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Abstract

Industrial structures are generally composed by a pre-cast structural frame,
closed at the four sides by cladding panels, constrained to the frame by means
of speci�c connections. In the case of a seismic event, the forces generated
by the ground motion are transmitted from the frame to the panels through
these anchoring devices. The main objective of this work is to analyze and
simplify the procedure involved in the combination rule adopted to obtain the
maximum value of these forces. In particular, in the most advanced seismic
codes, earthquake loads are often de�ned by means of pseudo-acceleration RS
and the use of modal superposition analysis is strongly recommended. Sev-
eral rules for the peak value combination of modal responses have been de-
rived on the basis of random vibration theory. The simplest one is the Square
Root of Sum of Squares (SRSS) combination rule, ignoring the correlation
between modes. However it provides excellent nodal response estimates only
with particular characteristics (structure with well separated natural frequen-
cies and not too lightly damped and earthquake excitations containing a wide
band of frequencies). When these conditions are not respected, the correla-
tion between modal responses cannot be neglected. In such cases, the modal
combination should be performed using the Complete Quadratic Combina-
tion (CQC) rule, de�ning coherent correlation coe�cients. In particular,
by assuming the ground motion as a stationary, gaussian and zero mean
process, then the input process is simply de�ned by its Autocorrelation func-
tion, or alternatively, by the corresponding Power Spectral Density Function
(PSDF). In such a case, random vibration theory provides useful tools al-
lowing for a simple evaluation of correlation coe�cients consistent with any
input Power Density. Unfortunately, the majority of the codes characterize
the ground excitation anticipated at the site by means of elastic response
spectra. Therefore the evaluation of consistent correlation coe�cients re-
quires a preliminary evaluation of the PSD of the seismic excitation com-
patible with the assigned response spectrum. In literature various methods
have been proposed to this purpose.
Summing up, the goal of the work is centered on the evaluation of the reac-
tion forces which generate at the connection between frame and claddings.
To do so, a modal superposition analysis is used. The center of the for-
mulation is related to the fact that the ground motion will be here seen as
the contribution of a �ctitous mode of the structure with in�nite frequency.
On one hand this allows to reduce the complexity of the formulation, but
on the other it makes it necessary to rely on a modal combination rule to
compute the maximum values of the solution. In order to account for the
interaction between the modes, the Complete Quadratic Combination rule
is used. This procedure requires however the knowledge of the correlation
coe�cients between the modes involved. This is why the �rst part of the
thesis will be devoted to exploit the main conceopt behind the theory of the
Spectral analysis, in order to obtain a closed form solution for such coef-
�cients. The proposed formulations should be validated by considering the
di�erent class of soils and damping ratios. The reliability of the method will
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be �nally assessed also in the non linear �eld, when the structural model
enters its post-elastic behaviour.



Sommario

Le più generali strutture industriali fanno riferimento ad una struttura com-
posta da un telaio primario pre-fabbricato delimitato ai lati da pannelli
di tamponamento. Tali elementi di chiusura sono connessi alla struttura
principale per mezzo di speci�ci ancoraggi. Ed è proprio tramite questi
meccanismi di ritenzione che durante un evento sismico, le forze generate
dall'accelerazione del suolo vengono trasmesse dal telaio ai pannelli. Scopo
di questo lavoro è quello di sviluppare una procedura sempli�cata �naliz-
zata al calcolo dei valori massimi di queste forze. In particolare, nei codici
più recenti, il carico sismico viene modellato tramite il concetto di Spettro
di Risposta, e l'utilizzo dell'analisi modale è fortemente consigliato. A tal
proposito, facendo riferimento ai principi della teoria stocastica, varie tec-
niche di combinazione modale sono state sviluppate al �ne di arrivare al
valore di picco della risposta. Il metodo più semplice e immediato (Square
Root of the Sum of the Squares - SRSS) prevede il calcolo del valore mas-
simo trascurando la correlazione tra i modi. I risultati forniti sono tuttavia
a�dabili solamente nel caso in cui i modi di vibrare siano caratterizzati
da frequenze ben distinte, e un contributo viscoso su�cientemente elevato.
In caso contrario, la SRSS non è adottabile, e l'analisi modale va e�et-
tuata utilizzando un diverso metodo di combinazione modale, la Complete
Quadratic Combination Rule (CQC). In particolare, guardando all'azione
sismica come ad un processo stazionario e Gaussiano, è possibile caratter-
izzare l'input del problema semplicemente in termini della Densità Spettrale
associata all'evento. Il problema è legato al fatto che, come detto, la maggior
parte delle Normative rappresenta il terremoto in termini dello Spettro di
Risposta Elastico. Per questo motivo la valutazione dei coe�cienti di corre-
lazione richiede prima di tutto la valutazione della relativa Densità Spettrale,
modellata in modo tale da risultare compatibile con lo Spettro di risposta in
oggetto. In letteratura vari metodi sono disponibili a riguardo. Una volta
dunque individuato il modello di Funzione di densità Spettro compatibile,
l'obiettivo del lavoro è quello di de�nire una procedura di calcolo sempli�-
cata che consenta di ottenere in forma chiusa il valore dei coe�cienti di
correlazione da adottare in seguito nell'analisi modale. La validità della
formulazione proposta verrà poi valutata non sono utilizzando un modello
lineare, ma anche investigando quello che succede in campo plastico, tenendo
in considerazione i processi di plasticizzazione della struttura.
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Chapter 1

Introduction

1.1 General aspects

Precast concrete is an alternative to cast-in-situ concrete. While cast-in-
situ concrete is cast in its actual location, precast concrete is cast at another
location and is then lifted to its �nal resting place and �xed securely. This
means that unlike cast-in-situ construction, which is monolithic or continu-
ous, precast concrete buildings are made of separate pieces that are bolted or
connected together. This kind of structures gained a wide populrity since
the second half of the 19-th century, where they were used as industrial,
commercial, and in some cases also residential buildings, with the main
frame system enclosed at each side by pre-cast concrete panels (Figure 1.1).
The large di�usion of such structures puts in evidence the aspect related to
the safety which must be assured to the people working or living inside.

Figure 1.1: Pre-cast structure with cladding panels

During an earthquake, the e�ect of the seismic actions produce consequences
not only on the structural frame, but a�ects also the lateral in�ls elements,
cladding panels, which enclose the internal spaces. The panels are con-
nected to the primary system by means of anchoring system placed both at
the ground level and on top of the frame. In such cases, the consequence
of a seismic event is the generation of internal stresses in these anchoring
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devices. The inadequate seismic behaviour of the cladding panel connec-
tions and their consequent failure occured under recent earthquakes, this
gave rise to the necessity for a revision of the design philosophy adopted for
this kind of structures.

(a) (b)

(c) (d)

Figure 1.2: Behaviour of the cladding panels: (a) and (b) collpase of the
panels, (c) and (d) damages at the connections

In the current work, the presented problem is analyzed in detail, modelling
the structure as a linear 1 DOF oscillator, where the presence of the cladding
panels is accounted through a correction coe�cient which modi�es the nat-
ural period of the model. The key point however is related to the fact that
the e�ects of the ground motion is here seen as the contribution of an ad-
ditional �ctitous mode characterized by in�nite frequency. In this way the
forces at the connections will depend on the contribution of two modes: (1)
the principal mode of the structure, (2) the second one modelled as if the
structure had in�nite sti�ness. By representing the speci�ed earthquake as
a random process, the goal is to compute the maximum values of the above
mentioned actions for any seismic event. To do so, a linear Response Spec-
trum method based on the modal combination using the CQC rule is here
adopted, avoiding the high computational costs required by a time history
analysis.
Another way could have been to rely on a probabilistic handling of the
assigned seismic action, which would allow for the full statistical character-
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ization of the response of linear systems in the modal space, including the
response peak distribution, avoiding the combination of modal responses.
However, if on one hand the random vibrtion approach is appealing from
the statistical point of view, on the other hand it is not yet accepted as a
method of analysis by practitioner engineers and design codes. Together
with the fact that, by following this path, the analytical evaluation of the
peak factors would have been much more complex and time consuming.
This is why a Response Spectrum method is here adopted, which exploits
the basics of the superposition principles of modal analysis, making use of
the random vibration theory only when it comes to compute the correlation
coe�cients entering the CQC rule.
To do so, two important points must be tackled:

1. the de�nition of a Response Spectrum compatible Power Spectral Den-
sity (PSD)

2. the correct evaluation of the correlation between modes, needed to
properly compute the peak value of the response

Reagrding point 1, number of methods have been proposed for the genera-
tion of a RS compatible PSD. Here an analytical model is exploited, which
provides a parametric formulation for the compatible PSD, where the co-
e�cients are evaluated as closed form functions of the seismic codes RS
parameters.
For what concerns the second point, early rational approaches tried to take
this correlation into account by introducing cross modal terms depending
on the duration of the earthquake, as well as modal frequency and damp-
ing ratio values. With time, additional procedures relying on more re�ned
models were de�ned. In particular, the motion produced by earthquake
accelerations is random in nature, and so in order to capture this aspect,
more advanced approaches taking full advantage of stochastic analysis have
been proposed. Therefore, by looking at the ground motion as a stationary,
gaussian and zero mean event, then the input process is simply de�ned by
its Autocorrelation function, or alternatively, by the corresponding PSD. In
addition, if the system is linear and with constant coe�cients, the response
process after the transient phase, that can be very short if the system is
sti� and damped enough, preserves the same properties of the input and so
it is stationary, gaussian and zero mean process. In this way the response
of the structure can be characterized from the stochastic point of view by
its PSD. Several works took advantage from these considerations, adopting
the concepts typical of random vibration analysis. At the end, in order to
obtain the required correlation coe�cients, one must �rst of all compute the
related spectral moments, and this requires the resolution of the convolu-
tion integral involving the expression of the Response Spectrum compatible
PSD previously obtained. The problem can be easily solved by means of
numerical integration. However, in order to obtain an analytical solution of
the problem, a manipulation of the expressions providing a RS compatible
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PSD is needed, thus simplifying the complexity of the computations. Dif-
ferent analytical formulations will be proposed, and the results obtained by
means of the Response Spectrum method will be compared.
However, the structural behavior of pre-cast structures is highly non-linear,
even for small displacements. The problem is that no reliable information
are available to determine in a rigorous way the most proper value of the
behaviour factor to be used. Therefore, relevant inaccuracies in the deter-
mination of the seismic response are introduced.
This is why, the second part of the thesis will be devoted to the validation
of the above mentioned RS method also in the non linear �eld.
A non linear time history analysis (NLTHA) is for sure the method able
to provide the most reliable results, due to the fact that seismic response
of a structure is always dynamically non linear. This procedure however is
not so widespread, �rst of all due to the di�culties in the choices of the
structural variable to adopt in the post-elastic �eld, and second for its high
computational costs.
This justti�es the choice to limit the NLTHA as a �nal veri�cation step,
rather than a design method. The right compromise between the simpli�ca-
tions o�ered by a linear analysis, and the complexity of a non linear analysis
in time, is represented by a non linear static analysis. The method is much
more handy and immediate, providing the response of a highly nonlinear
structure in terms of maximum displacement and maximum shear force.
Such informations will be then exploited to implement the RS method af-
ter plasticization occurs. On the other hand the numerical outputs coming
from the NLTHA are used as reference results.
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1.2 Literature review

The problem regarding the evaluation of the maximum values of the reac-
tion forces at the connections between the frame and the cladding panels
of pre-cast industrial buildings is a topic not already well treated by the
engineering community. This is why, in order to get a �rst hint on how to
characterize these actions, the work of other authors on analogous problems
have been analyzed. Of great importance to this purpose has been the work
of Der Kiureghian and Pozzi [1]. Here the authors presented a method for
evaluating the peak �oor acceleration for a shear walls structure, in which
the forces generated at the �oor levels share a certain similarity with the
cladding forces under investigation. The method accounts for the rigid con-
tribution of the truncated higher modes, where the ground acceleration is
seen as the contribution assured by an hypothetical in�nite frequency mode
of the structure. Cacciola et al [18], like other authors, proposed a for-
mulation to be adopted for the combination of modes in the evaluation of
the peak response. They stated how it was possible to approximate the
correlation coe�cients by referring to a white noise excitation when the
duration of the earthquake is much longer than the period of the modal
oscillators. However when a structure has signi�cant modes outside the
range of input frequencies, the above assumption fails. A possible solution
is to characterize the seismic event by means of its Power Spectral Density,
allowing for a simple evaluation of the correlation coe�cients by using the
tools provided by the random vibration theory. The advantages of this ap-
proach are pointed out by Der Kiureghian and Pozzi [2] in which the authors
present the bene�ts of exploiting the principle of a stochastic analysis for
the seismic design of nuclear power plants to circumvent the costs of the
time history analysis based on arti�cially generated accelerograms. Unfor-
tunately, most seismic codes characterize the ground motion by means of
the elastic spectra. Therefore, a spectral representation of a seismic event
coherent with the assigned Response Spectrum is needed. In their seismic
analysis of submerged �oating tunnels, Martinelli et al [3], proposed a pro-
cedure which is centered around the fact that the parameters de�ning the
PSD are the output of a numerical procedure aiming at minimizing the dif-
ference between the resultant median Pseudo acceleration Spectrum of the
generated time histories and the EN1998 Spectra. An alternative method
was proposed by Falsone and Neri [4], in which the authors used an iterative
procedure, introducing at the end the concept of �lter equations in order to
correct the approximated shape obtained for the PSD. Another very handy
and accurate model was instead proposed by Cacciola et al [18], in which
the authors highlighted the fact that, if the input is wide-banded and the
oscillator frequency is not far beyond the signi�cant range of input frequen-
cies, the parameters entering the equation of the input variance are not too
sensitive to the PSD shape. This allows to approximate the actual ground
acceleration PSD with a constant piecewise function, allowing for a direct
formulation of the PSD expression itself. For the aims of this work how-
ever, great bene�ts were assured by taking advantage from the formulation
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proposed by Barone et al [5]. The authors, in order to de�ne an analytic
PSD function, performed an extensive numerical campaign by varying the
intensity and shape of the assigned RS. It was observed that the method
always returns numeric PSD functions having the same qualitatively shape.
Hence, it is straightforward to describe the PSD function as a four-branches
piecewise function. For what concerns the analytical evaluation for the cor-
relation coe�cient ρij, of great importance has been the work by Vincent
Denoel [6] on the timescale separation technique to be used for the compu-
tation of spectral quantities, which is related to the fact that the existence
of multiple time scales in the response translates into the existence of sev-
eral well-distinct peaks in the spectra.
A comparison with the formulations proposed by Moschen et al [7] and Der
Kiureghian et al [8] in hypothesis of white noise input is proposed. On
the other hand, the second part of the work will be instead focused on the
analysis of the structure in the non linear �eld. The goal is to verify the
validity of the RS method also when the elastic behaviour assumption is
not valid anymore. Of great importance to understand the main features
of the problem has been the work by Dal Lago et al [9]. The authors dealt
with seismic retro�tting of industrial buildings, with precise indications on
how to properly model the non linearities of the structure.

1.3 Objective of the work

Summing up, the work here presented is centered around the computation of
the forces which arise at the connections between the frame and the cladding
panels in industrial structures. In particular the main goal is to de�ne a
simpli�ed analytical formulation of the problem, avoiding the necessity to
make use of heavy numerical analysis.
To do so, the thesis is organized in three main parts:

1. De�nition of an analytical method providing a Response Spectrum
compatible Power Spectral Density

2. Implementation of the Response Spectrum method in the elastic �eld

3. Implementation of the Response Spectrum method after plasticization
occurs

This is why, the theory background, the proposed formulations and the
presentation of the results will be organized in the following chapters:

� Chapter 2 will be devoted to revise the basic principles and the main
aspects associated to the concept of Spectral analysis

� Chapter 3 deals with the concept of RS compatible Power Density.
After revising the works of some authors, the adopted analytical PSD
formulation is presented
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� Chapter 4 introduces the theory behaind the Response Spectrum
method proposed by der Kiureghian et al [8], presenting the main
aspects and assumptions adopted by the author

� Chapter 5 faces for the �rst time the analytical formulation for eval-
uating the forces at the connections. Starting from the equation of
motion for the SDOF oscillator, and exploiting the principles proposed
by Der Kiureghian et al [1] it provides at the end the complete formu-
lation of the CQC rule, accounting for the in�uence of the cladding
panel.

� Chapter 6, Chapter 7 and Chapter 8 are devoted to present the dif-
ferent analytical formulation adopted in this work to obtain the coef-
�cient of correlation. In particular

� Chapter 6 treats the theories proposed by Der Kiuregian [8] and
Moschen [7] in hypothesis of white noise

� Chapter 7 provides the results obtained via Denoel's Multiple
Timescale spectral theory

� Chapter 8 explains the analytical results obtained by exploit-
ing the computational capacity of the CAS (Computer Algebra
System) wxMaxima

� Chapter 9 contains the �nal results obtained by means of the di�erent
formulations

As mentioned, the second part of the work is devoted to the analysis of the
model in the non linear �eld. To do so, thanks to the software Straus7,
a �nite element model is de�ned. However, before entering the non linear
analysis, a validation of the results obtained in Chapter 9 is proposed. This
was needed due to the fact that the results proposed in Chapter 9 are based
on the assumption of in�nite rigid panels. In reality however, these ele-
ments are not completely rigid, with intrinsic vibration modes. Summing
up, Chapter 10 has two goals: (1) to validate the proposed analytical for-
mulations based on the hypothesis of rigid panel behavior, and (2) to build
the FE models which will be used later for the non linear analysis.
Finally, Chapter 11 and Chapter 12 will deal with the analysis the post
elastic behaviour of the models. In particular:

� Chapter 11 will be devoted to present the results obtained through
the implmentation of the NLTHA implemented with Straus7 for the
di�errnt models implemented. These results will be used as reference
solutions.

� Chapter 12 will be focused on the valdation of the RS method when
the structure enters the non linear behaviour.

Final considerations and conclusions are reported in Chapter 13
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Chapter 2

Basic principles of the spectral

analysis

In the majority of the building codes the seismic actions are de�ned in terms
of the expected maximum response of a single-degree-of freedom (SDOF)
system in terms of pseudo-acceleration Response Spectrum (RS). The RS
represents the absolute maximum value of a selected response parameter
experienced, during the so called design earthqueke, by a SDOF system
varying its natural period, and for a selected value of the damping ratio.
A building code RS curve is determined by the expected SDOF system re-
sponse at a particular site. The RS analysis however is strictly valid only
for linear SDOF systems, and its use for the evaluation of MDOF systems
implies some approximations. [5]
Conversely, a proper probabilistic handling of the assigned seismic action
would allow for the full statistical characterization of the response of lin-
ear systems in the nodal space, including the response peak distribution,
avoiding the combination of modal responses and allowing for an e�ective
assessment of the structural reliability. [10]
It is recognized that the most rigorous way of modelling the seismic ex-
citation is to consider zero-mean Gaussian processes that, under some as-
sumptions, can also be assumed as stationary. The complete probabilistic
characterization of the input can be then achieved by the knowledge of its
Power Spectral Density (PSD) function. [11] However, if on one hand the
random vibration approach is appealing for its statistical nature, it is not yet
accepted as a method of analysis by practitioners engineers. Furthermore,
most seismic design codes specify the earthqueke motion in terms of the
response spectrum, and not the PSD. It is therefore desirable to develope
a method of analysis based on the response spectrum speci�cation of the
input motions, and which is able to incorporate the fundamental notions of
the random vibration theory.

This is exactly how the Response Spectrum method adopted for the aim of
this thesis works. In particular, the Complete Quadratic Rule is organized
in such a way that: (1) the seismic input are provided in terms of the
ordinates of a EC8 prescribed Response Spectrum, while (2) the correlation
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are computed by exploiting the results of the spectral analysis. In the next
paragraph, the concept of Power Spectral Density and Frequency response
Function are introduced.

2.1 Input-Output response

Many engineering applications are based on the input/output representa-
tion of a system, which is well suited to study the stochastic response of
deterministic systems to random input. There is a wide variety of such
applications in the various �elds of engineering, and the response of a civil
structure under seismic actions is one of them [11]. In many of these applica-
tions the timescales T associated with the system are signi�cantly di�erent
from those t of the loading, so that the response turns out to be a compo-
sition of components with di�erent timescales [12].
Traditional simulation techniques turnes out to be not e�cient for the res-
olution for these kind of problems, due to the fact that they would have
to simultaneously resolve the di�erent scales, relying on a very short time
steps, causing very long simulations. On the other hand, stochastic spectral
analysis appears as a valuable tool to solve these issues. Indeed, the loading
is usually given with a spectral representation, i.e. a set of spectra de�ned
on multidimensional frequency spaces. [13]
Among them, the above mentioned PSD, represents the distribution of the
variance of th process over the frequency domain. More generally, the j-th
order spectrum represents the distribution of the j-th stationary cumulant
over a frequency domain of dimension R(j−1).
The objective of a spectral analysis is to determine the spectra of the re-
sponse in terms of those of the input and eventually integrate them in the
corresponding frequency spaces in order to determine the cumulants of the
response. A canonical version of the spectral analysis, is the one in which
the j-th order spectrum of the response is de�ned as:

Sx(w
(j)) = H(w(j))H(∗)(w(j))Sp(w

(j)) (2.1)

where w(j) = w1, .., wj−1 with j > 1, gathers the independent variables of
the frequency space, H(w(j)) is the frequency kernel function, H(w(j))(∗)

represents its conjucated, and Sp(w
(j)) and Sx(w

(j)) respectively stand for
the j-th order spectra of the loading and of the response.
A brief explaination of the theory behind the above mentioned variables is
reported in the next paragraphs.

2.2 Fourier Transform

Before dealing with the concept of Frequency Response Function and Power
Spectrum, another point must be tackled �rst: the notion of Fourier anal-
ysis.
The theory behind the Fourier analysis has a wide range of applications
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in various scienti�c and mathematical �elds. By considering the case of a
SDOF system under the e�ect of a loading repeating in time for equal time
intervals T , Fourier proved how such periodic function can be expressed as a
summation of a number of in�nite sinusoidal terms (sine and cosine). Such
summation is known as Fourier series. In particular, a periodic function
F (t) can be rewritten as:

F (t) = a0 + a1 coswt+ a2 cos 2wt+ a3 cos 3wt+ ...+ an cosnwt+

= b1 sinwt+ b2 sin 2wt+ b3 sin 3wt+ ...+ bn sinnwt
(2.2)

where w = 2π
T

is the frequency, while T is the period of the function. For
what concerns the coe�cients a0 an and bn, they can be evaluated as:

a0 =
1

T

∫ t1+T

t1

F (t)dt

an =
2

T

∫ t1+T

t1

F (t) cosnwtdt

bn =
2

T

∫ t1+T

t1

F (t) sinnwtdt

(2.3)

where t1 is usually assumed equal to T
2
or zero. The expressions of (2.3)

can be rewritten in exponential form, by substituting the trigonometric
functions with their Euler formulation:

sinnw =
einw − e−inw

2i

cosnw =
einw + e−inw

2

(2.4)

obtaining:

F (t) =
∞∑

n=−∞

cne
inwt (2.5)

where:

cn =
1

T

∫ T

0

F (t)e−inwtdt (2.6)

In general however, random vibrations are not periodic in time, therefore
the frequency analysis requires an extensions of the Fourier series to the
case of non periodic functions, the Fourier transform., which allow for a
wider treatment of the problem of random vibrations.
The Fourier transform can be seen as the integral of the Fourier series as
the period of the function goes to in�nite. In particular, by replacing (2.6)
in (2.5), and by using a �ctitous time variable τ instead of t:

F (t) =
∞∑

n=−∞

1

T

∫ T/2

−T/2

F (τ)e−inwτeinwτdτ (2.7)
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Now, by considering the limit of T → ∞:

F (t) =
1

2π

∫ ∞

−∞

[∫ ∞

−∞
F (τ)e−iwτdτ

]
eiwtdw (2.8)

which is the Fourier integral for F (t).
Now, since the function inside the square brackets is dependent on w only,
(2.8) can be split into two parts:

C(w) =
1

2π

∫ ∞

−∞
F (τ)e−iwτdτ (2.9)

and

F (t) =

∫ ∞

−∞
C(w)eiwtdw (2.10)

The validity of these two relation is based on the condition:∫ ∞

−∞
|F (t)|dt <∞ (2.11)

The function C(w) is the so called Fourier transform of F (t), and the two
forms the so called Fourier transform couple.
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2.3 Power Density Spectrum

Before dealing with the de�nition of Power Spectrum, a brief introduction
to the concept of correlation is needed. The correlation is a measure of the
dependency between two random realzizations.
By considering the two signals represented in Figure (2.1), the correlation
between them is computed by multiplying the ordinates of the two for each
time instant t, computing at the end the average of all the values.
Now, by considering as before two realizations x1(t) and x2(t), where in this
case x1(t) has the same behaviour of x2(t), but it is simply tranlated in time
by a quantity τ , x1(t) = x2(t+ τ). Then the correlation between x2(t) and
x1(t) is known as autocorrelation function R(τ), and it is de�ned as:

R(τ) = lim
T→∞

1

T

∫ T

0

x(t)x(t+ τ)dt (2.12)

When τ = 0, the autocorrelation reduces to the average of the squares:

R(0) = lim
T→∞

1

T

∫ T

0

|x(t)|2dt = x̄2 (2.13)

Figure 2.1: Random realizations in time
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Given the fact that the second realization x2(t) is delayed wrt the �rst one, it
happens that R(τ) = R(−τ) is symmetric wrt the origin, and R(τ) is always
lower than R(0). Finally, if a random realization x(t) is normalized in such
a way that the average value of the process is zero, then, by assuming that
x(t) has no periodic components, its autocorrelation function Rx(τ) tends
to zero as τ increases:

lim
τ→∞

Rx(τ) = 0 (2.14)

This to say that, if Rx(τ) satis�es condition (2.14), it is possible to apply
(2.9) and (2.11) in order to obtain the Fourier transform of Rx(τ) and its
inverse:

Sx(w) =
1

2π

∫ ∞

−∞
Rx(τ)e

−iwτdτ (2.15)

and

Rx(τ) =

∫ ∞

−∞
Sx(w)e

iwtdw (2.16)

where Sx(w) is the so called Power Spectral Density Function (PSDF) for
the realization x(t)
The most important property of Sx(w) is expolited when considering τ = 0
in (2.16):

Rx(0) =

∫ ∞

−∞
Sx(w)0dw (2.17)

and by recalling relation (2.13):

x̄2 =

∫ ∞

−∞
Sx(w)dw (2.18)

This means that that the the average value of the square of a realization,
i.e. its energy content, is represented by the area envelope by the diagram
of the PSDF.

2.4 Frequency Response Function

The kernel operator H(w(j)) which enters (2.1) is the so called Frequency
Response Function (FRF), which provides in the frequency domain the re-
sponse of a MDOF system starting from the input loading.
Now, by focusing on the domain of interest R1, to arrive to its formulation,
it is needed to start by considering the time response x(t) of a MDOF linear
system:

x(t) =

∫ ∞

−∞
h(t− τ)p(τ)d(τ) (2.19)

with h(t) being the impulse response function of the system and p(t) the
multiple-point excitation input.
In the frequency domain, the frequency response X(w) emerges by the ap-
plication of the Fourier transform operator :
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F [y(t);w] =

∫ inf

− inf

y(t)e−iεdt (2.20)

to each member of (2.19), where i is the complex unit. The �nal result is:

X(w) = H(w)P (w) (2.21)

as a consequence of the duality theorem.
By making the functional dependencies explicit, (2.21) can be re-written in
a more detailed form, which will be adopted throughout the work:

X(ŵ, wi, ξi) = H(ŵ, wi, ξi)P (ŵ) (2.22)

being ŵ the forcing frequency, wi the structural frequency associated to the
i− th mode, and ξ the structural damping coe�cient.

