
Multi-sensors SLAM simulation for
Planetary Rover Exploration

Tesi di Laurea Magistrale in
Space Engineering - Ingegneria Spaziale

Author: Davide Viviani

Student ID: 943486
Advisor: Prof. Mauro Massari
Academic Year: 2021-22

i

Abstract

In the world of planetary space exploration rovers have been used for many years now.
We understood how to build, send and land them safely on other celestial bodies and their
main goal is usually the exploration of the surface where they operate. Space exploration
has brought rovers to the surface of the Moon and Mars, with now missions planning to go
further and further. This push through further bodies brings an intrinsic and not trivial
problem to the rover missions: the increasing difficulties in the communication with rover,
pushing the research to more and more autonomous systems.
This is the main reason behind the development of a SLAM algorithm for planetary explo-
ration, where the acronym SLAM stands for "Simultaneous Localization And Mapping", a
self-explanatory name. This family of algorithms has the purpose of making the rover (or
any other robotic system) able to navigate autonomously in a new environment, recognize
features as landmarks, map them and orient itself in this map.

The following thesis analyzes the history and state of the art of the SLAM problem
and its possible solutions while implementing a simulated digital environment into which
generate and analyze data, proposing an innovative approach to planetary SLAM test
and simulation. Then the SLAM algorithm is analyzed on the base of the digital data
collected during the simulation and conclusions are drawn analyzing different parameters
of the algorithm itself.
The algorithm tested aims at finding an innovative solution in the field of planetary SLAM
implementation and testing, with the main goal of demonstrating how it can be analyzed
from a virtual realistic planetary surface reconstruction.

The research inside this work is articulated in three sections: the simulation environment
build up, the data elaboration and the actual SLAM implementation and test. The results
are shown and analyzed from all of the three sections.

Keywords: SLAM, robotic exploration, Extended Kalman Filter, Mars, simulated envi-
ronment.

Sommario

Nel mondo dell’esplorazione planetaria i rover sono strumenti utilizzati ormai da diversi
anni. Abbiamo capito come costruirli, come inviarli, come farli atterrare con sicurezza
su un altro corpo celeste. Il loro obbiettivo principale è l’esplorazione della superficie
di altri corpi celesti. Ci siamo spinti con rover sulla Luna e su Marte, con missioni che
pianificano di portarli sempre più lontano. Questa spinta verso altri corpi del Sistema
Solare porta con sé un problema non semplice per le missioni future: le sempre maggiori
difficoltà nelle comunicazioni tra il rover e la Terra. Perciò, i rover devono attrezzarsi
per essere sempre più autonomi nel loro processo di esplorazione. Queste sono le ragioni
che spingono allo sviluppo di un algoritmo SLAM atto all’esplorazione planetaria, in cui
l’acronimo SLAM sta per: "Simoultaneous Localization And Mapping" (Localizzazione e
mappatura simultanee), un nome che già spiega molto da sé. Questa famiglia di algoritmi
ha l’obbiettivo di rendere il rover (o qualsiasi altro sistema robotico) capace di navigare
autonomamente in un ambiente nuovo, riconoscerne particolarità come punti noti del
paesaggio, mapparle ed orientarsi in questa mappa da sé costruita.

La seguente tesi analizza la storia e lo stato dell’arte dello SLAM e le sue possibili soluzioni.
Contemporaneamente, si pone l’obbiettivo di ricreare un ambiente di simulazione digitale
in cui generare ed analizzare dati utili. Successivamente, l’algoritmo SLAM viene testato
e analizzato sulla base dei dati digitali così generati e alcune conclusioni vengono tratte,
confrontando le variazioni nei diversi parameteri dell’algoritmo.
Gli algoritmi presentati in questa tesi hanno l’obbiettivo di trovare una soluzione inno-
vativa al problema dello SLAM planetario, con le sue particolarità e utilizzando i tipici
sensori disponibili a bordo di un rover.

La tesi qui presentata è articolata su tre parti: la costruzione dell’ambiente simulato,
l’elaborazione dei dati ricevuti dai sensori e l’implementazione vera e propria dello SLAM.
I risultati di tutte e tre le parti della simulazione saranno analizzati e presentati.

Parole chiave: SLAM, esplorazione robotica, filtro di Kalman esteso, Marte, ambiente
simulato.

v

Contents

Abstract i

Sommario iii

Contents v

1 Introduction 1
1.1 The need of a planetary SLAM . 1
1.2 The SLAM problem . 2

1.2.1 History of SLAM . 3
1.2.2 State of the Art . 4
1.2.3 Classical formulation of SLAM . 4

1.3 The Data Association problem . 7
1.3.1 Data Recognition . 7
1.3.2 Data Association . 8
1.3.3 Loop Closure . 8

1.4 Planetary SLAM . 9
1.4.1 Planetary environment . 9
1.4.2 Available sensors . 10
1.4.3 Computational resources . 10

1.5 Thesis objective . 11
1.6 Thesis structure . 11

2 Simulation environment 13
2.1 Simulating Mars . 13
2.2 Simulation softwares . 14

2.2.1 Blender . 14
2.2.2 Unreal Engine . 18
2.2.3 Simulink . 20

vi | Contents

2.2.4 Simulink-Unreal Engine link configuration 21
2.3 Sensor data elaboration . 28

2.3.1 Sensor data to point clouds and landmarks 29
2.4 Simulation Architecture . 32

3 Extended Kalman Filter SLAM 35
3.1 Probabilistic SLAM . 35
3.2 The Kalman Filter . 38
3.3 The Extended Kalman Filter . 42
3.4 Extended Kalman Filter SLAM . 45

3.4.1 Motion model . 46
3.4.2 Measurement model . 47
3.4.3 Prediction step . 48
3.4.4 Correction step . 49
3.4.5 Unknown Correspondences . 51

3.5 Extended Kalman Filter SLAM properties 51
3.5.1 Fully populated Kalman gain . 51
3.5.2 Uncertainties evolution . 53
3.5.3 Loop Closure . 55

4 EKF with unknown Data Association 57
4.1 Unknown Data Association . 57

4.1.1 Rover filtering . 58
4.1.2 Huang-Arun algorithm . 59
4.1.3 Best features matching . 60

5 Results 63
5.1 Simulation outputs . 64

5.1.1 Lidar acquisition . 64
5.1.2 StereoCam acquisition . 65

5.2 Landmarks identification outputs . 70
5.3 EKF SLAM outputs . 74

5.3.1 Nominal trajectory of the rover . 74
5.3.2 Noisy trajectory . 75
5.3.3 Extended Kalman Filter SLAM introduction 76
5.3.4 EKF SLAM Sensor uncertainty matrix Q dependence 80
5.3.5 EKF SLAM error with distance . 83
5.3.6 EKF SLAM error with trajectory shape 85

6 Conclusions and future developments 87
6.1 Simulation problems and possible developments 88

6.1.1 Data Association problem . 88
6.1.2 Different SLAM implemetations . 89
6.1.3 More realistic simulation environment 89
6.1.4 Search for increased robustness . 89
6.1.5 Sensor data elaboration . 90
6.1.6 In loop simulations . 90
6.1.7 Other applications . 91

6.2 Conclusion . 91

Bibliography 93

A Implementing the SLAM 95
A.1 Sensor data generation . 95

A.1.1 Sensor data storage . 98
A.2 Sensor data to point clouds and landmarks 98

A.2.1 StereoCam data elaboration . 99
A.2.2 Point clouds clustering in landmarks 100
A.2.3 Landmarks coordinates . 102

A.3 Extended Kalman Filter SLAM implementation 103
A.3.1 Prediction step . 105
A.3.2 Data Association . 106
A.3.3 Correction step . 110

List of Algorithms 113

Listings 115

List of Figures 117

List of Tables 119

List of Symbols 121

Acknowledgements 123

Ringraziamenti 125

1

1| Introduction

The first chapter here presented contains an introductory analysis on the SLAM problem,
together with its intrinsic problems and the solutions proposed in this thesis work.

1.1. The need of a planetary SLAM

Robotic planetary space exploration is one of the main area of research for space agencies
and several rovers have landed on the surfaces of Mars, Moon and other celestial bodies
in last decades.
The technology available for rovers has improved substantially in this time period, exploit-
ing more and more information from the surfaces explored. Rovers have proved themselves
to be useful and robust tools, with long lifespans and mission duration. They capabilities
drive agencies to push the limit further and further, planning to explore many more ce-
lestial bodies in the Solar System by means of robotic agents and rovers in particular.
However, a big problem still persists and affects how far a robotic mission can be pushed:
the delays and difficulties in space communications create important issues when control-
ling the rover from Earth.
This problem have brought to the search of more and more autonomous exploration
systems, capable of planning exploration missions while on the field by themselves and
capable to autonomously survive the surrounding environment. In this area the Simulta-
neous Localization and Mapping problem allocates itself.
This family of algorithms has the purpose of making the rover (or any other robotic agent)
able to navigate autonomously in a new environment, recognize features as landmarks,
map them and orient itself in this map. In particular, it has to be tailored on the planetary
surface exploration problem, counting on limited energetic and computational sources and
on a limited number of sensors.

The work in this thesis in done in order to find a suitable way to reproduce a realistic
SLAM problem on a planetary surface. This is achieved virtually, enabling cheaper and
more flexible analysis tools and a easy to scale and modify simulation environment.

2 1| Introduction

1.2. The SLAM problem

The Simultaneous Localization and Mapping problem, commonly known as SLAM or
CML (Concurrent Mapping and Localization), is a relative well known problem in au-
tonomous driving vehicles since early ’90s. However, thirty years later, it still has a
growing interest in the scientific community, because of all the different disciplines and
areas involved and due to the many possible improvements still to be reached.
The SLAM problem presents itself when a robot does not have a knowledge both of its
position and of the map of the environment in which it is moving. Instead, knowledge
of the control input received (ut) and of the sensors measurements (zt) is available. The
SLAM definition is well described by Thrun, Burgard and Fox [11]:

The term simultaneous localization and mapping describes the following problem: in
SLAM, the robot acquires a map of its environment while simultaneously localizing it-
self relative to this map.

SLAM is intrinsically more difficult than localization alone, in that the map is unknown
and has to be estimated along the way. It is also more difficult than mapping with known
poses, since the poses are unknown and have to be estimated along the way.

The SLAM is a family of algorithms which involves several topics in the robotics and
calculus fields: from sensor data exploitation to computational cost minimization, from
data association to on-board computational capacity management.
A standard explanation and a first approach to SLAM is described in [5]. The SLAM
problem was approached from a probabilistic point of view and solved by means of an
Extended Kalman Filter.
A quick explanation of the basic principles and assumptions is going to be shown in section
1.2.1, together with the improvements which followed along the years.

From a probabilistic point of view, the SLAM can be divided into two main forms: the
Online SLAM Problem and the Full SLAM Problem. The first one involves only the
estimation of variables that persist at time t, like the pose (x) and the map (m) at time t.
The second, instead, seeks to calculate a posterior over the entire path (x1:t) along with
the map. This difference has impact in the kind of algorithms that can be used for the
SLAM solving. Another characteristic of the SLAM problem is related to the nature of
the estimation problem: continuous and discrete components. The continuous estimation
problem pertains to the location of the objects in the map (landmarks) and the robot’s

1| Introduction 3

own pose variables. The discrete nature has to do with correspondence: when an object is
detected the SLAM algorithm must reason about the relation of this object to previously
detected objects.

1.2.1. History of SLAM

The history of SLAM, from the very first approaches to current developments is well de-
scribed in the work Past, present, and future of simultaneous localization and mapping [3].
In SLAM the robot state is described by its pose, while the map is a representation of
aspects of interest considered important for the kind of representation seek.
The importance of the map lays also in the fact that it can be exploited by the robot
to correct the error in its estimation. By re-visiting places and/or re-observing already
seen landmarks, the robot can correct its estimations and provide a more robust guess of
both the map and its pose. Obviously, SLAM becomes fundamental when a map of the
environment is not avaliable a priori.
The last thirty years of research in SLAM can be divided in three time periods:

• Classical age (1986-2004): introduction of SLAM as a probabilistic formulation;

• Algorithmic-analysis age (2004-2015): studying and exploiting of SLAM prop-
erties such as convergence, efficiency and observability;

• Robust-perception age (2015-now): characterized by robust performance, high-
level perception, high-level understanding of the problem, etc...

The Classical age introduced the SLAM problem as a probabilistic formulation, including
the Extended Kalman Filter approach that is going to be analyzed in this thesis. It so
introduced Kalman filters solutions, Particle filters solutions and Maximum Likelihood
Estimation solution for the data association problem, explained in detail in chapter 4. In
this first period the importance of pivotal problems like the finding of an efficient data
association were highlighted.

During the following age, the Algorithmic-analysis age, the SLAM properties were ana-
lyzed and exploited, highlighting the importance of phenomena as the sparsity in order
to improve efficiency of the algorithms. In this period the intersection between SLAM
and other disciplines became clear: on the lower level in SLAM, the front end, the prob-
lems intersect themselves with disciplines like computer vision and signal processing; on
an higher level, SLAM founds correspondences in disciplines as geometry, graph-theory,

4 1| Introduction

probabilistic estimation and many more.
In this context, the difficulties of the deployment of such a complex algorithm on real
hardware should not be forgot and this problem claimed for the necessity of virtual simu-
lation environments. This period evolved the importance on data association, coupling it
with the Loop Closure problem, explained in section 1.3.3. With these concepts in mind
we approached our age and the current state of the art of SLAM.

1.2.2. State of the Art

As mentioned before, we are currently in the Robust-perception age for SLAM algorithms.
This translates in less error-prone algorithms, mapping of more extended environments,
better feature extraction, better exploiting of computational resources and more efficient
and tailored data association solutions.
In order to achieve this performances, way more advanced if compared to the first SLAM
solutions, the architecture on the algorithm is divided into two main blocks, each of them
with specific features and purposes:

• The front-end, is in charge of the data flow coming from the sensors, abstracting
sensor model, filtering information and providing suitable data sets for the back-end;

• The back-end, performs the optimization of the data working on the probability
distributions and the errors minimization.

Modern SLAM make use of several development in the fields of computer vision, sensor
fusion, optimization algorithms, machine learning and many more subjects. Time by time
a multi-disciplinary approach to SLAM, with team of experts from different areas, is be-
coming the standard.

1.2.3. Classical formulation of SLAM

The very first approach to SLAM was the probabilistic formulation of the problem, well
illustrated in the work by White and Bailey [5] and in the book by Thrun [11].
These first approaches established a statistical basis for describing relationships between
landmarks and uncertainty. It was shown that an high degree of correlations between
the estimates of landmarks locations in the map is present and these correlations are
growing with time as the number of observations increases. The correlation between the
landmarks estimates is present because of the uncertainty in the estimate of the vehicle
location, which propagates into the observations.

1| Introduction 5

The probabilistic definition of SLAM requires some quantities to be defined:

• xk: state vector containing location and orientation of the robot;

• uk: vector containing the control inputs at different times;

• mi: vector with the location of the landmark i;

• zik: observation of a landmark i at time k, written also as zk.

Also the following sets have to be defined:

• X0:k = [x0, x1, ..., xk]: history of vehicle locations;

• U0:k = [u1, u2, ..., uk]: history of control inputs;

• m = [m1,m2, ...,mn]: the set of all landmarks;

• Z0:k = [z1, z2, ..., zk]: the set of landmarks observations.

The probabilistic SLAM requires the following probabilistic distribution to be computed
at all times k:

P (xk,m | Z0:k, U0:k, x0) (1.1)

This probability distribution describes the joint posterior density of the landmark loca-
tions and vehicle state at time k given the observations and the control inputs up to and
including time k, together with the initial state of the vehicle [5].
According to probabilistic rules, the Bayes theorem can be applied, with the definition of
a state transition model and an observation model to be introduced. Respectively, they
described the effects of the control input and of the observation.

Theorem 1.1 (Bayes theorem).

P (A | B) =
P (B | A)P (A)

P (B)

The motion model, describing the vehicle motion as a Markov process with dependence
only on the previous pose xk−1 and the control input uk applied, is represented by:

P (xk | xk−1, uk) (1.2)

6 1| Introduction

And the observation model, describing the probability of making an observation zk when
vehicle location and landmark locations are known, is represented by:

P (zk | xk,m) (1.3)

The recursion is shown to be a function of both the observation and motion models.
According to this theorem, the SLAM problem can be reformulated in two steps, allowing
a recursive prediction-correction implementation form:

• Time-update:

P (xk,m | Z0:k, U0:k, x0) =

∫
P (xk | xk−1, uk)P (xk−1,m | Z0:k−1, U0:k−1, x0)dxk−1

(1.4)

• Measurement-update:

P (xk,m | Z0:k, U0:k, x0) =
P (zk | xk,m)P (xk,m | Z0:k, U0:k, x0)

P (zk | Z0:k−1, U0:k

(1.5)

Equations 3.3 and 3.4 provide a recursive procedure for calculating the joint posterior in
equation 1.1. The recursion is a function of a vehicle model and an observation model.
The observation model makes explicit the dependence of observations on both the vehicle
and landmark locations. Solution to the probabilistic SLAM problem involve an appro-
priate representation for the observation model equation and the motion model equation
which allows efficient and consistent computation of the prior and posterior distributions.
The most common representation is in the form of a state-space model with additive
Gaussian noise, leading to the use of the extended Kalman filter (EKF) to solve the
SLAM problem. In this thesis the EKF solution has been adopted for solving the SLAM
problem and it is going to be explained in detail in chapter 3.
In the last years other solution for the SLAM problem have been found and different
modern strategies substituted the use of the EKF. However, the EKF is still a solid base
to approach the simultaneous localization and mapping problem.

1| Introduction 7

1.3. The Data Association problem

As stated before, the SLAM problem is a multi-disciplinary subject of research involving
several areas. One of the main interests lays in translating the data from the front-end
sensors into useful and exploitable information for the back-end. Particularly, the ob-
servation model has the aim to correct the current pose estimate by making use of the
current landmark observations.
It is possible to state that the robot is moving in an environment while acquiring several
sensor acquisitions. As it moves around, the data received from the sensors may observe
the same landmark more than once, strongly affecting the results.
As explained in the work by Bailey and White [2]:

A major hurdle in the implementation of SLAM methods is to correctly associate obser-
vations of landmarks with landmarks held in the map.

The problem above is called the Data Association problem. Incorrect data association
can lead to catastrophic failure of the SLAM. Data association is particularly important
when a vehicle return to previously mapped region, problem which is called the Loop
Closure problem. Both of the introduced problems are strictly related to the recognition
of a landmark, in the so called Data Recognition problem. These problems are described
in detail in the following sections and in chapter 4.

