
Executive Summary of the Thesis

A Transformer-based Approach to Predicting the Likeability of Books

Laurea Magistrale in Computer Science and Engineering - Ingegneria Informatica

Author: Gianluca Guarro

Advisor: Prof. Marco Brambilla

Co-advisor: Marco di Giovanni

Academic year: 2021-2022

1. Introduction
Are our computers capable of extrapolating
what elements make a novel or work of literature
compelling to the human reader? Instinctively,
one would assume that the “cold” binary founda-
tion of computer logic and analytics is at odds
with the appraisal of creativity and the inter-
pretation and “understanding” of any form of hu-
man art. However, recent advancements in Neu-
ral Networks have demonstrated that even the
visual, musical, and literary arts can be modeled
to an impressive degree by computers, and that
the latter can not only interpret human artis-
tic products, but even generate their own works
in diverse artistic domains. The recent break-
throughs in this area of research provide the
scientific basis and motivation to seriously con-
sider and investigate the aforementioned ques-
tion, that is whether and to what extent com-
puters of the current generation and processing
capability can analyze books and differentiate
between successful and unsuccessful literature.
Beyond the purely scientific challenge presented
by the posed question, the development of a sys-
tem that can effectively discern between good
literature and bad literature in an automated
fashion would have immense practical value to
book publishers. It is no secret that the pub-

lishing industry operates with an unprecedented
level of competition. The advent of electronic
submissions in the digital age has resulted in
an explosion of manuscripts that editors need to
process. As a result, many of these submissions
are not adequately assessed and evaluated.
While there is great motivation to study such a
question, the underlying problem to be solved is
quite complex and seemingly affected by unde-
fined or unidentified factors. When considering
in fact the traditional book evaluation processes,
it can be readily noted that even many best-
sellers have been rejected several times by pub-
lishing houses before finally being accepted and
permitted to find their audiences. The qualities
that make a novel great are not clear cut and
may involve aspects that are difficult to assess
in a predictive perspective of likeability, such as
the book novelty, style of writing, story line, and
character development. In addition, a book suc-
cess may depend on external factors such as re-
sources available for its marketing, current and
transient social trends, and competition from
books released simultaneously.
Despite its obvious difficulties, recent research
has demonstrated that artificial intelligence is
able, to an effective degree, to distinguish good
literature from bad literature. The goal of this
thesis is to expand the research of book success

1

Executive summary Gianluca Guarro

prediction systems by investigating the applica-
bility and effectiveness of the novel transformer
architecture [11] to the problem. Since its incep-
tion, the transformer architecture has become
commonplace among natural language process-
ing (NLP) researchers thanks to models like
BERT [2]. BERT harnesses the full potential
of a transformer encoder as it comes out-of-the-
box pretrained on millions of English sentences
via the masked-language modeling task. In this
way, BERT is endowed from the start with a
strong understanding of the English language.
On the other hand, despite the transformer ar-
chitecture widespread success across several nat-
ural language processing tasks, its applicability
to the book likeability prediction problem has
not been seriously investigated. Our work seeks
to take a step in the direction of filling this gap.

2. Previous Work
Before the boom of Artificial Intelligence, lit-
erary experts conducted several studies aimed
at extrapolating stylistic aspects and/or content
characteristics from great authors and books in
order to qualitatively understand the elements
of successful writing. In recent years, a hand-
ful of studies have been carried out that aim to
build statistical models capable of predicting the
successfulness of a book from its text alone.
Ashok et al. [1] conducted the first computa-
tional study correlating writing style and qual-
ity in literature. Their work focused on the
construction of an array of handcrafted features
that could then be used to train a Support Vec-
tor Machine (SVM).
Maharjan et al. are the largest contributors,
having published three papers on the topic.
Their first paper [4] expands upon the work of
Ashok et al. with the construction of additional
handcrafted features, as well as, neural ones.
Among these neural features are Recurrent Neu-
ral Network (RNN) features which were devel-
oped keeping RNN shortcomings of dealing with
long sequences of text in mind. Additionally,
they discovered that the RNN model would per-
form better when trained in a multitask setting.
Their third paper [6] introduces the state-of-the-
art Genre-Aware Attention Model which allows
the classifier to dynamically weigh the various
modalities, while, at the same time, learn genre
embeddings that get baked into the final repre-

sentation of the book.
Khalifa et al. [3] attempted to do away with
handcrafted features and instead build an end-
to-end Convolutional Neural Network (CNN)-
based classifier using pretrained sentence em-
beddings. While they were able to achieve good
results using this method, they found that they
could boost the weighted F1 score by nearly 5
points by simply incorporating readability met-
rics.

3. Task Dataset
An important characteristic of our target task
is that it involves the classification of very long
sequences. Generally speaking, neural networks
designed to process sequential data, including
RNNs, LSTMs, and transformers, are ill-suited
for the processing of very long sequences. As a
result, prior work on this problem has relied on
both count-based textual features and/or some
unorthodox and ad-hoc training procedure for
allowing these neural networks to overcome to
some degree this underlying issue. Given the
nature of our problem, our work has proceeded
along this same paradigm, in that one of its
main contributions is an extensive investigation
into how to make best use of transformer models
when dealing with very long data sequences.
The dataset [4] used in this work is a bench-
mark dataset procured by Maharjan et al. The
dataset consists of 1003 books across eight gen-
res taken from Project Gutenberg. The aver-
age rating of the books on Goodreads was used
to label the books as successful or unsuccess-
ful. Specifically, if the book had an average rat-
ing of 3.5 or greater, it was considered success-
ful, otherwise it was considered unsuccessful. In
an effort to reduce noise or bias, certain heuris-
tics were performed to appropriately choose the
books, such as not allowing for books with too
few ratings or books whose authors have already
appeared twice in the dataset. The genre and
success label distribution of the dataset can be
seen in Table 1.

2

Executive summary Gianluca Guarro

Genre Unsuccessful Successful Total

Detective Mystery 60 46 106
Drama 29 70 99
Fiction 30 81 111
Historical Fiction 16 65 81
Love Stories 20 60 80
Poetry 23 158 181
Science Fiction 48 39 87
Short Stories 123 135 258
Total 349 654 1003

Table 1: Genre Distribution of Goodreads Ma-
harjan Dataset

While working with this dataset, we had to take
into account that the books typically began with
a preamble containing information such as the
copyright, translation or transcription note, an
ASCII title page, etc. In an effort to concentrate
our classifier training on the story itself, we stud-
ied methods to remove this information from our
dataset. Noticing that the preamble often made
frequent use of newline characters with respect
to the rest of the text, we employed the CUSUM
change detection algorithm [7] to identify pre-
cisely where the frequency of newline characters
would change dramatically. According to our er-
ror analysis, this point correlated very well with
where the book actually began. Thus, we used
this method to trim the unwanted text from all
the books in the dataset.

4. Our Work
In our work, we distinguish between first and
second stage classifiers. The former process con-
cerns the training of our BERT basic model and
of the other BERT-like models that we have
also investigated, whereas the latter concerns
the training of models that make use of em-
beddings generated from the former. The mo-
tivation to study second stage classifiers comes
as a direct result of working with very long se-
quences. Since transformer-based models typi-
cally have a low max sequence length limit, we
needed to train our models by segmenting our
books into multiple training samples. As a re-
sult, our BERT model does not attain a cohesive
understanding of each book and instead aver-
ages its predictions on the segments to classify
each book. The goal of the second stage classi-
fier utilization was to compensate for this BERT

limitation by allowing for a more holistic view of
the books.

4.1. First Stage Classifiers
The development of the first stage classifier (i.e.
transformer-based model) entailed many design
decisions, that we investigated in an attempt to
either better prepare the model for the target
task, or to mitigate the potential issues arising
from the segmenting / chunking of our dataset.
These design decisions include a) the choice of
the base transformer model; b) how to further
pretrain the model (if at all); c) whether mask-
ing the characters in our dataset is useful; d)
how to best tokenize our books into segments;
e) whether to train the network in a multi-task
setting with the genre; and f) if setting a max
segment limit per book, or taking more fine-
grained control of the sampling order to guaran-
tee a more fair representation of shorter books,
is useful. Decisions c, d, and f aim to target po-
tential issues that surface from segmenting our
samples into many parts.
Through Pointwise Mutual Information (PMI),
we were able to verify that character names are
the most discriminative words that distinguish
the successful and unsuccessful classes in our
dataset. Concerned about the risks of overfit-
ting our model on character names, we passed
our dataset through a named-entity recognition
model to detect character names and subse-
quently mask them. Despite the results from
PMI, character masking provided no significant
benefit to the classification task, thus suggesting
that BERT is robust to unique class identifiers.
We also explored two different tokenization algo-
rithms. One that would ensure sentences did not
get split between segments and one that would
tokenize books with a moving window allowing
for a defined amount of overlap. Moreover, we
also studied the effect of truncating longer books
to a defined max number of segments so that
they are not overrepresented. Our experiments
show that the two tokenization algorithms per-
form similarly on our dataset. Moreover, the
insight BERT can extrapolate from each book
quickly saturates. That is, we perceive no ad-
vantage in using more than 20 segments per
book during our training.
Among all the BERT-inspired models, Distil-
BERT yielded the best performance on our

3

Executive summary Gianluca Guarro

task. This comes as somewhat of a surprise,
since the DistilBERT model was designed sim-
ply to be smaller and faster to train than other
transformer-based models, rather than to seek
better performance [9]. Moreover, also as a par-
tial surprise, other models that either claimed
to be a better version of BERT (RoBERTa) or
advantageous when dealing with very long se-
quences (BigBird and Longformer) actually per-
formed poorly on our task. These models were
larger in size than BERT. We are led to deduce
from these contrasting performance records, al-
though we do not have a definitive proof for this
conclusion, that such a difficult task as ours, for
which such a small dataset as the one at our dis-
posal is available, is actually better addressed by
a smaller model with more built-in bias like Dis-
tilBERT.
Maharjan et. al report improved performance on
the book likeability prediction task when train-
ing their models to simultaneously identify /
predict the book genre. We have drawn inspira-
tion from their results and modified BERT (Dis-
tilBERT) to this multitask setting. Despite not
having come across other research that trains
BERT to predict classes from two sets of labels
simultaneously, our results show that our tar-
get task is benefitted by this multitask setup.
We believe that simultaneously predicting book
genre acts as a form of regularization for the
likeability task.
While the investigated transformer-based mod-
els have been pretrained on millions of sentences
of the English language, they have not necessar-
ily been pretrained to understand literary En-
glish. We have therefore explored techniques
that further pretrain these models on text within
the same domain as our target dataset, making
them more adept at handling our target task. In
particular we have applied both the within-task
and in-domain pretraining paradigms [10]. The
former implies pretraining by using the same
text as our classification dataset, whereas the
latter requires an additional dataset whose text
is obtained from a similar distribution as the
text of the classification dataset. To explore the
latter approach, we procured our own dataset
of 2600 books from Project Gutenberg. While
our results are not entirely conclusive, they sug-
gest that further pretraining is at least slightly
beneficial for the target task.

In comparison with the use of BERT in its sim-
plest form (no pretraining, single-task), the uti-
lization of the design decisions validated by our
experiments in combination, to build the first
stage classifier, allowed us to achieve a boost in
performance from a weighted F1 (W-F1) score
of 62.89% to a W-F1 of 72.15% on the test set.
This result outperforms other architectures from
other work designed to process sequential input
as well as our own initial strong baselines.

4.2. Second Stage Classifiers
The classifier model developed so far makes pre-
dictions on segments of a book and aggregates
them together to make a prediction for the whole
book. We have attempted in this fashion to
build and investigate a classifier that can con-
sider a representation of the whole book in uni-
son. As a building block, this study makes use
of embeddings of the segments of our book ex-
tracted from our fine-tuned transformer model.
Our research includes A) the training of hier-
archical sequential networks, RoBERT and To-
BERT , over our segment embeddings; B) the
aggregation of the segment embeddings to cre-
ate book embeddings and subsequently training
a shallow feedforward network and an SVM over
them; and C) the training of multimodal archi-
tectures that not only incorporate our BERT-
based book embeddings but also utilize hand-
crafted features and other useful neural features.
Our hierarchical sequential networks like
RoBERT and ToBERT [8] train an LSTM
layer and transformer encoder respectively
over our segment embeddings. Despite the
promising performances published in their
original paper, these models underperformed
our base DistilBERT model. On the otherhand,
we were able to achieve our best W-F1 score
of 73.63% by averaging the segment embed-
dings per book and using them to train a
support vector machine (SVM). We were able
to achieve a similar performance of 73.57% by
training Maharjan’s Genre-Aware Attention
multimodal network using our DistilBERT book
embeddings, sentiment concept features, and
readability metrics. While the original paper for
the Genre-Aware Attention Model [6] reports
state-of-the-art results of 75.4% using their
own combination of handcrafted and neural
features, we found that model to be a difficult

4

Executive summary Gianluca Guarro

and somewhat unpredictable network to train,
with its performance being highly dependent on
initial conditions and hyperparameters. Lastly,
to allow for an easy comparison between our
best performing model, our baselines, and the
best performing models from prior works, we
coalesce their results in Table 2. Model names
in normal, italicized, or bolded text represent,
respectively, our baselines, the best performing
models of prior work, and our best performing
model.

Models Test W-F1
Most Frequent 0.506
Stratified 0.542
BERT One Randomized Chunk [3] 0.660
Bag of Words Logistic Regression 0.665
Tf-idf Logistic Regression 0.670
Word2Vec RNN 0.686
Emotion Flow Model [5] 0.690
Doc2Vec SVM 0.691
CNN with Readability [3] 0.720
Maharjan Multimodal With RNN [4] 0.735
SVM w/ BERT-based Features 0.736
Genre-Aware Attention [6] 0.754

Table 2: Model Comparison

5. Bibliography
• Jacob Devlin, Ming-Wei Chang, Kenton

Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers-
for language understanding. arXiv preprint
arXiv:1810.04805, 2018.

• Suraj Maharjan, John Arevalo, Manuel
Montes, Fabio A González, and Thamar
Solorio. A multi-task approach to predict lika-
bility of books. In Proceedings of the 15th Con-
ference of the European Chapter of the Associ-
ation for Computational Linguistics: Volume
1, Long Papers, pages 1217–1227, 2017.

• Suraj Maharjan, Manuel Montes, Fabio A
González, and Thamar Solorio. A genre-aware
attention model to improve the likability pre-
diction of books. In Proceedings of the 2018
Conference on Empirical Methods in Natural
Language Processing, pages 3381–3391, 2018.

• Raghavendra Pappagari, Piotr Zelasko, Jesús
Villalba, Yishay Carmiel, and Najim De-

hak. Hierarchical transformers for long docu-
ment classification. In 2019 IEEE Automatic
Speech Recognition and Understanding Work-
shop (ASRU), pages 838–844, 2019.

• Chi Sun, Xipeng Qiu, Yige Xu, and Xuan-
jing Huang. How to fine-tune bert for text
classification? In China National Conference
on Chinese Computational Linguistics, pages
194–206. Springer, 2019.

6. Conclusion
In conclusion, we found transformer-based mod-
els like BERT to be a suitable building block
for the realization of a book likeability classi-
fier, even more so when supplemented by the
use of second stage classifiers which build off
of BERT output, outperforming strong base-
lines. This result comes despite the fact that
our task entails the classification of very long
sequences, a domain for which transformer mod-
els are typically bottlenecked. In order to real-
ize the true potential of transformer models on
the task, we found worthwhile to explore several
design decisions, such as a proper choice of the
base model, further pretraining the model us-
ing a within-task approach, and modifying the
transformer to work in a multitask setting. To
our surprise, first-stage transformer models that
advertise great progress in performance, such as
RoBERTa, BigBird, and Longformer, failed in
our task to live up to their claimed capabilities,
while DistilBERT, whose principal focus was
primarily to be just smaller and easier to train
than BERT, was actually the most well suited in
performance to the task among the base trans-
former models investigated. Moreover, we were
able to show that fine-tuning BERT, so that it si-
multaneously predicts both book genre and like-
ability significantly boosts performance in the
likeability task. We were also successful in coa-
lescing the BERT embeddings of the book seg-
ments together by taking their mean, as ev-
idenced by the enhanced performance of our
SVM model. On the other hand, hierarchical se-
quential models underperformed with respect to
our base model, in contrast with the results pub-
lished in the associated original paper. While
our results do not surpass the state-of-the-art,
we have been able to achieve a high performance
without using count-based features or a multi-

5

Executive summary Gianluca Guarro

tude of neural features. This fact makes our net-
work in some ways easier to apply, although at
the expense of the considerable amount of com-
putational effort needed for an adequate level of
BERT training.

7. Acknowledgements
I would like to extend my gratitude to the several
people who have been part of my journey during
the completion of my master’s thesis.
To my superadvisors, Professor Brambilla and
Marco Di Giovanni: It has been an honor to
work under your guidance and direction. The
discussions from our weekly meetings inspired
me to keep pushing my work further and further.
I must also thank my parents, Drs. Clorinda Do-
nato and Sergio Guarro and my siblings, Mar-
cello Guarro and Adriana Romero. Without
their unconditional love and support, I would
have never made it this far.
A special thanks goes to my relatives in Terni:
Elisabetta, Vilma, Francesca, and Riccardo,
who helped me stay sane and productive in my
Polytechnic online studies when I escaped to the
Umbrian countryside during the pandemic. I
am forever grateful that allowed me to develop
strong bonds with all four of you.
Last but not least, I would like to thank all the
friends that I met along the way. Because of all
of you, I will forever cherish the time I spent in
Milan.

References
[1] Vikas Ganjigunte Ashok, Song Feng, and

Yejin Choi. Success with style: Using writ-
ing style to predict the success of novels. In
Proceedings of the 2013 conference on em-
pirical methods in natural language process-
ing, pages 1753–1764, 2013.

[2] Jacob Devlin, Ming-Wei Chang, Kenton
Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers
for language understanding. arXiv preprint
arXiv:1810.04805, 2018.

[3] Muhammad Khalifa and Aminul Islam.
Will your forthcoming book be success-
ful? predicting book success with cnn
and readability scores. arXiv preprint
arXiv:2007.11073, 2020.

[4] Suraj Maharjan, John Arevalo, Manuel
Montes, Fabio A González, and Thamar
Solorio. A multi-task approach to predict
likability of books. In Proceedings of the
15th Conference of the European Chapter of
the Association for Computational Linguis-
tics: Volume 1, Long Papers, pages 1217–
1227, 2017.

[5] Suraj Maharjan, Sudipta Kar, Manuel
Montes-y Gómez, Fabio A González, and
Thamar Solorio. Letting emotions flow:
Success prediction by modeling the flow
of emotions in books. arXiv preprint
arXiv:1805.09746, 2018.

[6] Suraj Maharjan, Manuel Montes, Fabio A
González, and Thamar Solorio. A genre-
aware attention model to improve the lik-
ability prediction of books. In Proceedings
of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing, pages
3381–3391, 2018.

[7] Ewan S Page. Continuous inspection
schemes. Biometrika, 41(1/2):100–115,
1954.

[8] Raghavendra Pappagari, Piotr Zelasko,
Jesús Villalba, Yishay Carmiel, and Na-
jim Dehak. Hierarchical transformers for
long document classification. In 2019 IEEE
Automatic Speech Recognition and Under-
standing Workshop (ASRU), pages 838–
844, 2019.

[9] Victor Sanh, Lysandre Debut, Julien Chau-
mond, and Thomas Wolf. Distilbert, a
distilled version of bert: smaller, faster,
cheaper and lighter. arXiv preprint
arXiv:1910.01108, 2019.

[10] Chi Sun, Xipeng Qiu, Yige Xu, and Xu-
anjing Huang. How to fine-tune bert for
text classification? In China National Con-
ference on Chinese Computational Linguis-
tics, pages 194–206. Springer, 2019.

