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Abstract

The Bootstrap is well-known nonparametric method with a wide range of applications.
It is exploited to estimate statistics and related quantities of interest based on a ran-
dom sample. In practice, a Monte Carlo estimate of the Bootstrap estimate is utilised,
which implies an additional error layer. Importance Resampling, a variance reduction
technique, is applied in this thesis to the Monte Carlo estimates of a given quantile of
statistics that are used in high-dimensional data to construct Simultaneous Confidence
Bands (SCB)s. In the original works of Johns (1988), Do and Hall (1991) and Davi-
son (1988), a technique known as Exponential tilting is used for such task, which fails
in this context. We propose two new algorithms, namely Contribution Tilted Mixture
(CTM) and Loss Tilting (LT), and show through a simulation study effectively reduce
the variance of the Monte Carlo estimate of the Bootstrap estimate for statistics used in
SCB construction, demonstrating it through a simulation study. We also run a brief ex-
periment to show the need of Importance Resampling when using the Bootstrap for SCBs.

Keywords: Bootstrap, importance resampling, Simultaneous Confidence Bands, expo-
nential tilting, nonparametric delta method, functional data





Abstract in lingua italiana

Il Bootstrap è un noto metodo non parametrico con una vasta gamma di applicazioni.
Viene sfruttato per stimare statistiche e relative quantità d’interesse sulla base di un cam-
pione casuale. In pratica, viene utilizzata una stima Monte Carlo della stima Bootstrap, il
che implica un ulteriore livello di errore. Il ricampionamento dell’importanza, una tecnica
di riduzione della varianza, viene applicato in questa tesi alla stima Monte Carlo di un
dato quantile di statistiche che vengono utilizzate in dati ad alta dimensione per costruire
bande di confidenza simultanee (SCB). Nei lavori originali di Johns (1988), Do and Hall
(1991) e Davison (1988), viene utilizzata una tecnica nota come tilting esponenziale per
tale compito, che fallisce in questo contesto. Proponiamo due nuovi algoritmi, ovvero
Contribution Tilted Mixture (CTM) e Loss Tilting (LT), e mostriamo tramite uno studio
di simulazione che riduce efficacemente la varianza della stima Monte Carlo della stima
Bootstrap per statistiche che si usano nella costruzione di SCB, dimostrandolo tramite
uno studio di simulazione. Eseguiamo anche un breve esperimento per mostrare la neces-
sità del ricampionamento dell’importanza quando si utilizza Bootstrap per SCBs.

Parole chiave: bootstrap, ricampionamento d’importanza ,bande di confidenza simulta-
nee, tilting esponenziale, metodo delta nonparametrico, dati funzionali
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Introduction

This thesis concerns a noticeably useful device in Nonparametric Statistics: the Boot-
strap.
Originally proposed by Efron (1979), it is a nonparametric tool with a wide range of
applications. It allows the estimation of a statistic and quantities related to it, start-
ing from a single random sample and sampling with replacement (resampling) from it.
It has consequently been exploited in the construction of confidence intervals (DiCiccio
and Efron (1996)), hypothesis testing (Davison and Hinkley (1997)) and most recently
in the construction of Simultaneous Confidence Bands (SCBs) for functional data (De-
gras (2009), Telschow and Schwartzman (2022), Bunea et al. (2011), and many others),
amongst several other applications.
Its relevance relies on the fact that it requires minimal assumptions on the underlying
distribution of the sample, is simple to apply, has an asymptotic validity and at the same
time provides estimates of quantities which otherwise would be cumbersome to obtain
with the same accuracy.
The estimation of a random quantity through the Bootstrap method almost always re-
quires a Monte Carlo simulation, which adds another error layer: in practice, the Monte
Carlo estimate of the Bootstrap estimate is used. The mitigation of the first error, that
is, the Monte Carlo error, which is the scope of this thesis, has been of great interest for
the contributors of the Bootstrap, and several variance reduction techniques (efficiency
improvement) have been researched.
On the one hand, there are methods that are exclusive to the Bootstrap world. Efron
(1990) provides several techniques to reduce the variance of the Monte Carlo (MC) esti-
mate of the Bootstrap approximation through a posteriori calculations, as well as diag-
nostics for the quality of the MC estimate. Davison and Hinkley (1988) directly avoid
such simulation through the so-called Saddlepoint Methods to yield the Bootstrap esti-
mate.
On the other hand, there are methods belonging to the more general Monte Carlo world
adapted to the particular case of the Bootstrap estimate calculation. These are Antithetic
Sampling, Control Variates and Importance Sampling, which are explained in textbooks
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Hall (1992) and Davison and Hinkley (1997).
In this thesis, we restrict our attention to Importance Sampling, which in the case of the
Bootstrap is called Importance Resampling. It was originally proposed by Johns (1988),
with quite strong assumptions on the statistic of interest and further developed by Do
and Hall (1991), who provided an empirical version, and Davison (1988) with a slight
modification to the other two proposals. What these articles share is the use of Exponen-
tial Tilting, a method used to shift the Bootstrap distribution of the statistic of interest
to get quantile estimates with lower variance.
Given that very few papers have been written recently on the subject matter, this topic
could be asserted to be in the consolidation stage. However, with the advent of high-
dimensional data (e.g. functional data: Ramsay and Silverman (2005)), calculations have
become more computationally intensive, and the problem has regained importance.
Consequently, we restrict our attention to one particular use case of the Bootstrap method:
the construction of Simultaneous Confidence Bands (SCBs) (i.e., confidence regions for
highly dimensional data).
The current reference paper on the subject matter is Degras (2011), which utilises a point-
wise Student’s t statistic to generalise the confidence intervals as constructed in DiCiccio
and Efron (1996) to the multivariate case. This scope of this thesis is to apply Importance
Resampling to estimate SCBs that utilise statistics of this type.
The main contribution of this thesis are two new algorithms, namely Contribution
Tilted Mixture (CTM) and Loss Tilting, which as will be shown on Chapter 2 con-
trary to Exponential Tilting do increase the efficiency when working with high-dimensional
data. As a matter of fact, as it will be illustrated in Chapter 2, Exponential Tilting fails
for Degras (2009)-like statistics when the dimensionality increases.
The remainder of this thesis is organised as follows:

1. In Chapter 1 the concepts of the Bootstrap, Importance Sampling and the so-called
Nonparametric Delta method, a device used in Exponential tilting, as well as high
dimensional data are explained.

2. Chapter 2 focuses on Importance Resampling. We show how it can be used for quan-
tile estimation, a task necessary for building SCBs. Exponential tilting is explained,
and the new algorithms, namely Loss tilting and Contribution Tilting Mix-
ture are described. A simulation study is carried out focusing on the application
of Importance Resampling for the construction of SCBs and the three algorithms
(Exponential Tilting, Loss Tilting and Contribution Tilted Mixture) are compared.

3. In Chapter 3 we provide an overview of the different methods present in the sci-
entific community that exploit the Bootstrap for SCBs, and an experiment that
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demonstrates the effect of the Monte Carlo error in such task is shown.

4. Appendix A provides an overview of the different variance reduction methods for
the Monte Carlo approximation of the Bootstrap.
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1| Theoretical Background

1.1. The Bootstrap

As aforementioned, it is a nonparametric method (i.e. it makes minimal assumptions
on the underlying distribution F of the data) that estimates the sampling distribution of
a statistic using the observed data.
The underlying intuition is the following: given a sample X = {x1, ..., xi, ..., xN} where
N denotes the sample size and each xi is an i.i.d p-dimensional vector (p integer, possibly a
high value), we want to estimate certain properties of the unknown underlying distribution
of the sample F . Such property is usually a functional of F , and we can denote it as:

t(F ) =

∫
Ω

t(x)f(x) dx (1.1)

where Ω denotes the support of distribution F and f its probability density (mass in the
discrete case) function, and the bold notation signifies a p-dimensional vector.
The reasoning behind the Bootstrap method is the following: given the sample X, we
assume the ECDF (empirical cumulative distribution function) F̂ approximates the ac-
tual CDF (cumulative distribution function) F . Hence, sampling i.i.d from F̂ , which in
practice means sampling with replacement from the observed data, is approximately
tantamount to sampling from F . Of course, such assumption becomes valid as N goes to
+∞, which is true thanks to the Law of Large Numbers. For details on this result and
the associated rate of convergence, the reader is referred to Singh (1981).

Assumption 1 (The Bootstrap assumption). The ECDF F̂ given by sample X approx-
imates the CDF F of the underlying distribution of the data, so that the sampling dis-
tribution of a statistic can be estimated by sampling with replacement from F̂ , using the
plug-in principle.

A basic yet powerful application of the Bootstrap method could be the estimation of
the mean squared error (MSE) of a sample estimator t̂(F̂ ), whose value is θ̂, of functional
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t(F ), with value θ. We know that:

MSE(t̂(F̂ )) = MSE(θ̂) = EF [(θ̂ − θ)2] = EF [(t̂(X)− t(F ))2] (1.2)

where X denotes a sample drawn from F , and t̂ is a sample estimator of t.
Since instead of the true F we only know the F̂ given by the sample, we apply the
Bootstrap assumption and estimate the MSE in the following way:

ˆMSE(θ̂) = EF̂ [(t̂(X
∗)− t̂(F̂ ))2] = EF̂ [(θ̂

∗ − θ̂)2] (1.3)

where t̂(X∗) denotes the value of statistic t evaluated on a Bootstrap sample (a sample with
replacement) from originally available data X, and θ̂∗ its value. Alternatively, notation
T̂ ∗ can be used for the same quantity.
If we expand Equation (1.3):

EF̂ [(θ̂
∗ − θ̂)2] =

∫
Ω(F̂ )

(t̂(X∗)− t̂(F̂ ))2 dF̂ (X∗) (1.4)

with Ω(F̂ ) being the support of dF̂ (X∗), the p.m.f. (probability mass function) of each
re-sample of F̂ . Note that Ω(F̂ ) is of finite counting measure, since it is the space of all
possible distinct samples with replacement from original sample X.
What is more, dF̂ (X∗) corresponds to a multinomial distribution:

dF̂ (X∗) =
N∏
j=1

p
f∗
j

j (1.5)

where f ∗
j denotes the frequency of the jth statistical unit in re-sample X∗, and pj is nat-

urally 1
N

, the probability of resampling under the so-called Ordinary Bootstrap.
However, as N increases, the cardinality of Ω(F̂ ) becomes too large to evaluate the quan-
tity of interest on all the elements of its support. Therefore, the Bootstrap estimate (1.3)
is approximated by its Monte Carlo estimate:

ˆMSE(θ̂) =

∫
Ω(F̂ )

(t̂(X∗)− t̂(F̂ ))2 dF̂ (X∗) ≈ 1

B

B∑
b=1

(t̂(X∗b)− t̂(F̂ ))2 =:
ˆ̂

MSEMC(θ̂)

(1.6)

where X∗b is a Monte Carlo (re)sample (i. e. a sample with replacement) from F̂ , B the
number of Monte Carlo iterations, and we denote the Monte Carlo estimate of Bootstrap
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estimate ˆMSE(θ̂) with ˆ̂
MSEMC(θ̂) (the double hat notation helps give the intuition we

are providing the MC estimate of a Bootstrap estimate).

Therefore, apart from the error implied in the Bootstrap Assumption (1), the Bootstrap
estimate is affected by the Monte Carlo (MC) error as well.