1.3.1. Data Recognition

A pivotal role in the data association problem is played by the recognition of an object
itself. As the reader may notice, the line between the data recognition and the data as-
sociation is very thin and, practically, they often merge themselves in real applications.
Here data recognition is thought as the process of distinguishing a feature, an object or
a particular pattern in the set of points coming from the sensor data. In this process the
object is only recognized as distinguished from the whole cloud of points, while in the
data association is marked as a specific landmark, which can be already seen previously
or which can be marked as a new landmark in the map.
Data recognition is mainly a computer vision problem, seeing the computer vision as a
general field in which to interpret signals from the sensors as maps with features. By
doing so, several well known computer vision techniques can be applied.

8 1| Introduction

Since it is not the main objective of this work, these techniques are not illustrated here.
However, the data recognition is part of the SLAM algorithm implemented in this thesis
and a strategy to apply it is shown in chapter 4.

1.3.2. Data Association

Since its origins, the Data Association problem has had a pivotal role in the solution of
the SLAM problem and its implementation. The difficulties are contained in the fact that
once some data are associated, it is not possible to remove the association anymore. This
phenomena translates in the fact that if a wrong data association is taken into account,
the problem acquires a degree of error which can not be revised. The incorrect data as-
sociation can cause catastrophic failures of the localization algorithm.
At the current state of the art, several different implementation of the data association
have been explored. However, it still remains an open problem, since it is usually depen-
dent on the sensors and/or the type of environment in which the robot is deployed. For
example, in the case under study in this thesis, the planetary SLAM must confront itself
with a data association tailored on environments with similar landmarks and the absence
of easy recognizable unique features, as explained in section 1.4.
One of the most common algorithm to solve the data association problem in the case of
sensors generating data in the form of point clouds is the Iterative Closest Point (ICP)
algorithm, along with its different versions and implementations. The ICP is used also
in this work in order to obtain a basic data association algorithm to be used inside the
main SLAM implementation. The detailed structure of the data association is illustrated
in chapter 4.
Since the objective of this thesis is to demonstrate the solution of a SLAM algorithm in a
simulated environment, the focus of the work is not on the data association which is the
reason behind its basic version implementation; it so has a great margin of improvement.

1.3.3. Loop Closure

Loop closure is a special kind of data association which happens when an previously vis-
ited place is visited again by the robot. The loop closure problem consist in being able
to recognize the already seen place and correct the whole estimation based on that. It
can be easily understood that is a special case of data association. Loop closures are
fundamental in SLAM and wrong loop closures bring the SLAM to more dramatic errors
than a wrong normal data association error can bring.

1| Introduction 9

In this thesis the loop closure problem is not analyzed for sake of simplicity, as it is a very
complicated and advanced problem.

1.4. Planetary SLAM

The focus of this thesis is on developing an efficient way to simulate the process of a SLAM
algorithm in the case of a planetary surface exploration. The following sections have the
purpose of showing which are the typical characteristics of a planetary environment and
how the SLAM problem applies to them.

1.4.1. Planetary environment

The SLAM algorithm of this work aims at solving the problem of localization and map-
ping for a rover on a planetary surface. In particular the simulated environment is built
to recreate the surface of Mars. Except for a few of the characteristics, the same applies
for other rocky celestial body surfaces; as an example it applies also to the Moon surface
exploration. Differently from other well studied SLAM applications, i.e. the close envi-
ronment exploration, the planetary surface SLAM lacks of several important and useful
features for the algorithm:

1. ceiling;

2. corners;

3. squared easy-to-distinguish features;

4. constant illumination.

The first three elements are strictly geometrical useful elements: they are easy exploitable
by computer vision algorithms and they are often useful for efficient data association so-
lutions. On the other side, the planetary surface under investigation is an open surface,
characterized by similar features represented by irregularly shaped rocks, without the
presence of clear corners and very difficult to distinguish one from the other. Moreover,
most of them are covered by dust, giving the same shade of color and making difficult the
usage of a data association exploiting the color properties of landmarks.
Regarding the light, the reader must consider that on the surface of a celestial body differ-
ent from Earth there is no artificial illumination during eclipse period, so it is important
to keep under consideration also this phenomenon.

10 1| Introduction

1.4.2. Available sensors

By enumerating some of the problems related to a planetary SLAM in the sections above,
sensors are often mentioned. The whole structure of a SLAM algorithm relies on the
sensors available on-board the vehicle. The sensors change from robot to robot and are
usually selected tailoring their functioning to the special tasks of a certain robot.
In this thesis two main sensors from which to acquire the data necessary for the solving
of the SLAM are considered:

• one Stereo-Cam, simulating the specifics of the Stereo-Cam on-board the rover Per-
severance from the Mars 2020 mission [8];

• one LIDAR sensor, cooperating with the Stereo-Cam in generating useful point
clouds of the surrounding environment.

The selected sensors have been simulated by means of the instruments available in Unreal
Engine, Matlab and Simulink, as described in detail in chapter 2.
The reason behind the selection of this two sensors relies at recreating and testing a rover
equipped with common sensors in space exploration, while exploiting the different proper-
ties of the two in order to make the measurements more reliable and robust. The different
results generated by the sensor are discussed in chapter 5.

1.4.3. Computational resources

The computational resources required by the SLAM proposed in this thesis have not been
taken as a strict requirement and they have not been analyzed in detail. However, several
choices have been adopted in order to make the whole simulation applicable on a common
laptop.
Among these choices there are some more important ones, which are going to be explained
further in the text:

• Simulation splitting in three separate parts;

• StereoCam image dimensions reduction;

• Gray scale simulated environment inside Unreal Engine.

1| Introduction 11

1.5. Thesis objective

As mentioned before, this thesis aims at developing an efficient SLAM algorithm for plan-
etary surface exploration by means of a rover.
To tackle the various problems of hardware implementation and building, the thesis pro-
poses an innovative approach by developing a realistic well detailed simulation environ-
ment in which to test various versions and implementations of a SLAM algorithm.
The simulation environment is build to be a realistic as possible, together with the intrin-
sic implementation of the rover sensors and their acquisitions. By means of this virtual
representation, the test phase of the SLAM can be moved inside the digital environment,
reducing the cost of physical implementation, testing and modification of a real test rover.
A second parallel objective is to pose the basis of a simulation architecture which can be
exploited for various other robotic space exploration simulations.

1.6. Thesis structure

This work has been divided in different chapters, each of them explaining pivotal parts of
the architecture of the thesis:

• Chapter 1, presents the problem under investigation, the state of the art and the
solution proposed;

• Chapter 2, shows the softwares and the procedures followed to recreate the simula-
tion environment;

• Chapter 3, shows the theory and the concepts behind the SLAM problem and the
solution chosen;

• Chapter 4, presents the Data Association problem and the solution chosen;

• Chapter 5, presents the final results for the simulation environment and the actual
SLAM implementation;

• Chapter 6, illustrates the possible future developments of this work and the final
conclusions drawn.

13

2| Simulation environment

In this chapter the procedures and setups to simulate the movement of the rover over the
surface of Mars are illustrated. The simulation of the data acquisition works over four
softwares: Matlab, Simulink, Blender and Unreal Engine. In the following pages they are
going to be explained in details.

2.1. Simulating Mars

The planetary SLAM algorithm of this work is developed to operate on a planetary sur-
face, in particular it works over a simulated Mars surface. The characteristics of the
surface of Mars are several and, as other planetary surfaces, its surface is very different
from area to area over the whole planet.
In this work a classical desert-rocky area is simulated as a dusty plane covered in volcanic
rocks of different size and shapes. Different areas of the Mars surface can be simulated in
the same way, recreating canyons, planes, craters or other martian environments.
Mars is by far the best known planet of the Solar System after the Earth: we know how
its surface looks like with good detail thanks to the images coming from the various or-
biters and the several rovers landed over the years. Between the main features of Mars we
have the characteristic reddish soil, the dust covering the whole surface and the presence
of geological features of interest such as volcanic or sedimentary rock formations. These
features must be taken into account when modelling a rover, and a SLAM algorithm, in
order to better understand and tackle the various problem that could arise. For example,
the dusty and sandy terrain is one of the main reasons behind the need of a SLAM al-
gorithm: even without errors in the odometry readings, the sand may cause some of the
rover wheels to slip while travelling a selected route, causing the final path to be different
from the nominal one. In this situation the SLAM algorithm acquires importance, being
able to correct the pose estimation by observing the surrounding environment with its
sensors.

14 2| Simulation environment

The simulation environment has so been set to recreate a martian plane area, covered by
several dusty volcanic rocks. In order to that, the softwares described in the following
sections have been adopted.

2.2. Simulation softwares

As stated before, the whole simulation has been built merging the capabilities of several
different softwares, being able to manage several issues such as the trajectory of the rover,
the color and texture of the surfaces or the light of the scene.

2.2.1. Blender

The first step of the simulation consists in modelling a slice of the surface of Mars in which
to move the rover and its sensors. The software selected to achieve this task is Blender.
Blender is a well known software inside the Design community due to its strong capabilities
to manage very detailed surfaces and textures and to produce high resolution renders. It
also has a useful Python console embedded, several libraries of different textures and
pre-made surfaces available online.

Why Blender?

Blender is a free software which can be easily downloaded online and brings very strong
capabilities in rendering surfaces, together with an easy to understand interface.
Blender has the possibility to work in several modes, depending on what is the task to be
accomplished, with a very versatile interface capable of switching from one mode the the
others in a click, or also being able to manage several modes at the same time. In this
work Blender has been used at a beginner level in order to achieve a simple reconstruction
of the environment. However, it can be exploited at an advanced level in order to create
more complex and detailed surfaces for the simulations.

One of the main aspects behind the choice of Blender is its Python console: the surface
can be created by programming the commands needed in Python and allowing extra ca-
pabilities like moving the camera of the scene in order to acquire different renders. In the
next sections Blender and its use are going to be shown in detail.

2| Simulation environment 15

Recreating Mars surface

For sake of simplicity the surface recreated is a plane, without hilly sections or slopes,
covered with rocks different in shape and dimensions. It has to be pointed out that
Blender has the capability to create a more complex and realistic surfaces, but this goes
over the aim of this thesis. However, what is going to be illustrated here can be used to
extend the research over more complex shapes.
Exploiting Blender capabilities, the creation of the environment for the simulation has
been divided in three subsections, merged together only at the very last step of the Blender
procedure. The different areas are:

• Main surface shape and texture;

• Rocks;

• Dust.

The different sections are going to be explained in the following paragraphs.

Main surface and texture

As said before, the main surface is a plane geometry over which the rocks are then placed
and covered with dust.
In Blender the plane surface has been realized with a plane mesh, in which the x and y
dimensions were set not to have a too big environment to render, avoiding slowing down
the simulation. In the following step the texture of the terrain has been applied. In order
to do that the UV editing and Shading sections of Blender were involved.
In the UV editing section the texture is fitted over the mesh, allowing the correct scale
between the texture features and the size of the element on which the texture is applied.
For example, if the texture of a small stone is produced and then applied to a big rock,
the features of the texture will probably not look natural. By means of the UV editing
section, this scaling problem is solved and the surface is going to look more similar to a
natural one.
The real creation of the texture emerges in the Shading section, where the possibility to
actually work and modify the textures is allowed. The results are shown in figure 2.1.
The nodal representation in the Shading section allows to work on the merge of several
model for a certain texture and it has a graphical interface useful to set the different
parameters in an interactive manner. It allows to link and merge four main parameters and
bases during the creation of a texture: color, roughness, normal map and displacement,
which all can be distinguished by the light brown color of their respective nodes in figure.

16 2| Simulation environment

Figure 2.1: Nodes in Blender shading section

A deep and precise explanation of this parameters goes over the purpose of this work,
however they can be explained as different maps that have to be overlapped and merged
properly in order to obtain the desired texture. Playing with the parameters of these
setups allows different textures, starting all from the same four files.
The files used in this work are taken from the Poligon website1.
Once the UV editing and the Shading step are completed, the base ground is ready and
the environment has to be filled with rocks and dust in order to recreate the martian
surface needed. Figure 2.2 illustrates the final surface texture result.

Figure 2.2: Mars ground reproduction

1https://www.poliigon.com/

2| Simulation environment 17

Rocks

Once the surface is ready, the work focus has been shifted over the rocks to be built in
order to fill the environment. Blender allows to create separate meshes in different .blend
files and then merge them in a unique project. The rocks creation has so been divided
in two steps: the creation of rock meshes and textures in a separate file and then the
insertion of this file inside the already created plane surface.
As done for the plane surface, few meshes have been created in a Blender file: starting
from the shape of a sphere and then modelling it with shapes similar the volcanic basaltic
rocks inside the Edit Mode. Again, a basic shaping and modelling has been adopted,
knowing that improvements in the shaping of each rock can be done.
Once the different objects with their shapes were enough detailed for their purpose, the
work has been moved on texturing the rocks.
Again, the texture on the rocks has been applied with the same procedure shown in section
2.2.1, using the Shading mode and the nodes. All the rocks are modeled as black volcanic
rocks, assuming to explore an area of the Mars surface rich in volcanic features. This is
only an assumption used for this simulation and the whole scene can be modeled differently
to resemble other martian areas. As in the step before, the surface textures is the result
of the merging of a color map, a roughness map, a normal map and a displacement map.
Again, these maps have been downloaded from the Poligon website2.

Figure 2.3: Examples of rocks created in Blender

Dust

A well known phenomenon on Mars is the presence of sand and dust which floats in the
air and deposits over all the surfaces. As mentioned in section 2.1, the sand on the ground
affects the odometry precision and efficiency, bringing out the need for a SLAM algorithm.
Moreover, the dust on the rocks and features creates difficulties in the SLAM functioning,

2https://www.poliigon.com/

18 2| Simulation environment

especially for sensors like the StereoCam.
The dust covering the rocks tends to equalize their external looking, shading out the
particular textures and covering each of them with the same color shades. This creates
difficulties in the recognition of landmarks and subsequently in the data association prob-
lem. This is the reason why also a Lidar sensor has been inserted in the work of this
thesis, allowing the SLAM to run a geometrical data association, independent from the
colors and shades of the rocks.
The dust has been recreated by means of the nodes in the Shading section of Blender,
simulating a reddish thin surface covering part of the rocks.

Final result

Once the base surface and its texture were ready, together with the rocks and their
textures, a final merge of the two elements was needed in order to achieve the final result.
Blender has the useful function of treating a particular mesh, or a group of meshes, as
particles to be spread over another mesh. By means of this function it was possible to
treat rocks as particles to be spread along the base plane surface while randomizing their
size, orientation and number. In this way it has been possible to recreate a large number
of big and small stones starting from few rocks meshes, bringing out the final result in
figure 2.4.

2.2.2. Unreal Engine

Blender proved itself as a useful and features rich software, with great capabilities for scene
rendering. The Mars surface created through section 2.2.1 is detailed and the textures
are enough detailed for the requirements needed in this work. However, the thesis focuses
on a simulation of the rover movement and its acquisitions in this environment, so a way
to realize it has to be seek.
A first idea was to operate through the Python console in Blender in order to coding
the movement of the StereoCam inside the scene, being so able to acquire images and
somehow simulate the Lidar beams and acquisitions. This procedure, however, proved
itself to be very challenging and showed several technical problems which were far from a
solution.
In this situation Unreal Engine, from Epic Games, came as a possible solution to link the
static environment created in Blender to an active simulation environment. This is due to
the fact that Unreal Engine can be easily linked to both Blender and Simulink, revealing

2| Simulation environment 19

Figure 2.4: Final render of Mars surface (detailed version with hills and slopes)

itself as a useful simulation tool. In the following sections the properties of Unreal Engine
are going to be explained in a deeper way.

Why Unreal Engine?

As stated above, Unreal Engine comes with the possibility of linking Blender and Simulink
through it. Two are the main reasons why the decision of looking for such a property
was taken: firstly, the environment in Blender was already created, so even if in Unreal
Engine there is the possibility to create environments, the work already done was not
going to be wasted; secondly, the capabilities of Blender in rendering are higher than in
Unreal Engine. The reason behind the search of a link from Blender to Simulink is due
to the fact that Simulink proves itself to be one of the most powerful simulation tools in
commerce.

Unreal Engine capabilities

Unreal Engine is a software born for the creation and implementation of video games. It
is provided by Epic Games, known as one of the major producers in the sector, but what
is the reason behind the choice of a video game development software?
Unreal Engine can be upgraded with a library available on the Mathworks website, which
links a simulation built in Simulink with an environment in Unreal Engine, moving an

20 2| Simulation environment

actor through the digital environment while following the rules dictated by the Simulink
model.
It so enables the possibility to move a rover on the surface created in Blender and exported
to Unreal Engine, following the simulation parameters set in Simulink.

2.2.3. Simulink

As said before, the simulation requires not only a good simulaton of the surface to move
on, but also a precise and efficient simulation of the rover movement and its sensor acqui-
sitions. A powerful simulation tool is given by Simulink, from MathWorks.
Simulink can be linked with Unreal Engine in order to achieve really good performances.

Why Simulink?

The main reason behind the choice of Simulink is the possibility to connect it with Unreal
Engine, allowing to simulate the dynamics and the sensors in the reconstructed environ-
ment. This can be done by means of the Automated driving toolbox, which is going to
be presented in section 2.2.3.
In a similar way also the sensors, the Lidar and the StereoCam, can be simulated and the
sensor acquisition can be stored in a Simulink variable.
The possibility to store the data of the simulation in Simulink allows then to exploit them
as Matlab variables and work on them in a Matlab environment. The illustrated work-
flow allows a continue back and forth from the simulated Mars environment to a Matlab
environment in which to study the data acquired.

Automated Driving Toolbox

As mentioned before, the link between Unreal Engine and Simulink is done by means
of the Automated Driving Toolbox. This toolbox was originally made for simulations
of self-driving cars in common urban environments. However, it is provided with some
blocks and functions which allows simulations in different environments, either pre-made
or customized. A similar function in also contained inside the Aerospace Blockset.
In the case under study, the different parameters for the link have been set to operate in
a custom environment as it is going to be shown in the following section.

2| Simulation environment 21

2.2.4. Simulink-Unreal Engine link configuration

In order to create a link between the Simulink and Unreal Engine simulations it is neces-
sary to insert some configuration blocks inside the Simulink model which is going to be
used for the actual simulation.
The blocks are at least three and are comprehensive of a block linking the two files, one
block for the movement of the rover and one or more blocks for the sensors configura-
tion. Respectively, these blocks are divided in three categories: configuration blocks, actor
blocks and sensors blocks.
The simulation can be built in a less or more detailed way depending on the number
of blocks inserted and the parameters to be configured in each of them. Even with the
presence of the mentioned blocks, the simulation link between the two software is not
trivial and several iterations were necessary before the correct setup was found.

