
TITRE DESSOUS

TITRE DESSUS

TITRE DESSOUS

TITRE DESSUS

TITRE DESSOUS

TITRE DESSUS

TITRE DESSOUS

TITRE DESSUS

TITRE DESSOUS

TITRE DESSUS

TITRE DESSOUS

TITRE DESSUS
24, rue Salomon de Rothschild - 92288 Suresnes - FRANCE
Tél. : +33 (0)1 57 32 87 00 / Fax : +33 (0)1 57 32 87 87
Web : www.carrenoir.com

CentraleSupelec

XXX_13_0000_Logo

13/06/2013

INFORMATION

FILET TECHNIQUE DE CONSTRUCTION

DÉCOUPE

OPTION STRUCTURE GRAPHIQUE BASSE

OPTION STRUCTURE GRAPHIQUE HAUTE

TEINTE À DÉFINIR
Ce fichier est un document d’exécution créé sur

Illustrator version CS3.

CentraleSupélec

Comparative Analysis of Natural
Language Processing and Gradient

Boosting Trees Approaches for Fraud
Detection

Ludovica Lerma
Student ID: 976806

Supervision:

Fabrice Popineau LISN/CentraleSupélec Arpad Rimmel LISN/CentraleSupélec
Marcello Restelli Politecnico di Milano Bich-Liên Doan LISN/CentraleSupélec

i

Abstract

With the increasing popularity of digital payments, fraud detection systems
have become indispensable in limitingmonetary losses for both customers and card-
provider companies. Recognizing the significance of this issue, online payment
platforms actively incorporate robust fraud detection systems into their infrastruc-
ture. This thesis presents a straightforward approach to fraud detection inspired by
natural language processing (NLP) techniques. The proposedmethodology begins
by leveraging the Continuous Bag-of-Attributes (CBOA) neural network embed-
ding, which projects transactional data into a hyper-dimensional space, facilitating
the extraction of an extended range of features. This embedding technique empow-
ers the system to capture contextual relationshipswithin the data. Subsequently, the
embeddeddata undergoes processing through a Long Short-TermMemory (LSTM)
layer, enabling themodel to capture temporal correlations between sequential trans-
actions. The LSTM layer adds a dynamic element to the fraud detection system,
allowing it to adapt and learn from the sequential nature of transactional data. To
classify transactions as fraudulent or legitimate, the processed data passes through
two dense layers. These layers serve as the final decision-making components of
the model, using classification algorithms to differentiate between fraudulent and
legitimate transactions. Finally, this thesis conducts a direct comparison between
the NLP-based approach and Gradient Boosting Trees (GBT), which is a type of
Decision Trees. This comparison carries significant importance, as Decision Trees
have proven to be a highly effective technique in credit card fraud detection. The
evaluation encompasses both the conventional GBT approach and an exploration of
its performance when augmented with NLP embeddings. Experimental results are
shown, but more advanced techniques, such as transformers and attention mech-
anisms, promise to surpass the capabilities of the current methodologies. These
advanced techniques possess the complexity to capture intricate patterns and de-
pendencieswithin transactional data, which could potentially enhance the accuracy
and efficacy of fraud detection systems further. Overall, this thesis offers a valuable
contribution to the field of fraud detection, presenting a straightforward compari-
son between a novel approach and a classic approach to the problem, while high-
lighting the potential for further advancements through the use of more sophisti-
cated techniques.

ii

Sommario

Con l’aumentare della popolarità dei cosiddetti pagamenti digitali, i sistemi di
rilevamento di frodi sono diventati indispensabili nel limitare le perdite mone-
tarie sia per i clienti che per le società emittenti le carte. Conscie dell’importanza
di questa problematica, le piattaforme di pagamento online incorporano sis-
temi sempre più innovativi nelle proprie infrastrutture. Questa tesi presenta
dunque un approccio per il rilevamento di frodi bancarie ispirato alle tecniche
di Natural Language Processing (NLP). L’algoritmo presentato è diviso in due
fasi. In una prima fase la rete neurale Continuous Bag-of-Attributes (CBOA)
proietta i dati delle transazioni in uno spazio iper-dimensionale, facilitando
l’estrazione di features che catturarano le relazioni contestuali all’interno dei
dati. Successivamente, i dati così trasformati vengono elaborati attraverso un
layer LSTM (Long Short-Term Memory), consentendo al modello di catturare
le correlazioni temporali tra transazioni sequenziali. Infine, per classificare le
transazioni come fraudolente piuttosto che legittime, i dati elaborati passano
attraverso due dense layers. Questi layers fungono da componenti decision-
ali finali del modello. In ultimo, questa tesi effettua un confronto diretto tra
l’approccio basato su NLP e Gradient Boosting Trees (GBT), un tipo di Deci-
sion Trees. Questo confronto riveste un’importanza significativa, poiché i Deci-
sion Trees si sono dimostrati una tecnica altamente efficace nella rilevazione di
frodi con carte di credito. La valutazione comprende sia l’approccio GBT con-
venzionale sia una esplorazione delle sue prestazioni quando viene potenziato
con gli embedding di NLP. I risultati sperimentali vengono dunque presentati,
tuttavia l’utilizzo di tecniche più avanzate, come Tranformers e metodi basati
sull’"Attention mechanism", promette di sorpassare i metodi correnti. Tali tec-
niche possiedono la complessità necessaria per catturare dipendenze più com-
plesse all’interno delle transazioni, potenziando ulteriormente l’efficacia dei
sistemi di rilevamento di frodi. Complessivamente, questa tesi offre unprezioso
contibuto nel campodel rilevamento di frodi bancarie, illustrandoun confronto
diretto tra un approccio innovativo ed un approccio classico al problema emet-
tendo in evidenza i possibili sviluppi nel campo attraverso l’uso di tecniche più
avanzate.

Contents

List of Figures . v

List of Tables . vi

List of Abbreviations . 1

1 Introduction . 3
1.1 The Credit Card Fraud Problem . 3
1.2 Solution and goals . 4
1.3 Original Contribution . 4
1.4 Thesis Structure . 5

2 Problem Formulation . 7
2.1 Problem Statement and Goals . 7
2.2 Related works . 8

3 Proposed Model . 19
3.1 Model Overview . 19
3.2 NLP . 21
3.3 Comparative insight on GBT approach . 29
3.4 Feature engineering . 29
3.5 GBT . 30

4 Dataset . 31
4.1 Original Dataset . 31
4.2 Optimized Dataset . 31
4.3 Derived Features . 35

iii

iv CONTENTS

4.4 Some consideration about the data . 36

5 Technical Implementation . 39

6 Experiments . 47
6.1 Moulon Mésocentre . 47
6.2 Quick How-To . 48
6.3 Experiments . 51

7 Results . 57
7.1 Consideration on the experimental process 57
7.2 Performance Metrics . 58
7.3 Results . 59

8 Discussion . 65
8.1 General Considerations on the Results Obtained 65
8.2 Comparison LGBM - LSTM . 66
8.3 Comparison within different window_sizes 67

9 Conclusion . 69

Bibliography . 71

List of Figures

1.1 Use of the main payment services in the euro area, source: Payments statis-
tics: 2020 . 3

2.1 Left: One-Class SVM, Right: SVDD . 11
2.2 FraudMemory training and application, source [9] 13
2.3 Both encoder and transformations are learned simultaneously, source [22] . 16

3.1 The Model Architecture . 20
3.2 Graphical representation of the CBOWmodel and Skip-grammodel,wt rep-

resents word at time step t, source [25] . 21
3.3 Vectors visualized with PCA . 24
3.4 Vectors visualized with T-SNE . 25
3.5 RNN recurrency step, source: Introduction to Deep Learning, MIT 27
3.6 RNN internal state, source: Understanding LSTM Networks, colah’s blog 28
3.7 LSTM internal state, source: Understanding LSTM Networks, colah’s blog . . . 28

4.1 Original Dataset Fields . 32
4.2 Optimized Dataset . 33
4.3 Dataset with renamed columns . 34
4.4 Graph with the number of cards in function of their histories’ length, repre-

senting cards with histories up to 100 transactions 37

5.1 Rolling window example, source: Mathworks 42
5.2 attributes encoded with CBOA . 46

7.1 LSTM with CBOA encoding and window_size 8 loss function on 30 epochs 60
7.2 . 63

v

List of Tables

7.1 Time-series classification with CBOA encoding and LSTM on short history
cards . 60

7.2 Time-series classification with augmented features and LGBM on short his-
tory cards . 61

7.3 Time-series with CBOA encoding and LGBM on short history cards 61
7.4 Time-series classification with CBOA encoding and LSTM on long history

cards . 62
7.5 Time-series classification with LGBM and augmented features on long his-

tory cards . 62
7.6 Time-series classification with LGBM and CBOA encoding on long history

cards . 62
7.7 Time-series classification with LSTM and CBOA encoding on longer history

cards . 63

8.1 Comparison TSc with CBOA encoding and LGBM - short history 66
8.2 Comparison TSc with CBOA encoding and LGBM - long history 67
8.3 Comparison window_sizes for TSc performance 68

vi

List of Abbreviations

Abbreviation Extended Word
GBT Gradient Boosting Trees
LSTM Long-Short Term Memory
NLP Natural Language Processing
P-RCE Parallel Resilient Back-Propagation with Constrained Energy
SVDD Support Vector Data Description
SVM Support Vector Machine
CBOW Continuous-Bag-of-Words model
CBOA Continuous-Bag-of-Attributes model
GRU Gated Recurrent Unit
PCA Principal Component Analysis
t-SNE T-distributed Stochastic Neighbor embedding
std Standard Deviation
nbstd Cumulative Standard Deviation
LGBM Light Gradient Boosting Machine

1

Chapter

1
Introduction

1.1 The Credit Card Fraud Problem

Over the past two decades, advancements in technology have not only facilitated but
also popularized digital payments.

However, the outbreak of the covid-19 pandemic has further accelerated this trend,
emphasizing its significance not only for economic prosperity, but also as a valuable
resource for maintaining public health. In fact, the European area alone witnessed a
notable increase in non-cash payments, which reached €101.6 billion, with an additional

Figure 1.1: Use of the main payment services in the euro area, source: Payments statis-
tics: 2020

3

4 CHAPTER 1. INTRODUCTION

€3.7 billion added in recent years. The chart in figure 1.1 shows the development of the
main payment services in the Euro area from 2000 to 2020[1].

Unfortunately, fraudsters have also been quick to adapt to these developments, lead-
ing to a corresponding rise in digital fraud incidents. Globally, the total monetary
losses due to fraud amount to €36.8 billion[2]. Furthermore, the inability to effectively
combat fraud not only leads to financial losses, but also damages the credibility and re-
liability of card-provider companies, exacerbating the overall impact.

Given this context, the importance of developing robust fraud detection systems be-
comes evident.

1.2 Solution and goals
The main objective of this work is to propose an innovative fraud detection system
that can be integrated into a high-performance online transactional platform developed
by a global software and services provider in the cashless payments industry.

The currently adopted approach relies on leveraging the expertise of domain ex-
perts to extract meaningful features from the data, which are then fed into a simple
classifier like Gradient Boosted Trees (GBT). However, this relatively simple model
faces significant challenges in effectively addressing the complexities associated with
fraud detection.

Therefore, this thesis proposes a robust solution in the form of a deep-learning
based model. The model architecture consists of multiple cascaded networks: the first
network utilizes the Bag-Of-Attributes model to extract features from the dataset. The
second network employs a Long Short-TermMemory (LSTM) to capture patterns from
credit card histories. Finally, two Dense Layers are employed to classify the instances as
anomalous or not.

1.3 Original Contribution
This thesismakes an original contribution by employing and analyzing natural language
processing (NLP) methodologies in the context of fraud detection. While NLP models
have been successfully applied in various domains, such as facial expression recogni-
tion[3], 3D object recognition[4], and time-series classification[5], only a limited num-
ber of studies have explored their application in the specific domain of fraud detection.

This thesis distinguishes itself by conducting a direct comparison between an NLP-
based approach and Gradient Boosting Trees (GBT), which is an implementation of the

1.4. THESIS STRUCTURE 5

Decision Trees methodology. This comparison carries significant importance, as Deci-
sion Trees have proven to be a highly effective technique employed in credit card fraud
detection[6][7][8]. The evaluation encompasses both the conventional GBT approach
and an exploration of its performance when augmented with NLP embeddings.

Therefore, this thesis offers a comprehensive analysis and evaluation of the effec-
tiveness of an NLP-based approach in fraud detection. Furthermore, the inclusion of a
benchmark comparison with the GBT approach provides meaningful insights into the
relative performance of these methods.

One notable paper that served as inspiration for the approach implemented in this
report is "FraudMemory: Explainable Memory-Enhanced Sequential Neural Networks
for Financial Fraud Detection" by Yang et al.[9]. By leveraging NLP techniques, this re-
search demonstrates promising advancements in the field of fraud detection. Building
upon this foundation, the proposed model in this thesis incorporates similar concepts
to enhance fraud detection capabilities in the credit card fraud detection task.

1.4 Thesis Structure

The following of this thesis is structured as follows:

• the Problem formulation section[2]: This section presents the formulation of the
problem and provides an overview of existing works in the literature that address
similar tasks.

• the Proposed Model section[3]: In this section, the proposed solution is intro-
duced and explained in detail.

• the Dataset section[4]: This section examines the characteristics of the dataset
used in the study.

• the Technical Implementation section[5]: The technical implementation section
describes the step-by-step process followed to develop the final model, including
snippets of code and relevant technical details.

• the Experiments section[6.3]: This section presents the experiments conducted
and provides commentary on the results obtained.

• theResults section[7]: The results section describes the results of the experiments
and presents the findings.

• theDiscussion section[8]: In this section, a comparison and analysis of the results
obtained are presented, along with relevant discussions.

6 CHAPTER 1. INTRODUCTION

• The Conclusion section[9]: The conclusion section summarizes the main findings
of the study and offers potential directions for future research and development
of the proposed model.

Chapter

2
Problem Formulation

In this section, we will provide a deeper insight into the problem at hand.
Firstly, the problem is stated. We will analyze what type of input we are dealing

with, and what type of output we are expected to produce.
Secondly, we provide an overview of the related work already carried out on the

topic. Relevant research, studies, and approaches already explored in the field will be
discussed and reviewed.

2.1 Problem Statement and Goals

As previously mentioned, the task involves designing and implementing a fraud detec-
tion system. Our system is expected to determine, given an input payment transaction,
whether the transaction is legitimate or fraudulent.