Remark 1 (Monte Carlo error versus Bootstrap error). Let us denote µ the true value
of a functional t of F we are estimating, namely:

EF [t] = µ (1.7)

with sample estimator t̂. Denote µ̂ as its Bootstrap estimate, and ˆ̂µMC the Monte Carlo
estimate of µ̂. We distinguish the Bootstrap error, given by

ϵB = µ− µ̂ (1.8)

from the Monte Carlo error (MC error), which arises from the approximation of the
Bootstrap integral:

ϵMC = µ̂− ˆ̂µMC =

∫
Ω(F̂ )

t̂(X∗) dF̂ (X∗) − 1

B

B∑
b=1

t̂(X∗(b)) (1.9)

Thus, the Bootstrap estimate of any statistic of interest (for e.g. the MSE) will be subject
to both the Bootstrap error and the MC error.

As mentioned before, reducing the MC error is the scope of this thesis. In particular,
we focus on the technique named Importance Resampling, which is explained in the next
subsection.

1.2. Importance Sampling and Importance Resam-

pling

Importance Sampling is a technique developed to reduce the variance of the Monte
Carlo estimate of statistics of the kind as Equation (1.1). In particular, whenever t(x)

and f(x) are such that when one is of large value, the other one is small, which translates
into MC iterations that contribute little to the integral (see Zio (2013)).
The idea is thus to sample instead of from f(x), from the so-called Importance distribution
h(x) and adjusting the statistic t(x) to compensate from the bias we get by sampling from
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another distribution. Following Equation (1.1), we would have:

µ := t(F ) =

∫
Ω

t(x)f(x)d(x) =

∫
Ω

t(x)
f(x)

h(x)
h(x) dx ≈ 1

B

B∑
b=1

t(x(b))
f(x(b))

h(x(b))
=: µ̂IS

(1.10)

where µ̂IS is the Importance Sampling estimate, and x(b) the bth MC sample from h(x).
Moreover, the ratio f(x)

h(x)
is usually called the likelihood ratio, and denoted by:

w(x) :=
f(x)

h(x)
(1.11)

Whereas the variance of the MC estimate under Ordinary MC, meaning when sampling
from f(x) is given by:

V arF [µ̂MC ] = B−1
(∫

Ω

t(x)2f(x) dx− µ2
)

(1.12)

, the variance of the Importance Sampling estimate µ̂IS is

V arH [µ̂IS] = B−1
(∫

Ω

t(x)2w(x)2h(x) dx− µ2
)

(1.13)

We remark that the expected value of both the Ordinary and the Importance Sampling
MC estimates is the same. Naturally, the idea is to choose p.d.f. (probability density
function) h with CDF H such that the variance (1.13) is smaller than (1.12). It can
actually be proven (see Zio (2013)) that there exists an optimal importance distribution,
which is proportional to |h(x)|f(x). Nonetheless, finding such optimal importance distri-
bution requires a similar computational effort to that of computing µ̂MC , which is why in
practice the choice of H becomes a rather creative and problem-specific task (Zio (2013)).

Figure 1.1: General Importance sampling algorithm to compute the quantile of a statistic
1

The special case of importance sampling applied to the Bootstrap method is called Im-
portance Resampling (IR). Firstly escogitated by Johns (1988) and furtherly developed
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by Do and Hall (1991), Davison (1988), and Hinkley and Shi (1989), it is the main focus
of chapter 2.
Let us first generalise the MSE example (1.4) for a general statistical function m with
sample estimator m̂ and have the general formula for the MC estimate ˆ̂µMC of Bootstrap
estimate µ̂:

µ̂ =

∫
Ω(F̂ )

m̂(X∗) dF̂ (X∗) ≈ B−1

B∑
b=1

m̂(X∗b) =: ˆ̂µMC (1.14)

where dF̂ (X∗) corresponds to a multinomial distribution:

dF̂ (X∗) =
N∏
j=1

p
f∗
j

j (1.15)

; f ∗
j denotes the frequency of the jth statistical unit in re-sample X∗, and pj is 1

N
under

Ordinary MC (the analogue of f(x) in (1.10)). In the case of Importance Resampling,
the rationale is to alter the values pj such that the variance of estimate ˆ̂µIS is lower than
that of ˆ̂µMC . Therefore, the IR estimate of µ̂ becomes:

µ̂ =

∫
Ω(F̂ )

m̂(X∗) dF̂ (X∗) =

∫
Ω(F̂ )

m̂(X∗)
dF̂ (X∗)

dH(X∗)
dH(X∗) (1.16)

where the likelihood ratio is:

w(X∗) :=
dF̂ (X∗)

dH(X∗)
(1.17)

, and H is a multinomial distribution:

dĤ(X∗) =
N∏
j=1

g
f∗
j

j (1.18)

where gj are to be defined since they constitute the Importance distribution. The Monte
Carlo approximation ˆ̂µIR (where IR stands for Importance Resampling):

ˆ̂µIR :=
1

B

B∑
b=1

m̂(X∗b)w(X∗b) (1.19)

where X∗b is a sample of H for each b = 1, ... , B; and whose variance,

V arH [ˆ̂µIR] = B−1
{∫

Ω(F̂ )

(m̂)2(X∗)w2(X∗) dH(X∗)− µ2
}

(1.20)
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is hopefully lower than under Ordinary MC:

V arH [ˆ̂µMC ] = B−1
{∫

Ω(F̂ )

m̂2(X∗) dF̂ (X∗)− µ2
}

(1.21)

Remark 2 (Bootstrap procedure under Importance Resampling). At each MC iteration,
we draw a sample with replacement from the original sample X of size N , but the prob-
ability of re-sampling the jth statistical unit is gj (given by the importance distribution)
instead of pj = 1

N

What the classic papers (i.e. Johns (1988), Davison (1988) and Do and Hall (1991))
have in common is the fact that they recur to a technique named Exponential Tilting
(shown in Chapter 2) to yield resampling probabilities gj present in (1.18). As it will also
be shown in Chapter (2), this is not an exclusive choice, and we provide indeed two new
algorithms that work better than Exponential Tilting in the setting of SCB construction,
as mentioned in the Introduction. Before moving to such explanation, we outline below
the Nonparametric Delta method, the mechanism behind all three algorithms, namely
Exponential Tilting, Loss Tilting and Contribution Tilted Mixture.

1.3. The Nonparametric Delta Method

The delta method is an approach to calculate Edgeworth expansions (see Hall (1992)),
yet it is most commonly known for the case of the linearisation of a statistic, which is
the case in Davison and Hinkley (1997), Do and Hall (1991), as well as in this thesis. It
consists on the application of the Taylor series expansions to statistical functions, which
indeed are nothing but operators mapping the space of probability functions to R (i.e.
functionals).
In this work, we shall only consider the linear expansion.2. Suppose we have a statistic t

valued at distribution CDF G1, and we want to evaluate it at G2. Then, we can exploit
first order Taylor expansion, id est, we can approximate it with its linearised version tL

in the following way (see Davison and Hinkley (1997))

tL(G2) := t(G1) +

∫
Ω(G2)

Lt(y;G1) dG2(y) (1.22)

2The quadratic approximation of statistics is mentioned as a possibility in Davison and Hinkley (1997),
but it is not utilised.
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where Lt(y;G1) is the derivative of t evaluated at G1, and is called the influence func-
tion:

Lt(x;G1) = lim
ϵ→0

t

(
(1− ϵ)G1 + ϵHx

)
− t(G1)

ϵ
=

∂t
(
(1− ϵ)G1 + ϵHx

)
∂ϵ

∣∣∣∣
ϵ=0

(1.23)

where Hx is the Heavyside function. Usually, it will be the case that instead of G1,
we only know its ECDF through an available sample. That is, we deal with Lt(y; Ĝ1)

and we call it the empirical influence function l(y), which evaluated at a particular
value yj, j ∈ {1, ... , N} (N being the sample size), is called the empirical influence value
lj = l(yj).
Of course, when G1 = G2, the right term of (1.22) equals 0, that is:∫

Ω(G2)

Lt(y;G1) dG2(y) = 0 (1.24)

(indeed the first order Taylor expansion of a function about a point (G2) evaluated at
that point (G2) matches the function at such point (G2)).
When we substitute G2 with Ĝ1 (as said before, the ECDF of the sample of size N), the
delta method is called the nonparametric delta method, and we have:

tL(Ĝ1) := t(G1) +

∫
Ω(Ĝ2)

Lt(y;G1) dĜ1(y) = t(G1) + n−1

N∑
j=1

lj (1.25)

What is more, the Nonparametric Delta Method Result (see Davison and Hinkley (1997)
and Wasserman (2006)) states that if statistic t is a smooth functional3, then through the
Central Limit Theorem, asymptotically:

tL(Ĝ1)− t(G1) ∼ N(0, vL(G1)) (1.26)

where vL(F ) is the delta method variance:

vL(G1) = n−1V ar[Lt(Y )] = n−1

∫
Ω(G1)

L2
t (y)dG1(y) (1.27)

3More specifically, it should be Hadamard differentiable. Textbooks Davison and Hinkley (1997)
and Hall (1992) are not that specific in the sense they only state it should be a smooth statistic. See
Wasserman (2006) for details.
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which is approximated by the sample version:

vL(Ĝ1) := n−2

N∑
i=1

l2i (1.28)

It remains a problem to know li. Whereas they could be calculated analytically (com-
puting the derivative of the statistic w.r.t. each statistical unit), due to the nature of
the statistics used for the construction of Bootstrap SCBs, in this thesis we focus on the
empirical methods to estimate them, as it is shown in Chapter 2.

1.4. High-dimensional data

In Statistics, a usual notation is N for sample size, and p for the number of random
variables (or dimensionality) per statistical unit (Secchi et al. (2013)). We talk about
high-dimensional data whenever we are dealing with samples whose underlying distribu-
tion F is of large (and possibly infinite) p. In such situation, different models are available.
A statistical unit from random sample X of distribution F of large p could be represented

as a p-dimensional vector, namely x =


x(1)

...
x(p)

 ∈ Rp, and the whole sample with matrix

X =


x⊺
1
...
x⊺
N

.

Another possibility is provided in Functional Data Analysis (FDA). Under such model,
each statistical unit is a function, for e.g. with domain I = (a, b) ⊂ R; a, b ∈ R : b > a,
we assume statistical unit x is a function of the Lq (for a given q ∈ N+) space on I,
and the random sample X contains a discrete set of observations for each statistical unit.
For convenience, we will use the following notation: let S be the set of random variables
(dimensions) of each statistical unit. Thus, in the univariate case it will be a singleton;
in the multivariate case S = {1, ..., p} and in the functional case S = (a, b).

