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Abstract

In the last years, the problem of space debris has assumed great relevance and strict
guidelines were identified to stop the process and try to revert it. Two possible end-of-life
strategies are identified: the satellite re-entry into the atmosphere to cause its disruption;
and the transfer to a graveyard orbit. This thesis tackles the problem of the manoeuvre
optimisation strategy for the re-entry of a Highly Elliptical Orbit (HEO) Satellite.
In this thesis, the dynamics of the satellite are studied with a Triple-Averaged (TA) model
obtained by averaging over the fast angles and the node, describing the dynamics depen-
dent only on a single orbital element and the time t, due to the variation of third-bodies’
ephemerides. The TA perturbation potentials accounted to accurately describe the orbital
evolution are the zonal J2 effect due to Earth’s oblateness and the third-body gravitational
attraction of both the Sun and the Moon. The validity of the TA model is analysed by
comparison with the high-fidelity long-term evolution described by the Double-Averaged
(DA) model, working in particular with the Laplace frame, whose formulation is here
presented in several case scenarios, due to its variation in time caused by the oscillation
of the Moon’s orbital elements.
Then, disposal strategies exploiting the low computational costs are analysed, searching
for a method that allows the onboard processor to plan disposal actions autonomously.
In particular, a strategy that exploits both the triple-averaged dynamics and the phase
space formulation with time-varying third-body orbital elements is proposed, dropping
the assumption of constant Hamiltonian but still operating within a simplified analytic
environment. This method is capable of adjusting the manoeuvres design within the TA
propagation to tackle the added time dependence with respect to simplified cases where
the ephemerides variations are simply neglected. Moreover, a hybrid approach is pro-
posed in this thesis, trying to combine the positive aspects of both the semi-analytical
and analytical methods, applying part of the phase space exploitation strategy inside a
non-simplified framework. Those methods are compared to the global optimisation to
assess their accuracy.
This thesis was part of the COMPASS project: “Control for orbit manoeuvring by surfing
through orbit perturbations” (Grant agreement No 679086). This project is European
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Research Council (ERC) funded project under the European Union’s Horizon 2020 re-
search.

Keywords: Orbital perturbations; Long-term Evolution; End-of-life disposal;
Optimal manoeuvres
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Abstract in lingua italiana

Negli ultimi anni, il problema dei detriti spaziali ha assunto grande rilevanza e sono state
identificate linee guida rigorose per fermare il processo e cercare di invertirlo. Sono identi-
ficate due possibili strategie di fine vita: il rientro del satellite nell’atmosfera per causarne
la distruzione; e il trasferimento in un’orbita cimitero. Questa tesi affronta il problema
dell’ottimizzazione della strategia di manovra per il rientro di un Satellite in orbita alta-
mente ellittica (HEO, da Highly Elliptical Orbit).
In questo lavoro, vengono studiate le dinamiche del satellite con un modello ottenuto
filtrando gli effetti sul breve periodo e poi eliminando anche la dipendenza dal nodo, for-
nendo una descrizione della dinamica del sistema dipendente solamente da un elemento
orbitale e dal tempo t, a causa della variazione delle efemeridi dei terzi corpi. Tra i poten-
ziali così filtrati, l’effetto J2 dovuto alla non perfetta sfericità della Terra e l’attrazione
gravitazionale dei sia del Sole che della Luna sono di fondamentale importanza per de-
scrivere accuratamente l’evoluzione orbitale.
La validità del modello proposto per l’analisi della dinamica è qui analizzata, confrontan-
dola con l’evoluzione a lungo termine descritta da un altro modello in cui il filtro sul nodo
non è stato effettuato. Questa comparazione verrà effettuata lavorando in particolare con
il sistema di riferimento di Laplace, la cui formulazione viene qui presentata in diversi
scenari, considerata la peculiare variazione nel tempo causata dall’oscillazione degli ele-
menti orbitali della Luna.
Successivamente, vengono analizzate strategie per il rientro atmosferico che sfruttano i
bassi costi computazionali dei modelli per lo studio della dinamica sopra descritti, cer-
cando un metodo che consenta al processore di bordo di pianificare autonomamente azioni
per il corretto rientro in atmosfera. In particolare, viene qui proposta una strategia che
implementa sia le dinamiche filtrate nel nodo che la formulazione dello spazio delle fasi,
considerano elementi orbitali di terzi corpi variabili nel tempo e quindi abbandonando la
semplificazione della Hamiltoniana costante. Tutto ciò operando comunque all’interno di
un ambiente analitico semplificato. Questo metodo è in grado di adattare il design delle
manovre all’interno del modello filtrato affrontando la dipendenza temporale. Infine, in
questa tesi viene proposto un approccio ibrido che cerca di combinare gli aspetti positivi



sia dei metodi semi-analitici che analitici, applicando in parte la strategia basata sullo
sfruttamento dello spazio delle fasi, ma applicata all’interno di un quadro in cui le sem-
plificazioni del sistema vengono rigettate. Questi metodi sono infine confrontati con la
classica ottimizzazione globale per valutarne l’ accuratezza.
Questa tesi è parte del progetto COMPASS: “Control for orbit manoeuvring by surf-
ing through orbit perturbations”(Grant agreement No 679086). Questo progetto è un
progetto finanziato dall’European Research Council (ERC) nell’ambito della ricerca Eu-
ropean Unions Horizon 2020.

Parole chiave: Perturbazioni orbitali; Evoluzione a lungo termine; Smalti-
mento a fine vita; Manovre ottimali
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1| Introduction

"The eye that surveys the universe is the
universe’s own eye."

— Jostein Gaarder, Maya

1.1. Problem statement and motivation

The dawn of the space age started in 1957, when the Soviet Union launched Sputnik, the
first-ever satellite. Since then, the Earth orbit has been flooded with tonnes of rockets
and satellites sent into orbit. Initially, there was no need to plan a disposal at the end of
their operations, the space was totally free, but numbers have continuously increased, to
the point where collisions have become a serious threat not only to the operativeness of
a satellite but to the sustainability of the space itself.

One of the earliest investigations on the congestion of the Earth’s orbit was carried out in
1978 by Kessler and Palais [1]. They highlighted that the rising number of objects in space
increases the risk of an impact. Moreover, collisions generate numerous fragments, some of
which possess the potential to further fragment other satellites upon collision. This effect
perpetuates a cycle of increasing debris, leading to an exponential rise in space objects
over time and ultimately forming a debris belt around the Earth. This phenomenon in
low Earth orbit (LEO) takes the name of Kessler syndrome.
Kessler further analysed the concept of collisional cascading of objects in orbit in [2],
where it is pointed out that the space debris environment is unstable. For this reason, the
complete implementation of existing mitigation guidelines is necessary. Future payloads
and rocket bodies in orbit must plan their end-of-life (EoL) disposal. Moreover, there
might be a necessity to retrieve certain objects already present in orbit.

Figure 1.1, taken from the latest ESA’s space environment report [3], depicts the amount
of identified on-orbit objects classified by their type of orbit. The majority of satellites
have been launched into Low Earth Orbit (LEO), However, in recent years, the number
of objects has also increased in other orbit categories. It is then evident that space debris
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Figure 1.1: Asserted number of objects on orbit, classified by their orbit (taken from [3]).

is not an issue solely for the LEO satellites, but for the whole space environment as more
satellites are launched.

From the same report, the estimated number of debris objects in orbit in the different
size ranges is:

• 34, 000 object greaten than 10 cm.

• 900, 000 objects from 1 cm to 10 cm.

• 128 million objects from 1 mm to 1 cm.

Given the situation, the Inter-Agency Space Debris Coordination Committee (IADC),
founded in 1993, issued guidelines for the mitigation of space debris, preventing its expo-
nential growth before it becomes an irreversible process [4].
Those regulations state that payloads or rocket bodies found within the protected region
of LEO must adhere to a maximum permanence of 25 years after becoming inoperative,
whether exhibiting a permanent or periodic presence. The recommended approach within
this framework involves utilizing aerodynamic drag to facilitate atmospheric reentry.
Conversely, no specific regulations are currently established for spacecraft orbiting in
Medium Earth Orbit (MEO) or Highly Elliptical Orbit (HEO), the expansive nature of
these zones remains largely unregulated. Nevertheless, due to their susceptibility to third-
body perturbations, decommissioned satellites in HEO might eventually intersect with the
protected LEO zone over an extended period. Hence, this study focuses on disposal solu-
tions designed specifically for satellites in HEO.
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The region provide a strategic advantage for astrophysics, astronomy missions like INTE-
GRAL [5], and Earth-focused missions like Molniya orbits. These orbits offer a unique
perspective for observing both Earth and the Universe. Due to their high eccentricity,
by orbiting Earth in HEOs, spacecraft remain at altitudes mostly beyond the Earth’s
radiation belt, minimizing interference from radiation effects. This characteristic ensures
prolonged periods of uninterrupted scientific observation with minimal background noise
caused by Earth’s radiation.

Given the unique characteristics of these orbits, the most effective method for their dis-
posal involves atmospheric reentry. As these orbits traverse between low and high alti-
tudes, they are notably influenced by the primary gravitational pull due to the oblateness
of the main attractor (such as Earth) and the gravitational influence of other celestial
bodies, resulting in significant effects on their trajectory. Those oscillations can be ex-
ploited by means of an eccentricity. This is the problem that will be faced in this work.
This thesis was part of the COMPASS project: “Control for orbit manoeuvring by surfing
through orbit perturbations” (Grant agreement No 679086). This project is European Re-
search Council (ERC) funded project under the European Union’s Horizon 2020 research

1.2. State of the art

Pioneering work in the field of third body effect was carried out by Mikhail Lidov (1926-
1993) and Yoshihide Kozai (1925-2018). Independently from each other, they both con-
tributed to the mathematical description and asserted models to face the subject. Lidov
[6] was able to develop a mathematical model to describe the third-body perturbation
effect produced by either the Sun or the Moon. Taking into account a wide class of orbits,
he showed that if the inclination is sufficiently high, an eccentric orbit undergoes wide
oscillation in both eccentricity and inclination.

Almost simultaneously, Kozai [7] studied the orbit evolution of an asteroid in the Sun-
Jupiter system. He developed a model by using Delaunay’s variables and exploiting
the Hamiltonian perturbation theory. This way, he was able to condense the problem
into a single-degree-of-freedom (DoF) and studied the secular evolution of the asteroid
considering a highly inclined orbit, under the assumption of a circular orbit. For the
first time, the results were represented in the Hamiltonian phase space. Both the studies
converged to the same fundamental results, that is the appearance of the libration regime
for orbits characterized by certain values of the so-called Kozai parameter, while the
outcomes are now called the Lidov-Kozai effect.
In 1970, Kaufman investigated the influence of the Sun on a satellite in orbit about a
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planet [8]. To reduce the time consumption of the numerical integration, an averaging of
the disturbing function over the period of the satellite was carried out, thereby eliminating
the short-period terms. The results assessed the single-averaged (SA) disturbing function
of the Sun for the study of a planetary orbiter using the Lagrangian equations. In a later
work, Kaufman and Dasenbrock expanded the model to account also high orbiters, up to
the eighth order of the potential [9].

Since then, the interest in the third body perturbation effects has largely grown. The
focus on deep space missions and the necessity to precisely determine the evolution of
an orbit brought an increasing contribution to the subject. Two main application of the
perturbed third-body problem has played a major role in the following studies: the use of
the perturbations to establish a frozen orbit; and their exploitation for EoLdisposal. The
latter problem is becoming even more prominent nowadays due to the growing interest in
the space debris issue. Implementing specific mitigation measures and codes of conduct
remains at least somewhat controversial. Their adoption as the formal policy will invari-
ably raise mission costs, but today almost everyone recognizes that there is a problem
[10]. In this fashion, implementing natural disposal by exploiting third-body perturbation
substantially attenuates the impact on the mission cost.

Concerning frozen orbits exploitation, Delsate et al. [11] studied the stability of orbits con-
sidering The third body potential truncated at the second order, with a double-averaged
(DA) process that leads to a single-DoF Hamiltonian. Moreover, it highlighted the effect
of J2 protection from instabilities. A later work from Tresaco et al. [12] considered the
inclination of the Sun to the reference plane. In a further refinement of the study, the
terms up to J6 were accounted for together with the tesseral ones.
In 2001, Scheeres et al. analysed possible mission strategies to Europa using a simplified
form of the dynamics using a DA model [13]. Later on, Lara and San Juan analysed
frozen orbits using a specific reference frame always pointing toward Jupiter’s direction.
[14] Carvalho et al. [15] used a single averaged model to study orbits around Ganymede,
Titan and Enceladus. Regarding Moon frozen orbits, Folta and Quinn [16] studied lunar
orbits accounting for the Earth as third-body perturbater. Abad et al. in a later work
exploited a synodic frame rotating with the Earth, assumed to move on a circular orbit
about the Moon [17].

The other framework apart from designing frozen orbits, is focused on models aiming to
develop good strategies exploiting third-body perturbation for EoLdisposal, in such a way
as to significantly reduce the amount of propellant needed for de-orbiting. Recently, Lévy
et al [18] developed the Semi-analytical Tool for Orbit propagation at Mars (STORM),
which removes the short periodic contribution by means of averaging the conservative and
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dissipative perturbations The model is developed in Mars equatorial frame and takes into
account drag, SRP, J2 and Sun perturbations.

Regarding Earth, several studies have been carried out for different scenarios. While
nowadays the LEO disposal strategies are trivial, for other orbit types the problem is
more complex.
Concerning MEO, several studies focus on Galileo constellation simulations. In 2010,
Deleflie et al. applied an averaged semi-analytical model to propagate a large number
of orbits [19]. It accounts up to the 5th order term of Earth’s oblateness and lunisolar
effects up to the 3rd order. The results highlighted that MEO satellites can undergo a
large eccentricity growth over long time scales, identifying areas where disposal orbits
shall not be located.
Another study from Radtke et al. [20] focused on determining which strategy is prefer-
able between graveyard disposal and atmospheric re-entry. For the latter, resonant effects
between the perturbations were exploited, leading to an eccentricity build-up to drive the
satellite inside the atmosphere.
In a later paper, focusing solely on Galileo, Gondelach et al. [21] further studied the reen-
try disposal strategy, using a multiobjective optimisation. The two parameters to optimise
are the impulsive cost ∆v and the time-to-reentry. A semi-analytical orbit propagator was
implemented, using a double-average model. The analysis highlights the preferable initial
values of Ω and ω to maximize the eccentricity growth and obtain a successful reentry.
In the same framework, Daquin et al. [22] carried out an in-depth study on the effects of
lunisolar resonance. The crucial role played by the inclination of the Laplace plane iL was
highlighted. The expansion of the Hamiltonian was performed with a further polynomial
expansion in Poincaré variables around the centre of resonance. The results show how
stable and unstable manifolds induce transport and dictate objects’ lifetimes.
Another work from Pellegrino et al. [23] regarding MEO satellites, further analysed the
dynamic secular eccentricity growth in this region for Earth reentry. Here the solar ra-
diation pressure contribution was also considered, taking into account satellites with two
different area-to-mass (A{m) ratios. A DA is applied and its accuracy is studied in the
presence of the SRP effect.

Another framework of study is represented by GEO satellites. Rosengren et al. [24]
studied the exploitation of the Laplace plane as a stable graveyard disposal orbit for
satellites in this region of space. The only issue is represented by the cost of moving a
satellite to an inclined orbit, which can be expensive.
Gkolias and Colombo [25] studied disposal options of satellites about the geosynchronous
altitude. The study shows that at this altitude the Lidov-Kozai dynamic is predominant.
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Results are obtained using a semi-analytical propagator, exploiting SA.
Another work on the GEO environment by Carvalho et al. [26], explores the possibility
of using a solar sail to help clean the environment, due to the relevance of the SRP
contribution with large area-to-mass ratio. In this work, differently from past studies, the
Sun is considered on an elliptical and inclined orbit, with a formulation based on a SA
model.
A different kind of work was developed by Pinardell Pons and Noomen [27]. Instead of
focusing on the EoLdisposal manoeuvre, here the focus is on determining optimal launch
conditions with Ariane 5 for succeeding in a fast re-entry of launch debris.

Regarding HEO, the region studied in this work, several studies have been carried out
simulating missions such as INTEGRAL (International Gamma-Ray Astrophysics Labo-
ratory). In 2013, Colombo et al. [28] analysed two different strategies. The first one, used
also in aforementioned papers, relies on lowering the perigee altitude using an eccentricity
grow-up. The second strategy consists of a weak capture trajectory at the Moon, com-
puted assuming the Circular Restricted Three-Body Problem (CR3BP) approximation.
In this case, what is sought is an apogee altitude increment, paired with a decrement of
the orbit inclination to exploit lunar perturbation.
In a following work, in 2019, Colombo [29] further studied the evolution of INTEGRAL-
type orbits to identify the best-suited solution between the re-entry and the graveyard
orbit, depending on the satellite’s conditions. Finally, recent works by Asperti [30] and
Scala [31] were carried out analysing the possibility of a fully-analytical optimisation
design of the disposal by exploiting the Hamiltonian formulation. The idea lies in the
elimination of the node dependence from the double-averaged model and assuming the
third-body orbital elements as fixed, thus removing the time dependence. This allowed
to reduce the satellite’s dynamics to a single-DoF problem.

1.3. Scope of the thesis and contributions

This work focuses on the design of efficient disposal manoeuvres for a HEO satellite, for
which past works mainly employed global optimisers. It shall be noted that, despite being
an extremely accurate method for the estimation of the optimal disposal manoeuvre, they
are computationally expensive. For this reason, the design cannot be carried out from
the satellites’ onboard microprocessors, thus requiring an allocation of resources for the
ground station monitoring, even after the operative life of the satellite has ended.
To overcome this limitation, an analytical design algorithm is sought. The optimisation
strategy’s analysis relies on a theory that simplifies the dynamics of the HEO satellite.
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This is achieved by eliminating the node in the perturbing potentials.
The ultimate goal is to provide a sufficiently accurate model to properly design and plan
the disposal manoeuvre, with a sensible reduction of computational costs with respect to
the classic methods. This would allow the satellite to autonomously plan its End-of-Life
(EoL) disposal, without needing support from the ground segment. This would make
space more accessible even to private companies.

For these reasons, this thesis further analyses the possibility of implementing an analytical
disposal optimisation strategy. This task is tackled considering various case scenarios of
the Laplace frame. Within those cases, also a rotating frame is used for the dynamical
representation of the problem.
Differently from past works, the implementation of a time-varying frame requires dropping
the assumption of constant third-bodies’ orbital elements, made to obtain a single- DoF
formulation of the problem. Thereafter, a new type of analytic optimisation design will
be proposed and tested in this work.
Moreover, another method is proposed trying to combine the goods of both the analytical
method and the semi-analytical. This latter task will be carried out seeking a solution
independent of the frame employed for the study of the dynamics.

1.4. Thesis outline

After the introduction, this work is organized as follows:
In Chapter 2, the fundamentals of the perturbed two-body problem are presented to
provide the necessary knowledge for the rest of the work. Also, the Gauss and Lagrange
planetary equations are reported, needed for the propagation of the long-term dynamics
of the orbital elements.

In Chapter 3 the formulation of the perturbing potentials is detailed, since they are needed
for the dynamics representation of the problem. Moreover, their averaging procedure will
be described, consisting of the filtering of the fast angles and then the node elimination.
The perturbations considered are the Earth’s oblateness, where only the zonal J2 term is
retained, and the lunisolar third-body perturbations.
Finally, the Hamiltonian formulation and the phase space representation are outlined. The
Hamiltonian in particular will be crucial for the definition of the analytical optimisation
strategy.

In Chapter 4 the averaged models of the dynamics are tested and compared, to assess
their accuracy. Subsequently, the Laplace frames are defined, along with the eventual
assumption made for their implementation. The propagation is therefore carried out also
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in those frames, and the results are compared to the ecliptic and equatorial frames.

In Chapter 5 the manoeuvre design algorithms are presented. Regarding the analytic
strategy, two methods are described: the first simplifies the third-bodies’ ephemerides
by eliminating the time dependence; the second considers those variations. Moreover,
the hybrid method is detailed, combining the analytical optimisation of the manoeuvring
angles with the local optimisation of the velocity impulse.

In Chapter 6 the numerical results for the case study are presented. utilizing the INTE-
GRAL satellite as a bench test for the application of the proposed optimisation strategies.
The optimisation is performed within each Laplace frame previously defined, for compar-
ison. Subsequently, the optimised manoeuvring sets are tested with a reliable long-term
dynamic propagation, aiming to verify the achievement of the re-entry.