To accomplish this task, we have access to a large dataset of 100 million labeled
transactions from a real payment service. Each transaction consists of several attributes,
including both categorical and continuous variables. Of particular interest are the "card"
attribute, which identifies the card used for the transaction and links it to the series of
transactions associated with the same card, and the "fraud" flag attribute, which indi-
cates whether a transaction is classified as fraudulent.

It is worth noting that only a small fraction (less than 1%) of the transactions in our
dataset are flagged as fraud. This makes the dataset highly imbalanced, presenting a
challenge in developing an effective classification model for time-series input data.

Given the characteristics of the problem, we can include it in the anomaly detection
framework. Anomaly detection refers to the task of detecting unusual or anomalous

7

8 CHAPTER 2. PROBLEM FORMULATION

instances within a dataset.

Our model aims to surpass the performance of the current fraud detection system
implemented on the platform, which uses a Gradient Boosting Trees (GBT) classifica-
tion model. More details about GBT will be provided in the dedicated section[3.3].

Next, we will proceed to formally define the task.

Fraud Detection
Consider a dataset Dn = (xi,yj)ni=1 where xi ∈ X ⊆ Rd and yi ∈ Y = 0, 1. Each
payment i is described by its features xi (e.g. amount, date,. . . etc) and its label yi flagging
whether it is a fraud, yi = 1, or not, yi = 0.
Fraud detection consists of estimating a function f : X 7→ Y using Dn, i.e. a function
which predicts whether a payment i is fraudulent based on its features xi.
Fraud Detection is considered a challenging task for three main reasons:

• Imbalanced learning: non-fraudulent payments are significantly more numerous

Card((xi,yi)|yi ∈ Dn,yi = 0)� Card((xi,yi)|yi ∈ Dn,yi = 1)

than fraudulent ones.

• Concept drift: fraudsters change their behaviors due to a cat-and-mouse game.

Dtrainn ∼ ptrain(x,y)

Dtestn ∼ ptest(x,y)
ptest(x,y) 6= ptrain(x,y)

• Explainability: for regulatory reasons, it is necessary to account for a model’s
prediction.

Due to these characteristics, in particular extreme imbalanced datasets and concept
drift, standard machine learning methods perform poorly. In the following section, the
most popular methods to perform fraud detection are investigated.

2.2 Related works
Fraud detection, as a domain within anomaly detection, focuses on identifying rare in-
stances, such as fraudulent activities, that significantly deviate from most of the data,
which comprises non-fraudulent instances.

The literature on anomaly detection is rich with a wide range of approaches and
techniques. To gain a comprehensive understanding of the field, "Anomaly Detection:

2.2. RELATED WORKS 9

A Survey" by Chandola et al. provides a detailed review of different methodologies,
algorithms, and applications in anomaly detection[10].

Based on the availability of labeled data, anomaly detection techniques can be clas-
sified into supervised and unsupervised techniques.

Supervised techniques rely on labeled data, where both normal and anomalous
instances are explicitly identified. These techniques involve training a model on the la-
beled data to learn the patterns and characteristics of normal instances, enabling them
to classify new instances as normal or anomalous based on the learned information.

On the other hand, unsupervised techniques do not require labeled data and focus
solely on the characteristics of the data itself. These techniques aim to identify patterns
and structures that distinguish normal instances from anomalies without prior knowl-
edge of the anomalies. Unsupervised techniques often rely on statistical methods, clus-
tering algorithms, or density-based approaches to detect deviations from the norm.

Both supervised and unsupervised techniques have their strengths andweaknesses,
and their suitability depends on the availability of labeled data and the specific require-
ments of the fraud detection task at hand.

Supervised methods
Traditional supervised methods focus on training a classifier using Dn by estimating
either the joint distribution p(x,y) for generative models or the conditional distribution
p(y|x) for discriminative models.

Among supervised techniques, those based on neural networks, have gained pop-
ularity in fraud detection tasks. One of the early works in this area is the paper "Credit
card fraud detection with a neural-network" byGhosh and Reilly[11]. They applied a neural
network called Parallel Resilient Back-Propagation with Constrained Energy(P-RCE)
to the fraud detection task. The authors performed feature extraction on raw input data
fields to create more meaningful features, which were then fed into the P-RCE neural
network. This approach demonstrated superior performance compared to classical sta-
tistical methodologies.

A similar approach was implemented by Patidar and Lokesh Sharma in their work
"Credit Card Fraud Detection Using Neural Network"[12]. They utilized a P-RCE neural
network along with a genetic algorithm. The genetic algorithm was employed to select
the best performing neural network from an initial randomly generated pool of net-
works. This approach enhanced the effectiveness of the neural network in detecting
credit card fraud.

10 CHAPTER 2. PROBLEM FORMULATION

In the paper "Credit Card Fraud Detection Using Convolutional Neural Networks" by
Kang Fu et al.[13], the authors proposed the use of convolutional neural networks
(CNN) for credit card fraud detection. They applied CNN and reshaped the data into
feature matrices based on time windows, allowing the network to capture temporal pat-
terns in the data. This technique demonstrated promising results in fraud detection
tasks.

However, these approaches often yield relatively unsatisfactory results in fraud de-
tection due to specific challenges, such as highly imbalanced learning and concept drift
[14].

Researchers have proposed various alternative techniques to improve performance
in anomaly detection scenarios. Themethodologies applied in the following two papers
are among the most interesting.

One-class Classification
One-ClassClassification consists in estimating the support of the distribution of normal
data, i.e. non-fraudulent payments in our case, in a well chosen latent space Z such
that data points not belonging to that support are considered anomalous or fraudulent.
One-Class Classification is a supervised method, since it requires labeled data to split
the data into a training set only composed of non-fraudulent payments:

Dtrain = x|(x,y) ∈ D,y = 0

This approach offers several advantages:

• It is less susceptible to concept drift, which consists of the fact that the data distri-
bution changes over time.

• It is effective in handling imbalanced datasets, where the positive class (fraudulent
payments) is significantly underrepresented compared to the negative class (non-
fraudulent payments).

• It is well-suited for tasks where the positive class does not exhibit a consistent pat-
tern or structure within the feature space. This means fraudulent payments may
not follow a specific set of characteristics, making it difficult to define a clear deci-
sion boundary between normal and fraudulent instances using traditional classi-
fication methods.

The typical methods employed in One-Class Classification are kernel-based tech-
niques like Support Vector Data Description (SVDD) or One-Class Support Vector
Machine (SVM). Let’s consider a kernel mapping φ : X 7→ Z. In this context:

• One-Class SVM[15] involves identifying the hyperplane in Z that maximizes the
distance from the origin and effectively separates all data points from the origin.

2.2. RELATED WORKS 11

Figure 2.1: Left: One-Class SVM, Right: SVDD

• On the other hand, SVDD[16] aims to locate the smallest hyper-sphere in Z that
encompasses all the data points.

The two approaches are shown visually in figure 2.1.

Due to their inherent computational complexity, methods likeOne-Class SVM and
SVDD, being kernel-basedmodels, are elegant but often impractical for large datasets.
In the case of a dataset containing 100 million transactions, like the one used in this
thesis, these approaches are not well-suited due to their intractability.

FraudMemory: Explainable Memory-Enhanced Sequential Neural Networks
for Financial Fraud Detection
In their recent study titled "FraudMemory: Explainable Memory-Enhanced Sequential Neu-
ral Networks for Financial Fraud Detection" Yang et al.[9] propose a hybrid fraud detection
system that combines sequential and memory-enhanced methods to enhance explain-
ability.

The core idea of the paper is to model the normal behavior of each user and identify
transactions that significantly deviate from this behavior as potential frauds.

The authors extract valuable information from transactions through twodistinct rep-
resentations: the user profile representation and the log representation.
The user profile representation involves constructing three graphs: the recency graph
(GR), the frequency graph (GF), and the money graph (GM). In these graphs, users are
represented as nodes, and the edges represent transactions between users. The weights

12 CHAPTER 2. PROBLEM FORMULATION

of the edges are determined based on the average time interval between transactions, the
frequency of transactions, and the average monetary value of each transaction, respec-
tively. A translation-based embedding method, TransE[17] is used to generate latent
vectors from each graph for each user.

These vectors are then concatenated into a 3Dmatrix, creating a comprehensive rep-
resentation for each user. Lastly, a clustering method, e.g. K-Nearest Neighbors, is
applied to group users with similar behavior.
The log representation, on the other hand, aims to extract information from the attribute
level of transactions. To achieve this, the authors implement a modified version of the
Continuous-Bag-of-Words model (CBOW), called Continuous bag-of-attributes model
(CBOA).

These two representations are then fed into a Gated Recurrent Unit (GRU) model to
extract sequential patterns. The GRU model utilizes the log sequence lu1 , lu2 , . . . , lut for
user u to calculate the current hidden state vectorhut at time-step t based on the previous
hidden state vector hut−1:

hut = GRU(hut−1, lui , θ)
where θ denotes the GRU parameters to learn.

Finally, a Multilayer Perceptron (MLP) is employed to evaluate the sequential rep-
resentation and assign a fraud score to each transaction.

Scoresequence =MLP(h
u
t)

During the application phase, two additional memory networks are used to improve
performance and address the concept drift problem. The sequential representation of
incoming transactions is indeed used as a query for the two memory networks. The
output latent memory vector of this query, denoted as mut , represents the divergence
between the sequential representation and the past behavior of the user. It is obtained
through an attentive combination of memory networks:

mut =

mu∑
i=1

wui ·mui

Here, wui is the attention weight of memory mui . To determine the weights between
the query and the memory, the Softmax function is utilized. This computation assigns
higher weights to instances where the query and the memory exhibit greater similarity:

wui = Softmax(−Distance(hut ,mui)) =
e−Distance(h

u
t ,mu

i))

e−Distance(h
u
t ,mu

j))

The dissimilarity between the query vector andmemory slots is determined by using
the Euclidean distance function.

2.2. RELATED WORKS 13

Figure 2.2: FraudMemory training and application, source [9]

A similar score is also calculated on the group history. The group history is the one
obtained in the previous step, where userswith similar behavior are aggregated through
a clustering algorithm. This second score is helpful in caseswhere the individual history
of the user is short and presents high variance between transactions. Finally, these two
scores are concatenated with the sequential representation hut to obtain a final anomaly
score. This comprehensive score indicates the transaction’s deviation from the expected
user behavior. Furthermore, the memory networks are updated if the sequential rep-
resentation produces significant change compared to the previous transaction history.
This ensures the model can adapt to evolving patterns and effectively capture concept
drift. The model training and prediction processes are shown in figure 2.2.

Therefore, the model presented by the authors is highly explainable, as the motiva-
tions that lead the classifier to flag a transaction as fraud are explicitly modeled, and can
deal with concept drift.

However, the paper doesn’t present the data and code in their experiments, making
it less transparent.

14 CHAPTER 2. PROBLEM FORMULATION

Unsupervised methods

If we assume fraudulent and non-fraudulent payments originate from different distri-
butions, unsupervised anomaly detectionmethods can be employed to identify fraud-
ulent payments.

Several papers, such as "A LinearMethod for Deviation Detection in Large Databases" by
Arning et al.[18], "Towards parameter-free data mining" by Keogh et al. [19], and "Graph-
based anomaly detection" by Noble et al. [20], explore the use of information theory in
the anomaly detection task.

These techniques define the information content of a givendataset using information-
theoretic measures such as Kolmogorov Complexity and rely on the assumption that
anomalies induce irregularities in the information content of the dataset. In essence,
anomalies add entropy to the dataset’s information content. The goal in this framework
is to maximize the entropy added by the minimum possible number of anomalous in-
stances, thereby distinguishing them from the normal instances.

Recent advancements in anomaly detection have also explored the use of self-supervised
learning. Self-supervised learning involves training a model on auxiliary tasks that ex-
ploit the inherent structure of the data itself as a learning signal. Instead of relying on
human-provided labels, the model is trained to perform proxy tasks that leverage data
attributes that can be inferred without any labels. By doing so, the model learns repre-
sentations that capture the underlying factors of variation within the data, which can be
beneficial for detecting anomalies.

Two recent papers, "Classification-BasedAnomalyDetection forGeneralData (GOAD)"
byBergman andHoshen in 2020 and "Neural TransformationLearning forDeepAnomaly
Detection Beyond Images" by Qiu et al. at ICML 2021, propose methods that utilize
transformations using self-supervision to detect anomalies.

Classification-Based Anomaly Detection for General Data (GOAD) -
Bergman and Hoshen, 2020

Firstly, Bergman and Hoshen(2020)[21] propose to transform each data sample in the
training set into M subspaces. Note that the training set is exclusively composed of
normal data. A feature space is learned such that intra-class separation is small (i.e. data
samples transformed by the same transformation are close to each other in the feature
space) while inter-class separation is large (i.e. data samples transformed by different
transformations are distant from each other in the feature space). The authors’ key
idea is that the distance to the cluster center in the feature space is correlated with
the likelihood of anomaly, thus can be used as a proxy to determine whether a point
is abnormal. Formally, authors formulate the hypothesis that all normal points lie in a

2.2. RELATED WORKS 15

subspace X while anomalous points do not:

∀(x,y) ∈ Dn : y = 0, x ∈ X ⊂ Rd,∀(x,y) ∈ Dn : y = 1, x /∈ X ⊂ Rd

Authors propose to perform M transformations:

X1

X
M Transformations−−−−−−−−−−−→

...
XM

The idea here is that for all points x ∈ X ⊂ X, each transformed sample xm should lie in
a subspace Xm ⊂ X.

∀x ∈ X ∼ T(x, 1)︸ ︷︷ ︸
Transfo.

, . . . , T(x,M)

where
T(x,m) ∈ Xm

Transformations are set to belong to the class of affine transformations, which works
for general data types and especially tabular data types

T(x,m) =Wmx+ bm

whereWm,bm are sampled from a random distribution. A feature extractor f : X→ Z,
in the formof a neural network, is trained tomap each data point inX ⊂ Rd to a subspace
Z. Similarly to SVDD[16], each subspace Xm is mapped to a feature space f(x)|x ∈ Xm
in a hyper-sphere with center cm. Through the optimization of the center triplet loss, f
undergoes training to acquire clustering capabilities that emphasize reduced variation
within classes and enhanced variation between classes.

L = Ex∼Dtrainn
max {||f(T(x,m) − cm||2 + s+ min

m 6=m ′
||f(T(x,m) − cm ′ ||2, 0}

where s is a margin regularizing the distance between clusters.