In this thesis, we are interested in the high-dimensional Bonferroni simultaneous con-
fidence intervals for the the mean µ(s), s ∈ S of F , which in FDA are called called
Simultaneous Confidence Band (SCBs).
We mainly focus on the method proposed by Degras (2009): the objective is to obtain
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bands of the form:

[µ̂(s)− cα
σ̂(s)√
N

, µ̂(s) + cα
σ̂(s)√
N

], s ∈ S (1.29)

with µ̂(s) being an element-wise (point-wise), i.e. ∀s ∈ S estimate of the mean; σ̂(s) the
element-wise scale estimator; and cα is the so-called critical value, to be estimated, such
that:

P
{
µ(s) ∈

[
µ̂(s)− cα

σ̂(s)√
N

, µ̂(s) + cα
σ̂(s)√
N

]}
≈ 1− α (1.30)

where 1−α is the confidence level. Moreover, cα is the (1−α)th quantile of the following
statistic:

sup
s∈S
|
√
N
µ̂(s)− µ(s)

σ̂(s)
| (1.31)

which of course corresponds to the L∞ norm of |
√
N µ̂(s)−µ(s)

σ̂(s)
|. Degras (2011) also provides

its Bootstrap estimate:

sup
s∈S

∣∣√N µ̂∗(s)− µ̂(s)

σ̂∗(s)

∣∣ (1.32)

(where, as said before µ̂∗(s) is the value of the sample estimator on a Bootstrap sam-
ple), which in turn is to be estimated via Monte Carlo. We remark that apart from
several assumptions (Degras (2011)), SCBs as in Equation (1.29) assume symmetry of
the stochastic process

√
N µ̂(s)−µ(s)

σ̂(s)
. Being coherent with Bootstrap T confidence intervals

(Efron and Tibshirani (1993)), we build SCBs as:

[µ̂(s)− c+α
σ̂(s)√
N

, µ̂(s)− c−α
σ̂(s)√
N

], s ∈ S (1.33)

where c+α is the 1−α
2

th quantile of:

sup
s∈S

√
N
µ̂(s)− µ(s)

σ̂(s)
(1.34)

and c−α is the α
2
th quantile of:

inf
s∈S

√
N
µ̂(s)− µ(s)

σ̂(s)
(1.35)

whose Bootstraps estimates are, respectively:

sup
s∈S

√
N
µ̂∗(s)− µ̂(s)

σ̂∗(s)
; inf

s∈S

√
N
µ̂∗(s)− µ̂(s)

σ̂∗(s)
(1.36)

In addition (this will be useful to evaluate Importance Resampling in Chapter 2), we also
generalise reverse percentile confidence intervals, (known as basic Bootstrap confidence
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limits in Davison and Hinkley (1997), see also Hesterberg (2014)) to obtain SCBs , that
is:

[µ̂(s)− q+α , µ̂(s)− q−α ], s ∈ S (1.37)

such that:

P
{
µ(s) ∈

[
µ̂(s)− q+α , µ̂(s)− q−α

]}
≈ α (1.38)

where q+α is the 1−α
2

th quantile of the sup of the so-called element-wise bias4:

sup
s∈S

µ̂(s)− µ(s) (1.39)

and q−α is the α
2
th quantile of:

inf
s∈S

µ̂(s)− µ(s) (1.40)

with Bootstrap estimates, respectively

sup
s∈S

µ̂∗(s)− µ̂(s); inf
s∈S

µ̂∗(s)− µ̂(s) (1.41)

We justify such choices and overview the different methods to build SCBs through
Bootstrap estimates in Section 3.1.

4This name is used in Davison and Hinkley (1997). Another possible name could be "difference"
instead of "bias".
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In this chapter, the general algorithm to perform Importance Resampling is explained.
To yield an importance resampling distribution, we explain Exponential Tilting, which
is used in the classic papers: Johns (1988), Do and Hall (1991) and Davison (1988); as
well as our two proposals: Contribution Tilted Mixture (CTM) and Loss Tilting (LT). As
uttered above, in this thesis we concentrate in the estimation of statistics that are used in
the construction of SCBs through the Bootstrap. In particular, this will imply estimating
the (1− α)th quantile, where α is the desired confidence level, such as (1.41) and (1.36).
We remark that Importance Resampling is not the only method to reduce the variance of
an MC estimate. Indeed, a plethora of approaches are available to obtain a lower variance
than Equation (1.21) for a Bootstrap estimate. In Appendix A an overview of the
techniques to make the MC estimate of the Bootstrap estimate more efficient (i.e. with
less variance w.r.t crude MC) is provided. The reason for which we choose Importance
Resampling is that it yields the highest efficiencies for tail probability (and thus extreme
quantile estimation) amongst the available techniques (see Davison and Hinkley (1997)).

2.1. Importance Resampling for Bootstrap Quantile

Estimation

We have been over the fact Importance Resampling provides MC estimates with less
variance than Ordinary Monte Carlo, as long as an adequate importance disstribution is
given. In this section, we present the core focus of this research, which is the use of this
variance reduction technique to yield Bootstrap estimates for quantiles of a statistic, later
employed in the construction of simultaneous confidence regions (SCBs).
Once the desired quantile level α is chosen, one must reason about the choice of the
importance distribution H.
We first view the tail probability estimation. Given a statistic T = t(x), where CDF F ,
x ∈ Ω(F ), of the form (1.1), for a given θ, we are interested in estimating:

π = PF [T ≤ θ] (2.1)
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for which we use the Bootstrap estimate from available sample X of F of size N and
ECDF F̂ , and sample estimator for T being T̂ = t̂(X) (with X a random sample of size
N)

π̂ = PF̂ [t̂
∗(X∗) ≤ θ] = PF̂ [T̂

∗ ≤ θ] (2.2)

denoting with T̂ ∗ the Bootstrap distribution of the statistic conditioned to the available
sample.
To obtain the MC estimate of (2.2), the function to use in the Bootstrap integral (1.14)
is:

m̂(X∗) = 1{t̂(X∗) ≤ θ} (2.3)

Whence one can realise that when the tail probability is being estimated, most Bootstrap
iterations will be 0 when θ > t(X∗) when the order of the quantile α is ≪ 0.5, meaning
they will not contribute to the integral (an analogue argument holds when the order of
the quantile is α ≫ 0.5). Consequently, an idea is to recenter it at the tail value θ (or
quantile say α = 0.05), "so that the estimation of the tail quantile becomes more like
estimating the median" (Johns (1988)), provided we adjusted with the likelihood ratio
from sampling from this other distribution, an unbiased estimator with less variance of
the tail probability (quantile) would be obtained.
In other words, when dealing with tail probabilities or extreme quantiles, (2.3) will have
the same value in too many MC iterations, which translates into low efficiency. Indeed,
the MC variance of such quantity is given by (plug (2.2) into (1.21)):

V ar[ˆ̂πMC ] =
π̂(1− π̂)

B
(2.4)

(where B is the number of MC iterations) which implies the farther the tail probability
(quantile order) is from 0.5, the more inefficient Ordinary Monte Carlo is. This of course
arouses the need of Importance Resampling.
Quantile estimation, however, requires an extra step to be performed with Importance
Resampling (see Hall (1992)). Letting α be order of the quantile of the statistic to
estimate, the quantity of interest ξ̂α is the solution to :

PF̂ (T̂
∗ ≤ ξ̂α) = α (2.5)

and we can denote the Bootstrap estimate of the CDF of functional T by:

Q̂(y) = PF̂ (T̂
∗ ≤ y) (2.6)
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1

Remark 3 (Discreteness of ˆ̂
QMC(y)). The support of the MC estimate of Q̂(y), that is

ˆ̂
QMC(y) is of exactly B counting measure, with B being the number of MC iterations.
Indeed:

Supp[
ˆ̂
QMC(y)] = {t̂(X∗b), b = 1, ... , B} (2.7)

From Equation (2.6) it easy to check that the Bootstrap quantile estimate will be given
by:

ξ̂α = inf{y : Q̂(y) ≥ α} (2.8)

and the MC estimate of such estimate:

ˆ̂
ξMC,α = inf{y(b) : ˆ̂

QMC(y
(b)) ≥ α , b = 1, ... , B} (2.9)

Under Importance Resampling, the fact that different weights (see Equation 1.17) are
associated to each Bootstrap replicate has to be taken into account. Thus, the values of
the statistic evaluated at each Bootstrap sample are ordered: T̂ ∗

1 < ... < T̂ ∗
B and have

corresponding weights w∗
1 < ... < w∗

B.
When the order of the quantile of interest α is < 0.5, the Importance Resampling estimate
is T̂ ∗

M , where M is such that (see Davison and Hinkley (1997) or Johns (1988)):

1

B

M∑
b=1

w∗
b ≤ α <

1

B

M+1∑
b=1

w∗
b (2.10)

However, care must be taken when the order α of the quantile is such that α > 0.5, and
the following estimate is used:

1

B

B∑
b=M

w∗
b ≤ 1− α <

1

B

B∑
b=M+1

w∗
b (2.11)

Remark 4 (Importance Resampling when the quantile is α > 0.5). In such case, esti-
mating (2.10) would actually lead to a loss of efficiency with respect to ordinary Resam-
pling. Indeed, if the Boostrap distribution T ∗ is tilted to the right, then the likelihood ratio
w(X∗) = dF̂ (X∗)

dH(X∗)
(1.17) might explode for the lowest values of T ∗: the further the impor-

tance distribution of T ∗ is tilted to the right to be centered at the desired quantile, the
lower of the denominator is for its lowest values, and their associated weights skyrocket.

1Note it is the function whose efficiency through Importance Resampling is shown in figure A.1
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Thus, it is better not to include those weights in the estimation of the upper (α ≫ 0.5

quantile by estimating 1− Q̂(y) = PF̂ [T̂
∗ > y], and utilise the estimate in (2.11) This will

be visualised in section 2.1

2.2. Choice of the Importance Resampling Distribu-

tion

2.2.1. Exponential Tilting

We now delineate Exponential Tilting, the technique utilised in the three main papers
on Importance Resampling to provide the importance distribution: Johns (1988), Do and
Hall (1991) and Davison (1988).
Firstly, we resume our speech on Section 1.3. Applying the Bootstrap Assumption (1)
on Equation (1.25), we can approximate a sample estimator t̂ of statistic t with its linear
approximation t̂L. Letting F̂ denote the ECDF of a random sample X, and F̂ ∗ the ECDF
of a sample with replacement from it X∗, we can define the first order approximation of
a sample statistic t̂:

t̂L(F̂
∗) := t̂(F̂ ) + n−1

N∑
i=1

l∗j (2.12)

2 in alternative notation:

t̂L(X
∗) := t̂(X) + n−1

N∑
i=1

l∗j (2.13)

where the l∗j represent the empirical influence values (i.e. estimates of the influence values)
of the first order derivative of statistic t̂ (i.e an operator from the space of distributions
to the space of R) evaluated at F̂ , for the jth statistical unit of the Bootstrap sample
X∗ (hence the asterisk in the notation). This means that if the both the first and the
second statistical units of the Bootstrap sample are the same statistical unit of the original
sample, then l∗1 = l∗2.
If the influence values are not known analytically, they can be obtained in several empirical
ways (see Davison and Hinkley (1997) and Canty and Ripley (2022)):

• Jacknife method. Similar to the total order Sobol indices (see Manzoni (2022)),
the influence value of the jth statistical unit is proportional to the change in the
statistic when the jth statistical unit is not present in the bootstrap sample that
calculates it. Related methods are the infinitesimal jacknife and the positive

2This notation is the one used in Davison and Hinkley (1997)



2| Importance resampling 19

jacknife (see Canty and Ripley (2022) and Davison and Hinkley (1997) for more
details).

• Regression. The idea is to firstly a pilot MC run with B1 iterations for the Boot-
strap estimate of t̂. This yields:

– y =


y1
...

yB1

 where yb = t̂(X∗b), b = 1, ... , B1, where X∗b is the bth re-sample

of original sample X;

– Design matrix Z of dimension B1 ×N , (N sample size of X)

Z =


f ∗1
1 f ∗1

2 ... f ∗1
N

...
... . . . ...

f ∗B1
1 f ∗B1

2 ... f ∗B1
N

 where f ∗b
j , b = 1, ... , B1, j = 1, ..., N is the

frequency of the jth statistical unit on the bth Bootstrap sample. Note that∑N
j=1 fj = N, ∀b ∈ {1, ..., B1}

Whence we have the necessary elements to fit a linear regression, and the estimated
(through Ordinary Least Squares) coefficients vector b̂ is nothing but the vector of

the empirical influence values: b̂ =


l̂1
...
l̂N


Now we are ready to outline the main reasoning made in Davison and Hinkley (1997)
for Importance Resampling, where T̂ ∗ is the Bootstrap estimator of sample version T̂ of
statistic T on sample X

1. We approximate the statistic T̂ ∗ by its linearised version T̂ ∗
L (as seen on Equation

(2.13)) which is an accurate approximation of itself.