[11] Ashish Vaswani, Noam Shazeer, Niki Par-
mar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Łukasz Kaiser, and Illia Polo-
sukhin. Attention is all you need. In
Advances in neural information processing
systems, pages 5998–6008, 2017.

6

A Transformer-based Approach to
Predicting the Likeability of Books

Tesi di Laurea Magistrale in
Computer Science and Engineering - Ingegneria In-
formatica

Author: Gianluca Guarro

Student ID: 918696
Advisor: Prof. Marco Brambilla
Co-advisors: Marco di Giovanni
Academic Year: 2021-2022

i

Abstract

Can machines learn what it is that makes a good book a good book? On the one hand,
the characteristics of a computer seem to be intrinsically unsuited for the interpretation
of any form of human art, yet recent advancements in Neural Networks demonstrate
that computers have effectively been able to understand and even generate their own
works of art in the visual, musical, and literary domains. Inspired by the fast-growing
achievements in Natural Language Processing (NLP) and its potential use-cases, with the
present work we explore the current limits of a book success prediction system. Prior
research has demonstrated that Artificial Intelligence (AI) is able to "read" and analyze
book contents to generate assessments of their quality that correlate reasonably well with
factual indicators of success with human readers. However, although methods of content
analysis and classification have been rapidly evolving in the rapidly growing field of NLP,
and replacing older approaches, such more modern approaches have not yet been fully
applied to the task of assessing book quality and likeability with potential human readers.

In our thesis, we propose a transformer-based approach to the book likeability predic-
tion problem. More specifically, we investigate the applicability of Google’s new language
model, BERT, and BERT-like models, which have seen wide-scale adoption and appli-
cation across an abounding number of NLP tasks. Given the inherent limitation on the
length of text sequences that NLP algorithms can analyze and classify in one single pro-
cessing step, in our application we experiment with approaches in which the transformer
architecture can be tailored to enable the classification of very long sequences, such as
books. In addition, we also explore techniques to generate embeddings and book repre-
sentations from transformer-based models, so that these can be used in conjunction with
more classical text-derived features to train multi-modal networks that produce likeability
ranking outputs.

Keywords: Artificial Intelligence, Data Science, Machine Learning, Natural Language
Processing, Neural Networks, Transformer Architecture, Multi-modal Networks, Book
Likeability

iii

Abstract in Lingua Italiana

Può una macchina elettronica capire cosa è che determina la qualità di un buon libro?
Da un lato le caratteristiche di un computer sembrano essere intrinsicamente poco adatte
ad interpretare qualsiasi tipo di espressione artistica umana; dall’altro i recenti progressi
raggiunti nel campo delle Reti Neurali (Neural Networks) hanno dimostrato che i com-
puters sono stati capaci di capire forme di arte e persino generarne esempi, nei campi
delle arti visuali, musicali, e letterarie. Partendo dall’ispirazione fornita dai sempre più
notevoli sviluppi nel campo del Natural Language Processing (NLP) e dalle sue potenziali
applicazioni, la presente tesi esplora le possibili capacità di un sistema di predizione del
livello di successo ottenibile da parte di un libro. Precedente ricerca ha dimostrato che
tecniche di Artificial Intelligence (AI) permettono ad un computer di “leggere” ed analiz-
zare il contenuto di un libro per generare una valutazione della sua qualità, in modi che si
correlano ragionevolmente bene con reali indici del successo ottenuto con normali lettori
umani. Tuttavia, sebbene metodi di analisi e classificazione del contenuto di un libro
siano in costante e rapida evoluzione nel sempre più ampio campo di ricerca dell’NLP
rimpiazzando progressivamente metodologie precedenti, tali moderni metodi non hanno
ancora trovato un’applicazione estesa e completa al problema di valutare la qualita‘ di un
libro e il suo potenziale di apprezzamento da parte dei suoi lettori.

In questa tesi proponiamo un approccio alla valutazione del potenziale di apprezzamento
(“likeability”) di un libro che è basato sull’uso delle reti “transformers” (Transformer Net-
works). Più in particolare, la tesi esplora l’applicabilità a questo problema del nuovo
modello di linguaggio BERT prodotto da Google, e di vari modelli derivati da BERT, i
quali hanno avuto adozione e applicazione su larga scala in una estesa varietà e notevole
numero di problemi nel campo dell’NLP. La nostra applicazione, dati gli intrinsechi limiti
di lunghezza delle sequenze di testo che un algoritmo NLP può analizzare e classificare
in un singolo stadio di analisi, è stata condotta sperimentando con vari metodi tramite
i quali l’architettura transformer può essere adattata per permettere la classificazione di
sequenze di dati di notevole lunghezza, come è nel caso del testo di un libro. Oltre questo,
la tesi usa e valuta tecniche per generare rappresentazioni ed indici delle caratteristiche di
un libro (“embeddings”), tramite modelli di tipo transformer, e usare tali rappresentazioni,

iv | Abstract in Lingua Italiana

in congiunzione con altri più tradizionali indici di valutazione basati sul testo stesso, per
eseguire la calibrazione e formazione (“training”) di reti multi-modali che producono le
valutazioni finali del potenziale apprezzamento di un generico lettore del libro.

Parole Chiavi: Intelligenza Artificiale, Scienza dei Dati, Apprendimento Automatico,
Elaborazione del Linguaggio Naturale, Reti Neurali, Reti Transformers, Reti Multi-modali,
Apprezzamento del Libro

v

Contents

Abstract i

Abstract in Lingua Italiana iii

Contents v

1 Introduction 1
1.1 General Overview . 1
1.2 Brief Description of the Work . 2
1.3 Outline of the Thesis . 4

2 Related work 5
2.1 Book Success Prediction . 5

2.1.1 A brief overview of quantitative approaches 5
2.1.2 Long Text Classification . 6

3 Technical Approach Foundations 9
3.1 Natural Language Processing . 9

3.1.1 LSTM . 10
3.1.2 Transformer . 11
3.1.3 Dialects of BERT . 14

3.2 Additional Technical Background . 18
3.2.1 Support Vector Machine . 18
3.2.2 Pointwise Mutual Information . 18
3.2.3 Change Point Detection . 19

4 Research Questions 21

5 Our Approach 23
5.1 Preparing BERT for the task at hand . 23

vi | Contents

5.1.1 Further Pretraining of BERT . 23
5.1.2 Training in a Multitask Setting . 24

5.2 Extending BERT to Sequences longer than 512 tokens 24
5.3 Second Stage Classifier . 28

5.3.1 Simple Models Fit Over Average Segment Embeddings 28
5.3.2 Hierarchical Sequential Models . 29
5.3.3 Multimodal Network . 31

6 Datasets 37
6.1 Dataset for the Classification Task . 37
6.2 Datasets for Pre-training BERT . 39
6.3 Dataset Preprocessing . 40

6.3.1 Noise Trimming . 40
6.3.2 Masking Character Names . 42

7 Experiments 45
7.1 Setup for Conducting Experiments . 46
7.2 Evaluation Metric . 47
7.3 Classifiers for Comparison . 48
7.4 First Stage Classifiers . 50

7.4.1 Comparing preprocessed datasets 51
7.4.2 Deciding which transformer model to use as the foundation 52
7.4.3 Deciding whether to further pretrain our models or not 53
7.4.4 Deciding how to best incorporate the genre information 54
7.4.5 Deciding how to segment our books 55
7.4.6 Deciding how to best alleviate biases of long books 56
7.4.7 Hyperparameter Tuning . 58

7.5 Second Stage Classifiers . 59
7.5.1 Extracting the embeddings for our second stage classifiers 59
7.5.2 Simple Models Trained on Book Embeddings 61
7.5.3 Sequential Data Models on Chunk Embeddings 62
7.5.4 Multimodal Networks . 63

8 Conclusions 69
8.1 Future research directions . 72

Bibliography 75

A Additional Background Information 79
A.1 Constituent Tags . 79
A.2 Readability Metrics . 79

B Technical Details 83
B.1 Building the pg-2600 Dataset . 83

C Code Implementation 85
C.1 Pointwise Mutual Information . 85
C.2 Extending BERT to the Multitask Setting 86
C.3 RoBERT . 88
C.4 ToBERT . 89

D Tools and Platforms 93

List of Figures 95

List of Tables 97

Acronyms 99

Acknowledgments 101

1| Introduction

Millions of books are written each year and only a fraction are accepted by traditional
publishers, with an even smaller fraction of those becoming renowned successes. There are
many factors that go into predicting whether a book will be successful or not, including
intrinsic features such as novelty, style of writing, story line, and character development,
as well as external factors such as marketing, current trends, and competition from books
released simultaneously. All of these factors can make it difficult to estimate a book’s
true value and reception in the marketplace. In fact, even some best sellers went through
several rejections before a publisher finally approved them. The quintessential example
is J.K. Rowling’s Harry Potter which was rejected by twelve different publishers before
being taken on by a thirteenth. The difficulty of accurately assessing how a book might
appeal to the public is exacerbated by the sheer number of submissions that publication
houses need to process 1. With these considerations in mind, there is a strong motivation
to study the viability of an automated book success prediction system. Additionally, the
huge strides the field of natural language processing has taken as of recent, with many
state-of-the-art results across several datasets being achieved in just the past few years,
provides an equally strong motivation to explore and evaluate their applicability to this
specific type of task, and see how they compare to prior, more classical, success prediction
models that have been proposed and applied in the past, with limited degrees of success.

1.1. General Overview

With the massive and constantly growing quantity of written text that has become directly
accessible online, Natural Language Processing has emerged as an exciting field of AI
research and development that aims to extract true essential content and information
from this knowledge-rich, albeit unstructured and massive amount of data. From machine
translation, to semantic analysis, to part-of-speech tagging, NLP has been effectively
applied to several text analysis and manipulation tasks. Among these, the Book Success

1https://jerichowriters.com/
if-an-agent-accepts-your-work-what-are-chances-of-getting-published-2/

https://jerichowriters.com/if-an-agent-accepts-your-work-what-are-chances-of-getting-published-2/
https://jerichowriters.com/if-an-agent-accepts-your-work-what-are-chances-of-getting-published-2/

2 1| Introduction

Prediction problem is particularly intriguing and difficult, due to the multi-faceted factors
involved and its partly subjective nature. The goal of this thesis is to build upon previous
work carried out by NLP researchers in this area, more specifically by exploring different
ways of generating book neural features through use of the transformer architecture, to
evaluate and compare their efficacy.

Since its publication in 2017 [32], the transformer neural architecture has been applied
to a great variety of tasks, often yielding state-of-the-art results in the processing and
classification of large amounts of data, especially in the NLP domain. In fact, at the time
of writing this paper, the GLUE benchmark leaderboards are overrun by transformer-
based approaches 2. For this reason, it is natural to consider an application of this type
of technique to the book success prediction problem as a research subject well worth
of serious investigation. However, transformer models can typically handle only a short
sequence of words and were thus not poised to address the classification of long texts such
as books. Thus, a central part of our work has focused on an extensive exploration and
evaluation of how to best overcome this limitation. More specifically, a lot of effort first
went into the study of how to best prepare the training data for consumption by BERT,
and second, into the study of how to best consolidate BERT’s inherently segmented
judgment into a wholistic one. As a result, we have succeeded in extracting from the
books selected for our case study powerful neural embeddings which can be used as input
features for Maharjan’s state-of-the-art Genre-Aware Attention Model (along with other
second stage classifiers) to determine whether we can further boost performance.

Our experiments have shown that the transformer architecture can be adapted to deal with
long-sequence text, such as books, to recognize their quality; moreover, our experiments
also reveal transformer architecture to be competitive with other purely neural classifiers.
The validity of our approach has been confirmed by the fact that, by training a support
vector machine on these neural representations, we have been able to produce results that
are less than two percentage points from the state-of-the-art’s weighted- f1 score on the
Goodreads Dataset – more specifically, 73.6% vs. 75.4%.

1.2. Brief Description of the Work

The elements readers esteem to be essential when they evaluate the quality of a book are
perceived to be purely subjective and therefore difficult, if not impossible, to quantify.
Ultimately, as readers, we look for books that make us feel intellectually or emotionally
engaged with the storyline and the characters, a response that is predicated upon seem-

2https://gluebenchmark.com/leaderboard

1| Introduction 3

ingly unquantifiable features, such as an engaging plot, a literary style that “matches”
the setting of the book, or well-developed characters that are relatable to one’s own ex-
periences 3. Despite obvious difficulties, the development of an autonomous system able
to effectively discern whether readers will like a book or not would be of immense value
for book publishers and readers alike. At the same time, testing the limits of the current
state-of-the-art of Natural Language Processing with such an inquisitive task is a fasci-
nating study in its own right, as it seeks to negotiate questions of taste, emotion, culture,
and content usefulness which all converge in reader appraisal of a book.

With these goals in mind, we draw inspiration from former researchers on the topic,
namely Ashok et. al [2], Maharjan et. al ([19], [21] [20]), and Khalifa et. al. [16]. Among
these pioneers in the field, our work builds primarily from that of Maharjan et. al who
have published extensive research on the book success prediction problem. As part of
their work, they assembled and made publicly available a benchmark dataset to enable
researchers to better assess and understand the performances of their models. In their
experiments, they have studied the efficacy of several handcrafted features, as well as
RNN and BoW based neural features. By designing a multimodal neural architecture
that is able to incorporate all of these features (and learn the importance of each) while
at the same time also learn genre embeddings, they were able to achieve a weighted-f1
score of of 75.4%.

To our knowledge, prior to our own research, application of the novel transformers model
and in particular BERT, has rarely been studied to predict the likeability of books. Thus,
the scope of this paper is to study the ways in which BERT can be applied to this problem.
This means using BERT directly for classification, as well as extracting embeddings from
it to be used in second stage classifiers. We have explored a multitude of ways to best
prepare BERT for the target task, according to what is explicitly detailed in How to
Fine-Tune BERT for Sequence Classification [30]. Having established a strong BERT
model as the foundation, we have implemented and assessed the techniques discussed in
Hierarchical Transformers [25], in which the authors report success in training an LSTM
or a Transformer Encoder over fixed BERT embeddings. Finally, we have also investigated
whether our BERT embeddings are able to provide any additional information to all of
the other features being considered, by using them in multi-modal settings such as in
Maharjan’s Genre-Aware Attention Model [21].

3https://www.masterclass.com/articles/the-elements-of-a-good-book#
the-5-elements-of-a-good-book

https://www.masterclass.com/articles/the-elements-of-a-good-book#the-5-elements-of-a-good-book
https://www.masterclass.com/articles/the-elements-of-a-good-book#the-5-elements-of-a-good-book

4 1| Introduction

1.3. Outline of the Thesis

The remainder of this thesis is structured as follows:

• Chapter 2 summarizes related research and state-of-the-art results on the subject
of book success prediction;

• Chapter 3 presents and discusses the technical foundation of NLP and of the tech-
niques investigated in this thesis;

• Chapter 4 describes the research questions that this thesis addresses and seeks to
answer;

• Chapter 5 details our approach to answering the research questions presented in the
previous chapter;

• Chapter 6 explains the details of the datasets, including all associated data pre-
processing steps, that were used for our experiments;

• Chapter 7 describes the experiments that were set-up and performed to answer
the research questions defined in Chapter 3, and presents / discusses the results
obtained;

• Chapter 8 summarizes the entire work carried out, drawing conclusions on our
approach to the problem, on the validity of the results obtained, and on the possible
direction of any future research;

2| Related work

“You shall know a word by the company it keeps.”

John Rupert Firth

We present here a survey of the different approaches that have been applied to the book
likeability prediction problem to date.

2.1. Book Success Prediction

The understanding of what makes a good book a good book has intrigued literary enthu-
siasts for decades. Literary experts have conducted several studies aimed at extrapolating
stylistic aspects and/or content characteristics from great authors and books. These stud-
ies are qualitative in nature and rely on expert domain knowledge ([14], [13]). In recent
years, a handful of studies have been carried out that aim to build statistical models ca-
pable of predicting the successfulness of a book from its text alone. As this paper builds
off these more objectively and quantitatively-oriented approaches, the following sections
document the survey and review of the more recent work in this area that we have con-
ducted at the onset of our research. This material provides an overview of the approaches
that have recently been explored by other researchers, and includes a summary discussion
of the key features that have been formulated and applied.

2.1.1. A brief overview of quantitative approaches

Ashok et al. (2013) [2] conducted the first computational study correlating writing style
and quality. Their dataset was composed of books from Project Gutenberg 1 with the
success label being defined as a function of the number of downloads a book had re-
ceived. Their work concentrated on the construction of handcrafted features intended to
encapsulate the stylistic information of the book.

1Project Gutenberg is an online repository of cultural works with most items consisting of books
within the public domain

6 2| Related work

Maharjan et al. (2017) [19] argued that downloading a book is not a good indicator
of a book’s likeability or its commercial success and in turn, composed a new dataset
in which the success label was derived from the book average rating on Goodreads. In
their analysis, they considered a combination of handcrafted stylistic features and neural
features (including RNN features). In order to incorporate RNN features, they developed
a strategy to overcome RNN limitations in dealing with long sequences of text. Moreover,
they framed the problem in a multi-task learning setting, by simultaneously seeking to
identify the book genre as well as to predict its level of success.

Maharjan et al. extended their work from the prior year with two additional papers in
2018 ([20] [21]). The former proposes an approach in which they focus on modeling the
emotion flow throughout the books, with the hypothesis that a novel’s success is highly
correlated with the flow of emotions it makes its reader feel. The latter proposes the
"Genre-Aware Attention Model", a multi-modal neural architecture that is well-equipped
to flexibly attend to the variety of handcrafted and neural features they extracted from
the books. In their work, they were able to achieve the current state-of-the-art on the
Goodreads dataset using this model with a weighted F1 score of 75.4%.

Khalifa (2020) proposed a model in which they embedded the books’ sentences with
Universal Sentence Encoder (USE) and split them into chunks to then feed through a
convolutional neural network (CNN). The output from the CNN along with various read-
ability metrics are then fed through a final classification layer. Interestingly, they report
the best results when they only consider the first 1K sentences of each book. This may in-
dicate that the stylistic essence that their neural network learns from each book is quickly
saturated or that only a portion of a book needs to be read in order to assess its general
quality.

2.1.2. Long Text Classification

With the advent of neural architectures such as LSTMs and Transformers, end-to-end deep
learning has become increasingly commonplace for several NLP tasks. However, a purely
neural learning process is not practical for the book success prediction problem, where
one is basically dealing with very long sequences of text. RNNs, for instance, suffer from
vanishing gradients during training by back-propagation through time (BPTT). LSTMs,
in turn, were designed to circumvent the shortcomings of RNNs, but they have their limits
as well, and will still eventually succumb to the vanishing gradient problem at some point,
when dealing with very long sequences of data to analyze and classify. Transformers
like BERT abandon the sequential left-to-right or right-to-left processing paradigm of

2| Related work 7

RNNs/LSTMs and instead use a self-attention mechanism that allows each word to attend
to all others to discover its importance in a parallel processing mode. However, this self-
attention mechanism has the problem of consuming memory quadratically with the length
of the input sequence. As a result, BERT has a sequence limit of 512 tokens.

Given the neural networks’ shortcomings of handling long sequences of text, all prior
works make use of purely handcrafted features (Ashok et al. (2013)) or a mix of both
handcrafted and neural features (Maharjan (2017), Maharjan (2018), Khalifa (2020))
which are then used to train a classifier. These features scale well with the length of the
book as they are count-based. However, they are typically only able to capture aspects
of linguistic style such as lexical choices, distribution of part-of-speech tags, distribution
of grammar rules, etc. and thus they overlook the plot, semantics, and emotions of the
book. It is therefore, often best to use a combination of neural and handcrafted features,
as each seems to intuitively support the shortcomings of the other. A natural question
is how to generate the most expressive neural representations of a book. This paper will
explore various techniques that aim to answer this question using BERT.

