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1. Introduction
The Hamiltonian formulation of the perturbed two-
body problem has gained popularity due to its abil-
ity to describe the effect of conservative perturba-
tion on the orbital dynamics of an object. However,
the actual model for low and medium Area-To-Mass
ratio (AMR) objects is not able to describe the
dynamics induced by the gravitational perturba-
tion of the Sun. This research aims to formulate a
new Hamiltonian model of the coupled SRP-Earth
oblateness (J2) and Sun third-body perturbation
and assess its potentiality in the field of de-orbiting
trajectory design and debris dynamics. For the first
application, a new way to exploit the solar radiation
pressure and the third-body perturbation to drive
the spacecraft towards the Earth is proposed. Ad-
ditionally, conditions under which low AMR debris
may accumulate in asymmetric equilibrium points
are computed.

1.1. Fundamentals of SRP-J2 model

1.1.1 Hypothesis of the model

It is assumed that a spacecraft is affected by a
planet gravitational gravity, planetary oblateness,
and solar radiation pressure (SRP). In addition, it
is assumed that the Sun rays are always perpen-

dicular to the satellite surface (cannonball model),
that the influence of planetary albedo is minimal,
that the solar flux is constant at 1 AU, and that
the satellite is totally in sunlight. Therefore the
SRP is modeled as a constant force in the direction
of the Earth–Sun line and may be computed from
a potential function with these assumptions. The
dynamics of the satellite in a geocentric equatorial
inertial frame can be modelled by the Hamiltonian:

H = Hkep +HJ2 +HSRP (1)

Assuming that the Keplerian contribute is constant
due to the conservative dynamics, that the fast an-
gle of the dynamics is the mean anomaly M, it
is possible to integrate in close form the perturb-
ing terms HJ2 , HSRP with respect to the mean
anomaly for a full period of the orbit. The re-
sulting single-averaged Hamiltonian has 2.5 DoFs
(two degrees-of-freedom and an explicit time de-
pendence through the ecliptic longitude of the Sun
λ⊙(t) = λ⊙0 + n⊙t). Assuming a dummy action
with the same frequency of the Sun orbit, is pos-
sible to reduce the Hamiltonian to an autonomous
form with 3 DoFs (Gkolias et al. [1]). Then, it is
possible to apply the argument developed in Daquin
et al. [2] for lunisolar gravitational perturbations,
adapted to the solar radiation pressure effect, un-
der the assumption that only one periodic term j
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is relevant at a time for the motion of the small
body, and than reduce the Hamiltonian to a 1 DoF
system (in resonant variables):

Hψj =
CJ2µ

3
(
n41Ψ

2 − 3(Π + n1n2Ψ)
2
)

n714L
3Ψ5

+

− CSRP

µ
L2

√
1− n21Ψ

2

L2
Tj cosψ

+ ns(n3Ψ +K)

(2)

where Ψ is the conjugate momentum associate to
the eccentricity and ψ is the critical angle defined
as:

ψj = n1ω̇ + n2Ω̇ + n3n⊙, (3)

where n1, n2, n3, and Tj depends on the resonance
j (see [3]), CJ2 = µR⊕J2, CSRP = 3

2P⊙cR
A
m , L =√

µa, K dummy action, and Π is the second integral
of motion:

Π =(−n2 + n1 cos(i))
√
µa(1− e2), (4)

which can be used to label the phase space.

1.1.2 Equilibrium and stability

The equilibrium points of the dynamical system can
be computed imposing the gradient of the Hamil-
tonian to zero (both with respect to the coordinate
(Ψ, ψ) or (e, ψ)). The stability of the equilibrium
points can be evaluated by computing the eigenval-
ues of the Hessian matrix evaluated at the equilib-
rium. If the eigenvalues are complex conjugated,
the equilibrium point is stable. If they are positive,
the equilibrium point is unstable.

