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Abstract 

The issue of damage to infrastructure, including highways and railways, caused by 

ground motion in Lombardy is a problem which cannot be disregarded. Based on the 

ground motion data from European Ground Motion Service (EGMS), the reason of 

this process could be analyzed. The identification of relevant condition factors 

associated with ground motion, and their relationship with the latter, can be 

accomplished through the application of AutoML function in ArcGIS Pro. Through 

the file derived from Machine Learning algorithms, the ground motion risk map of 

infrastructure can be generated. The comparison between the risk map and the 

EGMS data indicates a high level of agreement for areas deemed to be at risk. 

However, analysis of highway ground motion is overestimated in areas where 

ground motion is concentrated. The conclusion illustrates the characteristics of 

infrastructure which is prone to ground motion and it can help designers to 

implement precautionary measures in infrastructure ground motion risk 

management. 

 

Key-words: ground motion, EGMS, machine learning. 
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Abstract in lingua italiana 

La questione dei danni alle infrastrutture, comprese autostrade e ferrovie, causati dal 

movimento del suolo in Lombardia è un problema che non può essere trascurato. 

Sulla base dei dati di movimento del suolo dell'European Ground Motion Service 

(EGMS), è stato possibile approfindire il motivo di questi spostamenti. 

L'identificazione dei fattori di condizione rilevanti associati al movimento del suolo e 

la loro relazione con quest'ultimo può essere realizzata attraverso l'applicazione della 

funzione AutoML in ArcGIS Pro. Attraverso le informazioni derivate dagli algoritmi 

di apprendimento automatico, è possibile generare la mappa del rischio di 

movimento del suolo in prossimità di una infrastruttura. Il confronto tra la mappa 

del rischio ei dati EGMS indica un alto livello di accordo per le aree ritenute a rischio. 

Tuttavia, l'analisi del movimento del suolo in corrispondenza delle autostrade risulta 

essere sovrastimata nelle aree di maggiore movimento del suolo. La tesi illustra le 

caratteristiche delle infrastrutture soggette a movimenti del suolo e può aiutare i 

progettisti a implementare misure precauzionali nella gestione del rischio legato al 

movimento del suolo.  

 

Parole chiave: moto del suolo, EGMS, apprendimento automatico. 
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Introduction 

Ground motion is a term used to describe the movement of the ground surface that 

can result from various natural and man-made events such as earthquakes, volcanic 

eruptions, heavy rain and human activities like construction (Hill et al., 2002; 

Grünthal et al). It is a complex phenomenon that is influenced by a number of factors, 

including geology, topography, soil conditions, and environmental factors (Wang 

and Xie, 2010; Ni and Wu, 2021). By analyzing these factors, the importance can be 

known. Based on importance and characteristics of regions, corresponding measures 

could be taken.  

 

The analysis of ground motion is a complex and multifaceted process, requiring the 

integration of multiple data sources and the application of advanced technologies. In 

recent years, the integration of Geographic Information Systems (GIS) and machine 

learning techniques has shown great promise in this area, providing new and 

innovative methods for data analysis and model building (Karimzadeh et al.,2014;. 

Khosravikiaet al., 2021). More studies highlighted the application of other machine 

learning techniques in ground motion prediction and any machine learning models 

such as Naïve Bayesian, Naïve Bayesian, Logistic model tree and Random Forest are 

used in ground motion analysis (Trugman and Shearer, 2018; Kong et al., 2019; Li 

and Zhang, 2023). They suggested that machine learning approaches to ground 

motion prediction could be a new powerful tool in the next generation of seismic 

hazard assessments. 

 

The ground motion data is provided by European Ground Motion Service (EGMS) 

which provides consistent and reliable information regarding natural and 

anthropogenic ground motion over the Copernicus Participating States and across 

national borders, with millimeter accuracy (Crosetto et al, 2020). EGMS provides 

service in European Union, including the Lombardy region of Italy. The data 

collected by EGMS allows us to study the factors that influence ground motion and 

develop more accurate models for forecasting and mitigating its effects. 
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In this article, the study of ground motion in Lombardy provides valuable insights 

into the factors that contribute to this phenomenon and highlights the importance of 

considering a range of factors in the analysis of ground motion. Seven factors are 

considered in this research including elevation, slope angel, slope aspect, rainfall, 

curvature, solar radiation and normalized difference vegetation index (NDVI). 

Machine learning models such as Decision Tree (DT), Linear regression (LR), Light 

GBM (LG), XGBoost (XG), Random Forest (RF) and Extra Trees (ET) are used in 

analysis and all the processes are based on ArcGIS Pro. The research area mainly 

focuses on infrastructure like highway and railway. With different range of area 

which is near to the infrastructure, the data trained separately. According to the 

result of machine learning, the best model of infrastructure will be selected and we 

will use this model to make an infrastructure risk map in Lombardy. In addition, 

based on the importance of factors, we also need to provide corresponding 

prevention and control strategies for locations with high importance factors. 
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1. Study area 

 

Lombardy, located in northern Italy, is an area of significant seismic activity, with a 

history of ground motion events caused by both natural and man-made processes 

(Brunelli et al., 2023). The analysis of ground motion in Lombardy is therefore of 

great importance, both for improving our understanding of the underlying causes of 

these events and for informing mitigation efforts to reduce the risk to human life and 

property. 

 

The orography of Lombardy is characterised by three distinct belts; a northern 

mountainous belt constituted by the Alpine relief, a central piedmont area of mostly 

alluvial pebbly soils, and the Lombard section of the Padan Plain in the south of the 

region. The most important mountainous area is the Alpine zone, which includes the 

Lepontine and Rhaetian Alps—Piz Bernina (4,020 m), the Bergamo Alps, the Ortler 

Alps and the Adamello massif. It is followed by the Alpine foothills zone Prealpi, the 

main peaks of which are the Grigna Group (2,410 m), Resegone (1,875 m), and 

Presolana (2,521m). 

 

This study focuses on the infrastructure including highway and railway. The 

Lombardy Highway and Railway, is a major transportation located in the northern 

region of Italy. Spanning approximately 160 0km and 2115km, it connects Milan to 

several smaller towns and cities along the shores of Lake Maggiore and Lake Como. 