Given the neural networks’ shortcomings in handling long sequences of text, all prior
works make use of purely handcrafted features (Ashok et al. (2013)), or a mix of both
handcrafted and neural features (Maharjan (2017), Maharjan (2018), Khalifa (2020))
which are then used to train a classifier. These features scale well with the length of a
book being analyzed, since they are count-based. However, they are typically only able
to capture aspects of linguistic style such as lexical choices, distribution of part-of-speech
tags, distribution of grammar rules, etc. While they do that relatively well, they overlook
other features of a book that may be equally, if not more important, in having a substantial
impact on likeability, e.g., characteristics of the plot, the overall meaning and message the
book seeks to convey, and the type of emotions it is likely to evoke in the reader. One is
thus led to the conclusion that it is best to use a combination of neural and handcrafted
features, as each type seems to intuitively compensate for the shortcomings of the other.
A natural question along this line of investigation is whether it is possible to generate a
neural representations of a book sufficiently expressive and effective for the purpose of
likeability and success prediction by including in its representation both count-based and
non-count based relevant features. This thesis explores and discusses some techniques
that aim to provide an answer to this question using BERT.

3| Technical Approach

Foundations

In the previous chapter, we introduced and summarized prior approaches to the book
likeability prediction problem. In this chapter, we aim to provide the technical foundation
background that is needed to understand the solutions adopted in our research approach
to the problem. This is initiated with a brief general description of Natural Language
Processing (NLP) techniques and is continued with a more specific and detailed discussion
of the techniques that we have identified and applied as potentially best suited for the task
at hand. Of particular relevance is the section dedicated to BERT, as BERT constitutes
the primary foundation for the research described in this thesis. Additionally, we provide
descriptions of other statistical methods used in this work that do not have an immediate
prior affiliation with past NLP applications or research.

3.1. Natural Language Processing

Natural Language Processing (or NLP for short) is the field of study at the crossroads
between linguistics and artificial intelligence. In essence, it is the study of how computers
can be programmed to interpret and manipulate human language, e.g., to translate from
one language to another. The field emerged in the 1950s and until the 1980s to accomplish
its basic set of tasks, among which parsing and translation figured as primary ones,
relied mainly on a complex set of hand-written rules. More recently, due to massive
increases in available computational power and the massive quantity of unstructured
textual data appearing and being stored in decentralized web storage, NLP has boomed
both in practical applications and as a research field, alongside its more general parent
field of Artificial Intelligence (AI). More specifically, as the capability of our computers
to store and process data has continued to grow, so has the research to architect machine
learning models that are able to better “understand” and process human language for a
variety of purposes. The subsections below discuss some of the AI techniques that have

10 3| Technical Approach Foundations

found frequent use in NLP.

3.1.1. LSTM

LSTM (Long Short-Term Memory) is a particular type of artificial Recurrent Neural
Network (RNN) architecture that has been successfully applied in a wide-range of NLP
applications, from image captioning [33] to machine translation [31] to question answering
[35]. “Recurrent” in this context means that an RNN, unlike a standard feedforward neural
network, has feedback connections in its neural grid. Within the RNN family, LSTM units
are typically considered superior to other more traditional types of RNNs because they
contain memory cells, which allows them to maintain information for longer periods of
time. The structure of a typical LSTM unit is depicted in 3.1.

Figure 3.1: LSTM Unit [36]

The basic LSTM unit contains three external inputs:

1. its previous cell state, ct−1

2. its previous hidden state, ht−1

3. the current input vector, xt

The jobs of the forget gate, input gate, and the output gate are to regulate the flow

3| Technical Approach Foundations 11

of information into and out of the cell. The three gates are the output of a nonlinear
activation function taking as input a linear combination of the previous hidden state and
the current input vector.

3.1.2. Transformer

Like LSTMS, Transformers are intended to process sequential data. However, in order to
recognize the importance of each part of the input they use the mechanism of self-attention
rather than recurrence. The Transformer architecture has largely replaced RNN-based
networks in NLP, as it does not suffer from parallelization limitations as RNNs do and
thus can consume and process much more data in a given amount of time. As self-
attention is really the cornerstone to the Transformer’s popularity, we shall explain the
concept more in depth.

The motivating concept behind self-attention is to allow the model to look at all other
tokens when encoding each token in a sequence, thereby learning more context-aware
embeddings for each. The way this is done in practice is to score all tokens at each position
to represent how relevant each token is at each position. As discussed in Attention is all
you need, the scoring is done via the following equation:

Z = softmax(
Q×KT

√
dk

)V (3.1)

where Q, K, and V represent the Query, Key, and Value matrices respectively. Q, K,
and V are found by taking our embeddings X and multiplying them by trainable weight
matricesWQ,WK ,WV respectively. The resulting matrix, Z is then ready to be processed
by further layers.

The self-attention layer can be further endowed with a mechanism known as “multi-headed
attention,” which the original authors have demonstrated improve performance. In this
variation of the concept, at each layer of the net self-attention is performed by N heads
which are individually and randomly initialized, thus allowing the layer to learn multiple
representations of the inputs. In order to prepare the output for the dimensions of the
next layer, the outputs from the attention heads are concatenated together and multiplied
by a weight matrix.

With the concept of multi-head attention explained in its basic characteristics, we can
present in Fig. 3.2 an illustration of the typical architecture of a Transformer model:

12 3| Technical Approach Foundations

Figure 3.2: Transformer Architecture [32]

With reference to the figure, it is to be noted that the decoder portion of the transformer
is only needed when the output of the model is itself a sequence, such as in tasks like
text summarization, machine language translation, and closed-book question answering.

3| Technical Approach Foundations 13

Since our problem is instead one of sequence classification, only the encoder portion of the
transformer is needed in our type of application. It is for these purposes that the BERT
tool (presented and explained in the next subsection) was designed and developed.

For a more detailed explanation of self-attention and the construction of the Transformer
as a whole, we refer the reader to the original paper that introduced the concept [32].

Bidirectional Encoder Representations from Transformers (BERT)

BERT is a relatively new transformer-based language model introduced by Google, which
has been pushing the bounds of NLP since its release in 2018. It has marked a new era
in the field of NLP and is widely considered to be one of the greatest milestones reached
in the field. This reputation is bolstered by its state-of-the-art performance in eleven
research-standard Natural Language Understanding (NLU) benchmarks (GLUE, which
consists of 9 tasks [34]; SQUAD [26]; and SWAG [38]).

BERT has become ubiquitous in NLP applications and research, not only due to its high
performance on a large variety of datasets, but also to its ease-of-use. BERT (base) is
a massive model employing twelve encoders and twelve bidirectional self-attention heads,
which translates into hundreds of millions of parameters that would be impractical for any
NLP researcher to tune. However, BERT and models of a similar scale typically employ
a “transfer learning” approach, in which the model parameters have been pretrained on
a language modeling task with a mas sive corpus of text, before any fine-tuning is to be
ultimately carried out for a researcher’s downstream task. More specifically, the version
of BERT that we have used in this research had been pretrained using two such tasks:

1. Masked Language Model (MLM) objective task, in which random words are
masked from the input, and the model aim is to predict what these masked words
may be, using the rest of the unmasked input. By use of this training task, BERT
was able to abandon the hitherto standard training paradigms of only using the
words to the left of the target word (or vice versa, only the words to the right of the
target word) for prediction purposes. Referring to Figure 3.3, if the i -th token is
chosen to be masked, Ti will be used to predict the original token with cross-entropy
loss.

2. The Next Sentence Prediction (NSP) objective task, in which sentence A is
used to predict whether sentence B logically follows it. During the actual pre-
training, sentence B was drawn randomly from the text corpus 50% of the time;
otherwise it was selected as the actual subsequent sentence to A. Referring to Figure
3.3, C is the BERT node used for the NSP output.

14 3| Technical Approach Foundations

Figure 3.3: BERT High-Level View for Pre-training [32]

3.1.3. Dialects of BERT

Since the initial publication of BERT in 2018, several BERT “dialects” have been sub-
sequently introduced. These either aim to enhance the BERT pretraining process, or
address certain specific BERT shortcomings. In the following we provide a brief survey
of BERT dialects that we have used in our experiments.

3| Technical Approach Foundations 15

RoBERTa

The authors of RoBERTa (Robustly optimized BERT approach) [18] more thoroughly
investigate the pretraining process of BERT. According to the findings of their experi-
ments, BERT was originally significantly undertrained, and its authors overlooked certain
potentially useful design choices. The design decisions the RoBERTa developers identify
as improvements of their model over BERT in the execution of several standard NLP
tasks include:

• Training the model with bigger batches and more data

• Removing the NSP objective training task; i.e., the RoBERTa designers pretrained
their model using only the MLM training task.

• Training on longer sequences

• Dynamically changing the masking pattern of the samples with each epoch.

DistilBERT

The authors of DistilBERT [27] sought to develop a significantly smaller version of BERT
while still retaining most of its natural language understanding capabilities. They lever-
aged "knowledge distillation" during the pre-training phase to realize a version of BERT
that is 40% smaller than the original, but still maintains 97% of the BERT performance
on the GLUE benchmark. As a result, DistilBERT can be fine-tuned 60% faster than
BERT, which is appealing to NLP practitioners with limited resources. The concept of
knowledge distillation closely follows a student-teacher analogy, in which a smaller model
(the student) is trained to replicate the behavior of a larger model or of an ensemble of
models (the teacher). In this way, an effective form of model compression can be achieved
[6].

Electra

The authors of Electra [7] take inspiration from Generative Adversarial Networks (GANs)
[11] to develop a more efficient approach to pretraining than the combination of MLM
and NSP used in the development of BERT. Instead of masking the input as done in
MLM, the Electra developers instead corrupted the input by replacing some of the tokens
with plausible alternatives selected by a small GAN. The discriminator (Electra) is then
trained to predict whether each token comes from the original source or was generated
by the adversarial network. In this approach, the generator and discriminator networks
are working in constant competition with each other. Using this form of pretraining,

16 3| Technical Approach Foundations

the authors of Electra were able to achieve cresults that are comparable in quality with
those obtained by RoBERTa while using less than one quarter of the processing power,
or significantly superior when using a similar amount of computational resources.

BigBird, Longformer

BigBird and Longformer are two transformer-based models that strive to remedy the
sequence length limitations of BERT and other BERT dialects. The underlying cause
for this limititation is the memory hungry nature of the self-attention mechanism which
scales quadratically with the sequence length. The BigBird and Longformer models seek to
address this problem by modifying the self-attention mechanism. This is accomplished by
“sparsifying” the corresponding self-attention matrix according to an “attention pattern”
that identifies a subset of tokens, significantly reduced in size with respect to the original
attention set, which is allowed to “attend” to each token being processes. Figure 3.4 below
illustrates the attention patterns of both Longformer (a) and BigBird (b) comparing them
to the standard full-attention set (c).

3| Technical Approach Foundations 17

(a) Longformer Attention Pattern [4] (b) BigBird Attention Pattern [37]

(c) Full n2 Attention (Standard) [4]

Figure 3.4: Attention Patterns

The standard attention scheme is of course the most expressive, as all tokens are allowed
to attend to all other tokens. However, as explained above, the effect is that its appli-
cation does not scale well to long sequences. Longformer and BigBird alike extend the
transformer model usability to longer sequences, albeit at the cost of expressiveness, by
defining and utilizing both a “window attention” and a “global attention.” With window
attention, each token can attend to its close neighbors, while, as explained earlier, global
attention defines a subset of tokens that can attend to every other token in the sequence
being analyzed. BigBird takes this concept one step further than Longformer by addition-
ally also using “random attention,” i.e., a mechanism by which each token may randomly
attend more tokens in the sequence than allowed by the global attention pattern.

18 3| Technical Approach Foundations

3.2. Additional Technical Background

In this section, we group together and provide summary descriptions of certain non-
NLP-specific models and methods that we have used in support of the research of this
thesis. Although these methods are applicable for the target NLP task which is the thesis
subject, and as such we have used them in our research experiments, they generally have
widespread application outside the NLP field. Accordingly, we have deemed appropriate
to present them and discuss them in a dedicated section.

3.2.1. Support Vector Machine

A Support Vector Machine (SVM) is a type of supervised learning model that is generally
used for classification tasks. Its objective is to find a separating hyperplane that maximizes
the margin between the data points of two distinct classes. Maximizing the separation
margin has the effect of classifying data points with more confidence. What makes SVMs
particularly powerful is that they are able to identifying a separating hyperplane in a new
feature space of arbitrary dimensions, based on and evolved from the original definition
of features, without actually executing the space transformation. This makes SVMs well-
suited to classify data points that are non-linearly correlated in the original feature space.

3.2.2. Pointwise Mutual Information

In general terms, Pointwise Mutual Information metrics can be used as a measure of
association between two events. In our type of application, these two events can be the
instances of a word or phrase, and their belonging to the successful or unsuccessful class
(likeable or non-likeable use of the word or phrase).

The general PMI metric formulation takes the form:

pmi(x; y) ≡ log
p(x, y)

p(x)p(y)
= log

p(x|y)
p(y)

= log
p(y|x)
p(y)

(3.2)

In our use cases we have applied PMI to understand to what degree a certain word
associates with the successful book class or unsuccessful book class. For this specific
purpose, we can rewrite the above as:

pmi(w; c) ≡ log
p(w, c)

p(w)p(c)
(3.3)

where p(w, c) denotes the joint probability of observing word w and class c, p(w) denotes

3| Technical Approach Foundations 19

the probability of observing w in the whole corpus and p(c) denotes the prior probability
of a word belonging to class c.

The formulas provided below define how we can calculate each of these probabilities. Ad-
ditionally, we apply smoothing such that each word appears in each class α additional
times. This is done to force non-zero probabilities, and more generally, to smooth proba-
bilities of words which have very little support 1 in the corpus or subcorpus.

p(w, c) =
C(w, c) + α

n+ 2α ∗ |V |

p(w) =
C(w) + 2 ∗ α
n+ 2α ∗ |V |

p(c) =
nc + α ∗ |V |
n+ 2α ∗ |V |

(3.4)

where α is the smoothing factor; nc is the number of words in class c; n is the number
of words in the entire corpora; |V | is the total number of words of our vocabulary in the
corpora; C(w, c) is the number of occurences of the word, w, in class c’s subcorpus; and
C(w) is the number of occurences of the word, w, in the entire corpus.

3.2.3. Change Point Detection

Change points are abrupt variations in sequence data. These change points are suggestive
of a transition that has occurred between states. Change Point Detection (CPD) is the set
of techniques developed for the purpose of finding exactly when/where these transitions
occur. CPD is a well-studied topic within which several methods and applications have
been developed. For our application we have experimented with a very simple algorithm
known as CUSUM.

CUSUM

CUSUM is a simple CPD algorithm developed by E.S. Page in 1954 [24]. It involves
the calculation of a cumulative sum of the differences between data points and their
expected value. It has two formulations, depending on whether a positive anomaly or
a negative anomaly is to be detected. If the expected anomaly does occur, then there

1Support in this context is a term from Association Rule Learning to denote how frequently the itemset
appeared in the dataset

20 3| Technical Approach Foundations

should be a distinct point at which the cumulative sum is at a minimum (maximum) for
a negative (positive) anomaly. This point is identified as the point where the change has
been detected.

The general formula for detecting the change point of a negative anomaly is as follows:

S0 = 0

Si+1 = min(0, Si + xi − ωi)
(3.5)

Where xi represents the i-th sample from a process and ωi represents its likelihood value
which is often taken to be the mean of the data points.

4| Research Questions

In Chapter 3 we have introduced the Transformer architecture and provided a survey of the
current state of the book success prediction problem. In the discussion, we underscored
the difficulty of classifying the successful-ness of books, and the limitations of modern
neural architectures with regard to processing very long sequential data.

The overarching goal that the research documented in this thesis paper has pursued is
how to best utilize BERT for the book success prediction task. In pursuit of this goal,
we set out to determine how BERT stacks up against strong baselines of results and see
if it can be used to move forward the current state of the art of book success prediction.
Keeping this goal as the primary focus of our work, we have sought to explore a set of
related subsidiary questions, which are listed in the following.

1. How critical is the choice of the base Transformer model for the target task?

Since the initial development of BERT, many extensions and modifications have been
proposed to address its known shortcomings. Many of these models, which still employ
transfer learning, claim superior performance over BERT on NLU benchmarks. These
claims have provided the motivation for to explore the feasibility of using these BERT-
evolved or modified models for our task and determine whether any of them may offer
significant performance advantages.

2. What is the best way to pretrain BERT (or BERT-like models) for the target task?

We have mentioned earlier that BERT and its dialects employ transfer learning, whereby
their millions of parameters are first trained via a masked language modeling task, before
being fine-tuned on the principal downstream task. The developers of BERT used unla-
beled data from BookCorpus with 800M words and English Wikipedia with 2500M words
for the training task. However, the distribution of style and lexicon between books and
Wikipedia articles are very different. Thus it intuitively makes sense to further pretrain
Bert using text from sources within the same domain as the actual classification task.

22 4| Research Questions

3. Can we preprocess the data to filter out bias and/or noise and improve the predic-
tion?

Bert’s limit of 512 input tokens, forces us to train on segments of the books at a time.
This causes us to have many training samples for each book which may introduce bias.
As we would like to use as much of the books as possible, we will explore techniques that
aim to mitigate this bias by preprocessing the dataset.

4. Can the target task execution benefit from carrying out the model training in a
multitask setting?

The motivation for exploring this question is drawn from prior research (Maharjan et. al
2017), in which the authors were able to improve book success prediction task execution
performance by designing the classifier to identify the book genre at the same time. We
have investigated if the same result may hold true in using BERT.

5. How can we best extend the BERT fine-tuning procedure to achieve good results in
tackling long-text classification?

With the goal of making a classifier operate on a more wholistic view of the books being
analyzed, we have investigated the possible ways in which we can aggregate the embed-
dings of the book chunks processed by BERT. We have explored two principal methods
for doing this:

• Train another sequential input neural network directly on the chunk embeddings.
• Compresses all of the segmented book embeddings into a fixed-sized book embedding

for each book and subsequently use them to train another classifier.

5| Our Approach

5.1. Preparing BERT for the task at hand

One of the main reasons for the widespread success of BERT is that it employs a transfer
learning approach. BERT comes out-of-the-box pretrained on 16GB of unstructured
English text data, thus it already has an internal understanding of the English language,
making it well suited to the processing of English datasets. While this inherent knowledge
of the English language is key to its success, we can, in theory, make the BERT model
even more suitable for our research objectives, by extending its pretraining onto the sub-
domain of English text more specifically pertaining to our task. In our case, we want our
BERT model to have a more nuanced understanding of literary prose and poetic verse.
This is the motivating idea behind the further pretraining of a transformer-based model
like BERT with the target domain of text. Furthermore, because we masked character
names in our dataset with the special token ’[CHARACTER]’ (the reason, for which, is
explained in Section 6.3.2), the further pretraining of our model is designed to make the
model properly learn the embedding of this newly added token.

5.1.1. Further Pretraining of BERT

We consider two pretraining approaches suggested by Sun et. al (2020):

1. Within-task pre-training in which BERT is further pretrained using the text from
the target task dataset.

2. In-domain pre-training, in which BERT is further pretrained using text from the
same domain as that of the text of the target task.

Within-task pre-training is the simplest because it does not require acquisition of further
textual data, whereas in-domain pre-training does. The advantage of in-domain pre-
training is that we can presumably use a lot more textual data, as long as we have sources
that come from similar distributions as the target dataset. We have explored both these
methods. For the latter, we constructed a new dataset ourselves. The details of this

24 5| Our Approach

dataset will be explained in Section 6.2.