1.1.3 Bifurcation map and contributes to
the topic

The bifurcation analysis is the study of changes in
topological structure of a given family of curves
when a small change in one or more bifurcation
parameters happens. For the analysis performed in
this work, ie=0 (or Π0) is considered as the first bi-
furcation parameter and a as the second, keeping
the AMR fixed.
For each semimajor-axis, for the AMR considered,
and in the range e ∈]0, 1[, the commensurability
equation is solved for both the angular positions of
the equilibrium points (ψ = 0, π). Along the family
of curves in the plane (e, Π0), the Hessian is evalu-
ated at the equilibrium point, and when for a triplet
(a, Π0, e) the eigenvalues product is zero, a bifur-
cation is found. Then, by converting the value of
the second integral of motion to the correspondent

Table 1: Number of equilibria and their stabil-
ity (S: stable, U: unstable) for the resonance with
argument ψ1, corresponding to the seven regions
identified.

Region Total ψ = 0 ψ = π

I 5 1S and 1U 2S and 1U
II 7 2S and 2U 2S and 1U
III 3 1S and 1U 1S
IV 3 1S 1S and 1U
V 1 - 1S
VI 5 1S 2S and 2U
VII 3 2S 1S
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Figure 1: Detail of region (VII) at AMR = 1m2/kg.

inclination ie=0 by its definition Equation (4), the
coordinates (a, ie=0) are plotted on the bifurcation
map. The first contribute of this work to the lit-
erature regards the bifurcation analysis of the first
resonance:
• in the regions (I), (II), and (VI) two new equi-

libria at very high eccentricity are found, hence
the total number of equilibria is higher than
those found in literature. Those points comes
from the second solution of the commensura-
bility equation;

• a completely new region (labelled (VII) see
Figure 1), is found between the regions (III)
and (IV) and it characterises the transition
across the trans-critical bifurcation which sep-
arates the (III) from the (IV).

2. Extended SRP-J2-Sun model
In this section the main innovation introduced by
this work to the literature are reported.
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2.1. Previous statements
The innovation introduced by this work is to add
the Sun gravity contribute to the state-of-art model
and then analyse it using the tool of the bifurcation
analysis.
In [1], for the value of (a, e, i) and AMR considered,
the contribute of the Hamiltonian of the Sun gravi-
tational perturbation H⊙ is negligible with respect
to that of the SRP following HSRP . Therefore, the
following relation holds:∣∣∣∣ H⊙j

HSRP j

∣∣∣∣ << 1 (5)

where j is the resonance considered. However,
for some specific ranges of the elements mentioned
above the relation is no longer valid, consequently
a more complete model has to be considered.

2.2. Hamiltonian formulation
The Hamiltonian function associated to the gravi-
tational perturbation of the Sun gravity is outlined
in the following section.

2.2.1 Hypothesis

The hypothesis behind the formulation of the Sun
third-body extension of the SRP-J2 model are the
same stated for the SRP-J2 model in Section 1.1.1.
In addition to that:
• the Sun is lying on a circular orbit on the eclip-

tic plane at 1AU distance from the center of
the Earth;

• the precession of the equatorial plane over the
ecliptic is neglected, which is known to have a
long-term effect, on time scales of decades.

2.2.2 Hamiltonian of the Sun gravity per-
turbation

The perturbing potential of a third-body on space-
craft close to a central body can be expressed as
a power series of the parallactic factor (r/r3b) as
reported by Lara et al. [4]. Then, the position of
the perturber is written in the Earth’s equatorial
frame and averaged over the mean anomaly M of
the spacecraft. The averaging process results in:

H̄⊙ = −
a2n2⊙
64

2∑
i=0

2∑
j=−2i

1∑
p=−1

YiK2i,l,2p × cos(2iω + lΩ+ 2pλ⊙)

(6)

Table 2: Sun gravity resonant terms. Coefficient
Yi and K2i,l,2p in Equation (6) taken from Lara et.
al. [4].

i l p K2i,j,2p ϕ j

1 2 -1 1
4(1 + cϵ)

