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Abstract

Starting from the seminal contribution given by JeanJean in [18] in the local context, we
prove existence of ground states for the nonlinear eigenvalue system

(−∆)ku− g(u) = λu in RN , N ≥ 2, k ∈ (0, 1), λ ∈ R,

having prescribed mass ∫
RN

|u|2 = c2.

In the equation, (−∆)k is the fractional Laplacian in RN of order k ∈ (0, 1), which is
the prototype of the integrodifferential operators of order 2k and is a natural nonlocal
analogue of the standard Laplacian.

This work handles L2-supercritical nonlinearities for g and looks for critical points for the
energy functional constrained to the L2 sphere

Sc :=

{
u ∈ Hk(RN),

∫
RN

|u|2 = c2
}
,

relying on a version of the min-max method valid on curved geometries. As far as we
know, the strategy we adopt was never explored in a nonlocal context.

Keywords: fractional Laplacian, fractional Sobolev Spaces, ground state, L2-supercritical,
min-max approach, nonlinear eigenvalue system, Palais-Smale sequence, prescribed mass.





Abstract in lingua italiana

A partire dal contributo fornito da JeanJean in [18] in contesto locale, dimostriamo
l’esistenza di soluzioni ad energia minima per il sistema agli autovalori non lineare

(−∆)ku− g(u) = λu in RN , N ≥ 2, k ∈ (0, 1), λ ∈ R,

con massa fissata ∫
RN

|u|2 = c2.

Nell’equazione, (−∆)k rappresenta il Laplaciano frazionario in RN di ordine k ∈ (0, 1),
che è il prototipo degli operatori integrodifferenziali di ordine 2k e costituisce l’estensione
naturale in contesto nonlocale del Laplaciano standard.

In questo lavoro si affrontano nonlinearità L2-supercritiche per g e si ricercano punti critici
per il funzionale energia vincolato alla sfera L2

Sc :=

{
u ∈ Hk(RN),

∫
RN

|u|2 = c2
}
,

basandosi su una versione del metodo min-max valida su geometrie curve. Per quanto ne
sappiamo, la strategia che proponiamo non è mai stata adottata in contesto non locale.

Parole chiave: energia minima, Laplaciano frazionario, L2-supercritico, massa fissata,
metodo di min-max, sequenza di Palis-Smale, sistema agli autovalori, spazi di Sobolev
frazionari.
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Symbol and formalism

Throughout this paragraph we are going to fix some notations and formalisms.

If N denotes the space dimension, we can set the multi-index α = (α1, ..., αN), |α| =
α1 + ...+ αN and refer to the usual notations for derivatives of order α

∂αu =
∂|α|u

(∂x1)α1 ... (∂xN)αN
.

Then, we can create the following countable family of semi-norms

pn(u) = sup
|α|≤n

sup
x∈RN

(1 + |x|2)
n
2 |∂αu(x)|, n ∈ N ∪ {0}. (1)

According to these notations, we define formally the space S(RN), namely the space of
rapidly decaying function as

S(RN) :=
{
u ∈ C∞(RN) : pn(u) <∞∀n ∈ N ∪ {0}

}
.

Moreover, denoting by supp(u) the support of u, we will also use the following space:

D(RN) :=
{
u ∈ C∞(RN), supp(u) is compact

}
.

We will use Fu and F−1u to denote, respectively, the Fourier transform of u and its
inverse.

Fu(ξ) :=
∫
RN

u(x)e−ix·ξ dx

F−1u(x) :=

∫
RN

Fu(ξ) eix·ξ dξ.

For what concerns norms, we use | · | to indicate the euclidean norm (in dimension one it
reduces to the modulus), while in Lp(Ω) we write

∥u∥p =
∫
Ω

|u(x)|p dx.



2 | Symbol and formalism

We will specify the domain through the notation ∥u∥Lp(Ω) just in case the domain of
integration is not immediate.
In L2(Ω), the scalar product will be denoted by

⟨u, v⟩2 :=
∫
Ω

u(x)v(x) dx.

Moreover, when dealing with the dual space of the fractional Sobolev space Hk(RN),
k ∈ (0, 1) we are going to denote the norm on this space by ∥ · ∥∗.
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1| The fractional Sobolev spaces

and the fractional Laplacian

In this first part of the thesis, we are going to analyze some basic properties concern-
ing the fractional Laplacian operator and the fractional Sobolev spaces. With regard to
the fractional Laplacian we are going to offer two different definitions, the first via the
Cauchy principal value, while the second via the Fourier transform, shedding light on its
intrinsic connection with the fractional Sobolev spaces. Then, the main consequences of
the nonlocal nature of this operator will be inspected, paying particular attention to the
fractional heat equation (together with its probabilistic interpretation) and to the nonlo-
cal formulation of the maximum principles and of the Harnack inequality. Finally, aiming
at providing concreteness to the whole chapter, we conclude offering a practical example
of k-harmonic function in one dimension, k ∈ (0, 1).

1.1. Introduction

This paragraph is intended to introduce the reader to the fractional Sobolev spaces and
to the fractional Laplacian operator. In particular, we are going to expose the principal
analytical features of both these topics, offering formal and well-posed definitions as usu-
ally offered in literature. For a more in-depth discussion on this topic, we refer to [6], [7],
[9], [13] and [16].

Let Ω be an open set in RN , k real in (0, 1) and p integer in [1,+∞). We define the
fractional Sobolev space W k,p(Ω) as follows:

W k,p(Ω) :=

{
u ∈ Lp(Ω) :

|u(x)− u(y)|
|x− y|

N
p
+k

∈ Lp(Ω× Ω)

}
. (1.1)
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We endow this space with the following norm

∥u∥Wk,p(Ω) :=

(∫
Ω

|u(x)|p dx+
∫
Ω

∫
Ω

|u(x)− u(y)|p

|x− y|N+kp
dxdy

) 1
p

,

where the term

⌊u⌋k,p :=
(∫

Ω

∫
Ω

|u(x)− u(y)|p

|x− y|N+kp
dxdy

) 1
p

(1.2)

is the so-called Gagliardo seminorm of u.

We now state a proposition that sheds lights on a parallelism matching these spaces with
the classical W k,p(Ω), k being an integer.

Proposition 1.1. Let p ∈ [1,+∞), 0 < k ≤ k′ < 1, Ω open set in RN and u : Ω → R a
measurable function. Then W k′,p(Ω) ↪→ W k,p(Ω), namely

∃C > 0 : ∥u∥Wk,p(Ω) ≤ C∥u∥Wk′,p(Ω),

where C depends on N, k and p.

Proof. We firstly notice that

|u(x)− u(y)|p ≤ (|u(x)| − |u(y)|)p ≤ (2 max(|u(x)|, |u(y)|))p ≤ 2p(|u(x)|p + |u(y)|p)

and that ∫
Ω

∫
Ω∩{|x−y|≥1}

|u(x)|p

|x− y|N+kp
dxdy ≤

∫
Ω

(∫
Ω∩{z≥1}

1

|z|N+kp
dz

)
|u(x)|p dx

≤
∫
Ω

(∫
{z≥1}

1

|z|N+kp
dz

)
|u(x)|p dx = CN,k,p∥u∥pp,

where z = x − y and we have used the integrability of |z|−(N+kp) for |z| ≥ 1. Exploiting
the two previous inequalities we can write∫

Ω

∫
Ω∩{|x−y|≥1}

|u(x)− u(y)|p

|x− y|N+kp
dxdy ≤ CN,k,p2

p∥u∥pp, (1.3)

while, on the other hand, it is trivial that 0 < k ≤ k′ implies∫
Ω

∫
Ω∩{|x−y|≤1}

|u(x)− u(y)|p

|x− y|N+kp
dxdy ≤

∫
Ω

∫
Ω∩{|x−y|≤1}

|u(x)− u(y)|p

|x− y|N+k′p
dxdy. (1.4)
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Combining finally (1.3) and (1.4) we come up with

∥u∥p
Wk,p(Ω)

≤ (CN,k,p2
p + 1)∥u∥pp +

∫
Ω

∫
Ω

|u(x)− u(y)|p

|x− y|N+k′p
dxdy

≤ CN,k,p∥u∥pWk′,p(Ω)

and the proof is complete.

At this point, we would like to denote the spaces W k,p as intermediate spaces between Lp

and W 1,p. In order to get these results we shall show W 1,p as a continuous limit of W k,p

as k ↑ 1, namely we should show that, for any domain Ω and function f in W 1,p(Ω), we
have

lim
k↑1

⌊f⌋pk,p = lim
k↑1

∫
Ω

∫
Ω

|f(x)− f(y)|p

|x− y|N+kp
dxdy = CN,p

∫
Ω

|∇f |p,

but this is not true. What we are going to prove, instead, is that

lim
k↑1

∫
Ω

∫
Ω

|f(x)− f(y)|p

|x− y|N+kp
dxdy = +∞,

while
lim
k↑1

(1− k)

∫
Ω

∫
Ω

|f(x)− f(y)|p

|x− y|N+kp
dxdy = CN,p

∫
Ω

|∇f |p.

We start for simplicity with Ω = RN and 1 < p < ∞. By [7, Proposition IX.3], we know
that if f ∈ W 1,p(RN), then∫

RN

|f(x+ h)− f(x)|p dx ≤ |h|p
∫
RN

|∇f |p dx (1.5)

for every h in RN . On the other hand, f ∈ Lp(RN) and∫
RN

|f(x+ h)− f(x)|p dx ≤ C|h|p as h→ 0 (1.6)

imply f ∈ W 1,p(RN).
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Now we consider a sequence of radial mollifiers (ρϵ)ϵ>0, namely

ρϵ ∈ L1
loc(0,+∞), ρϵ ≥ 0

∫ ∞

0

ρϵ(r)r
N−1 dr = 1 ∀ϵ > 0

lim
ϵ→0

∫ ∞

δ

ρϵ(r)r
N−1 dr = 0 ∀δ > 0.

Exploiting these hypotheses on (ρϵ), we can write for any f ∈ W 1,p(RN)∫∫
R2N

|f(x+ h)− f(x)|p

|h|p
ρϵ(|h|) dhdx ≤

∫
RN

|∇f(x)|p dx
∫
RN

ρϵ(|h|) dh ≤ C (1.7)

as ϵ→ 0, where we have used (1.5) and∫
RN

ρϵ(|h|) dh ≤ |∂B1|
∫ ∞

0

ρϵ(r)r
N−1 dr = |∂B1|,

with |∂B1| denoting the measure of the surface of the ball of radius 1 in dimension N . By
a change of variables in (1.7), we get∫∫

R2N

|f(x)− f(y)|p

|x− y|p
ρϵ(|x− y|) dxdy ≤ C as ϵ→ 0. (1.8)

As a consequence, f ∈ W 1,p(RN) implies equation (1.8). Nevertheless, the core point
of the discussion is that (1.8) gives a complete characterization of the space W 1,p(RN),
which is sharper then (1.6), as the next theorem points out.

Theorem 1.1. Assume f ∈ Lp(RN) and that f satisfies (1.8) with p > 1. Let (ρϵ)ϵ be
the sequence of radial mollifiers as described above. Then f ∈ W 1,p(RN) and

lim
ϵ→0

∫∫
R2N

|f(x)− f(y)|p

|x− y|p
ρϵ(|x− y|) dxdy = C

∫
RN

|∇f |p,

where C depends only on N and p.

Since the proof of this theorem is rather long and technical, we decided to show it in the
Appendix.
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At this point we decide to focus on the following choice for ρϵ:

ρϵ(r) =

 ϵ
rN−ϵ 0 < r < 1

0 r > 1.
(1.9)

Thus, we have this immediate corollary.

Corollary 1.2. Assume that f ∈ Lp(RN) is such that

ϵ

∫∫
R2N

|f(x)− f(y)|p

|x− y|N+p−ϵ
dxdy ≤ C as ϵ→ 0,

then f ∈ W 1,p(RN) and

lim
ϵ→0

ϵ

∫∫
R2N

|f(x)− f(y)|p

|x− y|N+p−ϵ
dxdy = C

∫
RN

|∇f |p.

Proof. The proof is trivial since it is an immediate application of Theorem 1.1 to (ρϵ)ϵ as
defined in (1.9). This choice for (ρϵ)ϵ works since it is a sequence of radial mollifiers.

Now, we set
ϵ = p(1− k) =⇒ lim

ϵ→0
ϵ = lim

k↑1
p(1− k)

and finally obtain

lim
k↑1

(1− k)

∫∫
R2N

|f(x)− f(y)|p

|x− y|N+pk
dxdy =

C

p

∫
RN

|∇f |p. (1.10)

By equation (1.10) we have straightforwardly that the usual Gagliardo seminorm diverges
for k ↑ 1 and that, in order to recover some continuity between the spaces W k,p(RN),
1 < p <∞, and W 1,p(RN) we should use the norm

∥f∥p
Wk,p(RN )

= ∥f∥pp + (1− k)⌊f⌋pk,p.

Finally, we should prove these same results for bounded domains and for p = 1. These
proofs require some more technicalities and will not be covered here. For a complete
presentation of the topic we refer to [9, Section 2-3].

It is worth noticing that, from now on, we will only focus on the fractional Sobolev spaces
W k,2(RN) with k ∈ (0, 1), that are usually denoted by Hk(RN). Even the Gagliardo
seminorm ⌊u⌋k,2 will be denoted, for the sake of simplicity, by ⌊u⌋k.
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The spaces Hk(RN) indeed, in addition to being Hilbert and not just Banach, are strictly
related to the fractional Laplacian operator, whose definition constitutes the next step of
this paragraph.
To define the fractional Laplacian, denoted by (−∆)k, k ∈ (0, 1), we start considering a
function u ∈ S(RN) and set

(−∆)ku(x) := CN,k P.V.

∫
RN

u(x)− u(y)

|x− y|N+2k
dy

= CN,k lim
ϵ→0

∫
RN\Bϵ(x)

u(x)− u(y)

|x− y|N+2k
dy,

(1.11)

for any k ∈ (0, 1), where Bϵ(x) denotes the the N-dimensional ball of radius ϵ centered
in x. Here P.V. denotes the Cauchy principal value, while CN,k a dimensional constant
depending on N and k, defined by

CN,k =

(∫
RN

1− cos(x1)

|x|N+2k
dx

)−1

, (1.12)

where x1 = x · e1 and e1 denotes the first direction in RN . The reason under the choice of
this constant will be clear later (see Proposition 1.2).

We claim that, for u ∈ S(RN), this operator is defined pointwise in RN and indeed, looking
at equation (1.11), we notice that outside a neighbourhood of x the integral converges,
since ∫

|x−y|>1

u(x)− u(y)

|x− y|N+2k
dy ≤ 2∥u∥∞

∫
|x−y|>1

1

|x− y|N+2k
dy <∞

and ∥u∥∞ is well defined thanks to u ∈ S(RN). As a consequence, we are only left to
analyze a possible singularity centred near x, that would justify the use of the principal
value. Studying the integral in a ball of radius 1, we obtain:∫

|x−y|≤1

u(x)− u(y)

|x− y|N+2k
dy ≤ C

∫
|x−y|≤1

|x− y|1−N−2k dy

= C

∫
|y|≤1

|y|1−N−2k dy = C

∫ 1

0

ρ−2k dρ.

Thanks to this inequality we can infer that, for k ∈ (0, 1/2), Definition (1.11) is well
posed. On the contrary, if we now exploit the Taylor expansion for u centred in x

u(x+ y)− u(x) = ∇u(x)y + o(|y|),

we immediately see that a singularity in x appears in integral (1.11) if k ∈ [1/2, 1).
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Thus, the next step consists in proving that the Cauchy principal value for the fractional
Laplacian is well defined for this range of k. We start noticing that

−(−∆)ku(x) = CN,k P.V.

∫
RN

u(y)− u(x)

|x− y|N+2k
dy

= CN,k P.V.

∫
RN

u(x+ ỹ)− u(x)

|ỹ|N+2k
dỹ,

(1.13)

by the simple change of variable ỹ = y−x. Then, to complete this step, we have to prove
that the right hand side of (1.13) is well defined. In this aim, we shall pass through the
fact that

P.V.

∫
|y|≤1

∇u(x)y
|y|N+2k

dy = 0, (1.14)

which is true is true since, if we fix 0 < ϵ < 1, we retrieve that, being the integrand an
odd function of y, ∫

ϵ≤|y|≤1

∇u(x)y
|y|N+2k

dy = 0 ∀ϵ =⇒ (1.14).

Finally, the combination of (1.13) and (1.14) gives us

−(−∆)ku(x) = CN,k P.V.

∫
RN

u(x+ y)− u(x)−∇u(x)y
|y|N+2k

dy.

Relying again on the Taylor expansion of u, we can write

u(x+ y) = u(x) +∇u(x)y + 1

2
yTHu(x)y + o(|y|2)

≤ u(x) +∇u(x)y + ∥Hu(x)∥∞
|y|2

2
+ o(|y|2),

where Hu(x) denotes the Hessian matrix of u evaluated at point x and ∥Hu(x)∥∞ is
well defined thanks to the regularity hypotheses on u. It is now sufficient to insert this
expansion inside the equation of −(−∆)k to obtain that the Cauchy principal value in
(1.11) is well defined, since

u(x+ y)− u(x)−∇u(x)y
|y|N+2k

≤ ∥Hu(x)∥∞
2

|y|2

|y|N+2k
+
o(|y|2)
|y|N+2k

,

which is clearly integrable in a neighbourhood of 0.

We now offer an equivalent definition of the fractional Laplacian operator, which will be
often used in the next chapters due to the absence of the principal value that makes it
more manageable.
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Theorem 1.3. Let (−∆)k be the fractional Laplacian operator, k ∈ (0, 1). Then, for any
u ∈ S(RN),

(−∆)ku(x) = −CN,k

2

∫
RN

u(x+ y) + u(x− y)− 2u(x)

|y|N+2k
dy ∀x ∈ RN . (1.15)

Proof. We start the proof relying on equation (1.13) and getting trivially

P.V.

∫
RN

u(x+ y)− u(x)

|y|N+2k
dy = P.V.

∫
RN

u(x− ỹ)− u(x)

|ỹ|N+2k
dỹ,

changing the variable ỹ = −y. Thus, we obtained that

(−∆)ku(x) = −CN,k

2
P.V.

∫
RN

u(x+ y) + u(x− y)− 2u(x)

|y|N+2k
dy

and we are just left to show that the principal value is useless. In this aim we recall again
the Taylor expansion centred in x for u with increment, respectively, +y and −y:

u(x+ y) ≤ u(x) +∇u(x)y + ∥Hu(x)∥∞
|y|2

2
+ o(|y|2)

u(x− y) ≤ u(x)−∇u(x)y + ∥Hu(x)∥∞
|y|2

2
+ o(|y|2).

Therefore we deduce that∫
|y|≤1

u(x+ y) + u(x− y)− 2u(x)

|y|N+2k
dy ≤

∫
|y|≤1

∥Hu(x)∥∞|y|2 + o(|y|2)
|y|N+2k

dy <∞,

then the singularity at 0 is removed and the Cauchy principal value can be canceled.

Remark 1.4. We invite the reader to notice that u ∈ S(RN) is just a sufficient condition
in order to make (−∆)ku defined pointwise. If, indeed, we fix a constant c and set u(x) ≡
c, we obtain that trivially u /∈ S(RN) but

(−∆)ku(x) = 0 ∀x ∈ RN .

1.2. Definition via the Fourier transform

In this paragraph, we decided to analyze the fractional Laplacian from a different per-
spective via the Fourier transform. Through this transform, we reveal (−∆)k as a pseudo-
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differential operator of multiplier ξ2k, gaining also powerful regularity results. Moreover,
we are going to explicit the strict relation matching our operator with the fractional
Sobolev spaces Hk(RN), of which we will propose an alternative definition. For a more
in-depth discussion on this topic, we refer to [10] and [13].

In order to apply the Fourier transform we ask for (−∆)ku ∈ L1(RN) and, recalling that
this operator is defined pointwise for any u ∈ S(RN), it will be enough to show that it
vanishes at infinity fast enough. In this aim, we state the following theorem.

Theorem 1.5. Let u ∈ S(RN). Then, for every x ∈ RN , |x| > 1 it holds

|(−∆)ku(x)| ≤ Cu,N,k|x|−(N+2k),

where Cu,N,k depends on CN,k as defined in (1.12) and on pN(u), pN+2(u), defined in (1).

Proof. Up to normalization constants, if we take Definition (1.15) of the fractional Lapla-
cian, we can separate the integral as follows

(−∆)ku(x) ≈
∫
RN

... dy =

∫
|y|< |x|

2

... dy +

∫
|y|≥ |x|

2

... dy. (1.16)

We start focusing on the first integral, exploiting the Taylor’s formula with the Lagrange
form of the reminder, that allows us to find t∗, t∗∗ ∈ (0, 1) such that

2u(x)− u(x+ y)− u(x− y) = −1

2
yTHu(y

∗)y − 1

2
yTHu(y

∗∗)y,

where y∗ = x+ t∗y and y∗∗ = x+ t∗∗y. As a consequence, since both Hu(y
∗) and Hu(y

∗∗)

are bounded in L∞(RN), we can write∣∣∣∣∣
∫
|y|< |x|

2

2u(x)− u(x+ y)− u(x− y)

|y|N+2k
dy

∣∣∣∣∣ ≤ 1

2

∫
B1/2(x)

∥Hu(y
∗)∥∞ + ∥Hu(y

∗∗)∥∞
|y|N+2k

|y|2 dy

≤ C pN+2(u)

∫
B1/2(x)

|y|2−(N+2k)

(1 + |x|2)N+2
2

dy ≤ C|x|−N−2 pN+2(u)|x|2−2k = Cu,N,k|x|−(N+2k).

For what concerns the second integral of equation (1.16), the next estimate holds∣∣∣∣∣
∫
|y|≥ |x|

2

2u(x)− u(x+ y)− u(x− y)

|y|N+2k
dy

∣∣∣∣∣ ≤ 2

∫
|y|≥ |x|

2

|u(x+ y)|+ |u(x)|
|y|N+2k

dy.
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We have that both∫
|y|≥ |x|

2

|u(x+ y)|
|y|N+2k

dy ≤ 2N+2k

|x|N+2k

∫
|y|≥ |x|

2

|u(x+ y)| dy ≤
C∥u∥L1(RN )

|x|N+2k

and ∫
|y|≥ |x|

2

|u(x)|
|y|N+2k

dy ≤ pN(u)

∫
|y|≥ |x|

2

dy

(1 + |x|2)N
2 |y|N+2k

≤ C pN(u)

|x|N+2k
.

The proof is completed.

We let the reader notice that this theorem also shows that the fractional Laplacian decays
at infinity as a kernel of the type |x|−(N+2k).

Once proved that (−∆)ku ∈ L1(RN) for any u ∈ S(RN), we are ready to prove that the
fractional Laplacian can be viewed as a pseudo-differential operator of multiplier |ξ|2k.
Explicitly, once considered the operator as set in (1.15), its multiplier is defined to be a
function M : RN → R such that

(−∆)ku = F−1(M · Fu).

Thus, we want to prove that
M(ξ) = |ξ|2k

and we rely on the following proposition.

Proposition 1.2. For any u ∈ S(RN) it holds

(−∆)ku = F−1(|ξ|2kFu) ∀ξ ∈ RN .

Proof. We start applying the Fourier transform in the variable x in (1.15), obtaining

M(ξ)Fu(ξ) = −CN,k

2

∫
RN

F(u(x+ y) + u(x− y)− 2u(x))

|y|N+2k
dy

= CN,k

(∫
RN

1− (eiξ·y + e−iξ·y)/2

|y|N+2k
dy

)
Fu(ξ)

= CN,k

(∫
RN

1− cos(ξ · y)
|y|N+2k

dy

)
Fu(ξ), (1.17)

where the last equality comes from the famous Euler identity

eiϕ + e−iϕ

2
= cos(ϕ).
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We immediately notice that, in a neighbourhood of the origin, it holds

1− cos(ξ · y)
|y|N+2k

∼ |y|2−(N+2k),

which is clearly integrable; thus the integral in (1.17) is finite and positive.
Moreover, in order to complete the proof we would like to explicit that integral as a
function of CN,k and |ξ|; in this aim, then, we denote

I(ξ) =

∫
RN

1− cos(ξ · y)
|y|N+2k

dy

and try to show that it is rotationally invariant, namely

I(ξ) = I(|ξ|e1),

e1 denoting the first direction vector in RN . If in dimension 2 it is trivial that I(ξ) = I(−ξ),
in dimensionN > 2 we are required to set a generic rotation matrix R such that ξ = R|ξ|e1
and to compute

I(ξ) =

∫
RN

1− cos(R|ξ|e1 · y)
|y|N+2k

dy =

∫
RN

1− cos(|ξ|e1 ·RTy)

|y|N+2k
dy

=

∫
RN

1− cos(|ξ|e1 · ỹ)
|ỹ|N+2k

dỹ = I(|ξ|e1),

where we have used ỹ = RTy, . We are finally able to compute

I(|ξ|e1) =
∫
RN

1− cos(e1 · |ξ|y)
|y|N+2k

dy

=

(∫
RN

1− cos(ζ · e1)
|ζ|N+2k

dζ

)
|ξ|2k = C−1

N,k|ξ|
2k,

exploiting the change of variable ζ = |ξ|y and Definition (1.12). Thus, if we finally
consider (1.17) we can conclude

M(ξ)Fu(ξ) = CN,kI(ξ)Fu(ξ) = |ξ|2kFu(ξ)

and the proof is completed.

The next step of our analysis wants to make clear the relation between the fractional
Laplacian operator (−∆)k and the fractional Sobolev spaces Hk(RN) and we start stating
and important proposition concerning the Gagliardo seminorm.
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Proposition 1.3. Let k ∈ (0, 1). For any u ∈ Hk(RN)

⌊u⌋2k = 2 C−1
N,k

∫
RN

|ξ|2k|Fu(ξ)|2 dξ,

where CN,k is defined in (1.12).