5.1.2. Training in a Multitask Setting

We have also studied what effect training BERT in a multitask setting has on learning the
target task. Because the dataset provided by Maharjan is provided with associated genre
information, we can train BERT to predict the genre as well as the success label of the
books being analyzed. We note here that this type of multitask learning is different from
the one detailed in Sun et. al [30]. In their version of multitask learning, they studied
the effect of sharing the knowledge obtained from several related supervised tasks. Thus
they used multiple datasets that had similar target tasks (e.g. the sentiment classification
of Yelp reviews and IMDB reviews). In our case we use the same text to predict two
different labels (the genre and the success).

There are two ways in which we can set up the multitask learning approach.

1. First train BERT on the genre classification task and only then train BERT for
the target task of predicting the success label. This method can also be seen as a
special form of pretraining in which we perform sequence classification on a task
different from the target task using the same explanatory variables (i.e. the text).
Since we have not come across this methodology in the literature, we shall refer to
it as "other-task pretraining".

2. The perhaps more natural idea is to train BERT to predict both the genre and the
success label simultaneously. This idea is inspired by Maharjan et. al 2017 in which
they were able to improve their results with such a setting. We take the approach
one step further by introducing a hyperparameter α with range from 0 to 1. It
allows one to linearly weigh the importance of the genre classification versus the
success label classification when computing the loss function. α = 0 tells the model
to "care" only about the genre classification task whereas α = 1 tells the model to
"care" only about the success label classification task. The default value, α = 0.5

allows the model to equally weigh the importance of each.

5.2. Extending BERT to Sequences longer than 512

tokens

In discussion of the following topics, we find it useful to provide again a high-level depiction
of BERT (Figure 5.1), this time in the context of fine-tuning on a sequence classification

5| Our Approach 25

task. In this context, C, which was used for the next sentence prediction task in the
original pretraining, is now used to predict the success label of books (or more accurately,
segments of books).

Figure 5.1: BERT High-Level View for Sequence Classification (modified from [8])

There are several techniques one can employ to adapt BERT to work with longer sequences
than its internal limit of 512 tokens. The first and most obvious is to simply truncate the
data samples to their first 512 tokens. This method has two obvious problems:

26 5| Our Approach

• Most books are much longer than 512 tokens thus we are removing a lot of infor-
mation.

• The sample of each book comes exclusively from just the first couple of pages alone,
thus it will, most likely, not be representative of the book as a whole.

Khalifa et. al [16], in their experiment with BERT, split the books into segments (“chunks”),
and randomly sampled sentences from each chunk so that the sample would fit into the
512 token limit. While this may better represent the book as a whole, it is conditioned by
the randomndess of sampling and still relies on a very small subset of text for the training
task.

To overcome the second issue, one can choose to partition the books into segments of 512
tokens and then train BERT using each segment as a data sample. Despite the simplicity
of this approach, no prior work that we know of has employed this technique for the task
at hand. And although the idea is simple, it is complicated by having to make some
design decisions, whose effects need to be investigated, as a result of the chunking. The
specific design decisions that we have explored are:

• The choice for a max limit on the number of chunks used for each book to reduce
biases of longer books

• The choice of the sampling procedure

• The choice of a tokenization algorithm to split the books into chunks of 512 tokens

• How to coalesce the predictions on the segmented books to come up with the overall
prediction on the books

The first two choices presented are prompted by the fact that, because each book will
generate a variable number of samples, the resulting dataset that will be used for training
grossly violates the i.i.d. (independent and identically distributed) assumption usually
applied to the samples. One resulting issue is that within the Goodreads dataset that
we use for training, books can be split into from as little as one 512-token chunk to as
many as 100. Therefore, the books on the lower side of this spectrum can be severely
underrepresented in the analysis, with respect to the longer books. To compensate for
this, we have envisioned and applied a compromise approach, by which a middleground
between reducing the bias of longer books and using as much textual data to make a
prediction is sought by setting an upper limit to the number of chunks used for each
book. Moreover, we have conjectured that a more fine-grained control over the order in
which data points are sampled and fed to the model may be advantageous. A standard
random sampler, for example, may result in the model observing too many samples coming

5| Our Approach 27

from the same books in quick succession. This problem may be exacerbated by the large
discrepancy in the length of the books in our dataset. Therefore we have studied the
effect of "forcing" the model to process a segment of all the books before moving on to
the next batch of segments consisting, again, of one new segment from each book. We
refer to this sampler in later chapters as the "Sequential Book Sampler".

The choice of a tokenization chunking algorithm also requires some consideration. In our
experiments, we consider two different algorithms.

• Sentence tokenizer: In this algorithm, we first split the book into sentences and
then we tokenize the book sentence by sentence, fitting as many tokenized sentences
into a segment before it reaches the cap of 512 tokens. If the newly tokenized
sentence were to push the segment beyond the 512 token limit, it is instead inserted
into a new segment as the segment beginning.

• Overlap tokenizer: In this algorithm, we ignore sentence structure altogether.
The whole book gets tokenized as a whole and is segmented into chunks of 512
tokens with a variable overlap parameter. The overlap parameter, x, is set such
that the last x tokens from the previous segment appear as the first x tokens of the
subsequent segment.

Each algorithm comes with their own perceived advantages and disadvantages. The ad-
vantage of the sentence tokenizer is that a sentence cannot be split between two chunks,
thereby removing the risk of losing important contextual information within each sen-
tence. Apart from being more time consuming, the sentence tokenizer forces the model
to disregard any dependencies between neighboring sentences that were placed in adja-
cent segments. The overlap tokenizer, on the otherhand, minimizes this effect through
use of the overlap parameter. The disadvantage of the overlap tokenizer is that it in-
troduces another hyperparameter (the overlap parameter). Another middleground must
then be found between training the model on duplicated information and providing more
contextual information for each piece of text.

Another speculative issue that comes from training a model on sections of a sample at
a time, is that the model could theoretically overfit to repeating distinguishing words
that are unique to the sample. In the case of books, we have investigated whether the
model may overfit to character names. To explore this concern, we have experimented
with a preprocessing step in which we mask character names with the special keyword
’[CHARACTER]’. The details of this process is explained in Section 6.3.2.

We have also explored different ways in which the predictions on the segmented books

28 5| Our Approach

could be coalesced into one prediction for the entire book. Some simple approaches are:

1. Choose the majority class for each book.

2. Softmaxing the average of the logit scores from the output of the classification layer
(denoted by L in Figure 5.1) for each book

3. Similar to the previous method, but flipping the operations. Instead of doing what
2 does, this approach takes the average of the softmaxed logit scores of the segments
of each book (denoted by P in Figure 5.1).

The first method listed is the most obvious. However, it may not be the preferred choice
when working with misbalanced datasets. Moreover, for methods 2 and 3, when working
with misbalanced datasets, one may want to find a validated threshold instead of simply
using 0.5. Otherwise, the model may be at risk of overpredicting the majority class.

Beyond predicting books using the predictions on their chunks directly, we also explored
approaches which use BERT to extract embeddings for each chunk of the books that are
then used to train a second stage classifier. These methods are discussed in the following
section.

5.3. Second Stage Classifier

While we were able to achieve quite satisfactory results using the class predictions on the
segments directly, with that approach our model is not taking into consideration the book
as a whole. The approaches explained in this section aim to do just that, by working
with the compressed representations of book segments generated by BERT instead of
the actual book segments themselves. As an additional benefit of this process, we can
generate fixed-sized embeddings of the books as a whole. These can be further used to
train an SVM, shallow neural network, or more complex multimodal architectures like
Maharjan’s Genre-Aware Attention Model.

5.3.1. Simple Models Fit Over Average Segment Embeddings

The simplest idea to coalesce the chunk embeddings into fixed-sized book representations
is to simply take the average of the chunk embeddings for each book. These averages
which effectively serve as the book embeddings can then be used to fit a Support Vector
Machine (SVM) or a Shallow Neural Network.

5| Our Approach 29

5.3.2. Hierarchical Sequential Models

RoBERT (Recurrence over BERT) and ToBERT (Transformers over BERT) are two pos-
sible extensions of BERT studied by Pappagari et. al [25]. With RoBERT, an LSTM
layer is trained on the segment embeddings coming from BERT, whereas with ToBERT,
the encoder portion of a transformer is trained on the segment embeddings coming from
BERT.

In the original paper, the researchers trained these second-stage neural networks with the
embedding of the ’[CLS]’ token (denoted by C in Figure 5.1), as well as, using the class
probabilities (denoted by P in Figure 5.1). In our research, we use the embedding of
the ’[CLS]’ token exclusively as it makes the most intuitive sense and because the paper
claims much better performance using them, over using the class probabilities.

RoBERT

RoBERT (Recurrence over BERT) is an extension of BERT which trains one to many
LSTM layers over the segment embeddings.

With the LSTM unit as its core building block, we provide a graphical representation of
the RoBERT model in Figure 5.2. Here, X0 to Xn represent the segment embeddings
that have already been extracted from BERT.

30 5| Our Approach

Figure 5.2: RoBERT High-Level Architecture

ToBERT

ToBERT (Transformers over BERT) is another possible extension of BERT, perhaps the
most natural as it uses the same neural architecture as BERT: the encoder portion of
the transformer. With this model, the same self-attention mechanism that BERT uses
(explained in Section 3.1.2) is used to allow the segments of each book to attend to
one another. A key difference between ToBERT and RoBERT is that RoBERT uses a
left-to-right training paradigm allowing for the positional information of each segment
to be ingrained in the architecture. Transformers, on the other hand, are not sequential
in nature and on their own, lose all positional information. To overcome this issue,
transformer architectures inject positional information in the form of positional encodings.
This is done by adding these positional encodings to the input embeddings (which in the

5| Our Approach 31

case of ToBERT are just the chunk embeddings themselves). In our implementation of
ToBERT, we use the same sine and cosine functions that were used in the original paper
[32]:

PEpos,2i = sin(pos/100002i/dmodel)

PEpos,2i+1 = cos(pos/100002i/dmodel)
(5.1)

where pos is the position of the chunk and i is the dimension in the chunk. The authors
justification for this function is that "it would allow the model to easily learn to attend
by relative positions, since for any fixed offset k, PEpos+k can be represented as a linear
function of PEpos. [32]"

In our experiments, we have tested the computational performance both with and without
positional encodings.

5.3.3. Multimodal Network

As our world delves more and more into the big data era, the trend of end-to-end deep
learning has become increasingly predominant. End-to-end deep learning is the concept
of using neural networks to find a hypothesis function that directly maps the inputs to the
output. However, in order for end-to-end deep learning to outperform the more classical
approach of using handcrafted features, one typically needs a large quantity of data. Since
the dataset we use to assess our classifiers contains only 1003 samples, we suspect that
additional handcrafted representations can further boost performance. Moreover, because
our data samples are very long, current textual end-to-end deep learning methods are not
able to effectively consider the whole text. As a result, we have conducted experiments
that incorporate our neural features and handcrafted features together through use of
multimodal networks.

Multimodal networks are a type of heterogenous artificial neural network that are able to
encapsulate multiple and different representations of the data. Unlike other multimodal
architectures which aim to use data coming from different sources (e.g. text, sound,
pictures, etc.), the features that we will make use of are derived from the text of the
books alone. Nonetheless, different textual features may provide varying insights into
the data as each has distinct statistical properties. Moreover, a system may benefit from
learning joint representations of these different modalities.

In this subsection, we will provide a discussion of the different handcrafted features and
neural features that we have adopted, and the architectures of the multimodal networks

32 5| Our Approach

with which we have conducted our experiments.

Handcrafted Text Features

Below, we divide the handcrafted features into five aspects of linguistic styles. The hand-
crafted features aim to represent these aspects in a purely quantitative count-based way.
The features chosen are those also used in prior work ([2], [19]).

(I) Constituents: To quantify the syntactic style that the books were written in, we
compute the normalized counts of the clausal tags in the parse tree of each book.
These tags correspond to ′SBAR′, ′SQ′, ′SBARQ′, ′SINV ′, and ′S ′. 1

(II) Lexical: The goal of lexical features is to correlate the vocabulary in the book
to its success. For this purpose, we use char n-grams with term frequency-inverse
document frequency (TF-IDF) as the weighting scheme.

(III) Readability: Readability metrics aim to quantify how easy the book is to read.
One can imagine that a book with a simple style has the opportunity to appeal to
a larger audience and this may have an effect on its success. In fact, Khalifa et al.
were able to improve the performance of their neural network by a margin of five
points on the weighted F1 metric by incorporating readability metrics. [16]. We use
readability metrics calculated in different ways, and their mean normalized values
for training. 2

(IV) Sentiment: We use SentiWordNet 3.0 [3] to compute the average sentiment score
across the entire document. SentiWordNet defines a way to quantitatively ex-tract
the polarity, sensitivity, attention, pleasantness, and aptitude from sentences. We
compute the average of these scores over the sentences for each book, exploring the
hypothesis that the average mood of the book may provide some indication of its
success.

(V) Writing Density: We hypothesize that metrics providing insight into the length
of the book may aid in the prediction task. For example, perhaps readers may
struggle to get through long books, thus making them less successful. To this effect,
we have computed metrics such as the number of words and characters. We also
have computed metrics that give a sense of how dense or complex the writing is (a
type of metric similar to but more straightforward than the readability metrics).
These metrics include average word length, words per sentence, sentence length,
and number of words in the book vocabulary.

1Please see A.1 for the meaning of these tags
2Please see A.2 for a list of the readability metrics used along with their equations

5| Our Approach 33

Neural Features

Since BERT is the focus of this thesis, its book features can be expected to be the most
prominent among all others. However, we have also made use of other neural features
that permit a different approach to be taken in developing representations of our books.

(I) BERT Features: We generate book embeddings from our BERT-based model
using the same approach described in Section 5.3.1.

(II) Doc2Vec (DMM) Features: We use Doc2Vec [17] to train a distributive mem-
ory (DM) model with a summing of context word vectors (DMM) for 50 epochs.
Doc2Vec is a neural network algorithm that learns fixed-length feature representa-
tions for variable length pieces of text. These feature representations were trained
to best predict words in the document being considered. Doc2Vec has a few dif-
ferent configurations. We adopted DMM per the findings of the research done by
Maharjan et. al [19] who found this setting to be the most beneficial. For more
information about Doc2Vec, we refer the reader to the original paper [17].

Feedforward Standard Concatenation

To fuse together the different features we have gathered from our books, we first took a
very simple approach. We designed a classical feedforward neural network in which each
set of features pertaining to the same type are fed through their own feed-forward network
(1-2 layers in depth depending on feature size), and are then concatenated together and
passed to a classification head. The network is then trained end-to-end. Since our dataset
contains only about 1000 samples, we opted to keep the network relatively shallow. This
network provides us with a term of comparison with the more complex Genre-Aware
Attention model.

34 5| Our Approach

Figure 5.3: Feedforward Standard Concatenation

Figure 5.3 is a schema of our Feedforward Standard Concatenation network where Xi rep-
resents the i-th set of features used to train the network (e.g. BERT features, readability
metrics, char-5-grams, etc.).

Genre-Aware Attention Model

The genre-aware attention model developed by Maharjan et al. [21] holds the state-of-
the-art performance on the Goodreads dataset. For the actual training, they used all the
best features from each category where ’best’ is determined by that feature’s performance
when training the network in isolation. Their results have provided proof that a classifier
has much to gain from features encapsulating specific aspects of the dataset.

The Genre-Aware Attention Model is more complex than the previously presented multi-
modal network for two main reasons:

• The model learns weights of how much "attention" it should provide to each feature.

• The model learns a genre embedding that gets baked into the overall book embed-
ding.

In Figure 5.4 below, we show the model schematic provided in the original paper [21].

5| Our Approach 35

Figure 5.4: Genre-Aware Attention Model [21]

hi = selu(Whxi + bh)

g = genre×Wg

score(hi, g) = vT selu(Wahi + g + ba)

αi =
exp(score(hi · g))∑
i′ exp(score(hi′ , g))

r =
∑
i

αihi

p̂ = σ(Wcr + bc)

(5.2a)

(5.2b)

(5.2c)

(5.2d)

(5.2e)

(5.2f)

As in the model presented earlier, in Figure 5.4, xi represents the feature representations
coming from the i-th modality. As the features have different dimensions, they are first
projected into a space with the same dimensions via a dense layer (not formulated above).

36 5| Our Approach

Then they are each passed through the same linear layer with a selu activation (5.2a).
At the same time, we use the one-hot genre encoded vector to retrieve the learned genre
embedding (5.2b). The feature embeddings at this stage (hi) are then passed through
another linear layer that bakes together the genre embeddings (5.2c). The outputs are
then passed through a softmax function to get the attention weights (5.2d) which are used
to incorporate the appropriate fraction of information from each feature (5.2e). At this
point, the learned genre embedding is optionally concatenated to r before it is passed to
a non-linear layer with sigmoid activation to obtain the class probabilities (5.2f).

6| Datasets

In this chapter, we present the datasets used and the various preprocessing steps imple-
mented to prepare them for utilization in model training. In particular, we discuss the
dataset provided by Maharjan et. al [19] and the dataset we have procured ourselves.
The dataset created by Maharjan et. al is used to both pretrain BERT and assess the
performance of our classifiers, allowing us to compare our results with prior work. The
dataset we assembled ourselves, on the otherhand, was used strictly to further pretrain
BERT.

All datasets discussed used Project Gutenberg, an online library of over 60,000 books that
are in the public domain. Thus, most books on Project Gutenberg are old books whose
copyright has expired.

6.1. Dataset for the Classification Task

As just mentioned, we have used the dataset catered by Maharjan et. al to conduct our
experiments and assess our results in comparison with prior research. We refer to this
dataset as the "Goodreads Maharjan" dataset. Ashok et. al also proposed a dataset,
however, their criteria for success depended on the download count each book had on
Project Gutenberg. Maharjan et. al’s dataset, on the otherhand, uses the book ratings
from Goodreads, which we deem to be a more viable measure of the success of the books.
Goodreads is a social-cataloging website that allows users to search its database of books
and write reviews. The site is generally regarded as an online community of bibliophiles
with the main focus being that of discussing books and getting book recommendations.
Because of the assumption made on the demographic of its users, and the fact that the
reviews pertain solely to the books themselves, we believe that the data is less noisy than
other online alternatives. As a comparative example on this aspect, in Amazon reviews
the users may leave a negative book purchase rating for reasons that do not pertain to
the content of the book, but to aspects of the purchase itself, such as the shipping being
slow, or the book being delivered in a damaged condition.

38 6| Datasets

In an effort to reduce noise, Maharjan et. al used only books that have had at least 10
ratings. Moreover, in order to reduce authorship bias, they allowed an author to appear
in a maximum of two books in the dataset. They used an average rating of 3.5 as the
threshold for success: i.e., if its average rating was less than 3.5, a book was labeled as
unsuccessful; otherwise, it was labeled as successful. In the end, they used 1003 books
across 8 different genres. In Table 6.1, we provide the distribution of both the genre and
the success label in the dataset.

Genre Unsuccessful Successful Total

Detective Mystery 60 46 106
Drama 29 70 99
Fiction 30 81 111

Historical Fiction 16 65 81
Love Stories 20 60 80

Poetry 23 158 181
Science Fiction 48 39 87
Short Stories 123 135 258

Total 349 654 1003

Table 6.1: Genre Distribution of Goodreads Maharjan Dataset

As the length and the variance in length of the books is a cumbersome aspect that needs
to be overcome when applying BERT to the dataset, we show in Figure 6.1 histograms of
the length of the books both as a number of words and as a number of 512-token chunks
(using the BERT tokenizer with no overlap).

(a) Word Count Histogram (b) Chunk Count Histogram

Figure 6.1: Length Histograms for Preprocessed Goodreads Dataset

We note that the lengths depicted in Figure 6.1 above are for the books after they have

6| Datasets 39

already been trimmed by the preprocessing step discussed in 6.3.1.