However, there are some geological risks associated with ground motion of the 

Lombardy infrastructure including landslides, seismic activity and ground 

settlement.  
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Figure 1.1: Lombardy region 

The Lombardy region is prone to landslides, particularly during heavy rains and 

snow melts, which can cause damage to the infrastructure (Antonielli et al.,2019). 

Lombardy is located in a seismically active area, and the highway passes through 

several zones that are at risk of earthquakes (Garbin et al.,2013). This can pose a risk 

to the stability of the infrastructure such as bridges and tunnels. High elevation of 

groundwater and soil instability is an ordinary condition in Lombardy (Gattinoni et 

al.,2017), which can lead to ground settlements (Ikuemonisan et al.,2021). These 

conditions would result in ground motion to the infrastructure, particularly in areas 

where the soil is composed of soft or poorly compacted material. 
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Figure 1.2: The infrastructure in Lombardy 
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2. Methodology 

A final chapter containing the main conclusions of your research/study and possible 

future developments of your work have to be inserted in this chapter. 

2.1 ArcGIS Pro 

ArcGIS Pro is a professional desktop GIS application designed for advanced 

geospatial analysis, visualization, and collaboration. It provides access to 2D and 3D 

mapping, advanced analysis tools, data management, and real-time collaboration 

capabilities. It is a part of the Esri ArcGIS platform and is used by various industries 

for tasks such as spatial analysis, data management, and collaboration. In this study, 

the AutoML function in Toolboxes will be used for machine learning. 

2.2 EGMS data 

The data of ground motion is download from EGMS and we can view and download 

EGMS data via the EGMS Explorer. Because interferometric processing of a time 

series of acquisitions from synthetic aperture radar (SAR) satellites, it is possible to 

detect and measure ground motion phenomena, typically caused by landslides, 

subsidence, earthquakes or volcanic activity, with millimeter-scale precision. This 

enables, for example, monitoring of the stability of slopes, mining areas, buildings 

and infrastructures. In Fig, every point on the map has the ground motion data from 

2016 to 2021 and it includes vertical motion data and horizontal motion data. 



2Methodology 7 

 

 

 

Figure 2.1: Interaction with InSAR data in the EGMS Explorer interface 

Functionality for downloading EGMS products is completely and seamlessly 

integrated into the EGMS Explorersystem (Fig 2.1). We can select the area we are 

interested in. Then, the right toolbar will show the information about download and 

the range of area which will be download is 100km ×100km (Fig 2.2).  

 

Figure 2.2: Overview of the workflow to search and download EGMS products. 
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The document includes vertical motion data and horizontal motion data. In this 

study, we only analyze the vertical ground motion. Two types of ground motion data 

are provided including .csv and .tiff. The .csv document includes latitude, longitude, 

mean velocity, acceleration, seasonality and ground motion data each month. As 

for .tiff data, it can be input in to ArcGIS Pro and its format is raster map. The value 

of each pixel means the millimeter per year of vertical ground motion (Fig 2.3). 

 

Figure 2.3: Vertical ground motion data from EGMS 

 

2.3 Condition factors data  

The ground motion is caused by natural and manmade reason. Its level is controlled 

by geographical and geological factors. Therefore, 7 ground motion condition factors 

are introduced in this research, including elevation, slope angel, slope aspect, rainfall, 

curvature, solar radiation and normalized difference vegetation index (NDVI). Data 

for some conditioning factors in 2020 are selected. The Digital Terrain Model (DTM) 

with a resolution of 20 m × 20 m is downloaded from the Geoportale della Lombardia 

(https://www.geoportale.regione.lombardia.it/), and used to generate the maps of 

https://www.geoportale.regione.lombardia.it/
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topographic factors in ArcGIS (Fig. 4a-e). The NDVI map is provided by the 

vegetation part of the Copernicus Global Land Service (CGLS), which is a component 

of the Land Monitoring Core Service (LMCS) of Copernicus, the European flagship 

program on Earth Observation (https://land.copernicus.eu/global/). The rainfall map 

is received from GISgeography (https://gisgeography.com/gis-weather-data-sources/). 

 

 

 

 

Figure 2.4: The flowchart of ground motion risk research. 

In order to build ground motion risk models, the spatial database is randomly 

divided into training and validation datasets with the ratio 7:3, respectively (Wang et 

al., 2022; Youssef and Pourghasemi, 2021). Although this ratio can be adjusted, it 

shows a better performance for the ML model, and adopted by many researches 

(Chen et al., 2020; Nguyen et al., 2021; Tien Bui et al., 2016). Therefore, we use this 

ratio to divide the training and validation data. The flowchart of thaw settlement risk 

evaluation was shown in Fig 2.4. The thematic map of condition factors and  their 

types, resolutions and sources are shown in Fig 2.5 and Table 2.1. 

 

 

 

https://land.copernicus.eu/global/
https://gisgeography.com/gis-weather-data-sources/
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(a) Elevation 

 

(b) Slope angel 
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(c) Slope aspect 

 

(d) Curvature 
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(e) Areal solar radiation 

 

(f)Rainfall 
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(g)NDVI 

Figure 2.5: Thaw ground motion conditioning factors. 

 

Factors Types Resolutions Sources 

Elevation Continuous 20 m × 20 m Geoportale 

Slope angel Continuous 20 m × 20 m ArcGIS 

Slope aspect Continuous 20 m × 20 m ArcGIS 

Curvature Continuous 20 m × 20 m ArcGIS 

Areal solar radiation Continuous 20 m × 20 m ArcGIS 

Rainfall Continuous 1km× 1km GISgeography 

NDVI Continuous 300m× 300 m CGLS 

Table 2.1: Ground motion conditioning factors and their types, resolutions and 

sources. 
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2.4 Description of condition factors 

The main causes of ground motion in Lombardy are rainfall and earthquakes (Luino 

et al.,2005: Peresan et al.,2009). The mechanism of ground motion is related to the 

intensity and duration of the rainfall, the terrain conditions and the vegetation cover 

(Take et al., 2004; Lourenço et al., 2006; An and Zheng, 2012). In this study, factors 

can be divided into gestation factor and triggering factor. The conditioning factors in 

the study consist of elevation, slope angle, slope aspect, curvature, and the triggering 

factors include areal solar radiation, rainfall, and NDVI. 