Proof. By direct calculations:

⌊u⌋2k =
∫∫

R2N

|u(x)− u(y)|2

|x− y|N+2k
dxdy =

∫∫
R2N

∣∣∣∣∣u(z + y)− u(y)

|z|N2 +k

∣∣∣∣∣
2

dxdy

=

∫
RN

∥∥∥∥∥u(z + ·)− u(·)
|z|N2 +k

∥∥∥∥∥
2

2

dz =

∫
RN

∥∥∥∥∥F
(
u(z + ·)− u(·)

|z|N2 +k

)∥∥∥∥∥
2

2

dz,

where the last equality is justified by the Plancherel formula. If we now follow the same
passages used in Proposition 1.2, we obtain

∫
RN

∥∥∥∥∥F
(
u(z + ·)− u(·)

|z|N2 +k

)∥∥∥∥∥
2

2

dz =

∫
RN

(
2

∫
RN

1− cos(ξ · z)
|z|N+2k

dz

)
|Fu(ξ)|2 dξ

= 2 C−1
N,k

∫
RN

|ξ|2k|Fu(ξ)|2 dξ.

Remark 1.6. Proposition 1.3 implicitly proves that Hk(RN) admits the alternative defi-
nition with respect to (1.1):

Hk(RN) :=

{
u ∈ L2(RN) :

∫
RN

(1 + |ξ|2k)|Fu(ξ)|2 dξ <∞
}
.

Indeed we just claim∫
RN

(1 + |ξ|2k)|Fu(ξ)|2 dξ <∞ ⇐⇒
∫
RN

|ξ|2k|Fu(ξ)|2 dξ <∞,

since u ∈ Hk(RN) implies u ∈ L2(RN) which, in turn, implies Fu ∈ L2(RN). This
definition moreover, unlike the one in (1.1), admits a continuous match between W k,p

and W 1,p as k ↑ 1, without the need for a norm "correction".

We are finally able to state the connection relating (−∆)k to the fractional Sobolev spaces
Hk(RN).
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Proposition 1.4. Let k ∈ (0, 1) and let u ∈ Hk(RN). Then

⌊u⌋2k = 2C−1
N,k∥(−∆)

k
2u∥22,

where CN,k is defined in (1.12).

Proof. Relying on Proposition 1.2 and on Proposition 1.3, we obtain

∥(−∆)
k
2 ∥22 = ∥F(−∆)

k
2u∥22 = ∥|ξ|kFu∥22 =

1

2
CN,k⌊u⌋2k.

1.3. Random Walk with long jumps

In this section, we propose an interesting interpretation of the fractional Laplacian oper-
ator, describing the evolution of a probabilistic process that arises from a particle moving
randomly in the space RN , N being the space dimension. This particle will be subject
to a probability law that allows long jumps and the peculiarity of its motion will allow
us to strictly relate this phenomenon to the nonlocal effects induced by the fractional
Laplacian, to the point of inferring the heat equation driving the fractional diffusion. For
a more in-depth discussion on this topic, we refer to [32] and [10].

We start modelling a discrete random walk for the particle; in this aim, we define h > 0,
t > 0, respectively the space and time steps and consider both a lattice hZN to discretize
space and τZ to discretize time.
Now, we reason as follows: at each time step τ , the particle, which is supposed to be in
a generic point x0, randomly selects a point x ∈ hZN according to a probability law P ;
then, it moves from x0 to x.
The probability law P is defined in order to let the whole process be homogeneous and
isotropic, meaning that it does not depend on either position or direction of displacement,
but only on the distance travelled. As a consequence, at each time step, the probability
of moving from a starting point x0 to a new one y = x0 + hx ∈ hZN , x ∈ ZN , which is
h|x| away from x0, is

P (|x0 − y|) = P (|x|h) = ck
1

|x|N+2k
1[x ̸=0],

where k ∈ (0, 1) and the constant ck is set in order to normalize P to be a probability
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measure. Namely, if we set a system where the origin coincides with x0, we ask for

∑
x∈ZN\{0}

P (|x|h) = ck
∑

x∈ZN\{0}

1

|x|N+2k
= 1, (1.18)

where xh represents the coordinate vector of each grid point in hZN . Then, we obtain

ck =

 ∑
x∈ZN\{0}

1

|x|N+2k

−1

.

We stress that, in our model, the particle is not supposed to stand still, since P (0) = 0 and
that the polynomial tails of the distribution lead to a small probability of long jumps.
Moreover, it is worth noticing that in a standard diffusion process the probability law
avoids long jumps, imposing P (jh) = 0 ∀j ̸= 1.
At this point, we call u(x, t) the probability for the particle to be at x ∈ hZN at time
t ∈ τZ. Thus, the quantity u(x, t + τ) can be calculated summing, on all y ∈ ZN , the
probability for the particle to be at x + yh at time t times the probability of travelling
from x+ yh to x. In formulae, we obtain

u(x, t+ τ) = ck
∑

y∈ZN\{0}

u(x+ yh, t)

|y|N+2k
. (1.19)

If we subtract u(x, τ) from (1.19) and make use of (1.18) to infer that

u(x, t) = ck
∑

y∈ZN\{0}

u(x, t)

|y|N+2k
,

we finally gather

u(x, t+ τ)− u(x, t) = ck
∑

y∈ZN\{0}

u(x+ yh, t)− u(x, t)

|y|N+2k
. (1.20)

The next step requires us to approximate the first order derivative in time of u(x, t)
applying a forward difference discretization, which takes the form

∂tu(x, t) ≈
u(x, t+ τ)− u(x, t)

τ
. (1.21)

Indeed, combining (1.20) and (1.21), we can fix the incremental time step τ = h2k in order
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to retrieve the following formula:

∂tu(x, t) ≈ ck
∑

y∈ZN\{0}

u(x+ yh, t)− u(x, t)

|yh|N+2k
hN .

We recall here, for the reader’s convenience, that if we consider a continuous function
f : R → R and we divide a generic interval [a, b] according to the partition (xj)j into n
subintervals

(xj−1, xj) = (a+ (j − 1)h, a+ jh) h =
b− a

n
, j = 1, ..., n,

the following approximation regarding the area under the graph of f holds:

n∑
j=1

f(a+ jh)h ≈
∫ b

a

f(x) dx. (1.22)

Generalizing, then, (1.22) to dimension N > 1, we can claim

ck
∑

y∈ZN\{0}

u(x+ yh, t)− u(x, t)

|yh|N+2k
hN ≈ ck

∫
RN

u(x+ y, t)− u(x, t)

|y|N+2k
dy,

where the cancellation of y = 0 from the sum is mirrored by the singularity of the integrand
at that specific value for y.
It is now clear that the choice τ = h2k has provided us with nice asymptotic results since,
exploiting the previous approximation, we have obtained:

∂tu+ C(−∆)ku = 0,

for a suitable C > 0.

1.4. Maximum principles and nonlocal effects

In this section, we are going to give some practical clarifications on the concept of non-
locality, as it is associated to the fractional Laplacian operator. In order to make this
concept clear, we considered a good idea to carry on an explicit comparison between this
operator and the classical Laplacian, whose local nature is well known in literature.
In particular, we will firstly examine two specific examples where the application of either
one or the other operator will lead us to dramatically different conclusions, enlightening
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in this way the nonlocal nature of the fractional Laplacian. Then, we will state and prove
appropriate versions of the weak and strong maximum principles for (−∆)k, different from
the ones valid for sub and superharmonic functions. Finally, we are going to analyze why
the classical version of the Harnack inequality for harmonic functions (see B.9 from the
Appendix) fails to hold in a fractional setting. For a more in-depth discussion on this
topic, we refer to [20], [21] and [28].

Our first example considers a generic function u ∈ D(B2) such that

u(x) =

1 x ∈ B1

0 x /∈ B2,

while, in B2\B1, u(x) connects smoothly 1 to 0 and it holds 0 ≤ u(x) ≤ 1, ∀x ∈ B2\B1.
If we pick x̄ /∈ B3, for which it trivially holds that −∆u(x̄) = 0, we aim at computing
(−∆)ku(x̄) and showing that it is different from 0.
We start making (−∆)ku(x̄) explicit:

−(−∆)ku(x̄) = CN,k P.V.

∫
RN

u(y)− u(x̄)

|y − x̄|N+2k
dy

= CN,k

∫
RN

u(y)

|y − x̄|N+2k
dy,

where the principal value in the first line disappeared since it is useless; outside B2 indeed,
the function vanishes while, inside, it holds that |y − x̄| > 1. Then, since the integrand
differs from 0 just in B2, we keep computing:

−(−∆)ku(x̄) = CN,k

∫
B2

u(y)

|y − x̄|N+2k
dy

≥ CN,k

∫
B1

1

|y − x̄|N+2k
dy

≥ CN,k

∫
B1

dy

(1 + |x̄|)N+2k
,

where the last inequality comes naturally if we expand

|y − x̄| ≤ |y|+ |x̄| ≤ 1 + |x̄|.

Finally, we have shown that

−(−∆)ku(x̄) ≥ |B1|
(1 + |x̄|)N+2k

> 0,
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where |B1| denotes the volume of the N -dimensional sphere of radius 1.

In the second example, we want to discuss how the nonlocal properties of the fractional
Laplacian affect the wavefront spread dynamic associated to the following system:ut + (−∆)ku = au x ∈ RN , t > 0

u(0) = δ(0),
(1.23)

where a > 0 and δ(0) represents the Dirac delta centred in 0. In particular, we will study
that system both for s = 1 and s = 1

2
in order to explore, respectively, the local and

nonlocal case.
We will proceed as follows: once computed the solution, by means of the Fourier transform,
we will consider one of its contour lines and study the properties of its evolution in the
time-space dimension.
We start asking for u(x, t) = eatv(x, t) and write system (1.23) in terms of v:vt + (−∆)kv = 0

v(0) = δ(0).
(1.24)

Now, defining v̂(t, ξ) = F [v(t, ·)](ξ) the Fourier transform of v, we apply the Fourier
transform to (1.24), that results inv̂t + |ξ|2kv̂ = 0

v̂(0) = 1.

The solution to the system is
v̂(ξ, t) = e−|ξ|2kt.

The first scenario we examine is the one of the Laplacian, with k = 1 and we immediately
notice that:

v̂(ξ, t) = e−|ξ|2t ⇐⇒ v(x, t) = Ce−
|x|2
4t t−

N
2 ⇐⇒ u(x, t) = Ceat−

|x|2
4t t−

N
2 .

At this point, asking for u(x, t) to be constant means asking for

eat−
|x|2
4t = Ct

N
2 =⇒ |x|2 = 4at2 − 2Nt ln t+ Ct,

which finally becomes

x = 2
√
at(1 + o(1)) as t→ ∞. (1.25)
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Now we examine the scenario where the fractional Laplacian appears, with k = 1
2
. Again,

the following chain of co-implications holds

v̂(ξ, t) = e−|ξ|t ⇐⇒ v(x, t) =
1

t(1 + |x|2
t2
)
N+1

2

⇐⇒ u(x, t) =
eat

t(1 + |x|2
t2
)
N+1

2

.

Asking for the solution to be constant leads us to:

(
1 +

|x|2

t2

)N+1
2

= C
eat

t
=⇒ |x|2 = Ce

2at
N+1 t

2N
N+1 − t2

and, finally, to

x = Ce
at

N+1 t
N

N+1 (1 + o(1)) as t→ ∞. (1.26)

Thus, we have proved that, if we consider system (1.23) with k = 1, the wavefront of the
solution evolves linearly in time, while, studying (1.23) with k = 1

2
, the nonlocal effects

of the fractional Laplacian play a central role and they are responsible for the wavefront
travel in space to be faster, in particular exponentially in time.

At this point, we carry on our study stating the weak and strong maximum principles
valid for the fractional Laplacian. We stress here that, differently from the Laplacian
case, here the "boundary values" for u must be prescribed globally in RN\Ω and not just
on ∂Ω.

Theorem 1.7 (Weak maximum principle). Assume that u ∈ C∞(RN) ∪ L∞(RN) and
that Ω ⊂ RN is a bounded domain. Then, the weak maximum principle holds for (−∆)k,
namely (−∆)ku(x) ≥ 0 x ∈ Ω

u(x) ≥ 0 x ∈ RN\Ω
=⇒ u(x) ≥ 0 in Ω.

Proof. We will prove the theorem by contradiction, assuming that u(x) ≱ 0 in Ω. As a
consequence, we can consider xm = argminx∈RN u(x), such that xm ∈ Ω and

−δ := u(xm) = min
Ω̄
u(x) < 0. (1.27)



1| The fractional Sobolev spaces and the fractional Laplacian 21

Thus, the following inequality hold

(−∆)ku(xm) =
CN,k

2

∫
RN

2u(xm)− u(xm + z)− u(xm − z)

|z|N+2k
dz

≤ CN,k

2

∫
B

2u(xm)− u(xm + z)− u(xm − z)

|z|N+2k
dz,

where B := {z ∈ RN : (xm + z) /∈ Ω, (xm − z) /∈ Ω} and the inequality is due to
2u(xm)− u(xm + z)− u(xm − z) ≤ 0 ∀z ∈ RN by definition of xm. Moreover, exploiting
z ∈ B and (1.27), we state

(−∆)ku(xm) ≤
CN,k

2

∫
B

−2δ

|z|N+2k
dz < 0. (1.28)

Finally, assuming u ≱ 0 in Ω, we have concluded that(−∆)ku(xm) ≥ 0

(−∆)ku(xm) < 0,

where the first line comes from data while the second from (1.28), and the contradiction
is immediate.
An alternative and more direct proof exists and notices that 2u(xm)−u(xm+z)−u(xm−
z) ≤ 0 ∀z ∈ RN and (−∆)ku(xm) ≥ 0 respectively imply

CN,k

2

∫
RN

2u(xm)− u(xm + z)− u(xm − z)

|z|N+2k
dz ≤ 0

CN,k

2

∫
RN

2u(xm)− u(xm + z)− u(xm − z)

|z|N+2k
dz ≥ 0.

(1.29)

From (1.29) we infer that

2u(xm)− u(xm + z)− u(xm − z) ≡ 0 =⇒ u ≡ −δ in RN

and we fall into a clear contradiction if we consider, by data, that u(x) ≥ 0 in RN\Ω.

Theorem 1.8 (Strong maximum principle). Assume that u ∈ C∞(RN) ∪ L∞(RN) and
that Ω ⊂ RN is a bounded and connected domain. Then, the strong maximum principle
holds for (−∆)k, namely(−∆)ku(x) ≥ 0 x ∈ Ω

u(x) ≥ 0 x ∈ RN\Ω
=⇒ u(x) > 0 in Ω or u ≡ 0.
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Proof. We already know from Theorem 1.7 that u ≥ 0 in RN . If there exists x0 ∈ Ω,
u(x0) = 0, it holds that

0 ≤
∫
RN

u(x0)− u(y)

|x0 − y|N+2k
dy = −

∫
RN

u(y)

|x0 − y|N+2k
dy.

The only chance not to fall into contradiction is that u ≡ 0 since, if it were not true, the
last integral would be strictly negative, contradicting the data information (−∆)ku(x0) ≥
0.

Finally, the last part of this section aims at showing that the classical Harnack inequality
for harmonic functions (see B.9 from the Appendix) can be false if we try to rigidly shift
its frame to a fractional setting. Indeed, if we consider Corollary B.10, we deduce that for
a non-negative harmonic function in B1, its minimum and its maximum are comparable
in Br, r in (0, 1). Nevertheless it is not always the case when speaking of k-harmonic
functions, as the following theorem points out.

Theorem 1.9. Let k ∈ (0, 1), R > 0. Then, there exists a function u ∈ L∞(RN)∪C2(BR)

such that 
(−∆)ku(x) = 0 for x ∈ BR

u(x) > 0 for x ∈ BR\{0}

|u(x)| ≤ 1 for x ∈ RN

and u(0) = 0.

Relying on Theorem 1.9, if we fix R = 1 and consider any r ∈ (0, 1), it is no more true
that

u(x) ≤ cru(y) ∀x, y ∈ Br.

Indeed, if we consider y = 0, since u(0) = 0 we should have that

u(x) ≤ 0 ∀x ∈ Br,

which clearly contradicts the datum u(x) > 0 for any x ∈ Br\{0}.

Proof of Theorem 1.9. We are going to prove the theorem for dimension N = 2. The
same idea and method can be applied then for any dimension N . In this proof we are
going to construct two functions, g : R2\BR → R and ũ : BR → R, where ũ(y) will be
computed by means of the Poisson formula for k-harmonic functions over balls and, at
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the end,
u(y) = ũ(y)1[y∈BR] + g(y)1[y/∈BR] ∀y ∈ R2

will be the desired function.
We choose g(y) defined as follows

g(y) =


1 R < |y| < S

−1 S < |y| < T

0 T < |y|,

where S > R and T > S will be explicitly set later. Now, we focus on ũ(y) that, exploiting
the Poisson formula on BR, is

ũ(y) = Ck(R2 − |y|2)k
∫
R2\BR

g(x)
∣∣R2 − |x|2

∣∣−k |x− y|−2 dx

= Ck(R2 − |y|2)k
[∫

BS\BR

∣∣R2 − |x|2
∣∣−k |x− y|−2 dx

−
∫
BT \BS

∣∣R2 − |x|2
∣∣−k |x− y|−2 dx

]
=: IR,S(y)− IS,T (y) ∀y ∈ BR,

with Ck = sin(πk)
π2 . Now we define

A(y) :=

∫
BT \BS

∣∣R2 − |x|2
∣∣−k |x− y|−2 dx

and we study it in polar coordinates, remembering that

|x− y|2 = (x1 − y1)
2 + (x2 − y2)

2 = (r cos(θ)− y1)
2 + (r sin(θ)− y2)

2

= r2 cos2(θ) + |y1|2 − 2r cos(θ)y1 + r2 sin2(θ) + |y2|2 − 2r sin(θ)y2

= r2 + |y|2 − 2r|y|
(
y1
|y|

cos(θ) +
y2
|y|

sin(θ)

)
and we obtain

A(y) =

∫ T

S

r

|R2 − r2|k

∫ 2π

0

dθ

r2 + |y|2 − 2r|y|
(

y1
|y| cos(θ) +

y2
|y| sin(θ)

)
 dr.
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We assume now y ̸= 0 and select γ ∈ [0, 2π] such that cos(γ) = y1
|y| ; it holds that

sin2(γ) = 1− cos2(γ) = 1− y21
|y|2

=

(
y2
|y|

)2

and, as a consequence, if sin(γ) = 0 there exists just one possible γ such that cos(γ) = y1
|y| ;

if instead sin(γ) ̸= 0, we chose γ such that sin(γ) = y2
|y| . Then, we define ϕ = γ − θ and,

remembering
cos(γ − θ) = cos(γ)cos(θ) + sin(γ) sin(θ),

we have

A(y) =

∫ T

S

r

|R2 − r2|k

(∫ γ

γ−2π

dϕ

r2 + |y|2 − 2r|y| cos(ϕ)

)
dr.

At this point we set t|y| = r, dt|y| = dr and write

A(y) =

∫ T
|y|

S
|y|

t|y|
|R2 − t2|y|2|k

(∫ γ

γ−2π

dϕ

|y|2 (t2 + 1− 2t cos(ϕ))

)
|y| dt

=

∫ T
|y|

S
|y|

t

(t2|y|2 −R2)k

(∫ 2π

0

dϕ

t2 + 1− 2t cos(ϕ)

)
dt, (1.30)

where we have exploited R < S ≤ r to get rid of the modulus and the periodicity of
the integrand with respect to ϕ to relabel the extrema of the inner integral. Moreover, it
should be noticed that R < S ≤ r also implies that t > 1.
It is possible to provide an explicit solution for the inner integral of (1.30), namely, setting
δ = 2t

1+t2
, δ < 1, we have

B(t) :=

∫ 2π

0

dϕ

(t2 + 1)− (2t cos(ϕ))
=

1

1 + t2

∫ 2π

0

dϕ

1− δ cos(ϕ)
.

Indeed, we can make use of Lemma B.2 to infere

B(t) =
2π√

1− δ2(1 + t2)
=

2π

(1 + t2)

(
1− 4t2

(1 + t2)2

)− 1
2

=
2π

|1− t2|
=

2π

t2 − 1
,

where we have used the definition of δ and t > 1.
Therefore, we came up with

A(y) =

∫ T
|y|

S
|y|

t

(t2|y|2 −R2)k
2π

(t2 − 1)
dt =

2π

|y|2k

∫ T
|y|

S
|y|

t

(t2 − ρ2)k (t2 − 1)
dt,
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using ρ = R
|y| . Thus, we finally get

IS,T (y) = 2πCk(ρ2 − 1)k
∫ T

|y|

S
|y|

t

(t2 − ρ2)k (t2 − 1)
dt.

If we put α = t2 − ρ2, t =
√
α + ρ2, dt = dα

2
√

α+ρ2
we can develop IS,T in the following

way:

IS,T (y) = 2πCk(ρ2 − 1)k
∫ T2−R2

|y|2

S2−R2

|y|2

√
α + ρ2

αk(α + ρ2 − 1)

dα

2
√
α + ρ2

= πCk(ρ2 − 1)k
∫ T2−R2

|y|2

S2−R2

|y|2

dα

αk(α + ρ2 − 1)
.

If then we apply the substitution α = τ(ρ2 − 1), we get

IS,T (y) = πCk(ρ2 − 1)k
∫ T2−R2

R2−|y|2

S2−R2

R2−|y|2

(ρ2 − 1)

τ k(ρ2 − 1)1+k(1 + τ)
dτ

= πCk
∫ T2−R2

R2−|y|2

S2−R2

R2−|y|2

dτ

τ k(1 + τ)
.

The case with y = 0 is pretty similar, indeed, again relying on the polar coordinates, we
obtain

IS,T (0) = CkR2k

∫
BT \BS

∣∣R2 − |x|2
∣∣−k |x|−2 dx = 2πCkR2k

∫ T

S

dr

r(r2 −R2)k

= 2πCk
∫ T

S

dr

r
(
r2

R2 − 1
)k v= r

R= 2πCk
∫ T

R

S
R

dv

v(v2 − 1)k

ω=v2−1
= πCk

∫ (T
R)

2
+1

( S
R)

2
+1

1

ωk
√
ω + 1

dω√
ω + 1

= πCk
∫ (T

R)
2
+1

( S
R)

2
+1

dω

ωk(ω + 1)
.

Collecting all the results we have obtained we finally end up with

ũ(y) = πCk

(∫ S2−R2

R2−|y|2

0

dτ

τ k(1 + τ)
−
∫ T2−R2

R2−|y|2

S2−R2

R2−|y|2

dτ

τ k(1 + τ)

)
.

To make all these terms more manageable we define E = S2

R2 − 1, F = T 2

R2 − 1, q = R2

R2−|y|2
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and J(a, b) =
∫ b

a
dτ

τk(1+τ)
in such a way that

ũ(y) = πCk

J(0, qE)− J(qE, qF ) y ̸= 0

J(0, E)− J(E,F ) y = 0.

Therefore, our aim will be finding E∗ > 0, F ∗ > 0 such that

J(0, qE)− J(qE, qF ) =

= 0 if q = 1

> 0 if q > 1.

We start studying the function q 7→ J(0, qE)−J(qE, qF ), q ≥ 1, and by definition we get

d

dq
[J(0, qE)− J(qE, qF )] =

2E

(qE)k(1 + qE)
− F

(qF )k(1 + qF )
. (1.31)

Then we see that (1.31) is positive if and only if

Ek−1 − 2F k−1 ≤ q(2F k − Ek);

In particular, the function q 7→ J(0, qE) − J(qE, qF ), q ≥ 1 is non-decreasing under
F > E if

Ek(1 + E−1) ≤ 2F k(1 + F−1). (1.32)

To be ready to complete the proof we need a last result:k ≤ 1
2

=⇒ J(0,+∞) ≥ 2J(0, 1)

k > 1
2

=⇒ J(0,+∞) ≤ 2J(0, 1).

We just prove the first case, the second can be proved in the same way:

J(1,+∞) =

∫ ∞

1

dτ

τ k(1 + τ)
≥
∫ ∞

1

dτ√
τ(1 + τ)

θ= 1
τ=

∫ 1

0

√
θ(

1 + 1
θ

) dθ
θ2

=

∫ 1

0

dθ√
θ(1 + θ)

≥
∫ 1

0

dθ

θk(1 + θ)
= J(0, 1).

Then, it is trivial that

J(0,∞) = J(0, 1) + J(1,∞) ≥ 2J(0, 1).
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Now we are ready to find the explicit values for S and T, studying the two different cases,
k > 1

2
and k ≤ 1

2
.

Starting with k > 1
2
, we fix F > 1. Since J(0, x) is non decreasing in x, J(0, 0) = 0

and J(0, F ) < 2J(0, 1) we can rely on the intermediate value theorem and say that there
exists E < 1 such that J(0, F ) = 2J(0, E), meaning that J(0, E) = J(E,F ). Moreover
we notice that for E ∈ (0, 1] the left hand side of (1.32) is non increasing in E, while for
F > 1 its right hand side goes to +∞. Then we can fix F ∗ > 0 large enough such that
(1.32) is satisfied and E∗ ∈ [E, 1] such that J(0, E∗) = J(E∗, F ∗).
If, instead, k ≤ 1

2
we can proceed as follows. Since (1.32) is valid for E = 1 and F > 1,

we fix E∗ = 1. Then, exploiting J(0,+∞) ≥ 2J(0, 1), we know that there exists some
F ∗ > 1 satisfying J(0, E∗) = J(E∗, F ∗).
Finally, if we set S = R

√
E∗ + 1 and T = R

√
F ∗ + 1, g takes an explicit form and, as a

consequence,
u(y) = ũ(y)1[y∈BR] + g(y)1[y/∈BR] ∀y ∈ R2

is well defined. Moreover, (−∆)ku(x) = 0 for any x ∈ BR and |u(x)| ≤ 1 thanks to the
weak maximum principle. The proof is complete.