2.5 Spectral analysis

In the last years it has been recognized that the most accurate way of mod-
elling the seismic actions which a�ect the structural systems is by making
use of the concept of Gaussian stochastic processes; moreover, if the strong
motion phase dominates the earthquake, and the structural system is linear,
sti� and damped enough, then the seismic exitation can be approximated
as a stationary event [4]. As a consequence, the seismic motion can be sto-
castically characterized by the only knowledge of its time independent PSD.
Under these assumptions on the input process, the transient phase of the
system can be very short wrt to the earthquake duration time, therefore the
structural response can be considered a stationary process as well. Thus it
can be stochastically characterized by the knowledge of its PSD.
This to say that, the frequency domain approach (2.21) is well suited to
study the response of deterministic structures subjected to stacastic load-
ing, since both the response X(w) and the loading P (w) are viewed as
stochastic processes.
Therefore, under the general assumptions presented before:

SX(ŵ, wi, ξi) = H(ŵ, wi, ξi)SP (ŵ)H
∗(ŵ, wi, ξi) (2.23)

The aim of the spectral analysis is associated to the computations of the
response spectral moments:

λij = Re
[∫ inf

0

Hi(ŵ, wi, ξi)H
∗
j (ŵ, wi, ξi)SP (ŵ)dŵ

]
(2.24)

Finally, the correlation coe�cient needed for the CQC rule will be de�ned
as:

ρij =
λij√
λiiλjj

(2.25)
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The �rst challenge is to set up a robust procedure to de�ne a PSD func-
tion compatible with the assigned RS. In the last decades, great attention
has been devoted to develop analytic and numeric techniques aiming at
obtaining re�ned models of RS-compatible PSD functions. Some reference
analytical and semi-analytical formulation are presented in the next chapter.
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Chapter 3

Analytical de�nition of a

Response Spectrum compatible

Power Spectral Density

As stated in Chapter 2, the most rigorous way of modelling the the seismic
exitations is to consider zero-mean Gaussian processes that, under some
assumptions, can also be assumed as stationary.
Recently, the European codes, by means of the Eurocode 8, have introduced
the possibility to design in seismic zones by applying the principles of sto-
castic analysis. However, the earthquake exitation is usually assigned by
means of the Pseudo acceleration RS, without indicating how to evaluate
the corresponding PSD [5].
This is not an easy task. There are however some methods in literature able
to provide the power spectrum starting from the assigned elastic RS.
A common approach to model earthquakes in a stochastic framework is to
de�ne �lter equations returning the earthquake excitation as response to a
white noise. The most used �lter is the Tajimi-Kanai one. Some authors,
like Falsone et al [4], proposed a technique to obtain the �lter coe�cients
for Eurocode 8 RS.
Quite interesting techniques for generating spectrum-compatible PSDs are
proposed in the works of Martinelli et al [3] and Cacciola et al [? ], where
the authors provided a solution relying on iterative numerical procedures.
An analytical model was instead proposed by Barone et al [5]. By starting
from the results proposed by other authors ([14], [4]), they were able able to
further generalize the proposed formulation, in order to make it compatible
with a very large range of international seismic codes. The required pa-
rameters are analytically evaluated as closed-form functions of the seismic
codes RS parameters.
The proposed model can be used in place of the RS, so that the practitioner
engineer can de�ne the seismic action directly in terms of PSD function and
utilize stochastic analysis tools.
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3.1 Compatibility condition

A very wide of pseudo-acceleration Response Spectra reported in interna-
tional building codes can be represented by means of the following four-
branches expression:

Sa(T ) =


S0[1 + (α− 1) T

TB
] se 0 ≤ T ≤ TB

S0α se TB ≤ T ≤ TC

S0α(
TC

T
)k1 se TC ≤ T ≤ TD

S0α(
TC

TD
)k1(TD

T
)k2 se T > TD

(3.1)

where T is the natural period of the SDOF system, S0 is the peak ground
acceleration, α is the dynamic ampli�cation factor, TB, TC and TD are the
periods delimitating the various branches, and k1 and k2 are shape factors.
The RS de�ned by (3.1) is qualitatively represented in Figure 3.1. The �rst
branch linearly connects the point at T = 0 at the second branch. The
second, third and fourth branches of the model corresponds respectively to
constant spectral accelerations, velocities and displecements.

Figure 3.1: Pseudo acceleration Response Spectrum

The goal now is to de�ne a PSD function which is compatible with the codes
Response Spectrum. According to Eurocode 8, consistency is achieved when
the 50 % fractile values of the peak responses of a SDOF system subjected
to the seismic process represented by the PSD coincides, within a tolerance
of +/− 10% with the ordinate of the given elastic response spectrum, for a
range of periods from 0.2 to 3.5 seconds.
Due to the shapw of the distribution of the response maxima, the 50% frac-
tile can be approximated by the mean value of the peak values. Therefore
the pseudo acceleration RS can be evaluated as:

Sa(wi, ξi) = ηXi
wi

2σXi
(3.2)
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where ηXi
and σXi

are respectively the peak factor and the standard devia-
tion of the stochastic process Xi of a SDOF oscillator having frequency wi

and damping ξi. They are de�ned as:

ηXi
(Ts, p) =

√
2ln2NXi

[1− exp[−δ1Xi
.2
√
piln(2NXi

)]] (3.3)

where the spread factor δXi
and the parameter NXi

of the response process
Xi are:

δXi
=

√
1−

λ21,Xi

λ0,Xi
λ2,Xi

(3.4)

NXi
=
Ts
2π

√
1−

λ22,Xi

λ0,Xi

(−lnp)−1 (3.5)

and

λn,Xi
=

∫ inf

0

wnGXi
(ŵ)dŵ (3.6)

While, for what concerns σXi
:

σ2
Xi

=

∫ ∞

0

GXi
dŵ (3.7)

Once the PSD and the duration of the input are given, (3.2) gives a direct
evaluation of the pseudo-acceleration RS. Due to the non linearity of (3.2),
the inverse problem related to the evaluation of RS consistent PSD is not
a trivial problem. As already presented, several methods are available in
literature, but either they rely on heavy numerical procedures, or they do
not reach a su�cient level of accuracy ([15], [16]).
There are however some authors able to derive quite fast and intuitive semi-
analytical procedures for the evaluation of a compatible PSD. Three of these
works are reported in the next section.

3.2 Semi-analytical methods

With the time, some direct iterative models able to ensure a good level of
compatibility of the results have been developed. In order to have an idea
on the possible paths which can be adopted, three of these methods are here
brie�y presented. Even if each of them relies on di�erent procedures and
assumptions, they are equally able to provide quite accurate results.

3.2.1 Der Kiureghian et al (1991)

The following formulation is similar to the one proposed by Kaul [15]. The
derivation is based on the concepts of stationary randoma vibrations and
assumes that the seismic motion is a wide-band process and the oscillator
damping ratio ξi is small.
Now, by denoting as Güg(wi)1 the �rst order approximation of the unknown
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PSD of the ground acceleration, the mean square response of an oscillator
with frequency wi and damping ξi can be approximated by:

λ0(wi)0 =
πGüg(wi)1

2ξiw3
i

(3.8)

Now, by using this approximation in the identity Sa(wi, ξi) = η(wi)[λ0(wi)0]
1/2,

where Sa(wi, ξi) are the ordinates of the target Response Spectrum, it is
possible to obtain:

Güg(wi)1 =
2ξiw

3
i

π

[
Sa(wi, ξi)

η(wi)0

]
(3.9)

Now, for what concerns the peak factor, at the �srt iteration, the following
approximation can be used to compute η(wi)0

η0 =
√
2 log(f0Ts) +

γ√
2 log(f0Ts)

(3.10)

being Ts the duration of the event, γ = 0.577 the Euler constant, f0 the
average frequency of the process. Now that the �rst order approximation
Güg(wi)1 of the PSD is available, it is possible to proceed with the second
iteration. The spectral moments of the �rst order can be computed as:

λm(wi)r =

∫ ∞

0

Hi(ŵ, wi, ξi)H
(∗)
i (ŵ, wi, ξi)Güg(ŵ)rdŵ (3.11)

Then, by using (3.3), the peak factor at the next iteration is obtained.

A second order approximation can be obtained by replacing the terms
2ξiw

3
i

π

and η0 by the new ones, which are
Güg (wi)1

λ0(wi)1
and η1(wi) respectively:

Güg(wi)2 =
Güg(wi)1

λ0(wi)1

[
Sa(wi, ξi)

η(wi)0

]2
(3.12)

By repeating the process, the r + 1-th approximation of the PSD function
is:

Güg(wi)r+1 =
Güg(wi)r

λ0(wi)r

[
Sa(wi, ξi)

η(wi)r

]2
(3.13)

3.2.2 Falsone et al (1999)

The fundamental idea of this formulation is based on the work of Di Paola et
al [17]. The center of the procedure is related to the fact tha the frequency
axis is subdivided into a set of N discrete intervals of amplitude ∆wk =
wk+1 − wk, inside which the PSDF is considered to be constant:

Güg =
N∑
k=1

GkU(∆wk) (3.14)
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where Gk is the spectral value in the interval ∆wk, while U(∆wk) is the
window function equal to one inside the interval and zero outside.
Now, for a SDOF system characterized by a natural frequency wi and a
damping ratio ξi, exitated by an input having the PSD function discretized
as in (3.14), it is possible to compute the spectral moments as follows:

λn =
N∑
k=1

∫ wk+1

wk

wn|H(ŵ, wi, ξi)|2dŵGk (3.15)

where the H(ŵ, wi, ξi) is the FRF de�ned as:

Hi(ŵ, wi, ξi) =
1

wi
2 − ŵ2 + 2iξiwiŵ

(3.16)

The innovative idea of the present work is to consider (3.15) by varying the
system natural frequency wi with the same step number N as used for the
discretization of the PSDF. Then it is possible to rewrite the same equation
as:

λm = CmG (3.17)

with m = 0, 1, 2. In particular, λm are the response spectral moments
vectors of order N collecting the N values of the m − th response spectral
moments, varying the natural frequency wi of the system. G is the exitation
PSD vector collecting the N values Gk of the exitation PSDF; �nally the
matrice Cm collects the coe�cients given into equations (3.15). Having
chosen the same step number both for the natural frequency wi of the SDOF
system and for th discretization of the function Güg , matrice Cm is singular,
therefore it can be inverted.
Hence, an iterative procedure to construct an analytical approximation of
PSDF, starting from the elastic resposnse spectrum, can be implemented
by the following steps:

1. trial values of the spectral moments λm are assigned

2. the response peak coe�cients ηXi
(Ts, p) are evaluated through (3.3),

(3.4) and (3.5) by varying the system natural frequency wi

3. the response zero order spectral moments λ0,Xi
= σ2

Xi
are evaluated

by means of (3.2)

4. in this way the vector λ0 is evaluated. Now, by inverting (3.17), the
�rst trial of the PSDF, represented by G, is obtained.

5. the �rst and second order spectral moments are evaluated always by
(3.17), but considering m = 1, 2.

6. having all the required spectral moments, the new peak factor can be
evaluated by means of (3.4) and (3.5)

7. the new response spectrum ordinates obtained are then compared with
the target ones. If convergence is not reached, the procedure restarts
from point 3.
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3.2.3 Cacciola et al (2004)

The last formulation presented is the one proposed by Cacciola et al [18].
The method is based on the direct evaluation of the RS compatible PSD by
adopting some approximate assumptions for the spectral moments.
As it was presented before, the evaluation of the PSD Güg(w) of the ground
acceleration, which does not appear explicitly in (3.2), requires the eval-
uation of peak factor and variance of the SDOF system response, both
depending on the input PSD itself. However, the following approximate
relationship [10] for the variance of the response process can be assumed:

σ2
Xi

=
Güg(w)

wi
4

( pi
4ξ

− 1
)
+

1

wi
4

∫ wi

0

Gügdw (3.18)

While, for what concerns the peak factor:

ηXi
(Ts, p) =

√
2ln2NXi

[1− exp[−δ1Xi
.2
√
πln(2NXi

)]] (3.19)

where the spread factor δXi
and the parameter NXi

of the response process
Xi are

δXi
=

√
1−

λ21,Xi

λ0,Xi
λ2,Xi

(3.20)

NXi
=
Ts
2π

√
1−

λ22,Xi

λ0,Xi

(−lnp)−1 (3.21)

and

λn,Xi
=

∫ inf

0

wnGXj
(w)dw (3.22)

As it can be seen, NXi
e δXi

are both depending on the system response,
but this is not known a priori. However, thanks to the fact that the two
parametrs are not too sensitive to the input PSD shape, their approximate
evaluation can be obtained by making reference to a white noise input [8]:

δXi
=
[
1− 1

1− ξ2

(
1− 2

pi
arctan

ξ√
1− ξ2

)2]1/2
(3.23)

NXi
= −Ts

2π

wi

ln(p)
(3.24)

Once the actual ground acceleration PSD is approximate by a constant
piecewise function, the integral in (3.18) can be replaced by a discrete sum-
mation, and substituted in (3.2), leading to

S2
a(wi, ξi) = η2Xi

Güg(wi)wi

(pi− 4ξ

4ξ

)
+ ηXi

2∆w
( i−1∑

j=1

Güg(wj) +Güg(wi)
)

(3.25)
where wi = w0 + (i− 0.5)∆w and the peak factor ηXi

have to be evaluated
for a probability p=0.5 and for the assigned input duration Ts. The value
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of w0 is chosen as the lowest bound of the existence domain of (3.18) con-
sistent with the assumed expressions for the mean zero crossing rate NXi

and the spread factor δXi
.

Finally (3.25) leads to the following direct expression for the ground accel-
eration PSD:

Güg(wi) =
4ξ

wipi− 4ξwi−1

(S2
a(wi, ξi)

η2Xi

−∆w
i−1∑
j=1

Güg(wj)
)

(3.26)

3.3 Analytical formulation (Barone et al, 2015)

Although the method proposed in (3.26) can be adopted to determine a
PSD compatible with any building code RS, the numeric iterative proce-
dure has to be entirely repeated for any variation of the RS parameters.
This is why, the analytcal model proposed by Barone et al [5] is here pre-
sented. In order to de�ne an analytic PSD function, an extensive numerical
campaign has been performed by varying the intensity and shape of the
assigned RS, as de�ned in (3.1), and evaluating the RS compatible PSD
functions using the numeric procedure proposed in (3.26). It has been ob-
served that the method always returns numeric PSD functions having the
shape qualitatively reported in Figure 3.2.

Figure 3.2: RS compatible PSD

This made it possible to describe the PSD function as a four-branches piece-
wise function having a simple mathematical structure and fully de�ned once
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few parameters are known. Here is the proposed analytical function:

Güg(w) =


G0(

wD

wC
)e2( w

wD
)e1 se 0 ≤ w ≤ wD

G0(
w
wC

)e2 se wD ≤ w ≤ wC

G0(
w
wC

)e3 se wC ≤ w ≤ wB

G0(
wB

wC
)e3( w

wB
)e4 se w > wB

(3.27)

where G0 represents the peak value of the PSD function at the frequency
w = wC . The proposed model is dependent on 5 parameters, namely G0

and the four exponents e1, e2, e3, e4. Therefore, the PSD is fully de�ned
by few parameters. Closed-form expressions for all the parameters can be
determined by taking advantage of some simple considerations, as reported
in the following paragraph.

3.3.1 Evaluation of the Power Spectrum parameters

For the sake of clarity, the general form of the Response Spectrum of (3.1),
is herein reported as a function of the circular frequency:

Sa(T ) =


S0α(

wD

wC
)k1( w

wD
)k2 se 0 ≤ w ≤ wD

S0α(
w
wC

)k1 se wD ≤ w ≤ wC

S0α se wC ≤ w ≤ wB

S0[1 + (α− 1)wB

w
] se w > wB

(3.28)

To determine the exponent e1, (3.26) is rewritten for the frequency w=wC :

G0
wD

e2+1

we2
C

=
γ

wD

[
α2

(
S0

(
wD

wC

)k1
ηXi

(wD)

)2

−
∫ wD

0

Güg(w)dw

]
(3.29)

where γ = 4ξ
pi−4ξ

. Now, by substituting (3.27) inside the integral term:

G0wC
wD

wC

e2+1γ + e1 + 1

γ(e1 + 1)
= α2

(
S0

(
wD

wC

)k1
ηXi

(wD)

)2

(3.30)

Then, following the same reasoning but considering a change of variable
w = wD

ρ
(ρ > 1), the following expression is obtained:

G0wC
wD

wC

e2+1γ + e1 + 1

γ(e1 + 1)
= α2

(
S0

(
wD

wC

)k1
ηXi

(wD

ρ
)

)2

ρe1 + 1− 2k2 (3.31)

Therefore, the comparison between (3.31) and (3.30) leads to:

e1 =
log

η2Xi
(
wD
ρ

)

η2Xi
(wD)

logρ
+ 2k2 − 1 (3.32)
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Now, by considering the limit for ρ → 1 of (3.32), the exponent e1 can be
expressed in closed form as:

e1 = 2k2 − 1− L(wD) (3.33)

where the function L(w) is de�ned as:

L(w) = 2w
d(log(ηXi

(wD)

dw
(3.34)

The evaluation of the closed-form expressions for the other parameters is
based on the same concepts, but considering points on the other three
branches of the PSD. After some algebra, the following set of parameters is
obtained:

e2 = 2k1 − 1− L(wC)

e3 = −1− γ − β2L(wC)

e4 = −1− γ − β3

(
L(wB) + 2

α− 1

α

G0 =
γ

β2wC

( αS0

η2Xi
(wD)

)2 (3.35)

while the coe�cients β2 and β3 are de�ned as:

β2 =
(wD

wC

)e2+1γ + e1 + 1

γ(e1 + 1)
+
(
1−

(wD

wC

)e2+1)γ + e2 + 1

γ(e2 + 1)

β3 =
(wC

wB

)e3+1

β2 +
(
1−

(wC

wB

)e3+1)γ + e3 + 1

γ(e3 + 1)

(3.36)

3.3.2 Reduced formulation

The majority of the seismic codes allow to model the ground motion by
means of three-branches or two-branches RS as follows [5]:

Sa(T ) =


S0[1 + (α− 1) T

TB
] se 0 ≤ T ≤ TB

S0α se TB ≤ T ≤ TC

S0α(
TC

T
)k1 se T > TC

(3.37)

Sa(T ) =

{
S0α se T ≤ TC

S0α(
TC

T
)k1 se T > TC

(3.38)

Therefore, by setting wD → 0 for the �rst case, wD → 0 and wD → inf
for the second case, the same reduced formulation can be obtained for the
Power Spectrums.
For the three-branches PSd the new formulation reads:

Güg(w) =


G0(

w
wC

)e2 se 0 < w ≤ wC

G0(
w
wC

)e3 se wC < w ≤ wB

G0(
wB

wC
)e3( w

wB
)e4 se w > wB

(3.39)
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While, for the two-branches case:

Güg(w) =

{
G0(

w
wC

)e2 se 0 < w ≤ wC

G0(
w
wC

)e3 se w > wC

(3.40)

with the values of the parameters involved which remain unchanged.
As it will be presented in the next chapters, these simpli�ed formulations
turned out to be quite useful. In particular, the use of the two-branches
PSD of (3.40) in place of the rigorous four-branches formulation allowed to
greatly lighten the analytrical formulation of the problem, without having
to introduce too strong simpli�cations for the other parameters involved.
Anyway, a comparison with the numerical results obtained by using the
four branches PSD will be reported.
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Chapter 4

Linear Response Spectrum

analysis

Arrived at this point, the knowledge of the PSD function would allow for
the full statistical characterization of the response in the nodal space, in-
cluding the response peak distribution. Nevertheless, the random vibration
approch is still not so popular in practice, and tends to be replaced by the
more common Response Spectrum method, which combines in a statistical
fashion the peak response of the corresponding modal coordinates. The
modal superposition technique is widely employed for evaluation of seismic
response of structures characterized by elastic behavior. In order to ex-
tend the response spectrum technique to multidegree of freedom structures,
several rules for the peak value combination of modal responses have been
derived on the basis of random vibration theory. The simplest one is the
square root of sum of square SRSS combination rule [19]. The SRSS rule,
ignoring the correlation between modes, provides excellent nodal response
estimates only for structures which have well separated natural frequencies
and are not too lightly damped and earthquake excitations that contain a
wide band of frequencies [? ]. In these cases only, no appreciable statistic
dependence among the peak values of the modal responses exists.
Only in 1981, Wilson et al [20], provided a rational approach to take this
correlation into account, namely the CQC rule, where the peak value of
the nodal response is obtained as the square root of the sum of products
of each couple of peak modal responses scaled by the correspondent cross-
modal correlation coe�cient. Moreover, Wilson noted that it was possible
to approximate the correlation coe�cients referring to a stationary white-
noise excitation when the duration of the earthquake is long, compared to
the periods of modal oscillators, and the power spectrum of the input is
smooth over a wide range of frequencies that includes all the frequencies of
the signi�cant modal oscillators.
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4.1 Linear structures

When the behaviour of the model can be regarded as linear, a modal anal-
ysis is the tool commonly adopted for the design of structures in seismic
zones. The procedure works in the elastic domain, allowing to transform a
di�erential equations coupled system into a problem with un-coupled dif-
ferential equations, function of a single variable each. Consequently, the
analysis of a MDOF system can be reshaped into a much simpler dynamic
problem, in which each di�erential equation is referred to a SDOF oscillator,
and the contribution of each modal response can be analyzed.
As reported by NTC (§7.3.3.1), the linear dynamic analysis involves the
following steps:

1. Identi�cation of the modes of the structure. To do so, it is necessary
to apply a change of coordinates, switching to the principal coordi-
nate system y(t), such that, u(t) = Φy(t), where u(t) represents the
displacement solution, while Φ is the modal matrix, whose elements
φij represents the deformade shape of the i-th oscillator associated
to the j-th vibration mode. This new set of coordinates provides the
diagonalization of the matrices M and K.

2. de�nition of the seismic actions provided by means of the Response
Spectrum, for each of the vibration modes

3. superposition of each modal contribution by means of the adopted
combination rule

From the practical point of view, the primary goal of this kind of analysis
is not the evaluation of the solution in time, but the estimation of the
maximum value of the responses, like for example the shear at the base, the
max displacement at the top, or the max interstory drift. These maximum
values can be computed by scaling the elastic RS by means of a factor
Γj, known as modal participation factor. By means of this coe�cient it
is posible to either amplify or reduce the acceleration at the base of the
�ctitous SDOF oscillator under consideration, which will deform according
to a speci�c vibration mode.
Now, the well-known equation of motion for an earthquake-excited discrete
linear n-degree of freedom structure withM , C, and K, mass, damping and
sti�ness matrices, is:

Mü(t) + Cu̇(t) +Ku(t) = −Mvü(t) (4.1)

where v is the in�uence vector. The mode superposition technique involves
the following coordinate transformation:

u(t) = Φy(t) =
n∑

i=1

Φiyi(t) (4.2)

with i = 1, 2...n.
For cassical damped structures, the introduction in (4.14) of the coordinate
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transformation (4.2) and its pre-multiplication by ΦT yields the following
uncoupled system of equations:

ÿ(t) + 2ξiwiẏ(t) + wi
2(t) = Γiüg(t) (4.3)

where Γi is the i-th component of the participation factor vector Γ de�ned
as:

Γ = −ΦTMv (4.4)

Once the responses of the modal oscillators governed by (4.3) have been
evaluated, the nodal response can be obtained using (4.2). Any generic
response parameter e(t) of practical interest can be determined from the
modal responses by means of the following relationship:

e(t) = bTu(t) = bT
n∑

i=1

Φiyi(t) =
n∑

i=1

ψidi(t) (4.5)

where b is the vector collecting the combination coe�cients relating the
response parameter e(t) to the modal displacements, and

ψi = bTΦiΓi (4.6)

In (4.5), di(t) is the i-th modal response purged of the participation coe�-
cient, i.e., the solution of (4.16) for Γi = 1.
Now, in earthquake engineering applications the peak value of the response
parameter e(t) is usually deduced by using the response spectrum technique,
evaluating the peak values of the �purged� modal coordinates, max|di(t)|,
in the form:

max|di(t)| =
Sa(wi, ξi)

wi
2

(4.7)

where Sa(wi, ξi) is the ordinate of the pseudo-acceleration response spec-
trum. In order to deduce the peak value of e(t), several combination rules
of modal response peak values have been proposed (Rosenblueth 1951); Wil-
son et al. 1981; Gupta, 1990). According to the CQC rule of Wilson et al.
(1981):

max|e(t)| =

√
ψiψjρijSa(wi, ξi)Sa(wj, ξj)

wi
2wj

2
(4.8)

where ρij is the correlation coe�cient de�ned as follow:

ρij =
λij√
λiiλjj

(4.9)

while λij,λii,λjj are the spectral moments de�ned as:

λij = Re
[∫ ∞

0

Hi(ŵ, wi, ξi)H
∗
j (ŵ, wi, ξi)Güg(ŵ)dŵ

]
(4.10)

λii = Re
[∫ ∞

0

Hi(ŵ, wi, ξi)H
∗
i (ŵ, wi, ξi)Güg(ŵ)dŵ

]
(4.11)
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λjj = Re
[∫ ∞

0

Hj(ŵ, wj, ξj)H
∗
j (ŵ, wj, ξj)Güg(ŵ)dŵ

]
(4.12)

and Hi(ŵ, wi, ξi) is the Frequency Response Function:

Hi(ŵ, wi, ξi) =
1

wi
2 − ŵ2 + 2iwiŵ

(4.13)

The one just presented expresses the rigorous formulation of the CQC comb-
nation rule. However,as it will be presented in the next paragraphs, some
approximations can be introduced, both in terms of calculating the correla-
tion coe�cient ρij, and as regards the number of modalities to be inserted in
the combination rule. Now, the presentation of the theories and procedures
adopted to provide a closed form solution of ρij is devoted to Chapters 6,7
and 8. Here the attention will be now focused on the formulation of the
Response Spectrum method proposed by Der Kiureghian et al [21], which
explains how to account for the rigid contribution of higher modes and the
cross correlation between all mode pairs.

4.2 Response spectrum method

The Response Spectrum method proposed by Der Kiureghian [21] is here
recalled.
The goal of the author was to develope a response spectrum analysis method
based on the CQC rule, able to give the right importance to the contribu-
tion of both the higher and the lower modes, in order to estimate the peak
�oor acceleration (PFA).
The method accounts for the rigid contribution of truncated higher modes
and the cross-correlations between all pairs of modes. The approximation
is introduced in the time domain and then formulated in the frequency do-
main by CQC.
A brief description of the method is reported in the next chapters, high-
lighting the di�erence between higher and lower modal contributions.

4.2.1 Peak �oor acceleration

The peak �oor acceleration (PFA) is an important response quantity in
seismic analysis and design of buildings. It is a key engineering parame-
ter when �oor diaphragms, non-structural elements or attached equipment
are intended to behave as rigid parts, whose natural frequencies are much
higher than the dominant frequency of the seismic excitation.
A �rst contribution to the principles behind the use of the PFA in the design
of �oor diaphrams was illustrated by Asfura et al [22]. In that work the
author proposed a simpli�ed response spectrum method, in which the PFA
at the top of the building was computed using the SRSS combination.
More recent works, as Der Kiureghian's [1], relied on the other hand on the
concept of random vibration theory to rigorously derive a response spectrum
method for computing the PFA in linear and classically damped structures.
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The theory bene�ts from the earlier work of Der Kiureghian and Naka-
mura [23], where a method for approximating the quasi-static contributions
of truncated higher modes in response spectrum analysis by the complete
quadratic combination (CQC) rule was proposed.
More recently, a response spectrum method for PFA was developed by Ku-
mari et al [24] where the authors explained how properly accounts for modal
cross-correlations and the rigid response of truncated modes.
Their response spectrum formulation required however the knowledge of
the relative acceleration response spectra, which is seldom vailable in de-
sign situation. In contrast, the theory proposed by Der Kiureghian involves
the total acceleration response spectrum, allowing for a simpler formulation,
with fewer approximations.