Map

As explained in section 2.2.2, the map of the environment in which to simulate the rover
path and acquisitions has been imported in Unreal Engine from a Blender file.
Once the file is imported, some features must be reorganized in order to keep the shape
and the textures of the original Blender surface. After these few steps the file must be
saved and from now on it will be ready for the simulation.

Actors

Fundamental in the structure of the simulation is the Actor: inside Unreal Engine the
actor is the entity moving during the simulation and in the case under study it is the
rover itself.
Unreal Engine requires a concrete object in the scene to be the set as the Actor, so a 3D
model of the rover has been imported in the scene. The 3D model is the one of the rover
Perseverance, currently working on the surface of Mars, and it was taken from the Jet
Propulsion Laboratory free resources 3.
Once the object selected as the Actor is in the scene, the Actor has to be configured to
move according to the Simulink simulation inputs. This task is achieved in Unreal Engine
in the Blueprint section, while in Simulink by the simulation 3D Actor Transform Set
block. An detailed description of the setup is beyond the purpose of this explanation.
Figure 2.5 shows the Simulink block and the Unreal Engine section mentioned.

3https://mars.nasa.gov/resources/25042/mars-perseverance-rover-3d-model/

22 2| Simulation environment

Figure 2.5: Simulation 3D Actor Transform Set block and Unreal Engine actor

Sensors

This thesis is built around the acquisitions from two main sensors mounted on the rover:
one StereoCam and one Lidar scanner.
As already mentioned in section 2.2.2, the use of Unreal Engine comes from the need of
modelling detailed and efficient sensors. The software, together with Simulink, provides
the possibility to use already existing elements in it to built the sensors that are needed.
It is so possible to obtain detailed and realistic data streams from the simulated sensors
allowing an in depth analysis of the problem under study.
As for the Actor in the previous section, also the two sensors are built by pairing a block
in the Simulink environment together with some elements in Unreal Engine.
The following sections are going to explain better the setup of the two sensors. The raw
data collected by each of the sensors are collected in Simulink variables which are then
stored in the Matlab workspace in order to be analyzed and elaborated.

Lidar

The Lidar is the simplest sensor between the two chosen to be reproduced, because of the
presence of a Lidar block in the Automated Driving Toolbox which is linked directly to a
Lidar entity in Unreal Engine. The parameters of the Lidar, together with the constraint
to move with the rover are then set.
While the parts relating to the movement of the sensor during the simulation are set
inside Unreal Engine, the Lidar intrinsic parameters are set inside the Simulink block, as
shown in figure 2.6, where the Lidar Simulink setup is shown on the left, while the Lidar
entity in Unreal Engine i shown on the right.

2| Simulation environment 23

Figure 2.6: Lidar sensor in Simulink and Unreal Engine

As in figure 2.6, the parameters set for the Lidar are summarized also in the table below:

horizontal f.o.v. 270°
vertical f.o.v. 40°
detection range 10 m
range resolution 0.002 m

Table 2.1: Lidar parameters

StereoCam

The second sensor chosen is a StereoCam. A StereoCam is a sensor made of two cam-
eras coupled in order to reproduce the principles with which the human eye works and
so obtain information about the depth of the scene at which the camera is looking at.
Both Unreal Engine and Simulink do not have a StereoCam sensor ready, however they
have the possibility to insert a monocular camera. By using two monocular cameras and
working on their parameters setup and position setup in the scene, it has been possible
to reproduce a StereoCam with good results. The StereoCam parameters and geometry
has been set to reproduce the ones of the NavCams on-board the rover Perseverance [8].
To reproduce the StereoCam, two monocular cameras has been put inside the simulation,
with same intrinsic parameters and a fixed distance in Unreal Engine.

It has to be highlighted that the StereoCam needs a particular calibration procedure,
based on a calibration with a checkerboard. This procedure may sound unusual when in
simulated environment, however it is necessary when dealing with the stream of data from

24 2| Simulation environment

the sensor. This calibration procedure has been done by means of a virtual checkerboard
in Blender and Matlab and it is described in detail in the next section. Figure 2.7 shows
the implementation of the StereoCam both in Simulink and Unreal Engine.

Figure 2.7: StereoCam sensor in Simulink and Unreal Engine

The parameters set for the StereoCam are:

horizontal f.o.v. 96°
vertical f.o.v. 73°
best focus 3.5 m
stereo baseline 42.4 cm
pixel format 600 x 400
mount height 1.5 m

Table 2.2: StereoCam parameters

As already said, the parameters are taken for the Perseverance rover specifications. How-
ever, the pixel format has been reduced to 600 x 400 in order to reduce the computational
cost and duration on the simulation. It can be changed and incremented easily on the
Simulink respective blocks once more computational resources are available.
As for the Lidar, the data stream of the two images from both the cameras composing
the StereoCam is saved in a variable which then is exported to the Matlab workspace for
further elaboration. It is also possible to visualize the StereoCam output live while the
simulation of the rover movement and acquisition is going on. This is shown in chapter 5.

2| Simulation environment 25

StereoCam calibration

The StereoCam needs a specific calibration in order to find the intrinsic parameters, which
are going to be essential in the elaboration of the data stream and in the transformation
of the images into point clouds.
The calibration procedure consists in acquiring a bunch of images from the StereoCam
while observing a plane black and white checkerboard put in different orientations in front
of the camera. By doing so, the calibration algorithm is able to find correspondences be-
tween the images seen from the left and right camera and so giving a value to intrinsic
parameters such the stereo baseline or the lens distorsion. The calibration is needed be-
cause of the small imperfections a camera can accumulate during the building, so being
with parameters slightly different from the nominal ones.
The calibration has been done by reproducing a StereoCam in Blender with the same
specifics as the one in the simulation. Then several pictures of a checkerboard made in
Blender and put in front of the camera in different orientations were acquired. The col-
lection of pictures has been saved in two different folder, one with acquisitions from the
left camera and one with acquisitions from the right camera.
Then by means of the stereoCalibrator App in Matlab the code for the parameters com-
putation has been generated and the results computed, as in figure 2.8.

Figure 2.8: StereoCam calibration

26 2| Simulation environment

Rover trajectory

Once the sensors setup is configured in the right way and the simulation link between
Simulink and Unreal Engine is set, it is possible to start simulate the rover movement
across the environment.
The rover trajectory is selected by the operator inside the Matlab workspace by manually
drawing the desired trajectory itself over a bird-eye view map of the simulation environ-
ment. This approach aims at reproducing the rover following a previously decided path,
which can be dictated both by a human operator or by some trajectory choice and opti-
mization technique.
The approach is well illustrated on MathWorks website and some of the codes helping
to do so are directly taken from the website. The functions taken help to create a user
friendly interface for the trajectory drawing and also help at smoothing the path drawn
while saving the poses coordinates. The trajectory drawing procedure follows the steps
below:

Algorithm 2.1 Rover trajectory drawing
1: Take a bird-eye view of the simulation environment from Unreal Engine;
2: Import the bird-eye map in Matlab and set the map dimensions;
3: Launch the poses drawing command;
4: Draw the trajectory and save it to the workspace;
5: if no trajectory has been drawn then
6: Import a default trajectory;
7: end if
8: Smooth the trajectory;
9: Set simulation time and compute the time vector;

10: Build the x,y,z poses as nx2 vectors with the time in the first column;
11: return poses X, poses Y, poses Rot

The following figure shows the bird-eye map and the trajectory drawn in Matlab:

Figure 2.9: Rover trajectory drawing

2| Simulation environment 27

Control inputs

Since the trajectory that has to be followed by the rover is selected and drawn manually
while the poses are then saved in the workspace, the saved variables themselves are the
starting point for the evaluation of the control input needed to move from one pose to
the next one. In order to do that an Odometry Motion Model is adopted.
The odometry motion model is capable of computing the control input given at each time
step in the form of a first rotation of the rover, a translation movement and a second rover
rotation, respectively δrot1, δtrans and δrot2.

Figure 2.10: Odometry motion model

The odometry motion model takes as inputs the poses drawn for the trajectory and then
gives as a result the vectors containing the input commands for the whole trajectory.
Here the algorithm of the odometry motion model, as in [11], is shown:

Algorithm 2.2 Odometry motion model
Require: poses X, poses Y, poses Rot
1: δrot1,1 = arctanY2 − Y1X2 −X1 −Rot1
2: δtrans,1 =

√
(X2 −X1)2 + (Y2 − Y1)2

3: δrot2,1 = Rot2 −Rot1 − δrot1,1
4: n = length(X)
5: for i = 2:n do
6: δtrans,i−1 =

√
(Xi −Xi−1)2 + (Yi − Yi−1)2

7: if Xi > Xi−1 then
8: δtrans,i−1 = δtrans,i−1

9: else if Xi < Xi−1 then
10: δtrans,i−1 = −δtrans,i−1

11: end if
12: δrot1,i−1 = arctanYi − Yi−1Xi −Xi−1 −Roti−1

13: δrot2,i−1 = Roti −Roti−1 − δrot1,i−1

14: end for

15: return u =

 δrot1,1:n−1

δtrans,1:n−1

δrot2,1:n−1

28 2| Simulation environment

It must be noted that the dimension of the control input vector u is equal to n− 1, where
n is the length of the poses vector. This is justified by the fact that the controls start to
activate from position one of the poses on.
Such generated control input u is going to be the control given to the rover while running
the SLAM in order to make it follow the desired trajectory.

2.3. Sensor data elaboration

A brief digression on the type of data coming from the simulated sensor is worth at this
point of the thesis in order to clarify what to expect and justify some of the steps which
are going to be followed in the next sections.
The output type from the sensors can be set inside the relative Simulink blocks, as shown
in figure 2.11:

Figure 2.11: StereoCam and Lidar output data types

As the figure shows, the data from the StereoCam is stored inside two Timeseries vari-
ables: one for the left camera and one from the right camera. At the same time, the data
stream from the Lidar is stored inside a structure of point clouds, one for each of the
acquisitions.
Regarding the StereoCam, in the next steps, a conversion of the data in point clouds is
going to be needed together with the merging of the data coming from the two cameras.
Meanwhile, since the Lidar data are already in the point cloud form, they are ready for
the further elaborations in the second part of the simulation.

2| Simulation environment 29

2.3.1. Sensor data to point clouds and landmarks

Algorithm 2.4 describes how the raw data from the sensors are transformed in useful data
for the SLAM simulation.
To do so a division in the process between the Lidar data and the StereoCam data must
be performed, since they require different elaboration techniques.

StereoCam data elaboration

As already mentioned in the previous section, the StereoCam data come in the form of
two Timeseries variables, one for each of the two cameras.
The first step for the elaboration of the StereoCam data is to find the camera extrinsic
and intrinsic parameters, step which is done with the calibration procedure described in
section 2.2.4 and which is not going to be repeated here. The results from the calibra-
tion procedure are necessary in the pivotal following step: the Disparity Map computation.

The Disparity Map is a 2D map reduced from a 3D space, in which the brightness of
the gray scaled pixels indicates the distance of the related points from the sensor. The
description of how a disparity map is computed from a couple of stereo images is beyond
the purpose of this thesis. However, it is important to note that it depends on the setup
of a couple of parameters and it is computed in this work by means of a Global Block
Matching algorithm. The parameters Range and Uniqueness Threshold are the ones to
be set for finding the correct setup of the Global Block Matching algorithm. Several tries
have been performed before finding the correct setup.
The disparity map computation is fundamental for evaluating the quality of the data
generated and it is going to be necessary for the transformation of the images into useful
point clouds.
By playing around with the Range and Uniqueness Threshold parameters, it has been
possible to find a satisfying configuration for the Disparity Map computation, as shown
in figure 2.12. The Disparity Maps computed at each step were then saved inside a struc-
ture variable.

After the Disparity Map computation, it is then transformed into a point cloud by a
dedicated function. All the function and codes for this section are explained in Appendix
A.2. Now both the Lidar and StereoCam data are organized in the form of structures of
point clouds variables and their further elaboration can be done simultaneously.

30 2| Simulation environment

Figure 2.12: Disparity Map

Point clouds clustering in landmarks

Now that both the sensors data are in the form of points cloud, they can be elaborated in
such a way to obtain cluster of points to be identified as landmarks. In order to that an
approach based on the Euclidean distance between point, the angular distance between
them and the number of points in each cluster has been adopted. In particular:

• distThreshold indicates the Euclidean distance under which the points of the same
cluster must be;

• angleThreshold indicates the minimum angle of separation between two different
clusters;

• NumClusterPoints indicates the minimum and maximum number of point accepted
for a cluster.

Also in this case, the different tuning of the three parameters brings out different results
in the clustering, with a number of landmark identified proportional to the strictness of
the parameters chosen.
The outcomes from the different setups is illustrated in chapter 5, while figure 2.13 illus-
trates an example of clustering.
The figure shows another problem, which is going to be illustrated in detail in chapter 4:
between the clusters it is possible to clearly distinguish parts of the rover as, for example,
the wheels. These are the parts that need to be filtered out before proceeding with the
Data Association.

2| Simulation environment 31

Figure 2.13: Clusters example

Once the clusters, or landmarks, are defined, it is possible to proceed with the identifica-
tion of the landmark geometric centre and its coordinates.

Landmarks coordinates

The following step is a simple geometric computation of the center point coordinates of
each of the clusters.
Each of the coordinates computed is then stored in the same structure where each point
cloud is stored, in a dedicated field for the coordinates of each of the landmarks in every
point cloud. At this point the set of the total number of acquired point clouds from the
sensors is available, together with the coordinates in the rover local frame of the land-
marks inside them.

32 2| Simulation environment

2.4. Simulation Architecture

The previous sections illustrated in detail the softwares and the single task achieved by
each of them in order to reach the final simulation architecture needed. Moreover, each of
the softwares and the corresponding functions must be used in the correct order pending
the correctness of the results.
For sake of simplicity, the simulation has been split into three different parts: the first
part generates the data from the sensors moving along the trajectory with the rover, the
second part manipulates the data in order to extract useful information and the third
part is the actual Extended Kalman Filter SLAM implementation,
The first part of the simulation can be summarized as:

Algorithm 2.3 Simulation Part 1: sensor data generation
Require: Unreal Engine scene set, Simulink model set
1: Open Matlab
2: Run the main script and draw the trajectory
3: Smooth the trajectory and generate control input u
4: Open Simulink and set simulation time
5: From Simulink open Unreal Engine
6: In Unreal Engine open the simulation environment
7: Run the simulation first in Simulink, then in Unreal Engine
8: return u, StereoCam data, Lidar data and save them in a Matlab file

This procedure is the sequence of steps that brings from the virtual environment to a
collection of useful data saved in a separated file, which can be easily uploaded and ma-
nipulated. The second part can be summarized as:

Algorithm 2.4 Simulation Part 2: sensor data to point cloud and landmarks
Require: StereoCam data, Lidar data
1: Upload the Lidar and StereoCam data
2: for Lidar data, StereoCam data do
3: Transform the data into one point cloud for each time step
4: for each point cloud do
5: Cluster the points inside the point clouds for distance and angular separation
6: Count the clusters (or landmarks)
7: Compute clusters geometric centre coordinates
8: Compute geometric centre orientation in the rover local frame
9: end for

10: end for
11: return Lidar Point Cloud and landmarks, StereoCam Point Cloud and landmarks

2| Simulation environment 33

This part of the simulation operates manipulating the data collected in the section before,
transforming the data from the sensors in 3D point clouds and identifying landmarks in
them. The third part is the actual implementation of the SLAM and it is going to be
described in detail is the following sections. Here a summary of its main steps is shown:

Algorithm 2.5 Simulation Part 3: Extended Kalman Filter SLAM
Require: StereoCam point clouds, Lidar point clouds, u
1: Upload the Lidar or StereoCam point clouds
2: for each time step do
3: Actuate the control input
4: Run the EKF Prediction step
5: Run the Data Association
6: Run the EKF Correction step
7: end for
8: return Results and plots

Algorithm 2.3 summarizes the whole simulation procedure illustrated in this section and it
must be followed in order to obtain useful, meaningful and realistic data from the virtual
sensors modelled.
Algorithm 2.4 and algorithm 2.5 are going to be explained in detail inside the next chapter
as, especially for the second, they are the real core of the Extended Kalman Filter SLAM
testing.
Figure 2.14 shows the Simulink file architecture, while figure 2.15 shows the whole simu-
lation architecture.

Figure 2.14: Simulink simulation model

34 2| Simulation environment

Figure 2.15: Simulation architecture

35

3| Extended Kalman Filter SLAM

This chapter addresses the SLAM problem from a probabilistic point of view. Firstly,
the probabilistic formulation of SLAM is illustrated, then the Kalman filters family is
introduced in order to be used as a solution for SLAM in the core of the chapter.

3.1. Probabilistic SLAM

In chapter 1 the Simultaneous Localization and Mapping problem has been introduces
as a problem where the robot does not have any previous knowledge of the environment,
nor it knows its pose. All the available data are the control inputs u1:t and the sensor
measurements z1:t. In SLAM the robot acquires a map of its environment while simulta-
neously localizing itself relative to this map. As illustrated in chapter 1, SLAM can be
formulated from a probabilistic point of view.

From a probabilistic perspective, the SLAM problem can be formulated in two different
forms: Online SLAM problem and Full SLAM problem. The difference between the two
is illustrated in section 1.2 and in [11]; graphically is represented in figure 3.1 and figure
3.2.

Figure 3.1: Online SLAM

36 3| Extended Kalman Filter SLAM

Figure 3.2: Full SLAM

The Online SLAM, figure 3.1, shows itself to be the result of integrating out past poses
from the Full SLAM, figure 3.2. The Online SLAM involves estimating the posterior over
the momentary pose along with the map:

P (xt,m | z1:t, u1:t) (3.1)

Here xt is the pose at time t, m is the map and z1:t, u1:t are respectively the measure-
ments and the controls. The problem is called Online SLAM since it only computes the
estimation of variables persisting at the current time t.
On the contrary, the Full SLAM computes an estimation over the entire path x1:t along
with the map:

P (x1:t,m | z1:t, u1:t) (3.2)

Estimating the full posterior is the goal for SLAM in both cases, however calculating the
full posterior is usually unfeasible due to the large number of discrete correspondences
variables and high dimensionality of the continuous parameter space. This chapter is
going to develop a solution algorithm for the Online SLAM problem.