The classification task is considered by authors as an auxiliary task for creating an
anomaly score, which can be used to identify anomalous points. A classifier is trained to
predict the transformationm ∈ 1, . . . ,M applied to T(x,m), aiming to detect the specific
transformation applied to obtain T(x,m) from x. In this process, if the transformations
T are one-on-one and x does not belong to X, the transformed samples T(x,m) will not
belong to the appropriate subspace X /∈ Xm. As a result, the estimated probabilities
P(m|T(x,m))will be low for these anomalous points, because the classifier is exclusively
trained on points within X. This implies that the anomalous points will have a high
anomaly score. For example, the anomaly score is defined as

16 CHAPTER 2. PROBLEM FORMULATION

Score(x) = − logP(x ∈ X) = −
∑
m

log P̃(T(x,m) ∈ Xm) = −
∑
m

log P̃(m|T(x,m))

where P̃(.) is defined in their paper. Higher scores indicate a more anomalous data
sample.

Neural Transformation Learning for Deep Anomaly Detection Beyond
Images, Qiu et al. (ICML, 2021)
Authors propose an approach relatively similar to the paper presented above in the
sense that it relies on transformations. In NeuTraL AD[22], authors propose to learn
simultaneously the feature extractor and the transformations applied to data samples,
instead of simple affine transformations, as shown in figure 2.3. Moreover, their ap-
proach relies on a contrastive loss and does not involve any classification tasks as in
GOAD[21] to construct the anomaly score. In a nutshell, the applied transformation
takes the form of a neural network and is trained such that:

• Encoded transformed and untransformed data are not distant from each other in
the embedding space.

• Encoded transformed data from different transformations should be distant from
each other in the embedding space.

Formally, the approach considers M transformations denoted as T : X · 1, . . . ,M 7→
X, which are represented by neural networks φ(., θm) with learnable parameters θm.
Simultaneously, an encoder or feature extractor fφ : X 7→ Z is learned in a joint manner.
The transformations should satisfy the following criteria:

Figure 2.3: Both encoder and transformations are learned simultaneously, source [22]

2.2. RELATED WORKS 17

1. The produced views should retain relevant semantic information shared with the
original data: ∀m ∈ 1, . . . ,M, the transformed sample xm := T(x,m) and the orig-
inal sample x should be close to each other in the embedding space Z. In other
words, the distance measure d(fφ(xm), fφ(x)) between their respective embed-
dings fφ should be low.

2. The transformations should generate diverse views of each sample. This implies
that for any two distinct transformations l,m|(l 6= m), where l, m ∈ 1, . . .M, the
distance measure d(fφ(xl), fφ(xm)) between their corresponding embeddings fφ
should be high.

h(xm, xl) = exp(sim(fφ(T(x, l)), fφ(T(x,m)

τ
)

.
where sim(., .) is the cosine similarity, and τ is a temperature parameter. h(., .) cor-

relates with the similarity of two vectors in the embedding space. Based on the formu-
lated objectives, youwant to maximize h(xm, x) ∀mwhile minimizing h(xl, xm)∀l 6= m.
Thus, the parameters of NeuTraL AD, φ, θ1, . . . , θm are optimized by minimizing the
following deterministic contrastive loss:

L = Ex∼Dtrainn
− [

M∑
m=1

log h(x, xm)

h(x, xm) +
∑
l 6=m h(xm, xl)

]

.
Numerator encourages objective (i) and denominator pushes towards (ii). The loss

can itself be used as an anomaly score.

Chapter

3
Proposed Model

In this section, we present the proposed model. The section is structured as follows:

• Conceptual Overview: We start with a brief conceptual overview to introduce the
main ideas behind the model and its purpose.

• NLP and its Relation to the Model: In the second part, we delve into the details
of Natural Language Processing (NLP) and explore how it is intricately linked to
our model. We explain the fundamental principles and techniques of NLP and
highlight their relevance to our fraud detection system.

• OverviewofGradient Boosting TreeArchitecture: Finally, we provide an overview
of the Gradient Boosting Tree (GBT) architecture. We explain its key features, ad-
vantages, and limitations. Understanding GBT will serve as a basis for compar-
ing its performance with our proposed model and evaluating the advancements
achieved.

Through this section, we aim to provide a comprehensive understanding of the model,
its underlying concepts, and its application to the fraud detection task at hand.

3.1 Model Overview
The model draws significant inspiration from the FraudMemory model [2.2]. The pro-
posed model can be divided into two distinct phases:

1. In the first phase, which is a preliminary phase, the attributes undergo a pro-
cessing step through an embedding layer. The embedding layer is constructed us-
ing the Continuous Bag of Attributes (CBOA) dense embedding technique. This
technique enables the projection of the attributes into a lower-dimensional space. By

19

20 CHAPTER 3. PROPOSED MODEL

Figure 3.1: The Model Architecture

doing so, the attributes are quantified and represented as real-valued vectors that
capture their semantic relationshipswith other attributes.

2. The second phase frames themodel architecture.
The model compounds a LSTM layer and two Dense layers on top. The LSTM
is fed with sequences of vectorized attributes and extracts temporal patterns.
The twoDense layers, instead, implement the actual classifier, which determines
whether a transaction is fraudulent or not.

The model architecture shown in figure 3.1.

CBOA and time series models like LSTMs belong to theNLP methodology. In this
context, sequences of transactions can be seen as analogous to words in sentences. The
goal of the model is to capture a sense of coherence within the sequence, as well as to
understand the flow and coherence of speech by evaluating words in context. As the
model processes transaction after transaction, it gradually becomes better at assessing
the coherence and compatibility of each subsequent transaction with the previous ones,
similar to understanding the coherence of words in a sentence.

3.2. NLP 21

To start, let us delve into the definition of NLP.

3.2 NLP

Natural Language Processing orNLP is a field of Artificial Intelligence that allows ma-
chines to read, understand and derive meaning from human languages[23]. However,
before machines can understand human language, it is crucial to transform words in
these languages into a format that machines can process effectively. This is achieved
through the use of word embeddings, which encode words as numerical vectors.

Word embeddings

Word embeddings are techniques that map a word (or phrase) from its original high-
dimensional input space (the body of all words) to a lower-dimensional numerical vec-
tor space[24]. They represent words using continuous vectors. These vectors are ob-
tained through shallow neural networks. A shallow neural network, as opposite of a deep
neural network, is a network with a single hidden layer. This hidden layer is the word
embedding we are looking for. The twomain shallowmodels, shown in figure 3.2, used
now-a-days in NLP are:

• SkipGram. The distributed representation of the input word is used to predict the
context

Figure 3.2: Graphical representation of the CBOW model and Skip-gram model, wt
represents word at time step t, source [25]

22 CHAPTER 3. PROPOSED MODEL

• CBOW.1 The distributed representations of context are combined to predict the
word in the middle.

In the two definitions above, which quote the original paper[25], the expression dis-
tributed representation of the input word is used. It underlines that eachword is represented
by its context, that is, by the other words that frequently appear along with our target
word. This enables us to capture the semantics of words.

To make the concept clearer, it can be helpful to quickly go through the two models
at hand.

In a preliminary stage, all the words in the dictionary, that is, all the words that can
appear in our sentences, are encoded using one-hot encoding.

One-hot encoding is the simplest way to represent words in a numerical format. A
vector that is as long as the number of words in the dictionary is assigned to each word.
This vector is composed only of zeros and a single one. The position of the one within
the vector varies for each word. To illustrate, let’s consider a dictionary containing four
words. Here is an example of how one-hot encoding represents these words:

• The 1000
• Red 0100
• Fox 0010
• Jumps 0001

In each vector, only one element is set to one, indicating the presence of a specific word,
while all other elements are zero. The use of one-hot encoding is limited due to the
"Curse of Dimensionality." This term refers to the increased computational burden as-
sociated with larger dictionaries, as the length of the encoding becomes longer. As a
result, the network’s training process becomes more demanding.

In a second stage, these words will be fed as input to a shallow network. The Skip-
gram model, given a word, called center word, as input, will output a probability dis-
tribution over all the words in the dictionary. The higher the probability cast to a word,
the higher the probability to find it in the context of input words. Context words are de-
fined through a window-size, a hyper-parameter of the model that specifies the number
of words before and after the center word. For example, if we have the sentence: "The
red fox jumps over the fence"we will take

wt : "fox"
as center word, and we set a window-size of 4, the context words will be

wt−2 : "The",wt−1 : "red",wt+1 : "jumps",wt+2 : "over".
1Continuous Bag of Words

3.2. NLP 23

In contrast, the CBOWmodel takes the context words as input and predicts the cen-
ter word. This is the model we will utilize to encode our transactions. Now, let’s delve
into the training process of the CBOWmodel.

The training input will be composed of all the pairs (target, context). The example
above, for instance, would produce the pairs: (fox, the), (fox, red), (fox, jumps), (fox, over).
The objective function to optimize is:

minimize− log P̂(wt|wt−n/2..wt−1wt+1...wt+n/2)

So we will have as input the context words, which will be projected in the hidden layer,
then the average sum will represent our target word. The interesting thing about this
kind of word embedding is that they can encapsulate meaning. This means similar
words will be close in the projection space, forming clusters. We will have clusters of
countries, for example, or of cities. Moreover, basic operations are possible on them. For
instance:

France - Paris + Poland = Warsaw
and

King - Man +Woman = Queen

As mentioned, we will apply theCBOWmodel to our transactions. This newmodel
is calledCBOA, which stands forContinuous BagOf Attributes. This new name is due
to the fact that we are no longer dealing with words, but with attributes of transactions.
The CBOA algorithm projects the attributes in a lower dimensional space. This projection
quantifies the attributes and expresses them through real-valued vectors. We end up
with a dictionary that pair the attributes to 6-dimentional vectors.

To visualize the attributes in their new subspace, we use common dimensionality
reduction techniques such asPrincipal ComponentAnalysis (PCA) andT-distributed
Stochastic Neighbor Embedding (t-SNE). With either method, the distance between
words expresses the similarity between them.

Let’s begin with the concept of PCA.
PCA is a linear dimension reduction technique that aims to map high-dimensional data
onto a lower-dimensional space while maximizing the variance of the data.

In Figure 3.3, we can observe the representation ofwords. The blackwords represent
the input words, while the colored words represent the three most similar words to the
input words. For instance, we notice that a word like "merchant" is grouped together
with other similar merchants, indicating their semantic similarity. Similarly, the neigh-
borhood of a word like "country" (e.g., France) consists of attributes related to amounts
and networks, highlighting their contextual relevance.

24 CHAPTER 3. PROPOSED MODEL

(a) Vectors visualized with PCA in 2D

(b) Vectors visualized with PCA in 3D

Figure 3.3: Vectors visualized with PCA

3.2. NLP 25

Let’s now inspect the data using the t-SNE technique.
With t-SNE, the algorithm calculates the similarity in both high dimensional space and
low dimensional space. Next, the similarity difference in both spaces is minimized
using an optimization method, for example gradient descendmethod. Also in this case,
in figure 3.4, black words are the input word, while the colored ones are the three most
similar words to the input words. We obtain similar results.

(a) Vectors visualized with T-SNE in 2D

(b) Vectors visualized with T-SNE in 3D

Figure 3.4: Vectors visualized with T-SNE

26 CHAPTER 3. PROPOSED MODEL

Recurrency and Memory
After obtaining a meaningful representation of words and attributes using Continuous
Bag-of-Attributes (CBOA), the next step is to choose a network that can effectively han-
dle sequential data. This is necessary, because the meaning and context of words in a
sentence or the patterns in bank transaction histories depend on the information from
previous elements.

As stated by Colah[26] in his blog post, "as you read this essay, you understand each
word based on your understanding of previous words." This sequential nature applies
to both language processing and analyzing transaction histories. To predict the next
word in a sentence or determine whether a subsequent transaction will be a fraud, ma-
chines need to consider the temporal aspect of the data.

To face this task, Recurrent Neural Networks (RNNs) is one of the first network in-
troduced. RNNs are designed to capture the relationship between inputs and outputs
at each time-step, similar to a standalone feed-forward neural network. However, in
RNNs, each time-step network is connected to the following one, creating a recurrent
structure, as depicted in Figure 3.5. This recurrent connectivity enables the network to
maintain memory of previous inputs and learn long-term dependencies.

By utilizing RNNs, our model can effectively model the sequential nature of the
data, whether in sentences or transaction histories. This enables the system to make
predictions and decisions based on the temporal patterns and dependencies present in
the data.

After obtaining a meaningful representation of words and attributes using Contin-
uous Bag-of-Attributes (CBOA), the next step is to choose a network that can effectively
handle sequential data. This is necessary, because the meaning and context of words in
a sentence or the patterns in bank transaction histories depend on the information from
previous elements.

This way, the output is defined as:

ŷt = f(xt,ht−1)

It is then dependent on the current input and hidden state of the network at the previous
time-steps. While the hidden state of such a network at time t takes as input the current
input and activation from hidden units at time t− 1, defining the relationship:

ht = fw(xt,ht−1)

It is important to notice that the function

fw(...)

is parametrized, and that the same function, alongwith its weights, is used for all time-
steps. This notion of state introduced by ht is what makes RNNs remember previous

3.2. NLP 27

inputs and their outputs. In figure 3.6, we can observe the internal state of a RNNwith
fw modeled as the tanh function.

It appears intuitive that now, when performing back propagation during training
with RNNs, we back propagate the gradients not only through the network, as with
classical feed-forward networks, but also through different time-steps. This is what is
called Back Propagation Through Time. Due to these numerous multiplications of weights
matrices, RNNs are prone to the vanishing gradient and exploding gradient problem.
This means that during training, the gradient tends to disappear or boost, leading to an
inability of the network to retain information through longer sequences.

Long Short Time Memory network was conceived to deal with this problem. First
introduced in 1997 by SeppHochreiter and Jürgen Schmidhuber[27], this networkpresents
a gated memory cell, able to control the information that flows inside and outside of
them.

Four gates[28], with respective weight matricesWf,Wi,Wc andWo, regulate their
behavior, as shown in figure 3.7:

1. Forget Gate. This gate decides which information in the cell is no longer relevant.
The following equation rules it:

ft = σ(Wf · [ht−1, xt] + bf)

The sigmoid function calibrates, based on ht−1 and xt, which degree of informa-
tionwewant to retain for each number of the previous state cellCt−1. The sigmoid
function and the tanh function will perform similar tasks also in the other gates.