 

Figure 2.6: Physical process of ground motion caused by rainfall 

Elevation plays a crucial role in shaping the distribution of ground motion in the 

study area. It causes variations in topography and temperature, which in turn affects 

the thermal stability of permafrost (Qin et al., 2020). Slope angle is closely associated 

with the hydraulic connection within the slope (Ohlmacher, 2007). The slope aspect 

determines the distribution of sunny and shady slopes and rainfall, resulting in 

temperature and vegetation variability on the slope (Beullens et al., 2014; Wu and 

Chau, 2013). Curvature is frequently utilized to reflect the shape of the slope surface, 

which profoundly impacts the evolution of the landscape and changes the direction 

of surface water flow (Li and Wang, 2019; Ohlmacher, 2007). Vegetation coverage 

significantly affects land subsidence (Rahmati et al., 2019). Solar radiation has a close 

relationship with the growth and types of vegetation (Naumburg et al., 2005).  
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2.5 Machine learning models 

The machine learning prat is based on the function AutoML in ArcGIS pro. There is a 

general process or workflow associated with a machine learning (ML) project. A 

typical ML workflow begins with identifying the business problem and formulating 

the problem statement or question. This is followed by a series of steps, including: 

data preparation (or preprocessing), feature engineering, selecting a suitable 

algorithm and model training, hyperparameter tuning, and model evaluation. This is 

an iterative process and the optimal model is often only reached after multiple 

iterations and experiments (Caruana et al.,2004). The work flow is shown in Fig 2.7.  

 

Figure 2.7: AutoML tool workflow 
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2.5.1 Linear regression 

Linear regression is a supervised machine learning method that is used by the Train 

Using AutoML tool and finds a linear equation that best describes the correlation of 

the explanatory variables with the dependent variable. This is achieved by fitting a 

line to the data using least squares. The line tries to minimize the sum of the squares 

of the residuals. The residual is the distance between the line and the actual value of 

the explanatory variable. Finding the line of best fit is an iterative process. 

The following is an example of a resulting linear regression equation: 

𝑦 = 𝑏0 + 𝑏1𝑥1 + 𝑏2𝑥2 + ⋯                                                 (2.1) 

In the example above, y is the dependent variable, and x1, x2, and so on, are the 

explanatory variables. The coefficients (b1, b2, and so on) explain the correlation of 

the explanatory variables with the dependent variable. The sign of the coefficients 

(+/-) designates whether the variable is positively or negatively correlated. b0 is the 

intercept that indicates the value of the dependent variable assuming all explanatory 

variables are 0. 

In Fig 2.8, a linear regression model is described by the regression line y = 153.21 + 

900.39x. The model describes the relationship between the dependent variable, 

Diabetes progression, and the explanatory variable, Serum triglycerides level. A 

positive correlation is shown. This example demonstrates a linear regression model 

with two variables. Although it is not possible to visualize models with more than 

three variables, practically, a model can have any number of variables. 
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Figure 2.8: A linear regression model description. 

A linear regression model helps in predicting the value of a dependent variable, and 

it can also help explain how accurate the prediction is. This is denoted by the R-

squared and p-value values. The R-squared value indicates how much of the 

variation in the dependent variable can be explained by the explanatory variable and 

the p-value explains how reliable that explanation is. The R-squared values range 

between 0 and 1. A value of 0.8 means that the explanatory variable can explain 80 

percent of the variation in the observed values of the dependent variable. A value of 

1 means that a perfect prediction can be made, which is rare in practice. A value of 0 

means the explanatory variable doesn't help at all in predicting the dependent 

variable. Using a p-value, you can test whether the explanatory variable's effect on 

the dependent variable is significantly different from 0. 

2.5.2 Decision tree 

Decision trees is a type of supervised machine learning algorithm that is used by the 

Train Using AutoML tool and classifies or regresses the data using true or false 

answers to certain questions. The resulting structure, when visualized, is in the form 

of a tree with different types of nodes—root, internal, and leaf. The root node is the 

starting place for the decision tree, which then branches to internal nodes and leaf 
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nodes. The leaf nodes are the final classification categories or real values. Decision 

trees are easy to understand and are explainable. 

To construct a decision tree, start by specifying a feature that will become the root 

node. Typically, no single feature can perfectly predict the final classes; this is called 

impurity. Methods such as Gini, entropy, and information gain are used to measure 

this impurity and identify how well a feature classifies the given data. The feature 

with the least impurity is selected as the node at any level. To calculate Gini impurity 

for a feature with numerical values, first sort the data in ascending order and 

calculate the averages of the adjoining values. Then, calculate the Gini impurity at 

each selected average value by arranging the data points based on whether the 

feature values are less than or greater than the selected value and whether that 

selection correctly classifies the data. The Gini impurity is then calculated using the 

equation below, where K is the number of classification categories and p is the 

proportion of instances of those categories. 

 

𝐺𝑖𝑛𝑖 𝐼𝑚𝑝𝑢𝑟𝑖𝑡𝑦 = 1 − ∑ 𝑝𝑖
2𝑘

𝑖=1                                               (2.2) 

 

The weighted average of the Gini impurities for the leaves at each value is calculated. 

The value with the least impurity is selected for that feature. The process is repeated 

for different features to select the feature and value that will become the node. This 

process is iterated at every node at each depth level until all the data is classified. 

Once the tree is constructed, to make a prediction for a data point, go down the tree 

using the conditions at each node to arrive at the final value or classification. When 

using decision trees for regression, the sum of squared residuals or variance is used 

to measure the impurity instead of Gini. The rest of the method follows similar steps. 

2.5.3  Random forest 

A decision tree is overly sensitive to training data. In this method, many decision 

trees are created that are used for prediction. Each tree generates its own prediction 

and is used as part of a majority vote to make final predictions. The final predictions 

are not based on a single tree but on the entire forest of decision trees (Fig 2.9). The 

use of the entire forest helps avoid overfitting the model to the training dataset, as 

does the use of both a random subset of the training data and a random subset of 

explanatory variables in each tree that constitutes the forest (Ho et al., 1995). 
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Figure 2.9: Random Forest concept. 