A second key characteristic of the SLAM problem has to do with the nature of the
estimation problem [11], since SLAM posses both a continuous and a discrete component.
The continuous estimation problem is related to the robot own pose in the map and to
the location of objects in it. Objects are called Landmarks in a feature-based SLAM
representation. The discrete nature has to do with correspondence: when detecting a

3| Extended Kalman Filter SLAM 37

landmark, the SLAM algorithm has to reason about the relation between this objects and
the previously seen ones. This is typically a discrete operation: the object is either been
seen before or not. The correspondence variable is going to be made explicit in the Data
Association chapter.
Recalling section 1.2.3, the SLAM problem can be reformulated in two steps, allowing a
recursive prediction-correction implementation form:

• Time-update:

P (xk,m | Z0:k, U0:k, x0) =

∫
P (xk | xk−1, uk)P (xk−1,m | Z0:k−1, U0:k−1, x0)dxk−1

(3.3)

• Measurement-update:

P (xk,m | Z0:k, U0:k, x0) =
P (zk | xk,m)P (xk,m | Z0:k, U0:k, x0)

P (zk | Z0:k−1, U0:k

(3.4)

Equations 3.3 and 3.4 provide a recursive procedure for calculating the joint posterior
in equation 1.1. This procedure is a function of a Motion model and of an Observation
model, which can be linear or, in most real cases, non-linear.

The probably most influential solution of the probabilistic SLAM formulation is based
on the Kalman filters family, especially on the Extended Kalman filter. The EKF SLAM
algorithm illustrated applies the EKF to online SLAM introducing a Known Data Asso-
ciation assumption, which is going to be explained and relaxed in chapter 4.
The following sections are going to explain how a Kalman filter works, why we need its
extended version and how they apply to the here illustrated SLAM formulation. In the
next chapter the mathematical formulation of the Data Association is also explained.

38 3| Extended Kalman Filter SLAM

3.2. The Kalman Filter

The Kalman filter is a recursive state estimator, member of the Gaussian filters family.
It relies on the basic idea of that beliefs are represented by multivariate normal distribu-
tions [11]:

p(x) = det(2πΣ)−
1
2 exp{−1

2
(x− µ)TΣ−1(x− µ)} (3.5)

This density over the variable x is characterized by two sets of parameters: the mean µ

and the covariance Σ. The mean µ is a vector that posses the same dimensionality of
the state x, while the covariance matrix Σ is a quadratic matrix that is symmetric and
positive-semidefinite, with dimension of the state x squared. The number of elements of
Σ depends quadratically on the number of elements in the state x. It is important to
remember that Gaussians are uni-modal: they posses a single maximum.
The parameterization of a Gaussian by its mean and covariance is called moments param-
eterization. Other parameterizations do exist, with different algorithmic characteristics
in the respective filters.

The Kalman filter was invented by Swerling and Kalman as a technique for filtering and
prediction in linear Gaussians systems. It implements belief computation for continuous
states and it is not applicable for discrete or hybrid state spaces.
The Kalman filter represent beliefs by the moments parameterization: at time t, the
belief is represented by the mean µt and the covariance Σt. As already stated, they need
Gaussians, which must fulfill the Markov assumption for Bayes filter and must have three
other properties holding:

1. Markov assumption: the next state xk depends on the previous state xk−1 and the
applied control input uk, and it is independent from both the observations and the
map.

2. The state transition probability p(x | ut, xt−1) must be linear function in its argu-
ments with added Gaussian noise. It is expressed by:

xt = Atxt−1 +Btut + ϵt (3.6)

At is a square matrix of dimension n x n, while Bt is a matrix of dimension n x m,
where n is the size of the state vector xt and m the dimension of the control vector

3| Extended Kalman Filter SLAM 39

ut. Thus, the Kalman filter assumes linear system dynamics. The random variable
ϵt is a Gaussian random vector that models the uncertainty introduced by the state
transition, with zero mean and covariance notes as Rt.

3. The measurement probability pt(zt | xt) must also be linear in its arguments, with
added Gaussian noise:

zt = Ctxt + δt (3.7)

The matrix Ct has size k x n, where k is the dimension of the measurement vector
zt. The vector δt describes the measurement noise as a multivariate Gaussian with
zero mean and covariance Qt.

4. The initial belief bel(x0) must be normally distributed. The mean of this belief is
denoted by µ0 and its covariance by Σ0:

bel(x0) = p(x0) = det(2πΣ0)
− 1

2 exp{−1

2
(x0 − µ0)

TΣ−1
0 (x0 − µ0)} (3.8)

These assumption ensure that the posterior belief bel(xt) is always Gaussian, for any point
in time t. The mathematical proof of the properties above is beyond the purpose of this
thesis and can be found in [11].

The Kalman filter algorithm can be represented as:

Algorithm 3.1 Kalman Filter
Require: µt−1, Σt−1, ut, zt
1: µ̄t = Atµt−1 +Btµt

2: Σ̄t = AtΣt−1A
T
t +Rt

3: Kt = Σ̄tC
T
t (CtΣ̄tC

T
t +Qt)

−1

4: µt = µ̄t +Kt(zt − Ctµ̄t)
5: Σt = (I −KtCt)Σ̄t

6: return µt, Σt

In steps 1 and 2, the predicted belief µ̄ and Σ̄ is calculated representing the belief b̄el(xt)

one time step later, but before incorporating the measurement zt. This belief incorporates
the control input ut following the rules dictated by linear systems dynamics.
In steps 3 to 5 this belief b̄el(xt) is transformed into the desired belief bel(xt) through
incorporating the measurement zt.

The variable computed in step 3 is called Kalman Gain: it specifies the degree to which
the measurement is incorporated into the new state estimate [11].

40 3| Extended Kalman Filter SLAM

Step 4 manipulates the mean by adjusting it in proportion to the Kalman Gain, the
measurement zt and the measurement predicted. The important concept here is the
innovation, or the difference between the actual measurement zt and the expected mea-
surement Ctµ̄t. Then the covariance is updated in step 5.
Figure 3.3 shows the graphical illustration of the Kalman filter principles:

Figure 3.3: Kalman filter functioning

As mentioned, the Kalman filter alternates a prediction step and a correction step. By
observing figure 3.3, it can be noted that the prediction step, incorporating the control
input update, introduces uncertainty in the robot’s belief. Meanwhile, the uncertainty in
the robot’s belief is decreased by the correction step, which introduces the measurement
update.

A brief discussion over the meaning of the Kalman gain must be performed. The Kalman
gain is computed in the form:

Kt = Σ̄tC
T
t (CtΣ̄tC

T
t +Qt)

−1 (3.9)

Where Σ̄t is the covariance after the control input incorporation, but before the measure-
ment update, Ct is the matrix representing the linear dynamics including the measurement
inside the update and Qt is the matrix representing the measurement uncertainty.
Inside equation 3.9 is important to focus on the term:

3| Extended Kalman Filter SLAM 41

(CtΣ̄tC
T
t +Qt)

−1 (3.10)

This term is higher when the uncertainty over the measurement is lower, thus when Qt

is small, meaning that a precise and reliable sensor is present. This property translates
in a negligible Qt and so the Kalman gain becomes big as we have the inverse only of
(CtΣ̄tC

T
t)

−1, which usually brings high values. The consequence is that the contribution
of the product for the Kalman gain in step 4 is very important and the final computation
of the mean µt in step 4 is more driven by the innovation than from the µ̄t coming from
the motion model. As an example, a perfect sensor would have a Qt matrix with all null
values, leading to:

Qt = 0

Kt = C−1
t

µt = C−1
t zt

(3.11)

On the contrary, higher uncertainty in the sensor brings higher values for Qt, driving for
a small and almost negligible Kt, with subsequently almost no contribution coming from
the observation model to the mean µt in step 4. This results in a mean µt mainly based
on the prediction model and only slightly corrected by the measurements. In the case of
no trust in the information coming from the sensor:

Qt = ∞

Kt = 0

µt = µ̄t

(3.12)

The outcome of the algorithm can be very different pending on the values set on the
measurement uncertainty matrix Qt and so pending on how much trust can be placed on
the sensors readings.

On the computational side, updating the Kalman filter with a control input, inside the
prediction step, is relatively light. At the same time, the Kalman filter update based on
the measurements is computationally more difficult and heavy.

42 3| Extended Kalman Filter SLAM

3.3. The Extended Kalman Filter

The unavoidable assumption in the Kalman filter formulation is the linearity of both the
motion model and the observation model. However, this is rarely the case when dealing
with moving robots in real environments. More often, the two models are both non-linear
in their formulation. As the Kalman Filter can not handle non-linearity, here enters the
field the Extended Kalman Filter, which is an extension of the Kalman Filter itself.

Built on the base of the Kalman Filter, the Extended Kalman Filter (EKF) makes the
assumption of linearization of the motion model and the measurement model functions.
The key idea is that the non-linear function of the motion model g(ut, xt−1) is linearized
by a tangent function to g at the mean of the Gaussian. The EKF also approximates
the non linear function of the measurement update h(xt) by a linear function tangent to
h, thereby retaining the Gaussian nature of the posterior belief. In order to achieve this
linearization the EKF utilizes a first order Taylor expansion, as shown in figure 3.4. Once
g and h are linearized, the mechanics of the EKF are equivalent to those of the Kalman
filter.

Figure 3.4: Graphical representation of linearization

3| Extended Kalman Filter SLAM 43

The EKF algorithm is shown here, with G as the Jacobian of the motion model function
g and H as the Jacobian of the measurement update function h:

Algorithm 3.2 Extended Kalman Filter
Require: µt−1, Σt−1, ut, zt
1: µ̄t = g(ut, µt−1)
2: Σ̄t = GtΣt−1G

T
t +Rt

3: Kt = Σ̄tH
T
t (HtΣ̄tH

T
t +Qt)

−1

4: µt = µ̄t +Kt(zt − h(µ̄t))
5: Σt = (I −KtHt)Σ̄t

6: return µt, Σt

As can be noted the linear predictions in the Kalman filter are replaced by their non
linear generalizations in the EKF. Moreover, the EKF uses Jacobians instead of the cor-
responding linear system matrices. The Extended Kalman filter inherits the basic belief
from the Kalman filter, but it differs in that this belief is only approximate, not exact
as in Kalman filters. A Gaussian approximation of the true belief is so computed by the
Extended Kalman Filter [11].

Kalman filter Extended Kalman filter
state prediction Atµt−1 +Btut g(ut, µt−1)

measurement prediction Ctµ̄t h(µ̄t)

Table 3.1: EKF and KF comparison

EKF Linearization

The main idea on which the EKF is based is the linearization and the key advantage
lies in its efficiency. The top left graph of figure 3.4 represents a Monte-Carlo estimate
of the Gaussian (blue line): it has been computed by passing a large number of points
through g followed by the computation of their mean and covariance. On the other end,
the EKF linearization only requires determination of the linear approximation, followed
by the closed-form computation of the resulting Gaussian. Once g is linearized, the me-
chanics of the EKF are equivalent to the ones of the Kalman filter, as already stated.

The Extended Kalman filter applies a First order Taylor expansion linearization. It builds
up a linear approximation of g starting from its value and slope. The slope is given by
the partial derivative:

44 3| Extended Kalman Filter SLAM

g
′
(ut, xt−1) :=

∂g(ut, xt−1)

∂xt−1

(3.13)

As can be noted, both the value and the slope depends on the argument of g. A logi-
cal choice for selecting the argument is to choose the state deemed most likely at time
of linearization [11]. For Gaussians, the argument is going to be the mean of the pos-
terior µt−1. In other words, g is approximated by its values at µt−1, and at ut, and the
linear extrapolation is achieved by a term proportional to the gradient of g at µt−1 and ut:

g(ut, xt−1) ≈ g(ut, µt−1) + g
′
(ut, µt−1)(xt−1 − µt−1)

= g(ut, µt−1) +Gt(xt−1 − µt−1)
(3.14)

Notice that Gt is a matrix of size n x n, with n denoting the dimension of the state. This is
the Jacobian of g and its value depends on ut and µt−1, hence it differs for different points
in time. The exact same procedure is applied for the linearization of the measurement
function h.
The EKF is one of the most popular tools for state estimation in robotics and its
strength lies mainly in its computational efficiency. Each update requires time of the
order O(k2.4 + n2), where k is the size of the measurement vector zt and n is the di-
mension of the state vector xt. Other known algorithms, as particle filters, may require
time exponential in n. However, one important drawback of the EKF is that it approxi-
mates state transitions and measurements using linear Taylor expansion. The goodness of
the linearization depends on two main factors: the degree of uncertainty and the degree
of local non-linearity of the functions that are being approximated. The higher is the
uncertainty, the more distorted is the Gaussian density computed after the Taylor lin-
earization. Higher uncertainty typically results in less accurate estimates of the mean and
the covariance of the resulting random variable. The second important factor is the local
non-linearity of the function g: the more non-linear is the region of g in which the mean
falls, the larger the approximation error results. The Extended Kalman filter Gaussian
clearly underestimates the spread of the resulting density.

Now that the general derivation and structure of the Kalman filter and the Extended
Kalman filter has been illustrated, their application to SLAM, in particular of the ex-
tended version, is explained in detail inside the next section.

3| Extended Kalman Filter SLAM 45

3.4. Extended Kalman Filter SLAM

In this section a version of the Extended Kalman Filter which applies to the online SLAM
problem is going to be illustrated. The EKF solution to the SLAM problem is probably
the most relevant in the history of the subject.
The EKF SLAM has three intrinsic assumptions which bring to approximations:

1. Feature-based SLAM : the maps are going to be composed by point landmarks with
a number usually minor than a thousand. The landmarks are going to need less
ambiguity as possible, involving advanced computer vision tools, as better explained
in chapter 4;

2. Gaussian noise assumption: this assumption is made for both motion and percep-
tion, with a relative small uncertainty in order to avoid linearization intolerable
errors;

3. Positive information: EKF SLAM can only process positive sights of landmarks,
meaning that it can not process the absence of a landmark as a consequence of the
Gaussian belief representation.

In this section another assumption is introduced, which is the assumption of Known Cor-
respondeces, which is going to be relaxed in chapter 4. This assumption implies that for
each landmark observed, the algorithm exactly knows whether it is a new landmark or
a re-observed one. By introducing the assumption of Known Correspondeces, the Data
Association problem is currently set apart, allowing the focus to be only on the SLAM
functioning itself. The assumption is going to be contained in the variable cit, where c

indicates the exact correspondence of an observed landmark i at time t. This assumption
also allow to address only the continuous portion of the SLAM problem.

The Extended Kalman filter SLAM computes both the robot pose xt = (x, y, θ)T and the
the estimate of the coordinates of all landmarks encountered. This makes it necessary to
include the landmarks coordinates into the state vector. Let’s call for one moment the
state vector containing both the robot pose and the landmarks coordinates as combined
state vector, written as yt. It is composed in the form:

yt =

[
xt

m

]
= (x, y, θ,m1,x,m1,y, s1, ...,mN,x,mN,y, sN)

T

(3.15)

46 3| Extended Kalman Filter SLAM

The variables x, y and θ represent the robot coordinates at time t, while mi,x, mi,y are
the coordinates of the i-th landmark and si its signature. The dimension of this state
vector is 3N +3, where N denotes the number of landmarks in the map. Clearly, for any
reasonable number N , this vector is significantly larger than the pose vector xt itself.

The EKF SLAM algorithm is shown in algorithm 3.3. With respect to the EKF algo-
rithm in the previous section, some new terms and elements have been introduced. In
particular, steps from 1 to 4 belong to the so called Prediction Step, while steps from 5 to
the end belong to the Correction Step. The two steps are going to be described in detail
respectively in section 3.4.3 and section 3.4.4.
The same subdivision of the algorithm has been kept also in its Matlab implementation.
Moreover, another section is going to be added inside the implementation in order to
tackle the Data Association problem.

3.4.1. Motion model

As already mentioned, the SLAM algorithm needs to be fed with a Motion model describ-
ing how to update the rover state based on the control input received step by step.
For this simulation an Odometry Motion model has been implemented. Recalling that
the control input is in the form ut = (δrot1, δtrans, δrot2)

T , the motion model is then derived
from it: xt

yt

θt

 =

xt−1

yt−1

θt−1

+

δtrans cos (θt−1 + δrot1)

δtrans sin (θt−1 + δrot1)

δrot1 + δrot2

 (3.16)

Which can be summarized as:

xt,1:3 = xt−1,1:3 + g(x, y, θ, δtrans, δrot1, δrot2) (3.17)

The EKF needs also the Jacobian matrix G of the odometry motion model to be computed,
resulting in the following equation:

G =

1 0 −δtrans sin (θt−1 + δrot1)

0 1 δtrans cos (θt−1 + δrot1)

0 0 1

 (3.18)

3| Extended Kalman Filter SLAM 47

3.4.2. Measurement model

As for the motion model, also the sensor readings need to pass through a Measurement
model and its Jacobian. The sensor measurement update function h corresponding to the
ith measurement at time t is:

h(µ̄t, j) = zit =

[
rit

ϕi
t

]
=

[√
(µ̄j,x − µ̄t,x)2 + (µ̄j,y − µ̄t,y)2

arctan [(µ̄j,y − µ̄t,y), (µ̄j,x − µ̄t,x)]− µ̄t,θ

]
(3.19)

Where (µ̄j,x, µ̄j,y)
T is the pose of the jth landmark and rit and ϕi

t are respectively the range
and the bearing of the landmark measured. The Jacobian H is computed by exploiting
the properties of the various matrices introduced in algorithm 3.3, more precisely from
step 11 to step 15. The mathematical derivation of the matrix H is here illustrated.
Since h depends only on the robot pose xt and the location jth of landmark mj, the
derivative factors into a low-dimensional Jacobian hi

t and a matrix Fx,j, illustrated in step
14 of algorithm 3.3, which maps hi

t into a matrix of the dimension of the full state vector:

H i
t = hi

tFx,j (3.20)

Here hi
t is the Jacobian of the function h(yy, j) at µ̄t, calculated with respect to the state

variables xt and mj:

hi
t =

1

q

−
√
qδx −√

qδy 0
√
qδx −√

qδy 0

δy −δx −q −δy δx 0

0 0 0 0 0 q

 (3.21)

Where:

q =

[
µ̄j,x − µ̄t,x

µ̄j,y − µ̄t,y

]T [
µ̄j,x − µ̄t,x

µ̄j,y − µ̄t,y

]
=

[
δx

δy

]T [
δx

δy

]
(3.22)

Here j = cit is the landmark that corresponds to the measurement zit. The matrix Fx,j

is of dimension 6 x (3N + 3) and maps the low-dimensional matrix hi
t into a matrix of

dimension 3 x (3N + 3).

Thanks to this derivation of the motion and measurement model, together with their
Jacobians, their computation can be easily performed inside the EKF SLAM algorithm.