2. Input Gate. This gate controls the input information of the cell.

it = σ(Wi · [ht−1, xt] + bi)

Figure 3.5: RNN recurrency step, source: Introduction to Deep Learning, MIT

28 CHAPTER 3. PROPOSED MODEL

Figure 3.6: RNN internal state, source: Understanding LSTM Networks, colah’s blog

Figure 3.7: LSTM internal state, source: Understanding LSTM Networks, colah’s blog

3. Input Modulation Gate. This gate proposes candidates substitutions for the cell
memory.

C̃t = tanh(Wc · [ht−1, xt] + bc)

4. Output Gate. This gate controls the output information of the cell.

ot = tanh(Wo · [ht−1, xt] + bo)

3.3. COMPARATIVE INSIGHT ON GBT APPROACH 29

Then, the cell state Ct is updated as follows:
Ct = ft ∗ Ct−1 + it ∗ C̃t

The forget gate layer ft multiplies the previous cell state Ct−1 to decide what to keep or
not, and the result is added to the product of the input layer it and C̃t, which modules
what to add. Finally, the output of the cell is:

ht = ot ∗ σ(Ct−1)

which consists of the modulation of the output information performed by the output
layer ot multiplied by the sigmoid of the state cell.

In conclusion, the LSTM network allows us to correlate the current transaction to
the previous ones, even in long sequences.

3.3 Comparative insight on GBT approach
Asmentioned before, the current adopted model is aGBT enhanced with feature engi-
neering techniques for time-series classification. Feature engineering relies on experts’
knowledge to be properly design, though human intervention plays a crucial role here.
On the other hand, our model relies utterly on artificial intelligence to comply with the
classification.

It’s of clear interest to compare the performances between both approaches.

In this section, wewill provide an overview of the second approach. We are present-
ing only the aspects functional to the comparison. More insight on GBTs can be found,
for instance, in the following papers: Thoughts on Hypothesis Boosting, Kearns et al.[29],
Arcing the edge, Breiman et al.[30] and Stochastic gradient boosting, Friedman et al.[31].

3.4 Feature engineering
"Feature engineering refers to the process of using domain knowledge to select and transform the
most relevant variables from raw data when creating a predictive model using machine learning
or statistical modeling."[32]
When it comes to time-series, features engineering is particularly important when the
model used don’t make use of recurrency. Features engineering encapsulates time in
new attributes in three different ways[33]:

1. Date Time Features. These are features that refer to the temporal domain of the
time step itself for each observation.
These features are typically used to extract periodical or cyclic patterns in the data.
They usually consist of features such as Month, Day, Hour and flags like Weekday
or Business hours.

30 CHAPTER 3. PROPOSED MODEL

2. Lag Features. These features consist in values taken from prior time steps.
Lag features put in relation current time-steps with previous ones. In this way, it’s
possible to transform a forecast time-series problem into a supervised problem.
We can easily extend the time framewe considerwith the slidingwindowmethod:
this way the model captures correlation between values registered at multiple
time-steps. A hyperparameter of interest when dealing with the sliding window
method is the window size, which determines how many prior time steps are to
be evaluated.

3. Window Features. These features consist in summary of values over a fixed win-
dow of prior time steps. These features provide the classifier features based on
summary statistics across the values included in the sliding window.

The prior approachmainly exploited this last kind of features: they computed rolling
sums, rolling averages and standard deviations over various periods to enhance each data
point. These features provide the classifier values of reference to decide whether a new
data instance is anomalous.

3.5 GBT
Gradient Boosting is a technique used to build predictivemodels and classifiers. Boost-
ing relies on the idea of constructing an algorithmwhich can convert aweak learner into
a better one2.

The first actual application of boosting is identified with the so-calledAdaBoost al-
gorithm3. AdaBoost algorithm startswith training adecision tree on a equallyweighted
set of the observations. At the end of the first iteration, the decision tree will have suc-
cessfully classified some samples and misclassified others. The misclassified observations
will be assigned greater weights. The second tree is therefore grown on this weighted
data. The newmodel will be composed of the two trees. This procedure is repeated until
a satisfying result is obtained. Eventually, predictions are made by majority vote of the
weak learners’ predictions, weighted by their individual accuracy.

Gradient Boosting Trees are a generalization of AdaBoost. They are obtained reassess-
ing AdaBoost in a statistical framework[36]. This framework rephrases the problem as
a numerical optimization problem with the aim of minimizing the objective of the model
through a gradient descent-like procedure by sequentially adding weak learners.

The implementation adopted in this thesis is LightGradient BoostedMachine (Light-
GBM), an open-source library.

2A weak hypothesis or weak learner is defined as one whose performance is at least slightly better
than random chance. All the theory behind weak learners and more can be investigated here Probably
Approximately Correct: Nature’s Algorithms for Learning and Prospering in a Complex World, Arney et al. [34]

3A decision-theoretic generalization of on-line learning and an application to boosting[35]

Chapter

4
Dataset

In this section, we will present and then inspect the provided dataset. As explained
below, the original dataset has been modified in various ways: from dropping attributes
useless to the learning process to change the data format to boost performances.
In this instance, we also provide an overview of the derived features, result of the feature
engineering process, used along with the GBT, as hinted in the previous section. [2.2]
Finally, the last subsection, Consideration about the dataset, pinpoints the motivations
regarding the chosen model.

4.1 Original Dataset

The full original dataset is shown in figure 4.1. It comprises 100 millions transactions
over 5 months of online payments, labeled with frauds. We have been provided with
eight .csv files of 10 millions transactions each from this dataset. Two .csv files are kept
apart for testing purposes.

Only some of these fields are useful for the machine learning process. Therefore,
under the advice of bank experts, fields confirmed useless have been removed, as well
as the NaN and the outliers values.

4.2 Optimized Dataset

Loading the original data under PandasDataFrame takes more than 5 minutes on a Core
i5 3.8 GHz computer. The DataFrame size exceed 19.5 GB RAM. To provide a more
compact, memory efficient DataFrame, to simplify feature engineering and accelerate
machine learning, the following transformations and optimizations have been made:

• Transform every datetime from text to datetime64 [ns]

31

32 CHAPTER 4. DATASET

Figure 4.1: Original Dataset Fields

• Set reception datetime64 as DateTimeIndex 1

• Transform [’Reseau acceptation’,’Pays RS (Alpha 3)’,’ERT’,’indicateur 3D’,’ID Pai recurrent’]
as pandas Categorical objects. This enables to encode them in amore compactway
with numerical internal values of needed size only2 while keeping the text values
intact for making easier features engineering

• drop [’Mois’,’Type Trx’,’ID Terminal’,’Raison sociale’,’ID acquereur’,’Score CB’,’Score MC’,
’trx_id’,’indic_TF’] , thanks to bank experts advise

• drop rows with transactions that accounts for amounts over one million of euros

1make it ready for rolling windows features computing
2 int8 for instance

4.2. OPTIMIZED DATASET 33

Figure 4.2: Optimized Dataset

or any amount marked as NaN .3

• add dayofweek column
• extract the decimal part of the transaction amount in currency, multiply it by 100

and store its integer value to ccydecimal feature. Finally drop Mt trx 4

• convert every integer features into their necessary type from uint8 to uint32
• for Score GDR , transform NaN into -1 and convert it to int16
• multiply Mt trx (EUR) by 100 and convert it into uint32

After these optimizations, the dataframe size dropped from 19.5 GB to 4.2 GB. The
new dataset is shown in figure 4.2. Moreover, Very small values in the dataset are
assimilated to zero, while very large values are peaked to the maximum of the 32-bits
integer encoding used in order to save space while preserving a good precision. This
last property is particularly desired when, to return the data to its original values, we
divide them by 1000.

Finally, columns are renamed according to the table 4.3.

Parquet Storage

Parquet is selected as data format storage. Parquet[37] is a data format storage that uses
columnar memory format. It is designed to optimize data storage and retrieval.

3Their respective proportion of frauds is 20 and 40 times lower than the global proportion, meaning
NaN amounts is not a value related to an increased presence of fraud

4devise

34 CHAPTER 4. DATASET

Figure 4.3: Dataset with renamed columns

This was done after testing against other formats: .csv, SQLite and Feather.
While the original .csv file took up to 5 minutes to be loaded, the SQLite file took

more than 15 minutes5, finally the parquet file took about 1 minute. The Feather file,
on the other hand, has read/write performances in the same range of efficiency, but the
files are several times bigger.
The Parquet data format enables:

• fast writing and loading

• natively compressed file6

• preserved types including Categorical and DateTimeIndex

• loading only column selection

• Dataset file written with pyarrow.

Moreover, the parquet optimized dataset took around 24 seconds for loading.
5stopped before the end during testing!
61.7 GB for the optimized dataset

4.3. DERIVED FEATURES 35

4.3 Derived Features
For each card, merchant and pair (card,merchant), the following derived features are
computed:

• mean and standard deviation (std) of the amount spent. They are converted to
integers as they are. Given their ranges, there is no need of multiplying them by
a factor to preserve information.

• cumulative standard deviation (nbstd) of the amount spent. It indicates how
much of std is represented by the current amount, compared to the std calculated
over previous amounts. When the value of the first samples of each group of at-
tributes is either NaN (std=0, mean=0) or np.inf (std=0, mean>0), it is replaced
with -1. Moreover, the nbstd is multiplied by 1000 before being converted to in-
teger. This preserves 91.27% of all data from the entire historical dataset, keeping
it completely intact.

• rolling sum of the amount spent

• count of the total transactions over one month, one week and over the whole
history

• average number of hours -in the range 1 to 24 over a day period- and averageminutes
between two consecutive transactions

• average delay in seconds after the first to last, second to last and third to last transac-
tion, and for each of them also the standard deviation and the cumulative stan-
dard deviation

• average period in seconds between transactions, and its standard deviation over
the whole history. This corresponds to the statistics on the delay of the first to last
transaction.

• difference of amounts between two consecutive movements for the first to last,
second to last and third to last transactions

• difference of amounts between short and long periods. For example, 1 h vs 1
week. . . .

• categories of countries. Fields such as "France\Entrager", "UE\NON UE" are
added

Moreover:

• different merchants associated to a card over a period of 1 hour

• categories of merchants. For example: fund, transfer, company. . .

36 CHAPTER 4. DATASET

• merchants appeared recently

• merchants’ activities. For example: several small transactions, . . .

4.4 Some consideration about the data

Data Format

We can point out four main characteristics based on the format of the data:

• Temporal nature of data.

The data is constituted by time-series: each transaction is part of a sequence of
transactions that develops through time.

• Mixed nature of the attributes.

Either categorical and continuous attributes represent a transaction.

• Contextual nature of the attributes.

It’s interesting to notice that some attributes can be identified as so-called contex-
tual attributes. These type of attributes determine the context of an instance.
Some other attributes are, on the contrary, behavioral attributes. Behavioral at-
tributes define the non-contextual characteristics of an instance.7

• Availability of labels.
The availability of labels is important in the choice of the approach to use: super-
vised, unsupervised or semi-supervised.

Let’s further inspect our data by extracting some statistics.

Data Statistics

The statistical analysis was conducted on the first 2 parquet files of data provided to us,
for a total of 20 million of transactions.

Two main considerations with respect to the statistics obtained by our inspection
are to be done:

1. Only a small amount of the total payments is fraudulent:

• 0.43 % of the total payments is fraudulent
• 0.53 % of the total cards is fraudulent
• frauds affect 3.54% of all merchants

7In other words, they are the properties of data that don’t depend on environmental factors.

4.4. SOME CONSIDERATION ABOUT THE DATA 37

Figure 4.4: Graph with the number of cards in function of their histories’ length, repre-
senting cards with histories up to 100 transactions

2. Each card has a varying number of transactions associated with it, and this num-
ber wanders in a considerable range:

• We have an average number of card entries, from the first transaction to the
last, of 7.78 entries. Some cards have only one transaction, while the maxi-
mum number of card entries accounts to 5693.
This is visually shown in the bar graph 4.4 below.

• the 95th percentile number of card entries in the dataframe is 25 and theme-
dian is 4. This underlines that most cards have no more than 25 transactions,
and that most of them have only 4.

These considerations naturally lead us to the type of model to implement and what
experiments to perform.

Indeed, when decidingwhat solution youwant tomodel, the starting point is always
to look at the available data and see what is feasible and what is not.

The Model Architecture
The architecture of the model is determined by the data format:

• Time-Series Data and Availability of Labels
With suchdata, wewant to use a supervised algorithm thatworkswell on sequence-
based tasks with long-term dependencies. LSTMs are well established networks in
the field that meet such criteria.

• Contextual Attributes.
Attributes come within a context, and we want to exploit this information to boost
classification. Moreover, LSTMs networks need real values as input. To either

38 CHAPTER 4. DATASET

extract contextual information and provide continuous and real-valued attributes, we
use a dense embedding technique, such as CBOA.

Elements of Complexity
The statistical analysis of the dataset, on the other hand, pinpoints some elements of
complexity that deserve particular attention:

• Highly Imbalanced Classes
We have a vast majority of samples in the dataset, which belongs to the class of
non-fraudulent transactions. Datasets of this kind are more delicate to deal with,
because they make it hard to understand whether the model captured the under-
lying mechanism that separates the classes or is simply overfitting the majority
class. This issue is known as Accuracy Paradox: the model will achieve high ac-
curacy, while actually performing poorly.

• Time-Series of Varying Length
Time-series of varying length add complexity to our problem for two reasons:

1. Firstly, as we’ve seen while inspecting the data, most cards have a very short
history: some of them don’t even account for more than a single transaction.
We need to discard such instances, because they cannot be considered for time-
series classification.
But how long a time-series should be for the LSTM layer to extract significant
pattern from it?
Different experiments with this hyper-parameter have been undertaken and
discussed in the experiment section [6.3].

2. Secondly, since we are provided with histories of variable length, we want to
use customizedwindow-sizes to choose howmany transactions to include in
the computation, which length varies accordingly. This results in manually
computing batches and epochs.

Chapter

5
Technical Implementation

The model was built using a step-by-step approach.
A step-by-step approach consists of building several prototypes of the model, each of
them of increasing complexity.
This way, the main task gets chunked down in sequential, smaller ones, and we can de-
bug one task before integrating the following one.

All prototypes are produced using tensorflow and numpy libraries.
Tensorflow is an open source software library that provides modules to support and
facilitate the development of machine learning algorithms.
Numpy, on the other hand, is an open source software library that facilitates the ma-
nipulation and operation within matrices.
In the code, the numpy library appears as np.

synthetic0.py

The first prototype we produced is synthetic0.py.
In this prototype, we want to test the performance of the LSTM network on an imbal-
anced dataset.
However, in this initial stage, we use aGated Recurrent Unit, or GRU.
They are a simpler version of LSTM networks, where the forget and update gate are
combined. The hidden state and the cell state are also combined, and other minor
changes occur[26]. Indeed, the dataset synthetically produced is small and empirical
evidence[38] justifies the use of GRUs on fewer training data, as they train faster and
perform better than LSTMs.
However, LSTMs can remember longer sequences thanGRUs and outperform them in
tasks that require to model long-distance relations.
For this reason, later on, the GRU layer will be substituted by a LSTM layer.