4.2.2 Higher modes truncation

Now, in order to brie�y present the method proposed by the author, the
equation of motion is here rewritten, by focusing on the response in terms
of acceleration:

Mü(t) + Cu̇(t) +Ku(t) = −Mvü(t) (4.14)

where the solution u(t) is equal to:

u(t) =
N∑
i=1

ΦiΓiyi(t) (4.15)

As before, Φi denotes the i-th modal shape, Γi is the participation factor for
the i-th mode, while yi is the solution of the uncoupled system of equation:

ÿ(t) + 2ξiwiẏ(t) + wi
2(t) = Γiüg(t) (4.16)

Now, by taking the second derivative of (9.10) and adding the contribution
of the ground acceleration, the nodal total acceleration vector is obtained:

ütot(t) =
N∑
i=1

ΦiΓi
¨yi(t) + v ¨ug(t) (4.17)

This equation describes the usual procedure to compute the nodal total
accelerations when working in the time domain, in which the modal relative
accelerations are combined together in order to obtain the nodal relative
accelerations, adding at the end the ground acceleration.
Now, when all nodes are included in the analysis, the in�uence vector v can
be de�ned as:

v =
N∑
i=1

ΦiΓi (4.18)

By substituting this relation in (4.17):

ütot(t) =
N∑
i=1

ΦiΓiÿ
tot
i (t) (4.19)
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in which
ÿtoti (t) = ÿi(t) + üg(t) (4.20)

is the normalized nodal total acceleration.
Now, in practical nodal analysis, mode shapes and frequencies are available
for only the �rst n modes, where n≪ N . Assuming the truncated modes to
have frequencies that are much higher than the predominant frequencies of
the input excitation, a natural approximation is to neglect the modal relative
accelerations ÿi(t) for all truncated modes. Several arguments support this
assertion. First, when the natural frequency of a mode is much higher than
the frequency content of the seismic excitation, the modal response is almost
static, and the relative acceleration is negligible.
It follows that the relative acceleration term, ÿi(t), is negligible if compared
with the ground acceleration, meaning that the modal total acceleration
ÿtoti (t) in (4.20) approximately equals the ground acceleration. Using this
approximation for the truncated modes in (4.17) and making use of (4.22):

ütot(t) ≃
n∑

i=1

ΦiΓiÿ
tot
i (t) + r(n) ¨ug(t) (4.21)

where:

r(n) = v −
n∑

i=1

ΦiΓi (4.22)

is the residual vector which transfers to the nodal coordinates the fraction
of the ground acceleration that is projected onto the rigid modes.
The contribution of the second term in (4.21) is fundamental, because if the
summation in (4.19) is limited to n, then the contribution of the ground
acceleration transmitted by the higher modes would be completely lost.

4.2.3 CQC combination rule

The approximation introduced in (4.22), which replaces the modal corre-
lation for all the truncated modes with the ground acceleration, allows to
simplify the rigorous formulation of the CQC introduced in the Chapter 4.1.
For the case of the total accelaration, the standard CQC rule reads:

max|ütot(t)| =

√√√√ N∑
i=1

N∑
j=1

ΦiΓiΦjΓjρijSa(wi, ξi)Sa(wj, ξj) (4.23)

where the correlation coe�cient ρij is equal to:

ρij =
λij√
λiiλjj

(4.24)

and λij is the cross-modal spectral moment de�ned by:

λij = Re
[∫ inf

0

Hi(ŵ, wi, ξi)H
∗
i (ŵ, wi, ξi)Güg(ŵ)dŵ

]
(4.25)
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Now, by making reference to the concept of total acceleration, the FRF of
the i-th mode is equal to:

Hi(ŵ, wi, ξi) =
wi

2 + 2iwiŵ

wi
2 − ŵ2 + 2iwiŵ

(4.26)

Now, the approximation introduced by Der Kiureghian implies the following
relations:

∀i > n : Sa(wi, ξi) = PGA

∀i, j > n : ρij = 1

∀i ≤ n, j > n : ρij = ρig

(4.27)

where ρig is the cross-correlation coe�cient between the i-th modal response
and the ground acceleration.
With this in mind, (4.23) becomes:

max|ütot(t)| ≃
[∑n

i=1

∑n
j=1ΦiΓiΦjΓjρijSa(wi, ξi)Sa(wj, ξj)+

2
n∑

i=1

ΦiΓir(n)ρigSa(wi, ξi)PGA+ r(n)
2PGA2

] 1
2

(4.28)

Now, to compute the correlation coe�cient ρig it is su�cient to note that
the ground acceleration contribution can be seen as the response of a mode
with in�nitely large frequency, allowing to simplify the formulation of the
spectral moments. associated to the ground acceleration.

In particular:
limwk→∞Hk(ŵ, wk, ξk) = 1 (4.29)

consequently:

λig = Re
[∫ inf

0

Hi(ŵ, wi, ξi)Güg(ŵ)dw
]

(4.30)

λgg = Re
[∫ inf

0

Güg(ŵ)dw
]

(4.31)

While nothing changes for what concerns λij:

λij = Re
[∫ inf

0

Hi(ŵ, wi, ξi)H
∗
i (ŵ, wi, ξi)Güg(ŵ)dw

]
(4.32)

4.2.4 Total and Pseudo acceleration Response Spectra

The CQC rules presented in (4.28) and (4.23) are written in terms of the
total acceleration response spectrum, which is seldom available in practice
as design codes usually specify the pseudo-acceleration response spectrum.
However, it is well known that the pseudo-acceleration response spectrum
is a good approximation of the total acceleration response spectrum for a
wide range of frequency and damping values. The di�erence between the
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two is in the respective FRFs, whereas for the total acceleration response,
the FRF is as in (4.26); for the pseudo-acceleration response, it is:

Hi(ŵ, wi, ξi) =
wi

2

wi
2 − ŵ2 + 2iwiŵ

(4.33)

By comparing the two expressions, it is seen that the two FRFs are nearly
identical for low-damped systems. The di�erence between the two is only
signi�cant for high damping values and long periods (small wi values).
These observations suggest that, in many applications, Sa(wi, ξi) in the
CQC rule can be replaced with the pseudo-acceleration response spectrum,
which is here denote by Sa

′(wi, ξi). For the cases where this approximation
is not valid, say when the damping is high and modal periods are long (e.g.,
for a base-isolated structure), an improved approximation can be developed,
as described in the succeeding paragraphs.
As a measure of the di�erence between the two spectral ordinates, Sa

′(wi, ξi)
and Sa(wi, ξi) the adimensional parameter γ is introduced:

γ(wi, ξi) =
Sa(wi, ξi)

Sa
′(wi, ξi)

− 1 (4.34)

which may be regarded as the percent error when using the pseudo-acceleration
in place of the total acceleration.
To correct this error, by inverting the last equation, the total acceleration
response spectrum can be derived as Sa(wi, ξi) = Sa

′(wi, ξi)[1 + γ(wi, ξi)].
Sadek et al [25] proposed an analitical formulation for the coe�cnet γ, to
be used to convert the pseudo acceleration response spectra into the total
one:

γ(wi, ξi) = βiwiαi (4.35)

with αi = −0.268− 0.205ξi and βi = 2.54ξi
2(2π)−αi .

The following observations can be made: (1) the results obtained by the
random vibration theory are in close agreement with time-history results
provided by using the simple formula by Sadek et al, and (2) the error in
using the pseudo acceleration response spectrum instead of the total accel-
eration response spectrum is less than 5 % for values of ξ ≤ 5% and periods
shorter than about 7s. For higher damping values and longer periods, the
simple correction formula presented above can be used to obtain a more
accurate estimate of the total acceleration response spectrum values.
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Chapter 5

Dynamics of a frame with rigid

cladding panels

As presented at the beginning, the �nal objective of this work is to de�ne an
analytical formulation able to provide the values of the reaction forces which
developes at the connections between the primary frame and the cladding
panels. The key point is here represented by the fact that the cladding
elements are here modelled as rigid entities, disregarding in these way the
contributions associated to the vibration modes intrinsic of the panels. The
aim of this �fth chapter is therefore to present the general principles behind
the dynamics of such model.

5.1 Description of the model

A simple structural scheme, as the one shown in Figure (5.1), is considered
in this work to investigate the dynamic response of an one-storey precast
concrete structure subjected to seismic loads. A rigid cladding panel with
total mass mp is hinged at the base (point A) and connected to a �exible
cantilever by means of a rigid truss element. The mass mf is lumped at
the top of the cantilever (point C), to model the e�ect of the translational
inertia forces due to the mass of the roof. Given the fact that the roof
diaphragm is rigid, the cantilever can model the whole lateral load resisting
system, which, for the type of buildings at hand, is made of columns.
Starting from the de�niton of the kinetic and potential energy, the �rst goal
is to write the equation of motion for the frame, accounting for the in�uence
of the cladding panel. The solution in time of the equation of motion will
be then used to de�ne the formula for the forces at the connections. As
already presented however, the practitioner engineer is not always intersted
in the response in time, but due to design necessities, he is more fond
of the extreme values of the prameters at stake. To this purpose, two
di�erent preocedures are here recalled: the random vibration approach,
and the Response Spectrum method based on the modal superposition.
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Figure 5.1: Structural sceme: frame + cladding panel

Due to the fact that it allows for a simpler formulation as previously pre-
sented, the Response Spectrum method will be the procedure adopted.
A brief description of the model under consideration is here reported. The
analysis is refereed to a pre-cast structure, hinged as the base, and enclosed
by reinforced concrete elements. The main geometrical characteristics of
the panels are:

- hp = h1 + h2: total height of the panel [m], with 0 ≤ h2 < h1

- mp: mass of the panel [ton]

- γp =
mp

hp
: linear density of the panel [ton/m]

- η = h2

h1
: aspect ratio of the panel 0 ≤ η < 1, with practical values in

the range 0 ≤ η ≤ 0.3

- IGp = 1
12
mphp

2: mass moment of inertia of the panel with respect to
its centroid [tonm2]

In terms of the frame only:

- mf : mass of the frame [ton] (reduced SDOF model)

- kf : sti�ness of the frame [kN/m] (reduced SDOF model)

- wf =
√

kf
mf

: natural circular frequency of the frame [rad/s]

- Tf = 2π
wf
: natural period of the frame [s]

- µ = mp

mf
: mass ratio
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While, for what concerns the total structure:

- ws =
√

kf
mf

: natural circular frequency of the frame [rad/s]

- Ts =
2π
wf
: natural period of the frame [s]

Now, by expressing with u(t) the horizonthal displacemnt of the section B of
the frame, with respect to section A, and being ug(t) the ground motion, it is
possible to de�ne, under the small displacement hypothesis, the horizonthal
displacement of the panel as:

up(x, t) =
x

h1
u(t) + ug(t) (5.1)

where x ∈ [0, hp].
Now that the generalized displacements of the model have been speci�ed, it
is possible to apply the D'Alembert principle, �nally leading to the equation
of motion.
The kinetic energy of the coupled system is:

K(t) = 1
2
mf (u̇(t) + u̇g(t))

2 + 1
2

∫ hp

0
γpu̇

2(x, t)dx =

1

2
mf

[(
1 +

µ(1 + η)2

3

)
u̇2(t) + 2

(
1 +

µ(1 + η)

2

)
u̇(t)u̇g(t) + (1 + µ)u̇2g(t)

]
(5.2)

On the other hand, the elastic potential energy accounts only for the elastic
contribution of the frame:

E(t) =
1

2
kfu

2(t) (5.3)

Therefore, the equation of motion of the undamped system becomes:

mf

(
1 +

µ(1 + η)2

3

)
q̈(t) + kfq(t) = −mf

(
1 +

µ(1 + η)

2

)
üg(t) (5.4)

which can be written in the canonical form as:

q̈(t) + w2
sq(t) = −Γ(µ, η)üg(t) (5.5)

where:

Γ(µ, η)

(
1 + µ(1+η)

2

)
(
1 + µ(1+η)2

3

) (5.6)

is the participation factor. While

ws =

√√√√ kf

mf

(
1 + µ(1+η)2

3

) (5.7)
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is the circular frequency of the structure, and consequently the natural
period is Ts =

2π
ws
. Now, by introducing the non dimensional parameter χ:

χ(µ, η) =

√
1 +

µ(1 + η)2

3
(5.8)

which can be seen as a perturbation parameter accounting for the presence
of the panel, it is possible to rewrite (5.7) and the natural period as:

ws =
wf

χ(µ, η)

Ts = Tfχ(µ, η)
(5.9)

The solution of the equation of motion will provide the generalized dis-
placement q(t), to be used in the computation of the reaction forces at
the connections by means dynamic equilibrium equation of the panel. The
inertia force per unit lenght along the element can be de�ned as:

fI(x, t) = −γüp(x, t) (5.10)

where üp(x, t) is the second derivative of the horizonthal displacement of the
panel, i.e. the relative acceleration of the panel. Now, by making reference
to the concept of total acceleration, the expression of the integral equation
for the reaction forces at the base FA(t) becomes:

FA(t) =

∫ hp

0

(−γp)

(
−1 +

x

h1

)[
x

h1
ü(t) +

(
1− x

h1

)
üg(t)

]
dx (5.11)

While, for the force FB(t) at the top:

FB(t) =

∫ hp

0

(γp)

(
x

h1

)[
x

h1
ü(t) +

(
1− x

h1

)
üg(t)

]
dx (5.12)

By substituting (5.1) into (5.11) and (5.12):

FA(t) =
1

6
(1+η)(1−2η)mpü(t)+

1

2
(1−η)− 1

6
(1+η)(1−2η)mpüg(t) (5.13)

FB(t) =
1

3
(1 + η)2mpü(t) +

1

2
(1 + η)− 1

3
(1 + η)2mpüg(t) (5.14)

Now, by introducing:

αA =
1

6
(1 + η)(1− 2η)

βA =
1

2
(1− η)− 1

6
(1 + η)(1− 2η)

αB =
1

3
(1 + η)2

βB =
1

2
(1 + η)− 1

3
(1 + η)2

(5.15)

the �nal form for the reaction forces can be written as:

FA(t) = αAmpü(t) + βAmpüg(t) (5.16)

FB(t) = αBmpü(t) + βBmpüg(t) (5.17)
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5.2 Random vibration approach

As presented at the beginning, the advantage of a stochastic analysis is re-
lated to the fact that it allows for a complete statistical characterziation of
the response. As it will be brie�y presented in the following lines however,
this kind of approach tends to over-complicate the formulation of the prob-
lem, not allowing for a handy analitical formulation.
A proof of this statement can be obtained by considering the simple case of
the steady state response under an armonic ground motion:

üg = âgexp(jwt) (5.18)

where âg is the magnitude of the motion.
and the solution for a dynamical system perturbated by üg is:

u(t) = ûexp(jwt) (5.19)

Now, the equation of motion of the structure including the contribution of
the damping is:

ü(t) + 2iξwsu̇(t) + w2
su(t) = −Γ(µ, η)üg(t) (5.20)

By substituting (5.19) inside (5.20), the following relation yields:

û = −Γ(µ, η)H(ŵ, ws, ξ)âg (5.21)

where Hi(ŵ, wi, ξi) is the Frequency Response Function

H(ŵ, ws, ξ) =
1

wi
2 − ŵ2 + 2iwiŵ

(5.22)

Finally, the acceleration of the frame can be computed as:

ü = −ŵ2ûexp(jwt) = Γ(µ, η)ŵ2H(ŵ, ws, ξ)âgexp(jwt) (5.23)

Such expression can be replaced inside equation (5.16) and (5.17), obtain-
ing:

FA(t) = (αAΓ(µ, η)ŵ
2H(ŵ, ws, ξ) + βA)mpâgexp(jwt) (5.24)

FB(t) = (αBΓ(µ, η)ŵ
2H(ŵ, ws, ξ) + βB)mpâgexp(jwt) (5.25)

where:
HFi

= (αiΓ(µ, η)ŵ
2H(ŵ, ws, ξ) + βi) (5.26)

with i = A,B is the FRF of the cladding panel reaction forces.
As it can be seen, the FRF obtained includes both the elastic contribution
of the acceleration of the structure, and the contribution from the ground
acceleration.
However, some problems arise when it comes to compute the spectral mo-
ments. In particcular, being Güg(ŵ) the Power Spectral density representing
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the ground motion de�ned by Barone et al, the bilateral PSD of the cladding
panel reaction force is de�ned as:

Gq(ŵ) =
Γ2

w4
s

|H(ŵ, ws, ξ)|2Güg(ŵ) (5.27)

Now, by means of the random vibration theory, the maximum value of the
response parameter is:

max|Fi| = σ2
Fi
ηFi

(5.28)

where:

σ2
Fi

= 2wsm
2
p

∫ inf

0

|H(ŵ, ws, ξ)|2Güg(ŵ)d(ŵ) (5.29)

while:

ηFi
(Ts, p) =

√
2ln2NFi

[1− exp[−δ1Fi
.2
√
piln(2NFi

)]] (5.30)

where the spread factor δFi
and the parameter NFi

of the response process
Fi are de�ned as:

δFi
=

√
1−

λ21,Fi

λ0,Fi
λ2,Fi

(5.31)

NFi
=

Ts
2pi

√
1−

λ22,Fi

λ0,Fi

(−lnp)−1 (5.32)

and

λn,Fi
= 2wsm

2
p

∫ ∞

0

(ŵ)n|HFi
|2Güg(ŵ)dw (5.33)

with i = A,B and n = 0, 1, 2
The key aspect here is related to the fact that, as already observed, each
spectral moment argument is characterized by the square of the FRF. This
means that, due to the way in which the FRF has been modelled (5.26),
the square of the FRF will give rise to thre e di�erent contributions, in
particular:

λn,Fi
=

[[∫ ∞

0

(
αiΓ(µ, η)ŵ

2H(ŵ, ws, ξ)
)2
Güg(ŵ)dŵ

]
+
[∫ ∞

0

2
(
αiβiΓ(µ, η)ŵ

2H(ŵ, ws, ξ)
)
Güg(ŵ)dŵ

]
+
[∫ ∞

0

β2
iGüg(ŵ)dŵ

]]
2wsm

2
p

(5.34)

The �rst term represents the usual contribution associated to the frame
acceleration. Then two additional contributions appear:

- the cross term represented by the product between the two previous
contributions
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- the contributiona associated to the groun motion

These last two terms tend to make the formulation heavier, especially when
the ratio between the spectral quantities is involved, as it happens for ex-
ample for the computation of the parameters δFi

and NFi
. This is why an

alernative path is followed in this work, which is the Resposne Spectrum
method proposed by Der Kiureghian, which will be brie�y recalled in the
next paragraph and adapted to this particular case.

5.3 Response Spectrum method

As already presented in Chapter 4, the Response Spectrum method pro-
posed by Der Kiureghian states that for modes with frequencies which are
much higher than the predominant frequency of the input exitation, the
modal response can be considered almost static, meaning that the relative
acceleration is negligible wrt the ground acceleartion.
The same kind of reasoning can be applied also for the problem under con-
sideration. By recalling the formula of the inertia forces acting along the
panels, these are given by two contributions:

- the acceleration of the panel

- the ground acceleration

as reported here:

fI(x, t) = −γüp(x, t) = −γ x
h1
ü(t) + ü(t) (5.35)

Now, in order to rewrite the problem like for the case of a multi-modal
system, the ground acceleration can be seen as the contribution of a mode
with in�nite frequency. Doing so, the maximum value of the reaction forces
at the connection can be computed by superimposing the contribution of
the mode associated the acceleration of the panel and the one associated to
the ground acceleration only, by applying the CQC rule.

E[max|Fi(t)|] = (α2
imax|ü(t)|2 + β2

i max|üg(t)|2) + 2αiβiρ1gmax|ü(t)|max|üg(t)|)
1
2

(5.36)

where i = A,B. Now, by imposing:

max|ü(t)| = Sa(ws, ξs) (5.37)

and
max|üg(t)| = PGA (5.38)

(5.36) can be rewritten as:

E[max|Fi(t)|] = mp

[
α2
iSa(Ts, ξs)

2 + β2
i PGA

2 + 2αiβiρigSa(Ts, ξs)PGA
] 1

2

(5.39)
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where ρig is the correlation coe�cient relating the mode associated to the
natural frequency of the structure with the �ctitous mode associated to the
ground motion:

ρig =
λig√
λiiλgg

(5.40)

and λig, λii, λgg are respectively the covariance, the variance of the response
total acceleration and the variance of the ground acceleration, de�ned as:

λig = Re
[∫ inf

0

HiHgGüg(ŵ)dw
]

(5.41)

λii = Re
[∫ inf

0

HiH
∗
i Güg(ŵ)dw

]
(5.42)

λgg = Re
[∫ inf

0

HgH
∗
gGüg(ŵ)dw (5.43)

As already presented, the parameter Hi represents the kernel function, in
this case associated to the total acceleration:

Hi = Hi(ŵ, wi, ξi) =
wi

2 + 2iwiŵ

wi
2 − ŵ2 + 2iwiŵ

(5.44)

Now, since limwi→∞Hi(ŵ, wi, ξi) = 1, the expression of the spectral mo-
ments in (5.41) and (5.43) can be simpli�ed:

λig = Re
[∫ inf

0

HiGüg(ŵ)dw
]

(5.45)

λgg = Re
[∫ inf

0

Güg(ŵ)dw
]

(5.46)

One of the goal of this thesis is therefore to �nd an analitical solution for
the above mentioned spectral moments. Thanks to the handy formulation
of the PSD provided by [5] this does not represent a big issue for the spec-
tral quantity λgg. The same does not hold however for the remaining two
integrals, in which the presence of both the PSD and the FRF requires the
introduction of some simpli�cations.
In the next three Chapters, three di�erent formulations will be presented.
Despite relying on di�erent theories and assumptions, they share the same
goal, i.e. providing a closed form analytical solution for the computation of
ρig.
Chapter 6 reports some approximated formulations based on the white noise
rapresentation of the seismic input.
Chpater 7 relies on the Multiple Timescale Analysis theory proposed by
Denoel. While the formulation in Chapter 8 is based on some initial ap-
proximations introduced on both the shape of the PSD and on the FRF in
order to simplify the computations.
At the end of each chapter, a comparison between the anlytical solutions
and the numerical results obtained by means of the software Matlab are
reported.
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Chapter 6

Correlation coe�cients - White

Noise approximation

As already presented before, when the duration of the earthquake is long,
and the input spectra is smooth over a wide frequency range, it is possible
to approximate the correlation coe�cients making reference to a stationary
white noise exitation.
The formulations proposed by Der Kiureghian [8] and Moshen [7] are here
presented
Both authors characterized the seismic hazard üg(t) in the frequency domain
by making use of the analytical PSD model proposed by Kanaj-Tajimi in
hypothesis of white noise. They followed however di�erent procedures to
obtain the �nal analytical formulation.

6.1 Der Kiureghian (1979)

The response spectrum analysis method based on the CQC rule proposed by
der Kiureghian et al is here recalled, where the author studied the station-
ary responses of single- and multi-degree-of-freedom structures subjected to
stationary input excitations.
In particular, by using a modal superposition procedure, closed form solu-
tions for the �rst three spectral moments as response to white-noise inputs
are derived. These solutions account for the correlation between modal re-
sponses of multi-degree structures.
Now, the m-th order spectral moment λm,ij associated to the i-th and j-th
modes is de�ned as:

λm,ij = Re
[∫ inf

0

ŵnHi(ŵ, wi, ξi)H
∗
j (ŵ, wi, ξi)Güg(ŵ)dw

]
(6.1)

where Hi(ŵ, wi, ξi) is the FRF associated to the i-th mode:

Hi(ŵ, wi, ξi) =
1

wi
2 − ŵ2 + 2iwiŵ

(6.2)
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For the aim of this work, only the spectral moments of order zero are needed,
e.g.

λ0,ij = Re
[∫ inf

0

Hi(ŵ, wi, ξi)H
∗
j (ŵ, wi, ξi)Güg(ŵ)dw

]
(6.3)

6.1.1 Response to white noise

Der Kiureghian initially limited his studies to the basic case of white noise
exitation, where Güg(ŵ) = G0 is a constant.
Now, by using the Residue Theorem of integration, he analytically evaluated
the solution of the integral (6.3), obtaining:

λ0,ij =
2πG0

Kij

(ξiwi + ξjwj) (6.4)

where:

Kij = (w2
i − w2

j )
2 + 4ξiξjwiwj(w

2
i + w2

j ) + 4(ξ2i + ξ2j )w
2
iw

2
j (6.5)

The results obtained in (6.4) and (6.5) were then used inside the formula
for the correlation coe�cient:

ρ0,ij =
λij√
λiiλjj

(6.6)

obtaining the following analytical solution:

ρ0,ij =
8
√
ξiξjwiwj(ξiwi + ξjwj)wiwj

Kij

(6.7)

For small damping and for closely spaced modes, (6.7) can be reduced,
through a �rst-order approximation, to:

ρ0,ij =
2
√
ξiξj

[
(wi + wj)

2(ξi + ξj) + (w2
i − w2

j )(ξiξj)
]

4(wi − wj)2 + (ξi + ξj)2(wi + wj)2
(6.8)

These approximate expressions provide reasonable accuracy for damping
values as large as 0.20, and that they should be adequate for most practical
applications.