48 3| Extended Kalman Filter SLAM

3.4.3. Prediction step

Steps 1 to 4 compose the Prediction Step, in which the mean is updated in the three rover
global coordinates representing the rover state:

xt,1:3 = (x, y, θ)T (3.23)

This is an update only due to the effects of the control input received ut, without consid-
ering the measurements vector zt.
In step 1 a matrix Fx is built and introduced:

Fx =

1 0 0 0...0

0 1 0 0...0

0 0 1 0...0

 (3.24)

This is a 3 x (3N+3) matrix, where N is the number of landmarks, with all zero elements
except for the 3 x 3 initial identity matrix. This matrix is introduced in order to exploit
its structures inside later matrix multiplication with the aim to map only the rover state,
avoiding the modification of the landmarks states when present.
Step 2 introduces the computation of an only motion predicted mean µ̄t, adding the result
of the motion equations on the three rover coordinates over the previous mean µt−1:

µ̄t = µt−1 + F T
x (gx, gy, gθ)

T (3.25)

Step 3 computes the Jacobian Gt of the linearized motion function g, by means of matrix
multiplication and the matrix Fx:

Gt = I + F T
x

0 0 ∂g
∂x

0 0 ∂g
∂y

0 0 ∂g
∂θ

Fx (3.26)

At the end of the prediction, step 4 updates the motion predicted covariance Σ̄t by the
Jacobian Gt, the previous covariance Σt−1 and the motion error matrix Rt:

Σ̄t = GtΣt−1G
T
t + F T

x RtFx (3.27)

At this point a motion-updated mean vector and a motion-update covariance matrix are
available: in case of perfect motion model they should be the correct position of the rover
in the global reference, without the need of a sensor update.

3| Extended Kalman Filter SLAM 49

3.4.4. Correction step

Since the motion model can never be perfect and it is affected by errors, i.e. coming
from the odometry measurements, the SLAM algorithm corrects the state of the rover by
observing the surrounding landmarks in the Correction step.
This section of the algorithm articulates itself from step 5 to the end and, as said before,
is here based on the assumption of perfect known Data Association in the variable cit.
Step 5 introduces the sensor measurement error matrix Qt, a diagonal 3 x 3 matrix in
which σ2

r indicates the error over the range measurement, σ2
ϕ the error over the bearing

measurement and σ2
s the error over the landmark specific signature.

Step 6 opens the core of the Correction step: a FOR loop in which for every landmark
observed at step t the algorithm decides if it is whether an already observed landmark or
a new one and updates the state and covariance according to it.
In step 7 the association of the landmark is explored and if the landmark under study has
never been seen before, steps 8 to 10 initialize the landmark adding its measurements to
the state vector: µ̄j,x

µ̄j,y

µ̄j,s

 =

µ̄t,x

µ̄t,y

sit

+

r
i
t cos (ϕ

i
t + µ̄t,θ)

rit sin (ϕ
i
t + µ̄t,θ)

0

 (3.28)

Steps 11 to 13 have the purpose of computing some geometrical quantities which are going
to build up the expected measurement ẑit of a landmark i.
Step 14 introduces the matrix Fx,j as a 6 x (3N + 3) matrix in which the coordinates of
the landmark j are set to 1, giving the matrix the shape in algorithm 3.3, according to
what exposed in section 3.4.2.
Steps 15 and 16 compute the Kalman gain as function of the distance between the land-
mark and the rover, the matrix Fx,j, the motion-update covariance Σ̄t and the sensor
uncertainty matrix Qt:

Ki
t = Σ̄tH

iT
t (H i

tΣ̄tH
iT
t +Qt)

−1 (3.29)

Steps 18,19 and then, 20,21 bring respectively to the final updates and computations of
µt and Σt:

µt = µ̄t = µ̄t +Ki
t(z

i
t − ẑit)

Σt = Σ̄t = (I −Ki
tH

i
t)Σ̄t

(3.30)

50 3| Extended Kalman Filter SLAM

Algorithm 3.3 Extended Kalman Filter SLAM
Require: µt−1, Σt−1, ut, zt, ct

1: Fx =

1 0 0 0...0
0 1 0 0...0
0 0 1 0...0

2: µ̄t = µt−1 + F T

x

gxgy
gθ

3: Gt = I + F T

x

0 0 ∂g
∂x

0 0 ∂g
∂y

0 0 ∂g
∂θ

Fx

4: Σ̄t = GtΣt−1G
T
t + F T

x RtFx

5: Qt =

σ2
r 0 0
0 σ2

ϕ 0
0 0 σ2

s

6: for all observed features zit = (rit, ϕ

i
t, s

i
t)

T do
7: j = cit
8: if landmark j never seen before then

9:

µ̄j,x

µ̄j,y

µ̄j,s

 =

µ̄t,x

µ̄t,y

sit

+

rit cos (ϕi
t + µ̄t,θ)

rit sin (ϕ
i
t + µ̄t,θ)
0

10: end if
11: δ =

[
δx
δy

]
=

[
µ̄j,x − µ̄t,x

µ̄j,y − µ̄t,y

]
12: q = δT δ

13: ẑit =

 √
q

arctan (δx, δy)− µ̄t,θ

µ̄j,s

14: Fx,j =

1 0 0 0...0 0 0 0 0...0
0 1 0 0...0 0 0 0 0...0
0 0 1 0...0 0 0 0 0...0
0 0 0 0...0 1 0 0 0...0
0 0 0 0...0 0 1 0 0...0
0 0 0 0...0 0 0 1 0...0

15: H i

t =
1
q

−√
qδx −√

qδy 0
√
qδx −√

qδy 0
δy −δx −q −δy δx 0
0 0 0 0 0 q

Fx,j

16: Ki
t = Σ̄tH

iT
t (H i

tΣ̄tH
iT
t +Qt)

−1

17: µ̄t = µ̄t +Ki
t(z

i
t − ẑit)

18: Σ̄t = (I −Ki
tH

i
t)Σ̄t

19: end for
20: µt = µ̄t

21: Σt = Σ̄t

22: return µt, Σt

3| Extended Kalman Filter SLAM 51

3.4.5. Unknown Correspondences

Algorithm 3.3 illustrates the Extended Kalman filter SLAM in the case of known corre-
spondences, which means that at every time and in every observation the identity of a
landmark in known and so whether if it has been seen already or not. This translates in
assuming a perfect data-association.
In the real case this is almost impossible, so the data association problem must be taken
in account and the algorithm has to be expanded with a dedicated section, as it is going
to be done in the next chapter.

3.5. Extended Kalman Filter SLAM properties

The Extended Kalman filter formulation of the SLAM problem brings some important
properties on the surface.

3.5.1. Fully populated Kalman gain

The first interesting property relates to the Kalman Gain Kt: the fact that the Kalman
Gain is fully populated for all state variables, and not just the robot pose and the observed
landmark, is very important. In SLAM, observing a landmark does not just improve the
position estimate of this very landmark, but that of other landmarks as well. This effect
is mediated by the robot pose: observing a landmark improves the robot pose estimate,
and as a result it eliminates some of the uncertainty of landmarks previously seen by
the same robot. The sensational effect here is that we do not have to model past poses
explicitly, which would move the algorithm in the Full SLAM area of interest. Instead,
this dependence is captured in the Gaussian posterior, specifically in the off-diagonal co-
variance elements of matrix Σt.
Figure 3.5 shows how the covariance matrix Σt evolves with time during the SLAM: the
left column of images represents the evolution of the robot movement and observation,
while the right column shows how the covariance matrix behaves. In the first top image
the initialization of the SLAM is shown, with the robot indicated as a red dot and a big
uncertainty ellipse over the first landmark observed; meanwhile the covariance matrix is
initialized with only diagonal values with high uncertainty (values tending to ∞).
The second raw of images shows the path of the robot after a ∆t from the first image: a
number of landmarks has been observed and the related uncertainty ellipses are drawn.
At the same time the covariance matrix has begun to be filled and the spread of values

52 3| Extended Kalman Filter SLAM

off the merely diagonal terms has begun. The dependence between landmarks and poses
has started to be represented by these off-diagonal terms.
The last raw of figures shows a further evolution in which some of the uncertainty ellipses
have shrunk due to the more certain position obtained by the re-observing of landmarks
and the spread of this information in the covariance matrix. This phenomena is repre-
sented by the light gray elements in the matrix: the lighter is the gray of an element, the
less is the uncertainty associated. It can then be seem the evolution of the uncertainty in
a number of the off-diagonal terms which changed their color from top to bottom, gaining
a less uncertain state. In the limit, the landmarks estimates become fully correlated, as
shown in figure 3.6.

Figure 3.5: Covariance filling evolution

3| Extended Kalman Filter SLAM 53

Figure 3.6: Landmarks correlation

The red lines in figure 3.6 can be seen as elastic bands of which the elasticity represents
the less or more uncertain is the correlation between the landmarks linked by them: wider
red lines stand for more rigid links, meaning a less uncertain correlation between the two
linked landmarks estimates. Viceversa, thinner lines stand for more elastic link and a less
certain correlation.

3.5.2. Uncertainties evolution

As observed in section 3.5.1, the uncertainty over the landmarks pose evolves with the
robot movement and the observations history.
Figure 3.7 shows the uncertainty ellipses evolution of both the robot pose and the land-
marks estimates during the EKF SLAM functioning. In the figure the robot path is a
dashed line, while the uncertainties over its pose are represented at each step by the gray
ellipses. The small dots are known distinguishable landmarks of unknown location and
their location estimates are represented by white ellipses.
In the first three pictures the robot pose uncertainty in increasing and so the uncertainty
about the landmarks it encounters (due to the above mentioned correlation between the
pose and the landmarks estimates).
In the bottom right picture the robot encounters again the first landmark, making the
uncertainty over all landmarks decrease as the uncertainty over its current pose. This is
represented by the decreased size of the ellipses.
The underlined phenomena is due to the fact that reducing the uncertainty over the first
landmark affects the whole covariance matrix. The uncertainty reduction for the first
landmark estimate comes from the fact that the more measurements of a landmark are
done, the more certain its estimate tends to be.

54 3| Extended Kalman Filter SLAM

Figure 3.7: Uncertainties evolution in SLAM

It can be demonstrated that, in the limit, the covariance associated with any single land-
mark location estimate is determined only by the initial covariance in the vehicle location
estimate, as shown here:

Figure 3.8: Landmark covariance, limit case

3| Extended Kalman Filter SLAM 55

3.5.3. Loop Closure

Recognizing a previously mapped area is called Loop Closing and it is a sort of Data As-
sociation problem characterized by an high level of ambiguity and possible environmental
symmetries. The Loop Closure makes the uncertainties collapse after its application (both
in the case of a correct loop closure or in the case of a wrong one). Recalling figure 3.6:
when a Loop Closure is executed, it freezes the red lines in their current form.

Figure 3.9: Loop Closure in SLAM

As said, it reduces the uncertainty over in robot and landmarks estimates, as shown in
figure 3.9, in which on the left is represented the problem before the loop closure and on
the right after the loop closure. However, wrong loop closures leads to filter divergences
and irretrievable errors.
More about the Loop Closure problem can be found in [7], [6] and [10].

Usually, loop closures are exploited for better map building tasks. In this thesis the Loop
Closure problem is not going to be explored, with consequential results.

57

4| EKF with unknown Data

Association

4.1. Unknown Data Association

In chapter 3 the Extended Kalman Filter algorithm has been shown with the fundamen-
tal assumption of known Data Association. This assumption guarantees that for each
landmark observed, the algorithm knows exactly which landmark it is and if it has been
already observed before or not. In order to reproduce this assumption it is necessary
to insert a sort of a label over each observed feature, represented in chapter 3 by the
variable cit. However, when dealing with real sensors and environments, the landmarks
are not observed with a specific label unequivocally marking them, leading to possible
wrong associations. So, relaxing the assumption of perfectly known data association, the
algorithm opens up to the Unknown Data Association problem.
The Data Association problem is mainly related to Computer Vision and Optimization
techniques and it is one of the most challenging problem in autonomous systems SLAM.
Several approaches have been explored during the past, exploiting sensors capabilities,
computational cost analysis and SLAM algorithmic properties.

In this thesis a primitive approach to the Data Association problem is explored in order to
test the algorithm and its outcomes. The approach used is based on the Iterative Closest
Point algorithm for point clouds matching, in particular on its implementation proposed
by Huang and Arun [1] and their Least Squares approach for optimization.
In the following section this approach to solve the Data Association problem is illustrated
in detail. It must be pointed out for the reader that this approach is a very simple one,
since the Data Association is not the main focus of this thesis, and big improvements on
this area of the algorithm can be done. A great starting point for improvements in the
Data Association part of the algorithm could be the work in [4].

58 4| EKF with unknown Data Association

The data association in this thesis is articulated over few steps, starting from the clustering
of the point clouds coming from the sensors into useful landmarks, until the correct
designation of the seen features. These steps are summarized as:

Algorithm 4.1 Data Association procedure
Require: point cloud at time t, point cloud at time t− 1 (both with landmarks defined

by algorithm 2.4)
1: Filter out the rover parts from the point clouds
2: Run Huang-Arun algorithm to find the movement between the point clouds
3: Match the features in the point clouds to select the observed landmarks
4: Associate to each observed landmark a range and a bearing measurement
5: Select only the best associations
6: return Point cloud at time t with only its best associated landmark

As shown in algorithm 2.4, there is a part of the simulation procedure in which the point
clouds from the sensors are scanned for landmarks. Landmarks are selected as clusters of
point with an Euclidean distance between each other under a certain threshold and with
a minimum angular distance. Then for each cluster its geometric centre coordinates in
the robot local frame are computed. This is the structure of point cloud data entering
algorithm 4.1.

4.1.1. Rover filtering

Step 1 of algorithm 4.1 aims at filtering out from the point cloud of the measurement
under study all the spurious components of the rover that may have entered the sensor
field during the acquisition. These parts can affect the SLAM algorithm introducing
wrong associations and dangerous errors. For example, during the first simulations, a
wheel of the rover was entering the acquired point clouds, affecting the whole result with
unacceptable errors and making the SLAM strongly diverging.
In order to filter out the rover, step 1 operates by removing from the point cloud all the
clusters inside a cuboid threshold centered on the rover. In this way it is possible to
remove the wheels of the rover, its chassis or its robotic arm in the case it entered the
sensor field of view during the acquisition.
After few iterations of the algorithm it was clear that also landmarks far from the rover
created some wrong correspondences. It has so been decided to apply a similar method to
filter out also the landmarks over a cuboid threshold centered over the rover. As a result,
after step 1, only the landmarks inside a "squared donut" centered on the rover are kept
for the Data Association further procedures.

4| EKF with unknown Data Association 59

4.1.2. Huang-Arun algorithm

Step 2 of algorithm 4.1 is fundamental for the subsequent development of the Data As-
sociation part. The aim of this step is finding the translation vector t⃗ and the rotation
matrix R linking the point cloud at the current time t to the point cloud at the previous
time t− 1. In order to obtain these results, the algorithm proposed by Huang and Arun
in [1] has been adopted. The algorithm is shown here below:

Algorithm 4.2 Least-Squares Fitting of Two 3-D Point Sets

Require: Two 3D point sets pi and p
′
i

1: p = 1
N

∑N
i=1 pi

2: p
′
= 1

N

∑N
i=1 p

′
i

3: {qi} = pi − p
4: {q′

i} = p
′
i − p

′

5: Calculate the 3x3 matrix: H =
∑N

i=1 qiq
′T
i

6: Singular Value Decomposition of H: H = U∆V
7: Calculate: X = V UT

8: Calculate: det (X)
9: if det (X) = +1 then

10: R = X
11: else if det (X) = −1 then
12: The algorithm fails
13: end if
14: t⃗ = p

′ −Rp
15: return Rotation matrix R, translation vector t⃗

Algorithm 4.2 shows the approach to the least square fitting proposed by Huang-Arun and
adopted in this thesis. It operates by finding the rotation matrix R and the translation
vector t⃗ capable to rotate and translate the second point cloud over the first one.
Particular attention must be put on the IF cycle from step 9 to step 13: the algorithm
gives a solution only if the determinant of matrix X, previously computed, is equal to +1,
while the possible results for the determinant of matrix X are +1 and −1. However, the
negative result stands for a reflection, while the positive stands for a rotation that is what
is seek by the algorithm. The full proof can be checked in [1].

After the application of this step, the matrix R and the translation vector t⃗ are available
and the two point clouds can be superposed in order to scan them and look for similar
features to be associated.

60 4| EKF with unknown Data Association

4.1.3. Best features matching

With the two point clouds superposed it is possible to start scan both of them in order
to evaluate possible matchings. The scan is done by selecting one cluster, or landmark,
and comparing it to all the landmarks in the other point cloud. During this process the
euclidean distances between each point are evaluated and a score is assigned to each of
the associations.
The comparing between the cluster is done by means of a Fast Approximate Nearest Neigh-
bors algorithm [9], or Fast Global Registration algorithm [13], thanks to the function:

1 [indexPairs , scores] = pcmatchfeatures(features1 ,features2);

Listing 4.1: Matching features function

At this stage, the variables indexPairs and scores obtained are in the form:

• indexPairs is a m x 2 matrix in which elements in the first column indicates the
indexes of points in the current point cloud matching the indexes in the second
column of points in the second point cloud;

• scores is a column vector containing the Euclidean distance between each of the
couples of points contained in indexPairs.

Once a cluster has been compared to all the clusters in the other point cloud, the best
score is selected as the association for the landmark under study. By doing so each of the
landmarks is associated with one of the landmarks in the previous point cloud.
However, it is possible that wrong associations or low score associations entered the list
of landmarks labels, so other criteria are applied to shrink the number of associations and
select only the best ones and the more trustworthy:

• A first criteria is to select only the associations in which a number of points over
a certain threshold has been associated. If the number of associated points is less
than the threshold, the association is discarded;

• In the association remained, only the best scores are kept.

After running several time this algorithm for the Data Association, it was noted that the
algorithm still kept some wrong data associations. The solution was to modify the last
step in:

• In the associations remained, select only the best score.

4| EKF with unknown Data Association 61

By doing so only one best data association for each step is kept and fed to the correction
step. This helped to filter out errors coming fro wrong associations and helped the algo-
rithm to reach better convergence results.

Figure 4.1: Examples of associated landmarks

Figure 4.1 shows an example of associated landmarks (without the filtering out of rover
components): it can be clearly noted how the blue landmarks of the current point cloud
superpose over the greenish landmarks of the previous acquisition, except for some non-
associated clusters.

In appendix A this choices are explained in more detail together with the implemented
solution.

63

5| Results

This chapter is going to illustrate the results of this thesis work. It is divided in three
different section, each of them showing the results in the three different parts of the sim-
ulation explained in chapter 2.