1.5. A k-harmonic function

Once we have dealt with maximum principles and k-harmonic functions, in the next lines
we would like to present an explicit example of a k-harmonic function in one dimension.
This function is x+k = max{x, 0}k, k ∈ (0, 1) and it satisfies the following theorem. For a
more in-depth discussion on this topic, we refer to [10].

Theorem 1.10. Let k ∈ (0, 1) and wk(x) = x+k . Then wk satisfies

(−∆)kwk(x) =

−ck|x|−k x < 0

0 x > 0,

with ck constant depending on k.

In particular, we are going to offer an alternative probabilistic interpretation of the frac-
tional Laplacian, arising from a payoff approach and we will exploit this different point
of view in order to justify Theorem 1.10. At the end of the paragraph, then, this theorem
will be formally proved.

We start describing how the payoff approach works. This model aims at describing the
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expected payoff received by a particle moving over the real line and earning money de-
pending on the points it moves to. For what concerns the discretization of the domain
and the probabilistic law of its motion, we rely on the same assumptions of Section 1.3.
In this case, however, we define a domain Ω ⊂ R and, for any x in Ω, u(x) represents
the expected payoff received starting from position x. Reaching some point y outside Ω,
means earning u0(y), with u0 defined a-priori. Therefore, u(x) can be computed summing,
on all y ∈ Z, the probability for the particle to reach x + yh times the expected payoff
u(x+ yh); namely

u(x) = ck
∑

y∈Z\{0}

u(x+ yh)

|y|N+2k
= ck

∑
y∈Z\{0}

u(x− yh)

|y|N+2k
.

Thus, if we recall equation (1.18), we can trivially infer

0 = ck
∑

y∈Z\{0}

u(x+ yh) + u(x− yh)− 2u(x)

|y|N+2k
.

Passing to the limit as in Section 1.3 we notice that this model describes the following
system (−∆)ku = 0 x ∈ Ω

u = u0 x /∈ Ω.

Now, we want to make use of the previous approach in order to give an heuristic inter-
pretation of Theorem 1.10. In particular we justify the fact that

(−∆)kwk = 0 0 < x < 1

wk = 0 x < 0

wk = x+k x > 1

(1.33)

admits as solution wk(x) = x+k and we will show this before for k = 1 and then for
k ∈ (0, 1).
We start fixing k = 1 and discretizing the real line with h = 1/2; then, we try to deduce
the value of w1 in x = 1/2 in terms of expected payoff. Since k = 1, our random walk does
not allow any jump and, with the same probability, we can either reach x = 0 or x = 1.
Since w1(0) = 0 and w1(1) = 1, our expected earn from x = 1/2 is the average between
the two, namely w1(1/2) = 1/2. If we keep discretizing with h = 1/4, we can follow the
same procedure, considering w1(0) and w1(1/2) and we obtain w1(1/4) = 1/4. Repeating
these passages over and over, we find that the linear function is harmonic, which is true,
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even if not surprising.
If instead we consider k ∈ (0, 1) the random walk we are asking for admits long jumps;
then, starting from x = 1/2, with h = 1/2 we have the same probability to finish in
A := {1/2− y/2; y ∈ N\{0}} or in B := {1/2 + y/2; y ∈ N\{0}}. If the expected payoff
in A is equal to 0 by data, the one in B is strictly bigger then 1, since wk(1/2 + y/2) > 1

for any y > 1, again by data. As a consequence, we expect a payoff wk(1/2) > 1/2.
Even in this case, we can repeat the procedure and notice that our solution w satisfies
a concavity property. Therefore, it makes sense for wk = x+k 1[x>0] to be the solution to
system (1.33).

We now move on to a formal proof for Theorem 1.10. This will come through two pre-
liminary lemmas.

Lemma 1.11. Let ωk = x+k . Then

(−∆)kωk(1) = 0.

Proof. Since t 7→ (1 + t)k + (1− t)k − 2 is even, it holds that∫ 1

−1

(1 + t)k + (1− t)k − 2

|t|1+2k
dt = 2

∫ 1

0

(1 + t)k + (1− t)k − 2

|t|1+2k
dt.

Moreover, by the change of variable t = −t̃ we have∫ −1

−∞

(1− t)k − 2

|t|1+2k
dt =

∫ ∞

1

(1 + t̃)k − 2

|t̃|1+2k
dt̃;

then we can claim

(−∆)kωk(1) =

∫ ∞

−∞

ωk(1 + t) + ωk(1− t)− 2ωk(1)

|t|1+2k
dt

=

∫ −1

−∞

(1− t)k − 2

|t|1+2k
dt+ 2

∫ 1

0

(1 + t)k + (1− t)k − 2

|t|1+2k
dt

+

∫ ∞

1

(1 + t)k − 2

|t|1+2k
dt

= 2

[∫ ∞

1

(1 + t)k − 2

|t|1+2k
dt+

∫ 1

0

(1 + t)k + (1− t)k − 2

|t|1+2k
dt

]
.

If now we integrate by parts t 7→ t−1−2k we get∫ ∞

1

t−1−2k dt = − 1

2k

∣∣t−2k
∣∣∞
1

=
1

2k
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and we can conclude by

(−∆)kωk(1) = 2

[∫ ∞

1

(1 + t)k

|t|1+2k
dt+

∫ 1

0

(1 + t)k + (1− t)k − 2

|t|1+2k
dt− 1

k

]
= 0,

where we have used Lemma B.3 for the last equality.

Lemma 1.12. Let ωk = x+k . Then

−(−∆)kωk(−1) > 0.

Proof. The proof is immediate since

ωk(−1 + t) + ωk(−1− t)− 2ωk(−1) = (−1 + t)k+ + (−1− t)k+ ≥ 0

and is not identically null.

Proof of Theorem 1.10. We start defining σ ∈ {−1; 1} to denote the sign of some x ∈ R.
Then we see that∫ ∞

−∞

ωk(σ(1 + t)) + ωk(σ(1− t))− 2ωk(σ)

|t|1+2k
dt =

∫ ∞

−∞

ωk(σ + t) + ωk(σ − t)− 2ωk(σ)

|t|1+2k
dt,

since, if σ = 1 is obvious, while, when σ = −1 we can put t = −t̃ and we see∫ ∞

−∞

ωk(σ(1 + t)) + ωk(σ(1− t))− 2ωk(σ)

|t|1+2k
dt

=

∫ ∞

−∞

ωk(−1− t) + ωk(−1 + t)− 2ωk(−1)

|t|1+2k
dt

=

∫ ∞

−∞

ωk(−1 + t̃) + ωk(−1− t̃)− 2ωk(−1)

|t̃|1+2k
dt̃ =

∫ ∞

−∞

ωk(σ + t̃) + ωk(σ − t̃)− 2ωk(σ)

|t̃|1+2k
dt̃.

At this point, since it holds that for any r ∈ R

ωk(|x|r) = (|x|r)k+ = |x|krk+ = |x|kωk(r),

we can state the following:

ωk(xr) = ωk(σ|x|r) = |x|kωk(σr).
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Finally, we end up with∫ ∞

−∞

ωk(x+ y) + ωk(x− y)− 2ωk(x)

|y|1+2k
dy =

∫ ∞

−∞

ωk(x(1 + t)) + ωk(x(1− t))− 2ωk(x)

|x|2k|t|1+2k
dt

= |x|−k

∫ ∞

−∞

ωk(σ(1 + t)) + ωk(σ(1− t))− 2ωk(σ)

|t|1+2k
dt

= |x|−k

∫ ∞

−∞

ωk(σ + t) + ωk(σ − t)− 2ωk(σ)

|t|1+2k
dt.

As a consequence, we can observe that

(−∆)kωk(x) =

|x|−k(−∆)kωk(−1) if x < 0

|x|−k(−∆)kωk(1) if x > 0.

Relying now on Lemma 1.11 and Lemma 1.12, thesis is proved, defining

ck = −(−∆)kωk(−1).
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2| Existence theorem for nonlocal

Schrödinger type equations

2.1. Introduction

We fix N ≥ 2, N being the space dimension and consider the following system:(−∆)ku+ λu = |u|p−2u in RN

u ∈ Hk(RN), p ∈ (2, 2∗k),
(2.1)

where k ∈ (0, 1) and 2∗k =
2N

N−2k
.

Consider now the following problem:

Problem 2.1. To find a couple (uc, λc) ∈ (Hk(RN)× R), uc(x) being a weak solution to
(2.1) for λ = λc, such that ∥uc∥22 = c2.

A classical solution to our system would be some function u ∈ Hk(RN) solving (2.1)
pointwise and vanishing at infinity. To this end, we could for example look for u ∈ C2k+ϵ

loc .
However, Problem 2.1 asks for a weak solution to our system, thus in order to deal with
a well posed problem, we have to analyze its formal definition and to define a correct
variational framework.

Theorem 2.2. The weak formulation of system (2.1) can be read as follows: look for a
function u ∈ Hk(RN) such that

CN,k

2

∫∫
R2N

(u(x)− u(y))(v(x)− v(y))

|x− y|N+2k
dxdy + λ

∫
RN

uv =

∫
RN

|u|p−2uv, (2.2)

for any v ∈ Hk(RN) and p ∈ (2, 2∗k).

Proof. We suppose that u ∈ Hk(RN) is a classical solution to equation (2.1), multiply the
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equation by v ∈ D(RN) and integrate. We retrieve that∫
RN

(−∆)ku(x)v(x) dx =

∫
RN

[
CN,kP.V.

∫
RN

u(x)− u(y)

|x− y|N+2k
dy

]
v(x) dx

= CN,k lim
ϵ→0

∫∫
R2N∩{|x−y|≥ϵ}

u(x)− u(y)

|x− y|N+2k
v(x) dxdy.

Then, we can exploit the domain symmetry in the following way:∫∫
R2N∩{|x−y|≥ϵ}

u(x)− u(y)

|x− y|N+2k
v(x) dxdy =

∫
RN

[∫
{|x−y|≥ϵ}

u(x)− u(y)

|x− y|N+2k
v(x) dx

]
dy

=

∫
RN

[∫
{|y−x|≥ϵ}

u(x)− u(y)

|x− y|N+2k
v(x) dy

]
dx =

∫
RN

[∫
{|x−y|≥ϵ}

u(y)− u(x)

|x− y|N+2k
v(y) dx

]
dy

=

∫∫
R2N∩{|x−y|≥ϵ}

u(y)− u(x)

|x− y|N+2k
v(y) dxdy.

This chain of equalities is true; indeed, on one side, by u ∈ Hk(RN) and v ∈ D(RN) we
can use Hölder, obtaining∫∫

R2N∩{|x−y|≥ϵ}

|u(x)− u(y)|
|x− y|N+2k

|v(x)| dxdy ≤ ∥v∥∞
∫∫

R2N

|u(x)− u(y)|
|x− y|N+2k

dxdy ≤ ∞.

Thus, the Fubini theorem can be applied and switching the order of integration is allowed.
On the other side, then, if we define

f(x, y) =
u(x)− u(y)

|x− y|N+2k
,

we notice that f(x, y) = −f(y, x). Moreover, if we consider that our double integral fixes
x and integrates over y taking values in the complementary space of Bϵ(x), we obtain the
aforementioned result. Exploiting the previous equality we easily obtain∫∫

R2N∩{|x−y|≥ϵ}

u(x)− u(y)

|x− y|N+2k
v(x) dxdy

=
1

2

∫∫
R2N∩{|x−y|≥ϵ}

(u(x)− u(y))(v(x)− v(y))

|x− y|N+2k
dxdy

and we are just left to show that∫∫
R2N

(u(x)− u(y))(v(x)− v(y))

|x− y|N+2k
dxdy

= lim
ϵ→0

∫∫
R2N∩{|x−y|≥ϵ}

(u(x)− u(y))(v(x)− v(y))

|x− y|N+2k
dxdy
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and this is possible exploiting the fact that both u, v are asked to be at least in Hk(RN),
then∫∫

R2N

(u(x)− u(y))(v(x)− v(y))

|x− y|N+2k
dxdy =

∫∫
R2N

(u(x)− u(y))

|x− y|N2 +k

(v(x)− v(y))

|x− y|N2 +k
dxdy

≤ ⌊u⌋k⌊v⌋k.

As a consequence, the integral over the whole R2N is well defined and we are allowed to
pass to the limit.
The thesis comes straightforwardly, noticing that D(RN) is dense in Hk(RN).

Definition 2.3. We define weak solution to system (2.1), a function u ∈ Hk(RN) satis-
fying (2.2).

Once we have clarified the meaning of weak solution, we are ready to solve Problem
2.1. Indeed, even if it can be proved that, for any λ > 0 fixed, a weak and positive
u ∈ Hk(RN) solving our original system exists (as shown in [14]), we are interested in a
particular family of solutions, namely u ∈ Hk(RN) with fixed mass ∥u∥22 = c2.

2.2. The rescaling argument approach

Problem 2.1 can be solved applying a rescaling argument.
To apply this argument, we start considering a weak solution to system (2.1) for λ = 1;
such a function, as already noticed, exists and we call it u. Then, we set c20 =

∫
RN u

2 and
wα,q(x) = αqu(αx). The method aims at finding both α ∈ R and q > 0 depending on
c, such that wα,q(x) solves Problem 2.1 for some λc > 0. Since, as just said, both α and
q depend on c, we will make this dependence explicit denoting wα,q(x) by wc(x). At the
end, (wc(x), λc(α)) will be a solution to Problem 2.1. To avoid heavy notations, in the
next calculations, we will denote wc(x) just as w(x).

The first step consists in studying (−∆)kw(x):

(−∆)kw(x) =
CN,k

2

∫
RN

w(x)− w(x− y)− w(x+ y)

|y|N+2k
dy

=
CN,k

2
αq

∫
RN

u(αx)− u(αx− αy)− u(αx+ αy)

|y|N+2k
dy

=
CN,k

2
αq

∫
RN

u(αx)− u(αx− ỹ)− u(αx+ ỹ)

|ỹ|N+2kα−(N+2k)
α−N dỹ

= αq+2k(−∆)ku(αx),
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where we have used ỹ = αy and dỹ = αNdy. We can proceed to say

(−∆)kw(x) = αq+2k(−∆)ku(αx)

= αq+2k

(
−u(αx) + αq(p−1)

αq(p−1)
|u(αx)|p−2u(αx)

)
= −α2kw(x) +

αq+2k

αq(p−1)
|w(x)|p−2w(x)

= −α2kw(x) + α2q+2k−pq|w(x)|p−2w(x).

Now we ask for α2q+2k−pq = 1 and
∫
RN w

2 = c2, where∫
RN

w2 = α2q

∫
RN

u2(αx) = α2q−Nc20,

so that the system becomes 2q + 2k − pq = 0

α
4k
p−2

−Nc20 = c2.

This system admits one solution under the hypothesis 4k
p−2

−N ̸= 0 and, in particular, it

is solved by q = 2k
p−2

, α = ( c
c0
)

2(p−2)
4k−N(p−2) and then

wc(x) = αqu(αx) =

(
c

c0

) 4k
4k−N(p−2)

u

((
c

c0

) 2(p−2)
4k−N(p−2)

x

)

λc = α2k =

(
c

c0

) 4k(p−2)
4k−N(p−2)

.

It is clear that (wc, λc) solves our problem.
If instead 4k

p−2
− N = 0, we are in the so called L2-critical case, namely p = 4k

N
+ 2. In

this scenario, we notice that c = c0 ∀α, meaning that, even if we allow the free parameter
λ to vary, the mass is still constant. In this scenario Problem 2.1 is solved just in case
c = c0 and admits infinite solutions of the form (αqu(αx), α2k) ∀α ∈ R.

To briefly recap these lines, we recall that solving Problem 2.1 through a rescaling argu-
ment approach, coincides with searching for solutions to system (2.1) without the mass
constraint. However, this possibility is strictly connected to the homogeneity of the second
term in (2.1).
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2.3. The variational approach

In this section, we decide to face the same system (2.1), adopting a variational approach,
which requires the introduction of an energy functional whose critical points coincide
with the solutions to our original problem. The geometry of the functional will be a core
aspect in our analysis, since it is the geometrical structure itself to define the nature of
the critical points under investigation and to determine, as a consequence, the method to
be used in order to show its existence.

Before starting the discussion, we recall here an important preliminary result, whose proof
can be found in Appendix B.

Theorem 2.4. Let k be in (0, 1) and N be greater then 2k. There exists a positive constant
C(N, k) such that, for any measurable and compactly supported function f : RN → R, it
holds

∥f∥22∗k ≤ C(N, k)⌊f⌋2k. (2.3)

Moreover, the embedding Hk(RN) ↪→ Lp(RN) is continuous ∀p ∈ [2, 2∗k].

We refer the reader to [10, Theorem 3.2.1] for a more general result.

We now define the energy functional E : Hk(RN) → R

E(u) :=
CN,k

4
⌊u⌋2k −

1

p
∥u∥pp, p ∈ (2, 2∗k), (2.4)

where CN,k is defined in (1.12).

Lemma 2.5. Let k ∈ (0, 1) and A : Hk(RN) → R be the functional defined by

A(u) = ⌊u⌋2k.

Then A is a C1 functional with

⟨dAu, v⟩ = 2

∫∫
R2N

(u(x)− u(y))(v(x)− v(y))

|x− y|N+2k
dxdy, (2.5)

for any u, v ∈ Hk(RN).

Proof. We start proving that, for any u ∈ Hk(RN), dAu ∈ (Hk(RN))∗, where dAu is
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defined in (2.5). Its linearity is trivial and we verify definition of continuity as follows:

∥dAu∥∗ = sup
∥v∥

Hk=1

|⟨dAu, v⟩| ≤ 2 sup
∥v∥

Hk=1

∫∫
R2N

|u(x)− u(y)|
|x− y|N/2+k

|v(x)− v(y)|
|x− y|N/2+k

dxdy

≤ 2 sup
∥v∥

Hk=1

⌊v⌋k⌊u⌋k ≤ 2 sup
∥v∥

Hk=1

∥v∥Hk⌊u⌋k <∞.

At this point, we would like to show that

lim
∥v∥

Hk→0

|A(u+ v)− A(u)− ⟨dAu, v⟩|
∥v∥Hk

= 0.

Directs calculations yield to

lim
∥v∥

Hk→0

|⌊u+ v⌋2k − ⌊u⌋2k − ⟨dAu, v⟩|
∥v∥Hk

= lim
∥v∥

Hk→0

1

∥v∥Hk

∫∫
R2N

|v(x)− v(y)|2

|x− y|N+2k
dxdy

= lim
∥v∥

Hk→0

⌊v⌋2k
∥v∥Hk

.

This limit exists and equals 0, indeed

0 ≤ lim
∥v∥

Hk→0

⌊v⌋2k
∥v∥Hk

≤ lim
∥v∥

Hk→0

⌊v⌋2k
⌊v⌋k

= lim
∥v∥

Hk→0
⌊v⌋k = 0.

The proof is complete.

Lemma 2.6. Let k ∈ (0, 1) and J : Hk(RN) → R be the functional defined by

J(u) =
1

p

∫
RN

|u|p p ∈ (2, 2∗k).

Then J is a C1 functional with

⟨dJu, v⟩ =
∫
RN

|u|p−2uv, (2.6)

for any u, v ∈ Hk(RN).

Proof. We start the proof showing that the Gateaux derivative for J exists and coincides
with (2.6). The first step consists in proving that, for any u ∈ Hk(RN), dJu ∈ (Hk(RN))∗.
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We call t := 2∗k(p− 1)/(2∗k − 1) and apply Hölder with α =
2∗k

2∗k−1
and β := 2∗k as follows

∥dJu∥∗ = sup
∥v∥

Hk=1

|⟨dJu, v⟩| ≤ sup
∥v∥

Hk=1

∫
RN

|u|p−1v ≤ sup
∥v∥

Hk=1

(∫
RN

|u|t
)1/α

∥v∥2∗k

≤ sup
∥v∥

Hk=1

C

(∫
RN

|u|t
)1/α

∥v∥Hk ,

where we have used (2.3) and the density of D(RN) in Hk(RN). We remark that the
integral in the parenthesis is finite since

2 <
2N

N + 2k
=

2∗k(2− 1)

2∗k − 1
< t < 2∗k ∀p ∈ (2, 2∗k), ∀N ≥ 2

and by Theorem 2.4 we have that Hk(RN) ↪→ Lp(RN) is continuous ∀p ∈ [2, 2∗k]. We
shall now obtain that

lim
t→0

J(u+ tv)− J(u)

t
= ⟨dJu, v⟩,

with dJu as in (2.6). By the Lagrange theorem we know that there exists some θ ∈ R,
|θ| ≤ |t| ≤ 1 such that ∣∣∣∣ |u+ tv|p − |u|p

t

∣∣∣∣ ≤ p|u+ θv|p−2(u+ θv)v

and, as a consequence, dominated convergence can be applied again with exponents
α and β, in order to obtain

lim
t→0

J(u+ tv)− J(u)

t
=

1

p

∫
RN

lim
t→0

(
|u+ tv|p − |u|p

t

)
. (2.7)

Since the limit at the right hand side of (2.7) defines a classical derivative, we infer that
J is the Gateaux derivative we are looking for.
At this point we would like to show that J ′ : u ∈ Hk(RN) 7→ J ′

u ∈ (Hk(RN))∗ is contin-
uous. In this aim, we consider (un)n ⊂ Hk(RN) such that uk → u for some u ∈ Hk(RN)

and we shall prove that

lim
n→∞

∥J ′
un

− Ju∥∗ → 0, (2.8)

where
∥J ′

un
− Ju∥∗ = sup

{
|
(
J ′
un

− Ju
)
v|, v ∈ Hk(RN), ∥v∥Hk = 1

}
.
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We notice that

∣∣(J ′
un

− J ′
u

)
v
∣∣ = ∣∣∣∣∫

RN

(
|un|p−2un − |u|p−2u

)
v

∣∣∣∣ ≤ (∫
RN

(
up−2
n un − |u|p−2u

)α)1/α

∥v∥2∗k

≤ C

(∫
RN

(
up−2
n un − |u|p−2u

)α)1/α

∥v∥Hk ,

where we have used Theorem 2.4. If we are able to show that the integral in the parenthesis
vanishes as n → ∞, we have proved the continuity in the dual space of J ′. Exploiting
the continuous embedding of Hk(RN) in Lp(RN), p ∈ (2, 2∗k), we can rely on the inverse
dominated convergence theorem ([8, Theorem 4.9]) to obtain that, up to a subsequence,
there exists a function h ∈ Lp(RN) such that

|un(x)| ≤ h(x) a.e. in RN , ∀n.

Thus we retrieve∫
RN

(
|un|p−2un − |u|p−2u

)α ≤ C

∫
RN

|un|α + |u|α ≤ C

∫
RN

|h|α + |u|α <∞.

Moreover, since, again up to subsequence, un(x) → u(x) a.e. in RN , and f : x ∈ RN 7→
|u(x)|p−2u(x) is continuous, then (2.8) is true. Finally, we want to show (2.8) for the
whole sequence (un)n and not just for a subsequence. By contradiction we assume that

∃nj → ∞, ϵ̄ > 0 such that ∥J ′
unj
J ′
u∥∗ ≥ ϵ̄ ∀nj. (2.9)

Since, instead, we know that unj
→ u in Hk(RN) we can repeat the aforementioned

reason in order to show a subsequence on nj contradicting (2.9). Exploiting finally the
famous total differentiation lemma, since we have shown that J is Gateaux differentiable
in Hk(RN) and that J ′ is continuous for any u ∈ Hk(RN), we obtain that J is Fréchet
differentiable and J ′ coincides with the Fréchet derivative. The theorem is proved.

Theorem 2.7. Let E be the functional defined in (2.4). Then E ∈ C1(Hk(RN)).

Proof. This proof is a trivial corollary of Lemma 2.5 and Lemma 2.6.

Since E is differentiable with continuous derivatives, we can adopt a variational approach.
In particular, if we define the L2(RN) sphere

Sc := {v ∈ Hk(RN) :

∫
RN

|v|2 = c2},
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we aim at showing that solutions to our original system coincide with critical points for
the energy functional E constrained to Sc. In particular, if we set K : Hk(RN) → R,
K(v) = ∥v∥2

2
− c2

2
, we are ready to prove this result through the following theorem.

Theorem 2.8. u ∈ Hk(RN) weakly solves the problem if and only if u is a constrained
critical point for E on Sc.

Proof. We start the proof defining the Lagrangian:

L(v, λ) = E(v) + λK(v)

and we would like to show that a function u is a critical point for E constrained to Sc

if and only if u is a free critical point for the Lagrangian. In other words, if we define
the tangent space to u in Sc (see Definition (A.1) for a general introduction to tangent
spaces) as

Tu :=
{
v ∈ Hk(RN) : ⟨u, v⟩2 = 0

}
,

we are going to prove that

⟨dEu, v⟩ = 0 ∀v ∈ Tu ⇐⇒ ∃λ : ⟨dEu + λ dKu, ϕ⟩ = 0 ∀ϕ ∈ Hk(RN). (2.10)

We start focusing on the left-to-right implication and we notice that, for any ϕ ∈ Hk(RN),
we can define ϕ̃ ∈ Tu

ϕ̃ = ϕ− ⟨ϕ, u⟩2
∥u∥22

u.

From this definition, remembering ⟨dKu, ϕ⟩ = ⟨ϕ, u⟩2 by definition of K, we can reason
as follows:

0 = ⟨dEu, ϕ̃⟩ = ⟨dEu, ϕ⟩ − ⟨dEu, u⟩
⟨ϕ, u⟩2
∥u∥22

= ⟨dEu, ϕ⟩+
(
−⟨dEu, u⟩

∥u∥22

)
⟨dKu, ϕ⟩ ∀ϕ ∈ Hk(RN).