6.2. Datasets for Pre-training BERT

As part of our work, we looked into building a larger version of the Goodreads Maharjan
dataset using the same resources (Project Gutenberg and Goodreads). However after
filtering candidate selections to remove duplicate authors, books with too few ratings,
and books in an undesirable genre, we were left with too few samples to justify creating
another classification dataset. Instead, we opted to develop a dataset without labels,
to be used strictly for the further pretraining of BERT in an in-domain context. The
goal is simply to gather a large quantity of textual data whose distribution is similar to
that of the dataset used for the classification task. To satisfy this criteria, we selected
books pertaining to the genres contained in the Goodreads Maharjan dataset. We note
that, since we are using the same source (Project Gutenberg) as the Goodreads Maharjan
dataset, the books in our dataset are still older books that are in the public domain.

Since Project Gutenberg does not include genre information directly, we have used the
genre labeling scraped from Goodreads. We opted to simulate Maharjan et. al’s filtering
process of selecting only the books that pertained to the eight genres previously listed in
Table 6.1, and allowing each author to appear a maximum of two times. For more details
regarding the procurement of this dataset, please see appendix B.1. In the table below,
you can see our distribution of genres.

Genre Count

Detective Mystery 181
Drama 52
Fiction 1254

Historical Fiction 108
Love Stories 74

Poetry 410
Science Fiction 326
Short Stories 203

Total 2608

Table 6.2: Genre Distribution of pg-2600 Dataset

With a total of 2608 books, we were able to increase the amount of potential pretraining
by 260%, going from a within-task pretraining schema to an in-domain pretraining one.
We refer to this dataset in later sections as the "pg-2600 dataset" (Project Gutenberg
2600 books).

40 6| Datasets

6.3. Dataset Preprocessing

6.3.1. Noise Trimming

The text files provided by Project Gutenberg contain a lot of information that do not
pertain to the books themselves. Via manual inspection of the files, we noticed that
many books began with a copyright note, information about the translation, a note about
the author, an ASCII cover page, the table of contents etc. We wanted to ensure that our
classifiers were trained on the actual literary prose alone (or verse, in the case of poetry).
To achieve this, we have investigated the following two approaches to prune the unwanted
information from our dataset.

1. Noticing that the books often began after a line stating only the title of the book,
the first approach considered was to search for the first occurrence of the book title
and remove all the text that came before.

2. We also noticed that the frequency of the newline characters changed greatly from
the beginning of the text files and when the book actually began. Thus, the second
approach was based on the use of a simple change detection algorithm to identify
exactly where the newline character frequency changes and prune the text before it.

Since the latter method, although still simple, is more sophisticated, we explain its details
in the following subsection.

Change Detection of Newline Characters

In order to effectively detect the change in the frequency of newline characters, we em-
ployed a classical CUSUM [24] sequential analysis technique. We were interested in de-
tecting a "negative anomaly" as the frequency of our newline characters starts off high
and then is significaly reduced once the book actually starts. Referring to equation 3.5,
in our formulation, xi represents the positional difference between two subsequent new-
line characters and wi is simply taken as the mean of all the xi’s. The perceived change
point occurs at the index of the minimum of the S’s. This can be intuitevly visualized
by making a plot of the values of S. Also, since we can be quite certain that the change
occurs early on, we only look for a change in the first 20% of the text file. In Figure 6.2,
we provide a sample plot of the change point in newline frequencies for one of the books.
The red line marks a distinct point in which the frequency of newline characters changes.

6| Datasets 41

Figure 6.2: Change Point Detection for ’In the Shadow of the Glen’ by J.M. Synge

To assess and compare the results of the change detection approach with that of the book
title search, we manually inspected the performance of each method on a random sample
of the same 50 books. We classify the performance into three categories:

• Excellent: The trimming occurred exactly where desired.

• Suboptimal: The trimming occurred within a couple sentences of where desired.

• Poor: A good chunk (more than 3-4 sentences) of the book was erroneously trimmed
or a significant amount of the noise was kept.

Performance
Method Excellent Suboptimal Poor

Title Search 22 15 14
Newline Freq. 44 3 4

Table 6.3: Performance Count of Trimming Methods

As the change point detection algorithm performed quite well on these 50 samples, and
much better than the title search method, we adopted it to trim our datasets.

42 6| Datasets

6.3.2. Masking Character Names

Because our books need to be separated into segments of 512 tokens for the training
of BERT, we deemed likely that the model may overfit to unique book identifiers. In
particular, we feared that the model may choose to give an undue amount of attention
to character names while ignoring more important qualities such as the book style or
vocabulary choice. Before committing to masking the character names, we first checked
that character names are indeed highly discriminative between the two classes by using
Pointwise Mutual Information.

We set the smoothing factor, α, to 10 and Pointwise Mutual Information confirms our
suspicions that character names are highly discriminative between the two classes. In
Table 6.4, we provide the most discriminative words for each class along with their corre-
sponding PMI scores. As we can see, they seem to be almost exclusively character names.
Please note that the PMI scores are significant in terms of understanding the presence of
a word in a given class, however their numerical value can only be used for comparing the
discriminating value of words within the same class, not across classes.

We proceeded then to explore the effect that masking character names has on training
BERT. To perform the character masking, we used a BERT-large model that has already
been fine-tuned on the named entity recognition task using the CoNLL-2003 Dataset.
The model was made available out-of-the-box by Huggingface. To perform the actual
character masking, we passed all books in our dataset through the model, sentence by
sentence, and for each word or group of words that were understood to be a ’Person’
entity, we masked it with the key word ’[CHARACTER]’.

We then used Pointwise Mutual Information on this further preprocessed dataset to gain
insight into the level of effect the character masking technique had on our books. In Table
6.5 we provide the most discriminative words in each class along with their corresponding
PMI scores for the character-masked dataset.

On inspection, one can see that a lot of the character names previously appearing in Table
6.4 are no longer present, thus providing evidence that the named-entity recognition model
used was effective. However, we noticed that character names were still, mostly, the most
discriminative words in our dataset; hence, the model was not able to detect all character
names.

6| Datasets 43

Successful Class Unsuccessful Class
Word PMI Score Word PMI Score

heav 0.4830 jonson 1.6915
thir 0.4746 doul 1.6911
vanslyperken 0.4697 forrester 1.6822
spake 0.4671 darrell 1.6798
daoud 0.4656 pemberton 1.6655
chad 0.4656 olof 1.6639
retief 0.4654 pepita 1.6632
hiawatha 0.4644 milner 1.6614
evelina 0.4621 dorriforth 1.6603
bernick 0.4617 parr 1.6472
jimmie 0.4611 hillcrist 1.6467
mosby 0.4601 mitchener 1.6467
smallbones 0.4598 rynason 1.6433
jerry 0.4588 garin 1.6433
troy 0.4579 lenora 1.6397
stockmann 0.4571 ransford 1.6391
artagnan 0.4560 theodora 1.6380
anna 0.4532 honath 1.6378
nattie 0.4528 petter 1.6371
gan 0.4525 kieran 1.6351
brett 0.4523 tarling 1.6337
cornelia 0.4500 norgate 1.6330
hilary 0.4494 heredith 1.6323
patty 0.4491 loudwater 1.6316
barney 0.4468 wycherly 1.6312

Table 6.4: 25 Most Discriminative Words for Each Class Before Character Masking Using
PMI Metric

44 6| Datasets

Successful Class Unsuccessful Class
Word PMI Score Word PMI Score

heav 0.4787 doul 1.6713
thir 0.4743 jonson 1.6643
spake 0.4669 hillcrist 1.6362
troy 0.4565 winsor 1.6282
gan 0.4534 ermyntrude 1.6232
oedipus 0.4466 royster 1.6158
dicaeopolis 0.4453 cler 1.6117
tesman 0.4398 strammfest 1.6073
anna 0.4388 ventidius 1.6062
lysistrata 0.4299 mitchener 1.5976
wor 0.4268 inca 1.5966
pg 0.4246 mommy 1.5859
solness 0.4246 lof 1.5815
keith 0.4240 balsquith 1.5781
barabas 0.4240 rling 1.5764
wallenstein 0.4216 levis 1.5738
lhari 0.4216 darrell 1.5728
thro 0.4196 pacha 1.5722
yow 0.4194 lenora 1.5710
repeller 0.4178 _king_ 1.5652
spear 0.4174 dorriforth 1.5611
morn 0.4153 marquise 1.5599
som 0.4141 mos 1.5586
wel 0.4135 hornblower 1.5568
yo 0.4128 timmy 1.5564

Table 6.5: 25 Most Discriminative Words for Each Class After Character Masking Using
PMI Metric

7| Experiments

As with many deep learning projects, in a task like the one at hand one can quickly be
overwhelmed by the number of decisions that need to be made and the combinatorial
number of permutations of those decisions that can theoretically be explored. This is
especially the case with our setup, in which we are faced with many task-specific decisions,
beyond the standard model design decisions common to all deep learning or machine
learning projects. The list below serves to better identify and define this problem in our
context. In the compilation of the list, we distinguish between first and second stage
classifiers, whereby the former concerns the training of our BERT (or BERT-like) model
and the latter concerns the training of models that make use of embeddings generated
from the former.

Decisions concerning the development of the first stage classifier:

• Whether to use the character-masked dataset or not

• Choice of the base transformer model (BERT, DistilBERT, Electra, Roberta, etc.)

• What kind of further pretraining should be done (None, In-domain, Within-task,
Both In-domain and Within-task)

• Should the model be trained in a single-task setting or a multi-task setting with the
genre?

• Whether to use the sentence tokenizer or the overlap tokenizer

– In case of the overlap tokenizer, how much overlap?

• What is the max number of segments allowable for each book

For the development of the second stage classifier:

• Which first stage classifier should be used to generate our BERT-based neural em-
beddings

• For the training of the SVM / Shallow NN, how can we best generate book embed-
dings from their chunk embeddings

46 7| Experiments

• For RoBERT and ToBERT, how much overlap should be used to generate the chunk
embeddings

• For multimodal approaches, which set of features should we use together with our
BERT-based embeddings

Note that in addition to the decisions in this list, we also had to address the complexity of
tuning standard model hyperparameters that define the widths and depths of the model
architectures at each layer, and the learning processes of these models.

To overcome the complexity of the questions identified in this section, we adopted a very
straight-forward approach, which consisted of working on one issue at a time, keeping
all other hyperparameters fixed to a default value. Once we had quantified which hy-
perparameter value or setting works best for that issue we used it in the training of our
final model. For the most part, for sake of simplicity we assumed independence of these
tuning variables. However, there are certain cases where this assumption of independence
is inappropriate. For example, the decisions of choosing the masked character dataset or
not and of choosing whether to further pretrain the model or not are clearly dependent
on one another. By adding a special token to denote the presence of a character in the
character-masked dataset, further pretraining is needed to learn the embedding of this
token. In such cases, we explored these interdependencies.

The overall structure of this chapter begins with a description of our experimental setup
and baselines. Following that are our experiments and results of the first and second stage
classifiers respectively.

7.1. Setup for Conducting Experiments

Google Colab

For our experiments we used Google Colab which provides a Jupyter notebook envi-
ronment that runs on Google’s servers. It is very popular among Machine Learning
researchers as it grants users access to Google’s powerful GPUs. Most of our models were
trained on a Tesla T4 or a Tesla P100 depending on what was allocated to us at the time
of training.

Train, Validation, and Test Splits

Before carrying out our experiments, we first set up a fixed training, validation, and
test split on the Goodreads Dataset. Given the magnitude of the BERT model and the

7| Experiments 47

limited computation resources available to us, we opted to use hold-out validation to
assess our models even though k-fold validation is more statistically reliable. In addition
to the dataset, Maharjan et al.’s work also provided us with the information defining their
70/30 train and test dataset split, which maintains the distribution of classes per genre.
We used the same split so that we have a consistent basis of comparison with prior work.

We have then taken the train set and made an 80/20 split to get our true training set
and validation set. As we want our validation set to have a similar distribution to that
of the test set, we ensure that the distribution of genres and success labels in each genre
is roughly the same across the two sets.

Our training set, validation set, and test set have 555, 139, and 290 samples respectively.

Hyperparameter Tuning

For the standard hyperparameters that pertain to the model architecture or to the learn-
ing process, we performed hyperparameter tuning using the "Median Stopping Rule"
scheduler on all of our neural networks. The Median Stopping Rule employs the simple
strategy of ending a training process if its performance falls below the median of all other
concurrent trials at similar points in time [10]. For the training of the stage 1 classi-
fiers, we only performed hyperparameter tuning for the very last step; that is after we
had already conducted experiments to decide all other non task-specific hyperparameters
(what version of the preprocessed dataset we will use, which tokenizer we will use, etc.).
Ideally, we would perform hyperparameter tuning at all steps, however transformer-based
language models are typically very large and we did not have the resources to perform
such thorough experimentation. When we did not perform hyperparameter tuning, we
used the default values that are common throughout the literature [8].

7.2. Evaluation Metric

In the evaluation of our models we have used the weighted F1-score (w-F1). Since the
dataset is misbalanced, the weighted F1 score is used to give each class an equal repre-
sentation in the metric.

This choice follows the example in the original paper where the Goodreads dataset was
first described and used [19]. Thus, we also chose it to allow for easy comparison with
prior work.

48 7| Experiments

7.3. Classifiers for Comparison

Before beginning the discussion on our experiments and their performances, it is first im-
portant to establish baseline classifiers and the state-of-the-art classifier. These baselines
provide comparative meaning to the results our classifiers obtain. They give us a basis
of comparison to understand if our models are learning at all or if they can generalize
better than simpler approaches. Moreover, to gain insight into the competitiveness of
our models, we were interested in comparing their performances with the best models
documented thus far in the literature.

"Dummy" Baseline Classifiers

Comparing our performances to that of the most naïve of classifiers is useful to ensure
that our models are even capable of learning at all.

We have used two dummy classifiers:

• Most Frequent: always predicts the most frequent label in the training set

• Stratified: generates random predictions in accordance with the training set’s class
distribution

Strong Baseline Classifiers

The "dummy" classifiers show us if our models are capable of generalizing at all, but
they do not provide us any insight as to whether our models are actually any good. For
this reason, we also considered the performance of more classical classifiers. Additionally,
we included a simple approach, using BERT as a baseline to gain inisight as to whether
the BERT training procedures we have investigated are worthwhile. These baselines have
provided us with an indication as to whether our more sophisticated neural architectures
and training approaches are effective.

The simple classifiers that we have used as baselines are the following:

• Bag of Words Logistic Regression: Extracted features using a simple bag of
words model and used them to train a logistic regression classifier with L2 regulariza-
tion. We used 5-fold cross-validation with grid search to fine-tune the regularization
strength.

• Tf-idf Logistic Regression: Extracted features using a Tf-Idf vectorizer and used
them to train a logistic regression classifier with L2 regularization. We used 5-fold

7| Experiments 49

cross-validation with grid search to fine-tune the regularization strength.

• Doc2Vec SVM We used Doc2Vec [17] to generate embeddings for our documents
and then trained a hyperparameter-tuned SVM. For this we used the same Doc2Vec
configuration explained in Section 5.3.3.

• BERT One Randomized Chunk [16]: Khalifa et al. fine-tuned a BERT un-
cased base model with one segment per book. To generate the segment, they split
each book into 50 chunks and randomly sampled a sentence from each to get 50
representative sentences of the whole book.

• Word2Vec RNN [19]: Maharjan et al. developed a strategy to overcome RNNs
difficulty with representing long sequences. They split each book into chunks of
128 sentences and represented each sentence with the average of the Word2Vec [23]
representation of its constituent words. Each chunk was used as a sample to train
the RNN in a multitask setting with the labels deriving from the corresponding
book.

State-of-the-Art Classifier

We were also of course interested in seeing how our models would stack up to the best
one studied so far.

• Genre-Aware Attention (all best handcrafted + RNN) [21]: Maharjan et al.
trained their genre-aware attention model with the genre embeddings concatenated
to the feature embeddings (’r’ in 5.2e). They used the following features to achieve
the state-of-the-art results:

– Word Bigram

– 2 Skip 2 gram

– Char 3 gram

– Typed mid-word 3 gram

– Clausal

– Writing Density (WR)

– Sentic Concepts and Scores (SCS)

– Book2Vec (based off of Doc2Vec [17])

– RNN

50 7| Experiments

Some of these features are the same as the ones we have used and described in 5.3.3.

Performance of Baseline and SotA Classifiers

Table 7.1 presents the performance of these baseline and state of the art classifiers on the
Goodreads dataset by means of the weighted F1 score.

Baseline W-F1 on Test Set
Dummy Most Frequent 0.506

Stratified 0.542
Strong BERT One Randomized Chunk 0.660

Bag of Words Logistic Regression 0.665
Tf-idf Logistic Regression 0.670
Word2Vec RNN 0.686
Doc2Vec SVM 0.691

SotA Genre-Aware Attention 0.754

Table 7.1: Performance of Baselines

The Most Frequent classifier performs at just about 50% despite there being many more
positive samples than negative ones. This is because the weighted F1 metrics values the
classification of the negative samples more than the classification of positive samples.
For this same reason, the stratified dummy classifier outperfoms the most frequent one.
Apart from "BERT One Randomized Chunk", the other "strong" baselines we used adopt
more classical approaches to sequence classification before the advent of the transformer
model. An especially important baseline is the Word2Vec RNN. As we continue to see
the transformer architecture replace RNNs in more and more tasks, we were interested
in determining whether our transformer-based model can outperform RNNs in the book
likeability prediction task as well. The "BERT One Randomized Chunk" baseline gives
an indication of the performance of a transformer-based model adopting a very simple
approach.

7.4. First Stage Classifiers

We present here our analysis and study of each design decision listed in the beginning of
this chapter for the first stage classifiers. If not otherwise mentioned in the description
of each experiment, the default hyperparameters that we use at each iteration are the
following:

7| Experiments 51

• DistilBert as Base Transformer Model

• Use of standard dataset (e.g. not character-masked)

• Single task (model is not trained to predict the genre)

• Use of overlap tokenizer with 0 overlap

• No segment max limit

• Random sampler

• Learning rate of 5× 10−5 as recommended by the original paper [8]

7.4.1. Comparing preprocessed datasets

We found important to first decide what version of the dataset we would use for all further
experiments. In particular, we trained a BERT-base-uncased model with the character-
masked version of the dataset and without. Both versions of the dataset include the
trimming of the noise as explained in 6.3.1. As mentioned in the introduction of this
chapter, the decision of training on the character-masked version of the dataset or not
cannot be completely disentangled from the decision of whether to further pretrain our
model on the masked-language modeling task or not. This is because BERT first converts
the tokens into fixed-sized vector representations in the embedding layer before they are
passed to the attention layers, as can be visualized in the depiction of the transformer
architecture in Figure 3.2. Thus, when using the character-masked dataset, we were
introducing a new token (more precisely, the token corresponding to the string ’[CHAR-
ACTER]’) that would be randomly initialized. In order for the model to more effectively
incorporate this token in the downstream task, we further pretrained the model on the
masked language model task using a corpus that appropriately uses this keyword.

In order to study these dependencies and to have a more fair basis of comparison, we
compared the results of a BERT model (base, uncased), fine-tuned on the character-
masked dataset and the trimmed dataset, with both in-domain further pretraining and
no pretraining. Table 7.2 below shows our results.

The Table 7.2 results do not provide conclusive evidence that character masking provides
reasonable benefit to the training task. One would need to perform k-fold cross validation
or obtain a larger dataset to draw more confident conclusions. However, since the perfor-
mance on the validation set is best (albeit slightly) when adopting character-masking with
in-domain pretraining, we opted to use this variation of the dataset in our final model.