Bootstrapping is used to create a random subset of the training data. The subset is the 

same size as the original training data since the data is selected randomly with 

repetition. This makes the model less sensitive to the original training data. The 

random selection of explanatory variables reduces the correlation between trees and 

causes less variance. This level of variance makes random forest more effective than 

decision trees. Using bootstrapping and the aggregation of results together is called 

bagging. To test the accuracy of a tree, the subset of data that is not selected (out-of-

bag) is used. The method iterates different settings to find the forest with the least 

out-of-bag error. 

2.5.4 Extra trees 

Extra trees (short for extremely randomized trees) is an ensemble supervised 

machine learning method that uses decision trees and is used by the Train Using 

AutoML tool. This method is similar to random forests but can be faster. 

The extra trees algorithm, like the random forests algorithm, creates many decision 

trees, but the sampling for each tree is random, without replacement. This creates a 
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dataset for each tree with unique samples. A specific number of features, from the 

total set of features, are also selected randomly for each tree. The most important and 

unique characteristic of extra trees is the random selection of a splitting value for a 

feature. Instead of calculating a locally optimal value using Gini or entropy to split 

the data, the algorithm randomly selects a split value. This makes the trees 

diversified and uncorrelated (Geurts et al.,2006). 

2.5.5 XGBoost 

XGBoost is short for extreme gradient boosting. This method is based on decision 

trees and improves on other methods such as random forest and gradient boost. It 

works well with large, complicated datasets by using various optimization methods. 

To fit a training dataset using XGBoost, an initial prediction is made. Residuals are 

computed based on the predicted value and the observed values. A decision tree is 

created with the residuals using a similarity score for residuals. The similarity of the 

data in a leaf is calculated, as well as the gain in similarity in the subsequent split. 

The gains are compared to determine a feature and a threshold for a node. The 

output value for each leaf is also calculated using the residuals. For classification, the 

values are typically calculated using the log of odds and probabilities. The output of 

the tree becomes the new residual for the dataset, which is used to construct another 

tree. This process is repeated until the residuals stop reducing or for a specified 

number of times. Each subsequent tree learns from the previous trees and is not 

assigned equal weight, unlike how Random Forest works. 

To use this model for prediction, the output from each tree multiplied by a learning 

rate is added to the initial prediction to arrive at a final value or classification. 

XGBoost uses the following parameters and methods to optimize the algorithm and 

provide better results and performance: 

Regularization—A Regularization parameter (lambda) is used while calculating the 

similarity scores to reduce the sensitivity to individual data and avoid overfitting. 

Pruning—A Tree Complexity Parameter (gamma) is selected to compare the gains. 

The branch where the gain is smaller than the gamma value is removed. This 

prevents overfitting by trimming unnecessary branches and reducing the depth of 

the trees. 

Weighted quantile sketch—Instead of testing every possible value as the threshold 

for splitting the data, only weighted quantiles are used. The selection of quantiles is 

done using a sketch algorithm, which estimates a distribution on multiple systems 

over a network. 
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Parallel Learning—This method divides the data into blocks that can be used in 

parallel to create the trees or for other computations. 

Sparsity-aware split finding—XGBoost handles sparsity in data by trying both 

directions in a split and finding a default direction by calculating the gain. 

Cache-aware Access—This method uses the cache memory of the system to calculate 

the similarity scores and output values. The cache memory is a faster access memory 

compared to the main memory and improves the overall performance of the model. 

Blocks for Out-of-core Computation—This method works with large datasets that 

cannot fit in the cache or the main memory and that must be kept in hard drives. The 

dataset is divided into blocks and compressed. Uncompressing the data in the main 

memory is faster than reading from the hard drive. Another technique called 

sharding is used when the data must be kept on multiple hard drives. 

2.5.6 LightGBM 

LightGBM is a gradient boosting ensemble method that is used by the Train Using 

AutoML tool and is based on decision trees. As with other decision tree-based 

methods, LightGBM can be used for both classification and regression. LightGBM is 

optimized for high performance with distributed systems. 

LightGBM creates decision trees that grow leaf wise, which means that given a 

condition, only a single leaf is split, depending on the gain. Leaf-wise trees can 

sometimes overfit especially with smaller datasets. Limiting the tree depth can help 

to avoid overfitting. 

LightGBM uses a histogram-based method in which data is bucketed into bins using 

a histogram of the distribution. The bins, instead of each data point, are used to 

iterate, calculate the gain, and split the data. This method can be optimized for a 

sparse dataset as well. Another characteristic of LightGBM is exclusive feature 

bundling in which the algorithm combines exclusive features to reduce 

dimensionality, making it faster and more efficient. 

Gradient-based One Side Sampling (GOSS) is used for sampling the dataset in 

LightGBM. GOSS weights data points with larger gradients higher while calculating 

the gain. In this method, instances that have not been used well for training 

contribute more. Data points with smaller gradients are randomly removed and 

some are retained to maintain accuracy. This method is typically better than random 

sampling given the same sampling rate. 
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3. Results 

3.1 Multicollinearity analysis 

In the context of studying ground motion, multicollinearity analysis serves as a 

crucial step in data preprocessing. When a strong relationship exists among the 

conditioning factors, it is advised to avoid using Decision Tree and Extra Tree 

models. To assess the relationship between the factors, this study employs the use of 

tolerance (TOL) and variance inflation factor (VIF), which are reciprocals and are 

commonly used in this type of analysis. A TOL value greater than 0.1 typically 

indicates independence of the factor under examination from the other factors (Chen 

et al.,2019). The results of the multicollinearity analysis, presented in Table 3.1, 

demonstrate that the selected factors are appropriate and that the Decision Tree and 

Extra Tree models are suitable for this study. 

𝑇𝑂𝐿 =
1

𝑉𝐼𝐹
                                                              (3.1) 

𝑉𝐼𝐹 =
1

1−𝑅𝐽
2                                                             (3.2) 

where 𝑅𝐽
2  is the determination coefficient for regression analysis of other 

conditioning factors. 