Then thesis comes immediately fixing λ as the quantity in the parentheses and noticing
that it just depends on u.
For what concerns the right-to-left implication in (2.10), it is proved by

⟨dEu, v⟩ = −λ
∫
RN

uv ∀v ∈ Hk(RN) =⇒ ⟨dEu, v⟩ = 0 ∀v ∈ Tu

To complete the proof then, it is now sufficient to explicit the meaning for (u, λc) to be a
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free critical point for L(v, λ) and this actually means solving∂L
∂v
(u, λc) ≡ 0

∂L
∂λ
(u, λc) ≡ 0,

that explicitly becomes, for any v ∈ Hk(RN),
CN,k

2

∫∫
R2N

(u(x)− u(y))(v(x)− v(y))

|x− y|N+2k
dxdy + λc

∫
RN

uv =

∫
RN

|u|p−2uv

∥u∥L2(RN ) = c.

It is clear that this problem coincides with the weak formulation of the original system.

What we are left to study now, is the nature of the critical points of E. Depending on
the value of p indeed, E can be bounded from below or not. If E is bounded from below,
we can adopt minimization techniques while, if not, we must rely on min-max methods.
To study the geometry of the functional, we exploit both Theorem B.4 with q = 2 and
r = 2∗k and Theorem 2.4, that still holds true for our weak solution since D(RN) is dense
in Hk(RN). The combination of these two theorems leads us to the fractional Gagliardo-
Niremberg inequality:

Lemma 2.9 (Fractional Gagliardo-Niremberg inequality). Let N be the space dimension,
p ∈ (2, 2∗k) and u ∈ Hk(RN), with k ∈ (0, 1). Then

∥u∥p ≤ C∥u∥θ2∗k∥u∥
1−θ
2 ≤ C⌊u⌋θk∥u∥1−θ

2 ,

with θ = (p−2)N
2pk

.

Proof. The proof is direct if we make use of Theorem B.4 with q = 2, r = 2∗k and of
Theorem 2.4.

Lemma 2.9 allows us to bound from below our functional E(u) on Sc in this way:

E(u) ≥ CN,k

4
⌊u⌋2k − C⌊u⌋pθk . (2.11)

At this point, we can look for conditions on p that ensure infSc E(u) > −∞ and these are

pθ < 2 ⇐⇒ (p− 2)N

2k
< 2 ⇐⇒ p <

4k

N
+ 2.
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On the other side, let p ∈ (4k
N
+2, 2∗k) and set H(u, s) : (Sc×R) → Sc, where H(u, s)(x) =

e
sN
2 u(esx). Its values are in Sc since

∥H(u, s)∥22 = esN
∫
RN

|u(esx)|2 dx

= esN
∫
RN

|u(y)|2e−sN dy = ∥u∥22

and
⌊H(u, s)⌋2k =

∫∫
R2N

|H(u, s)(x)−H(u, s)(y)|2

|x− y|N+2k
dxdy

=

∫∫
R2N

esN
|u(esx)− u(esy)|2

|x− y|N+2k
dxdy

= e2ks
∫∫

R2N

|u(z)− u(ω)|2

|z − ω|N+2k
dzdω

= e2ks⌊u⌋2k.

If then, we fix u ∈ Sc and study E(H(u, s)), with s varying in R, we obtain

E(H(u, s)) =
CN,k e

2ks

4
⌊u⌋2k −

1

p

∫
RN

e
sNp
2 up(esx) dx

=
CN,k e

2ks

4
⌊u⌋2k −

e
sNp
2

−sN

p
∥u∥pp.

Exploiting Theorem 2.4, we know that, if u ∈ Sc, then u ∈ Lp(RN), since p ∈ (2, 2∗k) by
definition of E. Since p > 4k

N
+ 2, we obtain

sNp

2
− sN >

(
2 +

4k

N

)
sN

2
− sN = 2ks

and it is immediate that E(H(u, s)) → − ∞ as s→ ∞ .

Therefore, we can recap what we showed in this paragraph through the following scheme:

2 < p <
4k

N
+ 2 =⇒ inf

Sc

E > −∞ −→ minimization techniques

4k

N
+ 2 < p < 2∗k =⇒ inf

Sc

E = −∞ =⇒ min-max methods.

We just remark that, in the first line, we used an arrow and not an implication symbol
since, in order to use minimization techniques, we should prove that the infimum for E
is effectively reached, but we will not address this topic here.
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If finally p = 4k
N

+ 2, meaning that pθ = 2, then infSc E depends on c. In particular, in
this case we want to name T the product of the constants coming from Theorem 2.4 and
Theorem B.4, in order to make the mass value c appear explicitly. Then, equation (2.11)
takes the following form

E(u) ≥ CN,k

4
⌊u⌋2k − Tcp(1−θ)⌊u⌋pθk ,

that, with pθ = 2, becomes

E(u) ≥
(
CN,k

4
− Tcp−2

)
⌊u⌋2k.

From this inequality it is trivial that we can guarantee that E is bounded from below
only for small masses and, more precisely, for c ≤ (

CN,k

2T
)

1
p−2 .

2.4. Problem dissertation and resolution

In the introduction of this chapter we considered the homogeneous forcing term |u|p−2u ,
with p ∈ (2, 2∗k). Then, analyzing the variational approach, we proved how p ∈ (4k+2N

N
, 2∗k)

implies that the functional E is not bounded from below. From now on, we will consider
the unique case of p in (4k+2N

N
, 2∗k), but we propose to face a more general case, where

the forcing term is no more homogeneous. As a consequence, the rescaling technique
previously adopted becomes unsuitable in order to solve problems of the type of (2.1) and
we have to search for new methods.
In particular, throughout this section, we will face a nonlinear eigenvalue system of the
form

(−∆)ku(x)− g(u(x)) = λu(x) x ∈ RN , N ≥ 2, k ∈ (0, 1), λ ∈ R (2.12)

with u ∈ Sc and where the function g is asked to satisfy the following hypotheses:
(H1) g : R → R

(H2) there exists (α, β) ∈ (R× R) satisfying

4k+2N
N

< α ≤ β < 2∗k N ≥ 3

4k+2N
N

< α ≤ β N = 2,
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such that αG(s) ≤ g(s)s ≤ βG(s), with G(s) :=
∫ s

0
g(τ).

(H3) if we define G̃(s) = g(s)s− 2G(s), we ask for the existence of G̃′(s) such that

G̃′(s)s >
2N + 4k

N
G̃(s).

An example of admissible g is of the type:

g(u) =
m∑
i=1

αi|u|pi−2u pi ∈
(
4k + 2N

N
, 2∗k

)
∀i, (2.13)

for some m ∈ N.

We now state the main theorem we are going to prove in the remainder of this thesis:

Theorem 2.10. There exists a couple (uc, λc) ∈ (Hk
r (RN) × R) weakly solving (2.12),

such that ∥uc∥22 = c2.

Here Hk
r (RN) denotes the space of radially symmetric function in Hk(RN). We will firstly

work in Hk(RN) and just at a later stage, for reasons that will be specified, we will restrict
our domain to Hk

r (RN).

Similarly to the previous case, the weak formulation of system (2.12) set in Hk(RN) reads
as follows: look for a function u ∈ Hk(RN) such that

CN,k

2

∫∫
R2N

(u(x)− u(y))(v(x)− v(y))

|x− y|N+2k
dxdy + λ

∫
RN

u(x)v(x) dx =

∫
RN

g(u(x))v(x)dx

(2.14)

for any v ∈ Hk(RN).
If we consider g as in (2.13), the energy functional F (u) : Hk(RN) → R used in the
variational approach is

F (u) =
CN,k

4
⌊u⌋2k −

m∑
i=1

αi

pi
∥u∥pipi pi ∈

(
4k + 2N

N
, 2∗k

)
∀i.

Let now pass to a general description of the strategy we are going to adopt in order to
prove Theorem 2.10. Firstly, as in the motivational example, solutions to equation (2.12)
are critical points for F constrained to the L2 sphere Sc. Thus, again, the nature of its
critical points depends on the geometrical properties of the functional, which change as
the values of pi change. It holds true that, if 0 < pi <

4k+2N
N

∀i, we have infSc F > −∞
and the problem can be solved proving that the infimum for F is reached.
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In this study, instead, we focus on nonlinearities of the kind

4k + 2N

N
< p < 2∗k if N ≥ 3 , p >

4k + 2N

N
if N = 2,

since, if this is the case, the geometry for F changes, with infSc F = −∞. Thus, it is no
more possible to look for a minimum for F on Sc. Intuition leads us to think that, if F
owns some kind of mountain pass geometrical structure on Sc, we can look for its critical
points at some level γ(c).
As a consequence, at first, we analyze the geometry of this functional and prove that exist
u1, u2 ∈ Sc, satisfying

γ(c) ≡ inf
g∈Γ(c)

max
s∈[0,1]

F (g(s)) > max{F (u1), F (u2)},

with
Γ(c) = {g ∈ C([0, 1], Sc), g(0) = u1, g(1) = u2}.

Relying on these information on F , we could apply a standard version of the mountain
pass theorem on F |Sc to guarantee the existence of a Palais-Smale sequence at level γ(c)
(see [1]). However, since we work on Sc, standard methods used to prove boundedness of
a Palais-Smale sequence in superlinear problems, do not work. To overcome this issue,
we introduce the auxiliary functional F̃ (u, s) : (Hk(RN)× R) → R

F̃ (u, s) =
CN,k e

2ks

4
⌊u⌋2k − e− sN

∫
RN

G(e
sN
2 u(x)) dx

with G(t) =
∫ t

0
g(τ) dτ and we show that F̃ on (Sc × R) has the analogue geometri-

cal properties as F on Sc. Through these information, we extract a Palais-Smale se-
quence (un, sn)n ⊂ (Sc × R) for F̃ . The fact that ∂

∂s
F̃ (un, sn) → 0 and that F̃ (un, sn)

is bounded, imply that (vn)n := (H(un, sn))n is bounded in Hk(RN). The fact that
∂
∂s
F̃ (un, sn)|(Sc×R) → 0, impies that (vn)n is a bounded Palais-Smale sequence for F on Sc

at level γ(c). Namely, (vn)n is such thatF (vn) → γ(c)

F ′|Sc(vn) → 0,

where F ′|Sc denotes the constrained differential of F on Sc.
At this point we wish to prove that vn → v in Hk(RN), for some v ∈ Hk(RN). The last
difficulty we face is the unboundedness of the domain, that causes an apparent lack of com-
pactness. The invariance under the group of translation in RN prevents the embeddings
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Hk(RN) ↪→ Lp(RN) from being compact for any p. To overcome this obstacle, instead
of working in Hk(RN), we frame our variational procedure into the subspace Hk

r (RN).
Exploiting Theorem B.6, we will recover Hk

r (RN) ↪→↪→ Lp(RN), for any 2 < p < 2∗k if
N ≥ 3 or p > 2 if N = 2. Once compactness is recovered, we proceed to prove that (vn)n
converges in Hk

r (RN).

2.4.1. Existence of solutions with prescribed norms

In this section we assume c > 0 to be fixed and recall, for the reader’s convenience, the
problem we are investigating, which is

(−∆)ku(x)− g(u(x)) = λu(x) x ∈ RN , N ≥ 2, k ∈ (0, 1), λ ∈ R,

under the constraint ∫
RN

|u|2 = c2.

We start listing some properties of G that come up from our hypotheses.

Lemma 2.11. From (H1) and (H2), it follows that, for all t ∈ R and s ≥ 0sβG(t) ≤ G(ts) ≤ sαG(t) if s ≤ 1

sαG(t) ≤ G(ts) ≤ sβG(t) if s ≥ 1.
(2.15)

Proof. We define the following function

ϕt(s) = sβG(t)−G(ts) ∀t ∈ R

and stress that ϕt(1) = 0. Studying its derivative, we obtain

ϕ′
t(s) = βsβ−1G(t)− g(ts)t =

β

s

[
sβG(t)− g(ts)

ts

β

]
≥ β

s
[sβG(t)−G(ts)] =

β

s
ϕt(s).

This implies that (s−βϕt(s))
′ > 0 and, as a consequence, thats ≤ 1 =⇒ sβG(t)−G(ts) ≤ 0 =⇒ G(ts) ≥ sβG(t) ∀t ∈ R

s ≥ 1 =⇒ sβG(t)−G(ts) ≥ 0 =⇒ G(ts) ≤ sβG(t) ∀t ∈ R.
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The reverse inequality for α comes considering ψt(s) = sαG(t)−G(ts) and noticing that
(s−αψt(s))

′ < 0.

Lemma 2.12. G(s) is even and G(v) ≥ 0 for any v ∈ Sc .

Proof. G(s) is trivially even, since it is the primitive of an odd function. To prove posi-
tivity, exploit G(s) = G(−s) to take a generic v ∈ Sc, v ≥ 0 and write v as follows:

v = 1[v≤1] + 1[v≥1] = v1 + v2.

It is clear that
G(v) = G(v1) +G(v2).

Exploiting G(v) = G(1 · v) and (2.15) we obtain

G(v) ≥ G(1)[vβ1 + vα2 ] ≥ 0,

since v1 ≥ 0, v2 ≥ 0 and G(1) > 0. The positivity of G(1) can be checked exploiting
(2.15) with t = 1 and e.g. s = 2, that give us

2αG(1) ≤ 2βG(1).

This inequality, recalling α < β, can be true only if G(1) > 0.

Lemma 2.13. From (H1), (H2) and from the definition of G̃, we get for any s ∈ R
1

β − 2
G̃(s) ≤ G(s) ≤ 1

α− 2
G̃(s)

β

β − 2
G̃(s) ≤ g(s)s ≤ α

α− 2
G̃(s).

(2.16)

Proof. We are just going to prove the inequalities with β, the ones with α can be retrieved
in the same way. Consider that

1

β − 2
G̃(s) =

1

β − 2
g(s)s− 2

β − 2
G(s) ≤ β

β − 2
G(s)− 2

β − 2
G(s) = G(s).

Concerning the second inequality, we write

β

β − 2
G̃(s) =

β

β − 2
g(s)s− 2β

β − 2
G(s) ≤ β

β − 2
g(s)s− 2

β − 2
g(s)s = g(s)s.
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From now on, we will call H = L2(RN) while E = Hk(RN), where we use

⟨u, v⟩H :=

∫
RN

u(x)v(x) dx,

⟨u, v⟩E :=

∫∫
R2N

(u(x)− u(y))(v(x)− v(y))

|x− y|N+2k
dxdy + ⟨u, v⟩H

as scalar product. Moreover, we consider the spaces (H, ⟨·, ·⟩H) and (E, ⟨·, ·⟩E) equipped
with the induced norms

∥u∥2H :=

∫
RN

|u(x)|2 dx ∥u∥2E :=

∫∫
R2N

|u(x)− u(y)|2

|x− y|N+2k
dxdy + ∥u∥2H .

Thus, the main definitions we need, adapted to these new formalisms, are :

1. Sc := {u ∈ E, ∥u∥H = c}

2. F : E → R
F (u) =

CN,k

4
⌊u⌋2k −

∫
RN

G(u)

3. H : E × R → E

H(u, s)(x) = e
sN
2 u(esx)

4. F̃ : E × R → R
F̃ (u, s) = F (H(u, s)).

Recalling that ⌊H(u, s)⌋2k = e2ks⌊u⌋2k and ∥H(u, s)∥2 = ∥u∥2, we can explicitly write

F̃ (u, s) =
CN,k e

2ks

4
⌊u⌋2k − e− sN

∫
RN

G(e
sN
2 u(x)) dx. (2.17)

Finally, we have already noticed that H(u, s) is a transformation from (Sc × R) to Sc.

Before closing this section, we state and prove a lemma that allows us to express F̃ as
function of H(u, s).
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Lemma 2.14. If we set v = H(u, s), we have

F̃ (u, s) =
CN,k

4
⌊v⌋2k −

∫
RN

G(v).

Proof. Starting from equation (2.17), we can write

e2ks

4
⌊u⌋2k =

e2ks

4

∫∫
R2N

|u(z)− u(ω)|2

|z − ω|N+2k
dzdω

=
1

4

∫
RN

|H(u, s)(x)−H(u, s)(y)|2

|x− y|N+2k
dxdy =

1

4
⌊v⌋2k

and
e−sN

∫
RN

G(e
sN
2 u(x)) dx =

∫
RN

G(e
sN
2 u(esx)) dx =

∫
RN

G(v).

2.4.2. The mountain pass geometrical structure

In this section we proceed to prove that F̃ (u, s) possesses a mountain pass geometrical
structure on (Sc × R).

In this aim, we start the discussion stating two preliminary lemmas.

Lemma 2.15. Under (H1) and (H2), if u ∈ Sc, then

(a) ⌊H(u, s)⌋k → 0, F̃ (u, s) → 0 as s→ − ∞

(b) ⌊H(u, s)⌋k → + ∞, F̃ (u, s) → − ∞ as s→ + ∞.

Proof. To handle (a), we consider s < 0 so that e
sN
2 < 1 and apply (2.15) to obtain

|F̃ (u, s)| ≤ CN,k e
2ks

4
⌊u⌋2k + e− sN

∫
RN

G(e
sN
2 u(x)) dx

≤ CN,k e
2ks

4
⌊u⌋2k + esN

α−2
2

∫
RN

G(u(x)) dx,

where we use (H2) to state

sN

(
α− 2

2

)
> sN

(
2k

N

)
= 2sk. (2.18)
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This proves that |F̃ (u, s)| → 0 as s→ − ∞.
At the same time, also ⌊H(u, s)⌋2k = e2ks⌊u⌋2k → 0 as s→ − ∞ and (a) is proved.
For what concerns point (b), we fix s > 0 so that e

sN
2 > 1 to infer

F̃ (u, s) ≤ CN,k e
2ks

4
⌊u⌋2k − esN

α−2
2

∫
RN

G(e
sN
2 u(x)) dx,

where we have used (2.15).
Exploiting again (2.18), we immediately gather F̃ (u, s) → − ∞ as s → + ∞. Finally,
⌊H(u, s)⌋2k = e2ks⌊u⌋2k → + ∞ as s→ + ∞ and point (b) is proved.

Lemma 2.16. Under (H1) and (H2), there exists T (c) > 0 such that, settingA = {u ∈ Sc : ⌊u⌋2k ≤ T (c)}

B = {u ∈ Sc : ⌊u⌋2k = 2T (c)},

we have
0 < sup

u∈A
F (u) < inf

u∈B
F (u).

Proof. Our first aim is to estimate G(v) from above.
To achieve it, we consider that for any u ∈ Sc, we have

u = 1[u≤1]u+ 1[u≥1]u =: u1 + u2

and the following chain of inequalities, that rely on (2.15), holds:∫
RN

G(u) =

∫
RN

G(u1) +

∫
RN

G(u2) =

∫
RN

G(u1 · 1) +
∫
RN

G(u2 · 1)

≤ G(1)

∫
RN

(
|u1|α + |u2|β

)
≤ G(1)

∫
RN

(
|u|α + |u|β

)
= G(1)(∥u∥αα + ∥u∥ββ).

At this point, relying on Lemma 2.9, we consider α as defined in (H2) and write

∥u∥α ≤ C⌊u⌋θk∥u∥1−θ
2 , θ =

(α− 2)N

2αk
.

Moreover, exploiting u ∈ Sc, we obtain ∥u∥α ≤ C⌊u⌋
(α−2)N

2αk
k . This leads straightforwardly
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to ∫
RN

G(u) ≤ C

(
⌊u⌋

(α−2)N
2k

k + ⌊u⌋
(β−2)N

2k
k

)
.

Moreover, we use β ≥ α to get that, for ⌊u⌋k small enough, it is still true that∫
RN

G(u) ≤ C⌊u⌋
(α−2)N

2k
k .

At this point, we have bounded G(u) from above and we can proceed to prove the theorem
through this strategy.
If we fix T > 0 and suppose that u, v ∈ Sc, ⌊u⌋2k = T , ⌊v⌋2k = 2T , it holds for T small
enough

F (v)− F (u) =
CN,k

4
(⌊v⌋2k − ⌊u⌋2k)−

∫
RN

G(v) +

∫
RN

G(u)

≥ CN,k

4
T −

∫
RN

G(v) ≥ CN,k

4
T − CT

N(α−2)
4k

>
CN,k

8
T.

We stress that, for the previous inequalities, we have used

α− 2

4
>

(
4k + 2N

N
− 2

)
1

4
=

4k

N

1

4
=

k

N
,

meaning that N(α−2)
4k

> 1 and hence, that T
N(α−2)

4k goes to 0 faster than T , as T → 0. So,
we have proved that supu∈A F (u) < infu∈B F (u), but we still miss 0 < supu∈A F (u).
To complete the proof, we consider ũ ∈ A such that ⌊ũ⌋2k = T , T small. Thus, it satisfies

F (ũ) =
CN,k

4
⌊ũ⌋2k −

∫
RN

G(ũ)

≥ CN,k

4
T − CT

(α−2)N
4k

> 0

and the thesis is proved.

We are now ready to state the proposition that ensures the existence of a mountain pass
geometrical structure for F̃ (u, s) on (Sc × R) .

Proposition 2.1. Assume (H1) and (H2) and let T = T (c) be fixed as in Lemma 2.16.
There exist u1, u2 ∈ Sc such that:

(a) ⌊u1⌋2k ≤ T (i.e. u1 ∈ A)

(b) ⌊u2⌋2k > 2T
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(c) F (u1) > 0 ≥ F (u2).

Moreover, defining

Γ̃(c) := {h̃ ∈ C([0, 1], Sc × R), h̃(0) = (u1, 0), h̃(1) = (u2, 0)}

γ̃(c) := inf
h̃∈Γ̃(c)

max
t∈[0,1]

F̃ (h̃(t)),

we have, with γ̃0(c) := max{F̃ (u1, 0), F̃ (u2, 0)}, that

γ̃(c) > γ̃0(c).

Proof. Combining both Lemma 2.15 and Lemma 2.16, we can reason as follows, starting
from a generic u ∈ Sc.
By Lemma 2.15, we can find s < 0, with |s| large enough such that, defining ū := H(u, s),
ū belongs to A, since ⌊ū⌋k approaches 0 as s approaches −∞. In particular, since ū ∈ A,
A is non empty. Thanks to Lemma 2.16 then, being supu∈A F (u) strictly positive, there
exists u1 ∈ A with F (u1) > 0.
Studying instead H(u, s) for s big enough, it is trivial by Lemma 2.15 that there exists
u2, with ⌊u2⌋2k > 2T and F (u2) < 0.
So, we have proved points (a), (b), (c), while we miss the last statement of the theorem
and we start setting

Γ(c) := {h ∈ C([0, 1], Sc), h(0) = u1, h(1) = u2}

γ(c) := inf
h∈Γ(c)

max
t∈[0,1]

F (h(t)).

We can study γ(c) and say that, for any h(t) ∈ Γ(c), by continuity there exists t̃ such
that ⌊h⌋2k = 2T , namely h(t̃) ∈ B; thus, thanks to Lemma 2.16, we have that

F (h(t̃)) > F (h(0)) = F (u1).

This leads us to F (h(t̃)) > max{F (u1), F (u2)} = F (u1) for any h(t) ∈ Γ(c) and, exploiting
Lemma 2.16, we can infer that

γ(c) ≥ inf
h∈Γ(c)

F (h(t̃)) > sup
A
F ≥ max{F (u1), F (u2)}. (2.19)
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Moreover, we recall the following chain of equalities:F (u1) = F (H(u1, 0)) = F̃ (u1, 0)

F (u2) = F (H(u2, 0)) = F̃ (u2, 0).
(2.20)

Therefore, combining (2.19) and (2.20) we deduce that γ̃0(c) = max{F (u1), F (u2)} and
γ(c) > γ̃0(c). Thus, if we are able to gather γ̃(c) = γ(c), then we have completed the
proof.
We want to prove the equality γ̃(c) = γ(c), showing that both γ̃(c) ≥ γ(c) and γ̃(c) ≤ γ(c);
this is true since

∀ h̃(t) = (u, s)(t) ∃h(t) = H((u, s)(t)) : F (h(t)) = F̃ (h̃(t)) =⇒ γ̃(c) ≥ γ(c)

∀ h(t) = u(t) ∃h̃(t) = (u, 0)(t) : F̃ (h̃(t)) = F (h(t)) =⇒ γ̃(c) ≤ γ(c).

2.4.3. The min-max approach

In the previous section, we have shown how F̃ (u, s) possesses a mountain pass geometrical
structure on (Sc × R) and we would like to exploit this information in order to rely on
some version of the mountain pass theorem. In this way, we could guarantee the existence
of a Palais-Smale sequence at level γ(c). Nevertheless the standard hypotheses at the
basis of this theorem do not apply in our framework since the sphere Sc is not a Banach
space. In fact, in this section, we will state and prove a more general result, the min-max
theorem, valid also on differential manifolds. In order to do this, we will implicitly refer
to some basic notions of differential geometry, whose formal definitions and statements
are collected in Section A of the appendix.

Before starting our analysis we state here an important definition.

Definition 2.17. Let B be a closed subset of X. A class F of compact subsets of X is an
homotopy-stable family with boundary B if

(a) every set in F contains B

(b) for any set A in F and any η ∈ C([0, 1] × X,X) that satisfies η(t, x) = x for all
(t,x) in ({0} ×X) ∪ ([0, 1]×B), we have η({1} × A) ∈ F .

Our first step consists in the statement of an important deformation lemma valid on
Finsler manifolds; this lemma will be crucial in the formulation of the main theorem of
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this section.

Theorem 2.18 (Deformation lemma). Let ϕ be a C1 functional on a completed connected
C1 - Finsler manifold X and let B and C be two closed and disjoint subsets of X. Assume
that C is compact and that ∥dϕx∥ > 2ϵ > 0 for every x ∈ C. Then, for each k > 1, there
exists a positive and continuous function g on X and a deformation α in C([0, 1]×X;X)

such that, for some t0 > 0, the following holds for every t∈ [0, t0):

i. α(t, x) = x for every x ∈ B

ii. ρ(α(t, x), x) ≤ kt for every x ∈ X

iii. ϕ(α(t, x))− ϕ(x) ≤ −ϵg(x)t for every x ∈ X

iv. g(x) = 1 for every x ∈ C.