Finally, Chapter 7 concludes the thesis work, describing the results obtained and possible
future developments
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2.1. The N -body problem

Given N bodies represented as point masses, each subjected to the gravitational pull of
the others, it is possible to express the force acting on every single body by using Newton’s
universal law of gravity as follows:

Fi “ ´Gmi

k
ÿ

i‰j

mj

r3ij
rji (2.1)

Where G is the universal gravitational parameter, mi is the mass of the body subjected
to the force we are considering, mj is the mass of the j-th attractor pulling the main
body, rji is the position vector of body i with respect to j while rij is the magnitude of
the vector. Dividing each side by mi and exploiting Newton’s second law, the dynamics
of the i-th body in an inertial frame becomes:

:ri “ ´G
k
ÿ

i‰j

mj

r3ij
rji (2.2)

With :ri being the acceleration vector of the i-th body. Eq. (2.2) generally does not have
a closed-form solution, but if we consider only two bodies, then the problem is integrable.

2.2. The two-body problem

This is a specific case of the N -body problem, for which a solution is retrievable. For
simplicity, let rij ” r. The body m1 is acted upon only by the force of gravitational
attraction toward m2 and vice versa. This forces of gravitational attraction acts along
the line joining the centre of mass (CoM) of m1 and m2 and the absolute acceleration of
the masses is given by:
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:r1 “ G
m2

r3
r

:r2 “ ´G
m1

r3
r

(2.3)

The relative acceleration vector, recalling that r “ r2 ´ r1, is then:

:r “ ´G
m1 ` m2

r3
r “ ´

µ

r3
r (2.4)

with µ “ Gpm1 ` m2q. A further assumption can here be made, if the secondary mass
m2 ! m1 then the CoM of the system can be considered coincident with m1. In such
a case the inertial position vector of the secondary mass is represented by the relative
position vector r. This is the typical case scenario of a satellite orbiting around a planet,
with an infinitesimal mass with respect to the main body.

µ “ Gpm1 ` m2q « Gm1 (2.5)

Eq. (2.5) can be substituted in Eq. (2.4), and µ becomes a property of the main attractor,
called the main body’s gravitational parameter.
The 6 integrals of motion can be expressed in terms of orbital elements: semi-major axis
a; the eccentricity of the orbit e; inclination i; the right ascension of the ascending node
(RAAN) Ω; the argument of periapsis ω; the true anomaly θ. The shape of the orbit is
determined by the values of a and e, while the angles i, Ω and ω define the orientation
of the orbit in the considered reference frame. Then the trajectory of the spacecraft is
determined by the value of θ, with the following expression:

r “
ap1 ´ e2q

1 ` e cos θ
(2.6)

with θ changing in time between the interval [0, 2π]. To express the relation between the
true anomaly and the time, first, let’s define the mean anomaly M and its relation with
the time:

M “

ż t

tp

ndt “ npt ´ tpq (2.7)

with tp being the time of the pericentre passage and is fixed. M represents the the azimuth
position of a fictitious body moving on a circular orbit (e “ 0) with with constant angular
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velocity n (defined as n “
a

µ{a3), characterised by the same a and tp of the considered
orbit. For a circular orbit, the mean anomaly M and the true anomaly θ are identical.
Now, we can express M through another auxiliary variable E called Eccentric anomaly:

M “ E ´ e sinE (2.8)

The eccentric anomaly E is defined by circumscribing the ellipse with a concentric aux-
iliary circle having a radius equal to the semimajor axis a of the ellipse. From the point
on the ellipse identified by the true anomaly θ we pass a perpendicular to the apse line,
intersecting the auxiliary circle. the latter point identifies an angle at the auxiliary circle
origin that is the eccentric anomaly E. Finally, the relation between E and θ is given by:

tan
θ

2
“

?
1 ´ e

?
1 ` e

tan
E

2
(2.9)

Using Eq. (2.8) and Eq. (2.9) it is possible to retrieve the relation between θ and t, with
Eq. (2.6) the relation between the satellite position and the time.

2.3. Reference frames

In the following discussion, different reference frames are discussed. It is then useful to
explain the rotation between one frame to the other, which is obtained by exploiting the
rotation matrices:

R1pαq “

»

—

–

1 0 0

0 cosα sinα

0 ´ sinα cosα

fi

ffi

fl

R2pαq “

»

—

–

cosα 0 ´ sinα

0 1 0

sinα 0 cosα

fi

ffi

fl

R3pαq “

»

—

–

cosα sinα 0

´ sinα cosα 0

0 0 1

fi

ffi

fl

(2.10)

Where Ripαq is the rotation matrix around the i-th axis of the generic Euler angle α
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2.3.1. Perifocal to inertial frame

The perifocal frame is defined in the orbital plane and centred at the main attractor, it
is identified with the set {P̂,Q̂,R̂}. P̂ is the versor pointing in the pericentre direction,
R̂ aligned with the angular momentum direction and Q̂ completes the reference frame,
identifying a direction pointing towards the semi-latus rectum. On the other hand, the
inertial reference frame is based on the Earth, which represents its centre and is defined
in the equatorial frame and is represented with the set {Î,Ĵ,K̂}. Î is fixed and pointed
in the direction of the vernal equinox (identified by the intersection between the Ecliptic
and the Equatorial planes), also called the gamma point, K̂ is directed towards the North
Pole and Ĵ completes the orthogonal tern. This Earth-based frame is usually referred
to as the Earth-Centred-Inertial (ECI) frame. The rotation from perifocal to an inertial
frame is completed with three subsequent rotations about the set of Euler angles tω, i,Ωu,
with ω and Ω being rotations around R̂, while i rotation is performed around P̂. Note
that since the rotation is counter-clockwise, the Euler angle rotations are taken negative.
A generic vector rotation is therefore defined as:

vI “ R3p´ΩqR1p´iqR3p´ωqvPF (2.11)

While the inverse rotation is simply defined by the transpose of the rotation matrix, hence:

vPF “ R3pωqR1piqR3pΩqvI (2.12)

2.3.2. Ecliptic to Inertial frame

The Ecliptic reference frame is based on the orbital plane of the Earth around the Sun,
it is represented with the set {X̂ec,Ŷec,Ẑec}. X̂ec is pointed towards the vernal equinox,
while Ẑec here is orthogonal to the Earth’s orbit, with Ŷec completing the triad. Recalling
the definition of the ECI frame, we can note that X̂ec and Î are identified in the same
way, hence X̂ec coincides with Î. The main differentiation between the two frames is that
differently from Ŷec, in ECI frame K̂ lies on the North Pole direction. Once defined the
tilt angle ϵ between the two versors, we can switch from one frame to the other with one
single rotation as follows, considering the rotation of a generic vector:

vec “ R1pϵqveq (2.13)
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veq “ R1p´ϵqvec (2.14)

2.3.3. Perifocal to Frenet (TNH ) frame

Another important reference frame is the so-called Frenet TNH reference frame which,
differently from the previous ones, is centred on the satellite and is represented with the
set tT̂, N̂, Ĥu, from where it takes the name. T̂ is directed towards the velocity direction,
hence changing orientation in time, Ĥ is normal to the orbital plane and N̂ completes
the set. To better understand this, the frame representation is represented together with
the perifocal one in Fig(...). It is clear from the picture that, to define the rotation, two
angles are needed. One being θ and the other defined as ϕFPA being the flight path angle,
and computed as follows:

tanϕFPA “
e sin θ

1 ` e cos θ
(2.15)

Once this angle is known, a generic vector can be represented in the tnh starting from the
perifocal frame tP̂, Q̂, R̂, by applying a rotation around the third axis R̂ (and vice versa
around axis Ĥ): Once this angle is known, a generic vector can be represented in the tnh
starting from the perifocal frame tP̂,Q̂,R̂, by applying a rotation around the third axis
R̂ (and vice versa around axis Ĥ):

vTNH “ R3p
π

2
` θ ´ ϕFPAqvPF (2.16)

vPF “ R3pϕFPA ´
π

2
´ θqvTNH (2.17)

2.4. The perturbed equations of motion

The equations of motion previously discussed (Eq. 2.4) are based on the assumption
that the only forces acting on the two considered bodies are their reciprocal attraction
due to their spherically symmetric gravitational field. This is not the case and we have
commonly a numerous amount of perturbations acting on the bodies, such as atmospheric
drag, Solar Radiation Pressure (SRP), gravitational interaction with other celestial bodies
like the Moon and Sun for an orbiter around the Earth, but also a perturbation due
to the nonsphericity of the main attractor and the impulsive thrust of a manoeuvre.
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Commonly the magnitude of those perturbative accelerations is smaller than the main
body’s spherically symmetric gravitational attraction, but that’s not always the case. For
example, at low altitudes, the acceleration due to the atmospheric drag is big enough to
de-orbit a satellite, while at high altitudes it can be considered negligible. The dependence
on the altitude is not the same for all the perturbative terms here mentioned, the SRP
for example does not depend at all on it. The equations of motion considering the effects
of those perturbations can be written as:

:r “ ´
µ

r3
r ` p (2.18)

With p being the net perturbative acceleration from all the different sources other than
the spherically symmetric gravitational forces between the two considered bodies. Those
perturbations could be exploited wisely in the mission design for various reasons, one
being the de-orbit of a satellite. Generally, even if non-negligible, the magnitude of those
secondary accelerations is smaller than the main effect accounted for in the simple two-
body problem. Since in such a case a fully analytical solution is not feasible, a numerical
integration is needed. To ease the computation it is better to switch from the cartesian
coordinates to the orbital elements, which tend to oscillate around their 2-body values.
In the case of cartesian coordinates instead, the position and velocity vector undergo a
large variation, greatly increasing the computational cost of the integration. The two
most used schemes to integrate the perturbed two-body problem are the Lagrangian and
the Gauss equations.

2.4.1. The Lagrange planetary equations

Whenever the perturbative forces acting on the satellite are conservative, the Lagrange
planetary equations represent a well-suited method to perform the numerical integration.
These equations are expressed in terms of the conservative disturbing functions R (See
Karttunen [32], Vallado [33], El’iasberg [34] for reference):
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da

dt
“

2

na

BR
BM

de

dt
“

1

na2e

ˆ

`

1 ´ e2
˘ BR

BM
´

?
1 ´ e2

BR
Bω

˙

di

dt
“

1

na2 sin i
?
1 ´ e2

ˆ

cos i
BR
Bω

´
BR
BΩ

˙

dΩ

dt
“

1

na2 sin i
?
1 ´ e2

BR
Bi

dω

dt
“ ´

1

na2 sin i
?
1 ´ e2

cos i
BR
Bi

`

?
1 ´ e2

na2e

BR
Be

dM

dt
“ n ´

1 ´ e2

na2e

BR
Be

´
2

na

BR
Ba

(2.19)

the conservative force term R can be written as the sum of the various single conservative
forces in action:

R “

Np
ÿ

i

Ri (2.20)

with Np being the number of the perturbation terms considered.

2.4.2. The Gauss planetary equations

Whenever the disturbing forces are non-conservative, the Lagrange equations are no longer
applicable. In such a case, a solution can be found by using the Gauss planetary equations,
which depend on the perturbative acceleration vector p induced by the disturbing forces.
Using as reference frame an tr̂, ŝ, ŵu set where the r̂ is the radial component at any point
in the point, ŵ is directed along the perpendicular to the orbital plane and ŝ completes
the frame, it is possible to decompose p in its three components pr, ps, pw and it is then
possible to express the set of equations as follows (see Curtis [35] for reference):
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da

dt
“ rps

de

dt
“

h

µ
sin θpr `

1

µh

``

h2
` µr

˘

cos θ ` µer
˘

ps

dθ

dt
“

h

r2
`

1

eh

ˆ

h2

µ
cos θpr ´

ˆ

r `
h2

µ

˙

sin θps

˙

dΩ

dt
“

r

h sin i
sinupw

di

dt
“ ´

r

h
cosupw

dω

dt
“ ´

1

eh

ˆ

h2

mu
cos θpr ´

ˆ

r `
h2

µ

˙

sin θps

˙

´
r sinu

h tan i
pw

(2.21)

where h “
a

µa p1 ´ e2q is the orbital angular momentum, r is the magnitude from the
main body centre, µ is the main body’s planetary gravitational parameter and u “ ω ` θ

is the argument of latitude.
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3.1. Gravitational perturbations

The Earth and other celestial bodies are not perfect spheres, but rather oblate spheroids.
The centrifugal forces exerted by the rotation around the spin axis cause an equatorial
bulge, consequently, the gravitational field varies both with the latitude and the radius.
Following the description from Vallado [33] and Blitzer[36], the mathematical description
of the Earth’s irregular gravitational potential relies on spherical harmonic expansion,
using the Legendre polynomials. This geopotential can be expressed by highlighting two
different separated contributions, one independent of the longitude called zonal harmonic
and one dependent on it, called tesseral harmonic:

V “ ´
µ

r

«

1 ´

8
ÿ

l“2

Jl

ˆ

RC

r

˙l

Pl psinϕq `

8
ÿ

l“2

l
ÿ

m“1

ˆ

RC

r

˙l

Plm psinϕq Jlm cosm pλ ´ λlmq

ff

(3.1)

where

• µ is the Earth’s gravitational parameter.

• r is the satellite geocentric distance.

• RC is the mean equatorial radius of the Earth.

• Plm is the associated Legendre polynomial of degree l and order m.

• Jlm and λlm are constants depending on the planet’s mass distribution, in the zonal
harmonic term m “ 0, hence Jl “ ´Jl0 (the minus sign is purely conventional).

• λ is the geographic longitude

• ϕ is the geographic latitude
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In this thesis, only the zonal harmonics would be considered and since the disturbing
function is the negative of the disturbing potential, the potential expression is reduced to:

R “ ´
µ

r

8
ÿ

l“2

Jl

ˆ

RC

r

˙l

Pl sinϕ (3.2)

Additionally, only the dominant term J2 will be taken into account since this is a rea-
sonable assumption in the case of a HEO satellite, which is the focus of this work. This
yields to:

R “ ´
µJ2R

2
C

2r3
p3 sin2 ϕ ´ 1q (3.3)

For orbits in the vicinity of the Earth, additional terms would be needed to achieve a
faithful description.

RJ2 in a generic frame

The position of a satellite in a cartesian coordinate system can be expressed, in a generic
frame, starting from the orbital elements. The formulation is given by Eq. (2.11), which
can be rewritten considering that rPF “ R3p´θq rr, 0, 0s

T , yielding to the following:

»

—

–

x

y

z

fi

ffi

fl

gf

“ R3p´ΩqR1p´iqR3p´ω ´ θq

»

—

–

r

0

0

fi

ffi

fl

(3.4)

where the orbital elements and the result coordinates are referred to the generic frame
considered.
Hereafter the vector in the generic frame can be rotated to the equatorial frame with a
rotation sequence, here reported as follows:

»

—

–

x

y

z

fi

ffi

fl

eq

“ R1pαqR2pβqR3pγq

»

—

–

x

y

z

fi

ffi

fl

gf

“ Rgf2eqR3p´ΩqR1p´iqR3p´ω ´ θq

»

—

–

r

0

0

fi

ffi

fl

(3.5)

with the angles tα, β, γu dependent on the orientation of the chosen frame with respect
to the equatorial one, while Rgf2eq is the resultant rotation matrix.
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Recalling Eq. (3.3), the sinus of the latitude of a satellite is computed from:

sinϕ “
zeq
r

“
xR

p3,1q

gf2eq ` yR
p3,2q

gf2eq ` zR
p3,3q

gf2eq

r
“

“ cos pω ` θq

´

R
p3,1q

gf2eq cosΩ ` R
p3,2q

gf2eq sinΩ
¯

`

”

R
p3,3q

gf2eq sin i ` ...

` cos i
´

R
p3,2q

gf2eq cosΩ ´ R
p3,1q

gf2eq sinΩ
¯ı

sin pω ` θq

(3.6)

where {x, y, z} are the coordinates in the generic frame and R
pi,jq

gf2eq corresponds to the
element in the i-th row, j-th column of the rotational matrix.

The expression of the potential in a generic frame is retrieved by inserting Eq. (3.6) into
Eq. (3.3), leading to:

RJ2 “ ´
µJ2R

2
C p1 ` e cos θq

3

2a3 p1 ´ e2q3

!

´1 ` 3
”

cos pω ` θq

´

R
p3,1q

gf2eq cosΩ ` ...

`R
p3,2q

gf2eq sinΩ
¯

`

ˆ

R
p3,3q

gf2eq sin i ` cos i
´

R
p3,2q

gf2eq cosΩ ` ...

´R
p3,1q

gf2eq sinΩ
¯

˙

sin pω ` θq

ȷ2
+

(3.7)

Ecliptic frame

In the case of ecliptic frame the rotational matrix reduces to R1 p´ϵq, hence Eq. (3.6) is
simplified to:

sinϕ “
zeq
r

“
z cos ϵ ` y sin ϵ

r
“

“ cos pω ` θq sin ϵ sinΩ ` pcos i cosΩ sin ϵ ` cos ϵ sin iq sin pω ` θq

(3.8)

Inserting the latter in the potential expressed in Eq. (3.3) the result is:

RJ2 “ ´
J2µR

2
C p1 ` e cos θq

3

2a3 p1 ´ e2q3

"

´1 ` 3

„

cos pω ` θq sin ϵ sinΩ ` ...

` pcos i cosΩ sin ϵ ` cos ϵ sin iq sin pω ` θq

ȷ2*
(3.9)
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Equatorial frame

Considering the equatorial reference frame, the rotational matrix becomes simply the
identity matrix, leading to:

sinϕ “
zeq
r

“ sin i sin pω ` θq (3.10)

which brings to the following expression of the potential:

RJ2 “ ´
J2µR

2
C p1 ` e cos θq

3
`

´1 ` 3 sin2 i sin2 pω ` θq
˘

2a3 p1 ´ e2q3
(3.11)

3.1.1. Single averaged planet asphericity

In the present work, an averaged model of the potentials is used to lower the computational
costs. This method allows to cancel out the short-term effect due to the true anomaly
variation along the orbit. This cancellation is not a problem since the focus is on the
long-term dynamics of the satellite.
The averaging is performed over one orbital period, with all the orbital elements being
considered constant apart from the true anomaly.
The following computations were performed analytically using Mathematica ® software,
starting from the integration of the general expression reported in Eq. (3.7) over the
satellite’s mean anomaly M as follows:

RJ2 “
1

2π

ż 2π

0

RdM (3.12)

where dM can be expressed in terms of dθ as:

dM “
p1 ´ e2q

3{2

p1 ` e cos θq
2dθ (3.13)

Inserting Eq. 3.13 into Eq. 3.12 and computing it is possible to obtain the SA expression
of the zonal J2 perturbation potential:
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RJ2 “
1

2π

ż 2π

0

RJ2dM “ ´
J2µR

2
C

16a3 p1 ´ e2q
3{2

„

´8 ` 9

ˆ

R2
31 ` R2

32 `
2

3
R2

33`

˙

` ...

` 3
`

R2
31 ` R2

32 ´ 2R2
33

˘

cos 2i ` ...

` 6 pR31 ´ R32q pR31 ` R32q cos 2Ω sin2 i ` ...

` 12

ˆ

R33 sin 2i pR32 cosΩ ´ R31 sinΩq ` ...

` R31R32 sin
2 i sin 2Ω

˙ȷ

(3.14)

where for simplicity, the notation for the elements of the rotation matrix Rgf2eq is simpli-
fied as: R

pi,jq

gf2eq ” Rij.

Note that Eq. 3.14 does not depend on the third body’s fast angle. Since the double
averaging technique will be performed along the third body true anomaly (as it will be
shown in Section 3.2.2), this means that the SA and DA expressions of the zonal J2

perturbing potential are equal. Namely:

RJ2 “
1

2π

ż 2π

0

RJ2dM3b “ RJ2 (3.15)

Hereafter, it is possible to pass directly to the triple-averaging computation.

Ecliptic frame

The latter result, in the context of a satellite whose orbital elements are expressed in the
ecliptic frame, can be rewritten as:

RJ2 “
J2µR

2
C

32a3p1 ´ e2q3{2

„

p1 ` 3 cos 2ϵq p1 ` 3 cos 2iq ` ...

` 12 cos 2Ω sin2 ϵ sin2 i ´ 12 cosΩ sin 2ϵ sin 2i

ȷ

(3.16)
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Equatorial frame

And again, in the special scenario in which the satellite orbital elements are already
considered in the equatorial frame, the averaged geopotential reduces to:

RJ2 “
J2µR

2
C p1 ` 3 cos 2iq

8a3p1 ´ e2q3{2
(3.17)

3.1.2. Triple averaged planet asphericity

As it will be discussed in Section 3.3.2, some requirements are needed to allow a simplified
single-DoF system dynamics such that a 2D representation is possible.