The first section illustrates the result in the sensors simulation area. The output shown
are mainly of a qualitative kind, showing off the view from the StereoCam recreated or
the raw point clouds visualization.
The second part shows the results in looking for the landmarks inside the raw data, again
mainly in a qualitative way.
The core of the chapter is the third section in which the SLAM results are shown. Firstly,
a graphical comparison between the nominal trajectory, the noisy one and the EKF SLAM
trajectory is made, followed by a comparison between a SLAM with only the prediction
step and a complete SLAM on their effects over the trajectory. The behaviour of the error
from the nominal trajectory during the SLAM is then analyzed, followed by an analysis
on the behaviour of the mean vector µ and the covariance matrix Σ.
Afterwards the results of the Extended Kalman filter SLAM are observed together with
the variation of some of its parameters: the influence of the magnitude of the values of
the sensor uncertainty matrix Q, the variation over the number of landmarks associated
at each step and others more.
The final outputs analyzed are the results in case of bad or wrong Data Association and
the possible effects of the insertion of a Loop Closure inside the algorithm developed.

When exposing the result some of the assumptions introduced during the thesis are re-
vised and listed in order to recall how the path to the results has been followed. However,
the reader is invited to confront the algorithms and functions written in the previous
chapters to better understand the exposure of the results.

64 5| Results

5.1. Simulation outputs

This section has the purpose of showing the outcomes from the sensor acquisitions inside
the simulation environment. The results are going to be qualitative, showing the view
from the stereo camera or the Lidar acquired point cloud.
As illustrated in chapter 2, both the sensors are acquiring their data inside the Mars
environment simulated with the help of Blender and Unreal Engine. Once the sensor
setup is completed and the simulation is run, the results are collected inside the Matlab
workspace. From there it is possible to visualize all the following results.

5.1.1. Lidar acquisition

The Lidar sensor acquisition is set inside the Simulink environment directly in the form of
a four dimensions variable. At each instant t of the simulation, the Lidar sensor generates
a 3D unordered point cloud of the environment, which is saved in a dedicate variable. At
each time t the acquisition has to be converted in the form of an ordered point cloud.
Then it is possible to operate on it and to visualize it.

Figure 5.1: Lidar point cloud visualization

By looking at figure 5.1 it is possible to note that the ground is not revealed by the Lidar
sensor: this happens because the ground has been set as "transparent" to the sensor inside
Unreal Engine in order to avoid the insertion of a ground filtering inside the algorithm.
It real cases, however, a filter capable of removing the spurious ground acquisition must
be inserted since the transparent floor assumption would not be valid anymore.
Figure 5.2 shows a zoomed image of the Lidar point cloud acquisition. It can be noted

5| Results 65

that a sort of clustering is already active: it is clearly possible to distinguish parts of the
rover, such as the wheels, and different rocks. However, in this way it is not possible to
have control over the clustering procedure, so the clustering algorithm has still to be used.
The clustering results are going to be shown in section 5.2.

Figure 5.2: Lidar point cloud visualization zoomed

5.1.2. StereoCam acquisition

On the side of the Stereo Camera sensor, the procedure to follow in order to reach a cor-
rect from and visualization of the data is longer than in the previous case. In section 2.2.4
the setup of the StereoCam in the simulation environment has already been discussed.
As already mentioned, in order to obtain a stereo image two cameras are needed, from
now on called left camera and right camera. The view from the two cameras is shown in
figure 5.3.

Figure 5.3: Stereo image from the left and right camera

66 5| Results

The two images in figure 5.3 can seem almost similar: this is due to the fact that the
stereo baseline has been set to 42 cm, so the prospective from the two cameras is quite
close from one to the other. However, figure 5.4 shows the two images one on top of the
other, highlighting the differences:

Figure 5.4: StereoCam left and right image comparison

From figure 5.4 the difference in the positions of the rock in the two images can be easily
noted. This difference is the pivotal point on which the StereoCam works being so capable
of generating suitable point clouds.
It must pointed out that the environment here is in gray-scale: this has been set to avoid
enormous computational time for the simulation, due to the large weight of the red Mars
surface textures. The textures can be easily recovered and inserted in a simulation com-
puted with a more powerful hardware.

5| Results 67

At each time t of the simulation, both the images are saved and stored inside apposite
variables. This variables are fundamental for the next steps.

From the images of the two cameras, a first idea of the 3D reconstruction can be visualized
by means of the Stereo Anaglyph Graph, shown here in figure 5.5.

Figure 5.5: Stereo Anaglyph Graph

Figure 5.5 is stereoscopic representation of what the rover is seeing: the red color, as-
sociated with the left image, and the cyan color, associated with the right one, create
a tridimensional illusion when observed under properly filtered lenses. The observable
presence of the red and cyan shadows inside the image is a first proof that the StereoCam
is effectively working.

The most important step for transforming the stereo acquisition in a useful 3D point cloud
is the computation of the Disparity Map.
The Disparity Map is a 2D map reduced from a 3D space, in which the brightness of
the gray scaled pixels indicates the distance of the related points from the sensor. The
description of how a disparity map is computed from a couple of stereo images is beyond
the purpose of this thesis. However, it must be pointed out that the disparity map com-
putation is done by means of the Global Block Matching algorithm, in which two main
parameters dictate the final result. The parameters under study are the Range and the
Uniqueness Threshold.

68 5| Results

Here in figure 5.6 some examples of how the disparity map of the simulation under study
changes with the parameters listed before:

Figure 5.6: Disparity map changes with Range and Uniqueness Threshold

In the images of figure 5.6 the black color is associated with points without an assigned
distance and which are not going to be inserted in the final point cloud. The gray and
white colors represent respectively the further and closer point to the sensor. From the
setup of the first two images, the shape of the rocks can be observed, while in the third
can be imagined. However, the third image is affected by less noise.

5| Results 69

The Disparity Map is the base on which the point cloud reconstruction from the Stereo-
Cam is going to be composed.
By means of the disparity map and a matrix called Reprojection matrix, which maps a
2D point in a disparity map to a 3D point in the rectified camera coordinate system of
the first camera, it is possible to reconstruct the 3D point cloud [12].
Here below are shown the results, both in OpenCV and Matlab environment:

Figure 5.7: StereoCam point cloud result in OpenCV

Figure 5.8: StereoCam point cloud result in Matlab

70 5| Results

5.2. Landmarks identification outputs

Once the data coming from the sensors is organized in the form of point clouds, it is pos-
sible to proceed by applying algorithm 2.4 and extract landmarks form the point clouds,
assigning a geometric centre to each of them. By doing so, it is then possible to assign
also a range and bearing measurement to each of them and proceed with the Extended
Kalman filter SLAM.
In this section the results from the landmarks search algorithm are shown when applied
to the Lidar data, while keeping in mind that at this point also the StereoCam data are
in the form of a point cloud and the same procedure and results apply to them.

As stated in chapter 4, the landmarks are isolated as clusters of points inside each point
cloud. These clusters have to fulfill certain conditions on the angular distance between
them and on the euclidean distance between the points composing each of them. As for
the parameters of the disparity map, also in this case the values for the euclidean distance
and the angular separation determine the number and shape of the clusters identified as
landmarks. Figure 5.9 different shows possible results:

Figure 5.9: Cluster changes with the parameters setup

As can be noted by observing figure 5.9, the general shapes perceived and registered do not
change much, except for a small amount of features. What really changes in the different
setup for the parameters in the number of landmarks and their segmentation: choosing
more strict values for the parameters translates in smaller landmarks. This means that
the shape of one single landmark inside the more relaxed point cloud can correspond to
a sum of different landmarks inside the more strict setup point cloud.
An example is shown in figure 5.10 where on the left is possible to observe the first land-
mark for the relaxed setup and on the right is possible to see the first landmark for the
more strict one.

5| Results 71

As can be easily understood, the first landmark inside the second point cloud in only a
part of the first landmark in the relaxed one:

Figure 5.10: First cluster comparison

It must be kept in mind that the results shown in figures 5.9 and 5.10 show the clusters
not only of the rocks selected as landmarks, but also the cluster corresponding to parts
of the rover. These parts were kept in the figures mentioned because of their clear shape
and so because they are more easy to confront inside the different images in order to
understand the results. Instead, as mentioned in chapter 4, inside the algorithm these
parts are filtered out.

After the landmarks have been identified inside the point clouds, their geometric centre is
computed. Figure 5.11 shows a set of landmarks with a sphere identifying the location of
the geometric centre of each of them.The spheres are set with a unitary radius and, again,
the parts of the rover are kept in order to make the visual representation more clear.

72 5| Results

Figure 5.11: Landmarks geometric centre visualization

Figures 5.12 and 5.13 represent the resulting dependency of the number of landmarks on
the different setup parameters. In particular, figure 5.12 shows the inverse dependency
of the number of landmarks over the Euclidean distance threshold. Intuitively, the less
is the value set for the threshold over the euclidean distance, the more the points of the
cluster have to be close to each other. When the distance threshold becomes bigger, the
larger is the number of points inside a single point cloud.

Figure 5.12: Landmarks number variation with Euclidean Distance Threshold

Figure 5.13 illustrates the dependency of the number of landmarks with respect to the
angular threshold set during the clustering. The function groups adjacent points into the
same cluster if the angle formed by the sensor and the points is greater than the angle
threshold.

5| Results 73

Figure 5.13: Landmarks number variation with Angular Threshold

At this point the results from the simulation environment and the landmarks clustering
have been shown. These results are the base on which the Extended Kalman filter SLAM
is going to operate, so the illustration of them was pivotal in order to understand the
result that are going to be shown in the next section.

It must be pointed out for the reader that further deepening on the dependency between
the simulation outputs and the parameters set in the various steps can be performed. For
example, an analysis over the dependency between the point cloud generated from the
StereoCam and the final form of the Disparity Map can be done.

74 5| Results

5.3. EKF SLAM outputs

This section illustrates the final results of the Extended Kalman filter SLAM simulation.
The results are shown firstly as outputs of a single simulation which is going to be ana-
lyzed in detail. Then an analysis on the errors behaviour is performed, followed by some
case studies on the dependency of the EKF SLAM results with the changing of some of its
parameters. The possible improvements are going to be then discussed in the next chapter.

5.3.1. Nominal trajectory of the rover

As illustrated in chapter 2 the desired trajectory is drawn inside the Matlab environment
directly on the map of the 2D plane in which the rover is going to move. Figure ?? shows
an example of the drawn trajectory, recalling what has been shown in chapter 2.

Figure 5.14: Nominal trajectory drawing

The trajectory drawn is then smoothed and the control input history to follow it is re-
constructed. This drawn trajectory is going to be called nominal trajectory from now on
and it is going to be compared with the same trajectory when affected by errors and to
the trajectory after the Extended Kalman filter SLAM application.

5| Results 75

5.3.2. Noisy trajectory

The nominal trajectory represents the path desired for the rover to follow. However, the
rover movements, the controls or the wheel spinning are affected by unpredictable error
when dealing with real situations.
The simulation of these errors is done by adding a random error, in the range of [−0.1; 0.1]

meters, to the translation control input δtrans. Figure 5.15 represents the nominal tra-
jectory in black and the one affected by errors in red, which from now on is going to be
called noisy trajectory.

Figure 5.15: Nominal trajectory and Noisy trajectory

As can be noted, the red noisy trajectory differs from the desired one. The bigger the
trajectory length is, the more the error between the two accumulates, driving to different
poses from the desired one.
The behaviour of the error between the nominal trajectory and the noisy one is repre-
sented graphically in figure 5.16. By observing the figure the error respects what said
about the trajectory, increasing with the distance run. It can be noted that in some
places the error decreases before continuing to grow up again. These points represent the
cases in which the noise on the noisy trajectory bring the trajectory itself closer to the
nominal one, but without intentional movements or corrections: the random control δtrans
brings momentarily the noisy affected poses closer than before to the nominal trajectory,
but still accumulating errors which start to increase again in the steps after.

76 5| Results

Figure 5.16: Error in time between nominal and noisy trajectory

5.3.3. Extended Kalman Filter SLAM introduction

The Extended Kalman Filter SLAM is here introduced in order to insert a correction
method for the noisy trajectory, being so capable to correct itself and try to recollect the
nominal pose desired.
The result of a SLAM simulation is shown here in figure 5.17:

Figure 5.17: EKF SLAM trajectory

In the figure is possible to note the nominal trajectory (in black), the noisy trajectory (in
red) and the Extended Kalman filter SLAM trajectory (in blue).
Figure 5.18 shows a detailed zoomed image of the trajectories represented in figure 5.17.

5| Results 77

Figure 5.18: EKF SLAM trajectory in detail

As can be noted from figure 5.18, the EKF SLAM trajectory (blue) oscillates around the
nominal trajectory (black): this behaviour is typical of the Extended Kalman Filter cor-
rection to the noisy trajectory (red). The difference between the behaviour of the noisy
trajectory and the EKF SLAM trajectory lays in the fact the SLAM algorithm, by means
of the sensor measurements inside the correction step, is capable of being aware of the
the fact that its position is not the nominal one and correct it accordingly.

78 5| Results

This happens because the sensor acquisition arrive from the rover at a certain nominal
pose for each time instant t. The algorithm understands that the noisy forecasted pose
in not correct and so computes a new pose based on the sensor inputs.

Figure 5.19 shows the behaviour of the error between the EKF SLAM trajectory and the
nominal one during the simulation:

Figure 5.19: EKF SLAM error

It clearly has a behaviour similar to an harmonic one: these oscillations represents the
pose going far from the nominal one and the consequent correction to a more close one.
The error can be compared with the one of the noisy trajectory, as in figure 5.20. While
the error in the noisy trajectory grows with a sort of linearity with distance, it can be
observed that the error in the EKF SLAM increases with a slower rate and its behaviour
is characterized by oscillations, as highlighted before.
It can be also noted that the magnitude of the error at the end of the trajectory is different
in the two case: the EKF SLAM shows off an error which is almost half of the error in
the noisy trajectory.
It must be pointed out that this relation between the error is not a certain law and when
the SLAM fails or there are longer trajectories without loop closures, also the EKF SLAM
tends to diverge. This happens because without the loop closure the errors, even if os-
cillating, sum themselves until a threshold from which the SLAM algorithm is not able
anymore to correct its pose because of the data from the sensor loose useful meaning. A
deeper analysis on this problem is going to be done in the next sections.
The results shown until now are related to a single Extended Kalman filter SLAM sim-

5| Results 79

Figure 5.20: EKF SLAM error comparison

ulation, without loop closures.
In the following sections, the dependence of the results over some parameters are ana-
lyzed, together with the limitation of the EKF SLAM and its implementation.

80 5| Results

5.3.4. EKF SLAM Sensor uncertainty matrix Q dependence

In chapter 3, particularly in algorithm 3.3, the sensor measurement uncertainty matrix
Q has been introduced. As already specified, the matrix Q represents the uncertainty
over the measurements, which can be due to imperfect sensors or noisy inside the mea-
surements. Moreover, the matrix Q enters the computation of the Kalman Gain Kt, with
the consequence of being a weighting factor for the correction of the rover and landmarks
poses, as described in section 3.2 when the matrix Q was introduced for the first time.
As previously described, larger value of uncertainty in the sensors bring to larger values
of Q and a almost negligible Kalman Gain, with no corrections to the prediction step as
a result.

Here an analysis over the consequences of different values of the matrix Q on the Extended
Kalman filter SLAM final result is performed.
The analysis is performed over small trajectories for sake of computational simplicity and
trying different values for the measurements uncertainty. The analyzed trajectory are
computed over the first hundred poses.
Figure 5.21 shows the trajectories resulting from different values of the matrix Q and the
behaviour of their respective errors from the nominal trajectory.
The table below summarizes the values set for the measurement uncertainty matrix and
the respective error from the final pose:

Q diagonal terms value Final errors
10 0.35
100 0.28
300 0.17
500 0.10
1000 0.26

Table 5.1: Values of Q and respective errors

As can be observed both from the table above and figure 5.21, a fine tuning of the
Q matrix brings to better results. In this work, since previous information about the
sensor uncertainties were not available, the matrix Q has been tuned by a trial and error
approach. The more high the values of Q are, the more smooth is the correction of the
EKF SLAM from the noisy trajectory to the nominal one; however, the higher the values
of Q are, the less power has the correction step in the algorithm, bringing the rover to an
inability to correct itself.

5| Results 81

Figure 5.21: EKF SLAM, different Q comparison

82 5| Results

It must be pointed out that a low value of the diagonal terms in the matrix Q was not
feasible, due to an mount of uncertainty in the sensor measurements introduced with the
assumptions done during the whole simulation:

• Data Association: the data association algorithm implemented in this work is a
basic one. As said in chapter 4, the Data Association here uses different assumption
and simplifications, which are taken into account by higher uncertainty values over
the measurements;

• A priori data acquisition: both the Lidar and the StereoCam measurements are
taken in the first part the simulation along the nominal trajectory. This translates
in the fact that the measurements are not taken in the exact pose of the rover during
the EKF SLAM algorithm, so they are affect by a certain level of uncertainty. Again,
this is taken into account with higher values of the matrix Q.

Once the behaviour of the Extended Kalman filter SLAM when varying the measurement
uncertainty matrix Q has been analyzed, it is possible to proceed analyzing other be-
haviours of the algorithm.
In particular, the work is going to focus itself on the relationship between the distance
covered by the rover and the behaviour of the error from the nominal desired trajectory.

5| Results 83

5.3.5. EKF SLAM error with distance

As observed before, during the simulation the error accumulates and slowly diverges from
the nominal trajectory desired. As shown in figure 5.17, for the first part of the trajectory
the Extended Kalman filter SLAM oscillates around the nominal trajectory, while, after
a certain amount of distance covered by the rover, the EKF SLAM is not able anymore
to correct itself and starts slowly to diverge.

An explanation of this phenomenon relies in the nature of the Extended Kalman filter
SLAM formulation itself. In section 3.4, when exposing the EKF properties, it has been
mentioned that the Extended Kalman filter works under the linearization assumption.
This assumption, together with the structure of the algorithm, does not accept uncertain-
ties that go over a certain threshold.
When the uncertainty grows over a certain value, the correction step is not able anymore
to make a correct use of the measurements data. Moreover, the correction power at each
step is limited by the Kalman Gain and the matrix Q, so when the error grows over a
certain value, the correction done by the algorithm in not enough to reach the nominal
trajectory anymore. The correction step still tries to adjust the trajectory, however the
amount of error is not decreased enough and the error in not reduced, growing again at
the next step.

Another possible cause of errors along the development of the simulation comes from the
Data Association, as already analyzed in chapter 4. The more the error accumulates, due
to the causes in the previous section, the more the Data Association algorithm is prone
to fails or wrong associations. In particular, wrong associations are very powerful sources
of errors and when they happen it is almost impossible to correct them.
When a wrong association happens and the mean vector µ and the covariance matrix Σ

are updated according to it, the trajectory inevitably absorb a source of errors, which is
going to affect the results until the end of the simulation.
This happens because at every association also the pose of the rover is updated: when
a wrong association is incorporated, the pose of the robot is updated in a wrong new
position. However, this updated position is in some ways worst than the not corrected
one and the correct pose becomes very difficult to recover during the future steps.
Figure 5.22 shows the development of the trajectory, highlighting the possible errors
sources with red circles:

84 5| Results

Figure 5.22: EKF SLAM errors with distance

The figure highlights the major error source points with red circles: as can be noted they
progressively enlarge the error with cuspids in the trajectory. This behaviour can be re-
ferred to wrong or uncertain data association, as explained in section 5.3.5.