Factors highway railway 

TOL VIF TOL VIF 

Elevation 0.281 3.556 0.272 3.678 

Slope 0.645 1.551 0.311 3.219 

Aspect 0.994 1.006 0.993 1.008 

Curvature 0.983 1.017 0.997 1.003 

Areal solar radiation 0.651 1.537 0.744 1.344 

Rainfall 0.293 3.417 0.570 1.754 

NDVI 0.978 1.023 0.899 1.113 

Table 3.1: Multicollinearity analysis results. 
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3.2 Correlation analysis 

The study employed the frequency ratio (FR) method to investigate the relationship 

between conditioning factors and ground motion. The FR method involves 

reclassifying the conditioning factors and determining the intervals that promote the 

occurrence of ground motion. FR values less than 1 indicate that the corresponding 

conditioning factor is not conducive to ground motion, while values equal to 1 

indicate a critical relationship between the factors. FR values greater than 1 imply 

that the conditioning factor is favorable to the occurrence of ground motion (Aditian 

et al., 2018). 

𝐹𝑅 =
𝑆′/𝑆

𝐶′/𝐶
                                                                     (3.3) 

where 𝑆′ is the number of ground motion in a factor’s class, S is the total number of 

ground motion, 𝐶′ is the number of pixels in a factor’s class and C is the total number 

of pixels in the study area. 

In the highway study, the ground motion occurs in the elevation range of 240.3m to 

317.6m with an FR value of 2.030 (Fig 3.1a). The area with a slope lower from 10 to 20 

is closely related to ground motion. Ground motion is concentrated in the area with a 

curvature from -1 to 1 (Fig 3.1e), but it do not show the tendency to curvature. This 

may be because highways are generally located in the plains and the aspect also does 

not show an obvious contribution to ground motion (Fig 3.1b and Fig 3.1c). Higher 

areal solar radiation is favorable to the occurrence of ground motion, with an FR 

value of 1.527 in the range of 0.6 to 0.8 (Fig 3.1d). Areas with less precipitation are 

more prone to ground motion. NDVI in the range of 0.2 to 0.4 shows the highest FR 

value of 1.372 (Fig 3.1g). This indicates that ground motions are mainly concentrated 

in areas with low vegetation coverage. As for rainfall, the higher value will promote 

the ground motion (Fig 3.1f). 
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(c) Slope aspect 

 

(d) Areal solar radiation 
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(e) Curvature 
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(g) NDVI 

Figure 3.1: Correlation analysis of highway  

In the railway study, ground motion easily occurs at elevations below 317.6m (Fig 

3.1a), and areas with a slope angel less than 10 degrees are more likely to experience 

ground motion (Fig 3.1b). Different with highway research, the higher curvature of 

the land is also associated with ground motion about railway (Fig 3.1e). The aspect 

does not seem to have a significant effect on the occurrence of ground motion(Fig 

3.1c). However, areal solar radiation is closely associated with ground motion in the 

range of 0.2 to 0.4 (Fig 3.1d). Areas with higher levels of precipitation are also more 

prone to ground motion (Fig 3.1f). Because areas with a higher NDVI value, 

particularly in the range of 0.8 to 1.0, tend to have higher frequency ratio values and 

are more likely to experience ground motion (Fig 3.1g). This suggests that ground 

motion tends to occur more frequently in areas with less vegetation coverage. 
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(c) Slope aspect 

 

(d) Areal solar radiation 

1.497 

1.450 

1.153 

0.506 

0.850 

0.523 

0.898 

1.783 

0.000 0.500 1.000 1.500 2.000

0~45

45~90

90~135

135~180

180~225

225~270

270~315

315~360

FR value

Sl
o

p
e 

as
p

ec
t(
°)

1.289 

1.586 

0.359 

0.243 

0.000 0.200 0.400 0.600 0.800 1.000 1.200 1.400 1.600 1.800

0~0.2

0.2~0.4

0.4~0.6

0.6~0.8

FR value

A
re

al
 s

o
la

r 
ra

d
ia

ti
o

n
(M

W
∙H
/m

m
2 )



30 3Results 

 

 

 

(e) Curvature 

 

(f) Rainfall 
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(g) NDVI 

Figure 3.2: Correlation analysis of railway 

 

3.3 Evaluation of machine learning models 

In machine learning, the ROC curve (receiver operating characteristic curve) is a 

graph showing the performance of a classification model at all classification 

thresholds. To compute the points in an ROC curve, we could evaluate a logistic 

regression model many times with different classification thresholds, but this would 

be inefficient. Fortunately, there's an efficient, sorting-based algorithm that can 

provide this information for us, called AUC. AUC stands for "Area under the ROC 

Curve." In general, an AUC of 0.5 suggests no discrimination, 0.7 to 0.8 is considered 
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outstanding. Theoretically, the ROC curve and AUC based on validation dataset is 

known as the predictive rate curve (Hong et al., 2015; Tacconi Stefanelli et al., 2020). 
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(a) DecisionTree 

 

 

(b) LinearRegression 
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(c) LightGBM 

 

 

(d) Xgboost 
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(e) RandomForest 

 

 

(f) ExtraTrees 

Figure 3.3: ROC curves of highway study 
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In highway study, the ROC of DecisionTree and LinearRegression do not show an 

obvious curve, which means the performance of these two models are not suitable 

for this research (Fig 3.3). Similarly, in the railway study, the ROC curve also shows 

this condition (Fig 3.4). 

 

(a) DecisionTree 

 

(b) LinearRegression 
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(c) LightGBM 

 

 

(d) Xgboost 
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(e) RandomForest 

 

 

(f) ExtraTrees 

Figure 3.4: ROC curves of railway study 

 



38 3Results 

 

 

Models highway railway 

1DecisionTree 0.50 0.73 

2LinearRegression 0.60 0.76 

3LightGBM 0.70 0.72 

4Xgboost 0.78 0.80 

5RandomForest 0.77 0.78 

6ExtraTrees 0.73 0.78 

Table 3.2: AUC value of different machine learning models 

Based on the ROC curves and AUC value in Fig 3.2, it shows that Xgboost, and 

RandomForest exhibit a higher AUC value compared to the other models. In the 

highway study, the AUC value of LightGBM, Xgboost, RandomForest and 

ExtraTrees are found to be over 0.7, which indicates that these models perform well 

in terms of accuracy. The AUC value of Xgboost for these models exceeded 0.8 in the 

railway study, further emphasizing their suitability for this task. In contrast, the AUC 

values of other models were found to be less than 0.8 in the railway study. In terms 

of performance comparison between the six models, it was observed that 

RandomForest and Xgboost exhibit better results. The performance of RandomForest 

and ExtraTrees are slightly inferior compared to the other two models. This implies 

that these two models are more suitable for ground motion prediction. 