39

40 CHAPTER 5. TECHNICAL IMPLEMENTATION

The synthetic dataset generated is an oversimplified version of the real one, and with a
slighter disparity1 between classes.
The dataset is represented only by increasing series of numbers, with target 1, and de-
creasing series of numbers, with target 0.
The increasing series are flagged as fraudulent, and the decreasing series as non-fraudulent.
Moreover, each time series is of fixed length.

The following snippet of code shows the database generation.

def generate ():
#the fuction np.random.randn takes as parameters the dimensions of

the array and return samples from the standard normal
distribution.

#nb_users indicates the number of users
#ratio_fraud is the ratio between fraudolent and non fraudolent

transactions

d1 = np.random.randn(int(nb_users*ratio_fraud), ts_length)
d1.sort(axis =1)
d2 = np.random.randn(nb_users - int(nb_users*ratio_fraud), ts_length)
d2.sort(axis =1)

d2 = np.fliplr(d2)
y1 = np.ones((int(nb_users*ratio_fraud)))
y2 = np.zeros((nb_users - int(nb_users*ratio_fraud)))

ds = np.concatenate ((d1, d2), axis =0)
y = np.concatenate ((y1, y2), axis =0)
perm = np.arange(ds.shape [0])
np.random.shuffle(perm)
ds = ds[perm]
y = y[perm]
return ds, y

In the following snippet, we can observe themodel.
It is composed of the GRU layer, a dropout layer and two dense layers on top.
We recall here that theGRU layer is meant to catch temporal patterns, while the dense
layers serves as classifier.
The dropout layer is included to help prevent overfitting. Noticeably, the number of
units of the GRU layer is a fine tuned hyper-parameter.

gru = keras.layers.GRU(units =100, activation='relu',
return_sequences=False)(input_layer)

dropout = Dropout (0.5)(gru)
dense1 = Dense (100, activation='relu')(dropout)
dense2 = Dense(1, activation='sigmoid ')(dense1)

170% instead of 99.6%

41

synthetic1.py

In the second prototype, we incorporate time-series of variable length.
LSTM accepts only input of fixed size, soweperforma sort of fake padding2 on the dataset
produced before: for each sequence, all values from a random point on get substituted
with -1.
Amask layer, which masks a sequence by using a mask value to skip time steps, allows
the LSTM to ignore the values flagged as -1.
This way, we simulate a dataset of sequences of different lengths.

These are the lines of code that do that:

for i in range(len(ds)):
j = random.randrange ((len(ds[i])*2)//10, len(ds[i]))
for k in range(j, len(ds[i])):

ds[i, k] = -1.

The input layer is shaped as before

input_shape = (ts_length , 1)

Moreover, the LSTM substitutes the GRU, since the data produced are now more
complex than before.

mask = keras.layers.Masking(mask_value =-1.0, dtype=float)(input_layer)
lstm = keras.layers.LSTM(units=max_window_size , return_sequences=False ,

dropout =0.5)(mask)

synthetic2.py

In synthetic2.py we integrate rolling windows on cards histories.
A rolling window is composed of a window that moves along the time axis. The win-
dow has a fixed size and contains many consecutive transactions.
The window moves, for each user history, step by step along the data, one transaction
at the time, as shown in figure 5.1. The window size depends on the length of the card
history. The rolling window method allows us to obtain smaller sequences from the
original card history. This procedure provides more insight into the data at hand and
contributes to balancing the dataset. The so obtained sequences are finally padded to
make their length homogeneous and compliant to the longest one.
The input layer is now shaped like this:

input_shape = (max_window_size , 1)

2we call this fake padding because the actual procedure of padding consists inmaking a sequence longer,
introducing placer values that will be ignored by the model.

42 CHAPTER 5. TECHNICAL IMPLEMENTATION

Figure 5.1: Rolling window example, source: Mathworks

We then concatenate all the new generated sequences one after the other to obtain
an epoch. The generator() function handles these steps.

def generator(df, train=True):
users = df['user']. unique ()
max_window_size , steps_per_epoch = compute_steps_per_epoch(df, train)
def generator(df, train , users , max_window_size):

ts = []
y = []
count = 0
for _ in range(epochs):

for user in users:
df_user = df[df['user'] == user]
#customized window_size

window_size = max(10, len(df_user) // 10)
if train:

#start training dataset
start = 0
#end training dataset

end = round((len(df_user) - window_size)*train_ratio)
else:

#start validation dataset
start = round((len(df_user) - window_size)*train_ratio)
#end validation dataset

end = len(df_user) - window_size
for i in range(start , end):

ts.append(list(df_user['value ']. to_numpy ()[i:i+window_size]))
y.append(df_user['fraud ']. to_numpy ().astype(float)[i+window_size -1])
count += 1
if count == batch_size:

ts = pad_sequences(ts, padding='post', value=-1.0,
maxlen=max_window_size , dtype=float) #padding

yield(np.array(ts), np.array(y))
ts = []
y = []
count = 0

43

return generator(df, train , users , max_window_size)

We also generate a dataset more similar to the real one:

dt = np.dtype(dtype =[('user', int), ('timestamp ', int), ('value ',
float), ('fraud ', int)])

Testing the model on a small dataset of 10000 synthetic transactions with a ratio
of 80% legitimate transactions and 20% fraudulent transactions led to the encouraging
results.

synthetic3.py

We established that the LSTM-based model works well with the imbalanced dataset,
nowwewant tomake it work efficiently. In synthetic3.py, differently frombeforewhen
we waited to have a whole epoch ready before outputting it, we pop out a subset of
time-series as soon as we produce it.3 This way, we can distribute the computation on
multiple GPUs through themirrored strategy technique.

mirrored_strategy = tf.distribute.MirroredStrategy ()
with mirrored_strategy.scope():

The two following lines ensure the auto-sharding functionality is off.
Autosharding a dataset over a set of workers means each worker is assigned to a subset
of the entire dataset. Since we feed the workers as soon as the instances are ready to go,
we disable this option to ensure the compiler does not raise errors.

options = tf.data.Options ()
options.experimental_distribute.auto_shard_policy =

tf.data.experimental.AutoShardPolicy.OFF

synthetic4.py

In synthetic4.py, we incorporate the real dataset.
In first place, we drop cards and merchants not associated to fraudulent transactions to
slightly balance the dataset and focus the learning process on fraudulent sequences:

Keep only some of the data
if config.data.raw.keep:

df = df[: config.data.raw.keep]

add column to track non -fraudulent users/vendors
merchantss and cards implied in fraud
merchant_fraud = list(set(df.loc[df['fraud '] == 1]['merchant ']))

3through the yield operator

44 CHAPTER 5. TECHNICAL IMPLEMENTATION

card_fraud = list(set(df.loc[df['fraud '] == 1]['card']))

Shall we keep only fraudulents?

if config.data.fraudulent:
df['fraudulent '] = 0
df.loc[(df['card'].isin(card_fraud)) |

(df['merchant '].isin(merchant_fraud)), 'fraudulent '] = 1
print(f'Dropping non -fraudulent cards/merchants ')
df.drop(df[df.fraudulent == 0]. index)
df = df[df.fraudulent == 1]
df.drop('fraudulent ', inplace=True , axis='columns ')

Then, we make continuous attributes categorical. We drop daytime and substitute
it with its categorical counterparts:

df['datetime '] = pd.to_datetime(df['localdatetime '],
infer_datetime_format=True , unit='ns')

df['hour'] = df.datetime.dt.hour
df['day'] = df.datetime.dt.day
df['month '] = df.datetime.dt.month
df['weekday '] = df.datetime.dt.weekday
df.drop('datetime ', inplace=True , axis='columns ')

The only other continuous attribute is amount. Tomake it categorical, we bucketize
it through the following cutlog function:

Bucketize continuous values
Only amount actually
cut_log(df, 'amount ')
print('==== Amount ====')
print(df['amount_b ']. unique)
print('================ ')

def cut_log(df, col):
'''
Compute a log scale for the values in col and bucketize them in col_b.
'''
n_bins = math.ceil(math.log10(ceil_power_of_10(df[col].max())))
bins = [-1.0] + list(np.logspace(-1, n_bins , base=10,

num=(n_bins +1) *3+1))
labels = [0] + list(range(1, (n_bins +1) *3+1))
if verbose:

print(f'n_bins = {n_bins}')
print(f'bins = {bins}')
print(f'labels = {labels}')

df[col+'_b'] = pd.cut(df[col], bins=bins , labels=labels)
return df

45

Finally the CBOW algorithm can be applied4.
CBOWalgorithm is provided by theWord2Vec facility available on the gensim library.
It takes as input a dictionary of words (in our case, enumerable attributes) and it out-
puts vectors.
This way it gives amathematical meaning to the concept of similarity, capturing either
the syntactical and semantic sense of words.

cboa_columns = ['card', 'network ', 'amount_b ', 'mcc', 'merchant ',
'country ', 'sae', 'gdr', 'ert', 'secure ', 'ccy', 'fraud ', 'hour',
'day', 'month ', 'weekday ']

tokenized_columns = ['t_' + c for c in cboa_columns if c not in ['card',
'fraud ']]

Tokenize values
for c in cboa_columns:
df['t_'+c] = c + '_' + df[c]. astype('str')

Limit to the training set
df1 = df[df.train == 1]

data_list = df1.loc[:, tokenized_columns]. values.tolist ()

data_list = df1[tokenized_columns +['t_fraud ']]. values.tolist ()
with open('c:/temp/data_list.txt ', 'w ') as f:
for item in data_list:
f.write ("%s\n" % item)
cbow = Word2Vec(data_list , min_count=1,

window=len(tokenized_columns),
vector_size=config.data.cbow.vector_size ,
workers=config.data.cbow.workers ,
epochs=config.data.cbow.epochs ,
callbacks =[epoch_logger])

weights = [None] * (len(cbow.wv.key_to_index.keys())+1)
weights [0] = [-1.]* config.data.cbow.vector_size
token_index = {}
for k, w in enumerate(cbow.wv.key_to_index.keys()):

weights[k+1] = cbow.wv.get_vector(w, norm=True).tolist ()
token_index[w] = k+1

We may have a problem here if we compute cboa only on
the train set: some values in the test set may not have
been seen at all , hence .fillna (0)
for tok_c in tokenized_columns +['t_fraud ']:

df[tok_c] = df[tok_c].map(token_index).astype('Int64 ').fillna (0)
print('DTypes after:')
for c in df.columns:
print(f '{c}\t\t\t{df[c].dtype}')

4CBOA or CBOW are used indistinctly. CBOA stands for Continuous Bag of Attributes while CBOW
stands for Continuous Bag of Word

46 CHAPTER 5. TECHNICAL IMPLEMENTATION

We end up with a dictionary that pairs the attributes to 6-dimentional vectors.
The dimension of the vectors is an hyper-parameter chosen upon tuning.

The dictionary is shown in figure 5.2. The model is now assembled. In the following
section, we show the experiments performed on it.

Figure 5.2: attributes encoded with CBOA

Chapter

6
Experiments

In this section, we will present the experiments effectuated.
The first subsection gives an overview of the computational resourceswe exploited to
perform the experiments.
The second subsection is a short guide on how to reproduce them.
A third subsection explains in detail the experiments effectuated and the rationale be-
hind them.

6.1 Moulon Mésocentre
Mésocentre is a project that "rest upon the decision of two institutions, CentraleSupelec and
ENS Paris-Saclay, to pool their computing resources within the Paris-Saclay University, host
them at IDRIS and set up a common support team."1
Mésocentre gives access to Ruche R , a Lenovo Super Computer and Fusion F , HPE
supercomputer.

• General information:

– OS distribution : CentOS 7.9.2009
– Network technology : OPA network 100 Gbit/s
– Storage technology : Spectrum Scale GPFS parallel file system (380 Tio of
usable space, IOs rate : 9 GB/s)

– Visualization solution : Enginframe / Nice DCV (30 licences)
– Nvidia driver version : 470.57.02

• Hardware Detail
1reference to the Mésocentre website

47

48 CHAPTER 6. EXPERIMENTS

– User resources
∗ Two login nodes R
∗ A Spectrum Scale GPFS parallel file system (380 Tio of usable space, IOs

rate : 9 GB/s) R
∗ Intel OPA network 100 Gbit/s R

– Parallel distributed memory computing
∗ 192 compute nodes comprising 2 Intel XeonGold 6230 20 cores@ 2.1GHz

(Cascade Lake) and 192 GB of RAM R
– Parallel shared memory and sequential computing

∗ 14 compute nodes comprising 4 Intel Xeon Gold 6230 20 cores @ 2.1 GHz
(Cascade Lake) with 1.5 TB of RAM and 480 GB of SSD disk R

∗ One server comprising 4 Intel Xeon CPU 6148 80 cores @ 2.4 GHz (Sky-
lake) and 1.5 TB of RAM F

∗ 3 servers comprising 4 Intel XeonCPU 6148 80 cores @ 2.4 GHz (Skylake)
and 768 GB of RAM F

∗ 16 compute nodes comprising 2 Intel XeonCPU 6148 40 cores @ 2.40 GHz
(Skylake) and 192 GB of RAM F

– GPGPU computing
∗ 10 GPGPU nodes comprising 2 Intel Xeon Gold 6230 20 cores @ 2.1 GHz

(Cascade Lake), 768 GB of RAM and 4 NVIDIA Tesla V100 PCIe graphic
cards with 32 GB of GRAM R

∗ 5 GPGPU nodes comprising 2 Intel Xeon Gold 6230 20 cores @ 2.1 GHz
(Ice Lake), 1024 GB of RAM and 4 NVIDIA Tesla A100 NVLink graphic
cards with 40 GB of GRAM R

∗ 4 GPGPU nodes comprising 2 Intel Xeon CPU 6126 24 cores @ 2.60 GHz
(Skylake), 192 GB of RAM and 2 Nvidia Tesla P100 graphic cards with
12 GB of GRAM F

– Visualization
∗ 3 visualization nodes comprising 2 Intel XeonGold 6230 20 cores@ 2.1GHz

(Cascade Lake), 256 GB of RAM and 1 Nvidia Quadro RTX 5000 graphic
card R

6.2 Quick How-To
Every user has availability of a ruche-quota that is accessible through an ssh connection.

Last login: Wed Feb 16 12:25:56 on ttys000
(base) ludole@MacBook -Air -di-Ludovica -2 ~ % ssh

lermalu@ruche.mesocentre.universite -paris -saclay.fr

6.2. QUICK HOW-TO 49

Last login: Wed Feb 16 02:26:25 2022 from 187.198.28.93. rev.sfr.net
______ __

,-. / \ / \ ,--. Bonjour !
`-' / \ __/ / \

,-----()-----. \ / the Mesocenter team wishes you
/ \ / _ `--' a great time computing on ruche.