The growing of the error with the distance covered by the rover may sound counter in-
tuitive while reasoning about the SLAM. The Extended Kalman filter SLAM has been
introduced to reduce the odometry errors and make usage of the sensor readings in order
to compute the correct rover pose. As one may think, the SLAM is supposed to reduce
the error, with an oscillatory behaviour, along the entire trajectory.
However, as said above, the errors accumulates even with an efficient and performing
SLAM and inevitably there is going to be a point in which the algorithm is not able
to correct itself anymore. The only feature of SLAM which is able to correct the error
even when it becomes too big for the correction step is the Loop Closure. The princi-
ples of the Loop Closure have been illustrated at the end of chapter 3: the drift of the
wheels, and so the errors, are going to accumulate for autonomous vehicles without loop
closures detection algorithms, especially in long term moving scenarios, as explained in [7].

5| Results 85

5.3.6. EKF SLAM error with trajectory shape

The error accumulated during the SLAM without loop closures can be analysed also as
function of the shape of the trajectory. Figure 5.23 shows a straight and a curved trajec-
tory, together with the respective error behaviour:

Figure 5.23: EKF SLAM error with trajectory shape

As can be clearly noted from the figure, the curved trajectory accumulates errors at a
faster rate than what happens for a straight trajectory. This is a typical behaviour of
SLAM, in which the error over straight trajectory grows almost linearly and the error
along more complicated trajectory, as curved ones, grows with a faster rate.

Figure 5.24 shows this expected behaviour from the experiments of Nielsen1: it can be
noted the linear growth of the error in the straight trajectory and the quadratic growth
of the error inside the curved path. It can also be noted how the error at the end of the
simulation over the straight trajectory stands at lower values than what happens for the
curved one.

1https://www.youtube.com/watch?v=WV3ZiPqd2G4t=408s

86 5| Results

Figure 5.24: Expected errors for different path shapes

87

6| Conclusions and future

developments

The work presented so far had the aim of recreate a truthful planetary surface simulation
environment, together with a rover and its sensors. The rover had then the objective to
follow a desired trajectory inside the simulation and acquire data from its sensors; the
data collected has been then used to test an Extended Kalman filter Simultaneous Local-
ization and Mapping algorithm.
The desired outcomes from this thesis work have been achieved and can be divided in
three main areas:

1. Simulation environment : by means of the cooperation between the software of
Blender, Unreal Engine and Simulink, it has been possible to reproduce a detailed
Mars surface and also to simulate realistic sensor acquisitions;

2. Sensor data elaboration: both in the case of the Lidar sensor and the StereoCam
sensor it has been possible to recreate the process of elaboration of the sensor data
from the raw acquisition to a more refined version to be fed to the SLAM algorithm;

3. SLAM algorithm: both the realistic simulation environment and the sensor data
elaboration allowed to simulate an Extended Kalman filter SLAM with the prob-
lems of a real SLAM: the imperfections in the sensor acquisitions and in the data
association brought the SLAM to a realistic level and implementation in which the
final results were satisfying.

It is important to highlight what mentioned in the last point: the main outcome of this
simulation is the possibility to recreate real problems of a planetary SLAM in a virtual
environment. Thanks to this result, it is possible to study and analyzing the algorithm
behaviour before its hardware implementation and so correct what needed before the rover
construction, allowing a more economic, both in time and money, construction approach
to planetary rovers.

88 6| Conclusions and future developments

6.1. Simulation problems and possible developments

Even if the thesis has brought to the desired results, it still is a basic level work in some
of its features: the Data Association, the Loop Closure problem and many other areas
can be analyzed in a deeper way in order to improve the quality of the results.
The work done can be developed both in the area of SLAM simulation and also in other
robotics applications. The following sections illustrate some of the main problem of the
current work and their possible improvements and developments.

6.1.1. Data Association problem

As mentioned in chapter 4, the Data Association implemented in this work is a simple,
basic one. This has been done in order simply to test the functioning of the SLAM, but
without focusing on the Data Association problem as the main objective.
More appropriate implementations of the Data Association can be analyzed and adopted
in order to relax some of the assumption made through the work and obtain better and
more robust results.
A possible solution can be the exploitation of other data from the sensor, different from
merely the geometric ones: having both the StereoCam and the Lidar, it is possible to
collect data regarding the reflectivity of the observed surfaces, the direction of the normal
vector to those surfaces or their color. By fusing those information a better and more
robust Data Association can be performed, as in the work by Bogoslavskyi [4]. Figure 6.1
shows different possible data exploitations for solving the Data Association problem:

Figure 6.1: Different sensor data exploitations

6| Conclusions and future developments 89

6.1.2. Different SLAM implemetations

Chapter 1, introduced the SLAM problem and its probabilistic formulation. In chapter
3, the problem has been solved by means of the historically most common method for
solving SLAM problems: the Extended Kalman filter method.
However, the SLAM problem can be solved in its probabilistic form by other methods,
such as the Information filter method or the Unscented Kalman filter method. These
solution exploit different properties of the formulation, bringing to different results, espe-
cially on the computational cost side.
The SLAM can be also formulated in other different ways and solved with methods such
as Particle filters or Graphs Optimization techniques. Many techniques has been imple-
mented and tested during the years and more advanced ones are explored nowadays.
The implementation of one of these techniques instead of the EKF SLAM could bring to
better and more robust results for the entire simulation.

6.1.3. More realistic simulation environment

Once better techniques for the Data Association and for the SLAM solver are available,
it is possible to improve the representation of the real environment inside the simulation.
This can be achieved by modifying the simulation surface with ore detailed features, dif-
ferent light conditions or moving the simulation from a 2D plane to a 3D environment
with different slopes and a rover moving also up and down.
It must be pointed out. however, that these improvements on the reality side of the simu-
lation must be followed by a more powerful hardware on which to perform the simulation.
This is due to the fact that the degrees of freedom are going to increase together with the
more realistic features, increasing the simulation costs by non negligible factors.

6.1.4. Search for increased robustness

The algorithm in this thesis reached its purpose. However, it shows to be not robust
against increased uncertainties or in longer trajectories covered by the rover.
Different trajectories can drive through larger errors depending on the different factors
listed at the end of chapter 5. A more robust version of the algorithm could be achieved
by performing some of the improvements listed in this chapter.

90 6| Conclusions and future developments

6.1.5. Sensor data elaboration

The two sensor explored in this work acquire data in different forms, but both the data
flows are constructed to arrive in the form of point clouds. The point clouds are then elab-
orated in the same way in order to define clusters as landmarks and make the algorithm
run. The algorithm has been tested separately for the StereoCam and the Lidar data.
However, the two data can be elaborated in different ways, for example not transforming
the StereoCam data into point clouds and instead exploiting features like the intensity of
the light observed.
This approach can lead to a sensor-fusion method for the Data Association and the whole
algorithm: in this way different data from the two sensor can be fused together to reach
better and more robust final results.

6.1.6. In loop simulations

The simulation in this work has been divided in three sections, each of them separated
from the others. The collection of data has so been done a priori with respect to the
SLAM implementation. This has been taken into account inside the sensor uncertainty
matrix Q.
A possible different approach could consider merging the three part together, obtaining
the simulation of real time more truthful data acquisition for the sensors. Figure 6.2
shows a possible architecture for this kind of simulations: the simulation environment
outputs feed directly the EKF, which in return feed back the new pose to the simulation
environment and so on.

Figure 6.2: In loop simulation architecture

6| Conclusions and future developments 91

6.1.7. Other applications

The simulation approach proposed has been exploited for SLAM algorithms solutions.
However, this approach can be adopted also for the simulation of other robotic and/or
autonomous task, reconstructing the virtual environment and the dynamics of the robotic
actor between the softwares listed.
For example, a possible application is to combine the planetary SLAM of this work to-
gether with a Path Planning algorithm and so studying the behaviour of a rover which
has to decide both how to move inside an unknown environment, localize itself and map
the environment in order to take the next steps.
Another possible approach is the simulation of SLAM for orbital maneuvers: for example
a spacecraft orbiting a small celestial can be simulated and how its attitude can be de-
termined by the use of a SLAM algorithm.
An example of another similar application is the simulation of the attitude control of
satellite formations or tethered systems based again on a SLAM approach.

6.2. Conclusion

Exposing the possible improvements which can be done on this work in order to obtain
more evolved results, this thesis has come to an end.
As illustrated in all the previous chapters, a realistic simulation environment has been
built with a certain degree of detail. The simulated planetary surface has then been used
to simulated a rover mission exploring it and the sensor acquisitions have been used for
implementing an Extended Kalman filter algorithm.
The results obtained were in line from the results expected, keeping in mind that the whole
SLAM was built with the assumption of not closing any loop. The behaviours of the algo-
rithm parameters has been then analyzed in order to get a deeper knowledge of the results.

In the end, future developments have been suggested, acknowledging that the simulation
architecture here presented is only a starting point for more advanced work and it is far
for a final definitive form.

93

Bibliography

[1] K. S. Arun, T. S. Huang, and S. D. Blostein. Least-squares fitting of two 3-d point
sets. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-9,
1987.

[2] Tim Bailey and Hugh Durrant-Whyte. Simultaneous localization and mapping
(slam): Part ii. IEEE Robotics and Automation Magazine, 13, 2006.

[3] Cesar Cadena, Luca Carlone, Henry Carrillo, Yasir Latif, Davide Scaramuzza, Jose
Neira, Ian Reid, and John J. Leonard. Past, present, and future of simultaneous
localization and mapping: Toward the robust-perception age. IEEE Transactions on
Robotics, 32, 2016.

[4] Bartolomeo Della Corte, Igor Bogoslavskyi, Cyrill Stachniss, and Giorgio Grisetti. A
general framework for flexible multi-cue photometric point cloud registration. 2018.

[5] Hugh Durrant-Whyte and Tim Bailey. Simultaneous localization and mapping
(slam): part i the essential algorithms. Robotics and Automation Magazine, 2, 2006.

[6] David Filliat. A visual bag of words method for interactive qualitative localization
and mapping. 2007.

[7] Yang Li, Wanbiao Lin, Tianjun Zha, Zhenghong Jiang, Peiwen Li, and Lei Sun.
Efficient loop closure detection method for lidar slam in challenging environment.
2021.

[8] J. N. Maki, D. Gruel, C. McKinney, M. A. Ravine, M. Morales, D. Lee, R. Willson,
D. Copley-Woods, M. Valvo, T. Goodsall, J. McGuire, R. G. Sellar, J. A. Schaffner,
M. A. Caplinger, J. M. Shamah, A. E. Johnson, H. Ansari, K. Singh, T. Litwin,
R. Deen, A. Culver, N. Ruoff, D. Petrizzo, D. Kessler, C. Basset, T. Estlin, F. Alibay,
A. Nelessen, and S. Algermissen. The mars 2020 engineering cameras and microphone
on the perseverance rover: A next-generation imaging system for mars exploration.
Space Science Reviews, 216, 2020.

94 6| BIBLIOGRAPHY

[9] Marius Muja and David G. Lowe. Fast approximate nearest neighbors with automatic
algorithm configuration. volume 1, 2009.

[10] Zhuli Ren, Liguan Wang, and Lin Bi. Robust gicp-based 3d lidar slam for under-
ground mining environment. Sensors (Switzerland), 19, 2019.

[11] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic robotics. MIT
Press, 2005.

[12] Alex Zelinsky. Learning opencv—computer vision with the opencv library, 2009.

[13] Qian Yi Zhou, Jaesik Park, and Vladlen Koltun. Fast global registration. volume
9906 LNCS, 2016.

95

A| Implementing the SLAM

This chapter is going to describe how the codes were thought and developed from the sim-
ulation until the EKF SLAM testing. The focus of the chapter is mainly on the Matlab
codes, since the work done with Blender, Unreal Engine and Simulink has already been
well described in chapter 2.4. Here below an example on how the codes are going to be
shown:

1 This is
2 an example
3 code

Listing A.1: Example code

In the next section the codes structure for each of the simulations part is going to be
described and explained.

A.1. Sensor data generation

This section is going to illustrate the implementation of what already described in algo-
rithm 2.3. As a brief recall, this part of the work has the purpose of simulating the rover
movement inside the reconstructed environment and guarantee the storage of the sensors
acquisitions. The main part of this task are achieved by the capabilities of the Simulink
and Unreal Engine simulations, however a Matlab code has been written to facilitate and
automatize this procedure.
The code mentioned has three main purposes:

1. Setup the map dimensions, which are going to be kept from here to the end of the
SLAM simulation;

2. Generate the rover desired trajectory and so the control inputs;

3. Store the data streams from the sensors.

96 A| Implementing the SLAM

The first task is achieved by importing in the Matlab environment a bird-eye view of the
simulation surface and set its dimensions to the one desired:

1 % Generates a 2D projection of the scene with the limiting coordinates
on x and y:

2 sceneImage = imread(’HighresScreenshot00002.png’);
3 imageSize = size(sceneImage);
4 xlims = [-7.5 7.5]; % in meters
5 ylims = [-7.5 7.5]; % in meters
6

7 sceneRef = imref2d(imageSize ,xlims ,ylims);
8

9 sceneRef.XWorldLimits % in meters
10 sceneRef.YWorldLimits % in meters
11

12 hScene = figure;
13 imshow(sceneImage ,sceneRef)
14 title(’2D map projection ’)

Listing A.2: Map dimensions setup

Once the dimensions of the map are set, it is possible to proceed to the second task
and draw manually the trajectory desired. This is achieved by calling a function from
MathWorks, which opens an interface over the bird-eye view of the map and enables the
manual drawing:

1 % Select waypoints to set the trajectory by calling the
helperSelectSceneWaypoints function:

2 hFig = helperSelectSceneWaypoints(sceneImage , sceneRef);

Listing A.3: Drawing of the trajectory

The function is shown in appendix ?? and the result is shown in figure A.1.
After the trajectory waypoints have been saved in the Matlab workspace, the trajectory
is smoothed in order to simulate in a better way a real movement. The smoothed poses
are then transformed into time-series variables and fed to the Simulink and Unreal Engine
models in order to start the data acquisition simulation. Here the simulation time is also
set.
At the same time, the control inputs over each of the steps in the trajectory is computed
by inverting an odometry motion model: from the poses the algorithm computes the dif-
ferent inputs given to the rover.

A| Implementing the SLAM 97

Figure A.1: Rover trajectory drawing

The inverse motion model is shown here:

1 for i=2: length(time)
2 delta_trans_curr = sqrt((x(i)-x(i-1))^2 + (y(i)-y(i-1))^2);
3 if x(i)>x(i-1)
4 delta_trans(i-1) = delta_trans_curr;
5 elseif x(i)<x(i-1)
6 delta_trans(i-1) = - delta_trans_curr;
7 end
8 delta_rot1(i-1) = atan((y(i)-y(i-1))/(x(i)-x(i-1)))- theta(i-1);
9 delta_rot2(i-1) = theta(i)-theta(i-1)-delta_rot1(i-1);

10 end

Listing A.4: Trajectory to Control Input

Where x, y and theta are respectively the variables refPosesX, refPosesY and refPosesT .
The code above is called by the function:

1 [control_input] = odometry_motion_model(refPosesX , refPosesY , refPosesT)
;

Listing A.5: Calling of trajectory to control input

At the end of this section the useful data from the StereoCam and the Lidar are stored
inside the workspace and ready to be analyzed.

98 A| Implementing the SLAM

A.1.1. Sensor data storage

A brief digression on the type of data coming from the simulated sensor is worth at this
point of the thesis in order to clarify what to expect and justify some of the steps which
are going to be followed in the next sections.
The output type from the sensors can be set inside the relative Simulink blocks, as shown
in figure A.2:

Figure A.2: StereoCam and Lidar output data types

As the figure shows, the data from the StereoCam is stored inside two Timeseries vari-
ables: one for the left camera and one from the right camera. At the same time, the data
stream from the Lidar is stored inside a structure of point clouds, one for each of the
acquisitions.
Regarding the StereoCam, in the next steps, a conversion of the data in point clouds is
going to be needed together with the merging of the data coming from the two cameras.
Meanwhile, since the Lidar data are already in the point cloud form, they are ready for
the further elaborations in the second part of the simulation.

A.2. Sensor data to point clouds and landmarks

Algorithm 2.4 describes how the raw data from the sensors are transformed in useful data
for the SLAM simulation.
To do so a division in the process between the Lidar data and the StereoCam data must
be performed, since they require different elaboration techniques.

A| Implementing the SLAM 99

A.2.1. StereoCam data elaboration

As already mentioned in the previous section, the StereoCam data come in the form of
two Timeseries variables, one for each of the two cameras.
The first step for the elaboration of the StereoCam data is to find the camera extrinsic
and intrinsic parameters, step which is done with the calibration procedure described in
section 2.2.4 and which is not going to be repeated here. The results from the calibra-
tion procedure are necessary in the pivotal following step: the Disparity Map computation.

The Disparity Map is a 2D map reduced from a 3D space, in which the brightness of
the gray scaled pixels indicates the distance of the related points from the sensor. The
description of how a disparity map is computed from a couple of stereo images is beyond
the purpose of this thesis. However, it is important to note that it depends on the setup
of a couple of parameters and on a function which is called by the following commands:

1 range = [-16 16]; % First parameter
2 disparityMap_stored = cell(d, 1) ; % Second parameter
3

4 for k = 1:d
5 img1_struct.Data (1:200,:,:,k) = 0; %select the left image at time t
6 img2_struct.Data (1:200,:,:,k) = 0; %select the right image at time t
7

8 % transform the two image in gray scale and rectify them:
9 J1 = im2gray(img1_struct.Data(:,:,:,k));

10 J2 = im2gray(img2_struct.Data(:,:,:,k));
11 [I1 ,I2]= rectifyStereoImages(J1 ,J2 ,stereoParams ,’OutputView ’,’valid ’)

;
12 % compute the Disparity Map:
13 disparityMap = disparityBM(I1,I2 ,’DisparityRange ’,range ,’

UniquenessThreshold ’ ,25);
14 disparityMap_stored{k,1} = disparityMap; %store the result
15 end

Listing A.6: Disparity Map computation

The disparity map computation is fundamental for evaluting the quality of the data gen-
erated and it is going to be necessary for the transformation of the images into useful
point clouds.