2. Such statistic T̂ ∗
L follows approximately a normal distribution, which is the case

asymptotically. Id est, as seen in Equation (2.13), and applying the nonparametric
delta method result of Equation (1.26), asymptotically T̂ ∗

L ∼ N(T̂ (F̂ ), vL(F̂ ))

3. Exponential tilting is used to define the gj in (1.18) s.t. the importance distribution
yields values t̂(X∗b) centered at value ξ̂I,α, which is an initial rough estimate of the
αth quantile of T̂ ∗ we will estimate better through Importance Resampling.

That is, in the classical papers, we make the following assumptions:

Assumption 2 (Accuracy of the Linear Approximation). The linear approximation T̂ ∗
L

of T̂ ∗ is accurate.
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Assumption 3 (Normality of the Linearised Statistic). The linearised statistic T̂ ∗
L under

ordinary resampling is approximately normal.

Moreover, from the "classic" papers (Johns (1988), Davison (1988) & Do and Hall
(1991)), two main approaches for Importance Resampling arise:

1. Direct. With both Assumptions (2) and (3), a single MC simulation is done directly,
centering the Bootstrap distribution T̂ ∗of statistic of interest T on the αth quantile
of the normal approximation of T̂ ∗

L (see Davison and Hinkley (1997)), or on the
value such that the estimated variance (computed analytically with the normal
approximation) of the quantile estimate is minimised (see Do and Hall (1991) and
Johns (1988)). However, this method requires the availability of the influence values
and its validity is asymptotic (indeed, assumption 3 is valid under the C.L.T for
several location estimators, as seen in Johns (1988)).

2. Empirical. The idea is to run a pilot MC run with Ordinary resampling, whence
both the influence values and quantile of the Bootstrap estimate of the statistic of
interest ξ̂α can be estimated. Then the importance distribution is derived such that:
(1) the center of T̂ ∗

L is the pilot estimate denoted as ˆ̂
ξB1,α (B1 number of iteration

sin the pilot run) as in Davison and Hinkley (1997); (2) the variance of the estimate
is minimised as in Hall (1992).

In this thesis we focus on the Empirical Importance Resampling, and use as baseline the
implementation as in Davison and Hinkley (1997), id est, where the re-centering of the
Bootstrap distribution of T̂ ∗

L is such that the quantile estimate of the pilot run ˆ̂
ξB1,α is at

its center (of course, the center of the Bootstrap estimate of a statistic T̂ under ordinary
resampling is t̂(X) with (X) being the available random sample).
Therefore, whereas failure to comply with Assumption (2) might lead to decreased ef-
ficiency with Importance Resampling, not fulfilling Assumption (3) might have a lesser
effect on the variance, since the location of the re-centering does not depend on this
assumption.

The above can be visualised in the following image:
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Figure 2.1: Importance resampling scheme for quantile estimation

We now move into the details behind the generation of the importance distribution in
Importance Resampling.

We are now ready to go into the details of Exponential Tilting. To choose importance
resampling distribution H, the idea is to assign, for Equation (1.18)

gj ∝ (λlj), j = 1, ..., N (2.14)

where λ is a variable to tune such that the distribution is centered in the desired value.
This is done through a Newton solver, see Davison and Hinkley (1997) and Canty and
Ripley (2022), and in general converges quickly, as mentioned in Do and Hall (1991)
Indeed, we want to choose λ ∈ R such that:∑N

i=1 li exp(
λli
N
)∑N

i=1 exp(
λli
N
)

= θ0 (2.15)

where θ0 is the desired center for linearised Boostrap statistic T̂ ∗
L under Importance Re-

sampling. To accomplish such goal, we to solve the following optimisation problem and
trying to minimise the squared error:

argmin
λ∈R

(∑N
i=1 li exp(

λli
N
)∑N

i=1 exp(
λli
N
)
− θ0

)2

(2.16)
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Figure 2.2: Importance resampling scheme for quantile estimation through Exponential
Tilting

Exponential tilting is summarised in figure (2.2).

Remark 5 (Why exponential tilting?). There are two main reasons:

• It allows to set the Importance distribution (gj in Equation (1.18)) such that the
linearised statistic T̂ ∗

L is re-centered to a desired value (although it is not necessarily
the only method to do so)

• It keeps the variance of the linearised statistic T̂ ∗
L the same as under Ordinary Re-

sampling (pj = 1
N

), which is vL (id est the nonparametric delta method variance).

However, the variance of the importance distribution need not be the same as the
linearised statistic under equally-weighted (pj = N−1) resampling. Indeed, in the general
case of Importance sampling, an ideal (but infeasible) importance distribution would
yield a dirac mass on the value we want to estimate, requiring one single MC iteration
for an estimate without variance. Nonetheless, in this setting we are working with a
discrete and finite distribution F̂ so such choice may not even be possible. Moreover,
as Johns (1988) mentions: "The method of the exponential tilting leaves the variance of
the statistic unchanged, which leaves open the possibility that some other transformation
might reduce the variance and perhaps lead to an improved quantile estimator". Taking
into consideration the non-linearity of statistics (1.41) and (1.36), it is likely that in our
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case Assumption 2 is not fulfilled, and the motivations in Remark 8 may lose validity,
which opens the possibility for other procedures.
We are now ready to write the algorithm for importance resampling as presented in
Davison and Hinkley (1997). Given a sample X of an underlying possibly multi or infinite-
dimensional distribution F of cardinality N, we want to estimate the α quantile of operator
t. We through its sample estimate T̂ = t̂(X) whose distribution we approximate through
the Bootstrap, so in practice we estimate via the Monte Carlo method the distribution of
T̂ ∗

Algorithm 2.1 Importance resampling (Davison)
1: Set B1 and B2 for the pilot run and the Importance run, respectively.
2: for b ∈ {1, ... , B1} do
3: Obtain Bootstrap sample X∗b by sampling with replacement from original sample

X

4: Set T ∗
b ← t̂(X∗b)

5: end for
6: Obtain the empirical influence values l̂∗j , j ∈ {1, ... , N} through regression.

7: Obtain an estimate of the α quantile ˆ̂
ξB1,α using T ∗

b , b = 1, ... , B1

8: Calculate the probabilities of resampling each statistical unit gj by solving Problem
(2.16), yielding importance distribution H of shape of Equation 1.15 with probabilities
gi ∀i ∈ {1, ... , N}.

9: for b ∈ {1, ... , B2} do
10: Obtain Bootstrap sample X∗b by sampling with replacement from original sample

X with probabilities gi ∀i ∈ {1, ... , N}
11: Set T ∗

b as t̂(X∗b)

12: Compute the likelihood ratio as w(X∗b)← dF (X∗b)
dH(X∗b)

13: end for
14: if α < 0.5 then
15: Estimate the αth quantile using Equation (2.10)
16: else
17: Estimate the αth quantile using Equation (2.11)
18: end if

Remark 6 (Simplification of the quantile estimation). Contrary to the algorithm proposed
by Hall (Do and Hall (1991)), which uses both the pilot and the Importance simulation to
estimate the Bootstrap quantile of the statistic in a convex combination 3, in this thesis

3The weights are attributed according to an estimate of the variance, see Do and Hall (1991)
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we will compare Importance Resampling and Ordinary Bootstrap considering only the
iterations B2 in which the samples were made from the importance distribution for the
first (so as if the center and influence values were available), and the same number of
iterations B2 for the Bootstrap with equal probabilities for each statistical unit.

2.2.2. Our first proposal: Loss Tilting

We recall from the Introduction that the scope of this thesis is to apply Importance
Resampling for the quantile estimation of statistics that are used to construct Bootstrap
SCBs, such as (1.33) and (1.39). In such particular case, Assumption (2) is not valid
anymore, since the statistic is the composition of the supremum (infimum), a non-
linear function, and another statistical function (for e.g. Student’s t statistic, which is
non-linear as well). What is more, whereas Student’s t is a smooth function (see for
e.g. Johns (1988)) the supremum (infimum) is not (of course when p > 1), which puts
Assumption (3) in jeopardy as well.
We thus make the following remarks:

Remark 7 (Violation of Assumption (2) with statistics used for SCBs). When using
statistics (1.39) and (1.34), the supremum (infimum) induces a non-linearity that in-
creases as p increases, so that the linear approximation T̂L of a sample estimator T̂ is not
accurate, violating Assumption (2).
Such violation occurs in Johns (1988), for example, who uses Student’s t statistic, but
Exponential Tilting still reduces the MC variance. In our scenario of interest, there is
a further layer of non-linearity induced by the sup (inf) operator, which worsens such
infringement.

Remark 8. (Non-smoothness of statistics used for SCBs) The delta method result(1.26)
is not fulfilled in the statistics used in the construction for SCBs, since statistics (1.39) and
(1.34) use the supremum (infimum) a non-smooth function. In this thesis we employ
the use of influence values to obtain the linearised statistic anyways.

Consequently, one may anticipate that since the core hypotheses under Exponential
Tilting in the classic papers, the reasons for which it is used will no longer hold, see
Remark (5). What is more, we will see in Section 2.3 it will lead to a larger variance w.r.t
Ordinary Resampling when p > 1.
This opens the possibility for other procedures to obtain an Importance distribution to
reduce the variance (1.13). We leave the discussion of the optimality of Exponential
Tilting in Importance Resampling for future research, and focus on building alternative
algorithms that can reduce the MC variance when Assumptions (2) and (3) are not nec-
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essarily true.
We thus firstly propose Loss Tilting. We recall the objective is to re-center the Bootstrap
distribution T̂ ∗ = t̂(X∗) of a sample estimator T̂ = t̂(X) of statistic of interest T = t(F )

from center t̂(X) to a desired value θ0 as a new center, which may be for example the
estimate obtained after the pilot run ˆ̂

ξB1,α (see Algorithm 2.1).
The intuition is the following: we want to re-sample more frequently the statistical unit
j, the more its influence value lj (or its empirical estimate l̂j) pushes towards θ0 (which
of course happens in the case of Exponential Tilting).
Then, we denote the difference between the desired center for the tilted Bootstrap distri-
bution and the center under ordinary resampling:

d := θ0 − t̂(X) (2.17)

and assign a re-sampling probability gj for the jth statistical unit such that the closer (in
terms of a possibly symmetric loss function ℓ) its influence value lj is to d, the higher gj

is.
Consequently, we propose the following procedure:

1. Compute the difference d as in (2.17)

2. For each statistical unit j, compute the Loss function of the difference between d

and the (empirical if not derived analytically) influence value lj (l̂j when estimated
empirically)

hj = ℓ(d− lj) (2.18)

3. Since we want a probability distribution, we normalise hi:

h̃j =
hj∑N
i=1 hi

(2.19)

4. Since we want to give less probability the higher the loss is, we compute the com-
plement of each h̃i:

h̃c
j = 1− h̃j (2.20)

5. And normalise them to get the importance distribution:

gj =
h̃c
j∑N

i=1 h̃
c
i

, j ∈ {1, ... , N} (2.21)



26 2| Importance resampling

which is summarised in the following algorithm:

Algorithm 2.2 Loss tilting

1: Given sample X of size N , sample estimator t̂, desired center θ0, loss function ℓ

2: Compute d =← θ0 − t̂(X),
3: Set hj = ℓ(d− lj), j ∈ {1, ... , N}
4: Set h̃j =

hj∑N
i=1 hi

, j ∈ {1, ... , N}
5: Set h̃c

j = 1− h̃j, j ∈ {1, ... , N}
6: Set gj =

h̃c
j∑N

i=1 h̃
c
i

, j ∈ {1, ... , N}

Remark 9 (Choice of the loss function). There are possibly infinite valid choices for a
function that gives higher resampling probabilities for statistical units whose influence val-
ues push towards the desired center for the tilted distribution.
What is more, the steps in subsection 2.2.2 are not the only way to obtain the probabilities.
For instance, normalisation could be done with a softmax transform, or simply by setting
gj ∝ 1

ℓ(d−lj)

The point is that when we choose an alternative to Exponential tilting, we renounce the
guarantee that the tilted Bootstrap distribution of the linearised statistic T̂ ∗

L will be effec-
tively centered at desired θ0 , yet a whole new world is unlocked.
Indeed, one could choose a function with a parameter to control the variance in the tilted
distribution, which could for example be tuned according to the uncertainty of estimate
ˆ̂
ξB1,α (see Algorithm (2.1)).