A confusion matrix is a table that is used to evaluate the performance of a machine 

learning or classification model by comparing the predicted values of the model with 

the actual values. It is a matrix of true positives (TP), false positives (FP), true 

negatives (TN), and false negatives (FN) that are calculated based on the 

classification results. 

In a binary classification problem, the confusion matrix has two rows and two 

columns, as follows in Table 3.3: 
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 Predicted Positive Predicted Negative 

Actual Positive  True Positive (TP) False Negative (FN) 

Actual Negative False Positive (FP) True Negative (TN) 

Table 3.3: Element in confusion matrix 

By analyzing the values in the confusion matrix, we can calculate various 

performance metrics of the model, such as accuracy, precision, recall, F1 score, and 

others. These metrics provide insight into how well the model is performing and can 

help in fine-tuning the model to achieve better results. 

 

(a) DecisionTree 
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(b) LinearRegression 

 

(c) LightGBM 
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(d) Xgboost 

 

(e) RandomForest 
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(f) ExtraTrees 

 

(g) DecisionTree 
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(h) LinearRegression 

 

(i) LightGBM 
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(j) Xgboost 

 

(k) RandomForest 
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(l) ExtraTrees 

Figure 3.5: Confusion matrix of railway study: (a) (b) (c) (d) (e) (f). Confusion matrix of 

railway study: (g) (h) (i) (j) (k) (l). 

Based on Fig 3.5, it can be concluded that the models’ performance is good. This 

method is suitable to this study. The accuracy metric provides the percentage of 

correctly classified instances out of the total number of instances, indicating that the 

model has a high level of predictive power. This result suggests that the model can 

effectively classify instances into their correct categories, as measured by the true 

positive and true negative values in the confusion matrix. However, it is important to 

consider other performance metrics such as precision, recall, and F1 score to gain a 

more comprehensive understanding of the model's performance and its ability to 

generalize to new data. Overall, a high accuracy score is a positive sign of the 

model's effectiveness and its potential value in practical applications. 

Spearman correlation is a statistical measure used to evaluate the strength and 

direction of the monotonic relationship between two variables. It is often used to 

compare the performance of machine learning models by calculating the correlation 

between the predicted values and the actual values. A higher correlation indicates a 

better fit between the predicted and actual values and thus a more accurate model. 

The Spearman Correlation of Models of six machine learning is shown in Fig 3.6. 
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(a)highway 
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(b)railway 

Figure 3.6: Spearman Correlation of Models 

In Spearman Correlation of Models, it is obvious that the results of last three models 

(Xgboost, RandomForest and ExtraTrees) are more consistent with each other. The 

ensemble model which is automatically generated by the function Auto ML also 

select these three models as component. For highway study, the ensemble model 

includes Xgboost and RandomForest with weight 5 and 1 resprecively. As for 

railway study, the ensemble model includes Xgboost and RandomForest with weight 

2 and 1 resprecively. The ensemble model will be used to make risk map. 
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3.4 Factor analysis in machine learning 

Importance analysis is a crucial step in the interpretation and understanding of 

machine learning results. It involves identifying the relative importance of each 

feature used in a predictive model, in terms of its contribution to the overall accuracy 

of the model. By analyzing feature importance, we can determine which features are 

the most relevant for predicting the target variable, and gain insights into the 

underlying relationships and patterns in the data. This can be especially useful for 

understanding complex models and for identifying areas where the model may be 

overfitting or underperforming. There are various methods for calculating feature 

importance, ranging from simple methods like correlation analysis to more complex 

techniques like permutation feature importance and SHAP (Shapley Additive 

Explanations) values. Importance analysis is essential for ensuring that machine 

learning models are reliable and transparent. The Fig 3.7 is the importance of factors 

about the relationship between ground motion and infrastructure. 

 

(a)highway importance 
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(b) railway importance 

 Figure 3.7: Features Importance 

By Features Importance, it is obvious that precipitation is the main factor affecting 

ground motion whether for railways or highways. For the highway, elevation will 

influence ground motion more, but for railway, areal solar radiation is the second 

reason. Meanwhile, NDVI also cannot be ignored in ground motion. As for slope, it 

influences more highway than railway. Because the structure of highway and 

railway is different. The railways always build on the plain area and in the mountain 

area, the bridge will be built for railway. 

Permutation-based Importance and SHAP Importance are two popular techniques 

used for feature importance analysis in machine learning. Permutation-based 

Importance involves shuffling the values of each feature in the dataset and 

measuring the effect on the model's performance. The higher the drop in 

performance after shuffling a feature, the more important that feature is considered 
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to be. On the other hand, SHAP (SHapley Additive exPlanations) Importance is a 

game theory-based method that measures the contribution of each feature to the 

model's prediction for a particular data point. It computes the average impact of each 

feature across all possible combinations of features and assigns a score to each 

feature based on its contribution to the model's output. Both techniques are useful for 

identifying the most important features in a machine learning model and can help in 

feature selection and model optimization. 

 

Importance type Permutation-based Importance SHAP Importance 

Range(km) highway railway highway railway 

DecisionTree elevation rainfall rainfall rainfall 

LinearRegression elevation solar radiation rainfall solar radiation 

LightGBM elevation rainfall rainfall NDVI 

Xgboost rainfall rainfall rainfall solar radiation 

RandomForest rainfall rainfall rainfall rainfall 

ExtraTrees rainfall rainfall rainfall rainfall 

Table 3.4: The main reason of ground motion 

 

3.5 Ground motion on the infrastructure and nearby area 

In the above part, we discussed the factors that cause ground motion on 

infrastructure. The ground motion tends to be concentrated in a certain area. 