• independence on the fast angle M (obtained via SA).

• independence on the node Ω.

The requirement of independence on the fast angle M has already been achieved through
the SA procedure, while for the second requirement, the node elimination is needed.
For this reason, further simplifications are needed. Regarding the node dependence, as
proposed by Gkolias [25] and analised by Asperti [30], an additional averaging procedure
is carried out.
The Triple Average (TA) requires an integration over the satellite right ascension of the
ascending node Ω. In this way, the potential will not depend anymore on the satellite
node.

The triple averaging procedure expression is therefore computed as:

RJ2 “
1

2π

ż 2π

0

RJ2dΩ (3.18)

Applying this averaging procedure to the general expression of the DA potential in Eq.
3.14, and remembering from Eq. (3.15) that the DA is equal to the SA one for the J2

perturbation, the TA expression of the J2 perturbing potential is obtained as reported:

RJ2 “
1

2π

ż 2π

0

RJ2dΩ “ ´
J2µR

2
C

16a3p1 ´ e2q3{2

„

´8 ` 9

ˆ

R2
31 ` R2

32 `
2

3
R2

33

˙

` ...

` 3
`

R2
31 ` R2

32 ´ 2R2
33

˘

cos 2i

ȷ

(3.19)
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Ecliptic frame

If the ecliptic frame is considered, the expression in Eq. 3.19, reduces to:

RJ2 “
J2µR

2
C p1 ` 3 cos 2ϵq p1 ` 3 cos 2iq

32a3p1 ´ e2q3{2
(3.20)

Equatorial frame

The equatorial frame on the other hand represents a particular case for the TA expression
of the zonal perturbation potential. In this frame, the expression of the SA from Eq.
(3.17) does not depend on the satellite node, hence the expression is unchanged with
respect to both the DA and the SA potentials:

RJ2 “ RJ2 “
J2µR

2
C p1 ` 3 cos 2iq

8a3p1 ´ e2q3{2
(3.21)

3.2. Third-body perturbation

Considering a system of three bodies with Earth being the main attractor, a satellite
orbiting around Earth and the third body being a perturber, it is possible to express the
equation of motion in an inertial reference system centred at the centre of mass (CoM).
Considering the forces acting on the satellite, as described by Vallado [33], it is possible
to write:

:rS “ ´
GmC

r3CS

rCS `
Gm3b

r3S3b
rS3b (3.22)

With rS being the position vector of the satellite from the centre of mass, rCS the position
vector of the satellite with respect to the Earth, rS3b the position vector of the third body
with respect to the satellite, mC representing the Earth’s mass, and m3b the third body’s
mass. The geometry of the problem is reported in Fig. 3.1

Since rS “ rC ` rCS, its differentiation leads to:

:rS “ :rC ` :rCS (3.23)

with rC being the position vector of the Earth from the centre of mass.
Assuming that the satellite mass is negligible compared to the other two bodies, the
motion of the Earth depends only on the pull exerted by the third body. Applying
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Figure 3.1: Geometry of the perturbed two-body problem.

Newton’s gravity law:

:rC “
Gm3

r3C3b

rC3b (3.24)

with rC3b being the position vector of the third body with respect to the Earth.
Inserting Eqs. (3.23) and (3.24) into Eq.(3.22) and calling respectively µ3b “ Gm3b and
µ “ GmC leads to:

:rCS “ ´
µ

r3CS

rCS ` µ3b

ˆ

rS3b
r3S3b

´
rC3b

r3C3b

˙

(3.25)

In the latter equation, it is possible to identify two distinct terms, one being the 2-body
solution found in Eq. (2.4) and the other representing the perturbation contribution of
the third-body:

a3b “ µ3b

ˆ

rS3b
r3S3b

´
rC3b

r3C3b

˙

(3.26)

Now, recalling that rS3b “ rC3b ´ rCS, it can be shown [37] that a3b admits a potential in
the following form:

R3b “ µ3b

ˆ

1

}rC3b ´ rCS}
´

rCS ¨ rC3b

r3C3b

˙



3| Orbital Perturbations 25

To simplify the notation, since all the position vectors are given with respect to the Earth,
in the following work rCS ” r and rC3b ” r3b, hence rewriting:

R3b “ µ3b

ˆ

1

}r3b ´ r}
´

r ¨ r3b
r33b

˙

(3.27)

Following the procedure from Kaufman [8], by using the cosine law and considering the
geometry of the problem, the term }r3b ´ r} can be rewritten as:

}r3b ´ r} “
`

r2 ` r23b ´ 2rr3b cosS
˘1{2 (3.28)

with S being the angle between r and r3b. Therefore the term in Eq. (3.27) becomes:

1

}r3b ´ r}
“

1

r3b

«

1 ´ 2
r

r3b
cosS `

ˆ

r

r3b

˙2
ff´1{2

(3.29)

Regarding instead the second term of Eq. (3.27), it can be expressed as:

r ¨ r3b
r33b

“
rr3b cosS

r33b
“

1

r3b

r

r3b
cosS (3.30)

Plugging Eqs. (3.29) and (3.30) in Eq. (3.27) the third body potential is rewritten as
follows:

R3b “
µ3b

r3b

$

&

%

«

1 ´ 2
r

r3b
cosS `

ˆ

r

r3b

˙2
ff´1{2

´
r

r3b
cosS

,

.

-

(3.31)

At this point, the potential R3b can be expanded in McLaurin series using Legendre
Polynomials. The result of this operation is here reported:

R3b “
µ3b

r3b

«

8
ÿ

n“0

ˆ

r

r3b

˙n

Pn pcosSq ´
r

r3b
P1 cosS

ff

(3.32)

The first four orders of the Legendre Polynomials Pn pcosSq are reported in Table (3.1).
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n Pn pcosSq

0 1
1 cosS

2 1{2 p3 cos2 S ´ 1q

3 1{2 p5 cos3 S ´ 3 cosSq

4 1{8 p35 cos4 S ´ 30 cos2 S ` 3q

Table 3.1: Legendre polynomials Pn pcosSq from order 0 to 4.

Note that in Eq. (3.32) the term n “ 1 and the right term cancel each other, while the
term n “ 0 is useless since it does not depend on r. In fact, the equation of motion
depends on the gradient of R3b, meaning that the contribution of the zero term to the
motion is null. Hence the final expression of the third-body potential:

R3b “
µ3b

r3b

8
ÿ

n“2

ˆ

r

r3b

˙n

Pn pcosSq (3.33)

In this work, as suggested in Colombo et al. [38] and done in previous studies [31] [30],
only terms up to the fourth order will be considered since those are sufficient to accurately
model the orbital evolution of a spacecraft in HEO.
The expressions of R3b,2, R3b,3 and R3b,4 are then retrieved:

R3b,2 “
1

2

µ3b

r3b

ˆ

r

r3b

˙2
`

3 cos2 S ´ 1
˘

(3.34)

R3b,3 “
1

2

µ3b

r3b

ˆ

r

r3b

˙3
`

5 cos3 S ´ 3 cosS
˘

(3.35)

R3b,4 “
1

8

µ3b

r3b

ˆ

r

r3b

˙4
`

35 cos4 S ´ 30 cos2 S ` 3
˘

(3.36)

The term cosS needs to be specified. Its definition is:

cosS “
r ¨ r3b
rr3b

“ r̂ ¨ r̂3b (3.37)

For the continuation of the work, Eq. (3.37) shall be expressed in terms of orbital elements.
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Firstly, the vector in the perifocal frame is expressed in the perifocal frame tP̂, Q̂, R̂u (see
Section 2.3.1):

r “ r cos θ P̂ ` r sin θ Q̂ (3.38)

Dividing by the magnitude, a unitary vector is obtained:

r̂ “ cos θ P̂ ` sin θ Q̂ (3.39)

Following the method in Kaufman [8], inserting Eq. (3.39) into Eq. (3.37) gives:

cosS “ r̂ ¨ r̂3b “

´

P̂ ¨ r̂3b
¯

cos θ `

´

Q̂ ¨ r̂3b
¯

sin θ “ A3b cos θ ` B3b sin θ (3.40)

Defining A3b and B3b as:

A3b “ P̂ ¨ r̂3b

B3b “ Q̂ ¨ r̂3b
(3.41)

The same reasoning can be applied to r̂3b, hence by decomposing it into its perifocal
components, Eq. (3.40) can be rewritten as:

cosS “

”´

P̂ ¨ P̂3b

¯

cos θ3b `

´

P̂ ¨ Q̂3b

¯

sin θ3b

ı

cos θ ` ...

`

”´

Q̂ ¨ P̂3b

¯

cos θ3b `

´

Q̂ ¨ Q̂3b

¯

sin θ3b

ı

sin θ

(3.42)

Defining the following terms:

α “ P̂ ¨ P̂3b

β “ Q̂ ¨ Q̂3b

γ “ P̂ ¨ Q̂3b

ξ “ Q̂ ¨ P̂3b

(3.43)

Finally, it is possible to write:
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cosS “ pα cos θ3b ` γ sin θ3bq cos θ ` pξ cos θ3b ` β sin θ3bq sin θ (3.44)

The dependency of A3b, B3b, α, β, γ and ξ on the orbital elements of either the satellite
and the third body are reported in Table 3.2

Term Dependency

A3b, B3b ti, Ω, ω, i3b, Ω3b, ω3b, θ3bu
α, β, γ, ξ ti, Ω, ω, i3b, Ω3b, ω3bu

Table 3.2: Dependency of various terms on the orbital elements.

The explicit dependency on θ3b in Eq. (3.44) will be useful later on for the double averaging
procedure in Section 3.2.2.

The third-body potential from Eq. (3.33) in its full complexity depends on all the orbital
elements of both the spacecraft and the third body perturber:

R3b “ R3b pa, e, i,Ω, ω, θ, a3b, e3b, i3b,Ω3b, ω3b, θ3bq (3.45)

To access the phase space and simultaneously speed up the computation of the orbital
evolution of a satellite, some averaging procedures of the third body disturbing function
are carried out using Mathematica® software.

3.2.1. Single Average

Since the short-term variations are not of interest in studying the long-term dynamics of
a satellite, the first averaging aims at cancelling the highest frequency harmonic of the
orbital elements evolution, which is associated with the position of the satellite along its
orbit. This is done by averaging over the satellite’s mean anomaly M .
Note that in this procedure, since the focus is the long-term behaviour, the orbital elements
are considered constants throughout the averaging operation.
The Single Average (SA) is hence retrieved from:

R3b “
1

2π

ż 2π

0

R3bdM (3.46)

Recalling from Eq. (3.13) that dM can be expressed in terms of θ, the integral can be
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computed over the satellite’s true anomaly θ.

To simplify the computation procedure, the integration is carried out independently for
the second, third and fourth-order terms.

Second order term R3b,2

Substituting Eq. (3.40) inside Eq. (3.34) the second order term of the third body potential
is:

R3b,2 “
µ3b

4

r2

r33b

“

´2 ` 3
`

A2
3b ` B2

3b

˘

` 3
`

A2
3b ´ B2

3b

˘

cos 2θ ` 6A2
3bB

2
3b sin 2θ

‰

(3.47)

The SA procedure considering only the second-order terms expression is given by inserting
Eq. (3.47) into Eq. (3.56). Following the procedure from Kaufman [8]. recalling Eqs.
(2.6), (3.13) the SA computation of the second order term is subdivided into several
integrals by collecting the terms dependent on sin 2θ, cos 2θ. In this way, the software can
easily retrieve the results:

1

2π

ż 2π

0

r2dM “
1

2
a2p2 ` 3e2q

1

2π

ż 2π

0

r2 cos 2θdM “
5

2
a2e2

1

2π

ż 2π

0

r2 sin 2θdM “ 0

(3.48)

The three terms are then substituted in Eq. (3.47) and the SA expression is:

R3b,2 “
µ3b

4

a2

r33b

“

p´2 ´ 3e2 ´ 3B2
3bp´1 ` e2q ` 3A2

3bp1 ` 4e2q
‰

(3.49)

Third order term R3b,3

The same procedure applied for the second order term is applied for the third order term,
which is given by substituting Eq. (3.40) inside Eq. (3.35):
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R3b,3 “
µ3b

8

r3

r43b

"

3A3bp´4 ` 5A2
3b ` 5B2

3bq cos θ ` 5A3bpA
2
3b ´ 3B2

3bq cos 3θ ` ...

´ 2B3b

“

6 ´ 15A2
3b ´ 5B2

3b ` 5p´323b ` B2
3bq cos 2θ

‰

sin θ

*

(3.50)

The SA averaging to be applied is the following is given by insertin Eq. (3.50) into Eq.
(3.56). And again, using Eqs. (2.6), (3.13), the computation is divided into the following
terms:

1

2π

ż 2π

0

r3 cos θ dM “ ´
5

8
a3ep4 ` 3e2q

1

2π

ż 2π

0

r3 cos 3θ dM “ ´
35

8
a3e3

1

2π

ż 2π

0

r3 sin θ dM “ 0

1

2π

ż 2π

0

r3 cos 2θ sin θ dM “ 0

(3.51)

which substituted in Eq. (3.50), gives the SA expression:

R3b,3 “ ´
5

16

a3

r43b
µ3bA3be

"

5A2
3bp3 ` 4e2q ´ 3

“

4 ` 3e2 ` 5B2
3bp´1 ` e2q

‰

*

(3.52)

Fourth order term R3b,4

Same procedure once again, the fourth order term from Eq. (3.40) substituted in Eq.
(3.36) gives:
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R3b,4 “
µ3b

64

r4

r53b

“

24 ´ 120A2
3b ` 105A4

3b ´ 120B2
3b ` 210A2

3bB
2
3b ` ...

` 105B4
3b ` 20p´6A2

3b ` 7A4
3b ` 6B2

3b ´ 7B4
3bq cos 2θ ` ...

` 35pA4
3b ´ 6A2

3bB
2
3b ` B4

3bq cos 4θ ` ...

` A3bB3bp´240 ` 280A2
3b ` 280B2

3bq sin 2θ ` ...

` p140A3
3bB3b ´ 140A3bB

3
3bq sin 4θ

‰

(3.53)

The fourth-order SA is then computed by inserting Eq. (3.53) into Eq. (3.56), and using
Eqs. (2.6), (3.13). The averaging is here carried out in the following terms:

1

2π

ż 2π

0

r4dM “
1

8
a4p8 ` 40e2 ` 15e4q

1

2π

ż 2π

0

r4 cos 2θ dM “
21

8
a4e2p2 ` e2q

1

2π

ż 2π

0

r4 cos 4θ dM “
63

8
a4e4

1

2π

ż 2π

0

r4 sin 2θ dM “ 0

1

2π

ż 2π

0

r3 sin 4θ dM “ 0

(3.54)

Hence the final expression of the fourth order SA third body potential is obtained:

R3b,4 “
3

64

a4

r53b
µ3b

"

8 ` 40e2 ` 15e4 ` 35B4
3bp´1 ` e2q

2
` ...

` 10B2
3bp´4 ` e2 ` 3e4q ` 35A4

3bp1 ` 12e2 ` 8e4q ` ...

´ 10A2
3b

“

4 ` 41e2 ` 18e4 ` 7B2
3bp´1 ´ 5e2 ` 6e4q

‰

*

(3.55)

The resulting overall third body potential is given by the sum of the individual order
terms computed separately:
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R3b “

4
ÿ

i“2

R3b,i (3.56)

3.2.2. Double average

Since in this work scenario, the timescale of the orbital elements’ long-time oscillation
still dominates the shorter period of the third-body motion, a further averaging operation
is carried out.
The Double Average (DA) consists of integrating the SA over the third body’s mean
anomaly M3b , expressed in terms of θ3b, in a similar fashion to the aforementioned SA.
The general expression is therefore given by:

R3b “
1

2π

ż 2π

0

R3bdM3b (3.57)

As done previously, the integration is retrieved from each order term independently.

Second order term R3b,2

The expression for the second-order term DA is given by inserting Eq. (3.47) into Eq.
(3.57). This time, since the dependence on the true anomaly θ3b is embedded inside the
terms A3b , B3b as depicted in Table 3.2, the expression from Eq. (3.44) is used to carry out
the averaging computation, having A3b “ α cos θ3b`γ sin θ3b and B3b “ ξ cos θ3b`β sin θ3b .
At this point recalling Eqs. (2.6), (3.13), the integration is carried out by collecting the
following terms from Eq. (3.49):

1

2π

ż 2π

0

1

r33b
dM3b “

1

a33bp1 ´ e23bq
3{2

1

2π

ż 2π

0

A2
3b

r33b
dM3b “

1

2

α2 ` γ2

a33bp1 ´ e23bq
3{2

1

2π

ż 2π

0

B2
3b

r33b
dM3b “

1

2

β2 ` ξ2

a33bp1 ´ e23bq
3{2

(3.58)

The second order term of the DA is hence retrieved:

R3b,2 “
µ3b

8

a2

a33bp1 ´ e23bq
3{2

“

´4 ´ 6e2 ` 3pξ2 ` β2
qp1 ´ e2q ` 3pα2

` γ2
qp1 ` 4e2q

‰

(3.59)
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Third order term R3b,3

Using the same procedure, the third-order term DA can be computed starting from its
integration expression, inserting Eq. (3.50) into Eq. (3.57). At this point, using Eqs.
(2.6), (3.13), and exploiting the dependency on θ3b with Eq. (3.44) as done before, the
integration is split collecting the following terms from Eq. (3.52):

1

2π

ż 2π

0

A3
3b

r43b
dM3b “

3

4
e3b

αpα2 ` γ2q

a43bp1 ´ e23bq
5{2

1

2π

ż 2π

0

A3bB
2
3b

r43b
dM3b “

1

4
e3b

αpβ2 ` 3ξ2q ` 2βξγ

a43bp1 ´ e23bq
5{2

1

2π

ż 2π

0

A3b

r43b
dM3b “ e3b

α

a43bp1 ´ e23bq
5{2

(3.60)

Which gives as the result the third order DA disturbing function:

R3b,3 “ ´
15

64

a3

a43bp1 ´ e23bq
5{2

µ3bee3b

"

5α3
p3 ` 4e2q ´ 10βξγp´1 ` e2q`

α
“

´4p4 ` 3e2q ` 5pβ2
` 3ξ2qp1 ´ e2q ` 5γ2

p3 ` 4e2q
‰

*

(3.61)

Note that R3b,3 has a linear dependece on the third-body eccentricity e3b. This means
that if the perturber orbit is circular, then the third-order term of the DA potential is
null:

R3b,3

ˇ

ˇ

ˇ

e3b“0
“ 0 (3.62)

Fourth order term R3b,4

Same procedure once again, starting from the integration given by combining Eq. (3.53)
and Eq. (3.57). Using Eqs. (2.6), (3.13) and by expliciting the dependency on θ3b with
Eq. (3.44), the following terms are collected and then integrated from Eq. (3.55):
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1

2π

ż 2π

0

1

r53b
dM3b “

1

2

2 ` 3e23b
a53bp1 ´ e23bq

7{2

1

2π

ż 2π

0

B4
3b

r53b
dM3b “

3

16
pβ2

` ξ2q
β2p2 ` e23bq ` ξ2p2 ` 5e23bq

a53bp1 ´ e23bq
7{2

1

2π

ż 2π

0

B2
3b

r53b
dM3b “

1

8

β2p4 ` 3e23bq ` ξ2p4 ` 9e23bq

a53bp1 ´ e23bq
7{2

1

2π

ż 2π

0

A4
3b

r53b
dM3b “

3

16
pα2

` γ2
q
α2p2 ` 5e23bq ` γ2p2 ` e23bq

a53bp1 ´ e23bq
7{2

1

2π

ż 2π

0

A2
3b

r53b
dM3b “

1

8

α2p4 ` 9e23bq ` γ2p4 ` 3e23bq

a53bp1 ´ e23bq
7{2

1

2π

ż 2π

0

A2
3bB

2
3b

r53b
dM3b “

1

16

1

a53bp1 ´ e23bq
7{2

"

´α2
“

β2
p2 ` 3e23bq ` ...

` 3ξ2p2 ` 5e23bq
‰

´4αβξγp2 ` 3e23bq ` ...

´ γ2
“

3β2
p2 ` e23bq ` ξ2p2 ` 3e23bq

‰

*

(3.63)

which brings to the last considered term of the DA’s third body disturbing function:

R3b,4 “
3

1024

a4

a53bp1 ´ e23bq
7{2

µ3b

"

8p8 ` 40e2 ` 15e4qp2 ` 3e23bq ` ...

` 105pβ2
` ξ2qp´1 ` e2q2

“

β2
p2 ` e23bq ` ξ2p2 ` 5e23bq

‰

`...