6.1.2 Response to �ltered white noise

Formally, �ltered white noise can be seen as the response of an oscillator to
a white-noise input. It is often used to represent the input into a structure
supported by a single-degree primary system which itself is subjected to a
white-noise excitation. A common example is represented by the case of a
structure situated on a soil layer which is excited by earthquake motions;
More generally, however, the �ltered white noise may be used as a convenient
model for a large class of excitations.
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For such cases, the PSD function can be expressed by making use of the
analytical PSD model proposed by Kanaj-Tajimi in hypothesis of white
noise:

Güg(w) = G0

w4
g + 4ξgw

2
gw

2

(w2
g − w2)2 + 4ξgw2

gw
2

(6.9)

where wg and ξg are �lter constants, and G0 the normalized PSD of the
underlying white noise.
This represents the Power Spectral Density of the absolute acceleration
response of a single-degree-of-freedom system to a white-noise base acceler-
ation, where wg and ξg are the circular natural frequency and the damping
coe�cient, respectively.
By proper selection of wg and ξg, (6.9) may be used to represent excitations
with varying power spectral density shapes.
However, if on one hand, the �ltered Kanaj-Tajimi model is able to provide
a more general formulation, on the other hand it produces far more complex
spectral moments expressions. Although approximate expressions for small
damping are possible, such results are not expected to be simple enough to
justify their use in place of the exact expressions.
For the aim of this work however, the only correlation coe�cient required
is the one correlating the fundamental mode of the structure and the groun
motion. This allows in particular to compute the correlation coe�cient ex-
politing the analytical formulation obtained in hypothesis of white noise
(6.7), but making use on the other hand of the consideration of Kanaj-
Tajimi for the more general �ltered white noise model.
The �rst step is to substitute the contribution of the hypothetical j − th
mode of the structure, with the mode associated to the ground motion
(wj → wg and ξj → ξg), obtaining:

ρ0,ig =
8
√
ξiξgwiwg(ξiwi + ξgwg)wiwg

Kig

(6.10)

and

Kig = (w2
i − w2

g)
2 + 4ξiξgwiwg(w

2
i + w2

g) + 4(ξ2i + ξ2g)w
2
iw

2
g (6.11)

While in the hypothesis of small damping ξi and wj ≈ wg, a similar approx-
imation as the one of (6.12) can be obtained:

ρ0,ig =
2
√
ξiξg

[
(wi + wg)

2(ξi + ξg) + (w2
i − w2

g)(ξiξg)
]

4(wi − wg)2 + (ξi + ξg)2(wi + wg)2
(6.12)

For what concerns the parameters wg and ξg, Kanai (5) and Tajimi (7) have
suggested wg = 5π and ξg = 0.6 for modeling ground acceleration response
during earthquakes. However, other values can be adopted.
For example, it is possible to associate to wg the value of the largest circular
frequency compatible with the sampling rate of the accelerations (wg =
100π).
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Finally, a further analytical approximation for the correlation coe�cient
could be introduced by imposing wg → ∞, obtaining:

ρ0,ig =
4ξi
√
ξiξg

ξ2i + 2ξiξg + ξ2g + 4
(6.13)

A more re�ned formulation can be considered also for what concerns the
modelling of the damping contribution, by providing the value of the damp-
ing coe�cient ξi as a function of the natural period Ti of the structure:

ξi =


0.05 for Ti > TC

0.6 + (0.05− 0.6) (Ti−TB)
(TC−TB)

for Ti > TB

0.6 for Ti > 0

(6.14)

6.2 Moshen (2016)

By following the steps of Der Kiureghian, Moshen et al [7] too addressed the
prediction of the median peak �oor total acceleration (PFA) demand in spa-
tial elastic structures subjected to seismic excitation. By using the response
spectrum technique, several approximations and simpli�cations concern-
ing the correlation between modal contributions, peak factors, and cross-
spectral moments are discussed, leading to the proposed modi�ed modal
combination rules.
As before, here the focus will be centered on the correlation coe�cient ρij:

λ0,ij = Re
[∫ inf

0

Hi(ŵ, wi, ξi)H
∗
j (ŵ, wi, ξi)Güg(ŵ)dw

]
(6.15)

being Hi the transfer function �or the total acceleration:

Hi(ŵ, wi, ξi) =
w2

i + 2iwiŵ

wi
2 − ŵ2 + 2iwiŵ

(6.16)

and Güg(w) the Kanaj-Tajimi PSD:

Güg(w) = G0

w4
g + 4ξgw

2
gw

2

(w2
g − w2)2 + 4ξgw2

gw
2

(6.17)

Through the application of the Cauchy's residue theorem, the integral (6.15)
can be solved, yielding:

λ0,ij = G0πwjwiwg

[∑2
m=0

∑2
n=0 ξ

m
i ξnj ζ0,mn(wi, wj)

4ξgD4
+

2wg
∑4

m=0

∑2
n=0 ξ

m
i ξnj Ψ0,mn(wi, wj)

D1

]
(6.18)

where the parameters D1, D4, ζ0,mn(wi, wj) and Ψ0,mn(wi, wj) in the sum-
mands are functionals sorted with respect to the exponent of the damping
ratios, m and n, which allows to linearize the CQC combination rule with
respect to the damping coe�cients. ζ0,mn(wi, wj) and Ψ0,mn(wi, wj) repre-
sent the generic components in position mn of the functional matrices Ξ

45



and Ψ.
At the denominator of (6.26), D1 and D4 are de�ned as:

D1 = K(wg, ξg, wi, ξi)K(wg, ξg,−wi, ξi)K(wi, ξi,−wj, ξj)

D4 = K(wg, ξg, wi, ξi)K(wg, ξg,−wj, ξj)
(6.19)

where K=K(wm, ξm, wn, ξn) is equal to:

K =
(
w2

m − w2
n

)2
+ 4wmwn

(
−w2

mξmξn + wmwnξ
2
m + wmwnξ

2
n − w2

nξmξn

)
(6.20)

While for what concerns the functionals appearing at the the numerator:

ζ0,mn(wi, wj) =

{
−ζ1,mn(wi, wj)− 2ξg ζ̂1,mn(wi, wj) if m+ n is even

ζ1,mn(wi, wj)− 2ξg ζ̂1,mn(wi, wj) if m+ n is odd

(6.21)

Ψ0,mn(wi, wj) =

{
Ψ1,mn(wi,wj)

2
if m = 0

Ψ1,mn(wi,wj)−Ψ̂1,mn(wi,wj)

2
if m > 0

(6.22)

Now, the components of the matrix Ξ are characterized by the following
relations: 

ζ1,01(wi, wj) = −ζ1,01(wi, wj)

ζ1,02(wi, wj) = ζ1,20(wi, wj)

ζ1,12(wi, wj) = −ζ1,21(wi, wj)

ζ̂1,01(wi, wj) = −ζ̂1,01(wi, wj)

ζ̂1,02(wi, wj) = ζ̂1,20(wi, wj)

ζ̂1,12(wi, wj) = −ζ̂1,21(wi, wj)

(6.23)

It should be noted that the o�-diagonal elements of Ξ and Ξ̂ are determined
by considering the sign changing between the frequencies wi and wj of their
o�-diagonal counterpart. All the other elements can be expressed as:

ζ1,00(wi, wj) = wiwj

(
w2

gX(wj, ϕ
′
3,−ϕ2) + w2

iX(wj,−ϕ1, ϕ
′
3)
)

ζ1,01(wi, wj) = 2wiwgξg

(
− w2

gX(wj, 2ϕ
′
3, 3) + w2

iX(wj, 2ϕ1, ϕ2)
)

ζ1,02(wi, wj) = 4wiwjw
2
gX(wi,−ϕ1, ϕ

′
3)

ζ1,11(wi, wj) = −4ϕ′
3w

6
g + 16ϕ1w

2
iw

2
jw

2
gξ

2
g + 8ϕ2w

4
gξ

2
g(w

2
i + w2

j )

ζ1,12(wi, wj) = −8wjw
3
gξgX(wj, 2ϕ1, ϕ2

ζ1,22(wi, wj) = −16ϕ1wiwjw
4
g

ζ̂1,00(wi, wj) = −wiwjξg

(
w2

gX(wj, 1,−2) + w2
iX(wj, 4ξ

2
g , 1)

)
ζ̂1,01(wi, wj) = wiwg

(
w2

gX(wj,−4ξ2g , 1)− w2
iX(wj, (4ξ

2
g)

2, 1)
)

ζ̂1,02(wi, wj) = −4wiwjw
2
gX(wi, 4ξ

2
g , 1)

ζ̂1,11(wi, wj) = 4w2
gξg

(
w2

gX(wj, 2ϕ
′
2, 1) + w2

iX(wj, (4ξ
2
g)

2, ϕ′
2)
)

ζ̂1,12(wi, wj) = 4wiwjw
3
gX(wi, (4ξ

2
g)

2, ϕ′
2)

ζ̂1,22(wi, wj) = −64wiwjw
4
gξ

3
g

(6.24)
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The zero− th spactral moment of the ground is instead de�ned as:

λ0,gg = G0πwg

(
ξg +

1

4ξ2g

)
(6.25)

6.2.1 First order approximation of the zero-th order
moment

For the zeroth cross-spectral moment, the expansion of the sums in (6.18)
to the �rst degree of the exponent of the damping ratios yields:

λ
(1)
0,ij = G0πwjwiwg

[∑1
m=0

∑1
n=0 ξ

m
i ξnj ζ0,mn(wi,wj)

4ξgD4

]

+G0πwjwiwg

[
2wg

∑1
m=0

∑1
n=0 ξ

m
i ξ

n
j Ψ0,mn(wi, wj)

D1

]
(6.26)

This expression is equivalent to a successively �rst-order Taylor series ex-
pansion of the numerator of λ0,ij at ξi = 0 and ξj = 0.
Now, by considering the limit limwj→∞ it is possible to compute the cross-
spectral moment between the i − th modal acceleration and the ground
acceleration, λ

(1)
0,ig:

λ
(1)
0,ij =

G0πwiwg

4ξg

w3
i − wiw

2
g + 4w3

i ξ
2
g + ξi

(
4w2

iwgξg + 4w3
gξg + 16w2

iwgξ
3
g

)
K(wg, ξg,−wi, ξi)

(6.27)

6.2.2 Hybrid approximation of the zero-th order mo-
ment

A further simpli�ed formulation of (6.18) can be obtained by exploiting the
concept of hybrid approximation of the zero-th order spectral moment.
In particular, by introducing the functionals ξ0(wi, wj), Ψ0,10(wi, wj) and

Ψ0,01(wi, wj), it is possible to compute the spactral moment λ
(1′)
0,ij , which is

a hybrid type of a �rst order and a zero-th order approximation of λ0,ij:

λ
(1′)
0,ij = G0πwjwiwg

[
ξ0(wi, wj)

4ξgD4

+
2wgψ0,10(wi, wj) + ξjψ0,01(wi, wj)

D1

]
(6.28)

where:

ξ0(wi, wj) = wiwj

[
w2

i

(
w2

j (4ξ
2
g + 1)− w2

g

)
− w2

jw
2
g + w2

g

(
1− 8ξ2g

)]
(6.29)

Ψ0,10(wi, wj) = wj

[
2w6

iw
2
g+w

6
jw

2
g+4w6

iw
2
g+w

2
iw

2
jw

4
gξ

2
g−w4

iw
2
g

(
2w2

g+w
2
j (1+8ξ2g−16ξ4g)

)]
(6.30)

Ψ0,01(wi, wj) = w3
iw

6
g + 4w9

i ξ
2
g +w2

iw
2
g(1− 4ξ2g)

2 + 2w5
iw

4
g(−1 + 4ξ2g) (6.31)
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As before, the cross spectral moment between mode i and the ground ac-
celeration üg is derived by replacing the contribution of the j-th mode with
the one of the ground acceleration, obtaining:

λ
(1′)
0,ig =

G0πwiwg

4ξg

w3
i − wiw

2
g + 4w3

i ξ
2
g

K(wg, ξg,−wi, ξi)
(6.32)

Now that the required spectral moments are obtained, by exploiting the
results obtained in (6.28) and (6.32) through the hybrid approximation
procedure, and by recalling (6.25), it is possible to compute the coe�cint
of correlation as:

ρMO =
λ
(1′)
0,ig√

λ
(1′)
0,ijλgg

(6.33)

6.3 Results comparison

In this section the analytical formulation proposed by der Kiureghian et al
and Moshen et al are compared with the results numerically obtained by
means of Matlab.
Matlab allows to evaluate the integral solution by using di�erent procedures.
What was done here was to exploit the trapz command, which automatically
implement the so called "trapezoidal quadrature rule" to estimate the area
subtended by a curve.
The main steps adopted in Matlab are here brie�y recalled. By making
reference to the transfer function for the total acceleration (6.16) and to
the 4-branches PSD formulation proposed by Barone et al, the spectral
moments are umerically evaluate as:

λnumig = trapz
[
Hi(ŵ, wi, ξi)Güg(ŵ)dw

]
(6.34)

λnumii = trapz
[
Hi(ŵ, wi, ξi)H

∗
i (ŵ, wi, ξi)Güg(ŵ)dw

]
(6.35)

λnumgg = trapz
[
Güg(ŵ)dw

]
(6.36)

Finally, the numerical correlation coe�cient can be evaluate as:

ρnum0,ig =
λnumig√
λnumii λnumgg

(6.37)

For what concerns instead the results proposed by Der kiureghian et al, the
three possible formulation are here recalled. The most rigorous formulation
for the correlation coe�cient, here denoted as ρWN , yields:

ρWN =
8
√
ξiξgwiwg(ξiwi + ξgwg)wiwg

Kig

(6.38)

and

Kig = (w2
i − w2

g)
2 + 4ξiξgwiwg(w

2
i + w2

g) + 4(ξ2i + ξ2g)w
2
iw

2
g (6.39)
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Figure 6.1: Corr. coe�. in hypothesis of white noise (Der Kiureghian)

In the case of small damping, and wj ≈ wg, the approximated solution ρAppr

can be adopted:

ρAppr =
2
√
ξiξg

[
(wi + wg)

2(ξi + ξg) + (w2
i − w2

g)(ξiξg)
]

4(wi − wg)2 + (ξi + ξg)2(wi + wg)2
(6.40)

A further analytical approximation ρINF is �nally obtained by enforcing
wg → ∞:

ρINF =
4ξi
√
ξiξg

ξ2i + 2ξiξg + ξ2g + 4
(6.41)

The comparison of the results in the time domain is reported in Figure 6.1.
The more rigorous formulation ρWN is the one presenting the more regular
behaviour. However, if compared with the numerical results, it tends to
underestimate the valus of ρig at low values of the natural periods, where
instead the approximate formulation ρAppr is able to provide quite better
results.
For what concerns the formulation proposed by Moschen, the results can
be viewed in Figure 6.2. Unlike the previous case, the proposed formulation
overestimates the value of ρig along the whole domain, providing also quite
a regular behaviour. Finally, Figure 6.3 gathers together all the formula-
tions presented in this Chapter. The results provided by Moschen are the
ones able to better follow the behaviour of the numerical results along the
domain. However, in the high frequency range, the best approach is the one
proposed by Der Kiureghian, by means of (6.40).
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Figure 6.2: Corr. coe�. in hypothesis of white noise (Moschen)
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Figure 6.3: Corr. coe�. in hypothesis of white noise
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6.4 White noise validity

Summing up, the two methods provide closed form solutions for the �rst
three moments of the power spectral density of response to the classes of
white-noise and �ltered white-noise inputs.
The formulations yield good results for the prediction of median PFA de-
mands of tallspatial structures with closely spaced modes.
There are situations however, in which this kind of approximation is not
able provide reliable solutions, due to the fact that it tends to underesti-
mate the contribution of higher modes.
In particular, the ine�ectiveness of the white-noise input assumption for
evaluation of correlation coe�cients has been widely recognized for both
the following two cases:

1. nodal frequencies that lie outside the range of the signi�cant frequency
content of the input [8]

2. system response dominated by high frequency modes [26]

Der Kiureghian himself investigated the in�uence of PSD shape on correla-
tion coe�cient evaluation, using a PSD derived from the U.S.Nuclear Reg-
ulatory Commission response spectrum by adopting a rough approach [23],
and the e�ect of input narrow-bandedness by employing the well-known
Kanai-Tajimi PSD. They stated that (1) the white noise model tends to
underestimate the modal correlations when either of the two modes has a
frequency higher than 30 rad/s and (2) narrow-bandedness of the input ex-
citation has a profound in�uence on the correlation coe�cients, for modes
with frequencies higher than the predominant frequency of the input ex-
citation. Therefore in the next two chapters two analytical solution are
presented, disregarding the hypothesis of white noise approximation and
providing the correlation coe�cients consistent with the input PSD.
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Chapter 7

Correlation coe�cients - Multiple

timescale analysis

The aim of this chapter is to present the basic principles behind the Mul-
tiple Timescale Spectral Analysis approach proposed by Denoel [6]. It will
be seen how, the principle proposed, once applied to the case study, will
allow to obtain a very handy and elegant formulation for the computation
of the required spectral moments. After a brief introduction to the theory
background, the implementation of the model is presented.
As already presented, the spectral analysis is a useful tool to study many
common engineering situation, as for example the response of linear or
slightly non linear oscillators, MDOF systems under stationary loadings,
or even transients excitations. For all these kinds of problems, the proce-
dure to adopt in order to obtain the �nal solution involves the integration
of the spectra over the frequency space. Due to the fact that in many ap-
plications, frequency domain may be multi-dimensional, the application of
standard derivation technique may be prohibitive. However, many of the
above mentioned engineering problems involve a clear timescale separation.
In these problems, a proper exploitation of the peculiarity allows to decrease
the order of integration by one, at least. In particular, when the order of
integration drops to zero, this o�ers the possibility to derive analytical so-
lutions, which is the goal of this work.
Now, by supposing to work in the Rj−1 frequency domain, then the spectral
analysis goal is to determine the j-th cumulant of the response:

k(j) =

∫
..

∫
R(j)

Gx(w
(j))dw(j) (7.1)

being Gx(w
(j)) the j-th order spectrum of the response.

Now, the existence of multiple timescales in the response translates into
the existence of several well-distinct peaks in the spectra. This aspect was
�rst taken into account by Davenport [27] who suggested to decompose
the response in two components, the background and the resonant one.
In the adoption of a numerical integration scheme, this allowed to greatly
reduce the number of integration points to the sole natural frequencies of
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the (possibly very large) structural model.
The �rst to propose a fully analytical solution was instead Preumont [28],
who suggested to replace the loading by a piecewise constant approximation
which �nally results in a semi-analytical approach, thanks to some closed-
form integrations. The work of Denoel can be considered a step halfway
between the two procedures.

7.1 Timescale separation

The work by Denoel is proposed for the cases in which the timescale of the
loading Gp(w

(j)) is di�erent from the one of the system, where the latter
ones are generally attributed to the poles in the kernel function H(w(j)).
However, as it will be presented later, with some manipulations and sim-
pli�cations, the analytical approximation will be able to cover the whole
frequency domain, also those zones in which the kernel pole is not so dis-
tant from the characteristic frequency of the loading.
Now, by focusing on the case under analysis, in which the structure is mod-
eled as a 1 DOF linear oscillator, the frequency domain reduces to the di-
mension R1, therefore the functions entering the problem recover the usual
dependencies:

Gp = GÜg
= GÜg

(ŵ)

GX = GX(ŵ, wi, ξi)

K = K(ŵ, wi, ξi) = H(ŵ, wi, ξi)H
∗(ŵ, wi, ξi)

(7.2)

The �rst step of the method consists in locating the di�erent peaks in
GX(w

j). The resonant behaviour of the kernel function will manifest in
corrispindence of one point only, i.e. the natural frequency of the structure.
Sharp peaks are local contributions to the integral while wideband spectral
regions result in global contributions.
However depending on their nature, the peaks might be classi�ed into di�er-
ent families. For the problem under consideration, two categories of peaks
can be identi�ed:

1. background component

2. resonant component

7.1.1 Background component

The background component corresponds to the peak of the loading spectrum
Gp(ŵ). Depending on the relative smallness of the characteristic frequency
of the loading α̂ and that of the structure wi, the behaviour of the kernel
function may change. For example, in the case where wi >> α̂, the local
behaviour of the kernel function can be approximated as constant in corre-
spondence of the origin, corresponding to the quasi static solution of a linear
oscillator. On the other hand, for wi < α̂, the local behaviour of the kernel
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can be represented by the inertia regime solution. The approximation can
be written in the general form:

K̂(ŵ) = K0ŵ
pi (7.3)

where:

1. for wi >> α̂, pi = 0

2. for wi < α̂, pi = 4

Now, the contribution kb associated to the background component is:

kb =

∫ inf

0

K̂(ŵ)Sp(ŵ)dŵ = K0

∫ inf

0

ŵpiSP (ŵ)dŵ (7.4)

7.1.2 Resonant component

The subtraction of the background approximation kb from the initial prob-
lem creates the following residual:∫ inf

0

K̂(ŵ)Sp(ŵ)dŵ = K0

∫ inf

0

ŵpi
[
K(ŵ, wi, ξi)− K̂(ŵ)

]
GÜg

(ŵ)dŵ (7.5)

This term does not feature any signi�cant contribution in the background
domain anymore, therefore the resonant components are found to be the
remaining ones in the residual. The analysis of the di�erent contributions
to this integral has to be performed speci�cally for each problem. Follow-
ing the same considerations from above, the most important contributions
are attributable to the regions of the frequency space where the poles of
H(ŵ, wi, ξi) are located; they correspond to resonant components. In those
regions, the loading spectrum GÜg

(ŵ) might be very small, which thus re-
sults in a small resonant component.
Depending on the original expression of the kernel H(ŵ, wi, ξi) and the load-
ing spectrum GÜg

(ŵ), other regions of the domain may contribute more
signi�cantly. They correspond to smaller values of the factor in the square
brackets, but much larger values of the loading spectrum. These compo-
nents are classi�ed as mixed background/ resonant components. There is
a priori no means to rank the relative importance of these terms, it is thus
recommended to carefully identify and study the di�erent possible contri-
butions. However, for the purposes of this thesis, the contribution related
to the mixed background/resonant components will be disregarded.
In the following lines, a brief introduction to the procedure is reported.
In particular, by assuming the integral equation 7.5 to have a contribution
in the neighbour of the frequuency ŵ = Ωj, extending over a more or less
short bandwidth ∆j, a new set of coordinates η̂ is then introduced, in order
to set the focus of the analysis on this contribution only: ŵ = Ωj + ∆j η̂.
Now, the equation 7.5 can be rewritten as:

f1(ŵ(η̂), wi, ξi) =
[
K(ŵ(η̂), wi, ξi)− K̂(ŵ(η̂))

]
GÜg

(ŵ)|Jŵ|dη̂ (7.6)
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Up till now, no approximations have been introduced. The center of method
is now to derive a local approximation of the product:[

K(ŵ(η̂), wi, ξi)− K̂(ŵ(η̂))
]
GÜg

(ŵ) (7.7)

The Padè approximant is usually available for this kind of task. It consists in
the approximation of an analitic function with a rational one. The method
is similar to the Taylor Series Expansion, in which the Padè approximant
can be expressed as a truncation of a continous function, whose limits is the
function itself.
Integration along at least one direction might be thus performed explicity,
which thus drops by one the dimensionality of the integral.

7.2 Implementation of the procedure

Now that the basic principles behind the Multi time-scale analysis have
been pointed out, it is possible to present the implementation of the model
for the case under investigation. As already mentioned, the goal is to de�ne
an analytical approximation for the spectral moments entering the formula
for the correlation coe�cient:

λii = Re
[∫ inf

0

Hi(ŵ, wi, ξi)H
∗
i (ŵ, wi, ξi)Güg(ŵ)dw

]
(7.8)

λig = Re
[∫ inf

0

Hi(ŵ, wi, ξi)Güg(ŵ)dw
]

(7.9)

λgg = Re
[∫ inf

0

Güg(ŵ)dw
]

(7.10)

where Hi(ŵ, wi, ξi) is the Frequency Response Function associated to the
absolute acceleration::

Hi(ŵ, wi, ξi) =
w2

i + 2iŵwiξ

wi
2 − ŵ2 + 2iwiŵ

(7.11)

While, for what concerns the adopted Power Spectral Density Güg(ŵ), the
piecewise formulation proposed by Barone et al, compatible with the codes
RS, is chosen:

Güg(w) =


G0(

wD

wC
)e2( w

wD
)e1 se 0 ≤ w ≤ wD

G0(
w
wC

)e2 se wD ≤ w ≤ wC

G0(
w
wC

)e3 se wC ≤ w ≤ wB

G0(
wB

wC
)e3( w

wB
)e4 se w > wB

(7.12)

However, in order to decrease as much as possibily the complexity of the
formulation,the two-branched version of the PSD formulation proposed by
Barone et al [5] is used:

Güg(w) =

{
G0(

w
wC

)e2 se 0 ≤ w ≤ wC

G0(
w
wC

)e3 se w > wC

(7.13)
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Figure 7.1: PSD comparison

A comparison between the two formulations reported in (7.12) and (7.13) is
presented in Figure (7.1) The two branches formulation can be used for the
same reason for which the majority of the codes allow to model the RS with
a 2 piece formulation instead of the usual one with 4 branches. Now the
next paragraph will be organized in the following way. Starting from the
variance of the response, the implementation of the multi timescale analysis
will be presented for the three di�erent frequency domain:

1. Case 1: wi > wC

2. Case 2: wi = wC

3. Case 3: wi < wC

Then the same will be done for the cross spectral moment λig.
The results which will be presented in the next paragraphs have been ob-
tained with the help of the software WX MAXIMA. Maxima is a CAS
(Computer Algebra System). A CAS can perform symbolic algebraic ma-
nipulations. This is particularly handy when manipulating large polynomi-
als. The symbolic manipulation includes di�erentiation, integration, Taylor
series, Laplace transforms, ordinary di�erential equations, systems of linear
equations and polynomials, yielding high precision numeric results by using
exact fractions, arbitrary precision integers, and variable precision �oating
point numbers.

7.3 Variance of the response λii

The variance of the response has the form:

λii = Re
[∫ inf

0

Hi(ŵ, wi, ξi)H
∗
i (ŵ, wi, ξi)Güg(ŵ)dw

]
(7.14)
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where the PSD function Güg(ŵ) is ampli�ed by the product between the
FRF and its conjugate:

Hi(ŵ, wi, ξi)× conj
[
Hi(ŵ, wi, ξi)

]
=

w4
i + 4iŵ2w2

i ξ
2

(wi
2 − ŵ2)2 + 4iŵ2w2

i ξ
2

(7.15)

Now, in order to soften the formulation, the contribution of the damping at
the numerator has been neglected. In the frequency domain, the behaviour
of the Kernel function is therefore represented by the following curve:

Figure 7.2: Kernel function - wi > wc

In conclusion, the aim of this paragraph is to de�ne a simpli�ed analitical
formulation for the following integral:

λii =

∫ inf

0

w4
i

(wi
2 − ŵ2)2 + 4iŵ2w2

i ξ
2
Güg(ŵ)dŵ (7.16)

7.3.1 Case 1: wi > wC

For the case under consideration, by assuming a value of the natural fre-
quency equal to wi = 4wC , the curve representing the behaviour of the
integrand in the frequency domain is:
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Figure 7.3: Response PSD - wi > wc

A clear separation of the timescale can be observed, allowing to apply the
principles proposed by Denoel. In particular:

1. the lower peak represents the background response associated to the
PSD

2. the higher peack is related to the resonant response

Now, the background contribution can be obtained simply by observing
that:

lim
ŵ→0

HiH
(∗)
i = lim

ŵ→0

w4
i

(wi
2 − ŵ2)2 + 4iŵ2w2

i ξ
2
= 1 (7.17)

where Hi = Hi(ŵ, wi, ξi), and H
(∗)
i represents its complex conjugate. Con-

sequently, in order to obtain the �nal solution, it is su�cient to integrate
the piecewise expression of the PSD along the frequency domain. This is
possible however only in those ragion of the domain in which the approx-
imation (7.17) holds. This is why the integration domain will be limited
from the top to natural frequency wi only, and not extended to +∞:

λii,b =

∫ wi

0

Güg(ŵ)dŵ =

∫ wC

0

G0(
w

wC

)e2dŵ +

∫ wi

wC

w

wC

)e3dŵ

=

G0

(
w

e3+1
i

e3+1
− w

e3+1
C

e3+1

)
e2 + 1

+
G0wC

e2 + 1

(7.18)

The focus can be now centerned on the resonant contribution. The �rst step
is to compute the residual r1 of the kernel function, in order to disregard
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the contribution already accounted for in the background integral:

r1 =
[
HiH

(∗)
i

]
− 1 =

ŵ4 + 2ŵ2w2
i + 4iŵ2w2

i ξ
2

(wi
2 − ŵ2)2 + 4iŵ2w2

i ξ
2

(7.19)

whose behaviour in the frequency domain is:

Figure 7.4: Residual function r1

The resonant contribution is now represented by the integral equation:

λii,r =

∫ inf

0

ŵ4 + 2ŵ2w2
i + 4iŵ2w2

i ξ
2

(wi
2 − ŵ2)2 + 4iŵ2w2

i ξ
2
Güg(ŵ)dŵ (7.20)

As it can be seen, no practical analytical solution is available for λii,r in
this form. To solve the problem, the approximation proposed by Padè is
introduced. First of all it is necessary to introduce a new variable η, in such
a way that: ŵ = w1(1+ ξη), where w1 is the frequency abscissa of the peak,
which is evaluated by imposing the stationarity of the residual:

dr1
dŵ

= 0 (7.21)

Three solutions are provided:
w1 = wi

√
1− 2ξ2

w2 = 0

w3 = −wi

√
1− 2ξ2

(7.22)

The trivial solution w2 and the negative solution w3 are disregarded, there-
fore the attention is focused on w1. By replacing the new set of coordinates
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inside (7.19) , a new formulation for the residual r1, here recalled as q1, is
obtained:

q1 = −
4η4ξ8 + 16η3ξ7 + (16η2 − 4η4)ξ6 − 16η3ξ5 + (η4 − 16η2 − 4)ξ4 + 4η3ξ3 + (4η2 + 4)ξ2 − 1