Therefore, in order to further explore the relationship between conditional factors 

and ground motion, the ground motion happen on the infrastructure and its nearby 

area should be analyzed. In this part, we set different range with 1km, 3km, 5km and 

10km to analyzes difference between these two objects about ground motion, and 

machine learning method also is used in this part. 
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(a)highway analysis in 1km range 

 

(b)highway analysis in 3km range 
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(c)highway analysis in 5km range 

 

(d)railway analysis in 10km range 
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(e)railway analysis in 1km range 

 

 

(f)railway analysis in 3km range 
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(g)railway analysis in 5km range 

 

(h)railway analysis in 10km range 

Figure 3.8: ROC curves and AUC value  

In Fig 3.8, with the increasement of range, the ROC curves are more tend to the left 

and up part, which means that there are more data are used to training and 

validation. This result is corresponded that the performance of learners can benefit 

significantly from much larger training sets (Banko and brill, 2001). Meanwhile, the 

result of AUC also certificates it in Fig 3.4 and Table 3.2. 
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Range 1km 3km 5km 10km 

1DecisionTree 0.58 0.63 0.62 0.61 

2LinearRegression 0.58 0.65 0.62 0.63 

3LightGBM 0.68 0.72 0.69 0.79 

4Xgboost 0.65 0.72 0.73 0.80 

5RandomForest 0.61 0.70 0.66 0.73 

6ExtraTrees 0.62 0.69 0.65 0.65 

Table 3.4: AUC in machine learning of railway  

Range 1km 3km 5km 10km 

1DecisionTree 0.52 0.44 0.7 0.53 

2LinearRegression 0.52 0.51 0.57 0.64 

3LightGBM 0.70 0.73 0.90 0.89 

4Xgboost 0.58 0.74 0.88 0.85 

5RandomForest 0.58 0.70 0.76 0.81 

6ExtraTrees 0.62 0.73 0.76 0.77 

Table 3.5: AUC in machine learning of highway 

As for the permutation Permutation-based Importance and SHAP Importance of 

ground motion in infrastructure and nearby area, we can know the main reason 

which would cause ground motion in certain area. The following table are 

importance of highway and railway (Table 3.6 and Table 3.7). 

Importance type Permutation-based Importance SHAP Importance 

Range(km) 1 3 5 10 1 3 5 10 

DecisionTree rainfall elevation elevation slope elevation elevation elevation elevation 

Linear elevation slope slope slope elevation elevation slope elevation 

LightGBM elevation elevation elevation elevation elevation elevation elevation elevation 

Xgboost NDVI elevation elevation elevation slope elevation elevation elevation 

RandomForest NDVI elevation elevation elevation rainfall elevation elevation elevation 

ExtraTrees NDVI elevation elevation rainfall elevation NDVI elevation rainfall 

Table 3.6: Main reason in highway study 
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Importance type Permutation-based Importance SHAP Importance 

Range(km) 1 3 5 10 1 3 5 10 

DecisionTree rainfall slope elevation elevation rainfall elevation elevation elevation 

Linear curvature elevation elevation elevation elevation elevation elevation elevation 

LightGBM rainfall elevation elevation rainfall rainfall elevation elevation elevation 

Xgboost NDVI solar radiation rainfall rainfall solar radiation elevation elevation elevation 

RandomForest NDVI elevation elevation elevation elevation elevation elevation elevation 

ExtraTrees NDVI rainfall rainfall slope rainfall rainfall rainfall slope 

Table 3.7: Main reason in railway study 

By the result of importance analysis, in highway study, there are four factors 

(elevation, NDVI, rainfall and slope), which is the main reason in each machine 

learning model. It is obvious that elevation appear the most times, which means in 

the high elevation area, the ground motion prefers to happen in the infrastructure. 

As for railway study, the factors are elevation, slope, NDVI, rainfall and areal solar 

radiation. Different from the highway study, which is only concentrate on elevation, 

the frequency of elevation and rainfall is similar.  Therefore, for the railway, we need 

to give more attention on the area which have high elevation and more rainfall. 

3.6 Risk maps 

After above process, the next step is to generate the ground motion risk map. Risk 

mapping is an important part of ground motion analysis that helps to identify and 

assess the potential risks associated with ground motion events, such as earthquakes 

or landslides. The goal of risk mapping is to provide a visual representation of the 

potential hazards, vulnerabilities, and exposure to various types of ground motion 

events in a given area. Risk mapping can help decision-makers and stakeholders to 

understand the potential consequences of ground motion events and develop 

appropriate mitigation and preparedness measures to reduce the risks. In this study, 

the risk maps are based on the result of ensemble models in machine learning (Fig 

3.9). 
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(a) Highway prediction risk map 

 

(b) Railway prediction risk map 

Figure 3.9: Prediction risk map from ensemble machine learning mode
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4. Discussion 

4.1 Rationality of conditioning factor selection 

In ground motion study, there seven condition factors are introduced including 

elevation, slope angel, slope aspect, curvature, areal solar radiation, rainfall and 

NDVI. At first, for the study which is related to ground motion on highways and 

railways, the FR method is used to analyze the relationship. In this part, for the 

highway, the main distribution areas of ground motion are characterized by 

elevation (240.3-317.6m), slope angle (10-20 ° ), slope aspect (0-45 ° ), areal solar 

radiation (0.6-0.8 MW⋅H/m2), curvature (-1-0°), rainfall (905-915 mm), NDVI (0.2-0.4). 

The FR value of ground motion of these conditioning factors (classes) are 2.030,1.832, 

1.666, 1.527, 1.071, 0.817 and 1.372, respectively. Thus, a more concise conclusion can 

be drawn from the data analysis, that is, regions with elevation (240.3-317.6 m), slope 

angle (10-20°) and slope aspect (0-45°). 

As for railway study, the main distribution areas of ground motion are characterized 

by elevation (8.4-85.7m), slope angle (<10° ), slope aspect (315-360°), areal solar 

radiation (0.2-0.4MW⋅H/m2), curvature (2-4°), rainfall (875-885 mm), NDVI (0.8-1). 

The FR value of ground motion of these conditioning factors (classes) are 1.751,1.049, 

1.783, 1.586, 1.682, 3.917 and 1.902, respectively. Based on the results of the data 

analysis, it can be inferred that areas exhibiting a slope aspect within the range of 

315-360°, rainfall between 875-885 mm, and NDVI values in the range of 0.8-1, are 

more likely to be associated with ground motion. It is worth noting that the FR value 

is more significant than other condition factors for highway in FR analysis. 

Then the machine learning method is used in this study. For the highway, rainfall, 

elevation and NDVI are the most closely related to the ground motion. As for railway, 

these three condition factors are rainfall, areal solar radiation and NDVI. Compared 

with FR method, the importance of condition factors of highway is different. 