/ ______/ | |
\ _ __ _ _ ___| |_ ___ We appreciate your feedback.
\ | '__| | | |/ __| '_ \ / _ \
) -----(| | | |_| | (__| | | | __/ ----------------------------

/ |_| __,_|___|_| |_|___|
/ ______
\ / \ / Support : ruche_support@groupes.renater.fr
\ / \ /
`-----()-----' Website : http :// mesocentre.centralesupelec.fr/

\ /
______/ https :// mesocentre.pages.centralesupelec.fr/user_doc/

[lermalu@ruche01 ~]$

Each user has access to two separate directories for their own usage:

1. the users directory:

/home/username

where they can store their binaries and data.

2. the working directory:

/workdir/username

where they can store their source files.

To perform the experiments we navigate through the work directory up to our
project.

[lermalu@ruche01 ~]$ cd /workdir/lermalu/ts-fraud/
[lermalu@ruche01 ts-fraud]$ ls
batch meso -prepare_output.log
fraud_data OpenKETF2
data-meso README.md
fraud_data req.txt
meso -gru -a100 -1294213 _error.log Results.xlsx
meso -gru -a100 -1294213 _output.log synthetic
meso -gru -a100 -1294238 _error.log TODO.md
meso -gru -a100 -1294238 _output.log training-local.png
meso -gru -a100_error.log training-meso-a100.png
meso -gru -a100_output.log ts-fraud -dist.py
meso -prepare_error.log
[lermalu@ruche02 ts-fraud]$

Among these files we are particularly interested in the batch, fraud_data and conf
directories.

Navigating through the batch directory, we find several scripts. Each of them allo-
cates the necessary resources and launches a program that will runwithin an anaconda

50 CHAPTER 6. EXPERIMENTS

environment.
Here’s for example, the content of themeso-gru.sh:

#!/bin/sh
#SBATCH –job-name=meso-gru-a100-%j
#SBATCH –output=meso-gru-a100-%j_output.log
#SBATCH –error=meso-gru-a100-%.log
#SBATCH –partition=gpua100
#SBATCH –nodes=1
#SBATCH –ntasks=1
#SBATCH –cpus-per-task=10
#SBATCH –gres=gpu:4
#SBATCH –time=24:00:00
#SBATCH –qos=qos_gpu-t4
#SBATCH -A zkh@gpu
module purge
module load cudnn /8.1.0.77 -11.2 - linux -x64/intel -20.0.2
module load miniconda3 /4.7.12.1/ intel -19.0.3.199
.

"/gpfs/softs/spack/opt/spack/linux -centos7 -cascadelake/intel -19.0.3.199/ miniconda3 -4.7.12.1 - d6wdiye6pxa2glhhwd2g5jwag7or6chc/etc/profile.d/conda.sh"
cd

For our experiments we will launch the meso-prepare.sh, the meso-gru.sh and the
jz-lgbm.sh.

The configuration of the hyper-parameters for the experiments can be set through
the config files in the conf directory.

[lermalu@ruche02 conf]$ ls
config -jz-small.yaml config -jz.yaml config -meso.yaml config.yaml
[lermalu@ruche02 conf]$

In particular, for the experiments with the LSTMmodel, we set them through the con-
fig.yaml file:

data:
path:’data-meso/’
prepared: ’fraud_data.parquet’
fraudulent:1
raw:
path:’../../shared/XXXX/fraud_data/’.
min:2
max:5
keep:38000000

rfm:
r_path:’recency/’
f_path:’frequency/’
m_path:’monetary/’

cbow:
vector_size:6
epochs:100
path:’cboa.json’
workers:80

gru:
window_size:12
window_size_max:40
epochs:30
seq_len:18

6.3. EXPERIMENTS 51

train_ratio:0.7

val_ratio:0.2

test_ratio:0.1

lr_schedule:0.0005

units:100

dropout:0.8

metric_path:’training-local.png’

tb_logs:’logs/’

checkpoint_prefix:’checkpoints/’

35,2 Fon

Finally, the fraud_data directory contains the data files in a parquet format.

[lermalu@ruche02 fraud_data]$ ls
transactions_optimized_with_features_0.parquet
transactions_optimized_with_features_1.parquet
transactions_optimized_with_features_2.parquet
transactions_optimized_with_features_3.parquet
transactions_optimized_with_features_4.parquet
transactions_optimized_with_features_5.parquet
transactions_optimized_with_features_6.parquet
transactions_optimized_with_features_7.parquet
[lermalu@ruche02 fraud_data]$

6.3 Experiments

We performed experiments either with the LSTM model and with the LGBM model.
The aim is to compare the results and to deduce which one performs better.
As we already anticipated, the most critical hyper-parameter to fine-tune is the win-
dow_size. We tried different values of it to understand how many transactions the
LSTMmodel needs in order to get significant temporal features.
In the following sections, we show how to reproduce the experiments and how they
work.

How to run

• check the parameters in your conf/*.yaml file of choice or create a new one
named conf/my-config.yaml

• run python ts-fraud-dist.py –cfg conf/my-config.yaml prepare. This will create
the data frame and the embeddings for the slice of the dataset

52 CHAPTER 6. EXPERIMENTS

• run python ts-fraud-dist.py –cfg conf/my-config.yaml gru. This will train and
evaluate the model.

• run python ts-fraud-dist.py –cfg conf/my-config.yaml lgbm. This will train a
LGBMmodel on the dataset with the engineered features, without any tweaking.

• runpython ts-fraud-dist.py –cfg conf/my-config.yaml lgbm-cboa. Thiswill train
a LGBMmodel on the dataset with the CBOA features, without any tweaking.

How it works
For each experiment, we need to run either the meso-prepare.sh and the meso.gru.sh
batches.

1. The meso-prepare.sh takes care of manipulating the data and prepare them for
the LSTMmodel. During this step:

• the original features are slightly transformed:
– amount is bucketized
– datetime is split into hour, day, weekday, month

• cards and merchants that are never involved into fraud are dropped: this
slightly helps in balancing the dataset

• cards are assigned a transaction counter to keep transactions ordered by
time, afterwards localdatetime is dropped

• windowsizes are computedper card2, lower boundedby the hyper-parameter
window_size andupper boundedby the hyper-parameterwindow_size_max

• a train value is added by card in order to have a train_ratio time-series for
training, a val_ratio for validation and a test_ratio for testing

• all non training cards are used for evaluation
• CBOA embeddings are computed on categorical encodings of the features

and stored in a JSON file
• the prepared dataframe is stored on disk

2. In the second phase, when meso.gru.sh is run:
• the model is build, embeddings are loaded into the Embedding layer of the

model
• a dataset is built from a light generator returning only card numbers3
• a parallelized function is applied to generate the actual timeseries from the

card number
• the model is trained on multiple GPUs with themirrored strategy

21/10 of the number of transactions for the card
3it is an efficient and fast generator

6.3. EXPERIMENTS 53

Parameters
The followings are the tunable parameters of the LSTMmodel.

data:
path: 'data -local/' # Where to store the prepared files
prepared: 'fraud_data.parquet ' # Named of the prepared dataset
fraudulent: 1 # If we remove the cards/merchants never

involved in fraud
raw:

path: '../../ data -caps/' # Where to find the original files
min: 1 # First parquet file to use
max: 2 # Last parquet file to use
keep: 2000000 # Number of transactions to keep

rfm:
r_path: 'recency/'
f_path: 'frequency/'
m_path: 'monetary/'

cbow:
vector_size: 6 # CBOA embeddings dimension
epochs: 40 # Number of epochs for computing the

embeddings
path: 'cboa.json' # Filename for the embeddings
workers: 12 # Number of cores to use for computing the

embeddings
gru:

window_size: 12 # Minimum window size for time series
window_size_max: 40 # Maximum window size for time series
epochs: 40 # Number of epochs for training
batch_size: 64
seq_len: 18 # Minimum number of transactions for a card
train_ratio: 0.7
val_ratio: 0.2
test_ratio: 0.1
lr_schedule: 0.0005
units: 40 # Number of units in the LSTM
dropout: 0.8
metric_path: 'training -local.png' # Filename for the plot of the loss

while traing
tb_logs: 'logs/' # Tensorboard logs path
checkpoint_prefix: 'checkpoints/' # Checkpoints path

Experiments
As we anticipated, we have two objectives. The first one I is to compare different win-
dow_sizes and find out which one allows the LSTM model to perform the best. The
termwindow size here is referring to the number of transactions used to train the LSTM
model.4 The second one II is to compare the LSTMmodel and the LightGBMmodel.

4the reader may confuse it with the widow size used to train the CBOA algorithm. However, that
window size is fixed to the number of contextual attributes of the transaction.

54 CHAPTER 6. EXPERIMENTS

In order to fulfill the objectives, we disposed three categories of experiments.

• The first ones are performed on cards with short histories, i.e cards related to 8 or
more transactions. The selection of this minimum value is based on an average
of 7.76 transactions, ensuring that most of the dataset is accounted for. To include
many cards, the window size for this experiment is 3, given the median is 4. The
objective here is to assess the model’s ability to learn despite the limited number
of transactions.

• The second ones on cardswith a long histories, i.e cards related to 18 ormore trans-
actions. While it is true that the majority of cards have fewer than 25 transactions,
it is crucial to recognize that longer card histories offer the LSTMmore data to ef-
fectively learn patterns. To strike a balance between providing sufficient data for
the LSTM to learn sequential patterns and including a reasonable number of cards
in the analysis, a window size of 12 is selected for this experiment.

• The third ones on cards with a longer histories, i.e cards related to 40 or more trans-
actions. The objective of this experiment is to evaluate the performance of the
model with extended card histories. Therefore, a window size of 32 is chosen to
accommodate these lengthy sequences and understand how the model handles
them.

For each experiment, we are checking it with I if it contributes to the first objective,
andwith II if it contributes to the second objective. The choice of the number of epochs
for training the LSTM model is driven by the observation that the model can converge
within a restricted number of epochs. Nevertheless, we extended the training duration
to examine if any notable differences would arise in the model’s predictions.

• short history experiments:

1. TS classification with CBOA encoding - 25 epochs - window_size: 3 I II
2. TS classification with CBOA encoding - 30 epochs - window_size: 3 I II
3. LGBM classification with augmented features II
4. LGBM classification with CBOA encoding II

• long history experiments:

1. TS classification with CBOA encoding - 30 epochs - window_size: 12 I II
2. TS classification with CBOA encoding - 80 epochs - window_size: 12 I II
3. LGBM classification with augmented features II
4. LGBM classification with CBOA encoding II

• longer history experiments:

6.3. EXPERIMENTS 55

1. TS classification with CBOA encoding - 30 epochs - window_size: 32 I

Results are exposed and discussed in the Results section [7].

Chapter

7
Results

In this section, the results obtained are presented.
The first subsection displays some considerations on the experimental process.
The second subsection presents the performance metrics used to evaluate the results.
Finally, the third subsection displays, for each experiment, the results obtained.

7.1 Consideration on the experimental process

• About the Hyperparameters Setting of the Model.

We made different experiments, changing the geometry of the LSTM model. We
empirically proved that, to perform optimally:

1. the number of units of the LSTM should be equal to the maximum win-
dow_size length

2. the hidden state length should match the length of the sequences handled:
more units won’t be used while fewer won’t memorize

3. Since some cards account to thousands of transactions, themaximum_window_size
parameter explodes. With such values, themodel takes anunfeasible amount
of time to train, so we decided to cut the maximum_window_size down to a
fixed value of 40.

• About the Vanishing Gradient.

57

58 CHAPTER 7. RESULTS

Outliers notably1 badly affect the training process, resulting in either vanishing
or exploding gradient. We:

1. set the parameter global_clipnorm to 0.5 in the keras.optimizers.Adam(...) op-
tions. It allows to cap L2 norm of the gradients at the specified value to
smooth its values.

2. put a higher weight on the instances of the positive class when computing
the loss function. This way we counterbalance the dataset imbalance.

• About Convergence.

The learning rate needs to be set to a value around 0.001. Values on the order
of magnitude of 0.01 have been proved to be way too high, and the LSTM model
doesn’t converge.

7.2 Performance Metrics

Aswe alreadymentioned, accuracy is not a helpful metric when evaluating imbalanced
datasets, as it may bemisleading. For instance, if we’d build amodel that predicts "non-
fraud" on all instances, it would score a 99.6% accuracy, since fraud represents only the
0.4% of all instances. Metrics that can provide better insight include:

• False negatives and false positives: incorrectly classified samples.

• True negatives and true positives: correctly classified samples.

• Precision: percentage of predicted positives correctly classified. It is a measure of
a classifier’s exactness. Low precision indicates a high number of false positives.

• Recall: percentage of actual positives that were correctly classified. Recall is also
called Sensitivity or the True Positive Rate. It is a measure of a classifier’s com-
pleteness. Low recall indicates a high number of false negatives.

• AUC refers to the Area Under the Curve of a Receiver Operating Characteristic
curve (ROC-AUC). This metric is equal to the probability that a classifier will rank
a random positive sample higher than a random negative sample

Among the metrics used to evaluate the performance of the models, the most im-
portant ones are Recall and Precision.

1Activations saturate at either tail of 0 or 1, and gradients are near zero in these regions.

7.3. RESULTS 59

Recall

Recall is the number of true positives divided by the sum of true positives and false negatives.

recall = TruePositives
TruePositives+FalseNegatives

Ahigh recall indicates themodel can successfully identify relevant instances with-
out mislabeling them as irrelevant.

In the fraud detection task, classifying fraudulent transactions as non-fraudulent
outcomes in a loss of money and reliability for the card-provider company.

Precision

Precision is the rate of true positives divided by the sum of true positives and false positives.

recall = TruePositives
TruePositives+FalsePositives

Ahighprecision indicates themodel is able to successfully return relevant instances
with limited irrelevant results[39].

In the fraud detection task, classifying non-fraudulent transactions as fraudulent
means for the client to have their money frozen and the service suspended for an un-
defined amount of time.

Our major interest relies on recall.

7.3 Results

Here below, the results obtained are presented in tables.
Such tables include both train and test results.2 and a Support column that indicates the
number of instances of the dataset used to train and test the model. Moreover, the ex-
periments carried out with the LGBM report only the results obtained in testing, since
the training results were very good and therefore not of particular interest.

The experiments are grouped by category.

• Short history experiments:
This first three experiments test the efficacy of the models on a dataset made of
cards with historiesmade of 8 or more transactions.