2(1 + ci)
2 2ω + 2Ω− 2λ⊙ 1

1 -2 1 1
4(1 + cϵ)

2(1− ci)
2 2ω − 2Ω + 2λ⊙ 2

2 0 -2 3
2s

2
εs

2
i 2ω − 2λ⊙ 3

2 0 2 3
2s

2
εs

2
i 2ω + 2λ⊙ 4

1 1 1 −1
4(cϵ − 1)2(ci + 1)2 2ω + 2Ω + 2λ⊙ 5

-1 1 1 1
4(cϵ − 1)2(ci − 1)2 −2ω + 2Ω + 2λ⊙ 6

where the coefficients Yi = 30e2 (for all the reso-
nances), and K2i,l,2p is reported in Table 2.
Then, only the coefficients (i, j, p) for which the
SRP and Sun gravity Hamiltonian have the same
critical angle, are considered. By following the
same procedure as for the SRP-J2 model (see Sec-
tion 1.1.1), the Hamiltonian model is reduced to
a single-resonant model, and since it has the same
critical angle as the SRP contribute, it is possible
to make the Hamiltonian autonomous by adding
a dummy action with frequency n⊙. The distilled
Hamiltonian written in Delaunay variables is:

H̄ =
CJ2µ3(G2 − 3H2)

4G5L3
+

−
CSRP

√
1−G2/L2L2

µ

6∑
j=1

Tj cosψj+

−
L4n2⊙
64µ2

6∑
j=1

YjKj cos 2ψj + n3(n⊙Ψ+K)

(7)

The resulting isolated resonance model has the form
of a second Andoyer fundamental model of reso-
nance, in the shape of:

K = A(Φ,Ψ) + B1(Φ,Ψ) cosϕ+ B2(Φ,Ψ) cos 2ϕ (8)

where, A is associated with the contribute of the
secular J2, and the B1,2 are associated to the con-
tribute of SRP and Sun gravity.

2.2.3 Equilibrium

The equilibrium are computed imposing null gradi-
ent of the Hamiltonian:

∇Hψ,j = −BSRP,j sinψj − 2B⊙,j sin 2ψj ,

∇He,j =
∂HJ2

∂e
+
∂BSRP,j

∂e
cosψj+

+
∂B⊙,j

∂e
cos 2ψj + n3n⊙

∂Ψ

∂e
.

(9)

From the equation of ∇Hψ,j the critical angles are
at ψ = 0, π (here called symmetric equilibrium
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Figure 2: Phase space of the extended SRP-J2-Sun
model relative to the first resonance at a = 12000
km, ie=0 = 19.5◦ and AMR = 0.1 m2/kg.

points), and at intermediate value (from here called
asymmetric equilibrium points).
The former are located at ψ = π, 0, the latter in-
stead, simplifying by sin(ψ) ̸= 0 the ∇Hψ,j , are
located at:

cosψ = −
BSRPj

4B⊙,j
, . (10)

They are represented in Figure 2 with blue dots.

2.2.4 Dynamical regimes

The dynamics is strongly influenced by the AMR;
hence, the dynamics is classified according to the
AMR of the object. For this scope a new parame-
ter σ∗i,j is defined, and used to identify as the critical
value σi,j of AMR such that, under certain circum-
stances defined below, the dynamical model col-
lapse to the coupled SRP, J2 model. Re-writing
the Equation (10), it is defined as:

σ∗
i,j =

15

8

Kj
Tj

n2⊙
P⊙cR

aeeqi,j (11)

where the i-th equilibrium and j-th resonance are
considered. The just derived condition constitutes
the generation of a peculiar kind of bifurcation
which has not yet described in literature. Hence
the dynamical regimes stated before, from here, are
defined as:
• first dynamical regime for AMR = 0;
• second dynamical regime for 0 < AMR < σ∗i,j ;
• third dynamical regime for AMR ≥ σ∗i,j (see

Section 1.1.1).