` 20p´4 ` e2 ` 3e4q
“

β2
p4 ` 3e23bq ` ξ2p4 ` 9e23bq

‰

`...

` 105p1 ` 12e2 ` 8e4qpα2
` γ2

q
“

α2
p2 ` 5e23bq ` γ2

p2 ` e23bq
‰

`...

´ 20p4 ` 41e2 ` 18e4q
“

α2
p4 ` 9e23bq ` γ2

p4 ` 3e23bq
‰

`...

` 70p´1 ´ 5e2 ` 6e4q
␣

´α2
“

β2
p2 ` 3e23bq ` 3ξ2p2 ` 5e23bq

‰

`...

´ 4αβξγp2 ` 3e23bq ´ γ2
“

3β2
p2 ` e23bq ` ξ2p2 ` 3e23bq

‰(

*

(3.64)

At this point, collecting all the terms up to the fourth order, the expression of the DA
third-body potential is given by:
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R3b “

4
ÿ

i“2

R3b,i (3.65)

3.2.3. Triple average

Following the same procedure used in Section 3.1.2, some conditions must be met. While
the Hamiltonian independence on the fast angle M has been accomplished through the
SA procedure, the potential obtained with the DA integration still exhibits a dependence
on the node Ω. The Triple Average (TA) requires an integration over the satellite right
ascension of the ascending node Ω. This will remove as a consequence the dependence on
the third body Ω3b as well, since the two are coupled. The general expression is:

R3b,2 “
1

2π

ż 2π

0

R3b,2dΩ (3.66)

In this way, the potential does not depend anymore on the satellite node but note that this
does not mean being autonomous since the implicit time dependence of the third-body
orbital elements is not faced in this operation.

Second order term R3b,2

Using Eqs. (2.6), (3.13) and by expliciting the dependency on θ3b with Eq. (3.44), for the
second order term the integration is carried out in those terms:

1

2π

ż 2π

0

ξ2 ` β2dΩ “
1

32

"

22 ` 2 cos 2i ` 3 cos p2pi ´ i3bqq ` 2 cos 2i3b ` ...

` 3 cos p2pi ` i3bqq ´ 4 p1 ` 3 cos 2i3bq cos 2ω sin2 i

*

1

2π

ż 2π

0

α2
` β2dΩ “

1

32

"

22 ` 2 cos 2i ` 3 cos p2pi ´ i3bqq ` 2 cos 2i3b ` ...

` 3 cos p2pi ` i3bqq ` 4 p1 ` 3 cos 2i3bq cos 2ω sin2 i

*

(3.67)

The second-order term of the TA potential is then retrieved:

R3b,2 “
µ3b

128

a2

a33bp1 ´ e23bq
3{2

p1 ` 3 cos 2i3bq

„

p2 ` 3e2qp1 ` 3 cos 2iq ` ...

` 30e2 cos 2ω sin2 i

ȷ (3.68)
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Third order term R3b,3

For the third order, using Eqs. (2.6), (3.13) and by expliciting the dependency on θ3b

with Eq. (3.44):

1

2π

ż 2π

0

α3dΩ

1

2π

ż 2π

0

βγξdΩ

1

2π

ż 2π

0

αdΩ

1

2π

ż 2π

0

αβ2dΩ

1

2π

ż 2π

0

αγ2dΩ

1

2π

ż 2π

0

αξ2dΩ

(3.69)

The results of the integration are reported in Appendix A due to their complexity. Those
can be then recollected into the expression of the third-order term of the TA potential:

R3b,3 “ ´
15

2048

a3

a43bp1 ´ e23bq
5{2

µ3bee3b sin i

„

18 ` 31e2 ` ...

5p6 ` e2q cos 2i ` 70e2 cos 2ω sin2 i

ȷ

`

sin i3b ` ...

5 sin 3i3b
˘

sinω sinω3b

(3.70)

Note that also this time is present a linear dependence on the third-body eccentricity e3b.
This means that once again if the perturber orbit is circular, the third-order term of the
TA potential is null:

R3b,3

ˇ

ˇ

ˇ

ˇ

e3b“0

“ 0 (3.71)

Fourth order term R3b,4

Lastrly, the fourth order term is computed from the general TA procedure. Using Eqs.
(2.6), (3.13) and by expliciting the dependency on θ3b with Eq. (3.44):
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1

2π

ż 2π

0

1dΩ

1

2π

ż 2π

0

pβ2
` ξ2qβ2dΩ

1

2π

ż 2π

0

pβ2
` ξ2qξ2dΩ

1

2π

ż 2π

0

β2dΩ

1

2π

ż 2π

0

ξ2dΩ

1

2π

ż 2π

0

pα2
` γ2

qα2dΩ

1

2π

ż 2π

0

pα2
` γ2

qγ2dΩ

1

2π

ż 2π

0

α2dΩ

1

2π

ż 2π

0

γ2dΩ

1

2π

ż 2π

0

α2β2dΩ

1

2π

ż 2π

0

α2ξ2dΩ

1

2π

ż 2π

0

αβξγdΩ

1

2π

ż 2π

0

γ2β2dΩ

1

2π

ż 2π

0

γ2ξ2dΩ

(3.72)

Again, due to the length and the number of the integration results, they are reported in
Appendix A. Those operations lead to the final expression of the fourth-order term of the
TA potential:
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R3b,4 “
9

4194304

a4µ3b

a53bp1 ´ e23bq
7{2

„

p8 ` 40e2 ` 15e4qp9 ` 20 cos 2i ` 35 cos 4iq ` ...

` 560e2p2 ` e2qp5 ` 7 cos 2iq cos 2ω sin2 i ` ...

` 5880e4 cos 4ω sin4 i

ȷ„

p2 ` 3e23bqp9 ` 20 cos 2i3b ` 35 cos 4i3bq ` ...

` 40e23bp5 ` 7 cos 2i3bq cos 2ω3b sin
2 i3b

ȷ

(3.73)

The final expression of the overall TA potential up to the fourth order is given by the sum
of the individually integrated terms:

R3b “

4
ÿ

i“2

R3b,i (3.74)

Two considerations can be made:

• by eliminating the node Ω, as expected, also the dependence on the third-body
Ω3b is removed. This happens because, in the DA potential, the two variables are
coupled. An appropriate reorganization of Eq. (3.65) can highlight this.

• as mentioned before, the implicit time dependence is still embedded in the third-
body orbital elements. Looking at the TA potential terms, the set ta3b, e3b, i3b, ω3bu

can vary as time progresses. In the Moon case, variations are noticeable in the Euler
angles ti3b, ω3bu.

Given the latter observation, in Asperti [30] and Scala [31], an additional simplification is
added by considering the third-body orbital elements as constants, finally obtaining the
result needed for the phase space representation.

In this work, however, an algorithm for the disposal manoeuvre will be investigated with-
out making this final assumption. The final Hamiltonian will hence be a time-dependent
function:

H “ H pe, ω, tq (3.75)
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3.3. Hamiltonian formulation and phase space

To express the dynamics in a planar phase space, which can be very insightful in the
study of the end-of-life procedures for a satellite, the Hamiltonian formulation will be
used as a compact formalism to model the dynamic evolution of the system under study.
This requires the definition of the Hamiltonian H, a scalar function that embeds that
information.

3.3.1. Hamiltonian formulation

Following the description from Kartunnen, The Hamiltonian can be described as the
Legendre transformation of the Lagrangian L:

H “ H pqi, pi, tq :“
n
ÿ

i“1

pi 9qi ´ L pq1, .., qn, 9q1, ..., 9qn, tq (3.76)

where the parameters qi represents the generalised coordinates, with n DoFs. From there,
the following relations can be written:

9qi “
BH
Bpi

9pi “ ´
BH
Bqi

(3.77)

It is also possible to demonstrate that the Hamiltonian is equal to the total energy of the
system, which in the perturbed two-body problem considered in this thesis, becomes:

H “ K ´ R “ ´
µ

2a
´ RJ2 ´ R@ ´ RK (3.78)

where R@ and RK are respectively referred to the Sun and the Moon. The potential
the perturbations considered are valid for a HEO scenario, taking into account the zonal
gravitational perturbation J2 and the third body perturbation potentials of both the Sun
and Moon discussed in Sections 3.1 and 3.2.

For Eq. (3.77) to be valid, a canonical set of variables shall be used instead of the usual
orbital elements ta, e, i,Ω, ω, θu. Delauney variables are widely adopted to this extent.
They are reported in Table 3.3.
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qi pi

L
?
µa l M

G L
?
1 ´ e2 g ω

H G cos i h Ω

Table 3.3: Delaunay variables definition.

From Eq. (3.77), given a coupled pair of conjugate variables tqi, piu, if the Hamiltonian
H does not depend on one of them, the other is constant. Mathematically it reads as:

BH
Bpi

Ñ 9qi “ 0

BH
Bqi

Ñ 9pi “ 0

(3.79)

The most interesting relations that follows from Eq. (3.79) and will be exploited are:

• When H does not depend on M , the semi-major axis a is constant.

• When H does not depend on Ω, the Delaunay variable H is constant, hence
a

µa p1 ´ e2q cos i “ const.

This is an important relation since it enables the possibility of exploiting the Hamilto-
nian formulation for a phase space representation. In fact, from the 6 DoFs highlighted
in section 2.2, the problem can be reduced for a 2D representation with the following
assumptions:

1. dependence on the mean anomaly M is dropped

2. dependence on the right ascension of the ascending node Ω is dropped

Recalling then Eq. (3.79) and Table (3.3), the two conditions lead respectively to:

1. from the first condition, the semi-major axis a is then constant.

2. the Delaunay variable H is constant. Considering also the first assumption, it is
then possible to write:

ˆ

H

L

˙2

“
`

1 ´ e2
˘

cos i “ Θ (3.80)

with Θ constant, being the Kozai parameter. [7].

Moreover, if the Hamiltonian is independent of time, H itself is constant.
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Nonetheless, from Eq. (3.80), it is also possible to write the inclination i as a function of
the eccentricity e, given the Kozai parameter conservation. The relation is:

i “ arccos

˜

c

Θ

1 ´ e2

¸

(3.81)

therefore the Hamiltonian H can be represented as a function of only two variables:
alternatively te, ωu or ti, ωu. Considering its conservation, the problem is reduced to a
single DoF. This means that it is possible to represent the dynamics in a 2D map.

Given the possibilities offered by the Hamiltonian formulation, some remarks shall be
pointed out:

• This theory relies on the absence of an explicit time-dependence of the Hamiltonian
H. This represents a simplification of the problem in the presence of the Moon as
a third body, since its motion is characterised by a precession behaviour.

• The node elimination can introduce non-negligible errors in the orbit propagation.
The results’ fidelity with respect to more accurate methods must be checked.

However, in this thesis, an approach considering the Hamiltonian variation in time will
be analysed.

3.3.2. Phase space

As aforementioned, the Hamiltonian formulation enables the possibility to express the
dynamics in a simplified 2D phase space map, given some strong assumptions.

The evolution of the satellite is then represented with a single isoline of the Hamiltonian,
representing the locus of all possible past and future states. In such a plot, the x and y

axis are represented respectively by the eccentricity e and the argument of perigee ω.
A 3D representation in the tω, e, iu space is also possible, recalling the relationship between
the inclination i and e highlighted in Eq. (3.81),

Kozai Parameter

Once the boundary conditions represented by the perturbing effects are defined, only two
variables will define the entire evolution of the satellite in this simplified framework:

• The semi-major axis a

• The Kozai parameter, defined in Eq. (3.80)
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Once those are fixed, also the phase space topology is locked.
Following the theory developed by Kozai [7], in a single third-body perturber case, a limit
value of the Kozai parameter Θcrit “ 0.6 separates the stationary and libration regimes.
In fact for a value below the critical one, a libration island is present, centred at ω “ ˘π{2.
When multiple perturbers are present, the reasoning remains valid, but the value of Θcrit

varies depending on the scenario considered.

Figure 3.2: Phase space with Θ “ 0.1, libration regime.

Figure 3.3: Phase space with Θ “ 0.7, stationary regime.
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Another important complication is given by the J2 perturbation, as highlighted by Delsate
et al. [11], the zonal effect works as a stabilizer, contrasting the libration regime.

The libration regime can be exploited for manoeuvre planning, for example, to target
either a re-entry or a graveyard orbit near the centre of the libration, where the maximum
value of the eccentricity is reached.

Two examples of phase space representation are reported in Fig. 3.2 and Fig. 3.3, where
the Kozai parameter is fixed respectively at Θ “ 0.1 and Θ “ 0.7. The Hamiltonian in
those examples takes into account J2 and the third body perturbations of both the Moon
and the Sun. The semi-major axis is set as a “ 87, 720 km, considering the case of the
INTEGRAL satellite that will be used in the models’ validation in Chapter 4.

Maximum eccentricity

From Eq. 3.80, the maximum eccentricity that can be reached in the orbital evolution is
limited by the following:

cos imax “

d

Θ

1 ´ e2max

“ 1 Ñ emax “
?
1 ´ Θ (3.82)

To target a re-entry by exploiting the phase space properties, a manoeuvre can be designed
such that the Kozai parameter after the impulse admits a maximum eccentricity that is
at least equal to the critical value:

ecrit “ 1 ´
hp,tar ` RC

a
“ emax “

?
1 ´ Θ (3.83)

with RC being the Earth radius, while hp,tar is the target altitude for the re-entry. Note
that also a can change after the impulse, modifying the topology of the phase space.
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4.1. Sun & Moon models

Firstly, the models used for the Sun and Moon orbital elements’ evolution are presented
since an accurate description is requested to characterize the third-body perturbations.
Being this study focused on a spacecraft orbiting around the Earth in a HEO environ-
ment, the planetary attraction of these perturbers is non-negligible and is comparable in
magnitude to the perturbation induced by the Earth’s oblateness.
The two bodies’ ephemerides evolution will be reported starting from 01/01/2000 until
01/01/2100, considering the ecliptic frame.

4.1.1. Sun model

Figure 4.1: Sun ephemerides evolution in 100 years, ecliptic frame.
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The Sun model is simply taken by inverting the Earth’s ephemerides in its orbit around
the Sun. The orbital elements thus retrieved will be referred to as Sun ephemerides and
are reported in Fig. 4.1.

4.1.2. Moon model

For the Moon model on the other hand, the ephemerides are computed starting from the
Vallado algorithm [33] to retrieve the position vector in the equatorial frame. The velocity
vector is obtained by using a simple difference scheme to derive in time. The two vectors
are rotated to the ecliptic frame and the cartesian coordinates are transformed into the
Moon’s orbital elements around the Earth.

Figure 4.2: Moon ephemerides evolution in 100 years, ecliptic frame.

The Moon ephemerides evolution is reported in Fig. 4.2. It can be observed that:

• The semi-major axis aK, the eccentricity eK and the inclination iK in the ecliptic
frame shows short-term oscillation with a limited amplitude, they can be safely
neglected and considered as constant.

• Contrarily, the precession of both the RAAN ΩK and the argument of perigee ωK is
cleary visible and cannot be neglected.
With TA potential, the node elimination may cause wide errors in the propagation.
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Regarding the argument of perigee, the assumption of constant Moon ephemerides
in the Hamiltonian formulation for the phase space single-DoF may exacerbate the
discrepancies even more.

4.2. Spacecraft orbital propagation

Since this work focuses on HEO satellites, following the work done in the thesis from
Asperti [30], the models previously described are checked using the INTEGRAL spacecraft
[5]. In this section, the results in both the ecliptic frame and equatorial are presented for
comparison. The orbit is propagated considering the J2 effect together with lunar and
solar third-body perturbations. Different methods are used for comparison:

• Gauss planetary equation, computing the acceleration vectors induced by the dis-
turbing forces

• Lagrange planetary equation, using SA potentials

• Lagrange planetary equation, using DA potentials

• Lagrange planetary equation, using TA potentials

4.2.1. Ecliptic frame

The initial orbital elements were taken on 22/03/2013 using the ecliptic frame. Those are
reported in Table 4.1

a [km] e [-] i [deg] Ω [deg] ω [deg] θ [deg]

87720 0.8766 65.70 254.83 279.02 188.30

Table 4.1: INTEGRAL mission orbital elements on 22/03/2013, ecliptic frame.

The results are reported in Fig. 4.3. The SA and DA methods are reliable, the resulting
orbital elements evolution follows almost perfectly the Gauss scheme results. On the
other hand, the TA method introduces a very strong assumption, and the propagation
result differs significantly from the others. The TA orbital elements show a clear periodic
behaviour since the dependence on the Moon node was filtered out.
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Figure 4.3: INTEGRAL orbital elements evolution in ecliptic frame using different meth-
ods (Gauss, SA, DA, TA). In order, semi-major axis a, pericentre altitude hp, eccentricity
e, RAAN Ω, inclination i, argument of pericentre ω.

4.2.2. Equatorial frame

As a matter of comparison, the propagation is carried out for the same satellite in the
equatorial frame. The initial orbital elements are rotated to the new frame and are
reported in Table 4.2, and the results in Fig. 4.4.

a [km] e [-] i [deg] Ω [deg] ω [deg] θ [deg]

87720 0.8766 61.8081 266.41 253.1972 188.30

Table 4.2: INTEGRAL mission orbital elements on 22/03/2013, equatorial frame.

The same observations for the numerical accuracy of the SA, DA and TA are valid.
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However, in the ecliptic frame, the result of the TA is closer to the other schemes outcomes,
if compared to the results observed in the equatorial frame.

Figure 4.4: INTEGRAL orbital elements evolution in ecliptic frame using different meth-
ods (Gauss, SA, DA, TA). In order, semi-major axis a, pericentre altitude hp, eccentricity
e, RAAN Ω, inclination i, argument of pericentre ω.

Clearly, the frame selection has an impact on the discrepancies between the TA results
and the real orbital evolution.

4.3. Laplace frame

Some other frames will be considered in this work, by investigating the application of the
Laplace frame for the manoeuvring optimisation.
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4.3.1. Definition of the Laplace frame

Following the mathematical description from Allan and Cook [39], the formulation can
be used when the orbital perturbations in action are the main attractor’s oblateness and
an arbitrary number of third-body perturbers. Firstly, the mean motion n definition is
needed:

n :“

c

µ

a3
(4.1)

which represents the average value of the angular velocity of the satellite in its orbital
motion within a period.

In such a scenario, the overall DA potential can thus be written in adimensional form
dividing it by na2. Retaining only the 2nd order term found in Eq. (3.59) yields to:

R
˚

“
R
na2

“ω0p1 ´ e2q´3{2

„

1

2

´

R̂ ¨ n̂0

¯2

´
1

6

ȷ

` ...

`

Np
ÿ

j“1

ωj

"

1

2

`

1 ´ e2
˘

´

R̂ ¨ n̂j

¯2

` e2
„

1 ´
5

2

´

P̂ ¨ n̂j

¯2
ȷ*

(4.2)

where n is the mean motion, R̂ is the unitary versor directed along the normal to the
satellite’s orbital plane, n0 is the normal to the equator, nj is the normal to the j-th
third-body’s orbital plane and Np is the number of perturbers bodies. Lastly, P̂ is the
unit vector directed towards the pericentre of the spacecraft’s orbit. Regarding the terms
ω0 and ωj, they are defined as:

ω0 “
3nJ2R

2
p

2a2
(4.3)

ωj “
3µj

4na3jp1 ´ e2jq
3{2

(4.4)

where µj is the j-th third-body’s gravitational parameter and aj, ej respectively its semi-
major axis and eccentricity.

At this point, instead of expressing the equations of motion in terms of orbital elements,
it is much simpler to use vectorial elements not tied to any particular frame. Those are
defined as:
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e “ eP̂ (4.5)

h “
?
1 ´ e2R̂ (4.6)

so that the two are orthogonal and the sum of their squared magnitude is unitary:

e ¨ h “ 0 (4.7)

}e}
2

` }h}
2

“ 1 (4.8)

Using those elements the equations of motion can be written in a compact and symmetrical
form:

$

’

’

’

&

’

’

’

%

9h “ h ˆ
BR

˚

Bh
` e ˆ

BR
˚

Be

9e “ e ˆ
BR

˚

Bh
` h ˆ

BR
˚

Be

(4.9)

Looking at Eq. (4.2), for a circular orbit pe “ 0q the term BR
˚

{Be vanishes.
In such a scenario Eq. (4.6) reduces to h ” R̂, hence its time derivative after some
operations can be written as:

9̂R “ ´

Np
ÿ

j“0

ωj

´

R̂ ¨ n̂j

¯´

n̂j ˆ R̂
¯

(4.10)

where for j “ 0 the J2 effect is accounted while for j “ 1, 2 the third-body perturbations
are considered.