2These last are highlighted in green

60 CHAPTER 7. RESULTS

Figure 7.1: LSTM with CBOA encoding and window_size 8 loss function on 30 epochs

1. Time-series classification with LSTM
The first experiment tests the LSTMmodel.
Aswe explained in theModel section[3], the history of each card is cut down
in shorter sequences. These sequences are as long as indicated either in the
window_size parameter or in the max_window_size parameter, depending on
which one of the two provides the biggest value. The sequences are then
inputted to the model. We set a window_size of length 3, which means the
shortest sequences in input to the model will be constituted of only 3 trans-
actions.
As seen in the Dataset section[4], most of our data is constituted by card
with short histories. This means most sequences in input to the LSTM will
be short. The results obtained, which are shown in table 7.1, are not suffi-
cient. The experiment run on 30 epochs presents a better trade off between
the two metrics, but scores are still unsatisfactory.
The loss function is shown in figure 7.1. It converges smoothly.
This is not surprising, since we are considering only very short sequences of
transactions for the computation.

LSTM with CBOA encoding
short history window_size: 3

Loss TP FP TN FN ACC PREC RECALL AUC Support
25 epochs
train 0,0204 22692 9873 16976884 77527 0,9949 0,6968 0,2264 0,9001
test 0,0253 3156 3000 7279014 36942 0,9945 0,5127 0,0787 0,8656 7322112
30 epochs
train 0,0130 55544 7837 16978920 44675 0,9969 0,8764 0,5542 0,9388
test 0,03138 5756 17795 7264219 34342 0,9928 0,2445 0,1435 0,8112 7322112

Table 7.1: Time-series classification with CBOA encoding and LSTM on short history
cards

7.3. RESULTS 61

2. Time-series classification with LGBM.
The following Light Gradient BoostingMachine is trained on the same sup-
port dataset as the LSTM model to compare their results. We trained the
LGBM either on the raw dataset, with the aid of the augmented features3,
or on the CBOA encoded dataset.
The table 7.2 displays the results obtained by the LGBM with augmented
features. The table 7.3 displays the results obtained by the LGBM trained on
the instances encodedwith CBOA. In either case, the results are similar to the
ones obtained before and similarly poor.

• Long history experiments:
These experiments test themodels on a dataset made of cards with histories that
counts 18 or more transactions.

1. Time-series classification with LSTM.
Thewindow_size parameter is set to 12, sowewill have fewer, longer sequences.
To counterbalance this, we increase the support dataset.
The results displayed in table 7.4 show an improvement in recall. In particu-
lar, the experiment run during 30 epochs shows a significant improvement in
recall, and the results seem to hint to use long histories in order for the LSTM
to extract more significant features.
The loss function, shown in figure 7.2, hardly converge to values lower than
0.05.

3Discussed in the Dataset section, in the Derived features subsection[4]

lgbm classification
with augmented features

Loss TP FP TN FN ACC PREC RECALL AUC Support
train 0,9949
test 5843 7841 7274411 34263 0,9942 0,4270 0,1457 7322358

Table 7.2: Time-series classification with augmented features and LGBM on short his-
tory cards

lgbm classification
with CBOA econding

Loss TP FP TN FN ACC PREC RECALL AUC Support
train 0,9945
test 3297 4166 7278086 36809 0,9944 0,4418 0.0822 7322358

Table 7.3: Time-series with CBOA encoding and LGBM on short history cards

62 CHAPTER 7. RESULTS

TS with CBOA encoding
long history window_size: 12

Loss TP FP TN FN ACC PREC RECALL AUC Support

30 epochs
train 0,0229 24640 9135 9264781 48004 0,9939 0,7295 0,8293 0,9296 9346560
test 0,1414 9790 12900 3966309 20473 0,9917 0,4315 0,3235 0,9077 4009472
80 epochs
train 0,0068 60243 5672 9268242 12403 0,9981 0,9139 0,3392 0,9850 9346560
test 0,0499 8009 14469 3964740 22254 0,9908 0,3563 0,2646 0,7464 4009472

Table 7.4: Time-series classification with CBOA encoding and LSTM on long history
cards

lgbm classification
with augmented features

Loss TP FP TN FN ACC PREC RECALL AUC Support
train 0,9937
test 5843 6112 3973264 24424 0,4887 0,1930 0,1457 4009643

Table 7.5: Time-series classificationwith LGBMand augmented features on long history
cards

LGBM classification
with CBOA econding

Loss TP FP TN FN ACC PREC RECALL AUC Support
train 0,9930
test 2854 2984 3976392 27413 0,9924 0,4889 0,0943 4009643

Table 7.6: Time-series classification with LGBM and CBOA encoding on long history
cards

2. Time-series classification with LGBM.
We now train and test the LGBM, either with derived features, which results
shown in table 7.5 and CBOA encoding, which results shown in table 7.6. As
before, we use the same support dataset to obtain comparable results. The
experiments run with the LGBM on long histories don’t showmuch improve-
ment with respect to the ones run on the short histories.

• Longer history experiments:
This last experiment tested the performance of the LSTMmodel on cards related
to histories of 40 ormore transactions. The evaluation in this experiment is specif-
ically centered around the LSTM model. The main interest lies in understanding
how longer history affects the model’s performance, as described in the experi-
ments section[6.3]. The window_size is set to 32. It is to notice that most of the
dataset is made of cards related to short histories, so that the support dataset for

7.3. RESULTS 63

(a) Loss function of LSTMwith CBOA andwin-
dow_size 12 during 30 epochs

(b) Loss function of LSTMwith CBOA andwin-
dow_size 12 during 80 epochs

Figure 7.2

this experiment is less populated than before. The results displayed in table 7.7
show that there isnot a significant improvement on the performance of themodel.

TS with CBOA encoding
longer history window_size: 32

Loss TP FP TN FN ACC PREC RECALL AUC Support

30 epochs
train 0.0203 31174 9487 9264429 41470 0.9945 0.7667 0.4291 0.9368 377200
test 0.0330 8994 12590 3966619 21269 0.9916 0.4167 0.2972 0.8777 161200

Table 7.7: Time-series classification with LSTM and CBOA encoding on longer history
cards

Chapter

8
Discussion

In this section, we compare in a more straight forward way the results obtained in the
previous section.
In the first subsection, we make some general considerations.
In the second subsection, we discuss themain questionswe advanced in the previous
sections1:

1. Which model is better in performing the fraud detection task: Light Gradient
Boosting Trees or the Time-Series Classification implemented by the LSTM-
based model?

2. Which value of the window_size allows the LSTM-based model to perform the
best?

8.1 General Considerations on the Results Obtained
Unfortunately, the first consideration we need to make is that the results obtained are
not sufficient enough to be used in production.
Indeed, the best result on the optimization of the loss function is the one obtained with
the LSTM model trained for 30 epochs on long histories and scores around 0,0499.
Although, we were looking for results 1000 times lower!

We made some efforts to improve this result.
At first, we checked the consistency of the dataset: we looked out for time-series clas-
sified twice and flagged as fraudulent and non-fraudulent, but only three of them pre-
sented this issue.
We then tried to apport some changes to the geometry of the model: we added a third

1More info about them in the last paragraph of the experiments section [6.3]

65

66 CHAPTER 8. DISCUSSION

dense layer and used two LSTM layers instead of one.
Unfortunately, no significant changeswere reported.
Eventually, to check if therewas somebug in the code, we included targets in the training
dataset to check whether the LSTM-based model could correctly classify all instances.
The loss function in this case converged to zero. Therefore, the problem shall simply
consist of the fact that this kind of model has a hard time learning this kind of task.

8.2 Comparison LGBM - LSTM
The two tables 8.1, 8.2 provide a direct comparison between the Light Gradient Boost-
ing Trees and the Time-Series Classification implemented by the LSTM-basedmodel,
either on short histories and on long histories.
In the first case, we cannot see significant improvements in the use of the LSTM-based
modelwith respect to the use of the Light Gradient Boosting Trees.
On long histories, the LSTM-based model proves to perform remarkably better than
its counterpart.
Indeed, we observe an improvement in recall, that scores around 0.3.

Even if there are no similar studies to take as reference to determine whether this
is a satisfying result, we can conclude the LSTM-based model is superior to the LGBM,
solving the task of fraud detection on a dataset constituted of cards with long history.

The performance of the LSTM-based model on short histories is not excellent: the
Recall score is comparable to the one achieved by LGBM, so we cannot state that a
model is superior to the other.

Table 8.1: Comparison TSc with CBOA encoding and LGBM - short history

TSc with CBOA encoding
short history

Loss TP FP TN FN ACC PREC RECALL AUC Support
30 epochs
train 0,0204 22692 9873 16976884 77527 0,9949 0,6968 0,2264 0,9001
test 0,0253 3156 3000 7279014 36942 0,9945 0,5127 0,0787 0,8656
80 epochs
train 0,0130 55544 7837 16978920 44675 0,9969 0,8764 0,5542 0,9388 7322112
test 0,03138 5756 17795 7264219 34342 0,9928 0,2445 0,1435 0,8112 7322112
LGBM classification
with augmented features
train 0,9949
test 5843 7841 7274411 34263 0,9942 0,4270 0,1457 7322358
LGBM classification
with CBOA econding
train 0,9945
test 3297 4166 7278086 36809 0,9944 0,4418 0.0822 7322358

8.3. COMPARISON WITHIN DIFFERENT WINDOW_SIZES 67

Table 8.2: Comparison TSc with CBOA encoding and LGBM - long history

TS with CBOA encoding
long history

Loss TP FP TN FN ACC PREC RECALL AUC Support
30 epochs
train 0,0229 24640 9135 9264781 48004 0,9939 0,7295 0,8293 0,9296 9346560
test 0,1414 9790 12900 3966309 20473 0,9917 0,4315 0,3235 0,9077 4009472
80 epochs
train 0,0068 60243 5672 9268242 12403 0,9981 0,9139 0,3392 0,9850 9346560
test 0,0499 8009 14469 3964740 22254 0,9908 0,3563 0,2646 0,7464 4009472
LGBM classification
with augmented features
train 0,9937
test 5843 6112 3973264 24424 0,4887 0,1930 0,1457 4009643
LGBM classification
with CBOA econding
train 0,9930
test 2854 2984 3976392 27413 0,9924 0,4889 0,0943 4009643

In bothmodels, generalization is not good: the test phase shows Precision and Recall
that are quite low. However, this is expected given the unbalanced dataset: the fraud
examples are rare, so it is difficult to learn to identify them. Moreover, we have no
idea of "what makes a fraud", so if there are characteristics in the data to identify them.
Additionally, the training time consumed by the LSTMmodel is huge compared to the
one of the LGBM one, casting doubts on whether such slightly better results are worth
it.

Differently from before, the LSTMmodel achieves considerably better results than
the LGBM ones.
Indeed, the LSTMmodel trained on 30 epochs scores as twice as the value on recall of
the LGBMs.
This result is enough to state that LSTMmodel outperforms LGBMmodel.

8.3 Comparison within different window_sizes
The table 8.1 provides an immediate comparison between the performances achieved
by the LSTM model set with different values of window_sizes. The three models are
trained on different datasets:

1. the first one, with awindow_size set to 3, is trained on a database made of cards
with an history made of 8 or more transactions.

2. The second one, with a window_size set to 12, is trained on a database made of
cards with an history made of 18 or more transactions.

68 CHAPTER 8. DISCUSSION

3. The last one, with awindow_size set to 32, is trained on a database made of cards
with an history made of 40 or more transactions.

The three models are trained during 30 epochs.
The best result is achieved by the second model.
Although, it must be considered that the majority of the cards are related to short his-
tories. Indeed, when selecting cards with longer and longer histories, we end up with
much fewer populated databases.

Table 8.3: Comparison window_sizes for TSc performance

TSc with CBOA encoding
short history window_size: 3

Loss TP FP TN FN ACC PREC RECALL AUC Support
30 epochs
train 0,0130 55544 7837 16978920 44675 0,9969 0,8764 0,5542 0,9388 7322112
test 0,03138 5756 17795 7264219 34342 0,9928 0,2445 0,1435 0,8112 7322112
long history window_size: 12
30 epochs
train 0,0229 24640 9135 9264781 48004 0,9939 0,7295 0,8293 0,9296 9346560
test 0,1414 9790 12900 3966309 20473 0,9917 0,4315 0,3235 0,9077 4009472
longer history window_size: 32
30 epochs
train 0.0203 31174 9487 9264429 41470 0.9945 0.7667 0.4291 0.9368 377200
test 0.0330 8994 12590 3966619 21269 0.9916 0.4167 0.2972 0.8777 161200

Chapter

9
Conclusion

To conclude, we can state that the the LSTM-based model is superior to the LGBM,
solving the task of fraud detection on a dataset constituted of cards with long history
and window_size equal to 12, with an improvement of 0.1778 points on Recall.
However, as pinpointed all along this report, our model presents various deficiencies.
Themain issues are:

• Sub-optimal performances.
In first instance, we can affirm that, even though themodel we proposed performs
better than the LGBM one, it still doesn’t achieve the desired results.
In the Experiments section[6.3], we pinpointed that longer sequences may help the
LSTM extract more significant features to correctly classify the following instance.
However, very long sequences result in an infeasible training time.
A possible approach to solve this issue may be to turn to the Transformer archi-
tecture. Transformers are models which use either CNN and RNN to implement
the attention mechanism in a parallelized way.1 Amore significant insight on this
topic can be found in the paper Attention is all you need, Vaswani et al.[40].

• Limitations due to the nature of the model.
The proposed model:

1. fails at classifying transactions of unseen cards.
Ourmodel is based on a LSTMnetworkwhich takes as input time-series and
uses it to classify the following instance.
If we provide such a network only one transaction, it just won’t produce a
reasonable prediction. This issue applies not only to cards related to only one

1a clear explanation about the limitation of the LSTM and how transformers overcome them can be
found here How Transformers Work

69

70 CHAPTER 9. CONCLUSION

transaction, but also to those that account for only a few.
Notably, in our experiments, we exclude such cards from the training and
testing procedures.
To fix this issue, we can turn to the aid of unsupervised learning techniques.
Such techniques aim to profiling the distribution of legitimate transactions
and classify as fraudulent any outliers.
Moreover, unsupervised approaches are complementary to supervised ones:
supervised techniques learn from past fraudulent behaviors, while unsuper-
vised techniques target the detection of new types of fraud. Some example
in literature of the combined use of the two approach can be found in pa-
pers like: Combining unsupervised and supervised learning in credit card fraud
detection, Carcillo et al.[41], An application of supervised and unsupervised learn-
ing approaches to telecommunications fraud detection, Hilas et al.[42] and Combin-
ing supervised and unsupervised learning for zero-day malware detection, Comar et
al.[43].