Proof. We fix k > 1 and use Definition (A.3) and Theorem A.8 from the appendix to find,
for any xi ∈ C, a neighbourhood Ui of xi, a chart fi : Ui → Txi

(X) such that

1

k
∥ · ∥x ≤ ∥ · ∥xi

≤ k∥ · ∥x for all x ∈ Ui (2.21)

and 〈
(ϕ ◦ f−1

i )′(y),
vi
∥vi∥

〉
≥ 1

2
∥dϕ(x)∥ for all y ∈ fi(Ui). (2.22)

For each Ui we set Vi ⊂ Ui, Vi open neighbourhood of xi, such that, for some δi > 0, we
have

B(Vi, δi) ⊂ Ui and B(fi(Vi), δi) ⊂ fi(Ui),

denoting with B(J, δ) the δ-neighbourhood of the set J in the appropriate metric.
We notice that, since C is compact, it is possible to select a finite covering (Vi)

m
i=1 and a

suitable partition of unity (χi)
m
i=1 conditioned to (Vi)

m
i=1.

We now set a continuous function l : X → [0, 1]:

l(x) =

1 if x ∈ C

0 if x ∈ (X\
⋃m

i=1 Vi) ∪B.

If we name δ0 = min{δ1, δ2, ..., δm} and t0 = δ0
1+k2

, we can start setting the continuous
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deformation α0(t, x) = x and define, by induction on j, 1 ≤ j ≤ m, the deformations

αj(t, x) =

f
−1
j

(
fj(αj−1(t, x))− tl(x)χj(x)

vi
∥vi∥

)
if αj−1(t, x) ∈ Uj

αj−1(t, x) otherwise.

We will now prove by induction the following properties, valid for t ∈ (0, t0):

fj(αj−1(t, x))− tl(x)χ(x)
vi
∥vi∥

∈ fj(Uj) if αj−1(t, x) ∈ Uj (2.23)

ρ(αj−1(t, x), αj(t, x)) ≤ kl(x)χj(x)t (2.24)

ϕ(αj(t, x))− ϕ(αj−1(t, x)) ≤ −ϵl(x)χj(x)t. (2.25)

We start with j = 1 and recall that

α1(t, x) =

f
−1
1

(
f1(x)− tl(x)χ1(x)

v1
∥v1∥

)
if x ∈ U1

x otherwise.

Property (2.23) is true indeed, assuming x ∈ U1, if it holds that χ1(x) ̸= 0, then x ∈ V1

but ∥tl(x)χ1(x)
v1

∥v1∥∥ ≤ t ≤ δ0 and, as a consequence

f1(x)− tl(x)χ1(x)
v1

∥v1∥
∈ B(f1(V1), δ1) ⊂ f1(U1).

If instead χ1(x) = 0 then, obviously, since by hypothesis x ∈ U1, property (2.23) is true.
For what concerns property (2.24) with j = 1, we must study ρ(x, α1(t, x)) and we consider
the path σ1(s) = α1(s, x), s ∈ [0, t] that connects x = σ1(0) to α1(t, x) = σ1(t). We have
that

ρ(x, α1(t, x)) ≤
∫ t

0

∥σ′
1(s)∥ ds ≤ k

∫ t

0

∥∥∥∥ ddsf1(σ1(s))
∥∥∥∥
x1

ds

≤ k ∥f1(σ1(t))− f1(σ1(0))∥x1 = k

∥∥∥∥(f1(x)− tl(x)χ1(x)
v1
∥v1∥

)
− f1(x)

∥∥∥∥
x1

= kl(x)χ1(x)t.

Finally, again with j = 1, we miss to show (2.25) and, in this aim, we notice that if
x /∈ U1, then α0(t, x) = α1(t, x) = x and (2.25) is trivially satisfied; if instead x ∈ U1, we
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can apply the mean value theorem with θ ∈ [0, 1] and write

ϕ(α1(t, x))− ϕ(x) = ϕ(α1(t, x))− ϕ ◦ f−1
1 (f1(x))

= ϕ ◦ f−1
1

(
f1(x)− tl(x)χ1(x)

v1
∥v1∥

)
− ϕ ◦ f−1

1 (f1(x))

= −tl(x)χ1(x)

〈
(ϕ ◦ f−1

1 )′
(
f1(x)− θtl(x)χ1(x)

v1
∥v1∥

)
,
v1
∥v1∥

〉
.

It now follows from equation (2.22) that x ∈ U1 implies that ϕ(α1(t, x)) − ϕ(x) ≤
−ϵl(x)χ1(x)t and (2.25) is proved.
Now, we proceed with our proof by induction assuming that (2.23), (2.24), (2.25) are
verified up to αj−1 and prove them for αj(t, x).
We start with property (2.23) and, before going on, we stress that, (2.24) being valid up
to αj−1, leads to

ρ(x, αj−1(t, x)) = ρ(α0(t, x), αj−1(t, x))

≤
j−1∑
i=1

ρ(αi−1(t, x), αi(t, x))

≤ ktl(x)

j−1∑
i=1

χi(x) ≤ kt.

(2.26)

(2.27)

It is worth noticing that, if x /∈
⋃j−1

i=1 Ui, then χi(x) = 0 for any 1 < i < j − 1, leading us
to
∑j−1

i=1 χi(x) = 0 and, as a consequence, to ρ(x, αj−1(t, x)) = 0.

Thus, from (2.26) and from t0 <
δ0

1+k2
, we infer that ρ(x, αj−1(t, x)) ≤ δ0

2
. This information

allows us to say that, for any x ∈ supp(χj) and αj−1(t, x) ∈ Uj, it is true the following:

ρ(x, αj−1(t, x)) = inf{L(σ); σ joining x to αj−1(t, x) and σ ⊂ Uj}. (2.28)

Indeed, if we suppose that previous proposition is false, we fall into contradiction because
we would have to choose a path σ leaving Uj and force, in this way, the existence of a
point x̃ /∈ Uj, x̃ ∈ σ such that

ρ(x, αj−1(t, x)) ≥ ρ(x, x̃) ≥ δ0,

ending to L(σ) ≥ δ0.
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If now we consider a generic σ joining x to αj−1(t, x), σ ⊂ Uj and study L(σ) we obtain

L(σ) =

∫ b

a

∥σ′(s)∥ ds ≥ 1

k

∫ b

a

∥∥∥∥ ddsfj(σ(s))
∥∥∥∥
xj

ds ≥ 1

k

∥∥∥∥∫ b

a

d

ds
fj(σ(s)) ds

∥∥∥∥
xj

=
1

k
∥fj(σ(b))− fj(σ(a))∥xj

=
1

k
∥fj(αj−1(t, x))− fj(x)∥xj

.

Since, as stated, this inequality is valid for any path in Uj joining that two points, it is
valid also for the infimum of L on that paths, that is, by (2.28), the definition of ρ(x, αj−1)

and we finally get

∥fj(αj−1(t, x))− fj(x)∥xj
≤ kρ(x, αj−1(t, x)) ≤ k2t.

Hence ∥∥∥∥fj(αj−1(t, x))− fj(x)− tl(x)χj(x)
vj
∥vj∥

∥∥∥∥
xj

≤ k2t+ t ≤ δ0.

We have proved that fj(αj−1(t, x)) − tl(x)χ(x) vi
∥vi∥ ∈ fj(Uj) if both αj−1(t, x) ∈ Uj and

x ∈ supp(χj) and, as a consequence, (2.23) is proved.
The next step consists in proving (2.24) and we just consider the path σj(s), for 0 ≤ s ≤ t,
such that σj(0) = αj−1(t, x) and σj(t) = αj(t, x), defining it as

σj(s) = f−1
j

(
fj(αj−1(t, x))− sl(x)χj(x)

vj
∥vj∥

)
.

It is straightforward then

ρ(αj−1(t, x), αj(t, x)) ≤ L(σj) ≤
∫ t

0

∥σj(s)′∥ ds

≤ k∥fj(αj(t, x))− fj(αj−1(t, x))∥xj

≤ kl(x)χj(x)t,

where the last inequality holds since, for any x ∈ Uj, we have that σj ⊂ Uj by definition
and αj−1(t, x) = x ∀x ∈ Uj.
We finally have that also (2.25) is true, exploiting the mean value theorem between
αj−1(t, x) and αj(t, x) and recalling that αj−1(t, x) = x ∀x ∈ Uj. The induction is com-
plete.
We are now ready to set α(t, x) = αm(t, x) and g(x) = l(x)

∑m
i=1 χj(x). We immediately

see that (i) is satisfied by definition of χm(x) , (ii) is true thanks to (2.26) with j−1 = m,
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(iii) comes from

ϕ(αm(t, x))− ϕ(α0(t, x)) =
m∑
j=1

ϕ(αj(t, x))− ϕ(αj−1(t, x))

≤ −ϵtl(x)
m∑
j=1

χj(x) = −ϵg(x)t,

whereas the definition of (χj)j partition of unity and of l(x) lead immediately to (iv).

Theorem 2.19. Let ϕ be a C1 functional on a completed connected C1 Finsler manifold X
and consider an homotopy-stable family F of compact subsets of X with a closed boundary
B. Name c= c(ϕ, F ) := inf

A∈F
max
x∈A

ϕ(x) and suppose that

sup ϕ(B) < c. (2.29)

Then, for any min-maxing sequence An for ϕ, meaning lim
n

max
An

ϕ = c, there exists (xn)n ∈
X such that:

(a) limn ϕ(xn) = c

(b) limn ∥dϕxn∥ = 0

(c) lim
n

inf
yn∈An

ρ(xn, yn) = 0.

Proof. We start considering a set Ã ∈ F such that:

c ≤ sup ϕ(Ã) < c+ ϵ2.

Then let L be the subspace of C([0, 1]×X; X), consisting of all continuous deformations
η satisfying:

η(t, x) = x for all (t, x) ∈ ({0} ×X) ∪ ([0, 1]×B)

sup (ρ(η(t, x), x); (t, x) ∈ ([0, 1]×X)) ≤ ∞.

If we equip L with the following metric:

δ(η, η′) = sup(ρ(η, η′), (t, x) ∈ ([0, 1]×X)) ∀η, η′ ∈ L,

the space L becomes a complete metric space.
We define now the functional I : L → R, by I(η) = supx∈Ã(ϕ(η(1, x))) and notice that
η̃(t, x) = x for any (t, x) ∈ ([0, 1]×X) is the identity in L.
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Before proceeding, we stress that F being homotopy-stable inside X and Ã ∈ F , imply
that η(1, Ã) ∈ F ∀η ∈ L and leads to

{I(η), η ∈ L} = {supϕ(η(1, Ã)), η ∈ L} ⊆ {supϕ(A), A ∈ F}. (2.30)

In other words, we could say that, naming Aη := η(1, Ã), the fact that F is homotopy-
stable inside X and Ã ∈ F , imply that {Aη, η ∈ L} ⊆ F .
Exploiting this inclusion and the definition of I, we write

I(η̃) = sup
x∈Ã

ϕ(x) < c+ ϵ2 ≤ inf
η∈L

I(η) + ϵ2.

The last inequality allows us to apply the variational Ekeland’s principle’s Corollary B.8,
with ϵ = ϵ2 and λ = ϵ, to retrieve that there exists η0 ∈ L such that:

I(η0) ≤ I(η̃) (2.31)

δ(η0, η̃) ≤ ϵ (2.32)

I(η) ≥ I(η0)− ϵδ(η, η0) for all η in L. (2.33)

If we set C := {x ∈ η0(1, Ã); ϕ(x) = I(η0)} and make use of hypothesis (2.29) together
with (2.30), we can state

ϕ(C) ≥ c > ϕ(B),

which means C ∩B = ∅.
We now claim the following proposition: there exists xϵ ∈ C such that ∥dϕxϵ∥ ≤ 4ϵ.
We want to prove this proposition by contradiction, relying on the deformation lemma
2.18 applied with 1 < k < 2. We start noticing that, if we suppose ∥dϕxϵ∥ ≥ 4ϵ and recall
C∩B = ∅, the hypotheses of the deformation lemma are verified and, as a consequence, we
obtain α(t, x) satisfying the conclusions of that lemma, together with a suitable function
g and a time t0 > 0.
If we fix 0 < λ < t0, we can construct the deformation ηλ(t, x) := α(tλ, η0(t, x)) and prove
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that it belongs to L since

ηλ(t, x) ∈ C([0, 1]×X))

ηλ(t, x) = α(0, η0(0, x)) = x ∀(t, x) ∈ ({0} ×X)

ηλ(t, x) = α(tλ, x) = x ∀(t, x) ∈ ([0, 1]×B),

where in the first line we used that α is continuous ∀(t, x) ∈ ([0, t0]×X) , in the second
we exploit point (ii) of Lemma 2.18 and η0 ∈ L, while in the third we rely on point (i)
of Lemma 2.18 and again on η0 ∈ L, that implies η0(t, x) = x ∀x ∈ B. Now, from point
(ii) of Lemma 2.18 and t < 1, we retrieve that

ρ(α(λt, η0(t, x)), η0(t, x)) ≤ kλt < kλ ∀(t, x) ∈ ([0, 1]×X)

and this allows us to write d(ηλ, η0) < kt.
Finally, combining this result with equation (2.33), we have, since ηλ ∈ L

I(ηλ) ≥ I(η0)− ϵδ(ηλ, η0) ≥ I(η0)− ϵkλ ≥ ϕ(η0(1, x))− ϵkλ ∀x ∈ Ã.

Exploiting compactness of F , we can say that supϕ(ηλ(1, Ã)) is a supremum of ϕ, which
is continuous, on the compact set ηλ(1, Ã) ∈ F and, as a consequence, is a maximum and
there exists xλ ∈ Ã such that ϕ(ηλ(1, xλ)) = I(ηλ). Then, we can explicit the equation as
follows:

ϕ(ηλ(1, xλ))− ϕ(η0(1, x)) ≥ −ϵkλ ∀x ∈ Ã. (2.34)

But, exploiting (iii) and ϕ(ηλ(1, xλ)) = ϕ(α(λ, η0(1, xλ))), we obtain

ϕ(ηλ(1, xλ))− ϕ(η0(1, xλ)) ≤ −ϵλg(η0(1, xλ)). (2.35)

If we now combine (2.34) with x = xλ and (2.35), we retrieve the following expression

−ϵkλ ≤ ϕ(ηλ(1, xλ))− ϕ(η0(1, xλ)) ≤ −ϵλg(η0(1, xλ)),

that can be simplified into

g(η0(1, xλ)) ≤
k

2
for any k > 1. (2.36)

We want now to let λ→ 0, from which it is trivial limλ→0 ηλ(t, x) = η0(t, x) and we define
x0 any cluster point of xλ as λ → 0. It must be noticed that, if we study (2.34) with
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λ→ 0, we have
ϕ(η0(1, x0)) ≥ ϕ(η0(1, x)) for any x ∈ Ã,

meaning that η0(1, x0) = I(η0) and so x0 ∈ C.
Since x0 ∈ C, (iv) ensures us that g(η0(1, x0)) = 1 and the contradiction is clear: choose,
as said, 1 < k < 2, e.g k = 3

2
and compare this last equality with (2.36) as λ → 0. It

becomes: g(η0(1, x0)) ≤ 3
4

g(η0(1, x0)) = 1,

that is a clear contradiction.
Now that we have proved by contradiction that there exists xϵ ∈ C such that ∥dϕxϵ∥ ≤ 4ϵ,
which corresponds to point (b) of the theorem, we still miss to show that both c < ϕ(xϵ) <

c + ϵ2 and δ(xϵ, Ã) < ϵ. But they are trivial, indeed, exploiting (2.31), by the Ekeland’s
principle we obtain

ϕ(xϵ) = I(η0) ≤ I(η̃) ≤ c+ ϵ2

and, moreover, c ≤ I(η0) is true by definition of c.
Finally, taking into account (2.32), we have the following chain of inequalities:

inf
y∈Ã

ρ(xϵ, y) ≤ sup
y∈Ã

ρ(η0(1, y), y) ≤ sup
t∈[0,1],x∈X

ρ(η0(t, x), x)

= sup
t∈[0,1],x∈X

ρ(η0(t, x), η̃(t, x)) = δ(η0, η̃)

≤ ϵ.

The proof of the theorem is complete.

2.4.4. Existence of a bounded Palais-Smale sequence

In this chapter, we want to prove that there exists a Palais-Smale sequence for F restricted
to Sc at level γ(c) and that it is bounded in E.

We start naming E := (E × R) and equipping it with the scalar product

⟨·, ·⟩E = ⟨·, ·⟩E + ⟨·, ·⟩R,

associated with its induced norm

∥ · ∥2E = ∥ · ∥2E + ∥ · ∥2R.
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For convenience, moreover, we state here two definitions valid, respectively, ∀v ∈ E and
∀(u, s) ∈ E: Tv := {z ∈ E : ⟨v, z⟩H = 0}

T̃ (u, s) := {(z1, z2) ∈ E, ⟨u, z1⟩H = 0},

where Tv is the tangent space to v with respect to the manifold Sc, while T̃ (u, s) is the
tangent space to (u, s) with respect to (Sc × R).
Before continuing the discussion, we now state two lemmas that will be important through-
out this section.

Lemma 2.20. Let (vn)n be a bounded sequence in E and g a function satisfying (H1) and
(H2); then it holds:

1.
∫
RN g(vn)z →

∫
RN g(v)z ∀z ∈ E

2.
∫
RN g(vn)vn →

∫
RN g(v)v

3.
∫
RN g(v)vn →

∫
RN g(v)v.

Proof. In this proof we are going to apply the Corollary B.5, since E is Hilbert and (vn)n

is bounded in E by hypothesis . We will name v the limit in E of vn and h(x) the
dominating function.
If we are able to prove

lim

∫
RN

g(vn)z =

∫
RN

g(lim vn)z ∀z ∈ E,

then, since g is continuous and vn → v a.e, then point (1) holds.
We start relying on (H2) to see∫

RN

g(vn)z ≤ β

∫
RN

G(vn)

vn
z.

Now we consider vn1 = 1[|vn(x)|≤1]vn and vn2 = 1[|vn(x)|≥1]vn so that

vn(x) = vn1(x) + vn2(x).

Moreover, being G even and linear, it is true that

G(vn) = G(vn1 + vn2) = G(vn1) +G(vn2) = G(|vn1|) +G(|vn2|).
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We can use (H2) to say that

G(vn) ≤ G(1)(vαn1 + vβn2) ∀ 2 +
4k

N
< α ≤ β < 2∗k.

If we now develop calculations, we obtain∫
RN

G(vn)

vn
z ≤ G(1)

∫
RN

(vα−1
n1 + vβ−1

n2 )z

≤ G(1)

∫
RN

(hα−1 + hβ−1)z

=

∫
RN

f,

where f := G(1)(hα−1 + hβ−1)z. Moreover, f ∈ L1(RN) indeed, applying Hölder with
p = α

α−1
, q = α and p = β

β−1
, q = β, we retrieve

∫
RN

f ≤ G(1)max

{
∥z∥

1
α
Lα , ∥z∥

1
β

Lβ

}[(∫
RN

hα
)α−1

α

+

(∫
RN

hβ
)β−1

β

]
,

that is well defined quantity thanks to Lemma B.
At this point, it is possible to apply dominated convergence on f̃ = βf and (1) is proved.
To prove point (2), we an follow the same reasoning to apply dominated convergence and
thesis comes from

|g(vn)vn−g(v)v| ≤ |g(vn)vn−g(vn)v|+ |g(vn)v−g(v)v| ≤ |g(vn)||vn−v|+ |v||g(vn)−g(v)|,

where |vn − v| → 0 and |g(vn)− g(v)| → 0, thanks to Lemma B and to the continuity of
g.
Finally, point (3) comes straight forward applying dominated convergence in the same
way.

Lemma 2.21. F̃ ∈ C1(E; R).

Proof. We want to show that F̃ admits continuous partial derivatives. In particular, we
will look for dF̃ (u) : E → R, dF̃ (s) : R → R linear and continuous such that

lim
∥v∥E→0

|F̃ (u+ v, s)− F̃ (u, s)− ⟨dF̃u, v⟩|
∥v∥E

= 0 ∀s ∈ R

lim
|h|→0

|F̃ (u, s+ h)− F̃ (u, s)− ⟨dF̃s, h⟩|
|h|

= 0 ∀u ∈ E.
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To compute dF̃ (u), we should rely on (2.17) and perform the same calculations as for
Theorem 2.7 to retrieve:

⟨dF̃ (u), v⟩ = CN,k e
2ks

2

∫∫
R2N

(u(x)− u(y))(v(x)− v(y))

|x− y|N+2k
dxdy − e−

sN
2

∫
RN

g(e
sN
2 u)v.

Now, if we notice that un → u in E implies that (e
sN
2 un)n is bounded, applying Lemma

2.20 together with Lemma 2.21 we can conclude that ∥un − u∥E → 0 and we are finally
led to ∥dF̃ (un)− dF̃ (u)∥∗ → 0.
Focusing then on dF̃ (s), we see that it is a function of real variable with values in R, then
the derivative with respect to s can be computed trivially as

⟨dF̃ (s), h⟩ = h
CN,k e

2ks

2
k⌊u⌋2k + he−sNN

∫
RN

G(e
sN
2 u)− h

N

2
e−

sN
2

∫
RN

g(e
sN
2 u)u.

It should be clear that |sn − s| → 0 implies e
snN
2 u→ e

sN
2 u in E so that, if we recall (H2)

to state G(e
snN
2 u) ≤ α−1g(e

snN
2 u)e

snN
2 u , we can exploit again Lemma 2.20 to obtain that

|sn − s| → 0 implies ∥dF̃ (sn)− dF̃ (s)∥∗ → 0.
Finally, the proof is complete remembering

⟨dF̃ (u, s), (v, h)⟩ = ⟨dF̃ (u), v⟩+ ⟨dF̃ (s), h⟩.

The following part of this section will be devoted to make explicit that hypotheses of
Theorem 2.19 are valid in this context. It is possible to make the following analogies with
the notations used in Section 2.4.3:

X = (Sc × R)

ϕ = F̃ |(Sc×R) → R

F = Θ(c) := {h̃[0, 1] ⊂ (Sc × R); ∀h̃ ∈ Γ̃(c)}.

We can apply Dini’s implicit function theorem to ensure thatX admits a Finsler structure,
indeed (Sc ×R) is a regular hypersurface, meaning that it is a Riemannian manifold and,
as a consequence, admits a Finsler structure (see [22] for further details).
We also notice that ϕ is the restriction of F̃ to (Sc × R) and we can exploit Lemma 2.21
to gather that ϕ ∈ C1.

Lemma 2.22. Θ(c) is a family of compact sets.
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Proof. We want to prove that A := h̃[0, 1], A ∈ Θ(c) is compact for any h̃ ∈ Γ̃(c).
Let (xn)n be a sequence in A and we ask if there exists a subsequence (xnk

)nk
such

that (xnk
)nk

→ x̄ ∈ A. This is true, since xnk
= h̃(tnk

), tnk
∈ [0, 1] and thanks to

Bolzano–Weierstrass theorem tnk
→ t̄ ∈ [0, 1]. The lemma is proved relying on the

continuity of h̃, setting x̄ = h̃(t̄).

Lemma 2.23. Θ(c) is an homotopy-stable family of compact sets in X, with boundary

B := {(u1, 0), (u2, 0)}.

Proof. To prove this lemma, we immediately see that any h̃(c) ∈ Γ̃(c) contains the bound-
ary by definition. Then, we notice that any continuous deformation η(t, x), t ∈ [0, 1], x ∈
X that is identity at t = 0 in X and in B for 0 ≤ t ≤ 1, if applied to any element of F , at
t = 1 results in a continuous curve connecting (u1, 0) to (u2, 0), which, as a consequence,
is still an element of Θ(c).

Then, if we set ζ(c) := infθ∈Θ(c) maxx∈θ F̃ (x), exploiting the trivial equality ζ(c) = γ̃(c) ,
together with Proposition 2.1, we notice that sup F̃ (B) < ζ(c). As a consequence Theorem
2.19 can be applied in order to enunciate the following proposition.

Proposition 2.2. Assume (H1) and (H2) hold and let (gn)n ⊂ Γ̃(c), such that

max
t∈[0,1]

F̃ (gn(t)) ≤ γ̃(c) +
1

n
.

Then, there exists a sequence (un, sn)n ⊂ (Sc × R) such that

(a) F̃ (un, sn) ∈ [γ̃(c)− 1
n
, γ̃(c) + 1

n
]

(b) mint∈[0,1]∥(un, sn)− gn(t)∥E ≤ 1√
n

(c)
∥∥∥F̃ ′|(Sc×R)(un, sn)

∥∥∥
∗
≤ 2√

n
,

where point (c) can be reformulated as

|⟨F̃ ′(un, sn), z⟩E∗×E| ≤
2√
n
∥z∥E for all z ∈ T̃ (un, sn).

Proof. This proof is a corollary of Theorem 2.19, since we have already shown that its
hypotheses are satisfied. It has just to be recalled that Theorem 2.19 would ensure for
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the existence of (An)n ⊂ Θ(c) such that

sup
An

F̃ (An) ≤ γ̃(c) +
1

n
.

It is possible, however, to notice that any A ∈ Θ(c) represents the image of a curve h̃
in (Sc × R), then to any (An)n ⊂ Θ(c) corresponds a (gn)n ⊂ Γ̃(c) defining gn such that
An = gn[0, 1] for any n. As a consequence taking supAn

F̃ is the same as considering the
supt∈[0,1] F̃ (gn(t)). Then, we also recall that the distance on (Sc × R) is induced by the
norm ∥ · ∥E and has no more to be generally defined as ρ. This leads to the following
equality:

inf
yn∈An

ρ((un, sn), yn) = inf
yn∈gn[0,1]

ρ((un, sn), yn)

= min
yn∈gn[0,1]

∥(un, sn), yn∥E = min
t∈[0,1]

∥(un, sn), gn(t)∥E.