However, in railway study, the rainfall is the most important condition factor for 

these two methods. Meanwhile, the importance of NDVI is also reflected in both 

methods. In Permutation-based Importance and SHAP Importance, elevation, 
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rainfall and areal solar radiation appear in highway research, and NDVI, rainfall and 

areal solar radiation are closely related to ground motion of railway. 

According to the importance analysis of the ground motion on the infrastructure and 

its nearby area, the location with higher elevation is easily to happen ground motion 

on the highway. For the railway, the area with more rainfall and higher elevation has 

higher chance of ground motion on the railway. 

In a word, for the highway and railway, we need to respond accordingly in the 

location with specific features. For the ground motion location, which is on the high 

elevation area or with more rainfall, the highway and railway are more prone to 

ground motion compared with its nearby area. 

4.2 Rationality of model selection 

Model selection played an important role in this research. However, there are no 

widely accepted criterions to guide model selection. As this study is the first to 

evaluate ground motion risk using ML models, and there is a lack of similar studies 

which can be referred in model selection. Therefore, six well-performed and typical 

ML models are adopted to conduct this study, i.e. DecisionTree, Linear, LightGBM, 

Xgboost, RandomForest and ExtraTree models. 

As shown in Table 3.2, in terms of highway, Xgboost, RandomForest and ExtraTree 

show a better performance with AUC value 0.78, 0.77 and 0.73. Conversely, the value 

of DecisionTree, Linear, LightGBM is 0.50, 0.60 and 0.70. Similarly, the better 

machine learning model of railway are also Xgboost, RandomForest and ExtraTree 

with 0.80, 0.78 and 0.78 AUC value. In the Table 3.4 and Table 3.5, in the study of 

infrastructure and its nearby area, especially in a large range, the Xgboost also 

demonstrate a superior performance with 0.80 and 0.85 of AUC value for highway 

and railway respectively. 

Despite achieving reasonably high accuracies, it is important to acknowledge that the 

models utilized in this study were conventional. Future research efforts should focus 

on the following areas: (1) employing advanced models, such as state-of-the-art 

hybrid machine learning and deep learning models; (2) predicting the spatial 

distribution of ground motion risk under anticipated climate scenarios and 

geological phenomena, such as earthquakes; and (3) utilizing optimization 

algorithms to refine the model parameters, thereby enhancing the overall predictive 

accuracy. 
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4.3 Analysis of ground motion risk maps and real case 

In this part, we compare the prediction result and the real ground motion condition. 

The result of estimation can be divided into two types, 1 and -1, which means 

overestimated point and underestimated point. Overestimated point means that the 

point without ground is the ground motion point in the prediction. Conversely, 

underestimated point is the point with ground motion but not be predicted. The Fig 

4.1 is the distribution of estimated point. 

 

(a)Distribution of estimated point of highway 

 

(b) Distribution of estimated point of railway 

Figure 4.1: Distribution of estimated point 
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According to the Fig 4.1, the accuracy of railway forecasting is extremely high. The 

wrong predicted point is only 5. Compared with the number of total points of 

railway, the number of mispredictions is almost negligible. However, the estimation 

result of highway is worthy of discussion. The overestimated points are nearly 120, 

but the number of underestimated points is less than 10. The reason why the 

overestimated point is much more than underestimated point need to be discussed. 

 

 

Figure 4.2: The location of overestimated point 

In the Fig 4.2, we can know the overestimated points are near to the real ground 

motion point. Especially, in the select area in Fig 4.2, this concentration is more 

significant. By analyzing the distribution of features of this typical position, the main 

reason rainfall is almost unchanged in these points (Fig 4.3).  

      

Figure 4.3: Distribution of rainfall 
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In the Fig 4.4, the red points are overestimated points and the green points are 

ground motion points. It is obvious that two types of points are very near, which 

means the difference of features of points are similar. So, in machine learning models, 

for the areas where ground movement is relatively concentrated, ground motion on 

the highway will be overestimated. In terms of this condition, more accurate and 

closely related feature should be input as training dataset, so as to provide more 

judgment methods to improve the accuracy of machine learning. 

 

Figure 4.4: Overestimated points and ground motion points
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5. Conclusion 

In this study, we presented a ground motion risk evaluation for the Lombardy region 

using six machine learning models, i.e. DecisionTree, Linear, LightGBM, Xgboost, 

RandomForest and ExtraTree models, and the following conclusions can be drawn 

from this study: 

(1) The correlation analysis between ground motion and condition factors shows that 

highway with elevation (240.3m-317.6m), NDVI (0.2-0.4) and rainfall (905m-915 mm) 

are the main distribution areas of ground motion. As for railway, the main reasons 

are rainfall (875mm-885mm), NDVI (0.8-1.0) and areal solar radiation (0.2-0.4). 

(2) The results of the machine learning analysis demonstrate that, in the context of 

highway analysis, the Xgboost model exhibits the highest level of performance as 

measured by the AUC metric, with a value of 0.78. The RandomForest model follows 

closely behind with an AUC value of 0.77, while the ExtraTrees model has an AUC of 

0.73. Through the evaluation of the models, the elevation, rainfall, and NDVI factors 

are found to have the greatest impact on ground motion. In contrast, the railway 

study reveals that the Xgboost model performed best with an AUC value of 0.80, 

followed by the ExtraTrees (0.78) and RandomForest (0.78) models. The most 

significant factors contributing to ground motion are identified as elevation, rainfall, 

and areal solar radiation. 

(3) In the ground motion area, which has higher elevation, highway and railway are 

easy to happen ground motion. Compared with highway, ground motion of railway 

is also prone to occur in areas with a lot of precipitation. 

(4) As for the railway, machine learning model provide an accurate ground motion 

risk map. However, in the prediction of highway ground motion, the risk in areas of 

concentrated ground motion is overestimated. 

(5) It is important to note that this study serves as a preliminary examination into the 

relationship between factors and ground motion. While it has provided valuable 

insights, there are several limitations that must be addressed in future research, 

because the factors causing ground motion are complex and numerous. Further 

investigations may benefit from incorporating additional relevant factors into the 
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models. Additionally, future studies should also focus on exploring the potential 

adverse impacts of ground motion on infrastructure availability. 
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