2.2.5 Dynamical structure for AMR = 0,
resonance j = 1

If it is assumed that the spacecraft has negligible
area, the dynamics can be described by the coupled

Table 3: Number of equilibria and their stability
(S: stable, U: unstable) for the resonance with ar-
gument ψ1.

Region Total ψ = 0 ψ = π/2 ψ = π

(A) 9 2 U, 1S 1 U, 2 S 2 U, 1S
(B) 3 1 U 1 S 1 U

Sun gravity and Earth oblateness model. If it is
consider the second equation of Equation (9), with
CSRP = 0 it is immediate to see that the equilib-
rium points are at critical angles ψ⊙,J2 = 0, π2 , π,

3π
2

and π. The bifurcation analysis for AMR = 0 is
done following similar procedure as the one per-
formed for the SRP-J2 model. The two regions
identified (see Figure 3: the first at the left of the
black line, and the second at its right) are described
in table 3.

2.2.6 Dynamical structure for 0 < AMR <
σ∗, resonance j = 1

The Hamiltonian analysed is the one presented in
Equation (7) but specialised with the resonance
terms of the first resonance. The bifurcation analy-
sis of this dynamics for the symmetric equilibrium
points is the same as for the SRP-J2 model.
The angular position of the asymmetric equilibrium
points arising from ψ = π/2 moves towards ψ = π
for increasing AMR; when they reach ψ = π a bi-
furcation occurs.
In detail, for each a, e ∈]0, 1[, and resonant inclina-
tion (computed solving the commensurability equa-
tion at AMR = 0, ψ = π/2, since the eccentricity of
the asymmetric point at AMR = 0 is the same up to
σ∗i,j), the σ∗i,j is computed from Equation (11) and
compared with AMR of the object. If the bifurca-
tion condition is verified, the corresponding coordi-
nates are reported in the (a, ie=0) diagram. Since
the equilibrium points for a value of ie=0 are at
maximum three, it follows that three more bifurca-
tion lines appear in the bifurcation map. In par-
ticular, in Figure 3, with yellow lines are indicated
the two branches of the bifurcations associated with
the first two equilibria, and with green, those asso-
ciated with the third equilibrium.
For the regions intersected by the asymmetric bi-
furcation, above those lines, an asymmetric equilib-
rium is added as reported in Figure 3.
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Figure 3: Bifurcation analysis plot for the ⊙, J2
model with i0 from 0 [deg] to 180 [deg], a from
8000 km to 30000 km and j = 1. Bifurcation at
i0 = 29.0085◦ for a = 16000 km.

3. Application to de-orbiting de-
sign and debris analysis

Using the techniques of dynamical system theory,
this chapter extracts relevant information for de-
orbiting design and debris dynamics analysis.

3.0.1 De-orbit from a circular inclined orbit

Similar to what was done in the literature re-
garding the de-orbit from a circular inclined or-
bit, it is shown how de-orbiting may occur within
the extended SRP-J2-Sun model. Given that the
semimajor-axis, the Hamiltonian function and the
second integral of motion Π are conserved, it is
possible to solve a two-point boundary value prob-
lem for the minimum value of AMR connecting the
initial and the final conditions. The initial condi-
tion is a circular inclined orbit, while, the final is
an orbit with ecr = 1 − R⊕/a. The final angular
configuration corresponds to the maximum eccen-
tricity increase, which, in the extended model, can
be found on an asymmetric equilibrium points. The
procedure is described in the following paragraph.
For each a ∈ [7500, 15000] km and ie=0 ∈ [0◦, 90◦]
the following equation has been solved for ψj,cr = 0:

Hj(0, ψj,1;Π,L, CSRP) = Hj(ecr, ψj,cr;Π,L, CSRP).

