamics and having a greater than 20
bit entropy almost in every non-executable ob-
ject. The worst performing are MacOS and An-
droid, which have entire memory sections prac-
tically not randomized. The randomization of
non-executable objects is important mainly in
the context of correlation entropy and positive
correlation path, where the address leak could

potentially reduce the entropy of an executable
object. In Table 1 we specifically called out the
most concerning positive correlation paths to ex-
ecutable objects. In particular, we confirmed
that the leak of a heap address in Linux 6.4.9
still reduces the entropy of text to just 13 bit, as
previously highlighted in other research [1], re-
ducing the entropy by 14 bit. For what concerns
Windows 11, there are no positive correlation
paths as the position of all executable objects is
fixed, so no leak can beat that information.

5. Attack scenario
While all unrandomized objects pose vulnera-
bilities, some of them, like executable ones, are
higher-priority targets for attacks such as ROP.
We defined profiles for local and remote attack-
ers with or without address disclosure to eval-
uate the severity of the weaknesses found. All
scenarios assumed the ability of the attacker to
bypass stack smashing protection.
Fixed positioning of text and libraries allows
immediate exploitation as local attackers could
gather executable object positions from other
programs. If we rule out such information dis-
closure, both local and remote attackers resort
to brute-forcing addresses, with an expected ef-

3



Executive summary Gregorio Barzasi

fort based on entropy introduced in the reboot-
ing process. They could involve also more so-
phisticated exploitation techniques to reduce the
attack complexity such as byte-for-byte crack
of the addresses. If we consider kernel with
process-level randomization of executable ob-
jects, such as Linux, the best attack approach is
to gather information about other allocation po-
sitions, reducing the complexity of exploitation
by using Positive Correlation Paths. In case no
information disclosure is available the best it can
do is to brute-force the address of an executable
object; since Linux 5.17.15, we discovered it to
be a reasonable approach thanks to the reduc-
tion in entropy of big code libraries such as glibc.
Distributed attack scenarios were also consid-
ered. In the presence of a wide diffused vulner-
ability exploitable remotely, an attacker could
target multiple systems at once. In this case,
reboot entropy will indicate the number of ex-
pected successes in a single attack attempt. For
instance, a vulnerability of this type affecting
10,000 MacOS systems with a reboot entropy
of libraries of 12.3 bit, means that on one try
the attacker should hit the target on around 2
remote MacOS systems.
To validate our findings and our entropy estima-
tor choice we set up a dummy executable with
a common buffer overflow vulnerability; inside
the text, we placed a function able to disclose a
flag, and we used it as the exploit target. The
objective was to use the information gathered
by leaking the address of a heap object to hit
the target function inside the text. In a no-leak
scenario, we will need to brute force the entire
27.4 bit entropy associated with the text object,
expecting a hit every 177Mln tries. To reduce
the complexity, we used the Positive Correla-
tion path in Linux that correlates heap and text
with just 12.99 bit of entropy. After 2Mln tries
we counted 261 hits; that average to a hit ev-
ery 7650 tries, so an empiric entropy of 12.90bit.
This means that our estimated entropy of 12.99
bit was just 0.753% away from the empirical one,
so our estimate was revealed to be solid.

6. Conclusion
In this document, we evaluated the effective-
ness of Address Space Layout Randomization
(ASLR) across major desktop and mobile plat-
forms through a statistical analysis of memory

object positions; utilizing the NSB entropy esti-
mator permitted the analysis of slower processes
like device reboots by reducing the sample re-
quirements.
Major issues were highlighted: in some cases,
problems persisted long-term, like the lack of en-
tropy for libraries and executable code in Win-
dows, MacOS, and Android while others started
recently, such as entropy reduction in recent
Linux distributions, likely introduced by the
adoption of Large Folios. Generally, Linux dis-
tributions provide strong randomization, how-
ever, positive correlation paths on Linux reduced
entropy, lowering it dangerously. A proof-of-
concept exploit has validated our analyses. Our
findings revealed opportunities to fortify imple-
mentations by resolving the correlation entropy
problems, optimizing allocation patterns, and
increasing overall absolute entropy.
While proposals to improve Linux ASLR ex-
ist, like ASLR-NG [2], they are currently not
adopted. Moreover, the introduction of Linux
Folios demonstrates how evolution occasionally
exchanges security for performance. Broad
adoption of new 5-level paging architectures,
providing more bits to the randomization pro-
cess, may resolve this compromise. Future work
includes profiling real software memory map-
pings and allocated objects to evaluate the per-
formance at a software level and not at the oper-
ating system level. Extending the comparisons
across security-focused Linux distributions could
also offer insights for enterprise operating system
selection.

References
[1] Hector Marco Gisbert and Ismael Ripoll.

Exploiting linux and pax aslr’s weaknesses
on 32-bit and 64-bit systems. March 2016.
Black Hat Asia 2016 ; Conference date: 29-
03-2016 Through 01-04-2016.

[2] Hector Marco Gisbert and Ismael
Ripoll Ripoll. Address space layout
randomization next generation. Applied
Sciences, 9(14), 2019.

[3] Ilya Nemenman. NSB Entropy Estimator.

[4] W3Techs. Usage statistics of operating sys-
tems for websites, Sep 2023.

4


	Introduction
	Motivation
	Approach
	Results Discussion
	Attack scenario
	Conclusion