2. Periodical retraining.
Card-owners behavior is determined by a dynamical process and changes
continuously.
This phenomenon is called Concept Drift.
Our model, however, is not able to include this variability in its predictive
capability: when the data it has been trained on becomes outdated, its per-
formances drops and it is necessary to retrain it on new data.
A possible solution is to include our model in a Continual Learning frame-
work.2 Some deeper insights about Continual Learning applied to the fraud
detection task can be found in papers likeAutonomous deep learning: Continual
learning approach for dynamic environments, Ashfahani et al.[44] and Continual
learning for anomaly detection with variational autoencoder, Wiewel et al.[45].

2Continual Learning is built on the idea of learning continuously and adaptively about the exter-
nal world and enabling the autonomous incremental development of ever more complex skills and
knowledge. More about it here: https://medium.com/continual-ai/towards-adaptive-ai-with-continual-
learning-f493fd0d698

Bibliography

[1] European Central Bank. Payments statistics: 2020. Last accessed 25 January 2021.
2020. url: https://www.ecb.europa.eu/press/pr/stats/paysec/html/ecb.
pis2020~5d0ea9dfa5.en.html.

[2] pwc. PwC’s Global Economic Crime and Fraud. Last accessed 25 January 2021. 2020.
url: https://www.pwc.com/gx/en/services/forensics/economic- crime-
survey.html.

[3] Zisheng Li, Jun-ichi Imai, and Masahide Kaneko. “Facial-component-based bag
of words and phog descriptor for facial expression recognition.” In: 2009 IEEE
International Conference on Systems,Man andCybernetics. IEEE. 2009, pp. 1353–1358.

[4] Roberto Toldo, Umberto Castellani, and Andrea Fusiello. “A Bag of Words Ap-
proach for 3D Object Categorization.” In: Computer Vision/Computer Graphics Col-
laborationTechniques. Ed. by André Gagalowicz and Wilfried Philips. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 2009, pp. 116–127. isbn: 978-3-642-01811-4.

[5] Jin Wang, Ping Liu, Mary F.H. She, Saeid Nahavandi, and Abbas Kouzani. “Bag-
of-words representation for biomedical time series classification.” In: Biomedical
Signal Processing and Control 8.6 (2013), pp. 634–644. issn: 1746-8094. doi: https:
//doi.org/10.1016/j.bspc.2013.06.004. url: https://www.sciencedirect.
com/science/article/pii/S174680941300089X.

[6] Khaled Gubran Al-Hashedi and Pritheega Magalingam. “Financial fraud detec-
tion applying data mining techniques: A comprehensive review from 2009 to
2019.” In: Computer Science Review 40 (2021), p. 100402.

[7] Altyeb Altaher Taha and Sharaf Jameel Malebary. “An Intelligent Approach to
Credit Card Fraud Detection Using an Optimized Light Gradient Boosting Ma-
chine.” In: IEEE Access 8 (2020), pp. 25579–25587. doi: 10.1109/ACCESS.2020.
2971354.

71

https://www.ecb.europa.eu/press/pr/stats/paysec/html/ecb.pis2020~5d0ea9dfa5.en.html
https://www.ecb.europa.eu/press/pr/stats/paysec/html/ecb.pis2020~5d0ea9dfa5.en.html
https://www.pwc.com/gx/en/services/forensics/economic-crime-survey.html
https://www.pwc.com/gx/en/services/forensics/economic-crime-survey.html
https://doi.org/https://doi.org/10.1016/j.bspc.2013.06.004
https://doi.org/https://doi.org/10.1016/j.bspc.2013.06.004
https://www.sciencedirect.com/science/article/pii/S174680941300089X
https://www.sciencedirect.com/science/article/pii/S174680941300089X
https://doi.org/10.1109/ACCESS.2020.2971354
https://doi.org/10.1109/ACCESS.2020.2971354

72 BIBLIOGRAPHY

[8] David G Whiting, James V Hansen, James B McDonald, Conan Albrecht, and
W Steve Albrecht. “Machine learning methods for detecting patterns of manage-
ment fraud.” In: Computational Intelligence 28.4 (2012), pp. 505–527.

[9] Kunlin Yang and Wei Xu. “FraudMemory: Explainable Memory-Enhanced Se-
quential Neural Networks for Financial Fraud Detection.” In: Hawaii International
Conference on System Sciences. 2019.

[10] Varun Chandola, Arindam Banerjee, and Vipin Kumar. “Anomaly detection: A
survey.” In: ACM computing surveys (CSUR) 41.3 (2009), pp. 1–58.

[11] Ghosh and Reilly. “Credit card fraud detection with a neural-network.” In: 1994
Proceedings of the Twenty-Seventh Hawaii International Conference on System Sciences.
1994. doi: 10.1109/HICSS.1994.323314. url: https://ieeexplore.ieee.org/
abstract/document/323314/authors#authors.

[12] Raghavendra Patidar, Lokesh Sharma, et al. “Credit card fraud detection using
neural network.” In: International Journal of Soft Computing and Engineering (IJSCE)
1.32-38 (2011).

[13] Kang Fu, Dawei Cheng, Yi Tu, and Liqing Zhang. “Credit Card Fraud Detection
Using Convolutional Neural Networks.” In: Neural Information Processing. Ed. by
Akira Hirose, Seiichi Ozawa, Kenji Doya, Kazushi Ikeda, Minho Lee, and Derong
Liu. Cham: Springer International Publishing, 2016, pp. 483–490. isbn: 978-3-319-
46675-0.

[14] Aisha Abdallah n, Mohd Aizaini Maarof, and Anazida Zainal. “Fraud detection
system: A survey.” In: Journal of Network and Computer Applications (2016). doi:
http://dx.doi.org/10.1016/j.jnca.2016.04.007. url: https://arxiv.org/
abs/2009.11732 (visited on 02/08/2021).

[15] Bernhard Schölkopf, Robert C Williamson, Alex Smola, John Shawe-Taylor, and
John Platt. “Support VectorMethod for Novelty Detection.” In:Advances in Neural
Information Processing Systems. Ed. by S. Solla, T. Leen, and K. Müller. Vol. 12. MIT
Press, 1999. url: https://proceedings.neurips.cc/paper_files/paper/1999/
file/8725fb777f25776ffa9076e44fcfd776-Paper.pdf.

[16] David M. J. Tax and Robert P. W. Duin. “Support Vector Data Description.” In:
Machine Learning 54 (2004), pp. 45–66.

[17] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Ok-
sana Yakhnenko. “Translating Embeddings for Modeling Multi-relational Data.”
In:Advances in Neural Information Processing Systems. Ed. by C.J. Burges, L. Bottou,
M.Welling, Z.Ghahramani, andK.Q.Weinberger. Vol. 26. CurranAssociates, Inc.,
2013. url: https://proceedings.neurips.cc/paper_files/paper/2013/file/
1cecc7a77928ca8133fa24680a88d2f9-Paper.pdf.

[18] Andreas Arning, Rakesh Agrawal, and Prabhakar Raghavan. “A Linear Method
forDeviationDetection in LargeDatabases.” In:KDD. Vol. 1141. 50. 1996, pp. 972–
981.

https://doi.org/10.1109/HICSS.1994.323314
https://ieeexplore.ieee.org/abstract/document/323314/authors#authors
https://ieeexplore.ieee.org/abstract/document/323314/authors#authors
https://doi.org/http://dx.doi.org/10.1016/j.jnca.2016.04.007
https://arxiv.org/abs/2009.11732
https://arxiv.org/abs/2009.11732
https://proceedings.neurips.cc/paper_files/paper/1999/file/8725fb777f25776ffa9076e44fcfd776-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1999/file/8725fb777f25776ffa9076e44fcfd776-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2013/file/1cecc7a77928ca8133fa24680a88d2f9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2013/file/1cecc7a77928ca8133fa24680a88d2f9-Paper.pdf

BIBLIOGRAPHY 73

[19] Eamonn Keogh, Stefano Lonardi, and Chotirat Ann Ratanamahatana. “Towards
parameter-free data mining.” In: Proceedings of the tenth ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining. 2004, pp. 206–215.

[20] Caleb C Noble and Diane J Cook. “Graph-based anomaly detection.” In: Proceed-
ings of the ninth ACM SIGKDD international conference on Knowledge discovery and
data mining. 2003, pp. 631–636.

[21] Lion Bergman and Yedid Hoshen. “Classification-Based Anomaly Detection for
General Data.” In: International Conference on Learning Representations. 2020. url:
https://openreview.net/forum?id=H1lK_lBtvS.

[22] Chen Qiu, Timo Pfrommer, Marius Kloft, Stephan Mandt, and Maja Rudolph.
Neural Transformation Learning for Deep Anomaly Detection Beyond Images. 2022.
arXiv: 2103.16440 [cs.LG].

[23] Diego Lopez Yse. Your Guide to Natural Language Processing (NLP). url: https:
//towardsdatascience.com/your-guide-to-natural-language-processing-
nlp-48ea2511f6e1.

[24] Matteo Matteucci.Word Embeddings.
[25] TomasMikolov, Quoc Le, and Ilya Sutskever. “Exploiting Similarities among Lan-

guages for Machine Translation.” In: (Sept. 2013).
[26] Understanding LSTM Networks. url: https://colah.github.io/posts/2015-08-

Understanding-LSTMs/.
[27] SeppHochreiter and Jürgen Schmidhuber. “Long short-termmemory.” In:Neural

computation 9.8 (1997), pp. 1735–1780.
[28] Gang Chen. “A Gentle Tutorial of Recurrent Neural Network with Error Back-

propagation.” In: (Oct. 2016).
[29] Michael Kearns. “Thoughts on Hypothesis Boosting.” In: (1988).
[30] Leo Breiman. Arcing the edge. Tech. rep. Technical Report 486, Statistics Depart-

ment, University of California at . . ., 1997.
[31] Jerome H Friedman. “Stochastic gradient boosting.” In: Computational statistics &

data analysis 38.4 (2002), pp. 367–378.
[32] What is feature engineering. url: https://www.displayr.com/what-is-feature-

engineering.
[33] Basic Feature EngineeringWith Time SeriesData in Python.url: https://machinelearningmastery.

com/basic-feature-engineering-time-series-data-python/.
[34] Chris Arney. “Probably Approximately Correct: Nature’s Algorithms for Learn-

ing and Prospering in a Complex World.” In:Mathematics and Computer Education
48.1 (2014), p. 126.

[35] Yoav Freund and Robert E Schapire. “A decision-theoretic generalization of on-
line learning and an application to boosting.” In: Journal of computer and system
sciences 55.1 (1997), pp. 119–139.

https://openreview.net/forum?id=H1lK_lBtvS
https://arxiv.org/abs/2103.16440
https://towardsdatascience.com/your-guide-to-natural-language-processing-nlp-48ea2511f6e1
https://towardsdatascience.com/your-guide-to-natural-language-processing-nlp-48ea2511f6e1
https://towardsdatascience.com/your-guide-to-natural-language-processing-nlp-48ea2511f6e1
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://www.displayr.com/what-is-feature-engineering
https://www.displayr.com/what-is-feature-engineering
https://machinelearningmastery.com/basic-feature-engineering-time-series-data-python/
https://machinelearningmastery.com/basic-feature-engineering-time-series-data-python/

74 BIBLIOGRAPHY

[36] Leo Breiman. “Prediction games and arcing algorithms.” In: Neural computation
11.7 (1999), pp. 1493–1517.

[37] url: https://parquet.apache.org.
[38] Junyoung Chung, Caglar Gulcehre, Kyunghyun Cho, and Yoshua Bengio. “Em-

pirical evaluation of gated recurrent neural networks on sequencemodeling.” En-
glish (US). In: NIPS 2014 Workshop on Deep Learning, December 2014. 2014.

[39] Mark Bentivegna. Precision Vs. Recall — Evaluating Model Performance in Credit
Card Fraud Detection. url: https://towardsdatascience.com/precision- vs-
recall-evaluating-model-performance-in-credit-card-fraud-detection-
bb24958b2723.

[40] AshishVaswani,NoamShazeer,Niki Parmar, JakobUszkoreit, Llion Jones, Aidan
N Gomez, Łukasz Kaiser, and Illia Polosukhin. “Attention is all you need.” In:
Advances in neural information processing systems 30 (2017).

[41] Fabrizio Carcillo, Yann-Aël Le Borgne, Olivier Caelen, Yacine Kessaci, Frédéric
Oblé, and Gianluca Bontempi. “Combining unsupervised and supervised learn-
ing in credit card fraud detection.” In: Information sciences 557 (2021), pp. 317–
331.

[42] Constantinos S Hilas and Paris As Mastorocostas. “An application of supervised
and unsupervised learning approaches to telecommunications fraud detection.”
In: Knowledge-Based Systems 21.7 (2008), pp. 721–726.

[43] Prakash Mandayam Comar, Lei Liu, Sabyasachi Saha, Pang-Ning Tan, and Anto-
nio Nucci. “Combining supervised and unsupervised learning for zero-day mal-
ware detection.” In: 2013 Proceedings IEEE INFOCOM. IEEE. 2013, pp. 2022–2030.

[44] Andri Ashfahani and Mahardhika Pratama. “Autonomous deep learning: Con-
tinual learning approach for dynamic environments.” In: Proceedings of the 2019
SIAM International Conference on Data Mining. SIAM. 2019, pp. 666–674.

[45] FelixWiewel andBinYang. “Continual learning for anomaly detectionwith varia-
tional autoencoder.” In: ICASSP 2019-2019 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP). IEEE. 2019, pp. 3837–3841.

https://parquet.apache.org
https://towardsdatascience.com/precision-vs-recall-evaluating-model-performance-in-credit-card-fraud-detection-bb24958b2723
https://towardsdatascience.com/precision-vs-recall-evaluating-model-performance-in-credit-card-fraud-detection-bb24958b2723
https://towardsdatascience.com/precision-vs-recall-evaluating-model-performance-in-credit-card-fraud-detection-bb24958b2723

	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	The Credit Card Fraud Problem
	Solution and goals
	Original Contribution
	Thesis Structure

	Problem Formulation
	Problem Statement and Goals
	Related works

	Proposed Model
	Model Overview
	NLP
	Comparative insight on GBT approach
	Feature engineering
	GBT

	Dataset
	Original Dataset
	Optimized Dataset
	Derived Features
	Some consideration about the data

	Technical Implementation
	Experiments
	Moulon Mésocentre
	Quick How-To
	Experiments

	Results
	Consideration on the experimental process
	Performance Metrics
	Results

	Discussion
	General Considerations on the Results Obtained
	Comparison LGBM - LSTM
	Comparison within different window_sizes

	Conclusion
	Bibliography