Please note that if there’s only a single term on the right-hand side of Eq. (4.10), the
normal to the satellite’s orbital plane would regress solely around the present n̂j at a
constant rate of ωj cosαj, where αj represents the angle between the normal to the satel-
lite’s plane and the perturber’s plane. Specifically, αj “ arccos R̂ ¨ n̂j given their unitary
nature.

In a complex scenario involving multiple perturbations, the identification of the Laplace
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plane can be determined by seeking the specific orientation R̂ of the orbital plane in a
circular orbit scenario where no regression is evident, denoted by 9̂R “ 0, thus implying
R̂ “ const. Derived from Eq. (4.10):

Np
ÿ

j“0

ωj

´

R̂L ¨ n̂j

¯´

n̂j ˆ R̂L
¯

“ 0 (4.11)

A more concise representation is attainable by defining the symmetric tensor Ψ as:

Ψ “

Np
ÿ

j“0

n̂jn̂T
j (4.12)

This transformation yields Eq. (4.11) as:

R̂LTΨR̂L “ 0 (4.13)

Signifying an eigenvalue problem, where any eigenvector of Ψ characterizes the normal
to a circular orbit devoid of any plane regression, thus remaining temporally fixed. While
at least three possible eigenvectors exist, conventionally, the normal to the Laplace frame
R̂L corresponds to the eigenvector linked with the greatest eigenvalue λ.

4.3.2. Orbital propagation in Laplace frame

For an HEO satellite such as the one analysed in this work, the motion of the orbital
plane from Eq. (4.10) is a combination of rates of procession about three different axes.
The j subscript identifies in order, starting from 0, the J2, Sun and Moon perturbations.

Furthermore, not only the lunar plane is inclined with respect to the ecliptic by roughly
5.2°, but it also shows a precessing motion with a period of more or less 18.6 years (see
Fig. 4.2). In its computation, some approximations are usually made. In the following,
some scenarios considering different assumptions are analysed, and the satellite’s orbital
elements are propagated in time in those frames, to compare the results between the TA
and the DA.
Those different Laplace frame cases are:

1. Lunar orbit assumed to lay in the ecliptic

2. Moon orbital elements assumed constant (no precession considered)
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3. Osculating Laplace frame (the orientation in this case is time-dependent)

4. Moon inclination and argument of pericentre averaged

5. Moon orbital elements averaged

Apart from the third case, the other scenarios deal with a simplified fixed Laplace frame.
For simplicity, in the following work they will be referred to as Li, based on their presen-
tation here.

Lunar orbit laying in the ecliptic

As suggested by Allan and Cook [39], this Laplace frame is computed simply by consid-
ering n̂1 “ n̂2 “ n̂@. Eq. (4.12) becomes:

Ψ “ ω0n̂0n̂T
0 ` pω1 ` ω2q n̂@n̂T

@ (4.14)

Figure 4.5: INTEGRAL orbital elements evolution in fixed L1 frame using DA, TA, and
their simplified version DAsimpl, TAsimpl. In order, eccentricity e, RAAN Ω, inclination i,
argument of pericentre ω.
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The orbital evolution of the satellite in this frame is reported in Fig. 4.5, considering only
the DA and the TA since the accuracy of the former method has already been proved. To
better comprehend the following figures, a small legend is proposed:

• DAsimpl is propagated maintaining in the model the assumptions made in the Laplace
frame definition, for example in L2 the Moon orbital elements are considered fixed.

• DA is the real case propagation with no added assumption apart from the ones
embedded by the DA model.

• TAsimpl is propagated with the added assumption of fixed third-body elements,
eliminating the time variable t.

• TA releases the previous assumption and works with time-varying third-bodies’
ephemerides.

In this first case, the DA results are the same, since no assumption was made about
the Moon’s ephemerides. The two TA results show a small variation that may seem
uninfluential, but the differences may prevent the result of the simplified TA from achiev-
ing the re-entry in the time-varying model. Compared to the DA, again the TA model
catches only the periodic behaviour of the dynamics, and as time progresses the difference
increases.

Moon orbital elements fixed

This model was implemented by Asperti [30]. The results are presented in Fig. 4.6. As
established also from the first Laplace case, the TA shows a periodic result while the DA
orbital elements can widely vary in time in a non-periodic fashion.
However, if the integration is carried out embedding the assumption (represented by
DAsimpl), the results are closer to the TA due to the elimination of the Moon’s precession
from the DA model. The two TA results compared to each other show some minor
variations.
On the other hand, again, the DA result in a real case integration differs even more from
the TA with respect to the previous scenario L1. However, note that the eccentricity with
DA shows the same evolution observed in the L1 case. This was expected, since in the
absence of any assumptions that modify the problem, the evolution of the eccentricity
does not depend on the chosen frame, contrarily to the Euler angles.
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Figure 4.6: INTEGRAL orbital elements evolution in fixed L2 frame, using DA, TA and
their simplified version DAsimpl, TAsimpl. In order, eccentricity e, RAAN Ω, inclination i,
argument of pericentre ω.

Osculating Laplace frame

In this scenario, the application of a time-dependent rotating Laplace frame is considered,
so no additional assumptions are being made to simplify the computation. The satellite
orbital elements propagation in this case requires an additional potential term, due to the
rotating frame:

Rrot “ ´ω pr ˆ vq (4.15)

where ω is the angular velocity vector of the osculating Laplace plane, while r and v are
respectively the position and the velocity vectors of the satellite.

Firstly, a central difference scheme is used to compute the time derivative of the rotation
matrix from the equatorial frame to the instantaneous Laplace frame:
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9Req2Lptq “
Req2Lpt ` ∆tq ´ Req2Lpt ´ ∆tq

2∆t
(4.16)

From [40], it can be shown that:

Ω “ ´ 9Req2LReq2L (4.17)

with Ω being the following matrix:

Ω “

»

—

–

0 ´ωz ωy

ωz 0 ´ωx

´ωy ωx 0

fi

ffi

fl

(4.18)

The elements of the angular rate vector tωx, ωy, ωzu are thus retrieved.

Figure 4.7: INTEGRAL orbital elements evolution in the rotating L3 frame, using different
methods (DA, TA). In order, eccentricity e, RAAN Ω, inclination i, argument of pericentre
ω.

Hereafter, the osculating Laplace frame L3 is used to propagate the satellite’s orbital



4| Model validation 57

elements using both the DA and TA potentials. The results are shown in Fig. 4.7.

Opposed to the previous cases, only the DA and TA propagations are considered since no
model assumption is made for the Moon’s orbital elements, while the time-simplified TA
does not suit a frame that is intrinsically varying in time.
The results shown are drastically different from the previous cases (and as it will be shown,
even from the next cases). This model can capture quite closely the system’s dynamics,
making it a very interesting case for the optimisation procedure.

An important note is that the L3 results presented above were achieved using the TA
perturber’s potentials while keeping the full rotational potential, which is equivalent to
the DA one as there’s no reliance on the fast angles. If, however, the rotational potential
in its TA version is utilized, the outcomes can be seen in Fig. 4.8.
The orbital evolution is again periodic, thus not keeping track of the real dynamics. That
said, with respect to the other Laplace scenarios, the results are closer to the DA evolution.

Figure 4.8: INTEGRAL orbital elements evolution in the rotating L3 frame, using DA
and TA with rotating potential Rrot.

Moreover, even the accuracy of the DA results in this peculiar frame should be tested.
To do that, the orbit can be propagated in either the equatorial or the ecliptic frame.
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The resulting cartesian coordinates can be rotated to the osculating Laplace frame, which
changes in time.
The comparison is presented in Fig. 4.9.

Figure 4.9: Accuracy of the rotating Laplace frame integration method proposed DAL,
compared with a posteriori rotation from the equatorial orbital evolution to the instan-
taneous rotating Laplace frame DArot.

It can be observed that a cumulative integration error is present, maybe due to the time
derivative error given by Eq. (4.16), with ∆t and the integration tolerances tuned to
account for the higher computational cost with respect to the other propagation methods
presented. Note that the eccentricity discrepancies were also evident by comparison with
the other cases analysed since, as already mentioned, the evolution of e does not depend
on the frame.
Nonetheless, the integration in the first 20 ´ 25 years can be reasonably assumed as a
good representation of the orbital evolution, and more importantly, the TA results are
closer to the real problem dynamics despite the L3 propagation error.
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Mean lunar inclination and argument of pericentre

The fourth case analyses once again a fixed Laplace frame. The Moon’s orbital elements
are fixed. In particular, the Moon’s inclination and argument of pericentre are set to
their mean values obtained by analysing the Moon’s orbital period. Values are reported
in Table 4.3. Here the focus is to try to compute an "average Laplace plane" to test the
orbital propagation, and since iK oscillates periodically between 18´28 degrees, its values
were averaged together with ωK.

Title of Table (optional)

iK [deg] ωK [deg]

23.70 180.00

Table 4.3: Fixed mean Moon orbital elements tiK, ωKu, referred to the equatorial frame.

Figure 4.10: INTEGRAL orbital elements evolution in fixed average Laplace frame (case
4) using DA, TA and their simplified version DAsimpl, TAsimpl. In order, eccentricity e,
RAAN Ω, inclination i, argument of pericentre ω.
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Also, this time the real case scenario results are compared to the propagation embedding
the assumptions in the integration procedure. In Fig. 4.10 it can be seen that even in this
case discrepancies are present, but in the simplified case propagation the offset between
the DA and TA is decreased with respect to the previous results.

Mean lunar orbital elements

aK [km] eK [-] iK [deg] ΩK [deg] ωK [deg]

383286 0.0556 23.70 180 180

Table 4.4: Fixed mean Moon orbital elements
␣

aK, eK, iK,ΩK.ωK

(

, referred to the equato-
rial frame.

Figure 4.11: INTEGRAL orbital elements evolution in fixed Laplace frame with fully
averaged Moon orbital elements (case 5) using DA, TA and their simplified version
DAsimpl,TAsimpl. In order, eccentricity e, RAAN Ω, inclination i, argument of pericentre
ω.
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In the last case scenario, all the Moon orbital elements are set to their mean values with
values shown in Table 4.4. The assumption on the fixed node in particular has a bad
impact on the DA results.

It is clear from the results in Fig. 4.11, that those assumptions are not good for studying
the orbital elements evolution of the system, thus not representing a model similar to the
real orbit evolution. Therefore, for an "average" Laplace plane study it is better to refer
to the fourth case here presented.
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5| Disposal manoeuvre strategy

To reduce the amount of space debris in orbit around the Earth, the Inter-Agency Space
Debris Coordination Committee (IADC) issued strict regulations for debris mitigation,
starting from the mandatory necessity of implying end-of-life (EoL) plans for new satel-
lites. Two different strategies are possible

• Earth re-entry trajectory by exploiting the natural decay caused by the atmospheric
drag for satellite disintegration.

• transfer to a graveyard orbit.

Earth re-entry is the preferable solution, and the IADC states that the procedure must be
completed within a time limit of 25 years from the satellite decommissioning. Whenever
this is not achievable, such as a GEO or MEO satellite, where the re-entry would be too
expensive, the graveyard orbit solution is preferred. In both cases, any interaction with
other orbiting objects must be avoided.
In the case of an HEO satellite, the eccentricity is high enough to allow the possibility
of enhancing its wide orbital parameter oscillation via proper manoeuvring, favouring a
natural atmospheric re-entry.

In this section the disposal manoeuvring strategy will be discussed.

Target altitude

The first thing to be set is the target altitude to achieve the orbital re-entry. Given that
the atmosphere interface is set at 120 km [41][42], as suggested by Colombo et al. [38],
this limit is often considered for LEO satellites or HEO missions with lower orbit energy
compared to INTEGRAL. For this reason, it is better to be conservative and consider a
lower target perigee altitude:

hp,min “ min thp,min ptqu ă“ 50km

However, in the computation, a 2% error is allowed (therefore validating as successful a
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minimum perigee altitude of 51 km).

5.1. Modelling

The disposal strategy follows the approach described by Colombo et al. [38] considering
a single impulsive manoeuvre (with burning time approximately zero tb « 0). Given the
initial orbital parameters before the manoeuvre is applied, the latter is described in the
!

T̂, N̂, Ĥ
)

frame (discussed in Section 2.3.3) by the following parameters:

• the impulse magnitude ∆v

• the in-plane angle

• the out-of-plane angle.

with the geometry reported in Fig. 5.1.

Figure 5.1: Manoeuvre parameters t∆v, α, βu in tT̂, N̂, Ĥu frame

5.1.1. Gauss equations for impulsive manoeuvre

The manoeuvre itself is modelled as:

∆v “ ∆v

»

—

–

cosα cos β

sinα cos β

sin β

fi

ffi

fl

(5.1)

While the initial orbital elements ta, e, i,Ω, ωu are determined by the orbit evolution, the
actual time of the manoeuvre can be optimised. That being said, the strategy that will
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be used consists of parsing the manoeuvring time tm beforehand in a limited previously
chosen number, hence integrating only once all the possible initial orbital parameters
before the manoeuvre. In addition, due to the long-term focus, using an assumption
similar to the one used in the averaging procedure, the orbital elements can be considered
constant along the orbital period. This allows us to write the true anomaly θ as an
optimisation parameter. Accordingly, the optimisation variables are:

x “ t∆v, α, β, θu

After the manoeuvre, the satellite state is changed with respect to the initial one as
follows:

tx,vubm “ tx,v ` ∆vuam

were subscript bm stands for before manoeuvre and am means after manoeuvre.

Working with keplerian elements, the variation of the set ta, e, i,Ω, ω, θu can be computed
resorting to the Gauss’ planetary equation described in Section 2.4.2. In finite-difference
form, the following equations can be written [43]:
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∆a “ 2

d

a3 p1 ` 2e cos θ ` e2q

µ p1 ´ e2q
cosα cos β∆v

∆e “

d

a p1 ´ e2q

µ p1 ` 2e cos θ ` e2q

„

2 pe ` cos θq cosα ´
1 ´ e2

1 ` e cos θ
sin θ sinα

ȷ

cos β∆v

∆i “

d

a p1 ´ e2q

µ

cos pω ` θq

1 ` e cos θ
sin β∆v

∆Ω “

d

a p1 ´ e2q

µ

sin pω ` θq

p1 ` e cos θq sin i
sin β∆v

∆ω “

#

1

e

d

a p1 ´ e2q

µ p1 ` 2e cos θ ` e2q

„

2 sin θ cosα `

ˆ

2e `
1 ´ e2

1 ` e cos θ
cos θ

˙

¨ ....

... ¨ sinα

ȷ

cos β ´

d

a p1 ´ e2q

µ

sin pω ` θq cos i

p1 ` e cos θq sin i
sin β

+

∆v

∆θ “

c

µ

a3 p1 ´ e2q3
p1 ` e cos θq

2
´

1

e

d

a p1 ´ e2q

µ p1 ` 2e cos θ ` e2q

„

2 sin θ cosα ` ...

... `

ˆ

2e `
1 ´ e2

1 ` e cos θ
cos θ

˙

sinα

ȷ

cos β∆v

(5.2)

Note that in this set of equations some limitations are present:

• due to the presence of the term
?
1 ´ e2, the eccentricity value must be below 1,

which is acceptable in the scenario analysed in this work.

• singularities for zero inclination and/or zero eccentricity due to the presence of the
terms e and sin i at the denominator. In this work, this does not represent a problem
since it deals with an orbit characterized by high eccentricity and inclination.

5.1.2. Constraints

The optimisation problem requires the definitions of some constraints to define the bounds
of the problem. Given the set of optimisation variables previously mentioned:
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x “ t∆v, α, β, θu

which consists of one vectorial variable and three angles, the following reasoning can be
applied to fix some bounds:

• the impulse ∆v requires an adequate upper bound limit, neither too high to con-
verge rapidly to a good solution, nor too strict, with the danger of invalidating the
algorithm’s possibility of finding the global minimum.

• the angles tα, β, θu, on the other hand, are naturally periodic, hence their possible
values can be bounded within a period.

Given those observations, the selected lower and upper bounds are reported in Table 5.1

Lower bound Upper bound

∆v 0 150

α ´π π

β ´π π

θ ´π{2 π{2

Table 5.1: Lower and upper bounds of the optimisation variables.

Nonetheless, the limitation imposed by the IADC of a maximum of 25 years to accomplish
the re-entry must be respected, while aiming at the previously defined target altitude
hp,tar “ 50 km

5.1.3. Cost function

In planning the manoeuvres for the entire life of the satellite, the minimization of the
impulses is vital to minimize the propellant mass which has a big impact on the mission’s
overall cost. Here in this thesis, different optimisation strategies of the EoL ∆v needed for
the disposal will be analysed. Some of those consist of either local or global optimisation
through the minimization of a cost function J whose formulation has to be defined.
The variables that will enter this cost function are the impulse ∆v and the target alti-
tude, inserted via penalty method. The latter is needed to drive the optimisation toward
achieving successful de-orbiting while minimizing the impulse needed.
The penalty method consists of increasing the cost function value whenever the minimum
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perigee altitude exceeds the target one. The increment shall be proportional to the con-
straint violation and to facilitate the global minimum search of gradient-based algorithms,
a quadratic function is implemented. Also, the term involving the impulse is quadratic
for the same reason.
The overall function is thus given by:

J “ λv

ˆ

∆v

σv

˙2

` λhpmax
„ˆ

hp,min ´ hp,tar

hp,tar

˙

, 0

ȷ2

(5.3)

where the two terms are divided respectively by the fixed factors σv and hp,tar to obtain
a dimensionless cost function. The latter was already explained thoroughly, while the
former is set at σv “ 100 m/s.
Moreover, two weighting factors λv and λhp are tuned efficiently to get the best results
possible. λhp tuning in particular has already been discussed.
Those factors are summed up in Table 5.2

λv [-] σv [m/s] λhp [-] hp,tar [km]

1 150 100 50

Table 5.2: Weighting and reference factors fixed values.

5.2. optimisation strategies

As previously mentioned, in this thesis several strategies will be implemented and tested.
Firstly, an analytical strategy based on the maximization of the Kozai parameter ∆Θ

will be described in Section 5.2.1, taking advantage of both the TA fast computation and
the phase space formulation simplicity. Two different scenarios are here considered, one
assuming no variations in time of the third-bodies orbital elements and the other aimed
at working even in a scenario where those elements are not fixed to the initial values. The
results will then be compared later in Chapter 6, considering a TA propagation where the
effective time-varying ephemerides of the perturbers are considered.

The other main strategy presented consists of a hybrid optimisation trying to combine
the goods of both the analytical optimisation formulation given by the phase space and
the local optimisation exploiting the accuracy of the DA.

Lastly, a classic accurate global optimisation method will be implemented to compare the
effectiveness of the proposed optimisation strategies.



5| Disposal manoeuvre strategy 69

Apart from the procedural differences between the methods, some common factors are
present. For each optimisation procedure, the orbit is integrated from its initial condition
in a fixed time period, and the results are parsed following the manoeuvring points tm

that are decided a priori.
This means that the optimisation gives as result the best set of variables that characterize
the manoeuvre if the same is applied at that specific time instant tm. Thereby each
manoeuvring point will be associated with an optimised set, and the overall best solution
will be given by the solution with the minimum ∆v.

5.2.1. Phase space ´∆Θ maximization strategy

Starting from the analytical strategies, here the TA formulation is heavily implemented.
Firstly, the satellite’s orbit is propagated in a given period with the TA method and the
result is then parsed into a fixed amount of manoeuvring time instants tm. Each parsed
point will be passed to the optimiser to find the best possible set of variables t∆v, α, β, θu.

This analytical strategy is based on the exploitation of the phase space representation
through the Hamiltonian formulation described in Section 3.3.
As already discussed, the phase space topology depends essentially on the semi-major axis
a and the Kozai parameter Θ, the latter in particular can change significantly the location
of the Hamiltonian isolines, translating them upwards toward higher eccentricity values
as the Kozai parameter decrements Fig. 5.2. It can be observed that a negative variation
of Θ produces the effect researched for a natural de-orbit, increasing the eccentricity and
thus lowering the perigee altitude.

A manoeuvre strategy maximizing the ´∆Θ variation was proposed by Asperti [30].
Given the definition of the Kozai parameter in Eq. (3.80), its variation can be linearized
as follows:

∆Θ « ´2e cos i2∆e ´ 2
`

1 ´ e2
˘

sin i cos i∆i (5.4)

Recalling Eq. (5.2), the orbital elements variations are linearly dependent on the impulse
applied ∆v, therefore also the Kozai parameter variation ∆Θ is linear in ∆v. Inserting
them into Eq. (5.4) gives:
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Figure 5.2: Modification of the phase space topology with a decrement of the Kozai
parameter Θ

∆Θ « ´ 2 cos i

d

a p1 ´ e2q

µ p1 ` 2e cos θ ` e2q

"

e cos i

„

2 pe ` cos θq cosα ` ...