Remark 10 (Didactic-ness of Loss Tilting). Our first proposal provides no guarantee
whatsoever regarding the center of the tilted distribution, except that the Bootstrap dis-
tribution of the linearised statistic T̂ ∗

L will be closer to θ0 w.r.t the Ordinary (no tilting)
Bootsrap distribution.
Therefore, we state Loss Tilting is didactic in the sense it is a very general algorithm,
with a loss function ℓ to be chosen according to the specific problem.
Our purpose with such algorithm is to show that when the assumptions of Exponential
Tilting fail, other options that can effectively reduce the MC variance are available (see
section 2.3).

We now formally write the algorithm for Loss Tilting for Importance Resampling.
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Algorithm 2.3 Importance Resampling with Loss Tilting
1: Set B1 and B2 for the pilot run and the Importance run, respectively.
2: for b ∈ {1, ... , B1} do
3: Obtain Bootstrap sample X∗b by sampling with replacement from original sample

X

4: Set T ∗
b ← t̂(X∗b)

5: end for
6: Obtain the empirical influence values l∗j , j ∈ {1, ... , N} through OLS.

7: Obtain an estimate of the α quantile ˆ̂
ξB1,α using T ∗

b , b = 1, ... , B1

8: Calculate the probabilities of resampling each statistical unit pi by following Al-
gorithm 2.2, yielding importance distribution H of shape of Equation 1.15 with
probabilities gi ∀i ∈ {1, ... , N}.

9: for b ∈ {1, ... , B2} do
10: Obtain Bootstrap sample X∗b by sampling with replacement from original sample

X with probabilities gi ∀i ∈ {1, ... , N}
11: Set T ∗

b ← t̂(X∗b)

12: Compute the likelihood ratio as w(X∗b)← dF (X∗b)
dH(X∗b)

13: end for
14: if α < 0.5 then
15: Estimate the α quantile using Equation (2.10)
16: else
17: Estimate the α quantile using Equation (2.11)
18: end if

2.2.3. Our second proposal: Contribution Tilted Mixture (CTM)

This Importance Resampling technique we propose at the present work is specifically
designed for the case in which the task of interest is the construction of Bootstrap SCBs.
As a matter of fact, it is only applicable with a statistic which is the sup or inf of an
element-wise statistic, such as (1.39) and (1.34). As shown in Remark (8), the additional
(apart from the one inherent to Student’s t) nonlinearity induced by the sup (inf) is a
problem, and what is more it renders the statistics non-smooth, so if we try to obtain
their derivatives to obtain influence values as in 1.23 may be cumbersome, apart from the
departure from Assumption (3)

Our second proposal, Contribution Tilted Mixture, has been escogitated for this
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special case in which we have a non-smooth operator such as sup or inf , and work-
ing with high-dimensional data. In particular, with S being a discrete set of the form
S = {1, ..., p} with p being a possibly large integer (see Section 1.4). Note this is the
case even for the functional setting (i.e. p = ∞), where a discretisation of the curve is
utilised, see for e.g. Pini and Vantini (2017).

The intuition is the following: since both statistics (1.34) and (1.39) (the same goes for
their inf versions) are the supremum (infimum) of an estimated element-wise statistic,
for e.g. (1.39): sups∈S µ̂

∗(s)− µ̂(s), then their value necessarily corresponds to the value
of one of its components s̃ , i.e. sups∈S µ̂

∗(s)− µ̂(s) = µ̂∗(s̃)− µ̂(s̃).
Therefore, if such statistics take only the value of their component say s̃, we can "forget"
about the fact it is a sup (inf) and apply Exponential (or any other) tilting to the quantity
µ̂∗(s̃)− µ̂(s̃) in the case of statistic (1.41) or

√
N(µ̂∗(s̃)−µ̂(s̃))

σ̂∗(s̃)
in the case of (1.36).

In particular, if we choose Exponential Tilting, then the deviation from Assumption (2)
would not be violated as badly as for statistic (1.41) (see Remark 8) and would only contain
the Student’s t nonlinearity in (1.36), which does not hinder the variance reduction of
Importance Resampling (see Johns (1988), Do and Hall (1991), Davison (1988)).
Nonetheless, usually it will not be the case that the sup (inf) takes the value of a single
component. Different components s ∈ S may be the ones whose value is the one taken
by the statistic with the sup (inf) .
Thus, we consider as a "contributor" each element s ∈ S of the multivariate (functional)
statistic. We make the following reasoning: the more frequent the value of element s ∈ S
is the one taken by the statistic with the sup (inf), the bigger the weight we give to the
(exponential) tilting done on the (univariate) quantity of the statistic at component s.
Exploiting the fact that in Algorithm 2.1 runs a pilot run, it would be possible to count,
for each element s ∈ S, how many times it was such element whose value became the
value of the sup (inf) statistics (1.41) and (1.36).
Therefore, the idea is to use as an Importance distribution a weighted Mixture of the
individual weights p(s)j , j ∈ {1, ... , N}, s ∈ S obtain through the point-wise (Exponential)
Tiltings to re-center at the desired quantile α.
Thus, we denoting with m̂∗(s), s ∈ S either statistic

√
N µ̂∗(s)− ˆµ(s)

σ̂∗(s)
or statistic µ̂∗(s)−µ̂(s);

T ∗ = t̂(X∗) = sups∈S m̂
∗(s), we define the estimate of the contribution of the element

s ∈ S with:

ĉs :=

∑B1

b=1 1{T̂ ∗
b = m̂∗

b(s)}
B1

, , s ∈ S (2.22)

where B1 is the number of Monte Carlo iterations in the pilot run, T̂ ∗
b and m̂∗

b(s) the
values of Bootstrap T̂ ∗ and m̂∗(s) statistics at the bth iteration.
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Set as resampling probability for the jth statistical unit:

p̃j :=
∑
s∈S

p
(s)
i ĉs (2.23)

where p
(s)
i is the probability of resampling the ith statistical unit after applying (Expo-

nential) Tilting to m̂∗(s) at a fixed s ∈ S so that it is re-centered at the same order of the
quantile of interest for T̂ ∗. Note it yields an Importance distribution (i.e.

∑N
i=1 p̃j = 1)

since it is a convex combination (
∑

s∈S ĉs = 1; 0 ≤ cs ≤ 1, ∀s ∈ S) of the element-wise
importance distributions.
Therefore, Contribution Tilting Mixture (CTM) can be summarised in the following:

Algorithm 2.4 Contribution Tilting Mixture
1: Given the results of the Pilot run in Algorithm 2.1, that is:

• element-wise estimate of quantile of interest ˆ̂
ξB1,α(s) of m̂∗(s) , s ∈ S ;

• estimate contribution of each element ĉs , s ∈ S as in (2.22)
2: Compute through (Exponential) Tilting the elemente-wise Importance Distribution,

yielding p
(s)
j , j ∈ {1, ... , N}, s ∈ S

3: Set p̃j :=
∑

s∈S p
(s)
i ĉs i ∈ {1, ... , N} as the Importance Resampling probabilities.

to be inserted in Algorithm 2.1.

2.3. Simulation study

We devote this section to test the algorithms. Different experiments focusing on statis-
tics (1.41) and (1.36) and the MC (under both ordinary and Importance Resampling) esti-
mate ˆ̂

ξMC,α of the Bootstrap estimate of their αth order quantile ξ̂α. We use Exponential
Tilting, Huber tilting and Contribution Tilting Mixture (CTM) to obtain the im-
portance distribution and compare their results. We denote, as before, T̂ ∗ the Bootstrap
distribution of the sample estimator T̂ of statistic T of interest (whether (1.39) or (1.34)),
and with T̂ ∗

L its linear approximation. All samples were taken from an underlying Gaus-
sian Process defined on domain I = [0, 1], with mean µ(t) = sin(πt) + sin(2πt), t ∈ I,
with exponential covariance of parameters α = 1 and β = 2 (see Ieva et al. (2019)):
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Figure 2.3: Gaussian process of which samples of different N and p (number of dimensions)
are drawn.

with and both N , the sample size and p the number of random variables (elements) per
statistical unit, were varied.
With the covariance kernel being exponential, the closer two points are in the domain, the
higher their covariance is. Whenever p > 1, we decided to keep a mild covariance between
the elements that conformed the statistical units in random samples X. To accomplish
such situation, for each chosen p, an equally spaced grid of p points over domain I was
utilised. Hence, with p = 10, each statistical unit xi (for some integer i between 1 and
N of random sample X would have 10 elements: i.e. S = {1, ..., p} (following notation
in Section 1.4) , where the ith element of a statistical unit corresponds to the following
point in the domain I: ts = s

p+1
, ∀s ∈ S = {1, ..., p}. The different chosen values of N

are 16, 32, 64, whereas for p they are 1, 10, 40, 100, where the last value is a is used in
the Functional setting of Bootstrap SCBs (see for e.g. Degras (2016)).
For ease of reference, we denote the following:

• sup-bias as the sup-like statistic (1.39) with Bootstrap estimator (1.41)

• sup-t-student for (1.34) with Bootstrasp estimator (1.36)

We note that since samples are taken from a symmetric stochastic process, we only study
the sup-like statistics, since the same behavior is expected from their inf -like counterparts.
The only difference, as noted in Remark 4 is that estimator (2.11) is used instead of (2.10),
since the quantile of interest will be 1 − α, with the chosen α for the simulations being
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α = 0.5

What is more, for all the simulations we utilised B1 = 100 MC iterations for the pilot
runs, B2 = 1000 for Importance Resampling runs.
Regarding the choices for the Importance distribution in Importance Resampling:

• We used Davison’s (Alg. 2.1) method for Exponential Tilting

• We utilised ℓ(x) = 1
2
x2 as loss function for Loss Tilting (see (2.18))

• For the element-wise importance distribution in CTM, we used Exponential Tilting
(see Algorithm (2.4)).