(12)
If the value of CSRP > 0, the de-orbit happens in
ψj,cr = 0, otherwise it may happen in the range
ψ ∈]π/2, π]. Therefore, the equation is solved again
taking into account that for the asymmetric equi-
librium point the angular configuration and AMR
are dependent (see Equation (10)). Then, using the
just computed AMR, the de-orbiting angular con-
figuration is checked evaluating Equation (10); if

ecr
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Figure 4: Comparison between the AMR required
to deorbit near ψ = π (left) and ψ = 0 (right).

cos(ψ) ∈]− 1; 0[, the de-orbit happens in an asym-
metric points, otherwise, if cos(ψ) ≤ −1, it happens
in ψ = π. In Figure 4, are reported the comparison
between the state-of-art model and the extended,
for de-orbiting at ψ = 0 and ψ ∈]π/2, π], respec-
tively. Using this strategy near a bifurcation or for
ψcr = 0, the AMR is less than the one computed in
literature, because it exploits also the Sun gravity.

3.0.2 De-orbit from unstable point

This strategy exploits a spacecraft initially located
at a unstable point for the extended dynamics at
ψ = π. The algorithm developed evaluates for (a,
ie=0, ψ1 = π, AMR = 0) if, exploiting the double-
lobe phase space, is possible to reach the critical
eccentricity at ψ = π/2. If it is true, it solves Equa-
tion (12) considering:
• e0 = e(ψ = π, AMR = 0) (initial guess);
• cos(ψcr) from Equation (10);
• initial and final inclination corresponding to

the initial and final eccentricity computed
through the conservation of Π;

The unknowns are AMR and the eccentricity of the
initial unstable point, since it depends on the AMR.
The first unknown is full-filled with Equation (10),
the second instead is computed through an iterative
algorithm which after each iteration computes the
eccentricity at the initial point with a new AMR,
solving:

κ1C2
SRP + κ2CSRP + κ3 = 0. (13)

Where the coefficients depend on physical parame-
ters (µ, n⊙, J2, ecc.), initial and, final conditions.
This equation is derived from Equation (12) at
which as final angular condition is imposed the
asymmetrical equilibrium point Equation (10).
In Figure 5 is reported the de-orbiting map in the
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AMR m2 /kg

Figure 5: Maximum AMR for deorbit from a given
a and inclination of initially circular orbit i0

range of a ∈ [9000, 15000] km. The black dashed
lines represent the upper and lower border of the
feasible region, and the contour lines the maxi-
mum AMR which allows the re-entry. In fact, if
the AMR is inferior to this limit, the width of the
double-lobe is inferior, hence, the de-orbiting is not
guaranteed.
The newly presented technique utilizes the previ-
ously described notion. In detail, the solar sail re-
mains open throughout the duration of the mission,
and closes to ensure the de-orbiting. Unfortunately,
from a practical standpoint it is now fairly imprac-
tical. This because the maneuver can only be used
if the spacecraft is originally positioned near its or-
bit critical eccentricity.

3.1. Application to debris dynamics
The condition under which low AMR debris are
trapped into the asymmetric equilibra, are derived
in this work.
For a synthetic population generated from the stan-
dard NASA breakup model, a spacecraft is virtu-
ally exploded near a stable asymmetric point lo-
cated at a = 13000 km, ie=0 = 19◦ and AMR =
0.1 m2/kg. The population is propagated for 100
years using a full-dynamics semi-analytical propa-
gator, and those debris (having AMR < σ∗i,j) which
remains nearby the initial condition are compared
with the phase space described by their mean (a,
i, AMR). The populations are propagated starting
from ψ = 0, π (unstable points) and ψ = π/2 (sta-
ble point). Some debris generated from a stable re-
gion remain trapped in it, instead, those debris that
are generated starting from an unstable points, do
not accumulate in a specific region.

4. Conclusions
An Hamiltonian model has been derived to rep-
resent the complex dynamics of low and medium
AMR objects subject to SRP-J2-Sun gravity per-
turbations. The new phase space shape was ex-
ploited for passive de-orbiting of dead spacecrafts,
and in some cases the minimum AMR computed is
lower than literature. It is possible to derive the
conditions under which low/medium AMR debris
accumulates in space, such as objects with an AMR
lower than a "discriminant" AMR.
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