´
1 ´ e2

1 ` e cos θ
sin θ sinα

ȷ

cos β `
`

1 ´ e2
˘

sin i
?
1 ` 2e cos θ ` e2 ¨ ...

¨
cos pθ ` ωq

1 ` e cos θ
sin β

*

∆v

(5.5)

Which can be compactly rewritten by collecting all the terms depending on the optimi-
sation angles tα, β, θu in a single function as follows:

∆Θ « ´2 cos i

d

a p1 ´ e2q

µ
f pα, β, θq∆v (5.6)

from which it is clear that maximizing ´∆Θ is equivalent to maximising f pα, β, θq and
∆v independently from one another, with the former defined as:
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f pα, β, θq :“
e cos i

?
1 ` 2e cos θ ` e2

„

2 pe ` cos θq cosα ´
1 ´ e2

1 ` e cos θ
sin θ sinα

ȷ

¨ ...

¨ cos β `
`

1 ´ e2
˘

sin i
cos pθ ` ωq

1 ` e cos θ
sin β

(5.7)

Since the objective of the manoeuvre optimisation is finding the minimum ∆v required to
accomplish the disposal, the optimisation is first by finding the optimal set of angles that
maximizes f pα, β, θq, hence producing the maximum variation of the Kozai parameter
Θ. This first part of the optimisation is carried out with MATLAB® built-in algorithm
particleswarm setting the population size Npop “ 500.

Once the angles are retrieved, the evaluation of the minimum ∆v capable of carrying out
a successful re-entry of the satellite is still missing, remembering the constraint in the
time limit imposed by the IADC of 25 years.
The strategy to optimise the impulse consists in comparing the Hamiltonian right after
the manoeuvre given the new set of orbital elements ta, e, i,Ω, ω, θu with the one related
to the critical eccentricity, which is computed as:

ecrit “ 1 ´
hp,tar ` RC

a
(5.8)

where the target altitude is set hp,tar “ 50km as previously discussed and RC is the Earth
radius.
Two different methods will be presented, one which assumes the Hamiltonian autonomous
(BH{Bt “ 0) and a second one trying to consider the time variation of the Moon orbital
elements, but still avoiding the orbit integration. In both cases, the TA potentials expres-
sions are considered in the Hamiltonian evaluation

Autonomous Hamiltonian case

If the time dependence of the Hamiltonian is neglected (no variation of the third-body
orbital elements), the Hamiltonian and the Kozai parameter after the manoeuvre (Ham,
Θam) would remain constant while the values of eccentricity e and argument of perigee ω

vary.
The value of the critical inclination is a function of both Θ and e, as from Eq. (3.80) it
is possible to write:
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icrit “ arccos

d

Θ

1 ´ e2crit
(5.9)

Therefore by imposing the value of the Hamiltonian after the manoeuvre equal to the crit-
ical Hamiltonian (both now depend on the optimisation variable ∆v since the manoeuvre
is still not fully determined) as follows:

Ham p∆v, e, ωq “ Ham,crit p∆v, ecrit, ωcritq “ Ham p∆vq (5.10)

with ωcrit “ 3π{2 since from the phase space diagrams it’s the point where the maximum
eccentricity is reached. The only unknown is thus the impulse ∆v which can be finally
computed with a zero search algorithm of the following function:

gp∆vq “ Hamp∆vq ´ Ham,critp∆vq. (5.11)

The advantages of such a method consist of an analytical optimisation of the manoeuvre
variables, significantly reducing the computational time, at the cost of losing fidelity with
the real-case scenario due to the numerous assumptions made in its formulation.

Time-dependent Hamiltonian

In this thesis another approach will be carried out following the same key points afore-
mentioned, still considering the TA formulation, but without adding the assumption of
non-varying third-body orbital elements.
In such a case, after the manoeuvre, the Hamiltonian will also show an implicit depen-
dence in time Ham p∆v, e, ω, tq. Consequently, the Hamiltonian right after the manoeuvre
at instant tm may be different from the Hamiltonian in the following time instants, such
that Eq. (5.10) is no more valid, meaning that another route shall be taken for the ∆v

optimisation.
Recalling Eq. (3.78), it is clear that not all the terms are time-varying, so they can be
divided into time-independent term and time varying-term, the latter being principally
the third-body perturbation potential, due to the oscillation of the orbital elements of the
Moon.
Once the angles are optimised with the maximum ´∆Θ approach, given the manoeu-
vring time instant tm, the Hamiltonian dependence on time is treated by translating the
post-manoeuvre orbital elements into successive time instants ti “ tm ` i∆t parsed in a
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25 years period, thus creating a vector of Hamiltonians whose orbital parameters of the
satellite is kept constant at team, iam, 3π{2u while the orbital elements of the third-body
perturber are changing in time. This vector will be referred to as H and the i-th element
is represented by Hip∆vq, computed at the time instant ti.
This vector is then compared to another Hamiltonian vector where the critical orbital
elements are computed using Eqs. (5.8),(5.9) are considered. The overall set of orbital
elements is thus fixed as tecrit, icrit, 3π{2u and is again translated to successive parsed time
instants after tm. Following the same nomenclature, this vector is called Hcrit and its i-th
element compute at ti is Hi,critp∆vq

Note that some assumptions were made in the described strategy to avoid the propagation
of the orbit which would nullify the TA formulation advantages. Even in the autonomous
Hpe, ωq scenario the eccentricity and argument of perigee evolves in time, not remaining
fixed, while the overall Hamiltonian does not change. Moreover, the time variation of the
third-body orbital elements would induce an additional variation in the satellite’s orbital
elements.

Some optimisation functions were tested using either a zero search algorithm or through
a minimization by using a squared version of the optimisation function. Some are here
reported:

g1p∆vq “ sum pHcritp∆vq ´ Hp∆vqq

g2p∆vq “ mean pHcritp∆vq ´ Hp∆vqq

gp∆vq “ max pHp∆vq ´ Hcritp∆vqq

(5.12)

The one that gives the best results is the following function, utilizing a zero search algo-
rithm:

funp∆vq “ max pHcritp∆vq ´ Hp∆vqq (5.13)

Note that if the order of the two terms is reversed, the result of the optimisation would
change for the worse. This way, we are imposing that, at least, the values of the critical
Hamiltonians are characterized by a slightly higher value than the actual one. This
situation may correspond to an actual Hamiltonian at a slightly higher eccentricity with
respect to the critical one, thus granting better results with respect to the case with the
neglected variation of the third bodies’ ephemerides where simply the nominal and critical
Hamiltonian are imposed equal solely at the at tm point. This imposition could not be
made with a time-varying Hamiltonian.
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5.2.2. Hybrid optimisation

Contrarily to the previous analytical strategies, here the DA computation is implemented
for the preliminary orbital propagation due to its accuracy. Once again, the results are
parsed in manoeuvring time instants tm and then each single point is optimised through
the hybrid algorithm.

The optimisation procedure itself aims at combining the low computational cost of the
analytical method with the accuracy of the DA local optimisation, applying the former
to get results that are later used as initial guesses for the DA optimisation.
Firstly, the Kozai parameter ∆Θ maximization strategy is implemented to obtain the set
of angles tα, β, θu. Then the ∆v optimisation is performed to get the last variable, but
actually, this passage can be skipped if the magnitude of the potential optimum ∆v is
roughly known.
In fact, in the results obtained with this method, the angle guesses were sufficient to get
some interesting results that will be presented later in Chapter 6.

The second part of the optimisation, as anticipated, consists of local optimisation, with
the previous results inserted in the initial guess vector:

xguess “

»

—

—

—

—

–

∆v

α

β

θ

fi

ffi

ffi

ffi

ffi

fl

Clearly, the lower and upper bounds are restricted, especially in the case of the angle,
while the impulse ∆v bounds can be kept unvaried with respect to the values in Table
5.1.
The new angles constraints are centred around the guess values, with lower and upper
bounds respectively shifted from the centre as ¯δ. The shift parameter was tuned at a
value δ “ 5° after some trial and error.

The local optimisation is then carried out using the MATLAB® built-in algorithm fmincon,
utilizing the DA version of perturbing potentials in the Lagrange equations.

5.2.3. Global optimisation

The global optimisation procedure is well-known and is characterized by a high result
fidelity. Its results will be used as a comparison to test the previously described optimi-
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sation algorithms.

Starting from the initial orbital parameters, the satellite orbit is integrated into a fixed
period, and the resulting orbital evolution is parsed at the manoeuvring points tm.
Subsequently, the MATLAB® built-in algorithm particleswarm is used, wih a popula-
tion size of Npop “ 100. Inside the fitness function used for the operation, the orbit is
propagated and from the results, the cost function from Eq. 5.3 is evaluated.
Since the integration is carried out at each tentative solution, the biggest drawback of
the global optimisation algorithm is its heavy computational costs. Even with a lower
population size, the time needed for the optimisation process is sensibly higher than the
ones needed for the proposed analytical and hybrid algorithms.
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6| Case study

In chapter 5 several optimisation methods to plan EoL disposal manoeuvres were dis-
cussed, and some comparisons between the different strategies were pointed out.
In this chapter, the numerical results will be analysed in detail, applying the optimisation
procedures to the test orbit and studying the effect of the suggested output manoeuvre
on the satellite evolution.

6.1. Disposal optimisation mission definition

Given the scope of this thesis, an HEO satellite shall be selected for the computation, and
the framework of the simulation must be defined. As already stated in Chapter 5, due to
the structure of the disposal optimisation strategies under study, the manoeuvring time
tm must be defined before the computation together with the constraints of the problem.

6.1.1. INTEGRAL mission

For this purpose, once again the ESA Observatory INTEGRAL is chosen as a case study.
The mission was selected in June 1993 as the next medium-size scientific mission within
ESA’s "Horizon 2000" program. Led by ESA, Russia and NASA contributed to the
mission, respectively by providing the launcher and the ground support via Deep Space
Network.
Integral was launched on 17 October 2002, its mission being the fine spectroscopy and
fine imaging of celestial gamma-ray sources. To grant a long period of observation with a
constant background away from trapped radiation, the spacecraft was inserted in a Highly
Elliptic Orbit. [5]
INTEGRAL is now on its eleventh mission extension, with the currently planned end of
the mission being December 2024, while a series of manoeuvres were executed in early
2015 to ensure compliant disposal at re-entry in early 2029. [44]
In this work, INTEGRAL will be used as a test bench to check the results of the proposed
disposal optimisation strategies.
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Starting on 22/03/2013, the orbital evolution was already presented in Chapter 4, com-
paring the results of the different propagation methods. From the results, it is clear why
INTEGRAL targeted a re-entry in 2029, since the eccentricity reached its peak in that
period. In fact, the minimum perigee altitude hp is expressed as:

hp “ rp ´ RE “ a p1 ´ eq ´ RE (6.1)

since the semi-major axis is constant, the only varying element is the eccentricity, the
higher the eccentricity increments, the lower the perigee altitude.

6.1.2. optimisation framework

Given the observations made from the INTEGRAL orbital evolution, the time window for
the orbital integration and the initial orbital integration is chosen starting on 22/03/2013
and propagated until 9 years later. In this period, the manoeuvring time instants tm are
parsed in 30 equispaced points.
Since the optimisation algorithms will be carried out considering several different reference
frames, the overall initial conditions are reported in Table 6.1. From now on, the case
scenarios of the Laplace frame defined in Section 4.3.2 will be referred to as Li, where L
stands for Laplace, and i defines the case scenario in the order they were described.

Frame a [km] e [-] i [deg] Ω [deg] ω [deg] θ [deg]

Ecliptic 87720 0.8766 65.70 254.83 279.02 188.30
L1 87720 0.8766 65.43 255.30 277.90 188.30
L2 87720 0.8766 62.43 255.12 276.11 188.30
L3 87720 0.8766 62.43 255.12 276.11 188.30
L4 87720 0.8766 62.60 253.78 278.63 188.30
L5 87720 0.8766 61.62 272.04 241.36 188.30

Table 6.1: INTEGRAL mission orbital elements on 22/03/2013, various frames. Li stands
for the i-th case scenario considered for the Laplace frame from Section 4.3.2.

Note that the initial orbital parameters in Laplace frame cases 2 and 3 are the same, since
at time t “ 0 of the integration the second Laplace frame case is computed in the same
manner as the rotating Laplace frame.

Regarding the optimisation setup, neither linear nor non-linear constraints are set. The
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only limitations are given to the variables domain, reassumed in Table 6.2

Lower bound Upper bound

∆v 0 150
α ´π π

β ´π π

θ ´π{2 π{2

Table 6.2: Lower and upper bounds of optimisation variables.

6.2. Results

In the following, the results of the optimisation will be reported and will be checked in
a high-fidelity propagation if assumptions were made in the strategy definition. This is
needed to check the consistency of the result in the actual satellite EoL disposal.
Starting with section 6.2.1, the global optimisation results are evaluated to serve as the
benchmark for the other design strategies. In section 6.2.2 the analytical strategies are
carried out and compared between each other and to the high-fidelity results given by the
global optimisation.
Lastly, the hybrid approach results are computed, trying to merge the goods of the semi-
analytical methods with the analytical ones, assuming the latter ones as a guess solution
for local optimisation.

6.2.1. Global optimisation results

Being the benchmark for the following algorithms, in this method the orbital evolution
is propagated from the initial conditions with the accurate results of the DA integration.
Only the ecliptic frame will be considered in this section since given the integrating scheme,
the optimal result of the global optimisation should not change with the reference frame,
given that no additional assumptions are considered.
The results of the orbital evolution are parsed on 30 points in correspondence with each
manoeuvring time instant tm. Each of these parsed manoeuvre points is then passed to
the global optimisation, implementing the cost function described in Eq. (5.3).

The resulting optimised manoeuvring sets t∆v, α, β,Θu, shown in Fig. 6.1, are applied at
the corresponding tm and the results are reported in terms of minimum perigee altitude
tp,min in Fig. (6.2). The orbital propagation is terminated if the target altitude htar “ 50
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km is achieved, with a tolerated 2% error, which in this case holds for all the resulting
manoeuvres due to the aforementioned characteristics of the global optimisation.

(a) Impulse magnitude ∆v (b) In-plane firing angle α

(c) Out-of-plane firing angle β (d) True anomaly at manoeuvring point θ

Figure 6.1: optimised sets of manoeuvre paramaters for each manoeuvring point tm.
Found with global optimisation using DA in ecliptic frame.

From the plots, the minimum is found in the very first manoeuvring point, while as
expected the global optimiser tends to target the re-entry in 2029 due to the favourable
conditions reached by the INTEGRAL satellite at that time.
The best results found by the global optimisation method are reported in Table 6.3. Note
the computational time for the overall optimisation process tcomp “ 11 h.
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Figure 6.2: hp,min evolution applying the optimised manoeuvres from the global optimi-
sation to the satellite at the corresponding tm. to the satellite at the corresponding tm.
Propagation with DA in ecliptic frame.

tm ∆v [m/s] α [deg] β [deg] θ [deg] tcomp [s]

21/03/2013 20.98 -180.00 0.12 -27.39 39554.98

Table 6.3: Best set of manoeuvre parameters. Found with global optimisation using DA
in ecliptic frame.

,

6.2.2. Analytical max p´∆Θq strategy results

For the analytical optimisation strategies, the orbital is propagated using the TA scheme.
This is already an initial font of error remembering the results of the TA compared to the
other schemes in Chapter 5, as it was observed that depending on the frames, the error
may be greater or smaller, but is always present. Nonetheless, talking about reference
frames, the analytical strategy is carried out using the different case scenarios of the
Laplace frame described in section 4.3.2.
As before, after the TA propagation, the results are parsed in correspondence with the
manoeuvring time instants tm and are then optimised one-by-one, with the strategy that
itself separates the optimisation of the angles tα, β, θu from the impulse ∆v minimization.

In Section 5.2.1 two different strategies were discussed, one assuming the Hamiltonian as
constant and the other considering the variation in time of the Moon orbital elements.
Both of them will here be applied and compared in an environment where the assumption
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of time independence of the third-bodies ephemerides is dropped.

Autonomous Hamiltonian

Given the assumption BH{Bt “ 0, the same is applied for the initial orbital propagation,
thus neglecting the orbital variation of the Sun and the Moon, which are fixed to their
initial values on 22/03/2013, the same date considered as the initial condition for the
INTEGRAL satellite.
After optimising the angles through the max ´ ∆Θ method, a zero search is carried out
for the ∆v evaluation.

(a) Impulse magnitude ∆v (b) In-plane firing angle α

(c) Out-of-plane firing angle β (d) True anomaly at manoeuvring point θ

Figure 6.3: optimised sets of manoeuvre paramaters for each manoeuvring point tm,
found with Analytical autonomous H optimisation using TA in different Laplace frames
case scenarios Li.

The resulting optimised manoeuvres presented in Fig. 6.3 are thus applied to the satellite
and propagated in the simplified framework described by the Laplace frame in use, consid-
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ering the third-body ephemerides constant. The effect on the satellite’s orbital evolution
can be found in Fig. 6.4, depending on the various Laplace frames. Note that the rotating
Laplace frame L3 was not considered, since for its nature the Hamiltonian is intrinsically
time-dependent for the presence of the rotation term.

The firing angles and the true anomaly are similar case by case, except for L5, which is
clearly not suitable for the manoeuvre design, as it can be seen from the results of ∆v,
where the output of the impulse is null. This is caused by the excessive simplification
of the problem which causes the case scenario disconnection from reality, with the triple
averaging propagation suggesting the atmosphere re-entry without any manoeuvring.

(a) Case L1 (b) Case L2

(c) Case L4 (d) Case L5

Figure 6.4: hp,min evolution applying the optimised manoeuvres from the Analytical au-
tonomous H to the satellite at the corresponding tm. Propagation with TA in different
Laplace frames case scenarios Li.

From the orbital propagation after the manoeuvre, the results are nice, but it must be
remembered that those are propagated with TA and with the time-dependence neglected,
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hence the results must be checked. Looking at case L5, the TA sees an impact on the
Earth without any manoeuvre needed, which is obviously false.
The found optimum set of manoeuvre parameters is reassumed in Table 6.4, with reported
also the manoeuvring date.

tm ∆vopt [m/s] αopt [deg] βopt [deg] θopt [deg] tcomp [s]

L1 01/04/20 58.00 -172.92 3.64 179.27 109.29
L2 22/06/21 88.27 174.59 -2.90 -179.35 117.85
L4 02/03/21 73.95 178.46 -0.85 -179.83 156.35

Table 6.4: Best set of manoeuvre parameters found with Analytical optimisation with
autonomous H, using TA in different Laplace frames case scenarios Li.

,

The difference with respect to the global optimisation solution is visible, both in terms
of impulse magnitude and the date of manoeuvring, which was to be applied as early as
2013.

Time-dependent Hamiltonian

Differently from the previous case, the initial condition of INTEGRAL is simply propa-
gated within the assumptions of its Laplace frame definition, with no additional simplifi-
cation to the ephemerides of the third bodies.
The significant change is given by the ∆v optimisation, which is carried out with a zero
search algorithm of the following function:

funp∆vq “ max pHcritp∆vq ´ Hp∆vqq (6.2)

For this optimisation algorithm, the results are no longer computed into L5 since the last
result showed how its representation of the satellite dynamics is misleading. Instead, here
the optimal sets are computed also within the rotating L3 frame.

The resulting optimal set of manoeuvres reported in Fig. 6.5 are then applied to the satel-
lite and propagated with the TA scheme and compared with the autonomous Hamiltonian
manoeuvres, also propagated in a frame with varying ephemerides, in Fig. 6.6.

The results in L3, the results are peculiar. A couple of optimised manoeuvres do not
reach the target, while those with successful disposal differ from the other results.
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(a) Impulse magnitude ∆v (b) In-plane firing angle α

(c) Out-of-plane firing angle β (d) True anomaly at manoeuvring point θ

Figure 6.5: optimised sets of manoeuvre paramaters for each manoeuvring point tm.
Found with Analytical time-varying H optimisation using TA in different Laplace frames
case scenarios Li.