4η4ξ8 + 16η3ξ7 + (16η2 − 4η4)ξ6 − 16η3ξ5 + (η4 − 16η2 − 4)ξ4 + 4η3ξ3 + 4(η2 + 1)ξ2

(7.23)

By plotting q1 in the stretched domain (7.5), where the new variable on the
ascissa is η, it can be seen how the peak of �r1� is now centered in zero:

Figure 7.5: Residual function in the frequency stretched domain

This allows now to introduce the concept of Padè approximant. As pre-
sented before, Padé approximants are rational polynomial derived typically
from a Taylor series expansion. The in�nite terms of a Taylor series are
made into a polynomial rational function (i.e. polynomial over a polyno-
mial).
In order to have a clearer view of what was dose, a brief explaination of
the steps adopted in wxMaxima is here reported in the case of the simple
sinusoidal function sin(x). The line of code adopted in wxMaxima is:

pade
[
taylor

(
sin(x), x, 0, 3

)
, 2, 2

]
(7.24)

The function taylor() generates a taylor series. In the example above, the
code is generating a taylor series for sin(x) with the variable x centered at 0
by using 3 terms. This taylor series is an input for the Pade approximation,
where the arguments 2, 2 are the degrees of numerator and denominator
requested for the �nal rational approximating polynomials.

at the end the output is:
[

6x
x2+6

]
The same procedure was followed for the

case under analysis. Formula (7.47) in the stretched coordinate is given as
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input, and the program is asked to generate a rational polynomial approxi-
mation with a degree 0 at the numerator and a degree 2 at the denominator,
leading to:

p1 =
4ξ4 − 4ξ2 + 1

−4ξ4 + 4η2ξ2 + 4ξ2
(7.25)

where p1 represents the Padè approximant of the residual r1. The formu-
lation provided by MAXIMA is able to approximate quite well the original
form of the residual. A comparison in the stretched domain between q1 and
p1 is here reported:

Figure 7.6: Comparison between q1 and p1

Now, by comparing the formulation obtained by means of the Padè approx-
imation and the original one in (7.19), it is evident how the latter is more
handy, allowing now to analitically evaluate its integral.
In particular, by introducing the Jacobian of the di�erential problem, dŵ

dη
=

ξw1, the integral solution of (7.25) is:∫ ∞

−∞
p1ξw1dη =

πwi

√
1− 2ξ2

(
4ξ4 − 4ξ2 + 1

)
2
√
4ξ2 − 4ξ4

(7.26)

Now it's only a matter of multiplying the solution (7.26) by the value of the
PSD in correspondence of the peak. This is possible since the behaviour of
the PSD can be usually considered as constant accros a resonance peak, as
a result of the timescale separation.
Therefore, the �nal solution yields:

λii,r =
πwi

√
1− 2ξ2

(
4ξ4 − 4ξ2 + 1

)
2
√

4ξ2 − 4ξ4
Güg(w1) (7.27)

61



and by considering that wi > wC :

Güg(w1) = G0

(w1

wC

)e3
(7.28)

Finally, by gathering together both the background λii,b and the resonant
contributions λii,r, the anlytical solution for λii is:

λii =
πwi

√
1− 2ξ2

(
4ξ4 − 4ξ2 + 1

)
2
√
4ξ2 − 4ξ4

Güg(w1)

+

G0

(
w

e3+1
i

e3+1
− w

e3+1
C

e3+1

)
e2 + 1

+
G0wC

e2 + 1

(7.29)

7.3.2 Case 2: wi < wC

As for the case wi > wC , the variance of the response is represented by the
following integral:

λii =

∫ inf

0

w4
i

(wi
2 − ŵ2)2 + 4iŵ2w2

i ξ
2
Güg(ŵ)dŵ (7.30)

However, when the frequency of the structure is lower than the characteristic
frequency of the loading, the behaviour of the response PSD in the frequency
domain is quite di�erent, as it can be appreciated in Figure 7.8, where the
graph was plotted considering a �ctitous value for the structural frequency
wi =

1
2
wC

Figure 7.7: Output PSD - wi < wc

What happens now is that there is not a clear timescale separation as ob-
served in the previuos case, since only a single peak appears. However, in
order to solve the problem, the theory proposed by Denoel can still be used,
as long as some approximations are introduced. In particular:
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1. the background component will be now neglected

2. the Padè approximant will be applied directly to the Kernel function.

So, since the background component is disregarded, there would be no need
to compute a residual component, therefore the r1 function will coincide in
this case with the kernel function itself:

r1 = HiH
(∗)
i =

w4
i

(wi
2 − ŵ2)2 + 4iŵ2w2

i ξ
2

(7.31)

Figure 7.8: Kernel function: wi<wc

By adopting a change of variable of the type: ŵ = w1(1 + ξη), (7.31) can
be rewritten in terms of the new coordinate η:

q1 =
1

4η4ξ8 + 16η3ξ7 + (16η2 − 4η4)ξ6 − 16η3ξ5 + (η4 − 16η2 − 4)ξ4 + 4η3ξ3 + 4(η2 + 1)ξ2

(7.32)

As before, w1 represents the abscissa coordinate in correspondence of the
peak, computed by imposing the stationarity of r1:

dr1
dŵ

= 0. The positive

solution w1 = wi

√
1− 2ξ2 is adopted.

The change of variable will cause a translation of the peak in correspondence
of the origin (Figure 7.9),
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Figure 7.9: q1 function: wi<wc

By exploiting now the algebraic capacity of WX MAXIMA, it is possible
to compute the rational polynomial rapresentation of (7.32) exploiting the
Padè approximation:

pade
[
taylor

(
q1(η), η, 0, 2

)
, 0, 4

]
(7.33)

obtaining:

p1 =
1

η2
(
16ξ6 − 16ξ4 + 4ξ2

)
− 4ξ4 + 4ξ2

(7.34)

A comparison between p1 and q1 is reported in Figure 7.10.
As before, by introducing the Jacobian of the di�erential problem, dŵ

dη
= ξw1,

the integral solution of (7.25) is:

∫ ∞

−∞
p1ξw1dη =

πwi ξ
√

1− 2ξ2√
4ξ2 − 4ξ4

√
16ξ6 − 16ξ4 + 4ξ2

(7.35)
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Figure 7.10: q1 function: wi<wc

The �nal analytical solution for λii is obtained by multiplying (7.36) times
the value of the PSD in correspondence of the kernel peak, i.e.

λii =
πwi ξ

√
1− 2ξ2√

4ξ2 − 4ξ4
√

16ξ6 − 16ξ4 + 4ξ2
Güg(w1) (7.36)

and since wi < wC :

Güg(w1) = G0

(w1

wC

)e2
(7.37)

where e2 =
2
3
.
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7.3.3 Case 3: wi = wC

The procedure adopted when the frequency of the structure equals the one
of the loading follows the one for the case of wi < wc. As before, in the fre-
quency domain, the argument of the integral function shows a unique peak,
meaning that also in this case, the contribution associated to the peak of the
PSD is absorbed by the resonant one (Figure 7.11). The background con-
tribution can be neglected, and the Padè approximation is directly applied
on the kernel function

Figure 7.11: Output PSD - wi = wc

By following the same steps adopted in the previous case wi < wC , the Padè
method provides the following rational approximation:

p1 =
1

η2
(
16ξ6 − 16ξ4 + 4ξ2

)
− 4ξ4 + 4ξ2

(7.38)

Therefore the �nal analytical solution for the spectral moment λii reads:

λii =
πwi ξ

√
1− 2ξ2√

4ξ2 − 4ξ4
√

16ξ6 − 16ξ4 + 4ξ2
Güg(w1) (7.39)

In conclusion, for the di�erent frequency sub-domains, the analytical for-
mulations for the spectral moment λu is:
for wi ≤ wC

λii =
πwi ξ

√
1− 2ξ2√

4ξ2 − 4ξ4
√

16ξ6 − 16ξ4 + 4ξ2
Güg(w1) (7.40)
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while, for wi > wC :

λii =
πwi

√
1− 2ξ2

(
4ξ4 − 4ξ2 + 1

)
2
√
4ξ2 − 4ξ4

Güg(w1)

+

G0

(
w

e3+1
i

e3+1
− w

e3+1
C

e3+1

)
e2 + 1

+
G0wC

e2 + 1

(7.41)

7.4 Cross spectral moment λig

The cross spectral moment λig between the i− th mode of the structure and
the ground acceleration is de�ned as:

λig =

∫ ∞

0

Re
[
Hi(ŵ, wi, ξi)

]
Güg(ŵ)dŵ (7.42)

where:

Re
[
Hi(ŵ, wi, ξi)

]
=

w4
i − ŵ2w2

i + 4iŵ2w2
i ξ

2

(wi
2 − ŵ2)2 + 4iŵ2w2

i ξ
2

(7.43)

whose behaviour in the frequency domain is:

Figure 7.12: Frequency response function

Exactly as before, depending on the relation between forcing frequency wC

and natural frequency wi, di�erent considerations and approximations will
be made.
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7.4.1 Case 1: wi > wC

By adopting a value wi = 4wc for the natural frequency , the intagrand
function in the frequency domain has the following behaviour:

Figure 7.13: Cross spectral moment integrand function

The peak located in the low frequency domain represents the background
contribution associated to the PSD. While the resonant component devel-
opes in the neighbour of the natural frequency wi. The main di�renece
wrt the previus case is related to the fact that the cross spectral moment
λig shows a double peak in correspondence of the natural frequency of the
system. This however do not represent a problem, and the results provided
by the Padè approximant remain valid.
For what concerns the background component, as before, the way of rea-
soning exploits the fact that the PSD goes to zero as w goes to ∞, while
the leading order term of the kernel function (7.43), i.e. its limit as w goes
to 0, is 1.
Consequently, the background component λig is:

λii,r =

∫ wi

0

Güg(ŵ)dŵ =

∫ wC

0

G0(
w

wC

)e2dŵ +

∫ wi

wC

(
w

wC

)e3dŵ

=

G0

(
w

e3+1
i

e3+1
− w

e3+1
C

e3+1

)
e2 + 1

+
G0wC

e2 + 1

(7.44)

The next step is to compute the residual contribution r1 of the kernel func-
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tion:

r1 = Re
[
Hi

]
− 1 =

ŵ2w2
i − w4

i

4w2
i ŵ

2ξ2 + w4
i − 2ŵ2w2

i

(7.45)

The peaks of the residual function are located in correspondence of the
points which ensure the stationarity of r1. Therefore, by imposing dr1

dŵ
= 0,

four di�erent results are provided. In the positive frequency domain the
solutions are: {

w1 =
wi√
2ξ+1

w2 =
iwi√
2ξ−1

(7.46)

Now, the procedure to follow in order to de�ne a handy analitical formula-
tion of the residual is the same of the one presented in section 7.3.1, only
that now it must be repeated for both the peaks involved.
The �rst peak analysed is the positive one. By introducing the variable η,
and by adopting the new strained coordinate ŵ = w1(1+ ξη), (7.45) can be
rewritten as:

q1 = −
η4ξ3 +

(
4η3 − 2η2

)
ξ2 +

(
5η2 − 4η

)
ξ + 2η − 2

8η2ξ4 + (η4 + 4η2 + 16η)ξ3 + (4η3 − 4η2 + 8η + 8)ξ2 + (4η2 − 8ξ + 8)ξ
(7.47)

Figure 7.14: residual behaviour in the strained coordinates

The new strained coordinate moves the peak of the residual in zero (Figure
7.14) which enables the reader to apply the rational approximation proposed
by Padè. In particular:

p1 = pade
[
taylor

(
q1(η), η, 0, 2

)
, 0, 2

]
(7.48)
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obtaining:

p1 =
1

η2
(
8ξ3 + 8ξ2 + 2ξ

)
+ 4ξ2 + 4ξ

(7.49)

which approximates very well the behaviour of the residual function q1 in
correspondence of the peak (Figure 3.40)

Figure 7.15: Formulation comparison in the strained domain

It is now possible to evaluate the anlytical solution of (7.49):∫ ∞

−∞
p1ξw1dη =

πwi ξ√
4ξ2 + 4ξ

√
2ξ + 1

√
8ξ3 + 8ξ2 + 2ξ

(7.50)

By multiplying the solution (7.63) by the value of the PSD in correspon-
dence of the peak, the �nal analytical solution for the �rst resonant com-
ponent is obtained:

λii =
πwi ξ√

4ξ2 + 4ξ
√
2ξ + 1

√
8ξ3 + 8ξ2 + 2ξ

Güg(w1) (7.51)

and since wi > wC :

Güg(w1) = G0

(w1

wC

)e2
(7.52)

where e2 =
2
3
.

The same way of reasoning is applied to the second resonant contribution.
The formulation for the residual coincides with the previous one:

r2 = Re
[
Hi

]
− 1 =

ŵ2w2
i − w4

i

4w2
i ŵ

2ξ2 + w4
i − 2ŵ2w2

i

(7.53)
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only that now the change of variable makes reference to the abscissa of the
negative peak, ŵ = w2(1 + ξη). In the stretched domain, (7.53 becomes:

q2 = −
η4ξ3 +

(
4η3 + 2η2

)
ξ2 +

(
5η2 + 4η

)
ξ + 2η + 2

8η2ξ4 + (−η4 − 4η2 + 16η)ξ3 + (−4η3 − 4η2 − 8η + 8)ξ2 + (−4η2 − 8ξ − 8)ξ
(7.54)

Finally, the 0, 2 Padè approximation of the residual q2 reads:

p2 = − 1

η2
(
8ξ3 − 8ξ2 + 2ξ

)
− 4ξ2 + 4ξ

(7.55)

whose behaviour in the strained domain is represented in Figure 3.40

Figure 7.16: Formulation comparison in the strained domain

It is now easy to analytically evaluate the integral solution of (7.55):∫ ∞

−∞
p2ξw2dη = − iπwi ξ√

4ξ2 − 4ξ
√
2ξ − 1

√
8ξ3 − 8ξ2 + 2ξ

(7.56)

The multiplication of the equation with the value of the PSD in correspon-
dence of the peak yields the �nal solution:

λij,r2 = − iπwi ξ√
4ξ2 − 4ξ

√
2ξ − 1

√
8ξ3 − 8ξ2 + 2ξ

Güg(w2) (7.57)

where:
Güg(w2) = G0

(w2

wC

)e2
(7.58)
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7.4.2 Case 1: wi < wC

For all the cases in which the value of the natural frequency of the system
is smaller than the forcing frequency wC , the behaviour of the integrand in
(7.42), by assuming a value of wi =

1
2
wC , is:

Figure 7.17: Cross spectral moment integrand function

Unlike the previous case, the timescale sepration is not so evident, and the
only peaks visible are the ones associated to the kernel function. Due to
this, no background contribution is here considered, and the attention is
focused on the kernel function only.
Therefore:

r1 = Re
[
Hi(ŵ, wi, ξi)

]
=

w4
i − ŵ2w2

i + 4iŵ2w2
i ξ

2

(wi
2 − ŵ2)2 + 4iŵ2w2

i ξ
2

(7.59)

whose behaviour in the frequency domain is represented in Figure 7.18 The
imposition of the stationarity of r1 allows to retrieve the coordinates of the
peaks of the kernel function:

{
w1 =

wi√
2ξ+1

w2 =
iwi√
2ξ−1

(7.60)
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Figure 7.18: r1

Starting from the positive peak, the change of variable ŵ = w1(1 + ξη)
generates the following equation:

q1 = −8η2ξ4 + (4η2 + 16η)ξ3 + (−2η2 + 8η + 8)ξ2 + (−η2 − 4ξ + 8)ξ − 2η + 2

8η2ξ4 + (η4 + 4η2 + 16η)ξ3 + (4η3 − 4η2 + 8η + 8)ξ2 + (4η2 − 8ξ + 8)ξ
(7.61)

The polynomial Padè approximation reads:

p1 =
4ξ2 + 4ξ + 1

4ξ2 + 2η2 + 4η
(7.62)

whose integration provides:∫ ∞

−∞
p1ξw1dη =

πwi

√
ξ√

4ξ2 + 4ξ + 1
√
2ξ + 1

√
4ξ2 + 4ξ

√
2

(7.63)

The �nal analytical solution for the �rst resonant integral is:

λij,r1 = − πwi

√
ξ√

4ξ2 + 4ξ + 1
√
2ξ + 1

√
4ξ2 + 4ξ

√
2
Güg(w1) (7.64)

By following the same procedure for the negative peak:

λij,r1 = − iπwi

√
ξ√

4ξ2 − 4ξ + 1
√
2ξ − 1

√
4ξ2 − 4ξ

√
2
Güg(w2) (7.65)
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7.4.3 Case 1: wi = wC

The solution for the case wi = wC can be sought by applying almost the
same considerations adopted in section 7.4.2. Figure 7.19 shows the be-
haviour of the integrand function of (7.42). No background component can
be clearly highlighted, therefore the formulation is centered on the resonant
components only.

Figure 7.19: Integrand function

The procedure is identical to the one presented for the case of wi < wC ,
therefore for the sake of brevity, only the �nal analytical solution of the two
resonant contribution is here reported.
For what concerns the positive peak located at w1 =

wi√
2ξ+1

:

λij,r1 = − πwC

√
ξ√

4ξ2 + 4ξ + 1
√
2ξ + 1

√
4ξ2 + 4ξ

√
2
Güg(w1) (7.66)

While, for the peak at w2 =
iwi√
2ξ−1

:

λij,r2 = − iπwC

√
ξ√

4ξ2 − 4ξ + 1
√
2ξ − 1

√
4ξ2 − 4ξ

√
2
Güg(w2) (7.67)

7.5 Spectral moment λgg

The variance of the ground motion λgg is de�ned as:

λgg = Re
[∫ inf

0

Güg(ŵ)dw
]

(7.68)
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However, the handy analytical formulation for Güg(ŵ) provided by Barone
et al allows for a trivial evaluation of the integral solution:

λgg =
G0wC

e3 + 1
− G0wC

e2 + 1
(7.69)

7.6 Results comparison

A comparison between the analytical solution obtained and the numerical
results provided by Matlab is here reported. It is interesting to see how each
formulation is able to actually get close to the correct solution only inside
the sub-frequency domain for which it was developed, leading to wrong
results elsewhere.
This is observed in Figure 3.40, in which the results obtained by means of
the trapezoidal rule from Matlab are compared with the analytical ones,
where:

- ρDN1 is the correlation coe�cient computed by considering the formu-
lation for the low freqeuncy domain, 0 ≤ w < wC ;

- ρDN3 is the correlation coe�cient computed by considering the formu-
lation for the high freqeuncy domain, w > wC ;
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Figure 7.20: Results comparions: Multiple timescale separation

As expected, the two formulation are able to provide reasonable outputs
only inside the domains inside which they have been designed, underesti-
mating the reference solution in the remaining domain.
Finally, by putting the results together, the overall behaviour of the solution
based on the Timescale Separation method is reported in Figure 7.21. The
analytical solution tend to underestimate the results in the high frequency
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domain (low periods), similarly to what happened using the White Noise
approximation by Der Kiureghian et al.
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Figure 7.21: Results comparions: Multiple timescale separation
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Chapter 8

Correlation coe�cients -

Analytical simpli�ed formulation

One last formulation aimed to analytically evaluate the correlation coe�-
cient ρij is here presented.
The goal of the method is simply to study term by term formula of the
spectral moments, evaluating separately the integral analytical solution of
each contribution, and �nally assembling everything together to obtain the
whole solution. This to say that the method is not interested in what hap-
pens in the frequency or in the time domain, or in the relations which exist
between kernel and forcing function, as it happened instead in the case of
the Multiple timescale separation procedure.
From the mathematical point of view, such a rigorous procedure will provide
a more burdensome �nal formulation. However the advantages are related
to the fact that a lot of terms are identically shared by the di�erent spectral
moments, meaning that the related calculations can be developed one time
only. The method fully relies on the computational capacities of the soft-
ware WX MAXIMA. As presented in Chapter 7.3, MAXIMA is a Computer
algebra System which allows allows to perform symbolic algebraic calcu-
lations, which turned out to be quite useful for the manipulations of the
large polynomials functions involving spectral and cross spectral moments,
needed in the formula for ρij, which is here recalled:

ρ0,ig =
λig√
λiiλgg

(8.1)

Despite its dexterity however, the software alone was not able to handle
the complexity of the formulation, causing the solution of the problem, i.e.
the integration of the spectral quantities, impossible to be obtined without
introducing some approximations. As before, if on one hand the solution
for λgg is trivial, the same does not hold for λii and λig.
In order to have an idea of the heaviness of the problem, the following lines
will show the expanded version of the spectral quantities entering (8.1).
By starting from the numerator, the expression for λig reads:

λig =

∫ ∞

0

Re
[
Hi(ŵ, wi, ξi)

]
Güg(ŵ)dŵ (8.2)
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where:

Re
[
Hi(ŵ, wi, ξi)

]
=

w4
i − ŵ2w2

i + 4ŵ2w2
i ξ

2

(wi
2 − ŵ2)2 + 4iŵ2w2

i ξ
2

(8.3)

While, for what concerns the PSD function, the formulation proposed by
Barone is:

Güg(w) =


G0(

wD

wC
)e2( w

wD
)e1 se 0 ≤ w ≤ wD

G0(
w
wC

)e2 se wD ≤ w ≤ wC

G0(
w
wC

)e3 se wC ≤ w ≤ wB

G0(
wB

wC
)e3( w

wB
)e4 se w > wB

(8.4)

As already presented, the goal of the method is to split each integral equa-
tion in single components, developing the product between FRF and PSD
for each of the frequency subdomains:

λij = G0
w4

sw
e2−e1
D

we2
C

∫ wD

0

ŵe1

(wi
2 − ŵ2)2 + 4iŵ2w2

i ξ
2
dŵ

−G0
w2

sw
e2−e1
D

we2
C

∫ wD

0

ŵe1+2

(wi
2 − ŵ2)2 + 4iŵ2w2

i ξ
2
dŵ

+ 4G0
4w2

sw
e2−e1
D

we2
C

∫ wD

0

ξ2ŵe1+2

(wi
2 − ŵ2)2 + 4iŵ2w2

i ξ
2
dŵ

+G0
w4

s

we2
C

∫ wD

0

ŵe2

(wi
2 − ŵ2)2 + 4iŵ2w2

i ξ
2
dŵ

−G0
w2

s

we2
C

∫ wD

0

ŵe2+2

(wi
2 − ŵ2)2 + 4iŵ2w2

i ξ
2
dŵ

+ 4G0
4w2

s

we2
C

∫ wC

0

ξ2ŵe2+2

(wi
2 − ŵ2)2 + 4iŵ2w2

i ξ
2
dŵ

+G0
w4

s

we3
C

∫ wD

0

ŵe3

(wi
2 − ŵ2)2 + 4iŵ2w2

i ξ
2
dŵ

−G0
w2

s

we3
C

∫ wD

0

ŵe3+2

(wi
2 − ŵ2)2 + 4iŵ2w2

i ξ
2
dŵ

+ 4G0
4w2

s

we3
C

∫ wC

0

ξ2ŵe3+2

(wi
2 − ŵ2)2 + 4iŵ2w2

i ξ
2
dŵ

+G0
w4

sw
e3−e4
B

we3
C

∫ wB

0

ŵe4

(wi
2 − ŵ2)2 + 4iŵ2w2

i ξ
2
dŵ

−G0
w2

sw
e3−e4
B

we3
C

∫ wB

0

ŵe4+2

(wi
2 − ŵ2)2 + 4iŵ2w2

i ξ
2
dŵ

+ 4G0
4w2

sw
e3−e4
B

we3
C

∫ wB

0

ξ2ŵe4+2

(wi
2 − ŵ2)2 + 4iŵ2w2

i ξ
2
dŵ

(8.5)

The same reasoning is applied to the variance λii, which now involves the
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product between the conjugates of the FRF function.

Hi(ŵ, wi, ξi) ∗ conj
[
Hi(ŵ, wi, ξi)

]
=

w4
i + 4iŵ2w2

i ξ
2

(wi
2 − ŵ2)2 + 4iŵ2w2

i ξ
2

(8.6)

The following expression yields:

λii = G0
w4

sw
e2−e1
D

we2
C

∫ wD

0

ŵe1

(wi
2 − ŵ2)2 + 4iŵ2w2

i ξ
2
dŵ

+ 4G0
4w2

sw
e2−e1
D

we2
C

∫ wD

0

ξ2ŵe1+2

(wi
2 − ŵ2)2 + 4iŵ2w2

i ξ
2
dŵ

+G0
w4

s

we2
C

∫ wD

0

ŵe2

(wi
2 − ŵ2)2 + 4iŵ2w2

i ξ
2
dŵ

+ 4G0
4w2

s

we2
C

∫ wC

0

ξ2ŵe2+2

(wi
2 − ŵ2)2 + 4iŵ2w2

i ξ
2
dŵ

+G0
w4

s

we3
C

∫ wD

0

ŵe3

(wi
2 − ŵ2)2 + 4iŵ2w2

i ξ
2
dŵ

+ 4G0
4w2

s

we3
C

∫ wC

0

ξ2ŵe3+2

(wi
2 − ŵ2)2 + 4iŵ2w2

i ξ
2
dŵ

+G0
w4

sw
e3−e4
B

we3
C

∫ wB

0

ŵe4

(wi
2 − ŵ2)2 + 4iŵ2w2

i ξ
2
dŵ

+ 4G0
4w2

sw
e3−e4
B

we3
C

∫ wB

0

ξ2ŵe4+2

(wi
2 − ŵ2)2 + 4iŵ2w2

i ξ
2
dŵ

(8.7)

By comparing however Eq.8.3 with (8.6), it can be noted how, except for
one term, the two expression are the same. This means that by exploiting
the results obtained for λig, no other computations are needed for λii. This
is the advantage of not treating all the terms together, as it was instead
done in the case of the Multiple time-scale separation.