We shall use these results in order show that there exists a Palais-Smale sequence (vn)n ∈
Sc for F |Sc , which is to say F (vn) → γ(c)

∥F ′|Sc(vn)∥∗ → 0.
(2.37)

At this stage of the discussion, we are going to list four lemmas, that will be used frequently
in this section.

Lemma 2.24. The following formula holds:

⟨F̃ ′(u, s), (v, 0)⟩ = CN,k e
2ks

2

∫∫
R2N

(u(x)− u(y))(v(x)− v(y))

|x− y|N+2k
dxdy

− e−
sN
2

∫
RN

g(e
sN
2 u(x))v(x) dx.

Proof. This lemma can be seen as a corollary of Lemma 2.21, isolating the partial deriva-
tive with respect to u, without any increment in the s direction.

Lemma 2.25. Setting ∂sF̃ (u, s) := ⟨F̃ ′(u, s), (0, 1)⟩ and v = H(u, s) we have that

∂sF̃ (u, s) =
CN,k k

2
⌊v⌋2k +N

∫
RN

G(v)− N

2

∫
RN

g(v)v.
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Proof. Taking equation (2.17), we study ∂s
(

e2ks

4
⌊u⌋2k

)
:

∂s

(
e2ks

4
⌊u⌋2k

)
=
e2ks

2
⌊u⌋2k =

ke2ks

2

∫∫
R2N

|u(z)− u(ω)|2

|z − ω|N+2k
dzdω

=
ke2ks

2

∫∫
R2N

e2sN |u(esx)− u(esy)|2

|x− y|N+2kesN+2sk
dxdy

=
ke2ks

2

∫∫
R2N

|e sN
2 u(esx)− e

sN
2 u(esy)|2

|x− y|N+2ke2sk
dxdy

=
k

2

∫∫
R2N

|v(x)− v(y)|2

|x− y|N+2k
dxdy

=
k

2
⌊v⌋2k.

Finally, we consider that

∂s

(
e− sN

∫
RN

G(e
sN
2 u(x)) dx

)
= ∂s(e

− sN)

∫
RN

G(e
sN
2 u(x)) dx+ e− sN∂s

(∫
RN

G(e
sN
2 u(x)) dx

)
= −N

∫
RN

G(v) +
N

2

∫
RN

g(v)v.

Lemma 2.26. Let s ∈ R be fixed. If we set h ∈ E, h̃(x) = e−
sN
2 h(e−sx) and v = H(u, s),

it holds
(h̃, 0) ∈ T̃ (u, s) ⇐⇒ h ∈ Tv.

Proof. ∫
RN

h̃u =

∫
RN

e−
sN
2 h(e−sx)u(x) dx = e−

sN
2

∫
RN

h(y)u(esy)esN dy

=

∫
RN

h(x)
(
e

sN
2 u(esx)

)
dx =

∫
RN

hv

and then
∫
RN h̃u = 0 ⇐⇒

∫
RN hv = 0.

Lemma 2.27. Setting h ∈ E, h̃ = e−
sN
2 h(e−sx), then

∥(h̃, 0)∥2E = ∥h∥22 + e−2sk⌊h⌋2k.
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Proof. This proof is just a matter of calculating the following quantities:

∥h̃∥22 =
∫
RN

e−sN |h(e−sx)|2 dx =

∫
RN

|h(y)|2 dy = ∥h∥22

and

⌊h̃⌋2k =
∫∫

R2N

e−sN |h(e−sx)− h(e−sy)|2

|x− y|N+2k
dxdy

=

∫∫
R2N

e−sN |h(z)− h(ω)|2

esN+2sk|z − ω|N+2k
e2sN dzdω = e−2sk⌊h⌋2k.

Exploiting these results and naming vn = H(un, sn), with (un, sn)n defined in Proposition
2.2, our first step consists in showing that ⌊vn⌋k and

∫
RN G(vn) are bounded.

In this aim, we exploit Proposition 2.2 point (c) to retrieve that, since (0, 1) ∈ T̃ (un, sn)∀n,
then ∂sF̃ (un, sn) → 0, where ∂sF̃ (un, sn) has been defined in Lemma 2.25. We also get,
from point (a) of the same proposition, that F̃ (un, sn) is bounded, obtaining

|NF̃ (un, sn) + ∂sF̃ (un, sn)| ≤ C ∀n.

Now, if we expand calculations and make use of Lemmas 2.14 and 2.25, we get

|NF̃ (un, sn) + ∂sF̃ (un, sn)| =
N + 2k

4
CN,k⌊vn⌋2k −

N

2

∫
RN

g(vn)vn

≤ N + 2k

4
CN,k⌊vn⌋2k −

Nα

2

∫
RN

G(vn)

and we deduce that

(N + 2k)
CN,k

4
⌊vn⌋2k −

Nα

2

∫
RN

G(vn) ≥ − C. (2.38)

Since F (vn) = F̃ (un, sn) is bounded, meaning that CN,k

4
⌊vn⌋2k −

∫
RN

G(vn) < C, we have

the following:
CN,k

4
⌊vn⌋2k < C +

∫
RN

G(vn). (2.39)

Combining then equations (2.38) and (2.39), it arises(
N + 2k − Nα

2

)∫
RN

G(vn) ≥ − C.
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If we are able to show that 0 ≥
(
N + 2k − Nα

2

) ∫
RN

G(vn) ≥ − C, then we have proved

the boundedness of
∫
RN G(vn) and indeed(

N + 2k − Nα

2

)
<

(
N + 2k − N

2

(
4k + 2N

N

))
= N + 2k −N − 2k = 0.

As a consequence, we are finally allowed to write

∃C > 0 : 0 ≤
∫
RN

G(vn) ≤ C ∀n, (2.40)

which, exploiting equation (2.39), gives

∃C > 0 : 0 ≤ ⌊vn⌋2k ≤ C ∀n (2.41)

and so step one is completed.
Summarizing our results, we are now ready to enounce the following two theorems.

Theorem 2.28. (vn)n is bounded in E.

Proof. The proof is trivial if we combine vn ∈ Sc and equation (2.41).

Theorem 2.29. These two points are true:

(a) F (vn) ∈ [γ(c)− 1
n
, γ(c) + 1

n
]

(b) ∥F ′|Sc(vn)∥∗ ≤
4√
n
, meaning |⟨F ′(vn), z⟩E∗×E| ≤ 4√

n
∥z∥E ∀z ∈ Tvn.

Proof. Point (a) is immediate, since F (vn) = F (H(un, sn)) and γ(c) = γ̃(c). For what
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concerns point (b) instead, we set hn ∈ Tvn , hn generic and consider

⟨F ′(vn), hn⟩ =
CN,k

2

∫∫
R2N

(vn(x)− vn(y))(hn(x)− hn(y))

|x− y|N+2k
dxdy

−
∫
RN

g(vn(x))hn(x) dx

=
CN,k e

snN
2

2

∫∫
R2N

(u(esnx)− u(esny))(hn(x)− hn(y))

|x− y|N+2k
dxdy

−
∫
RN

g(vn(x))hn(x)dx

=
CN,k e

snN
2

2

∫∫
R2N

(u(z)− u(ω))(hn(e
−snz)− hn(e

−snω))

|z − ω|N+2ke−snN−2snk
e−2snN dzdω

−
∫
RN

g(e
snN
2 u(esnx))hn(x) dx

=
CN,k e

− snN
2

+2snk

2

∫∫
R2N

(u(z)− u(ω))(hn(e
−snz)− hn(e

−snω))

|z − ω|N+2k
dzdω

− e−snN

∫
RN

g(e
snN
2 u(y))hn(e

−sny) dy,

that finally becomes

⟨F ′(vn), hn⟩ =
CN,k e

2snk

2

∫∫
R2N

(u(z)− u(ω))[e−
snN
2 (hn(e

−snz)− hn(e
−snω))]

|z − ω|N+2k
dzdω

− e−
snN
2

∫
RN

g(e
snN
2 u(y))[e−

snN
2 hn(e

−sny)] dy.

If we now define h̃n(x) = e−
snN
2 hn(e

−snx), we can state

⟨F ′(vn), hn⟩E∗×E =
CN,k e

2snk

2

∫∫
R2N

(u(x)− u(y))(h̃n(x)− h̃n(y))

|x− y|N+2k
dxdy

− e−
snN
2

∫
RN

g(e
snN
2 u(x))h̃n(x) dx

and we can exploit Lemma 2.24 to recognize

⟨F ′(vn), hn⟩ = ⟨F̃ ′(un, sn), (h̃n, 0)⟩.

Since then Lemma 2.26 holds true, we can rely on Proposition 2.2, point (c), to write

|⟨F ′(vn), hn⟩| = |⟨F̃ ′(un, sn), (h̃n, 0)⟩| ≤
2√
n
∥(h̃n, 0)∥E.
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At this point, we would like to explicit ∥(h̃n, 0)∥E as a function of ∥hn∥E and, to do this,
we have to show firstly that sn → 0 as n→ ∞.
In this aim, we notice that Proposition 2.2 does not loose of generality if, instead of a
generic (gn)n ∈ Γ̃(c), as minimizing sequence we consider g̃n = (H(gn), 0), because

F̃ (g̃n) = F̃ ((H(gn), 0)) = F (H(gn)) = F̃ (gn),

where we exploited that H((H(gn), 0)) = H(gn). As a consequence, maxt∈[0,1] F̃ (gn(t)) =

maxt∈[0,1] F̃ (g̃n(t)) and Proposition 2.2 does not loose of generality.
According to point (b) of that proposition, then, we have :

√
sn ≤ min

t∈[0,1]

(
∥un −H(g̃n(t))∥2k + |sn − 0|

) 1
2 ≤ 1√

n

and we have shown that sn → 0 as n→ ∞.
Now, we rely on Lemma 2.27, ensuring that ∥(h̃n, 0)∥2E = ∥hn∥22+ e−2snk⌊hn⌋2k and ask for
n large enough such that e−2snk < 4, meaning that

∥(h̃n, 0)∥2E ≤ 4∥hn∥2E.

Finally, we can conclude the proof writing :

|⟨F ′(vn), hn⟩| ≤
2√
n
∥(h̃n, 0)∥E ≤ 4√

n
∥hn∥E.

2.4.5. Further properties of the Palais-Smale sequence

At this stage of the analysis, we just miss to prove the convergence of (vn)n in E, asking
for some compact embeddings of E into spaces Lp. Since it is possible to show that these
embeddings are not compact in unbounded domains, due to translation invariance, we will
restrict our domain to Hk

r (RN), which, we recall, denotes the space of radially symmetric
function in E. We remark that this choice is possible since our problem is invariant under
rotations. Therefore, thanks to Theorem B.6, compactness can be recovered. Moreover,
it is clear that the variational procedure employed so far does not change if we work in
the subspace Hk

r (RN). From now on, then, E = Hk
r (RN).

Proposition 2.3. There exists (λn)n ⊂ R such that, up to a subsequence:
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(a)
∫
RN

G(vn) → C, C > 0

(b) (−∆)kvn − λnvn − g(vn) → 0 in E∗

(c) λn → λc < 0.

Proof. We start proving (a), recalling Lemma 2.25, namely that ∂sF̃ (un, sn) → 0 means

lim
n

[
CN,k k

2
⌊vn⌋2k −

N

2

(∫
RN

g(vn)vn − 2

∫
RN

G(vn)

)]
= 0.

Moreover, since g(vn)vn ≤ βG(vn), we obtain∫
RN

g(vn)vn − 2

∫
RN

G(vn) ≤ (β − 2)

∫
RN

G(vn)

and we finally infer that

lim
n

[
CN,k k

2
⌊vn⌋2k −

N(β − 2)

2

∫
RN

G(vn)

]
≤ 0.

Expanding calculation we have

Nβ

2
−N =

2kN

N − 2k
> 0,

so that, exploiting (2.40), we can write

0 ≤ CN,k k

2
lim
n
⌊vn⌋2k ≤

N(β − 2)

2
lim
n

∫
RN

G(vn).

As a consequence if, by contradiction,
∫
RN G(vn) → 0 then also ⌊vn⌋2k → 0, leading to

F (vn) → 0, which is clearly false since we know F (vn) → γ(c) > 0.
Now, we are going to prove (b), recalling that Tvn = {z ∈ E : ⟨z, vn⟩H = 0}.
We firstly define the orthogonal projector in H to Tvn , Pvn : H → Tvn , so that

z = Pvnz + z2 ∀z ∈ H

Pvnz = z − ⟨z, vn⟩H
vn

∥vn∥2H
z2 = ⟨z, vn⟩H

vn
∥vn∥2H

.
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We notice that, if z ∈ E, then Pvnz ∈ Tvn since

⟨Pvnz, vn⟩H = ⟨z, vn⟩H − ⟨z, vn⟩H
⟨vn, vn⟩H
∥vn∥2H

= 0.

In particular, from now on, we will consider Pvn operating only on element of E and, for
any z ∈ E, we can name z1 := Pvnz and get that z = z1+z2. It is clear that ⟨z1, z2⟩H = 0,
meaning z1 ⊥ z2 in H. We now proceed to notice that, for any z ∈ E,

E∗⟨F ′(vn), z −
vn

∥vn∥2H
⟨vn, z⟩H⟩E

= ⟨F ′(vn), z1 + z2⟩ −
⟨F ′(vn), vn⟩

∥vn∥2H
⟨vn, z⟩H

= ⟨F ′(vn), z1⟩+ ⟨F ′(vn), vn⟩
⟨vn, z⟩H
∥vn∥2H

− ⟨F ′(vn), vn⟩
⟨vn, z⟩H
∥vn∥2H

= ⟨F ′(vn), z1⟩

and remembering that ⟨F ′(vn), z1⟩ ≤ 4√
n
∥z1∥2E, we get immediately

E∗⟨F ′(vn), z −
vn

∥vn∥2H
⟨vn, z⟩H⟩E ≤ 4√

n
∥z1∥2E.

Since we want to explicit the previous inequality as a function of ∥z∥2E, we are just left to
control from above ∥z1∥2E using ∥z∥2E and indeed∥z1∥E ≤ ∥z∥E + (∥vn∥−1

H )∥vn∥E)∥z∥E
∥vn∥H = c, (∥vn∥E)n bounded,

imply that ∥z1∥E ≤ C∥z∥E and allow us to state

E∗⟨F ′(vn), z −
vn

∥vn∥2H
⟨vn, z⟩H⟩E ≤ C√

n
∥z∥E ∀z ∈ E.

To end the proof of point (b), we would like to develop the operator at the left hand side
of the previous equation, from now on named ϕ(vn) : E → R, since we have just proved
∥ϕ(vn)∥E∗ → 0. In this aim we recall that

⟨F ′(vn), z⟩ =
CN,k

2

∫∫
R2N

(vn(x)− vn(y))(z(x)− z(y))

|x− y|N+2k
dxdy −

∫
RN

g(vn(x))z(x) dx.
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Hence, we finally obtain, for any z ∈ E:

⟨ϕ(vn), z⟩ =
CN,k

2

∫∫
R2N

(vn(x)− vn(y))(z(x)− z(y))

|x− y|N+2k
dxdy −

∫
RN

g(vn(x))z(x) dx

− ⟨vn, z⟩H
∥vn∥2H

[
CN,k

2

∫∫
R2N

|(vn(x)− vn(y))|2

|x− y|N+2k
dxdy −

∫
RN

g(vn(x))vn(x) dx

]
.

Naming then

λn = ∥vn∥−2
H

[
CN,k

2
⌊vn⌋2k − ⟨g(vn), vn⟩H

]
, (2.42)

we get this final formula:

⟨ϕ(vn), z⟩ =
CN,k

2

∫∫
R2N

(vn(x)− vn(y))(z(x)− z(y))

|x− y|N+2k
dxdy − ⟨g(vn), z⟩H − λn⟨vn, z⟩H

= E∗⟨(−∆)kvn − λnvn − g(vn), z⟩E

for any z ∈ E, that proves point (b).
In order to show point (c), we start recalling that ∥vn∥2Hλn =

[
CN,k

2
⌊vn⌋2k − ⟨g(vn), vn⟩H

]
and, from this equality, we retrieve

k∥vn∥2Hλn =
CN,k k

2
⌊vn⌋2k −

∫
RN

g(vn)vn

=

(
CN,k k

2
⌊vn⌋2k +N

∫
RN

G(vn)−
N

2

∫
RN

g(vn)vn

)
−N

∫
RN

G(vn) +
N − 2

2

∫
RN

g(vn)vn,

where the term in the parenthesis coincides with ∂sF̃ (un, sn), that vanishes as n → 0.
Exploiting (H2) then, we can state

k∥vn∥2Hλn ≤
(
β
N − 2

2
−N

)∫
RN

G(vn)

k∥vn∥2Hλn ≥
(
α
N − 2

2
−N

)∫
RN

G(vn),

where, again from (H2)

β
N − 2

2
−N ≤ N(N − 2)

N − 2k
−N =

2N(k − 1)

N − 2k
= C1 < 0

α
N − 2

2
−N ≥ C2 for some C2 < 0.
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As a consequence, we are now able to bound (λn)n away from 0, both from below and
above, since we already know that

∫
RN G(vn) and ∥vn∥2H are positive and bounded away

from 0. Therefore, setting C̃2 = C2(k∥vn∥2H)−1 < 0 and C̃1 = C1(k∥vn∥2H)−1 < 0, we can
write

C̃2

∫
RN

G(vn) ≤ λn ≤ C̃1

∫
RN

G(vn).

Thus, it is true that, at least up to a subsequence, λn → λc < 0.

2.4.6. Convergence of the Palais-Smale sequence for N>1

Exploiting these results, it is possible to show that the Palais-Smale sequence (vn)n con-
verges in E.
In particular, we start stressing that Theorem 2.28 has an important implication on vn,
since it allows us to exploit Corollary B.5, from which we will borrow the notation of the
limit function v. We now rely on Proposition 2.3 point (b), taking the same notation
ϕ(vn) used in the proof, in order to claim thatϕ(vn)[vn − v] → 0

ϕ(v)[vn − v] → 0,
(2.43)

where the first line exploits ∥ϕ(vn)∥∗ → 0 and

|ϕ(vn)[vn − v]| ≤ ∥ϕ(vn)∥∗∥vn − v∥E ≤ C∥ϕ(vn)∥∗ → 0,

thanks to Theorem 2.28, while the second holds true combining vn ⇀ v in E with ϕ(v) ∈
E∗. System (2.43) implies (ϕ(vn)− ϕ(v)) [vn − v] → 0, so that

CN,k

2
⌊vn − v⌋2k − λn

∫
RN

(vn − v)2 −
∫
RN

(g(vn)− g(v))(vn − v) = o(1)

and thanks to Lemma 2.20 it holds that

CN,k

2
⌊vn − v⌋2k − λn

∫
RN

(vn − v)2 = o(1). (2.44)

To end the analysis, we need to refer to a basic analytical result saying that if (an)n, (bn)n
are two numerical sequences such that (an)n is bounded and (bn)n is infinitesimal, then it
results that

lim
n

anbn = 0.
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If we remember that (vn)n ⊂ Sc, then we can infer that vn − v is bounded in L2, since, to
be specific, ∥vn − v∥22 ≤ 2c2.
Relying on the previous information, we can therefore set

an = ∥vn − v∥22, bn = λn − λc

and the information we retrieve is

(λn − λc)

∫
RN

(vn − v)2 → 0. (2.45)

Finally, making use of (2.45) in equation (2.44), we obtain the following:

CN,k

2
⌊vn − v⌋2k − λc

∫
RN

(vn − v)2 = o(1).

Lemma 2.30. Let ⟨·, ·⟩ be the usual scalar product in Hk(RN).
Then ⟨·, ·⟩c is an equivalent scalar product in Hk(RN), where

⟨f, g⟩c :=
CN,k

2

∫∫
R2N

(f(x)− f(y))(g(x)− g(y))

|x− y|N+2k
dxdy − λc

∫
RN

f(x)g(x) dx,

for any f, g ∈ Hk(RN).

Proof. It is trivial for ⟨·, ·⟩c to be positive, symmetric and linear with respect to the first
argument. If, finally, we define C1 := min{1, CN,k

2
, |λc|}, C2 := max{1, CN,k

2
, |λc|}, then

C1⟨f, f⟩ ≤ ⟨f, f⟩c ≤ C2⟨f, f⟩ ∀f ∈ Hk(RN).

Making use of Lemma 2.30, we retrieve that ⟨vn− v, vn− v⟩c → 0 in Hk
r (RN) implies that

⟨vn − v, vn − v⟩ → 0 in Hk
r (RN), meaning that

vn → v in Hk
r (RN).

Theorem 2.10 is finally proved.
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2.4.7. Additional characterization of γ(c)

In the following lines, once that the main theorem of this chapter has been proved, we
proceed by drawing an important variational characterization of γ(c). In particular, we
are going to prove the following theorem.

Theorem 2.31. It results that

γ(c) = inf
u∈W(c)

F (u), (2.46)

with
W(c) := {u ∈ Sc, F |′Sc

(u) = 0}.

This characterization will allow us to describe the solution we have found as a ground
state, namely a function minimizing the energy functional F among the set W(c) of all
possible solutions to Problem 2.1.

At first, we present a nonlocal version of the celebrated Pohozaev identity. The proof can
be found in [12, Proposition 4.1].

Lemma 2.32. Let u ∈ Hk(RN) be a weak solution of

(−∆)ku = f(u) in RN ,

with N ≥ 2, k ∈ (0, 1) and f : R → R continuous function such that f(0) = 0. Moreover,
define F (t) =

∫ t

0
f(s) ds. Then, u satisfies

CN,k (N − 2k)⌊u⌋2k = 4N

∫
RN

F (u).

Proposition 2.4. Assume that (H1) and (H2) hold true. Then, each weak solution
(u, λc) ∈ (Sc × R) to (2.12) belongs to the set

Vc =

{
u ∈ Sc, CN,k⌊u⌋2k =

N

k

∫
RN

G̃(u)

}
.

Proof. We apply Proposition 2.4 to f(u) = λu + g(u). Thus, we consider u solution to
(2.12) and develop calculations as follows:
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(N − 2k)⌊u⌋2k

=
4N

CN,k

∫
RN

F (u(x)) dx =
4N

CN,k

{∫
RN

[∫ u(x)

0

λs ds+ g(s) ds

]
dx

}

=
4N

CN,k

{∫
RN

[
λ
u2

2
+G(u)

]}
=

4N

CN,k

{
λ

2
∥u∥2H +

∫
RN

G(u)

}
=

N

CN,k

{
CN,k⌊u⌋2k − 2

∫
RN

g(u)u

}
+

4N

CN,k

∫
RN

G(u)

=
N

CN,k

{
CN,k⌊u⌋2k − 2

∫
RN

[g(u)u− 2G(u)]

}
=

N

CN,k

{
CN,k⌊u⌋2k − 2

∫
RN

G̃(u)

}
,

where we have used the definition of λ in (2.42). The lemma is straightforwardly proved.

Lemma 2.33. Let (H1) and (H2) be true and fix T (c) as given in Lemma 2.16. Then,

A = {u ∈ Sc, ⌊u⌋2k ≤ T (c)} and

C = {u ∈ Sc, ⌊u⌋2k ≥ 2T (c), F (u) ≤ 0}

are arc-connected.

Proof. To prove this lemma, we start defining a function h(u, v, s, t) : E×E×R× [0, π
2
] →

E, with
h(u, v, s, t)(x) = cos(t)H(u, s)(x) + sin(t)H(u, s)(x).

Now, we fix two distinct points u1, u2 in Sc, that satisfy ⟨u1, u2⟩H ̸= −c2 and ⌊u1⌋2k =

⌊u1⌋2k = 2d2C−1
N,k . Direct calculations prove the following identities:

∥H(u1, s)∥H = ∥H(u2, s)∥H = c ∀s ∈ R

⌊H(u1, s)⌋2k = ⌊H(u2, s)⌋2k = e2ks2d2C−1
N,k ∀s ∈ R

⟨H(u1, s), H(u2, s)⟩H = ⟨u1, u2⟩H ∀s ∈ R

〈
(−∆)

k
2H(u1, s), (−∆)

k
2H(u2, s)

〉
H
= e2ks

〈
(−∆)

k
2u1, (−∆)

k
2u2

〉
H

∀s ∈ R

The first three identities are trivial and have already been proved, whereas the fourth one
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is proved in Lemma B.11. Therefore, we gain

∥h(u1, u2, s, t)∥2H = c2 + sin(2t)⟨u1, u2⟩H

and we want to compute ⌊h(u1, u2, s, t)⌋2k developing the calculations in this way:

⌊h(u1, u2, s, t)⌋2k

=

∫∫
R2N

| cos(t)(H(u1, s)(x)−H(u1, s)(y)) + sin(t)(H(u2, s)(x)−H(u2, s)(y))|2

|x− y|N+2k
dxdy

= cos2(t)

∫∫
R2N

|H(u1, s)(x)−H(u1, s)(y)|2

|x− y|N+2k
dxdy

+ sin2(t)

∫∫
R2N

|H(u2, s)(x)−H(u2, s)(y)|
|x− y|N+2k

dxdy

+ sin(2t)

∫∫
R2N

(H(u1, s)(x)−H(u1, s)(y)) (H(u2, s)(x)−H(u2, s)(y))

|x− y|N+2k
dxdy

= e2ks2d2C−1
N,k + sin(2t)2C−1

N,k

∫
RN

(−∆)kH(u1, s)(x)H(u2, s)(x) dx

= e2ks2C−1
N,k

{
d2 + sin(2t)

〈
(−∆)

k
2u1, (−∆)

k
2u2

〉
H

}
.