At first, the algorithm gives as best impulse for the disposal the maximum equivalent
to the constraint, but looking at the slope of the hp,min curve, it is clear not an opti-
mal solution. After 2018 instead, the impulse magnitude decrements, with the minimum
found more or less in correspondence to the other Li scenarios, even giving the best result
among all the inspected cases. That said, while the best solution has a minimum reached
altitude hopt

p,min “ 47.11 km, some other found impulses are still overestimated looking at
the propagation, with an altitude right after the manoeuvre at an impact condition.
On the other hand, the results from the other Laplace frame scenarios show some minor
adjustments to the impulses with respect to the previous analytic design strategy, to ac-
count for the added complexity of the system’s dynamics. Propagating with TA, while
in L1 only a few results do not reach the target altitude, in L2 and L4 the disposal is
successful, even if once again the results must be checked with the DA orbital propaga-
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(a) Case L1 (b) Case L2

(c) Case L3 (d) Case L4

Figure 6.6: hp,min evolution applying the optimised manoeuvres from the Analytical time-
varying H to the satellite at the corresponding tm. Propagation with TA in different
Laplace frames case scenarios Li.

tion. Note that the time period where all the analytical results tend to find the optimal
manoeuvres is more or less the time in which the argument of perigee is ωK « 180°.

The optimal sets among the proposed manoeuvres are reported in Table 6.5 together with
the Li scenario considered.

One important note is that the L3 results reported are obtained within employing TA
potentials but maintaining the full rotational potential, which is equal to the DA one
since no dependence on the fast angles is present.
If the TA version of the rotational potential is used instead, the results in Fig. 6.7
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tm ∆vopt [m/s] αopt [deg] βopt [deg] θopt [deg] tcomp [s]

L1 26/06/20 57.93 176.64 -1.85 -179.63 422.42
L2 24/05/21 88.38 -177.92 -1.11 -179.75 397.31
L3 15/10/20 32.54 176.48 -1.84 -179.68 898.93
L4 02/02/21 73.95 -178.03 1.09 -179.78 462.14

Table 6.5: Best set of manoeuvre parameters found with Analytical optimisation with
time-dependent H, using TA in different Laplace frames case scenarios Li.

,

(a) Impulse magnitude ∆v (b) In-plane firing angle α

(c) Out-of-plane firing angle β (d) True anomaly at manoeuvring point θ

Figure 6.7: optimised sets of manoeuvre paramaters for each manoeuvring point tm.
Found with Analytical time-varying H optimisation using TA Rrot in L3.

Lastly, as a matter of comparison, the results from the autonomous Hamiltonian propa-
gated with time-varying ephemerides of the third bodies are reported in Fig. 6.8, where
the red markers represent an unsuccessful re-entry (hp,min ą hp,tar). Here a large amount
of optimum manoeuvres does not reach the target, so even if the magnitude of the impulse
found by the time-varying Hamiltonian did not change much from the previous strategy,
the results are different.
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Figure 6.8: Analytical autonomous H solution propagated with TA considering time-
varying third-bodies’ orbital elements. Different Laplace frames Li are considered. Red
markers represents a failed re-entry (hp,min ą hp,tar).

Analytic resulting manoeuvres check

Given the optimised set of manoeuvre parameters, resulting from the analytic design
strategy considering the time dependence of the Hamiltonian, their validity in the real-
case scenario needs to be checked.
Since the optimisation strategy is supposed to take place at the time of the initial orbital
condition, in the case considered on 22/03/2013, to design the EoL disposal, the validity
test will be carried out with a DA orbital propagation from the initial condition for the 9
years considered for the application of the manoeuvre.
The DA-integrated orbital elements are then parsed in the same way as before, into the
manoeuvring points tm.
At each parsed manoeuvring point, the corresponding impulse is applied to the satellite.
Subsequently, the orbital state is again propagated with the DA potentials for 25 years
to verify if the satellite would eventually reach the target altitude.
The propagation is carried out into the ecliptic frame without any added assumptions to
the dynamics, apart from the long-term evaluation filtering on the fast angles inherent to
the DA technique.
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The results of this procedure are reported in Fig. 6.9, with a red marker if the target is
not respected.

(a) Case L1 (b) Case L2

(c) Case L3 (d) Case L4

Figure 6.9: Analytic time-varying H optimisation check with DA. The red marker repre-
sents a failed re-entry (hp,min ą hp,tar).

It can be observed that, for the L1 case considered, the optimum set found re-entry is
satisfied, while the worst results are obtained within the first half of the manoeuvring
point, where the optimised manoeuvres do not reach the disposal target.
The rotating Laplace frame L3, on the contrary, satisfies the target requirement with
the first results characterised by a noticeable impulse overestimation, while the optimum
set does not bring to an effective real case re-entry. Therefore, given the issues in the
application of the analytical time-dependent design to the L3 case, a proper re-design of
the optimising function from Eq. 6.2 focusing on the rotating Laplace frame scenario may
give better results.
On the other hand, cases L2 and L4 show some interesting results. All the manoeuvring
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sets correspond to a successful re-entry in the real case propagation with DA, with the
"average" Laplace plane showing generally better results.

6.2.3. Hybrid strategy results

Finally, the hybrid disposal optimisation strategy is analysed. Here, contrarily to the
analytic computation scenario, the initial conditions evolution is carried out with the DA
technique and subsequently parsed in the manoeuvring points tm.

Exploiting the phase space formulation, the analytical max p´∆Θq design strategy with
time-dependent Hamiltonian is used for the computation of the angles tα, β, θu. Those
are used as initial guesses for the local optimisation together with a guess value that can
be either found with the analytical strategy or if the magnitude is more or less it can be
simply fixed with this knowledge.
Local optimisation, on the other hand, is executed by integrating the DA method without
imposing additional assumptions, even those utilized in defining the Laplace frame. This
method of integration was previously employed in Section 4.3.2. As anticipated, it was
observed that by releasing all assumptions, the eccentricity remains constant between
different frames.

When comparing the resulting orbital propagation after optimising and applying the im-
pulse within this assumption-free propagation framework, the outcomes depicted in Fig.
6.10 are obtained. L3 is not considered since its computational cost for the DA propaga-
tion is sensibly more expensive than the others, nullifying the advantages of the design
strategy.
As anticipated, the minimum ∆v remains consistent across all considered frames, validat-
ing the method’s independence from the chosen frame.
The minimum impulse is found at ∆v « 40 m/s in all the frames considered, with a com-
putational time clearly higher with respect to the analytical ones, but lower with respect
to the global one.

Note that even with L5 the results are now consistent with the real case, due to its
dynamics not being any more related to its particular frame definition. While the others’
results are more or less comparable with one another in all the time domains, here the
impulses show a different optimisation development, starting from higher values and then
decreasing towards the 40 m/s value. This is related to the different suggested angles for
the manoeuvres, as shown in Fig. 6.11. Conversely, after 2020, the set of manoeuvring
angles is re-aligned to the other frames’ results, thus reaching a similar optimum ∆v.
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(a) Frame L1 (b) Frame L2

(c) Frame L4 (d) Frame L5

Figure 6.10: optimised impulse magnitude ∆v for each manoeuvring point tm, found
with Hybrid optimisation using DA in different Laplace frames propagated without any
additional assumption Li.

tm ∆vopt [m/s] αopt [deg] βopt [deg] θopt [deg] tcomp

L1 31/01/22 42.23 132.72 -29.83 -173.03 6101.59
L2 31/01/22 38.45 122.12 41.03 -69.95 7034.62
L4 31/01/22 40.00 2.19 -0.59 -2.99 7001.60
L5 11/12/21 45.50 133.09 -75.16 -173.44 9113.63

Table 6.6: Best set of manoeuvre parameters found with Hybrid optimisation, using DA
in different Laplace frames case scenarios Li.

,
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(a) In-plane firing angle α

(b) Out-of-plane firing angle β

(c) True anomaly at manoeuvring point θ

Figure 6.11: optimised set of manoeuvring angles tα, β, θu for each manoeuvring point tm,
found with Hybrid optimisation using DA in different Laplace frames propagated without
any additional assumption Li.
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7| Conclusion

The objective of this thesis was to explore the implementation of an analytical end-of-life
disposal strategy. This aimed at reducing computational costs and equipping spacecraft
with the capability to autonomously plan manoeuvres, ensuring compliance with the
IADC guidelines concerning space debris.

Following the results obtained in previous works, the dynamical model was therefore re-
duced by means of triple-averaged perturbing potentials, which were exploited both for a
low-cost propagation method and used within the Hamiltonian formulation to define the
manoeuvre optimisation strategy.
Differently from those works, This thesis introduces an approach that takes into account
the time variation of the orbital elements of third bodies, by explicitly outlining the time
variation inside a vector of Hamiltonians at different time instants. Even this way, some
simplifications were necessary. The orbital elements variation of the satellite itself was
kept constant since their variation can be computed only by integrating the dynamics.
Applying the optimisation scheme to the INTEGRAL satellite as a case study, and con-
sidering different Laplace frames scenarios, it was shown that the optimisation algorithm
was capable of re-adjusting the set of manoeuvre parameters to account for the variation
of the third-bodies’ ephemerides, as the target re-entry was easily reached within the TA
formulation of the dynamics.
Nonetheless, the consideration of the time variation allowed the exploitation of the rotat-
ing Laplace frame. Even if some issues were found in the optimisation result within this
frame, the orbital propagation in L3 highlighted interesting results.
All the results found with the proposed optimisation design were then checked. This was
done by applying the manoeuvres within a DA model representing the real case dynamics,
with no more assumptions than the filtered effect of the fast angles. The results high-
lighted that, even if overestimated, the optimisation manoeuvres were capable of reaching
the target altitude. for the fixed L1 frame, 12 out of 30 manoeuvring points were suc-
cessful, including the best solution found. Regarding the rotating L3, only 7 points were
not re-entering, but it must be considered that the first half of the optimised manoeuvres
are noticeably overestimated, and in 14 sets, the impulse was the maximum allowed by
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optimisation constraint, while the overall best manoeuvring set failed the re-entry condi-
tion. Nonetheless, cases L2 and L4 were very positive in terms of actual re-entry, with all
points reaching the target. This highlights the actual possibility for autonomous in-space
manoeuvring by the satellite, without needing the ground station support, at the cost of a
sub-optimal manoeuvre requiring higher impulse compared to the best possible solution.

Furthermore, a hybrid optimisation method was proposed, trying to combine the set of
optimised angles through the exploitation of the maximum variation of the negative Kozai
parameter ´∆Θ with a local optimiser. The design consisted of propagating with the DA
potentials the orbital elements from the initial conditions, then analytically computing
the best set of manoeuvring angles in parsed time instants (each one optimised indepen-
dently), and finally proceeding with the local optimisation using the DA integration once
again.
The results demonstrated effective performance in identifying successful re-entry manoeu-
vres, albeit requiring higher impulses compared to the benchmark solution from global
optimisation. However, this was achieved with a reduced computational cost.
In addition, as was expected, the results more or less converged to the same manoeuvre,
highlighting an independence from the Laplace frame considered which was not the case
in the analytical results.

Also, the optimised manoeuvres within different frames converged to similar solutions,
showing they didn’t rely on the specific Laplace frame used. In this sense, the behaviour
of the hybrid algorithm is different from the analytic solution, as was expected.

In light of the obtained results, future work may focus on the exploitation of the rotating
Laplace frame, looking for a best-suited analytical optimisation function for that partic-
ular case which may give better results.
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A.1. Integration of the TA terms for R3b,3

1

2π

ż 2π

0

α3dΩ “
1

256
sin i sin i3b sinω

“

6
`

34 ` 6 cos 2i ` 5 cos 2pi ´ i3bq ` 14 cos 2i3b

` 5 cos 2pi ` i3bq ` 4
`

3 ` 5 cos 2i3b
˘

cos 2ω sin2 i
˘

sinω3b

` 8
`

7 ` 5 cos 2i ` 10 cos 2ω sin2 i
˘

sin2 i3b sin 3ω3b

‰

(A.1)

1

2π

ż 2π

0

βγξdΩ “
1

128
r´16 cosω cosω3b sin 2i sin 2i3b`

sin i r´ p10 ` 7 cos 2pi ´ ωq ` 7 cos 2pi ` ωq ´ 6 cos 2ω3b`

2 cos 2it7 ` 15 cos 2ω3bu ´ 2 cos 2ωt7 ` 30 cos 2ω3b sin
2 iu

˘

sin i3b

`4 cos2 2ω3b

`

´1 ` 5 cos 2i ´ 10 cos 2ω sin2 i
˘

sin 3i3b
‰

sinω sinω3b

‰

(A.2)

1

2π

ż 2π

0

αdΩ “ sin i sin i3b sinω sinω3b (A.3)

1

2π

ż 2π

0

αβ2dΩ “
1

128

`

32 cosω cosω3b sin 2i sin 2i3b`

sin i
`

54 ´ 7 cos 2pi ´ ωq ´ 7 cos 2pi ` ωq ` 6 cos 2ω3b´

2 cos 2i
`

7 ` 15 cos 2ω3b

˘

` 2 cos 2ω
`

7 ` 30 cos 2ω3b sin
2 i
˘˘

sin i3b`

4 cos2 ω3b

`

´ 1 ` 5 cos 2i ´ 10 cos 2ω sin2 i
˘

sin 3i3b
˘

sinω sinω3b

(A.4)

1

2π

ż 2π

0

αγ2dΩ “
1

128
sin i sin i3b sinω

`

34 ` 6 cos 2i ` 5 cos 2pi ´ i3bq ` 14 cos 2i3b`

5 cos 2pi ` i3bq ` 4
`

3 ` 5 cos 2i3b
˘

cos 2ω sin2 i
˘

sinω3b´

4
`

7 ` 5 cos 2i ` 10 cos 2ω sin2 i
˘

sin2 i3b sin 3ω3b

(A.5)
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1

2π

ż 2π

0

αξ2dΩ “
1

128
sin i sin i3b sinω

`

22 ` 18 cos 2i ` 15 cos 2pi ´ i3bq ´ 6 cos 2i3b`

15 cos 2pi ` i3bq ´ 12
`

3 ` 5 cos 2i3b
˘

cos 2ω sin2 i
˘

sinω3b`

4
´

´ 1 ` 5 cos 2i ´ 10 cos 2ω sin2 i
¯

sin2 i3b sin 3ω3b

(A.6)

A.2. Integration of the TA terms for R3b,4

1

2π

ż 2π

0

1dΩ “ 1 (A.7)
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1

2π

ż 2π

0

pβ2
` ξ2qβ2dΩ “

1

32768

“

9156 ` 1232 cos 2i ` 108 cos 4i ` 120 cos 2pi ´ 2i3bq`

120 cos 4i ´ 2i3b ` 1824 cos 2pi ´ i3bq ` 210 cos 4pi ´ i3bq ` 1232 cos 2i3b ` 108 cos 4i3b`

1824 cos 2pi ` i3bq ` 210 cos 4pi ` i3bq ` 120 cos 2p2i ` i3bq ` 120 cos 2pi ` 2i3bq´

72 cos 2pi ´ 2ωq ` 72 cos 4i ´ 2ω ´ 80 cos 2pi ´ i3b ´ 2ωq`

120 cos 2pi3b ´ 2ωq ´ 80 cos 2pi ` i3b ´ 2ωq ` 20 cos 2p2i ` i3b ´ 2ωq´

140 cos 2pi ` 2i3b ´ 2ωq ´ 120 cos 4i3b ´ 2ω ` 140 cos 4pi ` i3bq ´ 2ω`

544 cos 2pi ´ ωq ` 18 cos 4pi ´ ωq ´ 80 cos 2pi ´ 2i3b ´ ωq`

832 cos 2pi ´ i3b ´ ωq ` 35 cos 4pi ´ i3b ´ ωq ´ 1824 cos 2pi3b ´ ωq`

210 cos 4pi3b ´ ωq ` 832 cos 2pi ` i3b ´ ωq ` 35 cos 4pi ` i3b ´ ωq`

80 cos 2p2i ` i3b ´ ωq ´ 80 cos 2pi ` 2i3b ´ ωq ´ 1232 cos 2ω`

108 cos 4ω ` 544 cos 2pi ` ωq ` 18 cos 4pi ` ωq ` 72 cos 2p2i ` ωq´

80 cos 2pi ´ 2i3b ` ωq ` 140 cos 2p2i ´ 2i3b ` ωq ` 832 cos 2pi ´ i3b ` ωq`

35 cos 4pi ´ i3b ` ωq ` 80 cos 2p2i ´ i3b ` ωq ´ 1824 cos 2pi3b ` ωq`

210 cos 4pi3b ` ωq ` 832 cos 2pi ` i3b ` ωq ` 35 cos 4pi ` i3b ` ωq`

80 cos 2p2i ` i3b ` ωq ´ 120 cos 2p2i3b ` ωq ´ 80 cos 2pi ` 2i3b ` ωq´

72 cos 2pi ` 2ωq ´ 140 cos 2pi ´ 2i3b ` 2ωq ´ 80 cos 2pi ´ i3b ` 2ωq`

120 cos 2pi3b ` 2ωq ´ 80 cos 2pi ` i3b ` 2ωq ` 20 cos 2p2i ` i3b ` 2ωq`

140 cos 4pi ` i3bq ` 2ω ` 20 cos 4i ´ 2i3b ` 4ω ´ 140 cos 2pi ´ 2pi3b ` ωqq`

80 cos 4i ´ 2pi3b ` ωq ´ 140 cos 2pi ` 2pi3b ` ωqq ` 140 cos 4i ´ 2p2i3b ` ωq`

20 cos 4i ´ 2pi3b ` 2ωq´

4 cos 2ω3b

`

12
´

43 ` 9 cos 2i3b ` 4 cos 2i
´

31 ` 5 cos 2i3b

¯

`

5 cos 4i
´

5 ` 7 cos 2i3b

¯¯

´ 64
´

59 ` 25 cos 2i3b`

5 cos 2i
´

5 ` 7 cos 2i3b

¯¯

cos 2ω sin2 i`

160
´

5 ` 7 cos 2i3b

¯

cos 4ω sin4 i
¯

sin2 i3b
‰

(A.8)
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1

2π

ż 2π

0

pβ2
` ξ2qξ2dΩ “

1

32768

“

9156 ` 1232 cos 2i ` 108 cos 4i ` 120 cos 2pi ´ 2i3bq ` 120 cos 4pi ´ 2i3bq`

1824 cos 2pi ´ i3bq ` 210 cos 4pi ´ i3bq ` 1232 cos 2i3b ` 108 cos 4i3b ` 1824 cos 2pi ` i3bq`

210 cos 4pi ` i3bq ` 120 cos 2p2i ` i3bq ` 120 cos 2pi ` 2i3bq ´ 72 cos 2pi ´ 2ωq`

72 cos 4i ´ 2ω ´ 80 cos 2pi ´ i3b ´ 2ωq ` 120 cos 2pi3b ´ 2ωq´

80 cos 2pi ` i3b ´ 2ωq ` 20 cos 2p2i ` i3b ´ 2ωq ´ 140 cos 2pi ` 2i3b ´ 2ωq´

120 cos 4i3b ´ 2ω ` 140 cos 4pi ` i3bq ´ 2ω ` 544 cos 2pi ´ ωq`

18 cos 4pi ´ ωq ´ 80 cos 2pi ´ 2i3b ´ ωq ` 832 cos 2pi ´ i3b ´ ωq`

35 cos 4pi ´ i3b ´ ωq ´ 1824 cos 2pi3b ´ ωq ` 210 cos 4pi3b ´ ωq`

832 cos 2pi ` i3b ´ ωq ` 35 cos 4pi ` i3b ´ ωq ` 80 cos 2p2i ` i3b ´ ωq´

80 cos 2pi ` 2i3b ´ ωq ´ 1232 cos 2ω ` 108 cos 4ω ` 544 cos 2pi ` ωq`

18 cos 4pi ` ωq ` 72 cos 2p2i ` ωq ´ 80 cos 2pi ´ 2i3b ` ωq`

140 cos 2p2i ´ 2i3b ` ωq ` 832 cos 2pi ´ i3b ` ωq`

35 cos 4pi ´ i3b ` ωq ` 80 cos 2p2i ´ i3b ` ωq ´ 1824 cos 2pi3b ` ωq`

210 cos 4pi3b ` ωq ` 832 cos 2pi ` i3b ` ωq`

35 cos 4pi ` i3b ` ωq ` 80 cos 2p2i ` i3b ` ωq ´ 120 cos 2p2i3b ` ωq´

80 cos 2pi ` 2i3b ` ωq ´ 72 cos 2pi ` 2ωq ´ 140 cos 2pi ´ 2i3b ` 2ωq´

80 cos 2pi ´ i3b ` 2ωq ` 120 cos 2pi3b ` 2ωq ´ 80 cos 2pi ` i3b ` 2ωq`

20 cos 2p2i ` i3b ` 2ωq ` 140 cos 4pi ` i3bq ` 20 cos 4i ´ 2i3b ` 4ω´

140 cos 4pi ` i3bq ` 20 cos 4i ´ 2i3b ` 4ω ´ 140 cos 2pi ´ 2pi3b ` ωqq`

80 cos 4i ´ 2pi3b ` ωq ´ 140 cos 2pi ` 2pi3b ` ωqq`

140 cos 4i ´ 2p2i3b ` ωq ` 20 cos 4i ´ 2pi3b ` 2ωq`

4 cos 2ω3b

`

12
`

43 ` 9 cos 2i3b ` 4 cos 2i
`

31 ` 5 cos 2i3b`

5 cos 4i
`

5 ` 7 cos 2i3b
˘˘˘

´

64
`

59 ` 25 cos 2i3b ` 5 cos 2i
`

5 ` 7 cos 2i3b
˘˘

cos 2ω sin i2`

160
`

5 ` 7 cos 2i3b
˘

cos 4ω sin i4
˘

sin i23b
‰

(A.9)