2.3.1. Comparison of the statistics and their linearised approx-

imations

In this subsection, our aim was to see the potential violation of Assumption (2) (the
approximation T̂ ∗

L for T̂ ∗ is accurate for both statistics, by varying both N and p.
Thus, for each statistic, we simulated B = 1000 MC iterations (or resamples) to analyse
their distribution. We utilised Ordinary Resampling (i.e. with pj = N−1, see (1.15)),
since the purpose was only to see how good the linear approximation of the Bootstrap
statistics was.
Of course, when p = 1, sup-bias is a linear statistic, and this is perfectly shown in Figure
(2.4). This was not the case for sup − t − student, which is nonlinear even when p = 1

(see fig. 2.5). As p increases, the more nonlinear the statistic becomes due to the sup

operator, which results in the linear approximation missing higher-order effects and thus
shows the left-shift in the linearised distribution w.r.t the actual one. In other words, an
increase in the dimensionality means we deviate farther from Assumption 2.
Moreover, the contribution to non-linearity from the sup operator is much accentuated
than the one of Student’s t statistic. Indeed, by looking at Fig. (2.4), we notice that when
p = 1 and only Student’s t statistic’s non-linearity is present, the linear approximation
is accurate, which is coherent with what we have mentioned, id est, that Exponential
Tilting leads to significant efficiency gains with such statistic despite of its non-linearity
(see Johns (1988)). The sup operator, on the contrary, makes the linear approximation
inaccurate while increasing p, which is noticeable from Figures (2.4) and (2.5).
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Figure 2.4: A thousand samples of the Boostrap distribution T ∗ (blue) and its linearised
version T ∗

L (pink) when using sup-bias
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Figure 2.5: A thousand samples of the Boostrap distribution T ∗ (blue) and its linearised
version T ∗

L (pink) when using sup-t-student

2.3.2. Comparison of statistics under Ordinary Resampling and
under Importance Resampling

In this subsection, our aim is to show simulations of the Bootstrap statistics T ∗ and
their distributions under Importance Resampling, wherein the Importance distributions
were outputted by Exponential Tilting and by our proposals, namely Loss Tilting and
Contribution Tilted Mixture.
What is more, we indagated the true (given by an MC simulation of Ordinary Resam-
pling with 50000 replications such that its variance was negligible) quantile 1− α of the
Bootstrap estimator of each statistic, i.e. ξ̂1−α; its estimate after the pilot run ˆ̂

ξB1,1−α,

and its estimate under Importance Resampling ( ˆ̂ξIR,1−α).
Whereas in Section 2.3.1 it seemed that the sup of the element-wise Student’s t had more
aggressive departures with respect to the sup of the mean bias as p increased, we see very
similar plots for both statistics under Exponential Tilting. As a matter of fact, except for
the case of p = 1, the tilted distributions are not centered at all on the desired quantile,
which spoils the fact it would not increase (if not decrease!) efficiency.
Loss tilting with the abovementioned loss function choice seems very conservative: whereas
it does tilt the distribution of both statistics to the right, it is not enough to be centered
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at the desired quantile.
CTM seems the most promising: for both statistics, across all values of N and p it is
both approximately centered around the desired point and with a significant overlap with
the original distribution, which will prevent the appearance of likelihood ratio weigths
(equation 1.17) that go high.
According to the results seen on this section, CTM is definitely the best method of the
three.

Figure 2.6: T ∗ (blue) and its tilted version (pink) with sup-bias and Exponential Tilting.
The vertical red, blue and turquoise lines are ξ̂1−α, ˆ̂ξB1,1−α and ˆ̂

ξIR,1−α, respectively.
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Figure 2.7: T ∗ (blue) and its tilted version (pink) with sup-t-student and Exponential
Tilting.The vertical red, blue and turquoise lines are ξ̂1−α, ˆ̂ξB1,1−α and ˆ̂

ξIR,1−α, respectively.

Figure 2.8: T ∗ (blue) and its tilted version (pink) with sup-bias and Loss Tilting.The
vertical red, blue and turquoise lines are ξ̂1−α, ˆ̂ξB1,1−α and ˆ̂

ξIR,1−α, respectively.
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Figure 2.9: T ∗ (blue) and its tilted version (pink) with sup-t-student and Loss Tilting.The
vertical red, blue and turquoise lines are ξ̂1−α, ˆ̂ξB1,1−α and ˆ̂

ξIR,1−α, respectively.
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Figure 2.10: T ∗ (blue) and its tilted version (pink) with sup-bias under CTM. The vertical
red, blue and turquoise lines are ξ̂1−α, ˆ̂ξB1,1−α and ˆ̂

ξIR,1−α, respectively.
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Figure 2.11: T ∗ (blue) and its tilted version (pink) with sup-t-student under CTM. The
vertical red, blue and turquoise lines are ξ̂1−α, ˆ̂ξB1,1−α and ˆ̂

ξIR,1−α, respectively.

2.3.3. Plots of the Importance Resampling Probabilities

Another aspect of interest to our simulation was naturally the Importance distribution
of shape (1.18) under the different algorithms that yield it. For both statistics and all
three algorithms, we plotted the re-sampling probabilities gj versus the empirical (hence
estimated) influence values of each statistical unit. Again, we conducted the experiments
for the different N and p mentioned above.
The idea was to confirm the shape these resampling probabilities would have: id est
Exponential for Exponential Tilting, quadratic for Loss Tilting under our choice ℓ(x) =

2−1x2 and without knowing a priori what the shape of the CTM probabilities gj versus
l̂j, j ∈ {1, ..., N} would be.
That was indeed the case for the first two algorithms. When p = 1, of course Exponential
Tilting and CTM coincided, given that we used the first as an element-wise Importance
distribution, and so do the resampling probabilities they provided. For CTM, when p
> 1, the weights seem rather a noisy version of exponential tilting, which speaks of its
mixture nature. Moreover, they are less unequally distributed along the different influemce
values with respect to Exponential tilting, which is good since as seen on section 2.3.2
Exponential Tilting over-shifts the distribution.
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Figure 2.12: Importance resampling probabilities for statistic sup-bias with Exponential
Tilting as a function of the empirical influence values. Horizontal line is N−1
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Figure 2.13: Importance resampling probabilities for statistic sup-t-student with Expo-
nential Tilting as a function of the empirical influence values.. Horizontal line is N−1
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Figure 2.14: Importance resampling probabilities for statistic sup-bias with Loss Tilting
as a function of the empirical influence values. Horizontal line is N−1
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Figure 2.15: Importance resampling probabilities for statistic sup-t-student with Loss
Tilting as a function of the empirical influence values. Horizontal line is N−1
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Figure 2.16: Importance resampling probabilities for statistic sup-bias with CTM as a
function of the empirical influence values. Horizontal line is N−1
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Figure 2.17: Importance resampling probabilities for statistic sup-t-student with CTM as
a function of the empirical influence values. Horizontal line is N−1

2.3.4. Comparison of the likelihood ratios

The focus of this subsection is to analyse the visual output of the ordered weights, i.e.
the likelihood ratios that make up for the fact that we resampled from a distribution with
unequal probabilities (see (1.17)), on the specific case of the statistic sup-t-student. What
is more, we wish to comprehend better what is asserted in Remark (4), whence a different
method is used when estimating the quantiles of order higher than 0.5.
As pointed out in Remark (4), the weights associated to lower values of the statistic T̂ ∗ did
explode, which justifies estimating the right tail if a variance reduction is desired. Indeed,
if the weights associated to the lowest values of the MC approximation of the Bootstrap
distribution T̂ ∗ were used, as it can be inferred from Equation (1.13) the variance would
indeed increase. In addition, as p increased, in Exponential Tilting the likelihood ratio
associated to the lowest values of T̂ ∗ increased, which is coherent with what we mentioned
in Section 2.3.2: the importance distribution over-tilted the statistic so that there was little
overlap between the distribution of T̂ ∗ under ordinary resampling and tilted T̂ ∗, whence
these exploding weights were not a surprise. We also comment that the weights in CTM



2| Importance resampling 45

tended to be the lowest ones, which is of course desirable for the variance reduction task,
and distiguishes such algorithm as the best one under this criterion.

Figure 2.18: Importance resampling weights for sup-t-student with Exponential Tilting.
The index corresponds to the order of the obtained T̂ ∗ at each iteration, so that the left-
most weights correspond to the lowest values of T̂ ∗.
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Figure 2.19: Importance resampling weights for sup-t-student with Loss Tilting. The
index corresponds to the order of the obtained T̂ ∗ at each iteration, so that the left-most
weights correspond to the lowest values of T̂ ∗.
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Figure 2.20: Importance resampling weights for sup-t-student with CTM. The index cor-
responds to the order of the obtained T̂ ∗ at each iteration, so that the left-most weights
correspond to the lowest values of T̂ ∗.

2.3.5. Comparison of the Bootstrap versus the sampling distri-

butions

In this subsection, we explored the distributions of the Bootstrap distribution T̂ ∗ and the
sampling distribution T̂ , for different N and p, as well as their 1−αth quantiles ξ1−α and
ξ̂1−α, respectively. We did so for both statistics to have a visual of how well the Bootstrap
estimate was w.r.t the true sampling distribution. We used B = 50000 replications in
both cases, in order to render their MC error insignificant. We note that not only the
quantile estimated under Bootstrap but the whole Bootstrap distribution is were close to
the sampling one. This is an indication that that the Bootstrap error tends to be small,
and thus that focusing on reducing the MC eror (see Remark 1) is a worthwhile task.
These results are coherent with what is stated in Hesterberg (2014), id est, the Bootstrap
does a fine job for approximating the sampling distribution for studentised statistics.
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Figure 2.21: Bootstrap (blue) and actual sampling distribution (pink) of sup-bias, as well
as their 1− αth quantiles, respectively.
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Figure 2.22: Bootstrap (blue) and actual sampling distribution (pink) of sup-t-student, as
well as their 1− αth quantiles, respectively.

2.3.6. Efficiency comparison

Last but not least, we evaluated how good the variance reduction achieved with Impor-
tance Resampling was with respect to ordinary Resampling, which is the core interest of
this thesis.
We measure the efficiency as the variance of Ordinary Bootstrarp divided by the variance
under Importance Resampling; using 1000 replications from the sample original sample.
Following Davison and Hinkley (1997), we estimated the efficiency in the following way:

ˆeff =
σ̂2
MC

σ̂2
IS

(2.24)

where ˆσ2
MC is the estimate of the variance of the quantile estimate under ordinary resam-

pling, and σ̂2
IS under Importance Resampling.

To obtain such estimates, for 1000 times, for each N and each p, we drew samples from
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the underlying data-generating-processes (characterised by different p), performed the
simulation of B = 1000 replications with Ordinary Resampling and Importance Resam-
pling, with Exponential Tilting, Loss Tilting and CTM as before for the choice of the
importance distribution in the latter case.

Remark 11 (Definition of efficiency). Since we are dealing with MC estimates of Boot-
strap estimates, another possibility was to look at the Mean Square Error (MSE) of the
MC estimate of the Bootstrap estimate with respect to the true quantile of the underlying
sampling distribution, taking into account both MC and Bootstrap error.
However, as pointed out in Davison and Hinkley (1997), since the expected value of the
MC estimate is the same for both Ordinary and Importance Resampling, the bias term in
the bias-variance decomposition of the MSE is negligible.
We confirmed it with our own simulations, so we decided show analyse the ratio of the vari-
ance of both MC estimates as a proxy for efficiency, analogously to Davison and Hinkley
(1997).