Now, the achievement of a handy analytical solution of the above integrals
is impeeded mainly by two reasons:

1. the number of subdomains in which the PSd function is subdivided.
More branches means di�erent formulations, and so highr computa-
tional cost

2. the role played the exponential coe�cients e1,e2,e3,e4: these are not
integer coe�cients, and heavily a�ect the complexity of the integration
procedure

To try to limit the inconveniences produced by these aspects, three approx-
imations are introduced:

1. sempli�cation of the PSD formulation

2. approximation of the exponential coe�cients

79



3. omission of the viscous contribution (damping) when possible

For what concerns the PSD function, exactly as done in Chapter 7, the �rst
step is to reduce the number of branches from four to two, obtaining:

Güg(w) =

{
G0(

w
wC

)e2 se 0 ≤ w ≤ wC

G0(
w
wC

)e3 se w > wC

(8.8)

The second, and maybe the strongest approximation, is instead related
to the exponential coe�cients. In particular it turned out that the only
possible way to reach a solution with wxMaxima was to consider integer
exponential numbers. Moreover the degree of the polynomial expressions
at both numerator and denominator had to be as low as possible, otherwise
no analytical solution could be reached by the program. Consequently, the
chosen values for e1 and e2 are: e1 = 1 and e2 = −1, leading to:

Gappr
üg

(ŵ) =

{
G0(

w
wC

)1 se 0 ≤ w ≤ wC

G0(
w
wC

)−1 se w > wC

(8.9)

Now, a comparison between the 4 branches PSD proposed by Barone et al,
and the approximated one adopted in this work is reported in Figure 8.1 As
it can be seen, consistent di�erences arise especially in the high frequency
domain, leading to a higher energy contenct for the 2-branches formulation.
This is why, as it will be presented later, the �nal analytical solution built
upon on Eq 2 branches PSD, will be eventually revised by using speci�c
correction coe�cients, in charge of accounting for the di�erences between
the two areas eneveloped.
By exploiting these approximations, the analytical solution for each spectral
moment is treated in the next sections.
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Figure 8.1: 4 branches vs 2 branches approximate PSD formulation
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8.1 Cross spectral moment: λig

As presented in the previous paragraphs, in order to lighten the formulation,
the contribution of damping is neglected when possible. In particular the
behaviour of the kernel function is not much a�ected by the contribution
of χ at the numerator when its value is small enough, therefore it can
be omitted. Thanks to this, the formulation of the integral in the two
subdomians becomes, for 0 ≤ w ≤ wC :

λig =
G0

wc

∫ wC

0

ŵ(w4
i − ŵ2w2

i )

(wi
2 − ŵ2)2 + 4iŵ2w2

i ξ
2
dŵ (8.10)

while, for w > wC :

λig = G0wC

∫ ∞

wC

1
ŵ
(w4

i − ŵ2w2
i )

(wi
2 − ŵ2)2 + 4iŵ2w2

i ξ
2
dŵ (8.11)

Now, by exploiting the computational capacity provided by WX MAXIMA,
the following analytical solution for each subdomain is obtained.
For 0 ≤ w ≤ wC :

λij =
G0w

4
s

wC

[
100arctg

(
200

√
399w2

C−199
√
399w2

s

399w2
s

)
√
399w2

s

+
100arctg

(
199√
399√

399w2
s

−
log
(
|100w4

C − 199w2
Cw

2
s + 100w4

s |
)

4w2
s

−
199arctg

(
200

√
399w2

C−199
√
399w2

s

399w2
s

)
2
√
399w2

s

+
log(100w4

s)

4w2
s

−
199arctg( 199√

399
)

2
√
399w2

s

]
(8.12)

And for w > wC :

λij = (G0wC)

[
199arctg

(
200

√
399w2

C−199
√
399w2

s

399w2
s

)
4

− log
(
w4

C

)

−
199arctg

(
200

√
399w2

C−199
√
399w2

s

399w2
s

)
2
√
399

−
√
399 log(100)− 199π

4
√
399

− 50π√
399

−
199arctg

(
200

√
399w2

C−199
√
399w2

s

399w2
s

)
2
√
399

]
(8.13)

However, as anticipated before, if on one hand the approximated 2-branches
PSD fomrulation reduces the complexity of the problem, on the ther hand
it overestimates the energy content of the event. This is why, in order to
try to solve this issue, two correction coe�cients are introduced, ε and γ.
They are computed simply as the ratio between the area subtended by the
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exact 4-branches formulation, and the 2-branches approxmated one.
In particular, for 0 ≤ w ≤ wC :

γ =

∫ wD

0
(wD

wC
)e2( w

wD
)e1dŵ +

∫ wC

wD
( w
wC

)e2dŵ∫ wC

0
( w
wC

)e2dŵ
(8.14)

And for w > wC :

ε =

∫ wB

wC
( w
wC

)e3dŵ +
∫∞
wB

(wB

wC
)e3( w

wB
)e4dŵ∫∞

wC

w
wC

)e3dŵ
(8.15)

Both coe�cients are characterized by the fact that, regardless the character-
istic of the site, their range of variability is very limited, allowing to adopt
�xed values for both, i.e., γ = 1.15 and ε = 0.5.
It is now possible to gather together all the contributions, scaled by the
correspondent correction factor. The �nal expression for λij is:

λij =

(
100G0w

2
s

wC

√
399

)[
1

200
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S

)
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√
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log
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log
(
100w4

s

)
−
(√1

400

)(
ϵ
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)
log
(√

399 log(100)− 199π
)]

(8.16)

8.2 Variance of the response: λii

As already presented before, no further calculatons are needed for λii. By
recalling (8.17, it is evident how the solution obtained for λig, can be here
exploited as well. Now, in order to limit the computational costs, the damp-
ing contribution at the numerator is here disregarded as well. This is equiv-
alent to make reference to the concept of pseudo acceleration instead of
total acceleration response spectrum. However, as it was already seen, the
pseudo-acceleration response spectrum is a good approximation of the total
one for a wide range of frequency and damping values, and the di�erence
between the two is only signi�cant for high damping values and long periods
(small wi values).
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Doing so, the new integral equation for λig becomes:

λii = G0
w4

sw
e2−e1
D

we2
C
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0
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(8.17)

While the solution provided by WX MAXIMA, scaled by the correspondent
correction coe�cients, yields:

λii =
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(8.18)

8.3 Variance of the forcing function: λgg

For this last case, the solution of the integral equation is quite straightfor-
ward, since it involves only the formulation related to the forcing function.
Just one trick must be introduced. In particular, as it is de�ned, the inte-
gral to in�nity of the PSD in the second frequency sub-domain would cause
the solution to diverge. To solve the problem, the involved sub-domian is
limited from above by a �ctitous high frequency value wmax, which in this
case can be taken equal to the maximum frequency sampling rates, e.g.,
π100Hz. Finally:

λgg =

{∫ wC

0
Gappr

üg
(ŵ)dŵ = G0wC

2
se 0 ≤ w ≤ wC∫ wmax

wC
Gappr

üg
(ŵ)dŵ = G0wC

(
log(|wmax|)− log(|wC |)

)
se w > wC

(8.19)

8.4 Comparison of the results

The plot presented in Figure 8.2 shows the behaviour of the correlation
coe�cient rhoWX computed with the proposed analytical formulation. De-
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spite the use of quite heavy approximations, the results provides a good
matching with the numerical procedure adopted in Matlab.
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Figure 8.2: Results comparison: Analytical approximate formulation
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Chapter 9

Comparison between the

implemented formulations

In this Chapter, the results obtained by means of the response spectrum
method are presented.
The procedure was implmented using the software Matlab, thanks to the
lines of code provided by Prof Luca Martinelli. By adopting the various
formulations to determine the correlation coe�cients for the CQC rule, the
aim of this section is to validate the results in terms of the reaction forces
arising at the connections between frame and panels. To do so, the results
obtained by means of the RS method will be compared with the reference
numerical solutions obtained through the direct integration of the equation
of motion. This will be done by considering the seismic actions generated
by the EC8 prescribed Response Spectrum, type 1. The analysis will be
carried out for the following type of soils:

- Soil type A

- Soil type B

- Soil type C

- Soil type D

- Soil type E

Then, for each soil type, 5 di�erent damping ratios will be assigned to the
structural system, i.e.:

- ξ = 2%

- ξ = 5%

- ξ = 10%

- ξ = 15%

- ξ = 20%

In the next section, the main steps used to implement the above mentioned
time history analysis on the Matlab software will be highlighted.
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9.1 Time history analysis

The requirement for a time history analysis is based on the fact that the
seismic action input is provided in terms of ground acceleration time history.
In particular, the accelerogram of a real seismic event is the most accurate
rappresentation of an earthquake, since it contains a lot of useful info about
the characteristics of the sisma itself, as well as the nature of the waves
which propagates from the epicenter.
The use of accelerograms is recomended for the dynamic analysis of irregular
buildings, for the design of complex structures or to evaluate the response
in terms of deformability and stability. However, recordings of the ground
motion are not always available, this is why codes and provisions allow to
rely on alternative methods. In particular, depending on the needs and
of the available informations, the seismic motion can be obtained three
di�erent categories of accelerograms:

- real recordings

- sintetic recordings obtained from sismologic models

- arti�cial recordings

9.1.1 Arti�cial accelerograms

Simulated accelerograms are signals which are generated through both de-
terministic and stocastic methods, able to simulate physical process con-
neceted to the motion of the ground, as for example the genesys of the
earthqueke, the waves propagation and the super�cial response of the site.
As underlines by EC8, the arti�cially generetaed signals must be such that
their resultant elastic response spectrum has to be coherent with the target
response spectrum adopted in design. The coherency has to be checked
by very�ng that the di�erence between the average of the spectral ordi-
nates obtained from the di�erent accelerograms, is not lower than the 10%
of the elstic spectrum ones. This condition must be veri�ed in the bigger
of the intervals, 0.15s − 2.0s and 0.15s − 2T , where T is the fundamental
period of the structure in the elastic �eld. Now, the most used arti�cial ac-
celerograms are the ones originated by the Software SIMQKE [Vanmarcke
and Gasparini, 1976], which generates one or more signals starting from a
reference spectrum. The acelerograms are obtained on the base of a trape-
zoidal enevelope, Figure 9.1, where the duration of the di�erente branches,
increasing constant and decreasing, are �xed by the user:

- TRISE: beginning of the stationary part

- TLVL: duration of the stationary part (≥ 10s)

- DUR : total duration of the accelerogram
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Figure 9.1: SIMQKE: Trapezoidal envelope of the accelerograms

For the purpose of this work, the accelerograms are generated with TRISE =
5s, TLV L = 5s, DUR = 20s.

9.1.2 Solution of the equation of motion

The aim of this section is to brie�y present the procedure adopted to com-
pute the solution in time of the response of a single DOF oscillator.
The main point here is related to the fact that th analysis in the time do-
main is complex and time consumig. This is why the solution was searched
in an alternative way, by switching from the time to the frequency domain.
This allows for an easier and faster analysis, and once the problem is solved
in the frequency domain, by going back to the time domain, it is possible
to obtain the solution in time.

Figure 9.2: Time vs Frequency domain analysis

Brie�y, discrete time signals can be decomposed into a linear combination
of sinusoidal functions (Fourier series):

p(ti) =
∞∑

n=−∞

an cos
(
n
2π

T
ti

)
+ bn cos

(
n
2π

T
ti

)
(9.1)

where:

- T is the fundamental period
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-

√(
a2n + b2n

)
is the amplitude of the single harmonic

- tan θ = bn
an

is the amplitude of the single armonic

Now, in the frequency domian the signals can be represented by means of the
so called "spectrum", in which the amplitude of each harmonic component
is reported as a function of the frequency. In the continous domain, these
coe�cients can be computed with di�erent methods. The most used way
is the one which calls upon the orthogonality of the harmonics to identify
how much the signal p(t) resembles a given sinusoids of frequency wn = 2π

T
:

P (f) =

∫ ∞

−∞
p(t) exp(−i2πft)dt (9.2)

Now, in the time domain, the response x(t) of a MDOF system is computed
as:

x(t) =

∫ ∞

−∞
h(t− τ)p(τ)d(τ) (9.3)

where h(t) is the impulse response function. By applying the Fourier trans-
form operator to both the terms of (9.3), the solution in the frequency
domain is:

X(ŵ) = H(ŵ)P (ŵ) (9.4)

where H(ŵ) is the frequency response function.
The same procedure was followed using the software Matlab. In particular
by using the command easyFFT it was possible to compute the Fourier
Transform for each accelerograms p(t):

P (w) = easyFFT
[
p(t)

]
(9.5)

Now, by means of the concept of FRF, the response solution of the structure,
both in terms of displacements and total acceleration are obtained as:

U(w) = H(ŵ)P (ŵ) (9.6)

Ü(w) = H(ŵ)P (ŵ) (9.7)

where:

H(ŵ, wi, ξi) =
1

wi
2 − ŵ2 + 2iwiŵ

(9.8)

H(ŵ, wi, ξi) =
wi

2 + 2iwiŵ

wi
2 − ŵ2 + 2iwiŵ

(9.9)

Now, to come back in the time domain, the inverse Fourier Transform, by
means of the comand i�t, is applied to the two solution (9.6) and (9.7):

u(t) = ifft
[
U(w)

]
(9.10)

ü(t) = ifft
[
Ü(w)

]
(9.11)
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This allows to obtain, for each accelerogram, the time history of the reaction
forces Fa(t) and Fb(t) as:

FA(t) = αAmpü(t) + βAmpüg(t) (9.12)

FB(t) = αBmpü(t) + βBmpüg(t) (9.13)

being üg(t) the peak ground acceleration.
Now, the goal of the work is to de�ne the response spectrum method for
both forces. In the following, the procedure is brie�y explained.
By starting from (9.12) and (9.13), the �rst step is to compute the maximum
values of Fa(t) and Fb(t) inside each accelerogram:

FA
Tj
pk

= max[FA
Tj
pk
(t)] (9.14)

FB
Tj
pk

= max[FB
Tj
pk
(t)] (9.15)

where the subscript pk is referred to the accelerogram considered, while the
pedix Tj is the period of the structure for which the Frequency response
Functions have been computed. By averaging now the maximum values
of the forces on the all the accelerograms considered, the ordinate of the
response spectra for that particular value of the period Tj is obtained:

RSFA
(Tj) = mean[FA

Tj
pk
] (9.16)

RSFB
(Tj) = mean[FB

Tj
pk
] (9.17)

The procedure will be repeated for any value Tj of intereseted.
Finally, by considering the ratio between (9.16) and (9.17), the correspon-
dent non dimensional Response Spectrum are obtained:

RSND
FA

(Tj) =
RSFA

max[RSFA
]

(9.18)

RSND
FB

(Tj) =
RSFB

max[RSFB
]

(9.19)

The same steps which lead to (9.16) and (9.17) are used to compute the total
accelertion and the pseudo accelertion RS generated by the accelerograms.
In particular, inside each accelerogram:

üTj
pk

= max[üTj
pk
(t)] (9.20)

uTj
pk

= max[uTj
pk
(t)] (9.21)

As before, by averaging out the maximum values between all the signals,
the spectral ordinates are computed.
For the total acceleration RS:

RSü(Tj) = mean[üTj ] (9.22)

While, in terms of displacements:

RSu(Tj) = mean[uTj
pk
] (9.23)
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The pseudo acceleration RS can be then obtained by scaling (9.23) by the
square of the natural frequency w2 :

RSa(Tj) = w2RSu(Tj) (9.24)

These further steps allowed for the comparison between the the target RS
provided by EC8 and the resulting ones generated from the accelerograms.
This will be useful in order to have a measure on how reliable the reference
results provided by the time histories are, since as it will be seen, they are
the ones more a�ected by the change of the damping ratio.

9.2 Result presentation

This section will be devoted to present the results obtained by considering
the di�erent cases of soil types and damping ratios ξ. The various for-
mulations adopted are here recalled, indicating the namethey have been
associated to in the plotting phase:

- TH : time history analysis

- TRAPZ : CQC results obtained by means of numerical evaluation of
the correlation coe�cient

- WN : CQC results obtained in hypothesis of white noise input (Der
Kiureghian - (6.8))

- WNAPPR: CQC results obtained in hypothesis of white noise input
(Der Kiureghian - (6.12))

- WNINF : CQC results obtained in hypothesis of white noise input
(Der Kiureghian - (6.13))

- MO : CQC results obtained in hypothesis of white noise input (Moschen
- Eq 6.37)

- DN : CQC results obtained by exploiting the Multiple Timescale Sep-
aration method (Denoel)

- WX : CQC results obtained by exploiting the computational capacities
of the software wxMaxima.

For the above mentioned procedures, the comparison of the solutions will
be done in terms of:

- Aceleration response spectrum (limited to the results coming from the
time history analysis

- Reaction forces Response Spectrum

- Non dimensional reaction forces Response Spectrum

By starting from the Type 1 EC8 Response Spectrum, for every class of soil,
the results for the di�erent damping ratios are reported. Then the same will
be done for the Type 2 EC8 RS.
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9.3 EC8 type 1 Response Spectrum

Figure 9.3: EC8 Type 1 Response Spectrum

The Eurocode 8, depending on the characteristics of the most signi�cant
earthquakes contributing to the local hazard, recomends two elastic spectral
shape:

- Type 1: high and moderate seismicity regions (Ms > 5.5)

- Type 2: low seismicity regions for near �eld earthquakes (Ms ≤ 5.5)

where Ms is the magnitude of the surface travelling waves.
(Questo lo potremmo usare come intro nel Capitolo del tipo 2) Se i terremoti
che contribuiscono in misura maggiore al rischio sismico de�nito per il sito
al �ne di valutare il rischio probabilistico hanno una magnitudo di onde di
super�cie, Ms, non maggiore di 5,5, si raccomanda di adottare lo spettro di
Tipo 2. Now, for the Type 1 RS, the �ve spectral shapes for the di�erent
soil classes are reported in Figure 9.3. The spectra are normalized wrt to
the peak ground acceleration.

9.3.1 Soil class A

By starting from the comparison in terms of acceleration RS, two aspects
characterize the results. In particular, for small values of ξ, the time his-
tory response spectrum provides higher ordinates than the target one. The
opposite happens on the other hand by increasing the damping ratio. A
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rather good correspondence is found instead for the case of ξ = 0.05.
This is due to the fact the accelerograms taking part in the time analysis
are generated in such a way to be compatible with the 5% damped response
spectrum. The value of ξ used for the comparison enters the formulation
only as the damping ratio of the structural system, without a�ecting the
intensity of the accelerograms. It is clear that, by generating time histories
accelerations with a damping coe�cient equal to the one of the structure,
the correspondence of the results would be garanteed.
This could not be done however, due to the fact that in the non linear �eld,
the accelerograms by de�nition must be generated considering a 5% damped
RS. Therefore, in order to allow for a comparison between the elastic and
the elasto-plastic results, a 5% damping was adopted to generated the time
history also in the elastic �eld.
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Figure 9.4: Soil type A: Response Spectrum comparison
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Figure 9.4: Soil type A: Response Spectrum comparison

The second aspect is instead related to the correlation between the pseudo
and the total acceleration RS. As expected, the two coincide when the
damping contribution is negligible. However, when the value of ξ increases,
the total acceleration provides higher results. This is the reason why, being
interested in the most unfavorable case, the time history results which will
be reported make reference to the concept of total acceleration.
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For what concerns the reaction forces, the considerations made before for
the acceleration outputs will remain valid. In particular, as it can be seen
from Fig.9.5, for small damping, the time history RS envelopes all the other
results. Things change instaed for small values of ξ.
Now, the presentation of the results will be organized as follow:

1. comparison between the time history analysis and the Response Spec-
trum method results

2. comparison between the di�erent formulations adopted for the Re-
sponse Spectrum results

Time history vs CQC results

What happens in general is that, for small contributions of damping, the
higher results are the ones provided by time domain analysis. As it hap-
pened however for the case of the acceelration RS, the time history results
tend to be more a�ected by the increment in damping than the other for-
mulations. This is why, from values of ξ higher than 10%, the TH results
are overcome by other solutions.
What happens in general is that:

- in the high frequency domain, the TH results are limited from above
by the provided by Moschen et al (MO), and from the bottom byWN

- in the low frequency domain instead, it is WX to reprsent the lower
limit, while WNAPPRX provides the upper boundary

This behaviour is more evident in the diagrams associated to FA. For what
concerns the force at the top FB, a more irregular trend developes in the
intermediate domain 0.5T − T .

Response spectrum method outputs

Now, by focusing on the comparison between the results provided by the
CQC, some further considerations can be done. For what concerns FB, it
can be appreciated how in general, it is the formulation proposed by Denoel
to better �t the CQC reference results provided by the trapezoidal integra-
tion scheme by Matlab. The same holds for FA, even if less rigorously.
Of all the analytical formulations, Moschen's was the only one overesti-
mating the value of ρig along the whol domain (Figure 6.2), and this is
consequently re�ected on the forces at the connections. On the opposite, in
the high frequenct domain, the formula provided by Der Kiureghian is the
one providing lower results.
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Figure 9.5: Soil type A: Reaction force Fb Response Spectrum

The same holds for the formulation obtained by exploiting the capacity of
WX MAXIMA.
In conclusion, for small values of ξ, the di�erent formulations show a rather
good correspondence between the results. Things are di�erent for higher
damping ratios. In this case the formulations based on the assumptions of
low damped structures clearly underestimate the results.
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Figure 9.6: Soil type A: Reaction force Fa Response Spectrum
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Figure 9.7: Soil type A: Reaction force Fb Adimensional Response Spectrum
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Figure 9.8: Soil type A: Reaction force Fa Adimensional Response Spectrum

9.3.2 Soil class B

The considerations presented for the Soil class A remain valid also for the
other types of soils, where the shape of the Response Spectrum does a�ect
the overall behaviour of the results. The time history solutions are the ones
more in�uenced by the change in the damping ratio, providing the highest
results for small values of χ, and then quickly decreasing as the damping
contribution increase. For what concerns the di�erent RS method formu-
lations, in the high frequency domain, the results obtained by exploiting
Denoel's theory (DN ) represent an upper limit for the soultions. On the
contrary, the results by Der Kiureghian (WN ) tend to underestimate the
values of FA and FB.

98



0 0.5 1 1.5 2 2.5 3

Period [s]

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

A
cc

 [-
]

Target
Total RSa
Pseudo RSa

(a) ξ = 0.02

0 0.5 1 1.5 2 2.5 3

Period [s]

0

0.5

1

1.5

2

2.5

3

3.5

A
cc

 [-
]

Target
Total RSa
Pseudo RSa

(b) ξ = 0.05

0 0.5 1 1.5 2 2.5 3

Period [s]

0

0.5

1

1.5

2

2.5

A
cc

 [-
]

Target
Total RSa
Pseudo RSa

(c) ξ = 0.10

0 0.5 1 1.5 2 2.5 3

Period [s]

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

A
cc

 [-
]

Target
Total RSa
Pseudo RSa

(d) ξ = 0.15

0 0.5 1 1.5 2 2.5 3

Period [s]

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

A
cc

 [-
]

Target
Total RSa
Pseudo RSa

(e) ξ = 0.20

Figure 9.9: Soil type B: Response Spectrum comparison
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Figure 9.10: Soil type B: Reaction force Fb Response Spectrum

100



0 0.5 1 1.5 2 2.5 3

Period [s]

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

R
S

 [-
]

F
a
: TH

F
a
: TRAP

F
a
: WN

F
a
: WN

APPR

F
a
: WN

INF

F
a
: MO

F
a
: DN

F
a
: WX

(a) ξ = 0.02

0 0.5 1 1.5 2 2.5 3

Period [s]

0.15

0.2

0.25

0.3

0.35

0.4

0.45

R
S

 [-
]

F
a
: TH

F
a
: TRAP

F
a
: WN

F
a
: WN

APPR

F
a
: WN

INF

F
a
: MO

F
a
: DN

F
a
: WX

(b) ξ = 0.05

0 0.5 1 1.5 2 2.5 3

Period [s]

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

R
S

 [-
]

F
a
: TH

F
a
: TRAP

F
a
: WN

F
a
: WN

APPR

F
a
: WN

INF

F
a
: MO

F
a
: DN

F
a
: WX

(c) ξ = 0.10

0 0.5 1 1.5 2 2.5 3

Period [s]

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

R
S

 [-
]

F
a
: TH

F
a
: TRAP

F
a
: WN

F
a
: WN

APPR

F
a
: WN

INF

F
a
: MO

F
a
: DN

F
a
: WX

(d) ξ = 0.15

0 0.5 1 1.5 2 2.5 3

Period [s]

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

R
S

 [-
]

F
a
: TH

F
a
: TRAP

F
a
: WN

F
a
: WN

APPR

F
a
: WN

INF

F
a
: MO

F
a
: DN

F
a
: WX

(e) ξ = 0.20

Figure 9.11: Soil type B: Reaction force Fa Response Spectrum
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Figure 9.12: Soil type B: Reaction force Fb Adimensional Response Spec-
trum
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Figure 9.13: Soil type B: Reaction force Fa Adimensional Response Spec-
trum
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9.3.3 Soil class C

0 0.5 1 1.5 2 2.5 3

Period [s]

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

A
cc

 [-
]

Target
Total RSa
Pseudo RSa

(a) ξ = 0.02

0 0.5 1 1.5 2 2.5 3

Period [s]

0

0.5

1

1.5

2

2.5

3

A
cc

 [-
]

Target
Total RSa
Pseudo RSa

(b) ξ = 0.05

0 0.5 1 1.5 2 2.5 3

Period [s]

0

0.5

1

1.5

2

2.5

A
cc

 [-
]

Target
Total RSa
Pseudo RSa

(c) ξ = 0.10

0 0.5 1 1.5 2 2.5 3

Period [s]

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

A
cc

 [-
]

Target
Total RSa
Pseudo RSa

(d) ξ = 0.15

0 0.5 1 1.5 2 2.5 3

Period [s]

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

A
cc

 [-
]

Target
Total RSa
Pseudo RSa

(e) ξ = 0.20

Figure 9.14: Soil type C: Response Spectrum comparison
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Figure 9.15: Soil type C: Reaction force Fb Response Spectrum
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Figure 9.16: Soil type C: Reaction force Fa Response Spectrum
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Figure 9.17: Soil type C: Reaction force Fb Adimensional Response Spec-
trum
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Figure 9.18: Soil type C: Reaction force Fa Adimensional Response Spec-
trum
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9.3.4 Soil class D
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Figure 9.19: Soil type D: Response Spectrum comparison
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Figure 9.20: Soil type D: Reaction force Fb Response Spectrum
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Figure 9.21: Soil type D: Reaction force Fa Response Spectrum
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Figure 9.22: Soil type D: Reaction force Fb Adimensional Response Spec-
trum
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Figure 9.23: Soil type D: Reaction force Fa Adimensional Response Spec-
trum
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9.3.5 Soil class E
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Figure 9.24: Soil type E: Response Spectrum comparison
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Figure 9.25: Soil type E: Reaction force Fb Response Spectrum
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Figure 9.26: Soil type E: Reaction force Fa Response Spectrum
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Figure 9.27: Soil type E: Reaction force Fb Adimensional Response Spec-
trum
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Figure 9.28: Soil type E: Reaction force Fa Adimensional Response Spec-
trum
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Chapter 10

Validation of the results via

Finite Element modelling

The results presented in the previous chapter proved how the Response
Spectrum method is able to provide very good results in terms of maximum
values, if compared with the numerical solutions provided by the rigorous
time history analysis. The lack of precision in some cases is due to the fact
that the di�erent formulations adopted to compute the correlation coe�-
cients are based sometimes on assumptions which cannot be satis�ed for
all the ranges of frequencies and damping values examined. Keeping this
in mind, and depending on the problem to deal with, the most proper for-
mulation can be adopted. There is however a far more heavy assumption
upon which the results presented in the previous chapter are based, i.e. the
modeling of the cladding panel as a fully rigid element.

On one hand this assumption allowed to simplify the implementation by
hand of the Response Spectrum method in a software like Matlab.

On the other hand however, it neglects the dynamics of the panel, disre-
garding all the e�ects coming from it's vibration modes, which a�ect the
elements in reality.

This is why, in order to validate the Response Spectrun method results
presented in Chapter 9, a Finite Elelment model, through the use of the
software Straus7, has been de�ned, which will serve as a reference solution.

The next paragraphs will be therefore devoted to present the results ob-
tained through the ise of Straus7, discussing the modeling choices adopted,
and the structural cases considered.

At the ened, the outputs coming from 3 analysis will be extracted and used
as a reference:

1. Natural frequency analysis: providing the frequencies of the model
modes of vibration

2. Spectral response analysis: providing the maximum solutions of the
analyses quantities

3. Time history analysis: providing the solution in time
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10.1 Finite Element modelling

The aim of this section is to present the principal choices and assumptions
upon which the di�erent FE models in Straus7 were built. Reference is
made to the industrial structure depicted in Figure 10.1, where the atten-
tion is focused on the behavior along one direction only, but obviously the
same consideration holds also for the other direction.

Figure 10.1: In plan and side structural view

The structure is characterized by �ve spans (campate), with square 60x60cm
columns, closed at the edges by 14cm thick panels. The distance between
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the columns is equal to 12m, in both directions
Now, by exploiting the in plant simmetry, the behavior of the single campata
in the x direction can be reproduced a scheme like the one reported in Figure
3, made by:

- two internal columns

- a boarder column

- A portion of the panel determined on the bases of its in�uence area
on the boarder column

The main modelling aspects are reported in the following sections.
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10.1.1 Modeling of the columns

The columns in Straus7 are created with the following characteristics:

- section geometry: 600mm x 600mm

- height: 8000mm

- material: Concrete fc = 40MPa

Column 600× 600 mm

Area 3.6E+04 mm2

Inertia 1.08E+10 mm4

Elastic modulus 34920 N
mm2

Flexural sti�nes 2209 N
mm

Table 10.1: Characteristic of the column

The self weight of the element is here considered negligible if compared with
the axial force generated by the roof, therefore the speci�c density is �xed
equal to zero. Finally, the parameters of interest are reported in Table 10.1.
The columns are �xed at the base, while at the top they are linked together
by a pinned rigid link.
They are subdivided into a number of 16 beam elements. This was necessary
to better capture the non linear behavior of the element in the non linear
�eld.