1

2π

ż 2π

0

β2dΩ “
1

128

´

44 ` 4 cos 2i ` 6 cos 2pi ´ i3bq ` 4 cos 2i3b ` 6 cos 2pi ` i3bq

` 2 cos 2pi ´ ωq ` 3 cos 2pi ´ i3b ´ ωq ´ 6 cos 2pi3b ´ ωq ` 3 cos 2pi ` i3b ´ ωq

´ 4 cos 2ω ` 2 cos 2pi ` ωq ` 3 cos 2pi ´ i3b ` ωq ´ 6 cos 2pi3b ` ωq

` 3 cos 2pi ` i3b ` ωq ´ 8 cos 2ω3b
´

1 ` 3 cos 2i ´ 6 cos 2ω sin2 i
¯

sin2 i3b
¯

(A.10)
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1

2π

ż 2π

0

ξ2dΩ “
1

128

´

44 ` 4 cos 2i ` 6 cos 2pi ´ i3bq ` 4 cos 2i3b ` 6 cos 2pi ` i3bq

` 2 cos 2pi ´ ωq ` 3 cos 2pi ´ i3b ´ ωq ´ 6 cos 2pi3b ´ ωq ` 3 cos 2pi ` i3b ´ ωq

´ 4 cos 2ω ` 2 cos 2pi ` ωq ` 3 cos 2pi ´ i3b ` ωq ´ 6 cos 2pi3b ` ωq

` 3 cos 2pi ` i3b ` ωq ` 8 cos 2ω3b
´

1 ` 3 cos 2i ´ 6 cos 2ω sin2 i
¯

sin2 i3b
¯

(A.11)

1

2π

ż 2π

0

pα2
` γ2

qα2dΩ “
1

32768

´

9156 ` 1232 cos 2i ` 108 cos 4i ` 120 cos 2pi ´ 2i3bq ` 120 cos 4i ´ 2i3b

` 1824 cos 2pi ´ i3bq ` 210 cos 4pi ´ i3bq ` 1232 cos 2i3b ` 108 cos 4i3b ` 1824 cos 2pi ` i3bq

` 210 cos 4pi ` i3bq ` 120 cos 2p2i ` i3bq ` 120 cos 2pi ` 2i3bq ´ 72 cos 2pi ´ 2ωq

´ 72 cos 4i ´ 2ω ´ 80 cos 2pi ´ i3b ´ 2ωq ` 120 cos 2pi3b ´ 2ωq

´ 80 cos 2pi ` i3b ´ 2ωq ` 20 cos 2p2i ` i3b ´ 2ωq ´ 140 cos 2pi ` 2i3b ´ 2ωq

` 120 cos 4i3b ´ 2ω ´ 140 cos 4pi ` i3bq ´ 2ω ´ 544 cos 2pi ´ ωq ` 18 cos 4pi ´ ωq

` 80 cos 2pi ´ 2i3b ´ ωq ´ 832 cos 2pi ´ i3b ´ ωq ` 35 cos 4pi ´ i3b ´ ωq

` 1824 cos 2pi3b ´ ωq ` 210 cos 4pi3b ´ ωq ´ 832 cos 2pi ` i3b ´ ωq

` 35 cos 4pi ` i3b ´ ωq ´ 80 cos 2p2i ` i3b ´ ωq ` 80 cos 2pi ` 2i3b ´ ωq

` 1232 cos 2ω ` 108 cos 4ω ´ 544 cos 2pi ` ωq ` 18 cos 4pi ` ωq

´ 72 cos 2p2i ` ωq ` 80 cos 2pi ´ 2i3b ` ωq ´ 140 cos 2p2i ´ 2i3b ` ωq

´ 832 cos 2pi ´ i3b ` ωq ` 35 cos 4pi ´ i3b ` ωq ´ 80 cos 2p2i ´ i3b ` ωq

` 1824 cos 2pi3b ` ωq ` 210 cos 4pi3b ` ωq ´ 832 cos 2pi ` i3b ` ωq

` 35 cos 4pi ` i3b ` ωq ´ 80 cos 2p2i ` i3b ` ωq ` 120 cos 2p2i3b ` ωq

` 80 cos 2pi ` 2i3b ` ωq ´ 72 cos 2pi ` 2ωq ´ 140 cos 2pi ´ 2i3b ` 2ωq

´ 80 cos 2pi ´ i3b ` 2ωq ` 120 cos 2pi3b ` 2ωq ´ 80 cos 2pi ` i3b ` 2ωq

` 20 cos 2p2i ` i3b ` 2ωq ´ 140 cos 4pi ` i3bq ` 2ω ` 20 cos 4i ´ 2i3b ` 4ω

´ 140 cos 2pi ´ 2pi3b ` ωqq ´ 80 cos 4i ´ 2pi3b ` ωq ´ 140 cos 2pi ` 2pi3b ` ωqq

´ 140 cos 4i ´ 2p2i3b ` ωq ` 20 cos 4i ´ 2pi3b ` 2ωq

` 16 cos 2ω3b
´

3p43 ` 9 cos 2i3b ` 4 cos 2ip31 ` 5 cos 2i3bq

` 5 cos 4ip5 ` 7 cos 2i3bqq ` 16p59 ` 25 cos 2i3b ` 5 cos 2ip5 ` 7 cos 2i3bqq cos 2ω sin2 i

` 40p5 ` 7 cos 2i3bq cos 4ω sin4 i
¯

sin2 i3b
¯

(A.12)
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1

2π

ż 2π

0

pα2
` γ2

qγ2dΩ “
1

32768

´

1232 cos 2i ` 108 cos 4i ` 120 cos 2pi ´ 2i3bq ` 120 cos 4i ´ 2i3b

` 1824 cos 2pi ´ i3bq ` 210 cos 4pi ´ i3bq ` 1232 cos 2i3b ` 108 cos 4i3b ` 1824 cos 2pi ` i3bq

` 210 cos 4pi ` i3bq ` 120 cos 2p2i ` i3bq ` 120 cos 2pi ` 2i3bq ´ 72 cos 2pi ´ 2ωq

´ 72 cos 4i ´ 2ω ´ 80 cos 2pi ´ i3b ´ 2ωq ` 120 cos 2pi3b ´ 2ωq

´ 80 cos 2pi ` i3b ´ 2ωq ` 20 cos 2p2i ` i3b ´ 2ωq ´ 140 cos 2pi ` 2i3b ´ 2ωq

` 120 cos 4i3b ´ 2ω ´ 140 cos 4pi ` i3bq ´ 2ω ´ 544 cos 2pi ´ ωq ` 18 cos 4pi ´ ωq

` 80 cos 2pi ´ 2i3b ´ ωq ´ 832 cos 2pi ´ i3b ´ ωq ` 35 cos 4pi ´ i3b ´ ωq

` 1824 cos 2pi3b ´ ωq ` 210 cos 4pi3b ´ ωq ´ 832 cos 2pi ` i3b ´ ωq

` 35 cos 4pi ` i3b ´ ωq ´ 80 cos 2p2i ` i3b ´ ωq ` 80 cos 2pi ` 2i3b ´ ωq

` 1232 cos 2ω ` 108 cos 4ω ´ 544 cos 2pi ` ωq ` 18 cos 4pi ` ωq

´ 72 cos 2p2i ` ωq ` 80 cos 2pi ´ 2i3b ` ωq ´ 140 cos 2p2i ´ 2i3b ` ωq

´ 832 cos 2pi ´ i3b ` ωq ` 35 cos 4pi ´ i3b ` ωq ´ 80 cos 2p2i ´ i3b ` ωq

` 1824 cos 2pi3b ` ωq ` 210 cos 4pi3b ` ωq ´ 832 cos 2pi ` i3b ` ωq

` 35 cos 4pi ` i3b ` ωq ´ 16 cos 2ω3bp372 cos 2i ` 75 cos 4i

` 3p9 ` 20 cos 2i ` 35 cos 4iq cos 2i3b ` 16p59 ` 25 cos 2i3b ` 5 cos 2ip5 ` 7 cos 2i3bqq

¨ cos 2ω sin2 i ` 40p5 ` 7 cos 2i3bq cos 4ω sin4 iq sin2 i3b

´ 4p´2289 ` 35 cos 4i ´ 4i3b ´ 2ω ` 20 cos 2p2i ` i3b ` ωq

´ 30 cos 2p2i3b ` ωq ´ 20 cos 2pi ` 2i3b ` ωq ` 18 cos 2pi ` 2ωq

` 35 cos 2pi ´ 2i3b ` 2ωq ` 20 cos 2pi ´ i3b ` 2ωq ´ 30 cos 2pi3b ` 2ωq

` 20 cos 2pi ` i3b ` 2ωq ´ 5 cos 2p2i ` i3b ` 2ωq ` 35 cos 4pi ` i3bq ` 2ω

´ 5 cos 4i ´ 2i3b ` 4ω ` 35 cos 2pi ´ 2pi3b ` ωqq ` 20 cos 4i ´ 2pi3b ` ωq

` 35 cos 2pi ` 2pi3b ` ωqq ´ 5 cos 4i ´ 2p2i3b ` ωq ` 516 cos 2ω3b sin i3b2q
¯

(A.13)

1

2π

ż 2π

0

α2dΩ “
1

128

´

44 ` 4 cos 2i ` 6 cos 2pi ´ i3bq ` 4 cos 2i3b ` 6 cos 2pi ` i3bq

´ 2 cos 2pi ´ ωq ´ 3 cos 2pi ´ i3b ´ ωq ` 6 cos 2pi3b ´ ωq

´ 3 cos 2pi ` i3b ´ ωq ` 4 cos 2ω ´ 2 cos 2pi ` ωq

´ 3 cos 2pi ´ i3b ` ωq ` 6 cos 2pi3b ` ωq ´ 3 cos 2pi ` i3b ` ωq

` 8 cos 2ω3b
´

1 ` 3 cos 2i ` 6 cos 2ω sin2 i
¯

sin2 i3b
¯

(A.14)
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1

2π

ż 2π

0

γ2dΩ “
1

128

´

44 ` 4 cos 2i ` 6 cos 2pi ´ i3bq ` 4 cos 2i3b ` 6 cos 2pi ` i3bq

´ 2 cos 2pi ´ ωq ´ 3 cos 2pi ´ i3b ´ ωq ` 6 cos 2pi3b ´ ωq

´ 3 cos 2pi ` i3b ´ ωq ` 4 cos 2ω ´ 2 cos 2pi ` ωq

´ 3 cos 2pi ´ i3b ` ωq ` 6 cos 2pi3b ` ωq ´ 3 cos 2pi ` i3b ` ωq

´ 8 cos 2ω3b
´

1 ` 3 cos 2i ` 6 cos 2ω sin2 i
¯

sin2 i3b
¯

(A.15)

1

2π

ż 2π

0

α2β2dΩ “
1

131072

´

19436 ` 5872 cos 2i ` 36 cos 4i ` 40 cos 2pi ´ 2i3bq ` 40 cos 4i ´ 2i3b

` 8800 cos 2pi ´ i3bq ` 70 cos 4pi ´ i3bq ` 5872 cos 2i3b ` 36 cos 4i3b ` 8800 cos 2pi ` i3bq

` 70 cos 4pi ` i3bq ` 40 cos 2p2i ` i3bq ` 40 cos 2pi ` 2i3bq ` 72 cos 2pi ´ 2ωq

` 80 cos 2pi ´ i3b ´ 2ωq ´ 120 cos 2pi3b ´ 2ωq ` 80 cos 2pi ` i3b ´ 2ωq

´ 20 cos 2p2i ` i3b ´ 2ωq ` 140 cos 2pi ` 2i3b ´ 2ωq ´ 18 cos 4pi ´ ωq

´ 35 cos 4pi ´ i3b ´ ωq ´ 210 cos 4pi3b ´ ωq ´ 35 cos 4pi ` i3b ´ ωq

´ 108 cos 4ω ´ 18 cos 4pi ` ωq ´ 35 cos 4pi ´ i3b ` ωq

´ 210 cos 4pi3b ` ωq ´ 35 cos 4pi ` i3b ` ωq ` 72 cos 2pi ` 2ωq

` 140 cos 2pi ´ 2i3b ` 2ωq ` 80 cos 2pi ´ i3b ` 2ωq ´ 120 cos 2pi3b ` 2ωq

` 80 cos 2pi ` i3b ` 2ωq ´ 20 cos 2p2i ` i3b ` 2ωq ´ 20 cos 4i ´ 2i3b ` 4ω

` 140 cos 2pi ´ 2pi3b ` ωqq ` 140 cos 2pi ` 2pi3b ` ωqq

´ 20 cos 4i ´ 2pi3b ` 2ωq ` 32768 cos 2ω cos 2ω3b sin2 i sin2 i3b

´ 32 cos 4ω3bp9 ` 20 cos 2i ` 35 cos 4i ´ 280 cos 4ω sin4 iq sin4 i3b

` 81920 cos i cos i3b sin2 i sin2 i3b sin 2ω sin 2ω3b
¯

(A.16)

1

2π

ż 2π

0

α2ξ2dΩ “
1

65536

´

4578 ` 616 cos 2i ` 54 cos 4i ` 60 cos 2pi ´ 2i3bq ` 60 cos 4i ´ 2i3b

` 912 cos 2pi ´ i3bq ` 105 cos 4pi ´ i3bq ` 616 cos 2i3b ` 54 cos 4i3b ` 912 cos 2pi ` i3bq

` 105 cos 4pi ` i3bq ` 60 cos 2p2i ` i3bq ` 60 cos 2pi ` 2i3bq ´ 432 cos 4ω sin4 i

´ 960 cos 2i3b cos 4ω sin4 i ´ 1680 cos 4i3b cos 4ω sin4 i

` 32 cos 2ω3b
´

43 ` 9 cos 2i3b ` 4 cos 2ip31 ` 5 cos 2i3bq

` 5 cos 4ip5 ` 7 cos 2i3bq ´ 40p5 ` 7 cos 2i3bq cos 4ω sin4 i
¯

sin2 i3b

` 16 cos 4ω3b
´

9 ` 20 cos 2i ` 35 cos 4i ´ 280 cos 4ω sin4 i
¯

sin4 i3b
¯

(A.17)
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1

2π

ż 2π

0

αβξγdΩ “
1

131072

´

36 cos 4i ` 40 cos 2pi ´ 2i3bq ` 40 cos 4i ´ 2i3b ´ 3488 cos 2pi ´ i3bq

` 70 cos 4pi ´ i3bq ´ 2320 cos 2i3b ` 36 cos 4i3b ´ 3488 cos 2pi ` i3bq ` 70 cos 4pi ` i3bq

` 40 cos 2p2i ` i3bq ` 40 cos 2pi ` 2i3bq ` 72 cos 2pi ´ 2ωq ` 80 cos 2pi ´ i3b ´ 2ωq

´ 120 cos 2pi3b ´ 2ωq ` 80 cos 2pi ` i3b ´ 2ωq ´ 20 cos 2p2i ` i3b ´ 2ωq

` 140 cos 2pi ` 2i3b ´ 2ωq ´ 18 cos 4pi ´ ωq ´ 35 cos 4pi ´ i3b ´ ωq

´ 210 cos 4pi3b ´ ωq ´ 35 cos 4pi ` i3b ´ ωq ´ 108 cos 4ω ´ 18 cos 4pi ` ωq

´ 35 cos 4pi ´ i3b ` ωq ´ 210 cos 4pi3b ` ωq ´ 35 cos 4pi ` i3b ` ωq

` 72 cos 2pi ` 2ωq ´ 20p257 ´ 7 cos 2pi ´ 2i3b ` 2ωq ´ 4 cos 2pi ´ i3b ` 2ωq

` 6 cos 2pi3b ` 2ωq ´ 4 cos 2pi ` i3b ` 2ωq ` cos 2p2i ` i3b ` 2ωq

` cos 4i ´ 2i3b ` 4ω ´ 7 cos 2pi ´ 2pi3b ` ωqq ´ 7 cos 2pi ` 2pi3b ` ωqq

` cos 4i ´ 2pi3b ` 2ωqq ´ 288 cos 4ω3b sin4 i3b

` 80p´29 cos 2i ´ 2 cos 4ω3bp4 cos 2i ` 7pcos 4i ´ 8 cos 4ω sin4 iqq sin4 i3bq
¯

(A.18)

1

2π

ż 2π

0

γ2β2dΩ “
1

65536

´

4578 ` 616 cos 2i ` 54 cos 4i ` 60 cos 2pi ´ 2i3bq ` 60 cos 4i ´ 2i3b

` 912 cos 2pi ´ i3bq ` 105 cos 4pi ´ i3bq ` 616 cos 2i3b ` 54 cos 4i3b ` 912 cos 2pi ` i3bq

` 105 cos 4pi ` i3bq ` 60 cos 2p2i ` i3bq ` 60 cos 2pi ` 2i3bq ´ 432 cos 4ω sin4 i

´ 960 cos 2i3b cos 4ω sin4 i ´ 1680 cos 4i3b cos 4ω sin4 i

´ 32 cos 2ω3b
´

43 ` 9 cos 2i3b ` 4 cos 2ip31 ` 5 cos 2i3bq

` 5 cos 4ip5 ` 7 cos 2i3bq ´ 40p5 ` 7 cos 2i3bq cos 4ω sin4 i
¯

sin2 i3b

` 16 cos 4ω3b
´

9 ` 20 cos 2i ` 35 cos 4i ´ 280 cos 4ω sin4 i
¯

sin4 i3b
¯

(A.19)
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1

2π

ż 2π

0

γ2ξ2dΩ “
1

131072

´

19436 ` 5872 cos 2i ` 36 cos 4i ` 40 cos 2pi ´ 2i3bq ` 40 cos 4i ´ 2i3b

` 8800 cos 2pi ´ i3bq ` 70 cos 4pi ´ i3bq ` 5872 cos 2i3b ` 36 cos 4i3b ` 8800 cos 2pi ` i3bq

` 70 cos 4pi ` i3bq ` 40 cos 2p2i ` i3bq ` 40 cos 2pi ` 2i3bq ` 72 cos 2pi ´ 2ωq

` 80 cos 2pi ´ i3b ´ 2ωq ´ 120 cos 2pi3b ´ 2ωq ` 80 cos 2pi ` i3b ´ 2ωq

´ 20 cos 2p2i ` i3b ´ 2ωq ` 140 cos 2pi ` 2i3b ´ 2ωq ´ 18 cos 4pi ´ ωq

´ 35 cos 4pi ´ i3b ´ ωq ´ 210 cos 4pi3b ´ ωq ´ 35 cos 4pi ` i3b ´ ωq

´ 108 cos 4ω ´ 18 cos 4pi ` ωq ´ 35 cos 4pi ´ i3b ` ωq

´ 210 cos 4pi3b ` ωq ´ 35 cos 4pi ` i3b ` ωq ` 72 cos 2pi ` 2ωq

` 140 cos 2pi ´ 2i3b ` 2ωq ` 80 cos 2pi ´ i3b ` 2ωq ´ 120 cos 2pi3b ` 2ωq

` 80 cos 2pi ` i3b ` 2ωq ´ 20 cos 2p2i ` i3b ` 2ωq ´ 20 cos 4i ´ 2i3b ` 4ω

` 140 cos 2pi ´ 2pi3b ` ωqq ` 140 cos 2pi ` 2pi3b ` ωqq

´ 20 cos 4i ´ 2pi3b ` 2ωq ´ 32768 cos 2ω cos 2ω3b sin2 i sin2 i3b

´ 32 cos 4ω3b
´

9 ` 20 cos 2i ` 35 cos 4i ´ 280 cos 4ω sin4 i
¯

sin4 i3b

´ 81920 cos i cos i3b sin2 i sin2 i3b sin 2ω sin 2ω3b
¯

(A.20)
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