52 7| Experiments

Model Val. (w-F1) Test (w-F1)
No Character-Masking and
no Further Pretraining

0.7363 0.6289

No Character-Masking with
In-Domain Pretraining

0.7270 0.6684

Character-Masking without
Further Pretraining

0.7098 0.6758

Character-Masking with In-
Domain Pretraining

0.7374 0.6690

Table 7.2: W-F1 Scores Comparing Preprocessed Datasets

7.4.2. Deciding which transformer model to use as the founda-

tion

Althougth BERT has to some extent become the trademark name for encoder-based
transformer models, there are many variations of BERT that have been developed in order
to address specific pitfalls of BERT. Many of these models have claimed state-of-the-art
results on various datasets, motivating us to study their applicability to our task. We
took into consideration those model developments that appeared to be the most promising.
These are the models presented in Section 3.1.3 (RoBERTa, DistilBERT, Electra, BigBird,
Longformer). Since BigBird and Longformer are intended to be used with sequence lengths
greater than 512, in their use we increased the length of our segments to 2048 and 1024
tokens respectively.

Model Num Parameters Val. (w-F1) Test (w-F1)
Longformer 149M 0.5104 0.5093
BigBird 127M 0.5117 0.5079
RoBERTa 125M 0.5980 0.5572
Bert (base) 110M 0.7363 0.6289
DistilRoBERTa 82M 0.7200 0.6243
DistilBERT 66M 0.7374 0.6607
Electra (small) 14M 0.7200 0.6643

Table 7.3: W-F1 Scores Comparing Preprocessed Datasets

Using the default hyperparameters, RoBERTa seems incapable of learning. We even tried
to train it for 10 epochs to see if it would show learning process, but without success.
Since the authors of RoBERTa claim that their model performs better than BERT in a
large number of standard NLP benchmarks, we made an exception to the aforementioned
note of keeping hyperparameters constant and tinkered with the learning rate. Despite
all efforts, we were not able to get RoBERTa to learn our problem to any satisfactory

7| Experiments 53

degree.

As quantified by the table above, we noticed similar issues with the models that make
use of sparse attention patterns like Longformer and BigBird. The issues with these
models were exacerbated by their substantially larger size over their transformer model
counterparts like Bert and RoBERTa. As a result, we were forced to work with a very
small batch size of 1 or 2 using the hardware mentioned in 7.1. This constraint is likely
to have contributed to the nonperformance of these models.

On the other hand of the spectrum, the smaller models seemed to perform quite well
on our task (Distil-RoBERTa, DistilBERT, Electra). Notably DistilRoBERTa, which
was designed with the intention of mimicking the behavior of RoBERTa using 30% less
parameters, performs quite well, in contrast with the full RoBERTa nonperformance.
We also witnessed a significantly better performance of DistilBERT in comparison to
its respective “father model” BERT. We attribute this to the fact that, given our small
dataset and the bias induced by generating multiple samples from the same document,
the training process is benefited by a smaller model with inherently more bias, which
makes the model less likely to overfit.

Since DistilBERT gets the best performance on our task, it was selected as the base model
of choice for the final stage 1 classifier.

7.4.3. Deciding whether to further pretrain our models or not

In a prior subsection, we studied the effects of masking the characters in our dataset. As
part of the study, we needed to further pretrain a model to learn a more appropriate em-
bedding for the special token we added in order to make possible a fairer comparison. The
results showed some slight indication that further pretraining may improve performance.
This subsection discusses the evidence obtained on the effect that further pretraining has
on our downstream task.

As mentioned in the background discussions, there are different ways in which one can
further pretrain our transformer model to prepare it for the downstream task. The stan-
dard approaches are to continue training by means of the masked-language modeling task
via a within-task and in-domain masked schema.

In the experiment conducted, we compared the performances of using no pretraining,
within-task pretraining, in-domain pretraining, and within-task after in-domain pretrain-
ing. For both within-task and in-domain, we trained our model on the masked-language
modeling task for one epoch and did not use a validation set. We conducted our experi-

54 7| Experiments

ment using DistilBERT as the base model.

Model Val. (w-F1) Test (w-F1)
No Further Pretraining 0.7374 0.6660
Within-Task Pretraining 0.7497 0.6689
In-Domain Pretraining 0.7318 0.6772
Within-Task after In-
Domain Pretraining

0.7460 0.6748

Table 7.4: W-F1 Scores Comparing Pretraining Methods

Although, the results shown in Table 7.4 are not entirely conclusive but they do suggest
that further pretraining with the within-task dataset is at least slightly beneficial for the
downstream task. Also, since in-domain pretraining seems to at least not hurt the perfor-
mance and the validation scores between in-domain and within-task after in-domain are
so similar, we decided to use the latter strategy when training our final model. Moreover,
we believe that the training on more data is beneficial to learning the embedding of the
special ’[CHARACTER]’ token that we added.

7.4.4. Deciding how to best incorporate the genre information

The experiment described in this section aimed to discover if the target task is benefitted
by having the model learn the genre of the text in addition to its success label. This
approach can be implemented in one of two ways. The first is to take an "other-task
pretraining" approach in which the model is trained first on the genre prediction task
and then on the success label task. The second is to train the network to simultaneously
predict the genre and the label.

Model Val. (w-F1) Test (w-F1)
No genre incorporation 0.7460 0.6748
Other-task Pretraining:
predict genre, then success
label

0.7415 0.6791

Multitask: predict genre
and success simultaneously
(α = 0.5)

0.7644 0.6732

Table 7.5: W-F1 Scores Comparing Genre Incorporation Methods 1

1 The experiment was executed using a DistilBERT model pretrained using both in-domain and within-

task with the character-masked dataset.

7| Experiments 55

The scores on the validation set, shown in Table 7.5, seem to indicate that training in a
multitask setting is beneficial to the target task. As the multitask setting introduces the
new hyperparameter α, this was included when we performed hyperparameter tuning.

7.4.5. Deciding how to segment our books

Inherent to the constraint of segmenting our books, to adhere to the memory limitations
of transformer models, comes the choice of how to best perform this segmentation. We
implemented and compared two different types of tokenizer algorithms (the sentence to-
kenizer and the overlap tokenizer) whose rationale has been provided in Section 5.2. In
summary description, the sentence tokenizer ensures that a sentence does not get split
between two chunks and the overlap tokenizer segments the books with a moving window
to allow a defined amount of overlap between two consecutive segments.

We compared the sentence tokenizer and the overlap tokenizer at four different values of
its associated overlap parameter (0, 50, 100, and 250 tokens). We used the character-
masked dataset and an out-of-the-box DistilBERT model trained in a single-task setting
to make our comparisons. We intentionally did not use a further pretrained model as we
did not want to introduce any potential bias towards the tokenization algorithm that was
used to further pretrain the model. Another aspect of this experiment worth noting is
that when using the model for prediction, one can choose a different overlap parameter
than the one originally used by DistilBERT for training. To keep things simple, we opted
to use the same overlap tokenizer for both training and prediction. That is, if the model
was trained with an overlap of 50 then inference was also executed using an overlap of 50.

Tokenizer Algorithm Overlap Amount Val. (w-F1) Test (w-F1)
Sentence Tokenizer NaN 0.7395 0.6760
Overlap Tokenizer 0 0.7374 0.6690
Overlap Tokenizer 50 0.7448 0.6605
Overlap Tokenizer 100 0.7326 0.6850

Table 7.6: W-F1 Scores Comparing Tokenizers

Definitive conclusions cannot be drawn from the experiment results, shown in Table 7.6.
This is because the highest score on the validation set corresponds to the lowest score on
the test set and vice versa. We have performed one more experiment in which we have
used the overlap tokenizer at different overlap values using the decisions already made in
the above experiments. Namely, we used a DistilBERT model in the multitask setting,
that was pretrained on both the within-task and in-domain masked language modeling
strategies.

56 7| Experiments

Tokenizer Algorithm Overlap Amount Val. (w-F1) Test (w-F1)
Overlap Tokenizer 0 0.7645 0.6702
Overlap Tokenizer 25 0.7774 0.6940
Overlap Tokenizer 50 0.7579 0.6773
Overlap Tokenizer 75 0.7644 0.6830
Overlap Tokenizer 100 0.7693 0.6912

Table 7.7: W-F1 Scores Comparing Tokenizers

The experiment results, shown in Table 7.7, suggest that a small amount of overlap may
be helpful to the target task, whereas adding a large overlap (50+) does not provide
any additional benefit. This result is in agreement with the findings of research by Joshi
et. al [15], although it appears to be in contrast with the design choices of other BERT
researchers [25], [29]. This discrepancy may suggest that the amount of optimal overlap
to be used is task dependent. Based on our results, we have used in going forward a small
overlap of 25.

7.4.6. Deciding how to best alleviate biases of long books

In conducting the above experiments, we noticed the unexpected trend constituted by
the validation loss increasing well before one epoch of the training data was processed. In
contrast with this finding in our task, in the original paper discussing BERT, the authors
found 2-4 epochs to be the optimal range when fine-tuning on the downstream task. We
conjecture that this difference in findings is due to the fact that we are splitting our
training data of 555 books into several segments each. As a result, the samples we use to
train the model are not independent and identically distributed. The great dependence
among subsets of these samples thus causes the model to overfit before one epoch of
the training data has passed. By the same token, another related issue is that longer
books will generate more samples and thus have an overrepresentation with respect to the
shorter books.

The first remedy we applied in order to alleviate these issues is to set a limit to the max
number of segments any book can have during the training procedure (starting from the
beginning of the book). In Table 7.8 below, we provide the results for using no limit; and
a max segment limit of 40, 35, 30, 25, 20, and 1 segment(s).

∗ All results were obtained using a pretrained (within-task and in-domain) DistilBERT model pretrained

using character-masking in the multitask setting.

7| Experiments 57

Max # of Segments Val. (w-F1) Test (w-F1)
No Limit 0.7774 0.6940
40 0.7674 0.6777
35 0.7710 0.6613
30 0.7792 0.7028
25 0.7698 0.6990
20 0.7725 0.6849
1 0.7395 0.6537

Table 7.8: W-F1 Scores Comparing Max Segment Lengths

The results in Table 7.8 indicate that there is not a significant advantage between using the
whole book or setting a limit of 20 segments (and everything inbetween). One troublesome
result is that we could still obtain relatively good results (within just a few points of the
other experiments) when we only used the first segment of each book. This observation
is suggesting that perhaps we were not feeding the training data to the model in an
appropriate way.

By this initial insight we were thus motivated to develop and test the "Sequential Book
Sampler" approach discussed in Section 5.2. The key concept in this approach is that the
model is driven to first see a segment from every book in the training set before seeing
a segment of the same book again. This sampling procedure can be used both with and
without replacement. When we used replacement, segments of shorter books may appear
multiple times during the training process. We report our related results in Table 7.9
below.

Using Replacement Val. (w-F1) Test (w-F1)
No Replacement 0.7776 0.7214
Replacement of
2 (A segment
can appear up to
two times)

0.7693 0.6964

Table 7.9: W-F1 Scores of Sequential Book Sampler Approaches

We note that we did get a particularly high score on the test when using the Sequential
Book Sampler without replacement. However, the score on the validation set does not
quite confirm this improvement.

58 7| Experiments

7.4.7. Hyperparameter Tuning

In the preceding subsections we have studied several model design choices, in separate
independent experiments for each. The results of those experiments have led us to make
the following model design decisions:

• Use of the character-masked dataset

• Use of the DistilBERT model as our base transformer

• Pretraining of our model using datasets corresponding to both in-domain and within-
task pretraining

• Training the model in a multitask setting (both genre and success label)

• Use of the overlap tokenizer with an overlap of 25

• Setting a max threshold of 30 segments per book

Having made these design decisions, we then perform a hyperparameter search on the
hyperparameters that define the learning process. In particular, we did a hyperparameter
search over the learning rate; the dropout rate; the attention dropout rate; and our multi-
task loss weight, α.

The following list represents the range of values that we explore for each of these hyper-
parameters:

Learning Rate (lr) [1× 10−5, 1× 10−4]

Dropout Rate (dr) [0.1, 0.4]

Attention Dropout Rate (adr) [0.1, 0.4]

Multi-task Weight, α [0.3, 0.7]

We execute 10 trials using a scheduler with the median stopping rule. Below, in Table 7.10
we show the configuration and the results of the best performing trial on the validation
set.

lr dr adr α Val. (w-F1) Test. (w-F1)
3.969× 10−5 0.3877 0.2436 0.5928 0.7998 0.7215

Table 7.10: W-F1 Score of Best Performing Model as a Result of Hyperparameter Tuning

The model yielding the results presented in Table 7.10 has been used to extract the BERT
embeddings for the second stage classifiers described in the following section.

7| Experiments 59

7.5. Second Stage Classifiers

In the previous section, we performed an extensive hyperparameter search to find the
transformer model best suited for the book likeability prediction task. This section de-
scribes experiments to study second stage classifiers that are trained using the embeddings
coming from this selected transformer model.

7.5.1. Extracting the embeddings for our second stage classifiers

The choice of the transformer model used to extract chunk embeddings is determined
by the stage 1 classifier that yielded the highest weighted-F1 score during the standard
hyperparameter tuning stage. As described in the background on BERT, the ’[CLS]’
token was prepended to every chunk for the purposes of sequence classification and it is
the final representation of this token (referred to as the pooled output) that was passed to
the final classification layers. Therefore, the most natural idea for generating the chunk
embeddings is to simply use these pooled outputs. Using BERT (base) and many of
its related models (including DistilBERT), results in an embedding of 768 dimensions
coming from this pooled output for each chunk of text. For our second stage classifiers
that were designed to handle sequential data such as RoBERT and ToBERT, we were
able to use these chunk embeddings directly. For the other models (SVM, shallow Neural
Network, and the multimodal networks), we needed a fixed dimension size. To satisfy
this constraint, for each book, we averaged its chunk embeddings. Correspondingly, we
obtained book embeddings with 768 dimensions each.

To gain some visual insight as to how well these embeddings distinguish the successful
and unsuccessful class labels, we used Principal Component Analysis (PCA) to plot them
in two dimensions (as shown in Figure 7.1).

60 7| Experiments

Figure 7.1: Book Embeddings Compressed to Two Dimensions Using PCA

Since the embeddings were also learned to distinguish the genres of the books, it is also
interesting to see how well the embeddings can separate the genres. In Figure 7.2, we show
a compression of the dataset to two dimensions using t-distributed stochastic neighbor
embedding (t-SNE).

7| Experiments 61

Figure 7.2: Book Embeddings Compressed to Two Dimensions Using t-SNE

The principal finding from this experiments is that the genres that have very distinct
themes or writing styles such as Poetry, Detective and Mystery, and Drama are very well
clustered, whereas genres that have less concrete themes such as Fiction and Short Stories
are more scattered.

7.5.2. Simple Models Trained on Book Embeddings

Shallow Neural Networks

The simplest idea for making use of our book embeddings is to use them to train a shallow
neural network. We replicated the classification head of the DistilBERT model we used
for classification on the book segments and trained the neural network in both the single-
task and multi-task settings. We performed hyperparameter tuning on the learning rate,
the number of epochs, dropout rate, and in the case of the multitask setting, alpha as
well. Table 7.11 shows our results for the best trials on the validation set for both the
single task and multitask settings.

62 7| Experiments

Model Val. (w-F1) Test (w-F1)
Shallow NN
(ST)

0.7939 0.7132

Shallow NN
(MT)

0.8019 0.7090

Table 7.11: W-F1 Scores of Shallow Neural Networks Trained on Book Embeddings

Support Vector Machine

Support Vector Machines tend to perform well when the number of training samples is
relatively small in comparison to the number of features. This is the case for our task as
we have 555 training samples and 768 features. We used the validation set to tune the
kernel choice and C. We obtained the best results, shown in Table 7.12 using an RBF
kernel with C = 6.0.

Model Val. (w-F1) Test (w-F1)
SVM with RBF
Kernel

0.7805 0.7363

Table 7.12: W-F1 Scores of SVM Trained on Book Embeddings

7.5.3. Sequential Data Models on Chunk Embeddings

Just as we used sequential data models to take chunks of text and predict the successful-
ness of chunks, we could also use the same type of models to take the embeddings of
the chunks and predict the successfulness of the entire book as a whole. This is the idea
behind our use of RoBERT and ToBERT, which use an LSTM and a transformer encoder
respectively.

RoBERT

We performed hyperparameter tuning with 12 trials on the learning rate, batch size, and
hidden layer size of the lstm units. We obtained the best results, shown in Table 7.13,
using the following hyper-parameters:

• batch size: 64

• hidden lstm layer size: 32

• learning rate: 0.01282

7| Experiments 63

Model Val. (w-F1) Test (w-F1)
RoBERT 0.7871 0.7041

Table 7.13: W-F1 Scores of Best RoBERT Model

ToBERT

The corresponding information and results relative of our experiment with ToBERT are
as shown below, including Table 7.14.

• batch size: 128

• learning rate: 1.6418× 10−5

• number of heads: 6

• feedforward layer dimension: 256

• number of layers: 2

• dropout: 0.2714

Model Val. (w-F1) Test (w-F1)
ToBERT 0.7831 0.6994

Table 7.14: W-F1 Scores of Best ToBERT Model

Overall, the performances of RoBERT and ToBERT on our task was less than impressive,
as they even underperformed our first stage classifier.

7.5.4. Multimodal Networks

The use of multimodal networks requires more experimentation as there are many different
com-binations of features that can be used to train the network. For each combination of
features, we performed hyperparameter tuning.

The hyperparameters that we tuned for the Feedforward Standard Concatenation model
were:

• Batch Size

• Learning Rate

64 7| Experiments

• Standardized Dimension Size: This corresponds to the final embedding size that
each modality was standardized to before concatenation.

The hyperparameters that we tuned for the Genre-Aware Attention model were:

• Batch Size

• Learning Rate

• Standardized Dimension Size: This corresponds to the final embedding size that
each modality was standardized to before processed by the attention layer.

• Genre Embedding Size

Feedforward Standard Concatenation

Table 7.15 presents our results on the Feedforward Standard Concatenation multimodal
network using various combinations of neural and handcrafted features.

7| Experiments 65

Features Used Val. (w-F1) Test (w-F1)
Bert Features 0.7805 0.7126
Bert Features, Readability 0.7806 0.7315
Bert Features, Char 5
Grams

0.7674 0.6695

Bert Features, Bigram 0.7939 0.7173
Bert Features, Clausal 0.7776 0.7163
Bert Features, Concepts 0.8043 0.7278
Bert Features, Writing Den-
sity

0.7908 0.7234

Bert Features, Book2Vec 0.7628 0.7286
Bert Features, Book2Vec,
Writing Density, Readabil-
ity

0.7792 7123

Bert Features, Char 5
Grams, Writing Den-
sity, Sentiment Concepts,
Clausal, Readability

0.7729 0.7089

Bert Features, Writing Den-
sity, Sentiment Concepts,
Clausal, Readability

0.7654 0.7036

Bert Features, Sentiment
Concepts, Readability

0.7776 0.7132

Table 7.15: W-F1 Scores Comparing Different Inputs to Feedforward Standard Concate-
nation Model

Genre-Aware Attention

In the use of the genre-aware attention model, it makes sense to train the network with
just one feature, since the model simultaneously learns genre embeddings that get baked
into the feature embeddings and are also fed directly to the classification unit. Therefore,
we experimented with using the BERT features on their own, to draw insight in what
improvements can be realized through use of additional features. Since Maharjan et. al
[21] report the best results when feeding the genre embeddings to the classification head
directly, we experimented exclusively with this configuration. Our results are shown in
Table 7.16 below.