Moreover, from such 1000 iterations, we derived histograms of the ordinary and impor-
tance resampling quantile estimates, to have a visual of their variance. The results were
coherent with the previous subsections of the Simulation study. Across statistics, the
results were similar. Exponential tilting failed when p > 1, which had been anticipated
in 2.3.2: indeed since the linearisation was not a good approximation, Assumption (2)
was violated and the classical method to yield an importance distribution for Importance
Resampling led to significant losses of efficiency.
Loss Tilting, the most conservative, was always slightly above 1 meaning it is worthwile.
Given that we chose a very generic loss function, what we mentioned before about it being
case specific is confirmed: one should choose a loss function according to the needs of the
particular problem to get a signficant increase in the efficiency. CTM is undoubtedly is
the best algorithm! Whereas efficiencies close to 13 (as reported by Davison when both
assumptions 2 & 3 hold strictly), it still manages to have very high efficiencies when the
Assumptions behind under Exponential Tilting are clearlyviolated (which happens when
p ≥ 10) which speaks of great power. The fact it is able to yield a higher efficiency
for p = 100 demonstrates its strong affinity to the task of building Bootstrap SCBs for
functional data.
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Figure 2.23: For 1000 different samples, values of the MC estimate of the Bootstrap
estimate’s quantile of order 1−α for sup-bias under ordinary (blue) and importance (red)
resampling with Exponential Tilting

Figure 2.24: For 1000 different samples, values of the MC estimate of the Bootstrap
estimate’s quantile of order 1−α for sup-t-student under ordinary (blue) and importance
(red) resampling with Exponential Tilting
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Figure 2.25: For 1000 different samples, values of the MC estimate of the Bootstrap
estimate’s quantile of order 1−α for sup-bias under ordinary (blue) and importance (red)
resampling with Loss Tilting
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Figure 2.26: For 1000 different samples, values of the MC estimate of the Bootstrap
estimate’s quantile of order 1−α for sup-t-student under ordinary (blue) and importance
(red) resampling with Loss Tilting
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Figure 2.27: For 1000 different samples, values of the MC estimate of the Bootstrap
estimate’s quantile of order 1−α for sup-bias under ordinary (blue) and importance (red)
resampling with CTM

Figure 2.28: For 1000 different samples, values of the MC estimate of the Bootstrap
estimate’s quantile of order 1−α for sup-t-student under ordinary (blue) and importance
(red) resampling with CTM
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Figure 2.29: Efficiency curves for statistic sup-bias. Each curve represents a value of p

Figure 2.30: Efficiency curves for statistic sup-t-student. Each curve represents a value of
p
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Remark 12. (Inherent variance of the Bootstrap efficiences) Even if 1000 replications
were made on the same sample to estimate Bootstrap efficiency, values would oscillate
present significant variance
Since the sample is random as well, this is due to the fact we are dealing with the sampling
distribution.



57

3| Simultaneous Confidence

Bands for Functional Data

3.1. Overview of the Boostrap for building SCBs

As mentioned before, Degras (2011) is the reference paper on building SCBs through the
Bootstrap, in the sense it is one of the most cited works, and other researches that have
been published afterwards are very similar in their methodology. Prior to such paper,
Cuevas and Fraiman (2004) provided an overview of different variations of the Bootstrap
to build SCBs. Indeed, in this thesis we have used the so-called naïve Bootstrap: the
re-samples are taken from the original sample, and Importance Resampling, where we
re-sample with different weights while correcting with the likelihood ratio. In Cuevas
and Fraiman (2004), an example of a variation that is used is smooth Bootstrap (not to
be confused with Smoothing in Appendix A), wherein at each iteration each re-sampled
statistical unit is corrupted by adding a small random gaussian noise. This is necessary
when using depth-like estimators for the location of a stochastic process (see also López-
Pintado and Romo (2009)). Another option is parametric Bootstrap, where the underlying
distribution F of the available observations is to be assumed of a given parametric form,
and (re)samples are taken from such distribution, whose parameters are estimated from
the original sample.
Cuevas and Fraiman (2004)’s paper, however, uses the concept of functional depth (López-
Pintado and Romo (2009)) to build SCBs: a percentage (corresponding to the desired
coverage) of the deepest Bootstrapped curves are utilised to generate them, avoiding
entirely the use of a statistic of the form of (1.29) which to our knowledge would render
Importance Resampling inapplicable. Another example which prescinds such shape for
the SCBs is (Staszewska-Bystrova and Winker (2013)), where the problem is posed from
an an operations research point of view.
Nevertheless, the latest contributions in Bootstrap SCBs have proposed bands in the form
of Equation (1.29), which makes them idoneous the use of Importance Resampling. Even
(Narisetty and Nair (2016)), who uses functional depths as well, recurs to a formula of such
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kind. Indeed, such approach is the state of the art for Bootstrap SCBs. The main aspects
in which the latest contributions have varied to achieve a more accurate coverage (i.e for
a given confidence level 1 − α, the actual coverage for the true mean of the underlying
data generation process is close to such value) could be classified into two:

• Variations of the Bootstrap. We have already mentioned smooth and paramet-
ric Bootstrap with the latter also being seen also seen on Antoniadis et al. (2016),
Paparoditis and Shang (2021), Goldsmith et al. (2013), amongst others, who as-
sume, although not necessarily directly, some parametric model behind the data
generating process and produce a Bootstrap distribution by sampling from it.
Another variation is the Wild Bootstrap: instead of adding a white noise to the
statistical units, these are directly multiplied by a random variable whose distribu-
tion is such that the obtained Bootstrap distribution is richer (in terms of a larger
support, for e.g.) whilst not violating the (minimal) assumptions behind the Data
Generating Process.
Indeed, one of the best algorithms in terms of coverage nowadays is proposed in
Telschow and Schwartzman (2022), which uses multipliers of a Rademacher distri-
bution to estimate the Bootstrap distribution of a Degras (2011)-like statistic. It
assumes symmetry of the departures of each statistical unit from the mean, though.
One last approach we mention is the one in (Chuang et al. (2013)), which is a ver-
sion of the Bootstrap for dependent (thus non i.i.d) statistical units called the Block
Bootstrap.

• What is being Bootstrapped. Whereas in most papers re-samples are taken
from the available functions (or their for e.g. smoothing estimates when necessary)
in an naïve Bootstrap fashion, other works have considered other options. Gold-
smith et al. (2013), Wang et al. (2020), Wang et al. (2020) (among others) recur
to the so-called Functional Principal Component Analysis (FPCA) to decompose
the statistical units (which are functions), and each FPC is multiplied by a unit
variance gaussian random noise (hence a wild Bootstrap).

Remark 13 (Improvements for the Bootstrap). Whereas most of the latest works focus
on increasing the empirical coverage (especially when N) is small, in this thesis we alter
ordinary Bootstrap to reduce the variance of the estimate.

In view of Remark (13), we performed a short simulation study to evaluate the potential
need for variance reduction in the construction of Bootstrap SCBs.
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3.2. Brief simulation study: the need for variance

reduction

In this section we show the experiment we carried out to evaluate the need for Impor-
tance Resampling when building Bootstrap SCBs.
The idea was to see, for different values of B, id est the number of MC iterations to
estimate the Bootstrap distribution of a statistic, the variance in the quantile estimation
of a statistic of interest.
We chose Degras (2011)’s statistic, and for varying N and p, we drew a sample and per-
formed a 4 Bootstrap simulations at different values of B to see its impact on the estimate
across simulations that approximated the Bootstrap distribution of the statistic under the
same initial random sample. The quantile of the statistic we estimated was 1− α = 0.5.
We utilised the Gaussian Process in Section 2.3 and chose a an accurate enough discreti-
sation for the functional data.
We use the statistic just as in Degras (2011), that is, the sup of the element-wise absolute
value of Student’s t statistic (see Equation (1.31). In Chapter 2 we had used its signed
version (1.34), since with the absolute value the optimisation run in Exponential Tilting
would not converge using the absolute value. This makes sense since if the support of the
statistic had been R+, automatically Assumption (3) would have been violated.
The results are very significant. Whilst in the literature values of B = 500 (Cuevas and
Fraiman (2004)) or B = 2500 (Telschow and Schwartzman (2022)) are used, the estimates
had a stabilised from B = 5000 (little variance) and completely in B = 10000. In other
words, with the usual values for used in state-of-the-art algorithms, the MC error is still
significant, which calls for the use of Importance Resampling.
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Figure 3.1: Curves of the MC quantile estimate of statistic (1.31) for four different random
seeds, starting from the same sample at the different n and p.
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developments

In this thesis, we have applied Importance Resampling for the quantile estimation for
statistics such as the one Degras (2011), targeted to build SCBs for high-dimensional
data. In particular, we have tested Exponential Tilting, a methodology present in the
classic works on the subject matter, namely Johns (1988), Do and Hall (1991) and Davi-
son (1988), used in Importance Resampling to yield the importance distribution. Such
procedure relies on two major assumptions that regard the accuracy of the linear ap-
proximation of the statistic of interest and the normality of such proxy. The statistical
functions that we have analysed, used for the Bootstrap SCBs, care the composition of
some function and the sup (inf) operator, which increases nonlinearity, violating both
assumptions.
Through a simulation study, we have seen that Exponential Tilting indeed fails in the
setting of SCB construction with the Bootstrap, leading to increased variance with re-
spect to Ordinary Resampling when p > 1. This implies that in such setting, we can (and
should) do much better than Exponential Tilting to reduce the MC variance. We have
thus provided two algorithms, namely Loss Tilting (LT) and Contribution Tilted Mixture
(CTM). In the simulation study, we have shown that both increase the efficiency and
conseuqnelty work better than Exponential Tilting, even for large values of p, when the
non-linearity increases significantly. LT was chosen with a very simple loss function and
managed to get consistent yet small increases in variance reduction. CTM, on the other
hand, has led to significant variance reduction across all explored values of p, proving its
power and potential applicability.

Finally, we have also carried out a brief experiment that confirms the need for Impor-
tance Resampling in the setting of SCB estimation through the Bootstrap.
Regarding future research, we remark that different possibilities could be explored for
Exponential Tilting. Instead of a pilot run and an importance resampling run, a sequence
of importance resampling runs could be carried out, updating the importance distribution
accordingly. On the other hand, LT could be exploited to adjust the importance distribu-
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tion at a certain desired variance, so that it is tuned according to the degree of certainty
on a given initial quantile estimate.
Of course, Importance Resampling is not the only variance reduction technique for the
Bootstrap, and given the proven need for such task in the construction, we conjecture
that both a modification of the Bootstrap as seen in Chapter 3 as well an adaptation
of a more general MC variance reduction technique would lead to better results across a
(hopefully) wider range of statistics.
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A| Appendix A: Variance
Reduction methods for the
Bootstrap

Several of the methods which belong to the general Monte Carlo world have been applied
and researched in the Bootstrap world:

• Antithetic resampling. Escogitated by Hall (1989), it exploits antithethic permu-
tations to ensure the negative covariance between couples of resamples. Each MC
iteration implies retrieving two-resamples such that their estimates are negatively
correlated, so that the MC expected variance is reduced.

• Stratified sampling. Davison and Hinkley (1997) proposes it in the case of im-
portance resampling. Sometimes the importance distribution is a mixture of several
distributions (see the Gravity example in Davison and Hinkley (1997)), or, in order
not to risk an exploding variance due to a likelihood ratio between the sampling
distributions skyrocketing, a defensive mixture distribution is used. Id est, the
importance distribution is a mixture of the proposed one and another defense distri-
bution that bounds the likelihood ratio. In this case, in a Monte Carlo experiment
with total B runs, B0 < B are done sampling from the proposal distribution, and
the rest from a safer distribution, such as F̂ .