Then, we deduce that there exist two positive constants a(u1, u2) > 0, b(u1, u2) > 0 such
that, for all s ∈ R and t ∈ [0, π/2],

a ≤ ∥h(u1, u2, s, t)∥2H ≤ 2c2

e2ks2C−1
N,kb ≤ ⌊h(u1, u2, s, t)⌋2k ≤ e2ks4d2C−1

N,k.

Thus, we want to define ĥ(u, v, s, t) : E × E × R× [0, π/2] → Sc, where

ĥ(u, v, s, t) = c
h(u, v, s, t)

∥h(u, v, s, t)∥H
.

We immediately notice that, for any u, v in Sc such that ⟨u, v⟩H ̸= −c2 and ⌊u⌋2k = ⌊v⌋2k =
2d2C−1

N,k,
C−1

N,k e
2ksb

c2
≤ ⌊ĥ(u, v, s, t)⌋2k ≤

e2ks4d2C−1
N,k

a
(2.47)

and that ∫
RN

G(ĥ(u, v, s, t)(x)) dx ≥ Ce
sN
2

(α−2). (2.48)
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Indeed, we can write∫
RN

G(ĥ(u, v, s, t)(x)) dx

= c

[∫
RN

G

(
cos(t)

H(u, s)

∥h(u, v, s, t)∥H

)
+

∫
RN

(
sin(t)

H(v, s)

∥h(u, v, s, t)∥H

)]
≥ C

∫
RN

G(H(u, s)) +G(H(v, s)) = C

∫
RN

[
G(e

sN
2 u(esx)) +G(e

sN
2 v(esx))

]
dx

≥ CG(1)e
sNα
2

∫
RN

(|u(esx)|α + |v(esx)|α) dx = CG(1)e
sNα
2 e−sN = Ce

sN
2

(α−2).

We are now ready to prove that A is arc-connected. We start fixing v1, v2 in A such that
⌊v1⌋2k = ⌊v2⌋2k = 2d2C−1

N,k < T (c) and ⟨v1, v2⟩H ̸= −c2. Then, we notice that

e2ks2

a
< 1 ⇐⇒ s <

1

2k
ln
a

2

and we fix
s0 = −

∣∣∣∣ 12k ln
a

2

∣∣∣∣ .
In this way, we can ensure that ĥ(v1, v2, s0, t) ∈ A ∀t ∈

[
0, π

2

]
, we can construct the

connection Γ1 : [0, 2|s0|+ 1] → Sc defined in the following way

Γ1(r) =


h(v1, 0,−r, 0) 0 ≤ r ≤ |s0|

ĥ(v1, v2, s0, r − |s0|) |s0| ≤ r ≤ |s0|+ 1

h(0, v2, r − (2|s0|+ 1), π/2) |s0|+ 1 ≤ r ≤ 2|s0|+ 1.

It is immediate that Γ(0) = v1 and Γ(1) = v2. Moreover, Γ1(r) ∈ A; if 0 ≤ r ≤ |s0|
indeed, we obtain

h(v1, 0,−r, 0)(x) = H(v1,−r)(x) ∈ Sc,

since v1 ∈ Sc by hypothesis. Moreover,

⌊H(v1,−r)⌋2k = e2ksd22C−1
N,k < T (c) =⇒ h(v1, 0,−r, 0) ∈ A.

For the same reasons, if |s0|+1 ≤ r ≤ 2|s0|+1, Γ1(r) ∈ A. Obviously, ĥ(v1, v2, s0, r−s0) ∈
A by definition of s0.
If instead ⌊v1⌋2k ̸= ⌊v2⌋2k = 2d2C−1

N,k, we can proceed as follows. Consider H(v1, s), with
s ∈ (0, s1),

s1 = ln(⌊v2⌋
1
k
k ) +

1

2k
ln(⌊v1⌋−2

k ),
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such that
H(v1, 0) = v1 and ⌊H(v1, s1)⌋2k = e2ks1 = ⌊v2⌋2k.

In this way, exploiting the continuity ofH(v1, ·), we can firstly join v1 toH(v1, s1) (without
exiting A) and then join H(v1, s1) to v2 relying on the aforementioned path.
If finally ⟨v1, v2⟩ = −c2, we can introduce v3 ∈ A and construct a new path that joins v1
to v3 and v3 to v2.
The proof that C is arc-connected is almost analogous to the previous one. Let v1, v2 ∈ C

be two arbitrary points such that ⌊v1⌋2k = ⌊v2⌋2k = 2d2C−1
N,k and ⟨v1, v2⟩H ̸= −c2. If we

remember that
F (u) =

CN,k

4
⌊u⌋2k −

∫
RN

G(u)

and inequality (2.48), we immediately get that there exists some s0 > 0 that guarantees

⌊ĥ(v1, v2, s, t)⌋2k ≥ 2T (c) and F (ĥ(v1, v2, s, t)) ≤ 0.

As a consequence, we can define Γ2 : [0, 2s0 + 1] → Sc as

Γ2(r) =


h(v1, 0, r, 0) 0 ≤ r ≤ s0

ĥ(v1, v2, s0, r − s0) s0 ≤ r ≤ s0 + 1

h(0, v2, r − (s0 + 1), π/2) s0 + 1 ≤ r ≤ 2s0 + 1.

Clearly Γ2(0) = v1 and Γ2(1) = v2. Following the same reasoning as before, we can show
that C is arc-connected.

Corollary 2.34. For any v1 ∈ A, v2 ∈ C, it holds that

γ(c) = inf
g∈Γ(v1,v2)

max
s∈[0,1]

F (g(s)),

where
Γ(v1,v2) = {g ∈ C([0, 1], Sc), g(0) = v1, g(1) = v2}

and γ(c) has been originally defined in Proposition 2.1.

Proof. By Proposition 2.1, we know that there exist u1 ∈ A, u2 ∈ C such that

γ(c) = inf
h∈Γ(c)

max
t∈(0,1)

F (h(t)),
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with
Γ(c) = {h ∈ C([0, 1], Sc), h(0) = u1, h(1) = u2} ;

exploiting now the fact that A and C are arc-connected, we reason as follows.
We start consider a generic path g ∈ Γ(v1,v2) connecting v1 to v2; then there exists a path
h ∈ Γ(c) joining u1 to v1, v1 to v2 and v2 to u2. The generality of g implies

inf
h∈Γ(c)

max
t∈[0,1]

F (h(t)) ≤ inf
g∈Γ(v1,v2)

max
s∈(0,1)

F (g(s)).

On the other hand reasoning in the opposite way, we obtain

inf
g∈Γ(v1,v2

)
max
s∈(0,1)

F (g(s)) ≤ inf
h∈Γ(c)

max
t∈[0,1]

F (h(t)).

Lemma 2.35. Assume that (H1), (H2), (H3) hold true and fix an arbitrary point u ∈ Sc.
Then, the function fu : R → R such that

fu(s) = F (H(u, s))

has just one maximum point at s(u) ∈ R, such that H(u, s(u)) ∈ Vc.

Proof. Before starting the proof we recall equation 2.25:

f ′
u(s) =

CN,k k

2
⌊v⌋2k +N

∫
RN

G(v)− N

2

∫
RN

g(v)v,

where v = H(u, s). We shall now prove that there exists some s0 such that f ′
u(s0) = 0.

We start noticing that

f ′
u(0) =

k

2
⌊v⌋2k > 0.

Then, since by (H2) we know that g(v)v ≥ αG(v), we write

f ′
u(s) ≤

CN,k k

2
⌊v⌋2k +N

∫
RN

G(v)− Nα

2

∫
RN

G(v) ≤ CN,k k

2
⌊v⌋2k −N

(α
2
− 1
)∫

RN

G(v)

= 2k
CN,k

4
⌊v⌋2k −N

(α
2
− 1
)∫

RN

G(v) ≤ 2k

(
CN,k

4
⌊v⌋2k −

∫
RN

G(v)

)
= 2kF̃ (H(u, s)).

By Lemma 2.15 we know that there exists at least one s0 > 0 such that f ′
u(s0) = 0.
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Moreover, by

f ′
u(s) =

CN,k k

2
⌊v⌋2k −

N

2

∫
RN

G̃(v),

we obtain that f ′
u(s0) = 0 implies H(u, s0) ∈ Vc.

Now we make clear the following equations:∫
RN

G(v) =

∫
RN

G(e
sN
2 u(esx)) dx = e−sN

∫
RN

G(e
sN
2 u(x)) dx∫

RN

g(v)v =

∫
RN

g(e
sN
2 u(esx))e

sN
2 u(esx) dx = e−

sN
2

∫
RN

g(e
sN
2 u(x))u(x) dx.

Then, we deduce that

∂

∂s

∫
RN

G(v) = −N
∫
RN

G(v) +
N

2

∫
RN

g(v)v

and that

∂

∂s

∫
RN

g(v)v = −N
2

∫
RN

g(v)v +
N

2
e−

sN
2

∫
RN

g′(e
sN
2 u(x))e

sN
2 u2(x) dx

= −N
2

∫
RN

g(v)v +
N

2

∫
RN

g′(v)v2.

Moreover, we have that

CN,k k

2

∂

∂s
⌊v⌋2k =

CN,k k

2

∂

∂s

(
⌊H(u, s)⌋2k

)
=
CN,k k

2

∂

∂s
(e2ks

⌊
u⌋2k
)

= 2k CN,k
∂

∂s

(
e2ks

4
⌊u⌋2k

)
= k2CN,k⌊v⌋2k.

Combining all together we obtain that, naming v = H(u, s0),

f
′′

u (s0) = k2CN,k⌊v⌋2k −N2

∫
RN

G(v) +
N2

2

∫
RN

g(v)v

+
N2

4

∫
RN

g(v)v − N2

4

∫
RN

g′(v)v2

= kN

[∫
RN

g(v)v −
∫
RN

2G(v)

]
− N2

2

∫
RN

2G(v) +
N2

2

∫
RN

g(v)v

+
N2

4

∫
RN

g(v)v − N2

4

∫
RN

g′(v)v2

= Nk

∫
RN

G̃(v) +
N2

2

∫
RN

G̃(v)− N2

4

∫
RN

G̃′(v)v

=
N

2

[
(N + 2k)

∫
RN

G̃(H(u, s0)(x)) dx−
N

2

∫
RN

G̃′(H(u, s0)(x))H(u, s0)(x) dx

]
,
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where we have used the fact that f ′
u(s0) = 0. Now we are ready to show that f ′′

u (s0) < 0,
which holds true since

f
′′

u (s0) <
N

2

[
(N + 2k)

∫
RN

G̃(H(u, s0)(x)) dx−
N

2

∫
RN

2N + 4k

N
G̃(H(u, s0)(x)) dx

]
=
N

2
[(N + 2k)− (N + 2k)]

∫
RN

G̃(H(u, s0)(x)) dx

= 0.

As a consequence, we have shown that each possible critical point for fu has negative
second derivative. This is enough to infer that s0 is the unique critical point and, in
particular, that it is a maximum.

Lemma 2.36. If (H1), (H2), (H3) hold, then we can claim that

γ(c) = inf
u∈Vc

F (u).

Proof. This proof relies on a contradiction argument, supposing that there exists some
v ∈ Vc such that F (v) < γ(c). Then we define the map Tv : R → Sc such that

Tv(s) = H(v, s).

Exploiting Lemma 2.15 we obtain that ∃s0 > 0 such that Tv(−s0) ∈ A and Tv(s0) ∈ C.
If then we ask for T̃v : [0, 1] → Sc to be the path defined by

T̃v(s) = H(v, (2s− 1)s0),

where T̃v(0) = Tv(−s0) and T̃v(1) = Tv(s0). By Lemma 2.35 we know that F (T̃v(s))
reaches its unique maximum in s = 1/2, since v ∈ Vc by hypothesis. This information,
combined with Corollary 2.34, means that

γ(c) ≤ F (T̃v(1/2)) = F (v). (2.49)

This is a clear contradiction.

Proof of Theorem 2.31. By Lemma 2.4 we know that the set of all weak solutions to
(2.12), denoted by W(c) is a subset of Vc. Thus, relying on Lemma 2.36, we can write

γ(c) = inf
u∈Vc

F (u) ≤ inf
u∈W(c)

F (u).
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Moreover, by characterization (2.37) of our mountain pass solution, we have that γ(c) is
the value achieved by at least one element of W(c). As a consequence, we also get

γ(c) ≥ inf
u∈W(c)

F (u).

Combining these two inequalities, equation (2.46) is immediate.
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A| Basic notions of differential

geometry

In this section we propose to expound some basic notions of differential geometry which
will be often referred to throughout the whole thesis. For a more in-depth discussion on
this topic, we refer to [5], [17, Chapter 3], [22], [24] and [27] .

Let X be a differential manifold, x ∈ X and ϕ : U → RN a coordinate chart, with U open
subset of X containing x.
If we consider γ1, γ2 : (−1, 1) → X such that γ1(0) = γ2(0) = 0, then we can compose the
chart with the curves into ϕ ◦ γ1, ϕ ◦ γ2 : (−1, 1) → RN .
We say that γ1, γ2 are differentiable if their relative composition with ϕ is differentiable,
in the ordinary sense.
Moreover, if we impose an equivalence relation among all differentiable curves

γ1 ≡ γ2 ⇐⇒ d

dt
(ϕ ◦ γ1)(t)

∣∣∣
t=0

=
d

dt
(ϕ ◦ γ2)(t)

∣∣∣
t=0
,

the equivalence classes of such curves are named tangent vectors of X in x.

Definition A.1. The set of all tangent vectors at x is known as tangent space of X in x

and goes under the symbol Tx(X).

We notice that, to introduce any kind of vector space operations on Tx(X), we may be
able to transfer RN to Tx(X) and we require again a chart ϕ : U → RN to define the map:
ψx : Tx(X) → RN

ψx(γ) :=
d

dt
[(ϕ ◦ γ)(t)],

for any γ tangent vectors, γ ∈ Tx(X).
In particular, it is true that both this construction does not depend on the coordinate
chart chose and that ψx is bijective, allowing us to pass from RN to the tangent space.
Once we have stated the previous definition, the next comes natural, again under the
hypothesis of X being a differential manifold.
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Definition A.2. We call tangent bundle of X a manifold T(X) assembling all tangent
vectors in X. More precisely, T(X) is defined as a disjoint union of all the tangent spaces
of X.

For the reader’s convenience, we recall here the explicit definition of disjoint union, used
to the define the tangent bundle T(X):

T (X) = ⊔x∈X Tx(X)

= ∪x∈X ({x} × Tx(X))

= ∪x∈X {(x, y)| y ∈ Tx(X)}

= {(x, y)|x ∈ X, y ∈ Tx(X)},

where Tx(x) is the tangent space to X at point x.

Definition A.3. Let X a C1−Banach manifold, Tx(X) and T (X) as previously defined.
We define a Finsler structure on T (X) a continuous function ∥ · ∥ : T (X) → [0,+∞),
such that

(a) for any x ∈ X, the restriction of ∥ ·∥ to Tx(X), named ∥ ·∥x, is a norm on the latter

(b) for any x0 ∈ X, k > 1, there exists a trivializing neighbourhood U of x0, such that

1

k
∥ · ∥x ≤ ∥ · ∥x0 ≤ k∥ · ∥x ∀x ∈ U.

Consistently with the topology of X, we can proceed to set a Finsler metric ρ : X×X → R
on each connected component of the manifold. In particular, if we define σ : [a, b] → X a
C1 path in X and L(σ) =

∫ b

a
∥σ̇(t)∥ dt its length, then we can set

ρ(x, y) := inf L(σ), (A.1)

over all σ joining x, y and for all x, y in the same X connected component.
Moreover, if we consider ϕ ∈ C1(X,R), its differential at point x ∈ X is an element of
the cotangent space of X, meaning that it is a functional dϕx ∈ Tx(X)∗. We recall here
that dϕx is the linear functional satisfying:

lim
∥h∥x→0

|ϕ(x+ h)− ϕ(x)− ⟨dϕx, h⟩|
∥h∥x

= 0 ∀h ∈ Tx(X).

We give here a useful definition in order to introduce the next topic of this discussion, i.e.
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the construction of a pseudo-gradient vector field for a generic ϕ ∈ C1(X,R) at the set of
its regular points R,

R := {x ∈ X : dϕx ̸= 0}.

Definition A.4. Let X be a topological space; we define partition of unity a set I of
continuous functions χ defined on X with values in [0, 1], such that, for every point x ∈ X

• there exists at least one neighbourhood of x where all but a finite number of functions
in I are null

•
∑

χ∈I χ(x) = 1 ∀x ∈ X.

In particular, it can be shown that for any open cover (Vi)i∈K of the topological space
considered, there exists a partition of unity (χi)i∈K indexed over the same set K and such
that supp(χi) ⊆ Vi; in this case we say that (χi)i∈K is conditioned to (Vi)i∈K .

Before closing this paragraph we decided to deal with another topic: the pseudo-gradient
vector and of pseudo-gradient vector field.
We start with their formal definitions.

Definition A.5. Let X be a Finsler manifold and let ϕ : X → R be differentiable at some
x ∈ X. Then we call vx ∈ Tx(X) pseudo-gradient vector for ϕ at x if

(a) ∥vx∥ ≤ 2∥dϕx∥∗

(b) ⟨dϕx, vx⟩ ≥ ∥dϕx∥2∗.

Definition A.6. Let X be a Finsler manifold and let ϕ : X → R be differentiable at each
point of S ⊆ X. Let V : S → T (S), V (x) = vx be a Ck-vector field in S. Then V , is called
a Ck pseudo-gradient vector field for ϕ on S if, for any x ∈ S, vx is a pseudo-gradient
vector for ϕ at x.

Looking at Definition (A.5), we immediately notice that, if x is a critical point for ϕ,
namely dϕx = 0, then only vx = 0, vx ∈ Tx(X) is a pseudo-gradient vector for ϕ in x. If,
instead, x is not a critical point we can find a non-trivial vx as follows.
We start setting wx ∈ Tx(X) such that ∥w∥ = 1 and ⟨dϕx, wx⟩ ≥ (1 − ϵ)∥dϕx∥∗. This
choice of wx is possible starting by the definition of norm for dϕx in Tx(X)∗

∥dϕx∥∗ = sup
∥y∥=1

⟨dϕx, y⟩ y ∈ Tx(X)

and selecting, as a consequence, a maximizing sequence (yn)n for ⟨dϕx, yn⟩.
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Now we set vx ∈ Tx(X) as follows:

vx =
1 + δ

1− ϵ
∥dϕx∥∗wx, δ > 0,

1 + δ

1− ϵ
≤ 2 ⇐⇒ 0 < δ < 1− 2ϵ.

It is clear that point (a) from Definition (A.5) is satisfied; point (b) is satisfied too, since

⟨dϕx, vx⟩ = ⟨dϕx,
1 + δ

1− ϵ
∥dϕx∥∗wx⟩

=
1 + δ

1− ϵ
∥dϕx∥∗⟨dϕx, wx⟩

≥ (1 + δ)∥dϕx∥2∗.

As a consequence, we can allow ∥vx∥ to be as close as we wish to ∥dϕx∥∗, having still
point (b) satisfied and vx is a pseudo-gradient vector for ϕ at point x.

Lemma A.7. If X is a Finsler manifold and ϕ : X → R is differentiable at point x, the
set of pseudo-gradient vectors for ϕ at x is a convex subset of Tx(X).

Proof. Let {vi, i = 1, ..., n}, n ∈ N be a set of pseudo-gradient vectors for ϕ at x. We
want to show that

v =:
n∑

i=1

λivi, λi > 0,
n∑

i=1

λi = 1,

is again a pseudo-gradient vectors for ϕ at x. Indeed, it holds true that

∥v∥ = ∥λ1v1 + ...+ λnvn∥

≤ λ1∥v1∥+ ...+ λn∥vn∥

≤ 2
n∑

i=1

λi∥dϕx∥∗ = 2∥dϕx∥∗.

Moreover, we also have that

⟨dϕx, v⟩ =
n∑

i=1

λi⟨dϕx, vi⟩

≥
n∑

i=1

λi∥dϕx∥2∗ = ∥dϕx∥2∗.

Proposition A.1. Let X be a Cs+1 Finsler manifold, s ≥ 0 and let ϕ : X → R be a
C1 functional. If we ask for x ∈ X not to be a critical point for ϕ, there exists an open
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neighbourhood U centred in x and a Cs pseudo-gradient vector field for ϕ in U.

Proof. We already showed how to construct vx ∈ Tx(X) pseudo-gradient vector for ϕ at
x. Now we extend vx to be a Cs constant vector field, equal to vx in a neighbourhood N
of x. We finally define the set U

U := {q ∈ N : ∥vq∥ ≤ 2∥dϕq∥∗, ⟨dϕq, vq⟩ ≥ ∥dϕq∥2∗}.

Exploiting the continuity in N of ∥dϕ∥∗, ∥v∥, ⟨dϕ, v⟩, U is open.

Relying on the previous proposition, we are now ready to ensure the existence of a pseudo-
gradient vector field for ϕ at the set of its regular points R through the next theorem.

Theorem A.8. Let X be a C2 Finsler manifold and let ϕ : X → R be a C1 functional.
Then, there exists a C1 pseudo-gradient vector field for ϕ in R.

Proof. For any x in R, we set a neighbourhood Ux of x satisfying Proposition A.1 and
we recover, as a consequence, a C1 pseudo-gradient vector field Vx for ϕ in Ux. Moreover,
since we already noticed that the definition of the Finsler metric (A.1) is consistent with
the topology of X and makes X metrizable, then R is paracompact. Thus, since (Ux)x∈R

is an open cover of R we can find a finite subcover of R, (Ux)x∈B. Then, recalling the
aforementioned properties of partitions of unity, there exists a partition of unity (χx)x∈B

subordinated to (Ux)x∈R such that supp(χx) ⊆ Ux. Finally, we have that

V =
∑
x∈B

χxVx

is a C1 vector field and, thanks to Lemma A.7, it is the pseudo-gradient vector field we
are looking for.
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Lemma B.1. Let g ∈ C2(RN) and (ρϵ)ϵ sequence of radial mollifiers as described in
Subsection 1.1 such that∫∫

R2N

|g(x)− g(y)|p

|x− y|p
ρϵ(|x− y|) dxdy ≤ C as ϵ→ 0. (B.1)

Then, it holds that

lim
ϵ→0

∫∫
R2N

|g(x)− g(y)|p

|x− y|p
ρϵ(|x− y|) dxdy = Kp,N

∫
RN

|∇g(x)|p dx.

with the constant
Kp,N =

∫
∂B1

|σ · e|p dσ e ∈ ∂B1.

Proof. Let K be a compact subset of RN . For x ∈ K and |h| ≤ 1 we have that

|g(x+ h)− g(x)− h∇g(x)| ≤ Ck|h|2,

where CK = maxx∈K {∥Hg(x)∥∞} which exists and is well defined since K is compact and
g ∈ C2(K). This inequality implies

|h∇g(x)| ≤ |g(x+ h)− g(x)|+ CK |h|2

and we can finally retrieve, for any θ > 0, that

|h∇g(x)|p ≤ (1 + θ)p|g(x+ h)− g(x)|p + Cθ,K |h|2p. (B.2)

Inequality (B.2) is not immediate but comes from the following reasoning, under a > 0,
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b > 0 and θ > 0 fixed:

(a+ b)p ≤ 2p−1(ap + bp) ≤ (1 + θ)ap +
|2p−1 − (1 + θ)| ap

bp
bp + 2p−1bp

≤ (1 + θ)ap + 2max

{
|2p−1 − (1 + θ)| ap

bp
, 2p−1

}
bp

= (1 + θ)ap + Cbp.

Inserting this result in (B.2) we obtain∫
K

∫
|h|≤1

|h∇g(x)|p

|h|p
ρϵ(|h|) dhdx ≤ (1 + θ)

∫
K

∫
|h|≤1

|g(x+ h)− g(x)|p

|h|p
ρϵ(|h|) dhdx

+ Cθ,K |K|
∫
|h|≤1

|h|pρϵ(|h|) dh, (B.3)

where |K| denotes the dimension of the set K. Since it is obvious that

lim
ϵ→0

∫
|h|≤1

|h|pρϵ(|h|) dh = 0,

we can study (B.3) as ϵ→ 0. If we recall that, for any vector V ∈ RN , it holds∫
|h|≤1

|(h · V )|p

|h|p
ρϵ(|h|) dh = Kp,N |V |p

∫ 1

0

ρϵ(r)r
N−1 dr,

we immediately find

Kp,N

∫
K

|∇g(x)|p dx ≤ (1 + θ)

∫
K

∫
|h|≤1

|g(x+ h)− g(x)|p

|h|p
ρϵ(|h|) dhdx. (B.4)

Moreover, (B.4) is true for any K compact set and θ > 0 and we know, by hypothesis,
that the double integral at the right hand side is well defined on any real domain. As a
consequence, we can write

Kp,N

∫
RN

|∇g(x)|p dx ≤ lim inf
ϵ→0

∫∫
R2N

|g(x)− g(y)|p

|x− y|p
ρϵ(|h|) dxdy. (B.5)

Conversely, if we consider g ∈ C2
0(RN) we obtain again

|g(x+ h)− g(x)| ≤ |h∇g(x)|+ C ′|h|2 ∀x ∈ RN , ∀h ∈ RN .
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Thus, we infer that

|g(x+ h)− g(x)|p ≤ (1 + θ)|h∇g(x)|p + C ′
θ|h|2p.

Multiplying the last inequality by ρϵ(|h|)/|h|p and integrating over the set {(x, h) ∈ R2N :

x or x+ h ∈ supp g} we conclude∫∫
R2N

|g(x+ h)− g(x)|p

|h|p
ρϵ(|h|) dh ≤

(1 + θ)

∫
RN

Kp,N |∇g(x)|p dx+ 2C ′
θ|supp g|

∫
RN

|h|pρϵ(|h|) dh.