66 7| Experiments

Features Used Val. (w-F1) Test (w-F1)
BERT Features 0.7740 0.7234
BERT Features, Readabil-
ity

0.7842 0.7265

BERT Features, Char 5
Grams

0.7740 0.7181

BERT Features, Bigram 0.7939 0.7173
BERT Features, Clausal 0.7872 0.7191
BERT Features, Concepts 0.7991 0.7326
BERT Features, Writing
Density

0.7792 0.7184

BERT Features, Book2Vec 0.7792 0.7292
BERT Features, Book2Vec,
Writing Density, Readabil-
ity

0.7842 0.7947

BERT Features, Char
5 Grams, Writing Den-
sity, Sentiment Concepts,
Clausal, Readability

0.7872 0.7139

BERT Features, Writing
Density, Sentiment Con-
cepts, Clausal, Readability

0.8072 0.7120

BERT Features, Sentiment
Concepts, Readability

0.7991 0.7357

Char 5 Grams, Writing
Density, Sentiment Con-
cepts, Clausal, Readability

0.7145 0.6677

Table 7.16: W-F1 Scores Comparing Different Inputs to Genre Aware Attention Model

If we compare this multimodal network with the more simplistic one discussed in the
previous chapter, we notice small improvements in the performance. This gives evidence
that the Genre-Aware Attention model may provide a more suitable architecture for fusing
various modalities together for the prediction task.

The results indicate that the BERT features are the most practical for the task at hand.
In fact the BERT features on their own significantly outperform all the different categories

7| Experiments 67

of handcrafted features used together. We do observe small improvements when including
the readability metrics and the sentiment concepts. Our results seem to be consistent with
the distribution of results reported in the original genre-aware attention paper [21] but
we are unable to reach such a high score as 75.4% as they do with their RNN features.

Since this network internally computes the amount of attention to give to each modality,
we can inspect the attention values to gain insight into how much importance the model
is giving to each feature. For this analysis, we considered the model that makes use of all
the handcrafted features as well as the BERT features. Our results are shown in Figure
7.3 with a side-by-side of the corresponding results from the original paper. Our results
agree with those of Maharjan et. al’s in that our models attend mainly to the neural
features (Bert, RNN) and the char 5 grams. However, we notice that the model tends to
perform worse when using the char 5 grams. We notice the same effect with the simpler
Feedforward Standard Concatenation multimodal network.

(a) Attention weights with BERT features (b) Attention weights from Maharjan et. al
[21]

Figure 7.3: Average Attention Weights with Standard Deviations

8| Conclusions

In this thesis have we discussed and investigated the book likeability prediction problem,
exploring and testing Transformer-based techniques to determine their suitability for de-
veloping a system capable of successfully executing the attending task. In Chapter 4 we
posed five derivative research questions, the answers to which can provide the foundation
of an effective approach to building such a system. For the reader’s convenience, we list
again these questions here:

1. How critical is the choice of the base Transformer model for the target task?

2. What is the best way to pretrain BERT (or BERT-like models) for the target task?

3. Can we preprocess the data to filter out bias and/or noise and improve the predic-
tion?

4. Can the target task execution benefit from carrying out the model training in a
multitask setting?

5. How can we best extend the BERT fine-tuning procedure to achieve good results in
tackling long-text classification?

Based on our study and experiments, we are able to provide answers to the question that,
although certainly not altogether complete and definitive, nevertheless allow us to draw
some useful conclusions and provide indications and insight for the paths that may be
followed in future more extensive research on the subject of this thesis.

In addition to BERT, we investigated a handful of its derivatives that have been developed
with the intent of addressing some of the BERT perceived shortcomings. These BERT-
evolved models often claim performance significantly superior to BERT in some NLU
benchmarks. Our results, however, stand for the most part in opposition to key claims
and conclusions drawn by the BERT-evolved model developers.

Models that claim to be more adept at handling long sequences, such as Longformer
and BigBird, did not provide any tangible benefits over BERT to our long sequence
classification task. In fact, the task execution performance dropped significantly when

70 8| Conclusions

we used these models. The RoBERTa derivative, which claims to drastically improve
upon the pretraining process of BERT, actually performed much worse than BERT in
the execution of our task. Rather interestingly, DistilBert, whose declared focus is not to
improve in performance over BERT but to reduce BERT size, actually yielded the best
results.

In general, we noticed that smaller models like DistilBert and Electra were able to gen-
eralize the training data better than their much larger counterparts like the Longformer,
BigBird, and RoBERTa. With regard to this evidence, we believe that, given the difficulty
of the task at hand and the small dataset available, the training process is carried out
more efficiently and effectively by a model with more bias.

The driving force behind the inference capabilities of transformer-based models is their
large-scale adoption of transfer learning. These models are typically pretrained on massive
quantities of data via some form of the MLM task. By means of the training carried out
in this fashion, the model becomes inherently endowed with a strong understanding of
the English language. This understanding is, of course, based on the distribution of text
data that the models were pre-trained on.

While a strong general knowledge of the language is critical to performance in the book
likeability prediction task, we have explored additional pretraining methods to give the
models a better understanding of English in a literary context. For this purpose, we
further pretrained our model on the task dataset and on our self-procured pg-2600 dataset.
While our results are not entirely conclusive, they suggest that this form of pretraining
did indeed give the model a more nuanced knowledge of English literature, thus making
it more adept for the task at hand.

Maharjan et. al [19] boosted performance of their multi-modal classifiers by training them
to learn the success label and the genre simultaneously. Drawing from their work and
successful results, we have adopted the same approach in the training of our BERT and
BERT-like models. While a number of model developers have trained BERT on multiple
tasks simultaneously, with different datasets, we could not find any other published re-
search that has trained BERT to infer classes from multiple sets of labels. Our findings
indicate that this type of multitask setting is beneficial to the target task. We believe
that given the difficulty of the likeability prediction problem and the scarce amount of
data we are able to work with, having the model contemporarily identify the book genre
acts as a form of regularization.

A considerable drawback to Transformer-based models is their poor scalability to the anal-
ysis of long sequences. Consequently, we were forced to segment our books into smaller

8| Conclusions 71

sequences in order for BERT to be able to process them. This has the obvious draw-
back of drastically reducing the context window used for inference. Moreover, we were
also concerned that such a procedure may induce the model to give excessive considera-
tion and importance to unique book identifiers, such as character names, and/or become
biased towards the longer samples in the dataset. In our attempt to counter the antici-
pated problems that may be produced by segmenting the long sequence data samples, we
explored several different ways to train BERT in ways that may mitigate such issues.

To address the potential problem of book identifiers, we filtered our dataset by processing
it through a named-entity recognition model in order to mask character names, after first
verifying by means of pointwise mutual information that character names were indeed
the most discriminative words in a book. Such a preprocessing step did not appear to
have a discernable outcome on the target task, leading us thus to concluding that BERT
is robust in its capability of not overfitting to sample identifiers that get split up across
multiple chunks.

We have also explored any potential biases that may be associated with the length of
books. Long books do generate more data segments and are thus more likely to be
sampled by a random sampler than shorter books. To mitigate any potential biases this
may cause, we experimented with setting a maximum number of segments limit for each
book and defining a sampler in such a way that it prevents the model from seeing too
many segments coming from long books before the rest of the dataset. The outcome of
this experiment was that setting a max number of segments limit does not appear to
improve performance; at the same time, however, this demonstrated that the amount of
learning that BERT can extract from each book quickly saturates. That is, we saw no
significant drop in performance between setting no limit to using a number of segments
limit as low as 20 segments.

Another drawback originated by the segmentation of data sequences, possibly a most
significant one in the context of our task, is that it inhibits the model from considering
the book as a whole. To counteract and mitigate this, we experimented with second stage
classifiers, which either: A) treated the segment embeddings as another sequential layer;
or B) made use of a condensed representation of the segment embeddings.

For the investigation of approach “A” we implemented the Pappagari et. al’s RoBert
and ToBert models [25]. The original paper describes the successful application of these
models to three different tasks; however, similarly to most of the other BERT-evolved
models we have investigated, the performance of RoBert and ToBert in our task was
below that observed when using BERT in its current standard version.

72 8| Conclusions

For approach “B,” we averaged the segment embeddings coming from BERT for each book
to create our book embeddings. Using these book embeddings, we trained a SVM to find
a hyperplane of best-separation between the two classes in the dataset. This achieved
the yielding of our best weighted F1 score of 73.63%. Notably, we were able to achieve
a similar performance of 73.57% F1 score by training Maharjan et. al’s state-of-the-art
genre-aware attention model [21] on our book features; and the sentiment concepts, and
readability metrics handcrafted features (described in 5.3.3). While our results do not
surpass the state-of-the-art of 75.4% F1 score, given the small size of the dataset that
we were able to use we believe that the best of the approaches we have developed is
performing essentially at the same level as the state-of-the-art best-scoring method. It
is also to be noted that the genre-aware attention model proved to be a model that is
rather tricky to effectively train, as performances appears to be highly sensitive to initial
conditions and hyperparameters.

In conclusion, the performances of the best versions of our models outperform our strong
baselines and are comparable to the state-of-the-art. At the same time, however, our
results confirm the shortcomings that transformer-based models exhibit when dealing with
very long sequences. While BERT and BERT-like models have been achieving state-of-
the-art results across many tasks, they are typically only optimized for shorter texts. We
believe that more in-depth research is necessary to make transformer-based models more
effectively and efficiently applicable to the analysis and classification of long sequences.

8.1. Future research directions

As natural language processing continues to take great strides forward, it is all but certain
that we will continue to see more data-driven approaches to old problems, of which the
book likeability prediction problem is a prime example. The potential “return on invest-
ment” for more in-depth research of this problem remains large as the development of a
robust book likeability prediction system has immense potential value to the publishing
industry. Thus, research efforts in this direction will continue as the field of NLP research
in general expands and progresses.

Having conducted our research, we project on the basis of the results, positive and “nega-
tive,” that we have obtained that further research and development work on the following
points is worth of consideration:

• Procure a broader book dataset incorporating more modern books. The
Goodreads dataset procured by Maharjan et. al allows us to demonstrate that ma-
chines are able to understand what type of lexicon or style is associated with better

8| Conclusions 73

selling books. However, the dataset is composed of books that are in the public
domain (i.e. their copyright has expired) so they are generally not representative of
modern literature. It would be intriguing, and important for any future practical
use of book likeability models, to see how such models perform with newer books.
Besides the dated nature of the dataset, its being composed of only 1000 books
constitutes a serious limitation for how a model can “understand” what makes a
novel good across the range of styles and diverse genres.

• Procure a dataset designed for unbiased benchmarking and compara-
tively evaluate models This point can overlap with the previous but is important
because at the present time, it can be difficult to confidently compare massive lan-
guage models like BERT and its derivatives, since fair comparison methods, e.g.,
those employing cross-validation, are computationally very costly.

• Develop multi-modal architectures that take in consideration a combi-
nation of different neural features. Such a development would enable a more
wholistic appraisal of book likeability. In our experiments, we have shown that
multi-modal architectures favor our BERT features over handcrafted features. Ma-
harjan et. al [21] claim a similar result with their RNN features. Thus, an interesting
research project would be to study the effects of using various neural representa-
tions, in conjunction with a multimodal network such as the genre-aware attention
model.

• Develop architectures tailored for the analysis of long sequences as the
NLP field advances. In general, there is great interest in the study of models
that can process very long sequences of text. As research on this topic continues,
new models with such capabilities should be more suitable and easier to optimize
for application to the book success prediction problem.

• Test and benchmark model results against an actual book agent or pub-
lisher “expert opinion.” Once a book success prediction system achieves a satis-
factory accuracy in research test settings, a natural follow-on would be to compare
its capability and accuracy with those of human experts operating in the real pub-
lishing industry world. By testing and benchmarking the model results against book
agent and publisher predictions and opinions, developers will gain insights into the
strengths and weaknesses of their book success prediction systems.

75

Bibliography

[1] J. Anderson. Lix and rix: Variations on a little-known readability index. Journal of
Reading, 26(6):490–496, 1983.

[2] V. G. Ashok, S. Feng, and Y. Choi. Success with style: Using writing style to predict
the success of novels. In Proceedings of the 2013 conference on empirical methods in
natural language processing, pages 1753–1764, 2013.

[3] S. Baccianella, A. Esuli, and F. Sebastiani. Sentiwordnet 3.0: an enhanced lexical
resource for sentiment analysis and opinion mining. In Lrec, volume 10, pages 2200–
2204, 2010.

[4] I. Beltagy, M. E. Peters, and A. Cohan. Longformer: The long-document transformer.
arXiv preprint arXiv:2004.05150, 2020.

[5] A. Bies, M. Ferguson, K. Katz, R. MacIntyre, V. Tredinnick, G. Kim, M. A.
Marcinkiewicz, and B. Schasberger. Bracketing guidelines for treebank ii style penn
treebank project. University of Pennsylvania, 97:100, 1995.

[6] C. Bucilua, R. Caruana, and A. Niculescu-Mizil. Model compression. In Proceedings
of the 12th ACM SIGKDD international conference on Knowledge discovery and data
mining, pages 535–541, 2006.

[7] K. Clark, M.-T. Luong, Q. V. Le, and C. D. Manning. Electra: Pre-training text
encoders as discriminators rather than generators. arXiv preprint arXiv:2003.10555,
2020.

[8] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep bidi-
rectional transformers for language understanding. arXiv preprint arXiv:1810.04805,
2018.

[9] R. Flesch. A new readability yardstick. Journal of applied psychology, 32(3):221,
1948.

[10] D. Golovin, B. Solnik, S. Moitra, G. Kochanski, J. Karro, and D. Sculley. Google
vizier: A service for black-box optimization. In Proceedings of the 23rd ACM

76 | Bibliography

SIGKDD international conference on knowledge discovery and data mining, pages
1487–1495, 2017.

[11] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio. Generative adversarial nets. Advances in neural infor-
mation processing systems, 27, 2014.

[12] R. Gunning et al. Technique of clear writing. 1952.

[13] J. W. Hall. Cracking the Code of the Twentieth Century’s Biggest Bestsellers. Ran-
dom House Digital, Inc., 2012.

[14] J. Harvey. The content characteristics of best-selling novels. Public Opinion Quar-
terly, 17(1):91–114, 1953.

[15] M. Joshi, O. Levy, D. S. Weld, and L. Zettlemoyer. Bert for coreference resolution:
Baselines and analysis. arXiv preprint arXiv:1908.09091, 2019.

[16] M. Khalifa and A. Islam. Will your forthcoming book be successful? predicting book
success with cnn and readability scores. arXiv preprint arXiv:2007.11073, 2020.

[17] Q. Le and T. Mikolov. Distributed representations of sentences and documents. In
International conference on machine learning, pages 1188–1196. PMLR, 2014.

[18] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettle-
moyer, and V. Stoyanov. Roberta: A robustly optimized bert pretraining approach.
arXiv preprint arXiv:1907.11692, 2019.

[19] S. Maharjan, J. Arevalo, M. Montes, F. A. González, and T. Solorio. A multi-task
approach to predict likability of books. In Proceedings of the 15th Conference of the
European Chapter of the Association for Computational Linguistics: Volume 1, Long
Papers, pages 1217–1227, 2017.

[20] S. Maharjan, S. Kar, M. Montes-y Gómez, F. A. González, and T. Solorio. Letting
emotions flow: Success prediction by modeling the flow of emotions in books. arXiv
preprint arXiv:1805.09746, 2018.

[21] S. Maharjan, M. Montes, F. A. González, and T. Solorio. A genre-aware attention
model to improve the likability prediction of books. In Proceedings of the 2018
Conference on Empirical Methods in Natural Language Processing, pages 3381–3391,
2018.

[22] G. H. Mc Laughlin. Smog grading-a new readability formula. Journal of reading, 12
(8):639–646, 1969.

| Bibliography 77

[23] T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word repre-
sentations in vector space. arXiv preprint arXiv:1301.3781, 2013.

[24] E. S. Page. Continuous inspection schemes. Biometrika, 41(1/2):100–115, 1954.

[25] R. Pappagari, P. Zelasko, J. Villalba, Y. Carmiel, and N. Dehak. Hierarchical
transformers for long document classification. In 2019 IEEE Automatic Speech
Recognition and Understanding Workshop (ASRU), pages 838–844, 2019. doi:
10.1109/ASRU46091.2019.9003958.

[26] P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang. Squad: 100,000+ questions for
machine comprehension of text. arXiv preprint arXiv:1606.05250, 2016.

[27] V. Sanh, L. Debut, J. Chaumond, and T. Wolf. Distilbert, a distilled version of bert:
smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108, 2019.

[28] R. Senter and E. A. Smith. Automated readability index. Technical report, CINCIN-
NATI UNIV OH, 1967.

[29] F. Souza, R. Nogueira, and R. Lotufo. Portuguese named entity recognition using
bert-crf. arXiv preprint arXiv:1909.10649, 2019.

[30] C. Sun, X. Qiu, Y. Xu, and X. Huang. How to fine-tune bert for text classification?
In China National Conference on Chinese Computational Linguistics, pages 194–206.
Springer, 2019.

[31] I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with neural
networks. In Advances in neural information processing systems, pages 3104–3112,
2014.

[32] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser,
and I. Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pages 5998–6008, 2017.

[33] O. Vinyals, A. Toshev, S. Bengio, and D. Erhan. Show and tell: A neural image
caption generator. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 3156–3164, 2015.

[34] A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, and S. R. Bowman. Glue: A multi-
task benchmark and analysis platform for natural language understanding. arXiv
preprint arXiv:1804.07461, 2018.

[35] D. Wang and E. Nyberg. A long short-term memory model for answer sentence
selection in question answering. In Proceedings of the 53rd Annual Meeting of the

78 | Bibliography

Association for Computational Linguistics and the 7th International Joint Conference
on Natural Language Processing (Volume 2: Short Papers), pages 707–712, 2015.

[36] X. Yuan, L. Li, and Y. Wang. Nonlinear dynamic soft sensor modeling with super-
vised long short-term memory network. IEEE transactions on industrial informatics,
16(5):3168–3176, 2019.

[37] M. Zaheer, G. Guruganesh, K. A. Dubey, J. Ainslie, C. Alberti, S. Ontanon, P. Pham,
A. Ravula, Q. Wang, L. Yang, et al. Big bird: Transformers for longer sequences. In
NeurIPS, 2020.

[38] R. Zellers, Y. Bisk, R. Schwartz, and Y. Choi. Swag: A large-scale adversarial dataset
for grounded commonsense inference. arXiv preprint arXiv:1808.05326, 2018.

A| Additional Background

Information

A.1. Constituent Tags

The following information comes from "Bracketing Guidelines for Treebank II Style Penn
Treebank Project". [5]

These are the different types of clausal tags that were distinguished in the Penn Treebank
Project:

• S: Simple declarative clause, i.e. one that is not introduced by a (possible empty)
subordinating conjunction or a wh-word and that does not exhibit subject-verb
inversion.

• SBAR: Clause introduced by a (possibly empty) subordinating conjunction.

• SBARQ: Direct question introduced by a wh-word or a wh-phrase. Indirect ques-
tions and relative clauses should be bracketed as SBAR, not SBARQ.

• SINV: Inverted declarative sentence, i.e. one in which the subject follows the tensed
verb or modal.

• SQ: Inverted yes/no question, or main clause of a wh-question, following the wh-
phrase in SBARQ.

A.2. Readability Metrics

The readability metrics provide ways of measuring the difficulty of a text. Since a lot of
them use similar variables, we will set forth the notation beforehand:

80 A| Additional Background Information

C = the total number of characters
L = the total number of syllables
P = the total number of polysyllables
S = the total number of sentences
W = the total number of words
W c = the number of complex words (containing three or more syllables)
W long = the number of long words (more than 6 letters)

• Gunning Fog Index: The Gunning Fog Index estimates the number of years of
education needed to understand a text on the first reading. It is formulated as
follows:

Gunning − Fog = −.4[(W
S
) + 100(

Wc

W
)] (A.1)

[12]

• Flesch Reading Ease Score: The Flesch Reading Ease Score outputs a value
between 0 and 100 with the higher values indicating an easier text. It uses two
variables to determine a text’s readability:

– The average length of the sentences.