10.1.2 Modeling of the panel

The panel is modeled as a beam element, with the following characteristics:

- section geometry: 140mm× 12000mm

- height: 10000mm

- material: Concrete fc = 40MPa

where 12000mm represents the in�uence lenght of the panel associated to
the edge column. The main geometrical and mechanical properties are re-
ported in Table 10.2. In order to model the panel as a rigid entity, its
elastic modulus E has been ampli�ed by a factor equal to 1000. As it will
be treated in the next sections however, this won't be enough to cancel out
the intrinsic vibration modes of the element. This is why, further measures
will be later introduced.
The element is hinged at the base, and pinned to the boarder column at the
top. Also in this case, a discretization in di�erent sub-elements is adopted.
This was necessary �rst of all to introduce the node needed to model the
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connection with the boarder column, and second of all for a better compre-
hension of the behavior of the forces along the height of the panel.

Rigid cladding panel

Area 3.6E+04 mm2

Inertia 1.08E+10 mm4

Elastic modulus 34920 N
mm2

Flexural sti�nes 2209 N
mm

η 0.25

Table 10.2: Characteristic of the panel

Modelling of the cladding connections

As presented before, the columns at the top are linked together by a pinned
rigid link. The same holds also for the rigid connections between the edge
column and the panel. The disadvantage of doing so is related to the fact
that Straus7 does not allow to compute the reaction forces inside a rigid
link. This is why, the seismic force generated inside the connection will be
obtained indirectly from the shear force diagram acting in the cladded panel
in correspondence of the anchoring point.
In particular, FB will be computed as:

FB = T+
CONN − T−

CONN (10.1)

where T+
CONN and T−

CONN are the shear forces at the anchoring device com-
ing from above and below.

10.1.3 Modeling of the structural masses

The �nal step now remaining is to account for the structural masses in-
volved. As presented before, the self weight of the columns is here neglected.
The same cannot be done however for the weight of the structural elements
supported by the columns themselves. In particular, for and industrial
structure like this, a roof system made by ????? is considered.
The in�uence of such con�guration can be accounted by considering a spe-
ci�c weight of 350 kg

m2 . Doing so, the axial force generated on each column
can be obtained by multiplying this value for the associated in�uence area:

NCOLUMN = 350
kg

m2
× 12m× 12m ≃ 100Tonn (10.2)

At the end 3 point masses have been applied on top of each column, as
represented in Figure ??. The last contribution is the one associated to the
panel. To account for it, a speci�c weight of 2, 86kN

m3 is adopted.
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Therefore, by considering an in�uence length of the panel equal to 12m,
the weight of the panel is equal to 48Tonn. The �nal model on Straus7 is
depicted in Figure 10.2, where the red dots represent the lumped masses
applied on top of the columns.

Figure 10.2: FE model
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10.2 Results validation

As already presented, the validity of the model implemented in Matlab will
be evalauted via the comparison with the outputs obtained in Straus7 by
running the following analysis:

1. Natural frequency analysis (NFA)

2. Spectral response analysis (SRA)

3. Time history analysis (THA)

Now, in order to account for the cracking process which a�ects the structure
during a seismic event, the eleastic modulus of the structural elements, in
these case the columns, have been reduced to 50% of its value. This to say
that, all the results which will be presented from now on, make reference to
structural elements with an elestic modulus equal to E

2
= 17145 N

mm2

10.2.1 Natural frequency analysis

By performing a Natural Frequency Analysis in Straus7, the solutions for
the �rst 10 modes of vibration are obtained. The �rst mode of the structure,
whose deformed shape is reported in Figure 10.3, is the one associated to
the dual system frame and panel, whose period of vibration is equal to
TS1 = 1

f1
= 1

7.11Hz
= 1.40sec. On the other hand, in the Matlab code, the

period of vibration of the SDOF dual system, was computed by amplifying
the natural period of the frame times an infulence factor χ, accounting for
the presence of the cladding panel.
In particular, being Kf and mf the sti�ness and mass of the structural
model, equal to:

Kf = 3
3EI

H3
col

= 6627
N

mm

mf = 3× 100Tonn = 300Tonn

(10.3)

then the natural period of the frame is equal to:

Tf =

√
mf

Kf

= 1.337sec (10.4)

In order to account for the presence of the panel, the following coe�cient
is introduced:

χ(µ, η) =

√
1 +

µ(1 + η)2

3
= 1.0408 (10.5)

being µ = mp

mf
the ratio between the mass of the panel and the mass of the

frame. For the case under analysis, χ(µ, η) = .... Therefore, the natural
period of the dual system is equal to:

ws =
wf

χ(µ, η)
= 4.5164

rad

sec

Ts = Tfχ(µ, η) = 1.3912sec

(10.6)
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Despite some di�erences in the results, there is a quite good correspondnce
between the two models.
It is now interesting to examine the remaining vibration modes provided
by Straus7. This is important because even if their in�uence in terms of
participation mass may seem negligible, their contributions to the overall
response of the structure can strongly a�ect the �nal results.
The second, third and fouth modes are associated to a vertical behaviour
of the structure (Figure 3.40)

Figure 10.3: First mode of vibration
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(a) f2=19.77 Hz (b) f3=19.77 Hz (c) f4=19.77 Hz

Figure 10.4: Vertical vibration modes

The remaining six modes are associated to the deformation mechanisms of
the panel, as represented in Figure 10.5. Their mass participation is rela-
tively low, however they can be responsible for spurious oscillations in the
time history solution, thus a�ecting the results in terms of maximum values.
In order to avoid this problem, for the case of linear analysis, Straus7 gives
the designer the possibility to select which modes to be accounted for in the
analysis.
This is not the best solution though. The reason is that the panel in Straus7
was not modelled as a rigid entity, being its elastic modulus a �nite quen-
tity, which could not be set too high in order to avoid ill-conditioning of the
system.
This means that, being the panel �exible, lower values of the internal forces
are to be expected if the higher vibrational modes are completely disre-
garded. A solution is to adopt a di�erent damping formulation wrt the
viscous one proposed by default by the software.
Therefore, a Rayleigh model is selected. This will allow to �lter out the
spurious e�ects due to the higher modes.
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(a)

f5=104.31Hz

(b)

f6=325.09Hz

(c)

f7=576.93Hz

(d)

f8=1093.71Hz

(e)

f9=1842.9Hz

(f)

f10=2731.94Hz

Figure 10.5: Vibration modes of the panel
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10.2.2 Rayleigh damping model

The implmentation of the damping model in Straus7 passes through the
following window:

Figure 10.6: Implementation of the Rayleigh model of damping

Everything is based on the values adopted in the four slots highlighted in
the zoom. The software requests two values of frequencies: f1 and f2. Then
it asks for the damping ratios to associate to these two frequencies, where f1
represents the frequency of the dual system, while f2 represents a �ctitous
frequency, de�ned as ????
The model works in such a way to overdamp every frquency component
which stands outside this range.
Therefore, by adopting a value of f1 = 0.71Hz, f2 = 0.15Hz, and �xing
both damping ratios at χ = 0.05, the behaviour of the coe�cient χ in the
frequency domain is:

(a) Frequency range: 0 - 3 Hz (b) Frequency range: 0 - 120 Hz

Figure 10.7: Rayleigh damping curve

The �rst vibration mode will behave with a 5% damping ratio. While for
what concerns the contributions associated to the deformation of the panel,
the �rst mode has a frequency component of around 100Hz., corresponding
to a damping factor close to 6.
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10.2.3 Spectral analysis

The aim of this section is to analyze the results in terms of the maximum
reaction forces arising in the panel at the base (FA) and at the connection
point with the frame (FB). The goal is to validate the results obtained by
means of the RS method in matlab with the outputs coming from the Finite
Element Spectral analysis. A EC8 compatible pseudo acceleration RS, for
a soil class A and PGA of 0.261g, is here adopted.
As already presented, in Straus7 the above mentioned reaction forces are
derived from the shear diagram acting along the element (Figure 10.8). In
particular, by denoting with F ST

A and F ST
B the outputs provided by Straus7 :

Figure 10.8: Shear forces along the panel

F ST
B = T+

CONN − T−
CONN = 4.85104N

F ST
A = TBASE = −3.27104N

(10.7)

On the other hand, for what concenrs the Response Spectrum method im-
plemented in Matlab, the results for the di�erent formulations are reported
in Table 10.3. The absolute values of the forces will be considered.
The results given by the formulation of Moshchen and Der Kiureghian de�ne
respectively an upper and lower bound of the solution domain. The value
of F ST

B falls exactly inside this range. For what concerns the reaction at the
base, the results are in general higher than the one provided by Straus7.
It is interesting to see how the change in the natural period of the struc-
ture due to the change in the sectional dimensions strongly a�ects only the
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reaction force at the top. On the other hand, the reaction at the base, as
expected, does not vary too much.
Summing up, the model in Matlab tend to overestimate the values of the
�nal solutions. Nevertheless, a good correspondnece between the two meth-
ods in terms of absolute values is reached.

Formulation FA [N] FB [N]

TH 3.42E+04 4.75E+04

TRAP 3.43E+04 4.77E+04

WN 3.44E+04 4.88E+04

WNAPPR 3.54E+04 5E+04

WNINF 3.47E+04 4.92E+04

MO 3.44E+04 4.85E+04

DN 3.47E+04 4.92E+04

WX 3.38E+04 4.68E+04

Table 10.3: Spectral analysis outputs
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10.2.4 Linear transient analysis

As already presented at the beginning, the aim of this work is not to �nd a
solution in time of the assigned problem. It is however interesting to verify
if the rigid panel assumption adopted in Matlab is able to provide relaible
results also in terms of time history analysis.
The solution in Straus7 is obtained by exploiting the Linear Transient Anal-
ysis Solver. The same damping model introduced for the case of the Spectral
analysis is adopted.
On the other hand, the solutions in Matlab have been obtained through the
use of two procedures:

1. Frequency domain analysis, manually implemented by Prof. Luca
Martinelli

2. Direct integration of the equation of motion in time, manually impl-
mented by Prof. Francesco Foti

The results make reference to the ground acceleration time history repre-
sented in Figure 10.9 As presented in Chapter 9, the adopted accelerogram
has been obtained thanks to the software SIMQKE. The signal is compat-
ible to the same Response Spectra used for the Spectral Analysis in the
previous section (Soil type A, PGA 0.25g).
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Figure 10.9: Acceleration time history - Soil type:A, PGA:0.25g
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In Figure 10.10 and Figure 10.11 the solutions in terms of FA and FB

are presented, where the results denoted with TH are the ones obtained
through the time history analysis, FDA are the solution of the Frequency
domain Analysis, while Straus refers to the outputs provided by the software
Straus7.
It is evident how the solution in Straus7 matches quite well the two obtained
via Matlab. This is possible thanks to the damping model adopted in the
FE model, which allows to �lters out the higher vibration modes associated
to the panel, which are not accounted in the formulation of Matlab.
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Figure 10.10: Time history solution - Fb
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Figure 10.11: Time history solution - Fb

10.2.5 Further cases

Now, the same procedure presented in the previous paragarphs, is here
repeated for di�erent values of the natural period of the structure, in such a
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way to widen the range of validity of the model. In particular, by changing
the section of the columns, and keeping all the other parameters �xed, the
following cases have been analysed:

- Section 500× 500 cm2

- Section 700× 700 cm2

- Section 800× 800 cm2

The comparison of the results in terms of natural periods of the dual system
is reported in Table 10.4. A very good correspondence of values is garan-
teed, with the models in Straus7 which tends to be a little sti�er.
For what concerns the solutions provided by the Spectral analysis, the out-
puts are reported in Table 10.5, Table 10.6, and Figure 3.40 respsctively.
Table 10.5 and 10.6 indicate, for each case, (1) the numerical solution in
terms of forces at the connections provided by Straus7, (2) the maximum
and minimum values of FA and FB obtained by means of the di�erent for-
mulations in Matlab.

Section Straus7 Matlab
500× 500 2.082 sec 2.003 sec
600× 600 1.401 sec 1.391 sec
700× 700 1.031 sec 1.022 sec
800× 800 0.789 sec 0.783 sec

Table 10.4: Comparison between the natural periods

Section Straus7 [N] FAMIN [N] FAMAX [N]

500× 500 3.15E+04 3.34E+04 (WX) 3.45E+04 (WNAPPRX)

600× 600 3.27E+04 3.38E+04 (WX) 3.54E+04 (WNAPPRX)

700× 700 3.45E+04 3.48E+04 (WX) 3.66E+04 (WNAPPRX)

800× 800 3.61E+04 3.60E+04 (WX) 3.86E+04 (WNAPPRX)

Table 10.5: Spectral analysis: Reaction at the base

Section Straus7 [N] FBMIN [N] FBMAX [N]

500× 500 3.51E+04 3.37E+04 (WX) 3.68E+04 (WNAPPRX)

600× 600 4.93E+04 4.68E+04 (WX) 5.0E+04 (WNAPPRX)

700× 700 6.42E+04 6.35E+04 (DN) 6.67E+04 (WNAPPRX)

800× 800 8.96E+04 8.5E+04 (WX) 8.85E+04 (DN)

Table 10.6: Spectral analysis: Reaction at the top
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For what concerns the reaction at the base, the RS method provides results
which are always higher than the numerical ones. While in the case of FB,
the solutions from Straus7 are almost perfectly included in the interval of
values provided by Matlab.
Finally, the comparison between the results in time are reported in Figure
10.12, Figure 10.13 and Figure 10.14.
The solution in time coming from Finite Element Analysis �ts quite well
the ones manually implemented in Matlab.
In addition to the outputs related to the reaction forces, the plots in Fig
10.14 show the solution in terms of absolute acceleration of the node in cor-
respondnece of the anchorage point between the panel and the connection.
Also in this case the correspondence between the di�erent analysis is quite
good.
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Figure 10.12: Time history outputs: Reaction force at the base
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(c) Section 700× 700
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Figure 10.13: Time history outputs: Reaction force at the top
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Figure 10.14: Time history outputs: Acceleration at the connection point
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In conclusion, a very good correspondence characterize the results obtained
through the di�erent formulations. This on one hand con�rms goodness of
the outputs provided by the RS procedure implemented in Matlab, and on
the other hands it validates the models built in Straus7, which will be later
used for the analysis in the non linear �eld.
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Chapter 11

Post elastic behaviour

As mentioned at the beginning of this work, the behaviour of pre-cast sys-
tems is highly non linear, therefore a proper study of the post elastic phase
of such structure is fundamental in order to properly characterise their seis-
mic response. The methods based on a linear analyis, both static and
dynamic, account for the non linear post-elastic behaviour of the structure
in a synthetic way, by means of the concept of behaviour factor q, which al-
lows to reduce the elastic Response Spectrum, or through the parameter Θ,
which considers the geometrical non linearities. These methods are not able
however to catch the changes in the structural response which arise during
the degradation process a�ecting the building, due especially to the plas-
ticization of the structural elements. This is why, by using such simpli�ed
procedures, it is not possible to identify the possible collapse mechanism
and the corresponsing distribution of stresses, giving rise to the necessity to
rely on a non linear type of analysis.
A non linear dynamic analysis is for sure the one able to provide the most
reliable results, due to the fact that seismic response of a structure is always
dynamically non linear. This method however is not so widespread, �rst of
all due to the di�culties in the choices of the structural variable to adopt
in the post-elastic �eld, and secnd for its high computational costs.
The right compromise between the sempli�cations o�ered by an elastic anal-
ysis and the complexities of a dynamic non linear study is represented by
the non linear static analysis.
This is a design procedure based on the concept of structural capacity,
whose computational costs are much lower than the rigouros time history
procedure, which is very oftern limited as a �nal assesement step. This is
exactly what was done in his work, where the outputs coming from the non
linear time history analysis are used as reference results.
While, for what the concerns the design phase, this second part of the the-
sis has the goal to validate the RS method formulation when the structure
enters the non linear �eld.
To do so, the remaining part of the work will be organized in three chapters.
The following paragraphs of Chaptr 11 will present the results obtained by
means of a non linear time history analysis implemented in Straus7.
Chapter 12 will be devoted to the validation of the RS method in the non
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linear �eld. To do so, the results of the non linear static Pushover analysis
will be exploited. Finally, a comparison with the existing design rules pro-
posed by the Codes will be presented.
A summary of the results and the �nal considerations will be presented in
Chapter 13.

11.1 Structural schemes

Before entering in the detail of the non linear time history analysis, la
seguente sezione presenterà i di�erenti modelli strutturali che verranno anal-
izzati. Le analisi in campo non lineare sono state condotte adottando 16
diversi modelli strutturali, facendo variare le seguenti caratteristiche del sis-
tema: (1) sezione dei pilastri, (2) numero dei pilastri, (3) altezza dei pilastri,
(4) rapporto η = h1

h2
. This was done �rst of all in order to study the in�uence

of the di�erent parameters on the behaviour of the structure, and second of
all, in such a way to obtain a wide range of structural periods, which will
thus correspond to di�erent Spectral ordinates.
An acronym will be associated to each model, which will be later used for
the legend in the results diagrams, where:

- "C" indicates the number of columns

- "h" indicates the height of the columns

- "η" representes the ratio h1/h2

Model 1 (C3h8η0.25)

Section: 600× 600 mm

n° of columns: 3

Heigth of columns: 8m

η : 0.25

Ts = 1.41sec

fs = 0.7Hz

Figure 11.1: Model 1 - structural scheme
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Model 2 (C1h8η0.25)

Section: 600× 600 mm

n° of columns: 1

Heigth of columns: 8m

η : 0.25

Ts = 1.51sec

fs = 0.66Hz

Figure 11.2: Model 2 - structural scheme

Model 3 (C3h8η0.1)

Section: 600× 600 mm

n° of columns: 3

Heigth of columns: 8m

η : 0.25

Ts = 1.38sec

fs = 0.72Hz

Figure 11.3: Model 3 - structural scheme
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Model 4 (C1h8η0.1)

Section: 600× 600 mm

n° of columns: 1

Heigth of columns: 8m

η : 0.1

Ts = 1.47sec

fs = 0.68Hz

Figure 11.4: Model 4 - structural scheme

Model 5 (C3h10η0.25)

Section: 600× 600 mm

n° of columns: 3

Heigth of columns: 10m

η : 0.25

Ts = 1.98sec

fs = 0.505Hz

Figure 11.5: Model 5 - structural scheme
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Model 6 (C1h10η0.25)

Section: 600× 600 mm

n° of columns: 1

Heigth of columns: 10m

η : 0.25

Ts = 2.15sec

fs = 0.463Hz

Figure 11.6: Model 6 - structural scheme

Model 7 (C3h10η0.1)

Section: 600× 600 mm

n° of columns: 3

Heigth of columns: 10m

η : 0.1

Ts = 1.95sec

fs = 0.512Hz

Figure 11.7: Model 7 - structural scheme
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Model 8 (C1h10η0.1)

Section: 600× 600 mm

n° of columns: 1

Heigth of columns: 10m

η : 0.1

Ts = 2.08sec

fs = 0.48Hz

Figure 11.8: Model 8 - structural scheme

Model 9 (C3h8η0.25)

Section: 700× 700 mm

n° of columns: 3

Heigth of columns: 8m

η : 0.25

Ts = 11.03sec

fs = 0.969Hz

Figure 11.9: Model 9 - structural scheme
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Model 10 (C1h8η0.25)

Section: 700× 700 mm

n° of columns: 1

Heigth of columns: 8m

η : 0.25

Ts = 1.11sec

fs = 0.9Hz

Figure 11.10: Model 10 - structural scheme

Model 11 (C3h8η0.1)

Section: 700× 700 mm

n° of columns: 3

Heigth of columns: 8m

η : 0.25

Ts = 1.02sec

fs = 0.98Hz

Figure 11.11: Model 11 - structural scheme
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Model 12 (C1h8η0.1)

Section: 700× 700 mm

n° of columns: 1

Heigth of columns: 8m

η : 0.1

Ts = 1.08sec

fs = 0.93Hz

Figure 11.12: Model 12 - structural scheme

Model 13 (C3h10η0.25)

Section: 700× 700 mm

n° of columns: 3

Heigth of columns: 10m

η : 0.25

Ts = 1.45sec

fs = 0.69Hz

Figure 11.13: Model 13 - structural scheme
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Model 14 (C1h10η0.25)

Section: 700× 700 mm

n° of columns: 1

Heigth of columns: 10m

η : 0.25

Ts = 1.59sec

fs = 0.63Hz

Figure 11.14: Model 14 - structural scheme

Model 15 (C3h10η0.1)

Section: 700× 700 mm

n° of columns: 3

Heigth of columns: 10m

η : 0.1

Ts = 1.43sec

fs = 0.7Hz

Figure 11.15: Model 15 - structural scheme
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Model 16 (C1h10η0.1)

Section: 700× 700 mm

n° of columns: 1

Heigth of columns: 10m

η : 0.1

Ts = 1.51sec

fs = 0.66Hz

Figure 11.16: Model 16 - structural scheme

11.1.1 Plastic hinge model

In both static and dynamic analysis, the non-linear behavior of the model
is reproduced by introducing the concept of plastic hinge. Doing so, the
constitutive relationship of the structural elements is represented by the
corresponding moment-curvature diagram.
This constitutive law depends on the following characteristics:

- Cross section dimensions

- Reinforcement ratio

- Concrete constitutive model

- Axial force in the element

Section 600× 600 mm

The evaluation of the Moment-Curvature diagram was performed by using
the sofware MathCad 15. The characteristics of the section are reported
in Figure 11.17. For what concerns the concrete, a type 40/50 was used,
adopting the following constituve laws:

� Con�ned concrete: Mander law

� Uncon�ned concrete: Modi�ed Mander law

The tensile strength of the concrete was here taken into account.
For what concerns the reinforcments, a B450C steel class was chosen. A
total number of 16Φ20 are distributed along the section, in such a way to
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obtain a reinforcement ratio ρ = 1%. The concrete cover is equal to 30mm,
and Φ10 transversal reinforcements are used. Finally, by considering a dis-
tributed load coming from the roof system of around 350 kg/m2, an axial
force of 100 Tonn was considered acting in the columns.
The cross section model implemented in MathCad15 is reported in Figure
3.40.

Figure 11.17: 600× 600 mm column cross section

Figure 11.18: Section 600× 600: trilinear M-χ diagram

The tri-linearized Moment-Curvature diagram provided by the software is
reported in Figure 11.18.
The same procedure has been followed for the 700 × 700 mm case. The
characteristic of the section are reported in Figure 11.19. The correspondent
M-χ diagram is reported in Figure 11.20.
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Figure 11.19: 700× 700 mm column cross section

Figure 11.20: Section 700× 700: trilinear M-χ diagram

11.2 Non linear time history anaysis analysis

The non linear dynamic analysis consists in the evaluation of the seismic
response by means of the direct integration of the equation of motion, adopt-
ing a non linear model of the structure, where the inputs are acceleretion
time histories, de�ned as in 3.2.3.6 of NTC. The goal is to evaluate the
dynamic behaviour of the structure in the non linear �eld, allowing for the
comparison between required uctility and available ductility at every time
instant, checking the integrity of the structural elements against non ductile
mechanisms.
Unlike static analysis, this method does not require the prior determination

149



of the global seismic demand; the latter is in fact evaluated during the anal-
ysis of the structural response. Compared to linear dynamic analysis, which
provides only an estimate of the peak response using SRSS and CQC, the
non-linear dynamic analysis allows the exact evaluation of the maximum
seismic response, providing extremely accurate results; this accuracy how-
ever must be paid for with the need to de�ne the non-linear behavior of the
structure in a more complete way, also including the description of its cyclic
behavior.
To this purpose, the dynamic non-linear analyses are performed with a
Takeda model (Takeda et al. 1970 1 REF) for the columns. While for what
concerns the damping model, as in the linear case, a Rayleigh formulation
is used. The di�erence now is related to the damping ratios adopted, which
in this case are equal to 2% (Figure 11.21), in order to account for the dis-
sipation of the phenomena associated to the cracking of the concrete. For
what concerns the de�nition of the seismic input, la maggior parte dei cod-
ici di progettazione sismica , incluso l'EC8, speci�cano che devono essere
utilizzate almeno 3 registrazioni. Aggiungono poi che se vengono utilizzate
meno di sette registrazioni, la massima strutturale deve essere utilizzato
come base per la progettazione, invece se si utilizza sette o più di sette
registrazioni, è possibile valutare e�etti medi e non massimi sulla risposta
strutturale. The results presented in the next section represesnt the average
over seven accelerograms.

Figure 11.21: Non linear dynamic analysis: Damping model
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11.2.1 Presentation of the results

The results obtined by performing the non linear dynamic analysis by means
of Straus7 are here reported. For the 16 structural models, the outputs
extracted are the following:

- Reaction force FA at the base

- Reaction force FB at the top connection

- Absolute acceleration at the connection

- Column top displacement

- Column base shear

In order to lighten the treatment of the problem, the solution in terms
of time history results have been proposed for one model only (Model 1).
Then, for each case, a comparison between the non linear time history anal-
ysis results in terms of maximum values, and the elastic ones provided by
the Response Spectrum method is reported.

Non Linear Time History Analysis - Time history solutions

In this section, the time history solutions for the output of interest are
presented. The results refer to Model 1 (C3h8η0.25), which was subjected
to a RS compatible accelerogram (EC8, Soil type A), with a PGA equal to
0,3g.
A comparison between the elastic solutions (Linear Time History Analysis
- LTHA) and the non linear ones (Non Linear Time History Analysis -
NLTHA) is proposed.
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Figure 11.22: Reaction force FA
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Figure 11.23: Reaction force FB

Starting from the elastic solutions, the results con�rm the direct proportion-
ality between the time history outputs in terms of FB, acceleration, shear
and displacements, with the respective graphs having practically the same
shape. The only exception is represented by FA, which presents a greater
dependence on the ground ground acceleration.
Even if less rigorously, this proportionality remains valid also for the non
linear solutions.
For what concerns the comparison between the two analysis, the solutions
are almost coincident during the �rst instant of the seismic event. The
reaching of the yielding point causes a modi�cation of the natural period
of the structure. This is well represented in the graphs, where the period
between each peak tends to elongate as time passes.
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Figure 11.24: Absolute acceleration
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Figure 11.25: Column top displacement

Finally, for what concerns the di�erences in terms of maximum values, both
FB, the acceleration and the shear force at the column base are strongly
in�uenced by the sti�ness reduction after yielding. This on the other hand
does not involve the reaction FA and the displacements. This is due to the
fact that the reaction FA is mainly depending on the ground acceleration,
which is not in�uenced by the sti�ness reduction of the structure after
yielding. While, for what concerns the displacements, lower sti�ness means
lower forces, but obviously it means also more �exibility, and the two e�ects
tend to compensate.
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Figure 11.26: Column base shear
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Non Linear Time History Analysis - Maximum values

This last section is devoted to the presentation of the results obtained by
means of the parametric anaysis conducted by considering the 16 di�erent
models. For each output the solutions are oranized into two diagrams, the
�rst one for the case of the 600x600 column cross section, and the secondo
one for the 700× case.

Reaction force at the base FA

If compared with the elastic results, the reaction force at the base is the
output less a�ected by the plasticization phenomena in�uencing the models.
This is due to the fact that the force FA is mainly depending on the ground
acceleration, which is not in�uenced by the sti�ness decrease of the system.
The sti�ness reduction has e�ects on the structural acceleration only, but
since here it's contribution is low, the outputs coming from the two analysis
are quite similar, even for high PGA.
For what concerns the in�uence of the characteristics of the models, higher
columns means higher shear reactions at the base. On the other hand, it's
interesting to see how the solution it's not a�ected by the type of cross
section, providing quite the same for both 600*600 and 700*700. The same
holds for the height of the panel in terms of η.