• Balanced bootstrap. The idea is that the empirical multinomial distribution
yielded by the B samples matches the one given in Equation (1.15). As mentioned
both by Hall (1992) and Davison and Hinkley (1997), the intuition of this method
is closely related to Latin Hypercube Sampling (Manzoni (2022)).

• Control methods. Davison Davison and Hinkley (1997) proposes the use of a
linear approximation of the statistic both in a control variate setting and in a Multi
Level Monte Carlo scheme for the bootstrap. Such linear approximation is based
on the delta method (see Manzoni (2022), Hall (1992) and Davison and Hinkley
(1997)), which is shown later in this paper when obtaining the importance distribu-



68 A| Appendix A: Variance Reduction methods for the Bootstrap

tion for estimate (1.19).

The efficiencies in the particular case of quantile estimation, which will be the case
study in this article, can be visualised in the image from Hall (1992). Note that if the
tail probability estimates are more efficient, provided that the importance distribution is
correctly centered very similar results are expected for the quantile efficiencies.1

Figure A.1: Asymptotic Bootstrap efficiencies for CDF estimation of a normally dis-
tributed statistic

On the other hand, there are methods that belong to the Bootstrap world, id est
they are not available in the general Monte Carlo setting. Namely,

• Smoothing2: the idea is to smooth the frequencies fj in (1.15) through kernel
smoothing to obtain a more accurate distribution of the statistic of interest. In other
words, instead of sampling nj,

∑
j nj = N ;nj ∈ {0, ..., N} times each statistical

1Whereas the book Hall (1992) does not specify how the efficiency curves were yielded, we infer it was
a normal statistic based on the results presented in Davison and Hinkley (1997): indeed these efficiency
values happen in the case of a linear statistic on a sample with an underlying normal distribution.

2Not to be confused with smooth Bootstrap
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unit, now nj are such that
∑

j nj = N ;nj ∈ [0, ... , N), which yields a smoother
and of course, depending the use case, a more accurate (in terms of the actual
distribution F ) Bootstrap distribution of the statistic of interest m.

• A posteriori balance corrections may also be made, so the sampling is made as
in the original distribution (1.15), yet the results are modified based on the ob-
tained empirical distribution for accuracy improvements, see Efron (1990) as well
as Davison and Hinkley (1997). Some cases are named centring methods in Hall
(1992).

• Saddlepoint methods. If at each Bootstrap sample we have to compute a statistic
which is linear on the statistical units belonging to X∗b, denoted by U∗ =

∑N
j ajxj,

the so-called cumulant-generating function can be derived. Then, such function is
used in the Saddlepoint equation, whose result is exploited to get a reliable approx-
imation both for the CDF and the PDF of statistic U . Note that this procedure
avoids completely the Monte Carlo estimate for the Bootstrap integral; for more de-
tails the reader is referred to Davison and Hinkley (1988) and Section 9.5 of Davison
and Hinkley (1997).

• Edgeworth expansions, every statistic is a normal distribution plus a series of
other terms, which is exploited in the estimation of the cumulants of a statistic as in
Saddlepoint methods, seeHall (1992) and Section 9.5 of Davison and Hinkley (1997).

Naturally, both worlds can be merged. An example is Saddlepoint-Importance-Resampling
(see Lee and Wong (2002)), although it is limited in the sense it cannot be applied di-
rectly to nonlinear functionals such as studententised statistics, which makes it in practice
worthless to our seeting (as we will see in Chapter 3, the construction of nonparametric
SCBs relies on nonlinear functionals).
The literature’s variance reduction techniques are summarised in the following image:
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Figure A.2: Variance reduction: Monte Carlo world versus Bootstrap world



71

List of Figures

1.1 General Importance sampling algorithm to compute the quantile of a statistic 8

2.1 Importance resampling scheme for quantile estimation . . . . . . . . . . . . 21
2.2 Importance resampling scheme for quantile estimation through Exponential

Tilting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3 Gaussian process of which samples of different N and p (number of dimen-

sions) are drawn. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.4 A thousand samples of the Boostrap distribution T ∗ (blue) and its lin-

earised version T ∗
L (pink) when using sup-bias . . . . . . . . . . . . . . . . 32

2.5 A thousand samples of the Boostrap distribution T ∗ (blue) and its lin-
earised version T ∗

L (pink) when using sup-t-student . . . . . . . . . . . . 33
2.6 T ∗ (blue) and its tilted version (pink) with sup-bias and Exponential Tilt-

ing. The vertical red, blue and turquoise lines are ξ̂1−α, ˆ̂ξB1,1−α and ˆ̂
ξIR,1−α,

respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.7 T ∗ (blue) and its tilted version (pink) with sup-t-student and Exponential

Tilting.The vertical red, blue and turquoise lines are ξ̂1−α, ˆ̂
ξB1,1−α and

ˆ̂
ξIR,1−α, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.8 T ∗ (blue) and its tilted version (pink) with sup-bias and Loss Tilting.The
vertical red, blue and turquoise lines are ξ̂1−α, ˆ̂

ξB1,1−α and ˆ̂
ξIR,1−α, respec-

tively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.9 T ∗ (blue) and its tilted version (pink) with sup-t-student and Loss Tilt-

ing.The vertical red, blue and turquoise lines are ξ̂1−α, ˆ̂ξB1,1−α and ˆ̂
ξIR,1−α,

respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.10 T ∗ (blue) and its tilted version (pink) with sup-bias under CTM. The ver-

tical red, blue and turquoise lines are ξ̂1−α, ˆ̂ξB1,1−α and ˆ̂
ξIR,1−α, respectively. 37

2.11 T ∗ (blue) and its tilted version (pink) with sup-t-student under CTM. The
vertical red, blue and turquoise lines are ξ̂1−α, ˆ̂

ξB1,1−α and ˆ̂
ξIR,1−α, respec-

tively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.12 Importance resampling probabilities for statistic sup-bias with Exponential

Tilting as a function of the empirical influence values. Horizontal line is N−1 39



72 | List of Figures

2.13 Importance resampling probabilities for statistic sup-t-student with Expo-
nential Tilting as a function of the empirical influence values.. Horizontal
line is N−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.14 Importance resampling probabilities for statistic sup-bias with Loss Tilting
as a function of the empirical influence values. Horizontal line is N−1 . . . 41

2.15 Importance resampling probabilities for statistic sup-t-student with Loss
Tilting as a function of the empirical influence values. Horizontal line is N−1 42

2.16 Importance resampling probabilities for statistic sup-bias with CTM as a
function of the empirical influence values. Horizontal line is N−1 . . . . . . 43

2.17 Importance resampling probabilities for statistic sup-t-student with CTM
as a function of the empirical influence values. Horizontal line is N−1 . . . 44

2.18 Importance resampling weights for sup-t-student with Exponential Tilting.
The index corresponds to the order of the obtained T̂ ∗ at each iteration,
so that the left-most weights correspond to the lowest values of T̂ ∗. . . . . 45

2.19 Importance resampling weights for sup-t-student with Loss Tilting. The
index corresponds to the order of the obtained T̂ ∗ at each iteration, so that
the left-most weights correspond to the lowest values of T̂ ∗. . . . . . . . . 46

2.20 Importance resampling weights for sup-t-student with CTM. The index
corresponds to the order of the obtained T̂ ∗ at each iteration, so that the
left-most weights correspond to the lowest values of T̂ ∗. . . . . . . . . . . . 47

2.21 Bootstrap (blue) and actual sampling distribution (pink) of sup-bias, as
well as their 1− αth quantiles, respectively. . . . . . . . . . . . . . . . . . 48

2.22 Bootstrap (blue) and actual sampling distribution (pink) of sup-t-student,
as well as their 1− αth quantiles, respectively. . . . . . . . . . . . . . . . . 49

2.23 For 1000 different samples, values of the MC estimate of the Bootstrap
estimate’s quantile of order 1 − α for sup-bias under ordinary (blue) and
importance (red) resampling with Exponential Tilting . . . . . . . . . . . . 51

2.24 For 1000 different samples, values of the MC estimate of the Bootstrap
estimate’s quantile of order 1 − α for sup-t-student under ordinary (blue)
and importance (red) resampling with Exponential Tilting . . . . . . . . . 51

2.25 For 1000 different samples, values of the MC estimate of the Bootstrap
estimate’s quantile of order 1 − α for sup-bias under ordinary (blue) and
importance (red) resampling with Loss Tilting . . . . . . . . . . . . . . . . 52

2.26 For 1000 different samples, values of the MC estimate of the Bootstrap
estimate’s quantile of order 1 − α for sup-t-student under ordinary (blue)
and importance (red) resampling with Loss Tilting . . . . . . . . . . . . . 53



| List of Figures 73

2.27 For 1000 different samples, values of the MC estimate of the Bootstrap
estimate’s quantile of order 1 − α for sup-bias under ordinary (blue) and
importance (red) resampling with CTM . . . . . . . . . . . . . . . . . . . . 54

2.28 For 1000 different samples, values of the MC estimate of the Bootstrap
estimate’s quantile of order 1 − α for sup-t-student under ordinary (blue)
and importance (red) resampling with CTM . . . . . . . . . . . . . . . . . 54

2.29 Efficiency curves for statistic sup-bias. Each curve represents a value of p . 55
2.30 Efficiency curves for statistic sup-t-student. Each curve represents a value

of p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.1 Curves of the MC quantile estimate of statistic (1.31) for four different
random seeds, starting from the same sample at the different n and p. . . . 60

A.1 Asymptotic Bootstrap efficiencies for CDF estimation of a normally dis-
tributed statistic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

A.2 Variance reduction: Monte Carlo world versus Bootstrap world . . . . . . . 70





75

Acknowledgements

I would like to thank all the Professors at Politecnico di Milano that along these years
have prepared me to be able to write this work, especially Professor Vantini, who has
patiently listened to my ideas and guided me towards a fruitful work.
I would also like to thank Professor Cuevas and Professor Davison for kindly answering
our questions about their papers written in the last century.
Agradezco especialmente a mi abuela Elena por haberme acompañado, entendiendo mi
pasión por la epistemología en lenguaje matemático: la estadística.





77

Code

All the analyses are implemented using the R Programming Language (R Core Team
(2023)), with packages boot (Canty and Ripley (2022)) and roahd (Ieva et al. (2019)).
Codes are so far not publicly available, but the authors are at disposal for any clarification
on the implementation details.




	Abstract
	Abstract in lingua italiana
	Contents
	Introduction
	Theoretical Background
	The Bootstrap
	Importance Sampling and Importance Resampling
	The Nonparametric Delta Method
	High-dimensional data

	Importance resampling
	Importance Resampling for Bootstrap Quantile Estimation
	Choice of the Importance Resampling Distribution
	Exponential Tilting
	Our first proposal: Loss Tilting
	Our second proposal: Contribution Tilted Mixture (CTM)

	Simulation study
	Comparison of the statistics and their linearised approximations
	Comparison of statistics under Ordinary Resampling and under Importance Resampling
	Plots of the Importance Resampling Probabilities 
	Comparison of the likelihood ratios
	Comparison of the Bootstrap versus the sampling distributions
	Efficiency comparison


	Simultaneous Confidence Bands for Functional Data
	Overview of the Boostrap for building SCBs
	Brief simulation study: the need for variance reduction

	Conclusions and future developments
	Bibliography
	Appendix A: Variance Reduction methods for the Bootstrap
	List of Figures
	Acknowledgements
	Code