– The average number of syllables per word.

It is formulated as follows:

FKG = 206.835− 1.0.15× W

S
− 84.6× L

W
(A.2)

[9]

• Flesch Kincaid Grade Level: The Flesch Kincaid Grade Level is a variant of the
Flesch Reading Ease Score that aims to present the score as a U.S. grade level. It
is formulated as follows:

FRES = 0.39× W

S
− 11.8× L

W
− 15.59 (A.3)

[9]

• RIX: RIX and LIX do away with syllable counting as they aim to provide readability
metrics for foreign languages as well. Words with high syllable counts may be
indicative of difficult reading for the english language but this is not true in general
for all languages.

RIX =
Wlong

S
(A.4)

A| Additional Background Information 81

[1]

• LIX:

LIX =
W

S
+
Wlong · 100

W
(A.5)

[1]

• ARI: ARI standing for "Automated Readability Index" is a readability test for
English texts. It also provides an approximation of the US grade level needed to
understand a text. It is formulated as follows:

ARI = 4.71(
C

W
) + 0.5(

W

S
)− 21.43 (A.6)

[28]

• SMOG: SMOG is a measure of readability that estimates the years of education
needed to understand the text. It is calculated as follows:

grade = 1.0430

√
P × 30

S
+ 3.1291 (A.7)

[22]

B| Technical Details

This appendix section serves to provide technical details to precisely define how certain
aspects of this thesis were performed.

B.1. Building the pg-2600 Dataset

In this section we describe exactly how we procured the pg-2600 dataset that was used
for further pretraining BERT.

The authors of Project Gutenberg allow for robot scraping of their repository of cultural
works and books and provide an http route for doing so 1. To download all English books
in a txt format, we ran the following command using wget :

$ wget −w 2 −m http ://www. gutenberg . org / robot / harves t ? f i l e t y p e s
[]= txt&langs []= en

Since there are over 50,000 English documents on Project Gutenberg, the download took
a couple of days to complete. The documents are organized in folders corresponding
to a unique identifier. Project Gutenberg also provides metadata for their documents in
XML/RDF format 2. From this metadata, we were able to extract the title and author for
each document. Unforunately, no global unique identifier such as the ISBN was provided.
Thus, in order to map each document to its page on Goodreads,we were forced to rely
on the search functionality of Goodreads using the title and author as the search query.
Then, during the scraping process we use the edit distance 3 with a fixed threshold of
25 between the title from the RDF file and the title from goodreads to infer whether we
had an actual match (with a reasonable degree of confidence). To remove any potential
authorship bias, we limited the number of books each author can have in the dataset
to two. Lastly, we filtered the books such that they roughly pertained to the genres of
novels used in the Goodreads Maharjan dataset. This was the most cumbersome part of

1For more information, visit: https://www.gutenberg.org/policy/robot_access.html
2For more information, visit: https://www.gutenberg.org/ebooks/offline_catalogs.html
3The edit distance is a way of quantifying how dissimilar two strings are by counting the minimum

number of operations it takes to turn one string into the other.

https://www.gutenberg.org/policy/robot_access.html
https://www.gutenberg.org/ebooks/offline_catalogs.html

84 B| Technical Details

the process since Project Gutenberg does not provide genre information as part of their
metadata and Goodreads determines the genre by crowd-sourcing their users’ "shelves".
That is each book has a number of user votes for each genre. To filter the genre using this
format, we first normalized the genres such that related genres would be grouped together
(e.g. "Love" and "Romance"). Then, we filtered out the books if one of their top three
genres was not in the subset of genres used in the Goodreads Maharjan dataset.

The table below shows how many candidate books were filtered out after each filtering
stage.

Filter Step Candidate Books Left
Only english books 50127
Title matching 42401
Max 2 books per author 23161
Genre filter 2608

Table B.1: Number of Books at Each Filtering Step

Thus at the end of all the filtering steps, we were left with 2608 books which made up
our dataset. One could probably have come up with a larger dataset with a more careful
approach to the genre normalization strategy and title matching but for the purposes of
a dataset to be used strictly for further pretraining BERT, we were satisfied with the
quantity.

We will also make note that the original intention of this workflow was to generate another
classification dataset. However, after having already filtered the dataset as above, to then
filter books that had too few ratings left us with only a couple hundred more books than
the Goodreads Maharjan dataset which we did not deem significant enough.

C| Code Implementation

This appendix section serves to provide the code implementations of a selection of algo-
rithms or neural architectures developed in the realization of this thesis.

C.1. Pointwise Mutual Information

The following function calculates the pointwise mutual information for each class in the
corpus. The inputs text_class_1 and text_class_2 represent the subcorpora of text
corresponding to each class. The input corpus_vectorizer is an instantiation of scikit-
learn’s CountVectorizer 1 which associates tokens with frequency.

def get_PMIs(text_class_1 , text_class_2 , corpus_vectorizer):

len_vocab = len(corpus_vectorizer.vocabulary_)
vector_class_1 = np.array(corpus_vectorizer.transform([text_class_1]

).toarray ()[0])
vector_class_2 = np.array(corpus_vectorizer.transform([text_class_2]

).toarray ()[0])
id_to_word = {v: k for k, v in corpus_vectorizer.vocabulary_.items ()

}

n_s = np.sum(vector_class_1)
n_u = np.sum(vector_class_2)
n = n_s + n_u

alpha = 10
word_probs_class_1 = (vector_class_1 + alpha)/(n_s + alpha*len_vocab

)
word_probs_class_2 = (vector_class_2 + alpha)/(n_s + alpha*len_vocab

)
word_probs_corpus = (vector_class_1 + vector_class_2 + 2*alpha)/(n +

2*alpha*len_vocab)

1https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.
CountVectorizer.html

https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html

86 C| Code Implementation

PMI_class_1 = np.log(word_probs_class_1 / (word_probs_corpus * (n_s
/ n)))

PMI_class_2 = np.log(word_probs_class_2 / (word_probs_corpus * (n_u
/ n)))

return PMI_class_1 , PMI_class_2

C.2. Extending BERT to the Multitask Setting

This code was adapted from the Hugging Face implementation of "BertForSequenceClas-
sification" 2 to handle the classification of two sets of labels simultaneously. The main
change occurs in the forward method in which we compute the cross entropy loss for each
task and sum them together with the weight parameter alpha.

from transformers import BertPreTrainedModel , BertModel

class BertForMultipleSequenceClassification(BertPreTrainedModel):
def __init__(self , config , num_labels1 = 2, num_labels2 = 8):

super().__init__(config)
self.num_labels1 = num_labels1
self.num_labels2 = num_labels2
self.alpha = .5
self.config = config

self.bert = BertModel(config)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.classifier1 = nn.Linear(config.hidden_size , self.

num_labels1)
self.classifier2 = nn.Linear(config.hidden_size , self.

num_labels2)

self.init_weights ()

def forward(
self ,
input_ids=None ,
attention_mask=None ,
token_type_ids=None ,
position_ids=None ,
head_mask=None ,

2https://github.com/huggingface/transformers/blob/master/src/transformers/models/
bert/modeling_bert.py

https://github.com/huggingface/transformers/blob/master/src/transformers/models/bert/modeling_bert.py
https://github.com/huggingface/transformers/blob/master/src/transformers/models/bert/modeling_bert.py

C| Code Implementation 87

inputs_embeds=None ,
labels=None ,
output_attentions=None ,
output_hidden_states=None ,
return_dict=None ,

):

return_dict = return_dict if return_dict is not None else self.
config.use_return_dict

outputs = self.bert(
input_ids ,
attention_mask=attention_mask ,
token_type_ids=token_type_ids ,
position_ids=position_ids ,
head_mask=head_mask ,
inputs_embeds=inputs_embeds ,
output_attentions=output_attentions ,
output_hidden_states=output_hidden_states ,
return_dict=return_dict ,

)

pooled_output = outputs[1]

pooled_output = self.dropout(pooled_output)
logits1 = self.classifier1(pooled_output)
logits2 = self.classifier2(pooled_output)
logits = torch.cat([logits1 , logits2], 1)
loss = None
if labels is not None:

if self.num_labels1 > 1:
loss_fct1 = CrossEntropyLoss ()
loss1 = loss_fct1(logits1.view(-1, self.num_labels1),

labels[:, 0].view(-1
))

else:
loss_fct1 = MSELoss ()
loss1 = loss_fct1(logits1.view(-1), labels[:, 0].view(-1

))

if self.num_labels2 > 1:
loss_fct2 = CrossEntropyLoss ()
loss2 = loss_fct2(logits2.view(-1, self.num_labels2),

88 C| Code Implementation

labels[:, 1].view(-1
))

else:
loss_fct2 = MSELoss ()
loss2 = loss_fct2(logits2.view(-1), labels[:, 1].view(-1

))
loss = self.alpha*loss1 + (1-self.alpha)*loss2

if not return_dict:
output = (logits ,) + outputs[2:]
return ((loss ,) + output) if loss is not None else output

return SequenceClassifierOutput(
loss=loss ,
logits=logits ,
hidden_states=outputs.hidden_states ,
attentions=outputs.attentions ,

)

We also adapted the DistilBertForSequenceClassification model class to extend to two
tasks as well. Since the adaptation is very similar, we exclude it.

C.3. RoBERT

RoBERT from the paper, Hierarchical Transformers [25], consists of an LSTM layer with
a classification head. The model processes sequences of bert embeddings which is why
the input size of the LSTM units is 768.

class LightningRoBERT(pl.LightningModule):
def __init__(self , layer_size = 100):

self.layer_size = layer_size
super(RoBERT_Model , self).__init__ ()
self.lstm = nn.LSTM(768 , layer_size , num_layers=1, bidirectional

=False)
self.out = nn.Linear(layer_size , 1)

def forward(self , grouped_pooled_outs):

seq_lengths = torch.LongTensor([x for x in map(len ,
grouped_pooled_outs)])

batch_emb_pad = nn.utils.rnn.pad_sequence(grouped_pooled_outs ,
padding_value=-91,
batch_first=True)

C| Code Implementation 89

batch_emb = batch_emb_pad.transpose(0, 1) # (B,L,D) -> (L,B,D)
lstm_input = nn.utils.rnn.pack_padded_sequence(batch_emb ,

seq_lengths , batch_first=
False , enforce_sorted=False)

packed_output , (h_t , h_c) = self.lstm(lstm_input ,)

h_t = h_t.view(-1, self.layer_size)

return self.out(h_t)

C.4. ToBERT

ToBERT from the paper, Hierarchical Transformers [25], consists of an optional Positional
Encoding layer, Transformer Encoder layer(s), and a classification head.

class PositionalEncoding(nn.Module):

def __init__(self , d_model: int , dropout: float = 0.1, max_len: int
= 5000):

super().__init__ ()
self.dropout = nn.Dropout(p=dropout)

position = torch.arange(max_len).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model , 2) * (-math.log(

10000.0) / d_model))
pe = torch.zeros(max_len , d_model)
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0)
self.register_buffer(’pe’, pe)

def forward(self , x):
"""
Args:

x: Tensor , shape [batch_size , seq_len , embedding_dim]
"""
x = x + self.pe[:, :x.size(1), :]
return self.dropout(x)

class LightningToBERT(pl.LightningModule):
def __init__(

self ,

90 C| Code Implementation

d_model=768 ,
nhead=2,
nhid=512 ,
num_layers=2,
dropout=0.1,
classifier_dropout=0.1,

):

super().__init__ ()

assert (
d_model % nhead == 0

), "nheads must divide evenly into d_model"

self.pos_encoder = PositionalEncoding(
d_model , dropout=dropout , max_len=200

)

encoder_layers = nn.TransformerEncoderLayer(
d_model=d_model , nhead=nhead , dim_feedforward=nhid , dropout=

dropout , batch_first=
True

)
self.transformer_encoder = nn.TransformerEncoder(

encoder_layers , num_layers=num_layers
)

self.dropout = nn.Dropout(classifier_dropout)
self.pre_classifier = nn.Linear(d_model , d_model)
self.classifier = nn.Linear(d_model , 1)

self.softmaxer = nn.Softmax(dim=1)

def forward(self , x, src_key_padding_mask):

x = self.pos_encoder(x)
x = self.transformer_encoder(x, src_key_padding_mask=

src_key_padding_mask) #
self.src_mask)

calculates mean taking into account the padding
x = torch.unsqueeze(1-src_key_padding_mask ,2)*x
x = x.sum(dim=1)/(1-src_key_padding_mask).sum(dim=1).unsqueeze(1

)

C| Code Implementation 91

x = self.pre_classifier(x)
x = nn.ReLU()(x)
x = self.dropout(x)
return self.classifier(x)

D| Tools and Platforms

This appendix section itemizes the different technological tools and platforms that were
used throughout this work.

Python 3.6: Python was the sole programming language used through all stages of the
research including data scraping, data analysis, data visualization, model building, etc.

PyTorch 1.9: PyTorch is an open source machine learning framework developed by
Meta. We used PyTorch to train all neural models in our research.

Scikit-learn 0.22.2: Scikit-learn is a machine learning library containing a collection
of various classification, regression, and clustering algorithms. We used it to train all
support vector machine and logistic regression models.

Hugging Face Transformers 4.12.2: Hugging Face Transformers is an open-source
python package that provides a variety of pretrained transformer models that can be
easily used by NLP researchers. It supports both PyTorch and TensorFlow 2.

WandB: WandB is a central dashboard to keep track of hyperparameters, performance
metrics, and system metrics of machine learning models allowing one to easily compare
different models. Moreover, it served as a repository to save model artifacts so that they
could be reused later.

Ray Tune 1.8.0: Ray Tune is a hyperparameter optimization framework designed for
long-running tasks such as deep learning training. It is easily configurable and includes a
variety of scheduling algorithms. We used it to tune hyperparameters of all neural models.

Scrapy 2.4.0: Scrapy is a free and open-source web-crawling python framework. We
used it to scrape Goodreads and generate the pg-2600 dataset.

SQLite: SQLite is a lightweight relational database management system. We used it to
store data extracted from the scraping process for the pg-2600 dataset.

95

List of Figures

3.1 LSTM Unit . 10
3.2 Transformer Architecture . 12
3.3 BERT High-Level View for Pre-training . 14
3.4 Attention Patterns . 17

5.1 BERT High-Level View for Sequence Classification (modified from [8]) . . 25
5.2 RoBERT High-Level Architecture . 30
5.3 Feedforward Standard Concatenation . 34
5.4 Genre-Aware Attention Model . 35

6.1 Length Histograms for Preprocessed Goodreads Dataset 38
6.2 Change Point Detection for ’In the Shadow of the Glen’ by J.M. Synge . . 41

7.1 Book Embeddings Compressed to Two Dimensions Using PCA 60
7.2 Book Embeddings Compressed to Two Dimensions Using t-SNE 61
7.3 Average Attention Weights with Standard Deviations 67

97

List of Tables

6.1 Genre Distribution of Goodreads Maharjan Dataset 38
6.2 Genre Distribution of pg-2600 Dataset . 39
6.3 Performance Count of Trimming Methods 41
6.4 25 Most Discriminative Words for Each Class Before Character Masking

Using PMI Metric . 43
6.5 25 Most Discriminative Words for Each Class After Character Masking

Using PMI Metric . 44

7.1 Performance of Baselines . 50
7.2 W-F1 Scores Comparing Preprocessed Datasets 52
7.3 W-F1 Scores Comparing Preprocessed Datasets 52
7.4 W-F1 Scores Comparing Pretraining Methods 54
7.5 W-F1 Scores Comparing Genre Incorporation Methods 1 54
7.6 W-F1 Scores Comparing Tokenizers . 55
7.7 W-F1 Scores Comparing Tokenizers . 56
7.8 W-F1 Scores Comparing Max Segment Lengths 57
7.9 W-F1 Scores of Sequential Book Sampler Approaches 57
7.10 W-F1 Score of Best Performing Model as a Result of Hyperparameter Tuning 58
7.11 W-F1 Scores of Shallow Neural Networks Trained on Book Embeddings . . 62
7.12 W-F1 Scores of SVM Trained on Book Embeddings 62
7.13 W-F1 Scores of Best RoBERT Model . 63
7.14 W-F1 Scores of Best ToBERT Model . 63
7.15 W-F1 Scores Comparing Different Inputs to Feedforward Standard Con-

catenation Model . 65
7.16 W-F1 Scores Comparing Different Inputs to Genre Aware Attention Model 66

B.1 Number of Books at Each Filtering Step 84

99

Acronyms

NLP Natural Language Processing

NLU Natural Language Understanding

NSP Next Sentence Prediction

MLM Masked-Language Modeling

PMI Pointwise Mutual Information

SVM Support Vector Machine

W-F1 Weighted F1

101

Acknowledgments

I would like to extend my gratitude to the several people who have been part of my
journey during the completion of my master’s thesis.

To my superadvisors, Professor Brambilla and Marco Di Giovanni: It has been an honor
to work under your guidance and direction. The discussions from our weekly meetings
inspired me to keep pushing my work further and further.

I must also thank my parents, Drs. Clorinda Donato and Sergio Guarro and my siblings,
Marcello Guarro and Adriana Romero. Without their unconditional love and support, I
would have never made it this far.

A special thanks goes to my relatives in Terni: Elisabetta, Vilma, Francesca, and Riccardo,
who helped me stay sane and productive in my Polytechnic online studies when I escaped
to the Umbrian countryside during the pandemic. I am forever grateful that allowed me
to develop strong bonds with all four of you.

Last but not least, I would like to thank all the friends that I met along the way. Because
of all of you, I will forever cherish the time I spent in Milan.

	Introduction
	Previous Work
	Task Dataset
	Our Work
	First Stage Classifiers
	Second Stage Classifiers

	Bibliography
	Conclusion
	Acknowledgements
	Abstract
	Abstract in Lingua Italiana
	Contents
	Introduction
	General Overview
	Brief Description of the Work
	Outline of the Thesis

	Related work
	Book Success Prediction
	A brief overview of quantitative approaches
	Long Text Classification

	Technical Approach Foundations
	Natural Language Processing
	LSTM
	Transformer
	Dialects of BERT

	Additional Technical Background
	Support Vector Machine
	Pointwise Mutual Information
	Change Point Detection

	Research Questions
	Our Approach
	Preparing BERT for the task at hand
	Further Pretraining of BERT
	Training in a Multitask Setting

	Extending BERT to Sequences longer than 512 tokens
	Second Stage Classifier
	Simple Models Fit Over Average Segment Embeddings
	Hierarchical Sequential Models
	Multimodal Network

	Datasets
	Dataset for the Classification Task
	Datasets for Pre-training BERT
	Dataset Preprocessing
	Noise Trimming
	Masking Character Names

	Experiments
	Setup for Conducting Experiments
	Evaluation Metric
	Classifiers for Comparison
	First Stage Classifiers
	Comparing preprocessed datasets
	Deciding which transformer model to use as the foundation
	Deciding whether to further pretrain our models or not
	Deciding how to best incorporate the genre information
	Deciding how to segment our books
	Deciding how to best alleviate biases of long books
	Hyperparameter Tuning

	Second Stage Classifiers
	Extracting the embeddings for our second stage classifiers
	Simple Models Trained on Book Embeddings
	Sequential Data Models on Chunk Embeddings
	Multimodal Networks

	Conclusions
	Future research directions

	Bibliography
	Additional Background Information
	Constituent Tags
	Readability Metrics

	Technical Details
	Building the pg-2600 Dataset

	Code Implementation
	Pointwise Mutual Information
	Extending BERT to the Multitask Setting
	RoBERT
	ToBERT

	Tools and Platforms
	List of Figures
	List of Tables
	Acronyms
	Acknowledgments