Figure 11.27: Section 600× 600: Reaction force FA
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Figure 11.28: Section 700× 700: FA

Reaction force FB

For what concerns the reaction force at the upper connection, the opposite
reasoning wrt to what was said before for FA must me made.
In this case the main dependency of the force is related to the absolute
acceleration of the structure, which is in turn strongly in�uenced by the
sti�ness decrease after yielding. This explains why the NLTHA provides far
lower results for high PGAs

Figure 11.29: Section 600× 600: Reaction force FB
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Figure 11.30: Section 700× 700: Reaction force FB

It's interesting to notice how FB is the parameter with the strongest depen-
dency on the value of η. The higher results obtained with ETA=0.25 are
justi�ed by the fact that, as shown in (5.15), the higher η and the higher
αB, and consequently the higher the mass contributing to FB.

Column absolute acceleration

Figure 11.31: Section 600× 600: Absolute acceleration
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Unlike the previously presented reaction forces, the structural acceleration
depends on one parameter only, i.e., the sti�ness of the model. As it can
be observed, the higher value of ü(t) is obtained for Model 11 (C3h8η0.1),
having the lowest natural period. On the other hand, the lower value of
acceleration is provided by Model 7 ((C3h8η0.1)), with the lowest period.
The correspondence with the elastic solutions is assured only for the �rst
value of the PGA (0.1g). The maximum acceleration experienced in the
plastic �eld is not higher than the 50% of such value. Then plasticization
phenomena does not allow the acceleration to go any further.

Figure 11.32: Section 700× 700: Absolute acceleration

Column base shear

What was said before in the case of the acceleration remains valid for this
case too. This is due to the fact that the relation between shear at the base
and acceleration is linear in the elastic �eld. The two parameters are linked
together by the mass of the system, in this case, the mass of the column.
To this purpose, it was interesting to study the results in terms of the mass
obtained as the ratios between shear VC and acceleration üC of the column,
to understand the in�uence of the panel on the model. It turned out that
trend of the results can be described, in approximated way, by the following
relation:

m? =
VC
üC

= mtop +
1

n
(αB ·mp) (11.1)

being mtop the mass the mass due to the weight of the roof supported by
each column, mp the mass of the panel, n the number of columns and αB

the mass coe�cient de�ned as in (5.15). This relation maintains a certain
validity also when the structure enters the elasto-plastic behavior, meaning
that these result has a double signi�cance:
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1. they con�rm the validity of the mass coe�cients formulation intro-
duced in (5.15) also in the non linear �eld

2. it gives a fast indications on how to account for the mass of the panel
when modeling the adjacent columns

Figure 11.33: Section 600× 600: Column base shear

Figure 11.34: Section 700× 700: Column base shear
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Column top displacement

Finally, concerning the outputs in terms of displacements, as it can be seen
form the graphs, it is not possible to highlight a clear dependence of the
solutions on the characteristics of each model. The only parameter which
has a clear in�uenece on the results is the cross section dimensions, with
the 700 × 700 columns providing lower values of displacements. For what
concerns the comparison between the linear and non linear solutions, the
two analysis tends to provide quite close results until a 0.3g PGA. After
plasticization occurs, the NLTHA solutions tend to be smaller.

Figure 11.35: Section 600600: Column top displacement

Figure 11.36: Section 700× 700: Column top displacement
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Chapter 12

Design proposal

The aim of this �nal Chapter is to verify the validity of the Response Spec-
trum method presented in Chapter 6 also when the structural behaviour is
non linear. The elastic analysis provided very good results, the goal now is
to see what happens when plasticiaztion occurs. The implementation of the
RS spectrum will require however the knowledge of the real performance of
the structure under the seismic event. These information are obtained by
means of quite complex preliminary analysis, whose implementation is not
so immediate. This is why the �rst part of the Chapter will be devoted to
present the main steps to be followed. A brief presentation of the design
rules speci�ed by EC8 will be treated in the �nal section. The compari-
son between with the results obtained through the implemented Response
Spectrum Method will be provided.

12.1 Performance Based Response Spectrum

Method (PBRSM)

The name adopted for the procedure is related to the fact that, as pre-
sented before, the implementation of the method relies on the preliminary
evaluation of the performance of the structure. This requires quite complex
formulations the practitioner engineer is not always familiar with. This is
why, due to its intrinsic complexity, this method can be used as a �nal as-
sessment stage, in place of the more demanding and time consuming non
linear time history analysis.

12.1.1 Complete Quadrature rule revision

By focusing on the reaction force at the top connection, the peak values of
the response are evaluated through the following combination rule:

E[max|FB(t)|] = mp

[
α2
Bü

2
max + β2

BPGA
2 + 2αBβBρigümaxPGA

] 1
2

(12.1)

Where ümax is the maximum absolute acceleration of the structure, αB and
βB are the mass coe�cients, PGA represents the peak ground acceleration,
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and ρig is the correlation coe�cient. Now, the question is: �How to evalu-
ate the acceleration of the structure when plasticization phenomena occur?�
One way is the one associated to the de�nition of the behavior factor �q�,
as presented in the building codes. This is for sure the fastest way, however
this procedure de�nes the capacity of the structure in a very approximate
way, without accounting for the real features of the model.
Now, even if the performance acceleration could have been obtained by less
demanding procedure, the validation of the method will be carried out by
taking advantages of the results provided by the NLTHA of Straus, adopting
the most rigorous approach possibile. There is another parameter in (12.1)
worth mentioning however: the correlation coe�cient ρig Yes because ρig
depends on the natural period and on the damping ratio of the system These
two parameters will not coincide however with the ones adopted in the elas-
tic case, but they must be computed in accordance to the real performance
of the structure in the plastic regime. To this purpose, a non linear static
analysis has been implemented

12.1.2 Non linear static analysis

Demand, capacity and performance are the three guiding words of nonlinear
analysis as a whole: the demand is a measure of the earth's seismic motion
or its e�ects on structure. Capacity, on the other hand, is the ability of the
structure and of all its structural elements to resist to the seismic question.
It is therefore represented with a curve that de�nes the global behavior of
the building, the so called Pushover curve (Figure 12.1). Finally, perfor-
mance represents the extent to which capacity absorbs demand, therefore
it indicates the real expected performance of the structure and is obtained
from the intersection of the curve of capacity (pushover curve), with the
demand curve (response spectrum).

Figure 12.1: Pushover analysis scheme
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At the end, this intersection point, known as the performance point PP,
is checked with respect to the point that represents the design limit state.
The facility must have the ability to withstand simic demand in order for
performance to be compatible with project objectives. The pushover anal-
ysis involves gradually applying horizontal displacements to the structure.
These displacements are scaled in a progressive way so as to make the shear
reaction at the base of the pillars grow monotonously, until the collapse is
reached.

12.1.3 Pushover analysis implementation

The evaluation of the capacity of the model could be obtained by imple-
menting the Pushover analysis in Straus7. This would have been the most
rigorous way. In order to lighten the computational costs however, a di�er-
ent approach was followed, and the Pushover analysis was performed with
the use of MathCad7.
Thanks to the lines of code provided by Prof dal Lago, by specifying the
characteristics of each model, the software is able to provide the capacity
curve for each case. The advantage of such approach are related to the fact
that it does not require a FE modeling of the structure.
In the following lines, the main steps behind the de�nition of the capacity
curve will be presented for one of the analysed structural models (Model 1).
The monotonic capacity curve is rapresented by 3 linear branches made by
2 points, aside from the origin: the yelding and the cracking point. The
post-yelding branch is condidered constant. The load associated to cracking
(Pcr) is obtained by imposing the decompression limit of the concrete cross-
section, assuming the section, due to previous events was already cracked
(as in (12.2). The axial load (N ) is required for this stage, which is de-
termined by multiplying the distributed mass (wich includes/contain the
proper portion of cladding pannel mass)by the size of the single column.
The cracking displacement is obtained by taking innto consideration the
elastic deformation of the plain-cross section, as in 3.40

Pcr =
Nh

6H
(12.2)

dcr = Pcr ·
H3

3EcmIplain
(12.3)

where h is the section depth, H is the clear span column, Ecm is the mean
Young modulus of concrete and Iplain is the gross second moment of the area
of the idealised cross-section. The yelding load Py is obtained by imposing
the rotation and traslation equilibria to the cross-section under imposed
axial load N and yelding strain εy of the extreme bar layer (12.4). The
yelding displacement dy is obtained by numerically solving the di�erential
equation of the inelastic line, integrating the curvature distribution over the
beam twice.
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Py =My(N ; εy)/H (12.4)

Now that all the ingredients are available, the capacity curve can be drawn.
The process will be subdivided into three phases:

1. Phase 1: d < dcr

2. Phase 2: dcr < d < dy

3. Phase 3: d > dy

The P-d law adopted for each phase is:

P (d) =


Pcr

d
dcr

if d < dcr

Pcr + (d− dcr)
Py−Pcr

dy−dcr
se dcr < d < dy

Py + (d− dy)
Pu−Py

du−dy
se d > dy

(12.5)

The resulting capacity curve is represented in Figure 12.2

Figure 12.2: Load-Displacement curve: 1st order contributions
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12.1.4 Contribution of the second order e�ects

Now, the capacity curve in Figure 12.2 has been obtained without account-
ing for the geometrical non linearities of the model. There are in particular
two types of contributions which a�ect these kind of structural schemes: (1)
the 2nd order e�ects associated to the frame, (2) the second order e�ects
generated due to the presence of the claddings. A schematic representation
of the problem is reported in Figure 12.3

Figure 12.3: Dual system: Second order e�ects

Due to these 2nd order contributions, the �nal value of the shear force at
the column base is equal to:

P (d) = P I
F + P II

F + P II
P (12.6)

where P I
F is the �rst order shear reaction de�ned as in (12.5) , while P II

F

and P II
P are the second order contributions associated to the frame and the

panel.
For what concerns P II

F , being N the axial load acting in the column, the
buckling force generated inside the element is:

P II
F = N

d

H
(12.7)

The new curve obtained by considering the presence of P II
F is reported in

Figure 12.4
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Figure 12.4: Load-Displacement curve with frame 2nd order e�ects

A further 2nd order contribution is generated by the cinematic of the
cladding.
In particular, by focusing on the panel only, the rigid rotation of the element
produces a bending action in A as the product of WP times its level arm
δ. Such moment must be equilibrated by the contribution of the reaction
force at the connection as:

Wpδ = P II
P H (12.8)

being δ the horizonthal displacement of the panel center of mass, which is
obtained starting from the displacement d of the frame as:

δ = d
1 + η

2
(12.9)

Figure 12.5: Load-Displacement curve: frame and panel 2nd order e�ects
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Summing up, P II
P is equal to:

P II
P = WP

d(1 + η)

2H
(12.10)

The �nal capacity curve is represented in Figure 12.5. A comparison be-
tween the diagrams obtained for the three di�erent cases is instead proposed
in Figure 12.6.

Figure 12.6: Load-Displacement curves comparison

12.1.5 Equivalent damping ratio and period

As a further step to the de�nition of the capacity curve, the CSM requires
the de�nition of the equivalent viscous damping curve The formulation pro-
posed in the work of Dal lago et al [9] is here brie�y recalled. Everything is
centered around the computation of the dissipated energy at each loading
cycle. To do so, the evolution of the sti�ness of the system after yielding
is needed, this is why the Takeda Law of hysteresis has been adopted. [29]
This rule is not the same for the 3 linear brances: in the uncracked branch,
the energy dissipation is null; in the cracked elastic branch the energy dissi-
pation is shown in Figure 12.7; in the plastic branch the energy dissipation
is shown in Figure 12.8
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Figure 12.7: Energy dissipation along the elastic branch

Figure 12.8: Energy dissipation along the plastic branch

What remains to be computed is the sti�ness of the frame during the un-
loading phase Kunload. In particular:

- if the displacement d is lower than dy:

Kunload =
P (d) + P (dcr)

d+ dcrack
(12.11)

- if the displacement d is higher than dy, then the Takeda law of hys-
teresis must be implemented:
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Kunload =
P (dy) + P (dcr
dy + dcrack

·
(dy
d

)0.4
(12.12)

The dissipated energy by the frame Ed can be now computed as:

Ed =

{
0 if d < dcr

2P
(
d− P

Kunload
) se d > dcr

(12.13)

The equaivalent damping ratio ξeq cab be �nally de�ned as:

ξeq = ξ0 +
Ed

4πEs

(12.14)

being ξ0 the initial damping ratio, assumed here equal to 2% in order to
account for the cracking of the concrete, and Es is the elastic deformation
energy de�ned as:

Es = d
(Pmax + |Pmin|

4

)
(12.15)

with Pmax and Pmin the maximum positive and negative load reached during
that cycle. The equaivalent period Teq is obtained by following the same
kind of reasoning. By entering the curves with the value of the performance
displacement, it is possible to determine the corresponding values of Teq and
χeq to be used to compute the correlation coe�cients ρig.
The results, in terms of performance displacements, are reported for each
one of the analysed models, in the next section.
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12.1.6 Implementation of the Complete Quadratic Rule

Now that all the ingredients are ready, it is possible to enter the CQC rule
in order to evaluate the maximum values of the force at the top connection.
Before doing so, another aspect must be tackled.
As presented before, the cinematic of the panel is responsible for some sec-
ond order e�ects which alter the load displacement curve of the model.
These second order e�ects however, do not a�ect the capacity of the struc-
ture only, but they produce another contribution, which has a direct in�u-
ence on the reaction forces at the connections. This contribution does not
depend on the acceleration of the model, meaning that it represents a static
component of FB.
This to say that, the overall force at the upper connection FB is equal to:

FB = FDYN
B + F ST

B (12.16)

where FDYN
B is the dynamic component of the force de�ned as

FDYN
B = mp

[
α2
Bü

2
CSM + β2

BPGA
2 + 2αBβBρigüCSMPGA

] 1
2

(12.17)

On the other hand, the static component is equal to:

F ST
B = WP

dCSM(1 + η)

2H
(12.18)

being üCSM and dCSM the performance acceleration and performance dis-
placements. The results in terms of performance displacements have been
already presented. What remains to do is to evaluate the performance ac-
celeration. The steps to be followed are here summarized for the case of
Model 1, making reference to a PGA of 0.3g.
The �rst step requires the evaluation of the performance displacement un-
der the considered sesimc motion. Therefore, by entering Figure (3.40)
with a 0.3 PGA, the corresponding displacement turned out o be equal to
uP = 115mm. The performance shear correspondent to a displacement
to such displacement can be now computed exploiting the results of the
Pushover analysis. By following the same procedure adopted before, the
performance shear is de�ned by enering the Capacity Curve with the value
of the perfomance dipalcement (Figure 12.9), obtaing FP = 65000N .
At last, the value of the performance acceleration is computed as:

üCSM =
FCSM

M
(12.19)

being M the mass of the dual system frame-panel.

169



Figure 12.9: Performance Shear evaluation

In particular, in order to account for the presence of the panel, the total m
has been de�ned as:

M = mf + αB ·mp (12.20)

where mf is the mass adopted for the evaluation of the Capacity Curve,
which corresponds in this case to that of the single column, αB is the par-
ticipation mass coe�cient de�ned as in (5.15) and mp represents the mass
of the panel.
The last step before entering the CQC rule is related to the evaluation of
the correlation coe�cient ρig. Di�erent theories have been proposed in the
�rst part of the thesis. They must be now corrected due to the fact that the
structure does not behave elastically anymore. To do so, the new formula-
tions will make reference to the concept of equivalent period and equaivalent
viscous damping. The results for each case are reported in Figure 12.10 as
a function of the PGA. For a high structural periods, the di�erent formu-
lations provide quite close results, which turned out to be almost constant,
regardless the value of the PGA.
Now, in order to obtain a lower bound limit solution, the formulation de-
noted as WX will be here adopted to compute the values of the correlation
coe�cient.
The next ection will be devoted to present the comparison comparison be-
tween the solutions obtained by implmenting the Performance Based re-
sponse Spectrum Method (PBRSM) and the outputs provided by the Non
Linear Time History Analysis from Straus7.
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Figure 12.10: Correlation coe�cients comparison

12.1.7 Presentation of the results

The aim of this section is to brie�y recall the features of the models which
have been used to implement the di�erent proposed procedures. Between all
the previously presented 16 structural schemes, the three models here ana-
lyzed have been chosen in such a way as to cover the widest range of periods
possible. Together with the main structural characteristics, the Pushover
curve and the results obtained via Capacity response Spectrum are shown.
The comparison in terms of the reaction force at the top connection FB

between the reference results obtained from the Non Linear Time History
Analyis from Straus and the proposed Response Spectrum Method are here
presented.
The soultion obtained through the implementation of the RS has been ob-
tained following three di�erent procedures. A brief presentation of such
procedures and the notation adopted in the di�erent Plots is here reported:

1. PBRSM (dPERF ) are the outputs obtained by following the same steps
presented in Section 12.1.7

2. PBRSM (TMAX) are the outputs obtained by computing the acceler-
ation in hypothesis of elastic-perfectly plastic law

3. PBRSM (1STORDER) are the outputs obtained disregarding the sec-
ond order associated both to the frame and the panels

4. PBRSM (Straus) are the outputs obtained by exploiting the perfoem-
nce points directly from provided by the software Straus7

5. NLTHA are the outputs in terms of reaction forces directly provided
by the Non Linear Time History Analysis implemented in Straus7
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Together with the diagrams providing the trend of the curves for the two
solutions as a function of the PGA, three tables have been created. This
will give the reader the possibility to have an idea of the in�uence of the
two components, static and dynamic, on the �nal value of FB.
It is evident how, in general, the Response Spectrum formulation tends to
underestimates the values of the reaction forces. In particular, by comparing
the results between the three models, a general trend can be highlighted:
the sti�er the model, and the better is the solution, with Model 11 able to
follow almost perfectly the refernce solution from Straus7.

Model 1

Before analyzing the �nal solution in terms of reaction forces provided by
the di�erent methods, the outputs provided by the CSM are presented.
Figure 12.12 refers to the capacity curve obtained via Pushover. On the
other hand Figure 3.40 reports, together with equivalent damping ratio and
the equivalent period, the performance points of the model. In Fig 12.13
(c) the value of the yielding displacement is reported as well

Section: 600× 600mm

n° of columns: 3

Heigth of columns: 8m

η : 0.25

Ts = 1.41sec

fs = 0.71Hz

Figure 12.11: Model 1 - Structural scheme
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Figure 12.12: Load-Displacement curves comparison

(a) ξeq (b) Teq

(c) dPERF

Figure 12.13: CSM Results: Equivalent damping ratio (a), Equivalent Pe-
riod (b) and Performance displacement (c)
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Figure 12.14: Results comparison (H=8m, η=0.25, αB=0.502, βB=0.104)

Model 6

Model 6 represents the most �exible between the structural schems ana-
lyzed, meaning that on one hand the absolute acceleration of the structure
is expected to be lower than the other cases. On the other hand however,
the static contribution to FB due to the second order e�ects will be much
more consistent. A peculiarity of this model is related to the fact that, as
it could be observed from Figure 12.17 (c) the Capacity Spectrum Method
was not able provide the values of performance displacements beyond the
yielding threshold. This is due to the fact that, due to its high �exibility,
the structure was not able to resists seismic actions with a PGA higher than
0.37g, leading to divergence of the soluton. This is why, all the formulations
relying on the CSM outputs, will provide the solution in terms of FB only
for the �rst three values of PGA.

Section: 600× 600mm

n° of columns: 3

Heigth of columns: 8m

η : 0.25

Ts = 2.16sec

fs = 0.46Hz

Figure 12.15: Model 6: Structural scheme
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Figure 12.16: Model 6 Load-Displacement curves comparison

(a) ξeq (b) Teq

(c) dPERF

Figure 12.17: CSM Results: Equivalent damping ratio (a), Equivalent Pe-
riod (b) and Performance displacement (c)

By looking at Figure 12.18 it is evident how all the solutions provided by
the proposed response Spectrum Method overestimate the reference results
from Straus7. Moreover, between all the formulations based on the RS
method, the one providing the best results is the procedure which directly
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exploits the perfomance points given by Straus7, meaning that one of the
reason

Figure 12.18: Results comparison (H=10m, η=0.25, αB=0.502, βB=0.104)

for this general trend is related to the di�erence between the performance
solution provided respectively by the CSM and by Straus7.

Model 11

Finally, Model 11 is the structural scheme characterized by the highest value
of the circular frequency. What can be said by looking at the �nal solutions
reported in Figure 12.22 is that, between the analysed models, this one
is for sure the one providing the better results. Except from the PBRSM
dPERF , all the other procedures provide conservative results for the whole
PGA domain. Another time, the solution obtained by the implmentation
of the RS method directly exploiting the performance behaviour computed
by Straus, is the one assuring the highest values of the forces FB.

Section: 600× 600mm

n° of columns: 3

Heigth of columns: 8m

η : 0.25

Ts = 1.02sec

fs = 0.98Hz
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Figure 12.19: Model 11: Structural scheme

Figure 12.20: Model 11 Load-Displacement curves comparison

(a) ξeq (b) Teq

(c) dPERF

Figure 12.21: CSM Results: Equivalent damping ratio (a), Equivalent Pe-
riod (b) and Performance displacement (c)
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Figure 12.22: Results comparison (H=10m, η=0.1, αB=0.403, βB=0.146)
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12.2 Code provision: Equivalent static force

method

Seismic design practices for precast cladding panel are provided by the Na-
tional codes of several countries all over the world.
All code requirements about cladding panels and related connections refer
to a statically determined connection system and provide resistance require-
ments with respect to the out-of-plane seismic excitation on the base of the
single panel mass. In all these cases, the equivalent static force method is
used.
Moreover, the majoirity of such codes conceive the cladding panels as non-
structural components, which is a strong hypothesis, still matter of debate.

12.2.1 European Standards

EC8 includes cladding panels in the list of non structural elements. The
out of plane equivalent static forces actions are calculated as follows:

Fa =
SaWaγa
qa

(12.21)

where:

- Fa is the out of plane horizonthal force

- Sa is a seismic coe�cient

- Wa is the weight of the element

- γa is the importance factor, equal to 1,0 for facade elements

- qa is the behaviour factor, equal to 2,0 for facade elements

The seismic coe�cient Sa is de�ned as:

Sa = αS

[
3
(
1 + z

H

)
3 +

(
1− Ta

T1

)2 − 0, 5

]
(12.22)

with α the ratio between the ground acceleration ag on subsoil type A, an the
acceleration of gravity g, S the soil factor, z the height of the non-structural
element center of mass above the level of application of the seismic actions,
H the building height measured from the foundation, Ta is the fundamental
period of the panel and T1 the fundamental vibration period of the struc-
ture.
Now, the panel is here modelled as a rigid element, therefore its natura
period is zero, leading to the following a �nal equation which does not de-
pend anymore on the natural period of the dual system either. This type of
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analysis is derived from elastic structural analysis, which designers are very
comfortable with, and have been adapted to inelastic structural behaviour
through the de�nition of a behaviour factor that, taking into account the
large dissipation of energy provided by hysteretic damping during ductile
plastic behaviour, reduces the �ctitious elastic force demand on the struc-
ture. The formulation is quite simple, and does not require any e�ort to be
implmeneted. The weakness of the procedure however is related to the fact
that the behaviour factor qa is de�ned a priori, without taking into account
the real capacity of the structure. In particular, the code allows to use a
value of the reduction factor qa = 2 when the points of connection between
frame and panel yield. This is not so reasonable though, due to the fact
that if the connections yield, the poise of the panel is compromised.
To have an idea of the results provided by the procedure proposed by EC8,
a comparison in terms of FB with the previously presented formulations is
here reported for the three models.
The outputs for the three models are reported in Figure 12.23, 12.23 and
12.23. For what concerns the formulation proposed by EC8, the results
have been computed considering two di�erent values of the factor qa (qa=1
and qa=2).
The trend for the three models is practically the same. The solution pro-
vided by the EC8 adopting a Q factor equal to one greatly overestimate
the solution, with an error of over 200% for a 0.5g PGA. Things are more
reasonable when adopting a a Q factor equal to 2. The problem is that
now the outputs underestimate the solutions for low PGAs. The intrinsic
problem of the formulation is related to the de�nition of the behavior factor
q. The code in fact speci�es that a value of q equal to 2 can be used after
plasticization of the elements occurs. This is nonsense however, because it
would involve the plasticization of the connections as well, which in reality
cannot happen due to obvious reasons

Figure 12.23: Model 1: Equivalent static vs RS method
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Figure 12.24: Model 7: Equivalent static vs RS method

Figure 12.25: Model 11: Equivalent static vs RS method
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Chapter 13

Conclusions

The inadequate seismic behaviour of the cladding panel connections of pre-
cast structures and the consequent failures occurred under recent earth-
quakes showed that a revision of the design philosophies currently adopted
for this type of structural systems is necessary. This is why a general frame-
work for the structural conception and seismic assessment of precast struc-
tures with cladding panels has been proposed. The work has been centered
on the de�nition of a design method able to correctly model the in�uence
of the claddings on the structural model, and consequantly the dynamics of
the dual system frame-panel. By implementing the formulation proposed
by Prof Luca Martinelli and Prof Farncesco Foti, the goal os to provide the
designer an analytical formulation able to evaluate the values of the forces
which generate at the connections.

Of reat importance has been the work of Der Kiureghian. Despite dealing
with a conceptually di�erent issue, i.e the evaluation of the peak �oor ac-
celeration, the proposed formulation provided quite helpful advices on how
to treat the contribution of the highest frequency modes of a structure.

This has allowed to conceive the focal point around which the formulation
here proposed is built, which sees the ground motion as a �ctitious structural
mode with in�nite frequency, allowing to greatly reduce the computational
costs involved. Doing so, due to the contributions of two modes, the mode
of the dual system, and the �ctitious mode of the ground acceleration, the
maximum value of the reaction forces are obtained by applying a combi-
nation rule. The CQC rule has been implmented. To do so, it has been
necessary to go through the computation of the correlation coe�cients which
account for the in�uence of one mode on the other. Di�erent formulations
have been proposed, and it will be up to the designer to choose the most
proper one to be adopted, depending on the feature of the structure (natural
period, damping model) The direct comparison with the solutions obtained
through the direct integration of the equation of motion has co�rmed the
goodness of the procedure in the elastic �eld.
For what concerns the validation of the formulation in the non-linear �eld,
that is, once the yield has been reached, the use of �nite element model-
ing has been made. And it is precisely through the comparison with the
results obtained using the Straus7 software that it was possible to obtain a
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more general overview of the behavior of the coupled system in a non-linear
�eld. The constitutive model of the plastic hinges was modeled using the
MathCad software thanks to the code provided by Prof Bruno Dal Lago.
As for the geometric non-linearities, the presence of the panel generates a
double second order contribution: 1) a dynamic contribution, which a�ects
the Capacity of the model by reducing the sti�ness of the structure, and
therefore its acceleration, and 2) a static contribution, independent of the
acceleration this time, which acts directly on the connections.
The comparison with the results obtained through �nite element modeling
shows how the proposed RS method is able to provide results that are as
accurate as the model analyzed is rigid. On the contrary, for structures
characterized by high periods, the procedure tends to underestimate the
solution.
Finally, for what concerns the comparison with the EC8 design formulation,
the results justify the doubts behind the EC8 procedure, whose oversimpli-
�ed formulation lead to great inaccuracies in the reaction forces evaluation.
This con�rms even more the necessities to individuate a more accurate for-
mulations, able to account in a more reasonable way for the ductility of the
structure. This is why one of the objective of this work is to create the
bases for future developments, aiming at individuating more accurate, but
always simpli�ed, design procedures.
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