Asking for both ϵ→ 0 and θ → 0, we finally get

lim sup
ϵ→0

∫∫
R2N

|g(x+ h)− g(x)|p

|x− y|p
ρϵ(|h|) dh ≤ Kp,N

∫
RN

|∇g(x)|p dx. (B.6)

We can conclude the proof combining (B.5) and (B.6) to gather

lim
ϵ→0

∫∫
R2N

|g(x)− g(y)|p

|x− y|p
ρϵ(|x− y|) dxdy = Kp,N

∫
RN

|∇g(x)|p dx.

Just notice that the proof is completed since C2
0(RN) is dense in W 1,p(RN).

Proof of Theorem 1.1. We start the proof considering any sequence of smooth mollifiers
(γδ) and setting

fδ = γδ ∗ f.

We immediately notice that (1.8) is verified by fδ with the same constant C, namely∫∫
R2N

|fδ(x)− fδ(y)|p

|x− y|p
ρϵ(|x− y|) dxdy ≤ C, (B.7)

thanks to stability of (1.8) with respect to translations and convex combinations. More-
over, since fδ ∈ C2(RN), hypotheses of Lemma B.1 are satisfied and we retrieve

lim
ϵ→0

∫∫
R2N

|fδ(x)− fδ(y)|p

|x− y|p
ρϵ(|x− y|) dxdy = Kp,N

∫
RN

|∇fδ(x)|p dx.

Both the theses of the theorem come straightforwardly if we consider the limit as δ → 0.
For what concerns f ∈ W 1,p(RN) it is true since we have showed that∫

RN

|∇fδ(x)|p dx ≤ C

Kp,N

.
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Lemma B.2. Let δ < 1, then∫ 2π

0

1

1− δ cos(ϕ)
dϕ =

2π√
1− δ2

.

Proof. To solve this integral we rely on the Weierstrass substitution t = tan
(
ϕ
2

)
and

notice

cos(ϕ) = cos2
(
ϕ

2

)
− sin2

(
ϕ

2

)
=

cos2
(
ϕ
2

)
− sin2

(
ϕ
2

)
cos2

(
ϕ
2

)
+ sin2

(
ϕ
2

) =
1− tan2

(
ϕ
2

)
1 + tan2

(
ϕ
2

) =
1− t2

1 + t2
.

By ϕ = arccos
(

1−t2

1+t2

)
and by d

dx
arccos(x) = − 1√

1−x2 we obtain

dϕ =
1√

1−
(
1−t2

1+t2

)2 4t

(1 + t2)2
dt =

4t

(1 + t2)
√
4t2

dt

=
2

1 + t2
dt.

Moreover, before starting with the computations, we notice that 1
1−δ cos(ϕ)

in [0, 2π] is
symmetric with respect to π. Then, naming a = 1

δ
, we write∫ 2π

0

1

1− δ cos(ϕ)
dϕ =

2

δ

∫ π

0

dϕ

a− cos(ϕ)
=

2

δ

∫ +∞

0

1(
a− 1−t2

1+t2

) 2

(1 + t2)
dt

=
4

δ

∫ +∞

0

dt

t2(a+ 1) + (a− 1)
=

4

δ(a+ 1)

∫ +∞

0

dt(
a−1
a+1

+ t2
) .

Now we study ∫
1

A2 + t2
dt

and exploit the substitution t = A tan(θ), dt = A sec2 θdθ to infer∫
1

A2 + t2
dt =

∫
1

A2 + (A tan(θ))2
A sec2(θ) dθ =

1

A

∫
1

1 + tan2(θ)
sec2(θ) dθ

=
1

A

∫
1dθ =

1

A
θ + c =

1

A
tan−1

(
t

A

)
+ c.
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Then, we can solve

4

δ(a+ 1)

∫ +∞

0

dt(√
a−1
a+1

)2
+ t2

=
4

δ(a+ 1)

√
a+ 1√
a− 1

∣∣∣∣tan−1

(√
a+ 1√
a− 1

t

)∣∣∣∣∞
0

=
2π√
a2 − 1

1

δ
=

2π√
1
δ2

− 1
=

2π√
1− δ2

.

Lemma B.3. For any k ∈ (0, 1), we have that∫ 1

0

(1 + t)k + (1− t)k − 2

t1+2k
dt+

∫ ∞

1

(1 + t)k

t1+2k
dt =

1

k
.

Proof. If we fix ϵ > 0, we can integrate by parts∫ 1

ϵ

(1 + t)k + (1− t)k − 2

t1+2k
dt

=

∣∣∣∣2− (1 + t)k − (1− t)k

2k
t−2k

∣∣∣∣1
ϵ

+
1

2

∫ 1

ϵ

(1 + t)k−1 − (1− t)k−1

t2k
dt

=
1

2k

(
(1 + ϵ)k + (1− ϵ)k − 2

ϵ2k
+ 2− 2k

)
+

1

2

∫ 1

ϵ

(1 + t)k−1 − (1− t)k−1

t2k
dt.

Now we focus on the following Taylor expansions centred in ϵ = 0(1 + ϵ)k = 1 + kϵ− 1
2
k(1− k)ϵ2 + o(ϵ2)

(1− ϵ)k = 1− kϵ− 1
2
k(1− k)ϵ2 + o(ϵ2).

This allows us to write

(1 + ϵ)k + (1− ϵ)k

ϵ2k
∼ ϵ2(1−k) + o(ϵ2(1−k)),

that vanishes as ϵ→ 0. Therefore we have∫ 1

ϵ

(1 + t)k + (1− t)k − 2

t1+2k
dt =

1

2k
(o(1) + 2− 2k)

+
1

2

(∫ 1

ϵ

(1 + t)k−1

t2k
dt−

∫ 1

ϵ

(1− t)k−1

t2k
dt

)
.
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If now we consider the change of variables, t = t̃
1+t̃

, dt = 1
(1+t̃)2

dt̃ it is immediate

∫ 1

ϵ

(1− t)k−1

t2k
dt =

∫ ∞

ϵ
1−ϵ

(1− t̃
1+t̃

)k−1

t̃2k
(1 + t̃)2k

(1 + t̃)2
dt̃ =

∫ ∞

ϵ
1−ϵ

(1 + t̃)k−1

t̃2k
dt̃.

Summing up what we have shown till now and assuming ϵ
1−ϵ

< 1, such that ϵ < 1
2
, we

obtain∫ 1

ϵ

(1 + t)k + (1− t)k − 2

t1+2k
dt =

1

2k
(o(1) + 2− 2k)

+
1

2

(∫ 1

ϵ

(1 + t)k−1

t2k
dt−

∫ ∞

ϵ
1−ϵ

(1 + t)k−1

t2k
dt

)
=

1

2k
(o(1) + 2− 2k)

+
1

2

(∫ ϵ
1−ϵ

ϵ

(1 + t)k−1

t2k
dt−

∫ ∞

1

(1 + t)k−1

t2k
dt

)
.

Then we notice the following∫ ϵ
1−ϵ

ϵ

(1 + t)k−1

t2k
dt ≤ (1 + ϵ)k−1

ϵ2k

(
ϵ

1− ϵ
− ϵ

)
=

(1 + ϵ)k−1ϵ2(1−k)

1− ϵ
,

vanishing as ϵ→ 0. Passing to the limit we can write∫ 1

0

(1 + t)k + (1− t)k − 2

t1+2k
dt =

2− 2k

2k
− 1

2

∫ ∞

1

(1 + t)k−1

t2k
dt.

If we integrate by parts the last element of the previous equation we get∫ ∞

1

(1 + t)k−1

t2k
dt =

∣∣∣∣t−2k (1 + t)k

k

∣∣∣∣∞
1

+ 2

∫ ∞

1

t−(1+2k)(1 + t)k dt,

so that we finally retrieve∫ 1

0

(1 + t)k + (1− t)k − 2

t1+2k
dt =

2− 2k

2k
+

2k

2k
−
∫ ∞

1

t−(1+2k)(1 + t)k dt

=
1

k
−
∫ ∞

1

(1 + t)k

t1+2k
dt

and the theorem is proved.

Theorem B.4. Suppose that a function f ∈ Lq(RN) ∩ Lr(RN), for 1 ≤ q ≤ ∞, 1 ≤ r ≤
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∞, q ≤ r.
Then f ∈ Lp(RN) for any q ≤ p ≤ r and, more precisely :

∥f∥pp ≤ ∥f∥
q(r−p)
p(r−q)
q ∥f∥

r(p−q)
p(r−q)
r .

Proof. We call

α =
q(r − p)

(r − q)
, β =

r(p− q)

(r − q)
,

in such a way that α + β = p and
∫
RN |u|p =

∫
RN |u|α|u|β.

Now, applying Hölder with
l =

r − q

r − p
, m =

r − q

p− q
,

the theorem is proved.

Corollary B.5. Let (vn)n be a bounded sequence in Hk
r (RN). Then, there exist v, h in

Hk
r (RN) such that, up to a subsequence:

(a) vn ⇀ v in E

(b) vn → v in Lp ∀ 2 < p < 2∗k

(c) vn → v a.e.

(d) ∃ h(x) ∈ Lp: |vn(x)| ≤ h(x) ∀n, ∀ 2 < p < 2∗k.

Proof. Point (a) follows directly from the Banach-Alaoglu theorem, noticing that Hk
r (RN)

is Hilbert and then both Banach and reflexive. Point (b) is a consequence of (a) and of
Theorem B.6. Finally point (c) and (d) are famous results in literature, nevertheless, for
(d) we refer to [8, Theorem 4.9].

Proof of Theorem 2.4. We start fixing r > 0, α > 0 and x ∈ RN . Thus, for any y ∈ RN

|u(x)| ≤ |u(x)− u(y)|+ |u(y)|

and, if we integrate over Br(x) we get

|Br||u(x)| ≤
∫
Br(x)

|u(x)− u(y)| dy +
∫
Br(x)

|u(y)| dy

≤ rα
∫
Br(x)

|u(x)− u(y)|
|x− y|α

dy +

∫
Br(x)

|u(y)| dy,
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with Br denoting the volume of the N -dimensional sphere of radius r. At this point we
fix α = N+2k

2
and apply Hölder to both the terms in the previous sum, respectively with

p = q = 2 and p = 2∗k, q =
2N

N+2k
.

|Br||u(x)| ≤ r
N+2k

2

∫
Br(x)

|u(x)− u(y)|
|x− y|N+2k

2

dy +

∫
Br(x)

|u(y)| dy

≤ r
N+2k

2

(∫
Br(x)

|u(x)− u(y)|2

|x− y|N+2k
dy

) 1
2

|Br|
1
2 +

(∫
Br(x)

|u(y)|2∗k dy
)(2∗k)

−1

|Br|
N+2k
2N

≤ C

{
rN+k

(∫
Br(x)

|u(x)− u(y)|2

|x− y|N+2k
dy

) 1
2

+ r
N+2k

2

(∫
Br(x)

|u(y)|2∗k dy
)(2∗k)

−1
}
,

where we have exploited |Br| ∼ rN . Now we divide by rN to obtain

|u(x)| ≤ C rk

{(∫
Br(x)

|u(x)− u(y)|2

|x− y|N+2k
dy

) 1
2

+ r−
N
2

(∫
Br(x)

|u(y)|2∗k dy
)(2∗k)

−1
}
.

At this point we denote as

α :=

∫
Br(x)

|u(x)− u(y)|2

|x− y|N+2k
dy

β :=

∫
Br(x)

|u(y)|2∗k dy

and rise everything to the power 2∗k,

|u(x)|2∗k ≤ C r2
∗
kk
{
α

1
2 + r−

N
2 β(2∗k)

−1
}2∗k

.

At this point we fix r := β
N−2k

N2 α− 1
N such that

r−
N
2 β(2∗k)

−1

= β−N−2k
2N α

1
2β(2∗k)

−1

= α
1
2

r2
∗
kk = β

2k
N α− 2k

N−2k .

Therefore, the following inequalities hold

|u(x)|2∗k ≤ C β
2k
N α− 2k

N−2kα
2∗k
2 = C β

2k
N α

= C

(∫
Br(x)

|u(x)− u(y)|2

|x− y|N+2k
dy

)
∥u∥

4k
N−2k

2∗k
.
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Finally, if we integrate over x we get

∥u∥2
∗
k−

4k
N−2k

2∗k
= ∥u∥2·2

∗
k

2∗k
≤ C

∫∫
R2N

|u(x)− u(y)|2

|x− y|N+2k
dxdy

and the first part of the theorem is proved.
We are left to show that the embedding Hk(RN) ↪→ Lp(RN) is continuous ∀p ∈ [2, 2∗k],
but this is a direct consequence of Definition (1.1), since, combined with the result we
have just proved, gives us that

u ∈ W k,2(RN) =⇒ u ∈ L2(RN) ∩ L2∗k(RN)

and, recalling Theorem B.4, our proof is complete.

Theorem B.6. For 1 < q < 2∗k, the embedding

Hk
r (RN) ⊂ Lq(RN)

is compact for any k > 0.

Proof. To prove the theorem, we want to define a bounded sequence (un)n in Hk
r (RN)

and show that it converges strongly in Lq(RN).
According to famous results of harmonic analysis, we start defining the classical potential
spaces Hk,2(RN), where

Hk,2(RN) = {u = (I −∆)−k/2f , with f ∈ L2(RN)}.

We recall here, that the fractional power (I − ∆)−k/2 can be defined by means of the
Fourier transform

(I −∆)−k/2f = F−1((1 + |ω|2)−k/2F(f)) = Gk ∗ f,

where
Gk(ω) = F−1((1 + |ω|2)−k/2) =

(2
√
π)−N

Γ(k/2)

∫ ∞

0

e−te
−|x|2

4t t
k−N

2
dt

t
(B.8)

is called the Bessel potential. At this point, we notice that

Gk(x) ≃ C

|x|k−N if |x| ≤ 2

e−
|x|
2 if |x| ≥ 2
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constitutes the asymptotic approximation of the Bessel potential for k < N and remember
that for some fn radial it holds

un = Gk ∗ fn.

Moreover, if we name M the constant of equiboundedness of the sequence (un)n, i.e.
∥un∥k ≤ M ∀n, then fn is bounded in L2(RN) by the same constant. Since we know
that any metric space is compact if and only if it is complete and totally bounded and
that Hk

r (RN) is complete, we proceed to show that Hk
r (RN) is a totally bounded subset

of Lq(RN).
We rely on the Kolmogorov-Riesz theorem of compactness and check that its hypotheses
are satisfied. These are the hypotheses:

(a) (un)n is bounded in Lq(RN)

(b) for every ϵ > 0, there exists some δ(ϵ) > 0 such that∫
RN

|un(x+ h)− un(x)|qdx ≤ ϵ,

for |h| ≤ δ(ϵ)

(c) for every ϵ > 0, there exists some R > 0 such that:∫
|x|>R

|f(x)|qdx ≤ ϵq.

Point (a) is trivial, exploiting the continuous embedding of Hk(RN) in Lq(RN).
Point (b), instead, can be retrieved through the definition of τhu(x) = u(x + h) and
noticing

∥τhu− u∥q = ∥τh(Gk ∗ fn)−Gk ∗ fn∥q
= ∥(τhGk −Gk) ∗ fn∥q ≤ ∥(τhGk −Gk)∥r∥fn∥2,

where the last inequality makes use of Young’s convolution inequality with 1
r
= 1

q
+ 1

2
,

that explicitly becomes

r =
2q

q + 2
.

Since, however, Gk ∈ Lq(RN), then we infer

∥(τhGk −Gk)∥r <
ϵ

M
.
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We conclude, thanks to ∥fn∥2 ≤M ∀n, point (b) stating

∥τhun − un∥q ≤ ϵ,

with |h| < δ.
For what concerns point (c), we finally notice that we have 0 < k < 1 and N > 2.
Moreover, we can set c = q(N − 1)(1

2
− 1

q
) and it holds 2 < q < 2(N+c)

N−2k
, indeed developing

calculation we obtain

2(N + c)

N − 2k
=

2
(
N + q(N − 1)(1

2
− 1

q
)
)

N − 2k

=
2 +Nq − q

N − 2k
=

2

N − 2k
+
q(N − 1)

N − 2k
.

Then, q < 2
N−2k

+ q(N−1)
N−2k

if and only if

q

(
1− N − 1

N − 2k

)
= q

(
1− 2k

N − 2k

)
≤ 2

N − 2k
.

As a consequence, q < 2
N−2k

+ q(N−1)
N−2k

⇐⇒ k > 1
2
− 1

q
, which is necessarily true since

q < 2∗k and we are led to

q <
2N

N − 2k
⇐⇒ N

2
− k <

N

q
⇐⇒ k > N

(
1

2
− 1

q

)
>

(
1

2
− 1

q

)
.

Therefore, we can state that

Hk
r (RN) ⊂ Lq(RN , |x|c−ϵdx),

for ϵ > 0 small and, fixing ϵ and c̃ = c− ϵ, we can apply the theorem to this case and we
write

Rc̃

∫
|x|>R

|un|q ≤
∫
|x|>R

|x|c̃|un|q ≤ C∥un∥qk,

where for the first inequality we trivially exploit that Rc̃ < |x|c̃ for any |x| > R and
R > 1.

Theorem B.7 (Ekeland’s variational principle). Let (X, d) be a complete metric space
and f : X → R∪{∞} be a proper, lower semicontinuous functional, bounded from below.
Set ϵ > 0 and x0 ∈ X such that f(x0) ̸= ∞. Then, there exists some v ∈ X such that
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(a) f(v) ≤ f(x0)− ϵd(x0, v)

(b) f(v) < f(x) + ϵd(x, v) ∀x ∈ X, x ̸= v.

Proof. We start defining Gz(x) : X → R

Gz(x) = f(x) + ϵd(x, z)

and the first step consists in proving that Gz(x) is lower semicontinuous. If we are
able to show that the distance function dz(·) : X → R , dz(x) = ∥z − x∥ is lower
semicontinuous, then we gather the lower semicontinuity for Gz, since it would be the
sum of two semicontinuous functions. Distance function is even uniformly continuous,
indeed, fixing ϵ > 0, we can put δϵ = ϵ and notice that

∥x− y∥ ≤ δϵ = ϵ =⇒ |dz(x)− dz(y)| = |∥x− z∥ − ∥y − z∥|

≤ ∥x− y∥ ≤ ϵ.

Defining now

F (x) := {y ∈ X : Gx(y) ≤ f(x)} = {y ∈ X : f(y) + ϵd(y, x) ≤ f(x)},

we want to highlight three important properties that this set possesses. The first one is
its closure, indeed we have two cases:f(x) = ∞ =⇒ F (X) = X

f(x) = t ∈ R =⇒ {y ∈ X : Gx(y) ≤ t}, t ∈ R,

where X is closed by hypothesis and, in the second line, an equivalent definition of semi-
continuity for Gx ensures that {y ∈ X : Gx(y) ≤ t} is closed.
The second property reads as y ∈ F (x) =⇒ F (y) ⊂ F (x) and is true indeed, if we take
a generic z ∈ F (y) and recallz ∈ F (y) =⇒ f(z) + ϵd(z, y) ≤ f(y)

y ∈ F (x) =⇒ f(y) + ϵd(y, x) ≤ f(x),

we can combine these equalities into

f(z) + ϵd(x, z) ≤ f(z) + ϵ(d(z, y) + d(y, x)) ≤ f(x)

and we obtain immediately that z ∈ F (x).



B| Proofs and useful results 109

Finally, the third one is that F (x) is not empty, trivial since at least x ∈ F (x).
At this point, we proceed to set

s0 = inf
x∈F (x0)

f(x), x1 ∈ F (x0) : f(x1) ≤ s0 + 2−1,

where we stress that s0 ∈ R, since f is bounded from below. Then, we define recursively
sn = infx∈F (xn) f(x) and xn+1 ∈ F (xn) such that f(xn+1) ≤ sn + 2−(n+1). Moreover,
xn+1 ∈ F (xn) implies that f(xn+1) > sn and the following chain holds

xn+1 ∈ F (xn) =⇒ F (xn+1) ⊂ F (xn) =⇒ sn+1 ≥ sn.

Thus, combining together:

f(xn+2) > sn+1, sn+1 > sn,

we retrieve that f(xn+2) > sn.
Now we are ready to provide calculations and start explicating xn+1 ∈ F (xn), which
becomes

f(xn+1) + ϵd(xn, x− n+ 1) ≤ f(xn),

that finally provides
ϵd(xn, xn+1) ≤ f(xn)− f(xn+1) ≤ 2−n.

Since then d(xn, xn+p) → 0 ∀p > 0 as n→ ∞, we obtain that (xn)n is a Cauchy sequence
in F (x0), hence (xn)n is a Cauchy sequence in a closed set.
As a consequence, there exists some v ∈ F (x0) such that xn → v in X and moreover
v ∈ F (xn) ∀n > 0.
Considering now F (v), with v = limn xn and setting a generic x ∈ F (v), we can exploit
that F (v) is not empty. We have that

F (x0) ⊃ ... ⊃ F (xn−1) ⊃ F (xn) ⊃ F (xn+1) ⊃ ... ⊃ F (v)

and we deduce that x ∈ F (xn)∀n implying ϵd(x, xn) ≤ 2−n and as a consequence xn → x;
but it holds that both xn → v

xn → x

and, by uniqueness of the limit, we have shown that x = v, or, more profoundly, we have
shown that F (v) = {v}. Changing perspective, we have that x ∈ F (v)c ∀x ̸= v.
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Expliciting v ∈ F (x0) and x ∈ F (v)c ∀x ̸= v, we get the theses of the theorem, respectively

f(v) ≤ f(x0)− ϵd(x0, v)

f(v) < f(x) + ϵd(x, v) ∀x ∈ X x ̸= v.

Corollary B.8. Let (X, d) be a complete metric space and f : X → R∪{∞} be a proper,
lower semicontinuous functional, bounded from below.
Set ϵ > 0 and x0 ∈ X, such that f(x0) ≤ ϵ+ infx∈X f(x).
Then, for any λ > 0 , there exists v ∈ X such that:

f(v) ≤ f(x0) and d(x0, v) ≤ λ.

Moreover, for any x ∈ X, x ̸= v it holds

f(x) > f(v)− ϵ

λ
d(x, v).

Proof. Once chosen x0 as in the hypotheses, we apply the Ekeland’s principle fixing a
generic λ̃ on x0 and, from f(v) ≤ f(x0)− λ̃d(x0, v), we retrieve

f(v) ≤ inf
x∈X

f(x) + ϵ− λ̃d(x0, v) =⇒ d(x0, v) ≤
ϵ

λ̃
.

Instead, from f(v) ≤ f(x) + λ̃d(x, v), for any x ∈ X, x ̸= v we have

f(x) ≥ f(v)− λ̃d(x, v) ∀x ̸= v.

Theses come straightforwardly fixing λ̃ = ϵ
λ
.

Theorem B.9 (Harnack inequality). Let u an harmonic and non-negative function in
BR ⊂ RN for some R > 0. Then, for any x ∈ BR it holds

RN−2(R− |x|)
(R + |x|)N−1

u(0) ≤ u(x) ≤ RN−2(R + |x|)
(R− |x|)N−1

u(0).

Proof. To carry on this proof we will refer to the Poisson formula for harmonic functions
and to the mean value property as treated in detail in [29, Chapter 3.3]. From the Poisson
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formula we have that
u(x) =

R2 − |x|2

ωNR

∫
∂BR

u(σ)

|σ − x|N
dσ,

where ωN denotes the surface area of the N -dimensional sphere. It is trival that R−|x| ≤
|σ − x| ≤ R + |x| and that R2 − |x|2 = (R + |x|)(R− |x|). Thus, we can compute

u(x) ≤ (R + |x|)
ωNR

(R− |x|)1−N

∫
∂BR

u(σ) dσ

=
(R + |x|)RN−2

ωN(R− |x|)N−1

(
1

RN−1

∫
∂BR

u(σ) dσ

)
=

(R + |x|)RN−2

(R− |x|)N−1
u(0),

where the last equality makes use of the mean value property. Analogously we have that

u(x) ≥ RN−2(R− |x|)
(R− |x|)N−1

u(0)

and the theorem is proved.

Corollary B.10. For any non-negative harmonic function u : B1 → R, for any r in
(0, 1), there exists a constant cr > 0 depending only on r such that

u(x) ≤ cr u(y) ∀x, y ∈ Br.

Proof. Directly from Theorem B.9 we retrieve

u(x)

u(y)
≤
(
1 + |x|
1 + |y|

)(
1− |y|
1− |x|

)N−1

≤ 1 + r

(1− r)N−1
=: cr,

for any x, y ∈ Br. Just notice that c does depend neither on x nor on y.

Lemma B.11. Let u1, u2 be two functions in Sc. Let H(u, s) the map defined in Section
2.4.1. Then〈

(−∆)
k
2H(u1, s), (−∆)

k
2H(u2, s)

〉
H
= e2ks

〈
(−∆)

k
2u1, (−∆)

k
2u2

〉
H
.
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Proof. We start exploiting [16, Corollary 5.3] and [16, Lemma 5.4] to write〈
(−∆)

k
2H(u1, s), (−∆)

k
2H(u2, s)

〉
H
=

∫
RN

(−∆)
k
2 (−∆)

k
2H(u1, s)H(u2, s)

=

∫
RN

(−∆)kH(u1, s)H(u2, s).

We now rely to the rescaling result shown in Section 2.2, according to which

(−∆)k(αqu(αx)) = αq+2k(−∆)ku(αx).

Thus, we fix α = es, q = N/2 and obtain

(−∆)kH(u1, s) = e
sN
2

+2ks(−∆)ku1(e
sx).

We can now conclude the proof∫
RN

(−∆)kH(u1, s)H(u2, s) = esN+2ks

∫
RN

(−∆)ku1(e
sx)u2(e

sx) dx

= e2ks
∫
RN

(−∆)ku1(x)u2(x) dx =
〈
(−∆)

k
2u1, (−∆)

k
2u2

〉
H
.
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