The Disparity Map is computed by means of the function:

100 A| Implementing the SLAM

1 disparityMap=disparityBM(I1,I2,’DisparityRange ’,range ,’
UniquenessThreshold ’ ,25);

Listing A.7: Disparity Map Block Matching function

The function used for the Disparity Map computation utilizes an Block Matching algorithm
to which the parameters Range and Uniqueness Threshold have to be fed.
By playing around with the Range and Uniqueness Threshold parameters, it has been
possible to find a satisfying configuration for the Disparity Map computation, as shown
in figure A.3. The Disparity Maps computed at each step were then saved inside a
structure variable.

Figure A.3: Disparity Map

After the Disparity Map computation it is transformed into a point cloud by calling the
function:

1 StereoPt_stored = stereo2pc(disparity_mat , stereoParams);

Listing A.8: Disparity Map to point cloud

Now both the Lidar and StereoCam data are organized in the form of structures of point
clouds variables and their further elaboration can be done simultaneously.

A.2.2. Point clouds clustering in landmarks

Now that both the sensors data are in the form of points cloud, they can be elaborated in
such a way to obtain cluster of points to be identified as landmarks. In order to that an

A| Implementing the SLAM 101

approach based on the Euclidean distance between point, the angular distance between
them and the number of points in each cluster has been adopted. In particular:

• distThreshold indicates the Euclidean distance under which the points of the same
cluster must be;

• angleThreshold indicates the minimum angle of separation between two different
clusters;

• NumClusterPoints indicates the minimum and maximum number of point accepted
for a cluster.

These parameters must be set before calling the following function and cluster the points
inside the sensors point clouds into landmarks:

1 % Parameters setup:
2 distThreshold = 0.005;
3 angleThreshold = 30;
4 NumClusterPoints =[600, Inf]; %only minimum number of points set
5

6 % Lidar point cloud clustering:
7 [ptCloud_Lidar_clustered] = landmarks_clustering_Lidar(ptCloud_Lidar ,

distThreshold ,angleThreshold ,NumClusterPoints);
8

9 % StereoCam point cloud clustering:
10 [ptCloud_Stereo_clustered] = landmarks_clustering_Stereo(StereoPt_stored

,distThreshold ,angleThreshold ,NumClusterPoints);

Listing A.9: Point cloud clustering

Here the detailed functioning of the function is not illustrated, however it can be found
on MathWorks website []. Also in this case, the different tuning of the three parameters
brings out different results in the clustering, with a number of landmark identified pro-
portional to the strictness of the parameters chosen.
The outcomes from the different setups is illustrated in chapter ??, while figure A.4 illus-
trates an example of clustering.

The figure shows also the problem illustrated in the chapter 4.1.3: between the clusters
it is possible to clearly distinguish parts of the rover as, for example, the wheels. These
are the parts that need to be filtered out before proceeding with the Data Association.
Once the clusters, or landmarks, are defined, it is possible to proceed with the identifica-

102 A| Implementing the SLAM

Figure A.4: Clusters example

tion of the landmark geometric centre and its coordinates.

A.2.3. Landmarks coordinates

The following step is a simple geometric computation of the center point coordinates of
each of the clusters. This computation is achieved by the steps here below:

1 for i = 1:size(ptCloud_Lidar_clustered ,2)
2 for k=1: ptCloud_Lidar_clustered(i).numClusters
3 pc_current = select(ptCloud_Lidar_clustered(i).pt_cloud ,find(

ptCloud_Lidar_clustered(i).labels == k));
4 s = pc_current.Count;
5 x_centre = sum(pc_current.Location (:,1)/size(pc_current.Location

(:,1) ,1));
6 y_centre = sum(pc_current.Location (:,2)/size(pc_current.Location

(:,2) ,1));
7 z_centre = sum(pc_current.Location (:,3)/size(pc_current.Location

(:,3) ,1));
8 theta = atan(y_centre/x_centre)*(180/ pi); %[deg]
9 end

10 end

Listing A.10: Landmark center coordinates

Each of the coordinates computed is then stored in the same structure where each point
cloud is stored, in a dedicated field for the coordinates of each of the landmarks in every
point cloud. At this point the set of the total number of acquired point clouds from the

A| Implementing the SLAM 103

sensors is available, together with the coordinates in the rover local frame of the land-
marks inside them.
It is now possible to move on in the actual EKF SLAM algorithm simulation.

A.3. Extended Kalman Filter SLAM implementation

Now that the control inputs and the clustered point clouds re available, the SLAM algo-
rithm can be implemented and tested.
First of all, a variable initialization is required before the start of the actual algorithm:

1 % Sensor acquisition:
2 load(’clustered_landmarks.mat’)
3

4 % Control Input:
5 load simulation_data.mat control_input
6

7 % Initialize mean and covariance:
8 N = 50;
9 INF = 1000;

10

11 observedLandmarks = repmat(false ,1,N); % Observed landmarks vector
12 mu = repmat ([0.0] , (2*N+3), 1); % Mean
13

14 robSigma = zeros (3);
15 robMapSigma = zeros (3,2*N);
16 mapSigma = INF*eye(2*N);
17 sigma = [[robSigma robMapSigma];[robMapSigma ’ mapSigma]]; %Covariance

Listing A.11: EKF SLAM initialization

As can be noted, the dimension of the mean vector and the square covariance matrix is
set to (2N+3), with a sufficiently big number N of forecasted landmarks in order to avoid
landmarks labelled with a number bigger the maximum number accepted N .
The diagonal elements of the covariance matrix from the fourth row on are set to an high
value in order to simulate the total uncertainty about them at the starting point of the
simulation (theoretically they must be +∞ at this point).

After this preliminary step, it is possible to proceed with the Extended Kalman filter
algorithm itself. As shown in algorithm 3.3, the EKF SLAM is a recursive procedure,

104 A| Implementing the SLAM

repeating the prediction step and the correction step at each iteration. This recursion is
represented by a FOR loop in which the steps alternates themselves:

1 for i = 2:%(number of point clouds)
2 u.d_rot1 = control_input.drot1(i-1);
3 u.d_trans = control_input.dtrans(i-1);
4 u.d_rot2 = control_input.drot2(i-1);
5

6 % error introduction:
7 amplitude = 0.01;
8 u.d_trans = control_input.dtrans(i-1) + amplitude*randn (1,1);
9

10 % Prediction step:
11 [mu , sigma] = prediction_step(mu, sigma , u);
12

13 % Data association:
14 pc_first = ptCloud_Lidar_clustered_landmarks(i-1);
15 pc_current = ptCloud_Lidar_clustered_landmarks(i);
16

17 [pc_first] = filter_out_rover (pc_first);
18 [pc_current] = filter_out_rover (pc_current);
19

20 [R, T] = ls_arun_huang(pc_first , pc_current);
21 [id_def , score] = observed_landmarks(pc_first , pc_current , R, T);
22 [z] = observation_association(pc_current ,id_def);
23 [z, associations] = best_association (id_def ,score , pc_current);
24

25 % Correction step:
26 [mu , sigma , observedLandmarks] = correction_step(mu_n , sigma_n , z,

observedLandmarks);
27

28 sprintf(’iteration number: %f’,i)
29 end

Listing A.12: EKF SLAM loop

The first steps introduce the control input in a more useful structure array form, fol-
lowed by the introduction of an error over the control. The error is reproduced as a
random variation over the translation control input. This variation is constrained be-
tween [−0.01, 0.01] meters.

A| Implementing the SLAM 105

A.3.1. Prediction step

The prediction step procedure is introduced in line 11 of the previous code by calling a
dedicated function. The function operates in the following manner:

1 function [mu , sigma] = prediction_step(mu , sigma , u)
2

3 nn = length(mu);
4 F_x = [eye(3), zeros(3,nn -3)];
5

6 d_rot1 = u.d_rot1;
7 d_trans = u.d_trans;
8 d_rot2 = u.d_rot2;
9

10 theta_prev = mu(3);
11

12 % Reconstruct the motion from the control inputs:
13 motion = [d_trans * cos(mu(3)+d_rot1); d_trans * sin(mu(3)+d_rot1);

d_rot1 + d_rot2];
14 S = F_x ’;
15 mu = mu + (F_x ’)* motion;
16 [theta] = normalize_angle(mu(3));
17 mu(3) = theta;
18

19 % Compute the 3x3 Jacobian Gx of the motion model
20 a = -d_trans * sin(theta_prev + d_rot1);
21 b = d_trans * cos(theta_prev + d_rot1);
22 Gx_t = [0 0 a; 0 0 b; 0 0 0];
23 G = eye(nn) + (F_x ’)*Gx_t*F_x;
24

25 % Motion noise
26 motionNoise = 0.01;
27 R3 = [motionNoise , 0, 0;
28 0, motionNoise , 0;
29 0, 0, motionNoise /10];
30 R = zeros(size(sigma ,1));
31 R(1:3 ,1:3) = R3;
32

33 % Compute the predicted sigma after incorporating the motion
34 sigma = G .* sigma .* G’ + R;
35 end

Listing A.13: Prediction step

106 A| Implementing the SLAM

As already mentioned in section 3.4.3, a matrix Fx is introduced at the beginning of the
algorithm. The structure of the matrix in shown in algorithm 3.3 and here it can be noted
how its structure is exploited to allow easier updates of the mean vector µ by simple ma-
trix multiplications.
The motion model described in section 3.4.1 is then applied to the mean vector, updating
only the first three elements (the robot pose) thanks to the multiplication by matrix Fx.
The code lines from 19 to 23 build up the Jacobian matrix G of the motion model and,
after the Gaussian motion noise matrix R, the covariance matrix Σ can be updated fol-
lowing the rules again of algorithm 3.3.

A.3.2. Data Association

Lines 13 to 23 of the SLAM loop code tackle the Data Association problem with the
procedure explained in chapter 4. The first action is to select the currently seen point
cloud and the one seen before in order to confront them, subsequently the rover parts and
the landmarks too far from it are filtered out from both the point clouds in lines 17 and
18. The filtering of the rover parts is described here:

1 a = -2; % [m]
2 b = +2; % [m]
3

4 for i = 1: pc_current.numClusters
5 xl = pc_current.landmarks(i).xc;
6 yl = pc_current.landmarks(i).yc;
7 zl = pc_current.landmarks(i).zc;
8

9 if xl>a & xl <b
10 if yl>a & yl <b
11 wrong = [wrong , i];
12 end
13 end
14 end

Listing A.14: Filtering out the rover

The procedure to remove also distant obstacles is identical to this, except for the distance
threshold values. Once the rover is filtered out, the Huang-Arun algorithm is applied in
order to obtain the rotation matrix R and the translation vector t⃗ between the two point
clouds. The computation of these two elements is done following the exact procedure
illustrated in algorithm 4.2, so it is not going to be shown here in its code form.

A| Implementing the SLAM 107

After that the core of the Data Association is presented: from line 21 to 23 the list of
observed landmarks is computed together with each score, then the associations are done
and the final best association is selected. Line 21 introduces the function:

1 [id_def , score] = observed_landmarks(pc_first , pc_current , R, T);

Listing A.15: Observed landmarks function

This function has the aim of firstly superposing the two point clouds and secondly, for
each cluster in the current point cloud, scans the clusters of the previous point cloud in
order to assign a score to each possible association. This is achieved by:

1 for i = 1: pc_first.numClusters
2 for k = 1: pc_current.numClusters
3 land1 = select(pc_first.pt_cloud ,find(pc_first.labels == i));
4 l1 = land1.Location;
5 land2 =select(pc_current.pt_cloud ,find(pc_current.labels == k));
6 l2 = land2.Location;
7 [m,n] = size(l2);
8

9 l_back = [];
10 for l = 1:m
11 l_back(l,:) = (-T + R\l2(l,:) ’)’;
12 end
13 l1 = pointCloud(l1);
14 l2 = pointCloud(l_back);
15

16 B = squeeze(l1.Location);
17 features1 = double(B);
18 features2 = l2.Location;
19

20 [indexPairs , scores] = pcmatchfeatures(features1 ,features2);
21

22 [z,m] = size(indexPairs);
23 if z <= 300
24 scores = NaN;
25 end
26

27 score_now = mean(scores);
28 score(i,k) = score_now;
29 end
30 end

Listing A.16: Cluster association scoring

108 A| Implementing the SLAM

At the beginning a FOR loop in initialized where each of the clusters in the current point
cloud is selected and iteratively compared with all the clusters observed in the previous
point cloud. A particular attention on the form of the data must be paid since the point
clouds and the clusters are now in the form of ordered point clouds variables. This is
going to be important in the next steps.
Lines 9 to 14 apply the rotation matrix R and translation vector t⃗ to the current point
cloud in order to move it back over the previous point cloud. In order to do so the struc-
ture of the data must be changed and then put again in the form of ordered point clouds
variables. This is done and refined with the help of lines 16 to 18.
At this point the comparing between the cluster is done by means of a Fast Approximate
Nearest Neighbors algorithm [9], or Fast Global Registration algorithm [13], thanks to the
function:

1 [indexPairs , scores] = pcmatchfeatures(features1 ,features2);

Listing A.17: Matching features function

At this stage, the variables indexPairs and scores obtained are in the form:

• indexPairs is a m x 2 matrix in which elements in the first column indicates the
indexes of points in the current point cloud matching the indexes in the second
column of points in the second point cloud;

• scores is a column vector containing the Euclidean distance between each of the
couples of points contained in indexPairs.

The following IF cycle throws away the scores of the matchings in which the number of
matching points is less than a certain threshold, setting the score to be a Not a Number
value. For each of the matchings compared a mean value of the scores is then computed
and stored in the variable scorenow. The value found is the score considered afterwards
to evaluate the association between the landmark i in the previous point cloud and the
landmark k in the current point cloud observed. It is stored in the variable score.
The second part of the function is then run: the column of the variable score are scanned
and for each column the minimum value between the scores is found together with its
index. So for each landmark in the current point cloud the minimum score is selected and
a first association with a landmark in the previous point cloud is found. After this step
a check is performed to match the dimensions of the matrix containing the associations
found at each step since the number of landmarks changes from an acquisition to the
other.
This part of the function is shown here:

A| Implementing the SLAM 109

1 [dd ,ff] = size(score);
2 id = [];
3 for h = 1:ff
4 c = min(score(:,h));
5 id_c = find(score(:,h)==c);
6 id = [id , id_c ’];
7 end
8

9 [s,t] = size(id_def);
10 if s < length(id)
11 gg = length(id) - s;
12 for f = 1:gg
13 id_def(end+1,:) = 0;
14 end
15 elseif s > length(id)
16 gg = s - length(id);
17 for u = 1:gg
18 id(end+1) = 0;
19 end
20 end
21

22 id_def = [id_def , id ’];

Listing A.18: Cluster scoring evaluation

The variable id def now contains the associations found as shown in figure A.5. The
first column contains the landmarks of the previous point cloud and the second column
contains the number of the landmark in the current point cloud associated with each of
them. The null values in the second column indicate that no association has been found
for those landmarks.

Figure A.5: First associations storage variable

110 A| Implementing the SLAM

As can be noted, some values in the second column repeat themselves more than one
time: this means that different landmarks in the current data set have been associated
to the same landmark in the previous data set because it is the best associated landmark
for all of them. This phenomenon can not be accepted, since it is going to afflict in a bad
manner the correction step: the state of a landmark would be corrected more than one
time for a single observation and it is not acceptable.
A strategy to avoid the repeating of the association to the same landmark has been
adopted is not necessary here since in the following lines the Data Association is completed
by assigning the associations to the landmarks and then select only the best association
based on the score.
For each point cloud observed only one landmark is so used as a Data Association indi-
cator to be inserted inside the correction step.

A.3.3. Correction step

After the Data Association is solved, the algorithm tackles the correction step of the Ex-
tended Kalman filter SLAM. This step in solved by the function:

1 [mu , sigma , observedLandmarks] = correction_step(mu, sigma , z,
observedLandmarks);

Listing A.19: Correction step function

The function receives as inputs the mean vector µ̄ and the covariance matrix Σ̄ both con-
taining the prediction step updates, together with the observation vector z containing the
only associated landmark and the variable observedLandmark which serves as memory
for saving the identity of the landmark seen.
The internal structure of the function follow the second part of algorithm 3.3 in chapter
3, from step 5 to the end as shown in code A.21.
In line 53 of A.21 the matrix of measurement uncertainty is computed:

1 Q = 200* eye (2*m+3);

Listing A.20: Measurements uncertainty matrix

The value of the diagonal terms in matrix Q as been set high: this is done to simulate
the fact that we are really uncertain about the measurements updates, considering the
low level data association, and we want to weight the correction step importance inside
the algorithm less than the one of the prediction step.

A| Implementing the SLAM 111

1 % Number of measurements in this time step
2 [nn , ll] = size(mu);
3 m = size(z.id, 2);
4

5 Z = zeros(m*2 +3, 1);
6 expectedZ = zeros(m*2 +3, 1);
7 H = [];
8

9 for i = 1:m
10 % Get the id of the landmark corresponding to the i-th observation
11 landmarkId = z.id(i);
12 z.bearing(i) = normalize_angle(z.bearing(i));
13 % If the landmark is obeserved for the first time:
14 if(observedLandmarks(landmarkId)== false)
15 % Initialize its pose in mu based on the measurement and the current

robot pose:
16 mu(2* landmarkId +2) = mu(1) + z.range(i) * cos(z.bearing(i) + mu(3));
17 mu(2* landmarkId +3) = mu(2) + z.range(i) * sin(z.bearing(i) + mu

(3));
18 % Indicate in the observedLandmarks vector that this landmark has

been observed
19 observedLandmarks(landmarkId) = true;
20 end
21

22 % Add the landmark measurement to the Z vector
23 Z(2*i+2) = z.range(i);
24 Z(2*i+3) = z.bearing(i);
25

26 % Use the current estimate of the landmark pose
27 % to compute the corresponding expected measurement in expectedZ:
28 delta = [mu(2* landmarkId +2) - mu(1); mu(2* landmarkId +3) - mu(2)];
29 q = delta ’*delta;
30 expectedZ (2*i+2) = sqrt(q);
31 angle = atan(delta (2)/delta (1)) - mu(3);
32 expectedZ (2*i+3) = angle;
33

34 low_Hi = (1/q)*[-sqrt(q)*delta (1) -sqrt(q)*delta (2) 0 sqrt(q)*delta
(1) sqrt(q)*delta (2);

35 delta (2) -delta (1) -q -delta (2) delta (1)];
36 k = nn;
37 L = zeros ([2 k]);
38 L(1, 2* landmarkId +2) = 1;
39 L(2, 2* landmarkId +3) = 1;
40 Fx_j = [eye(3), zeros(3,nn -3); zeros (2,3), L(:,4:end)];

112 A| Implementing the SLAM

41 Hi = low_Hi*Fx_j;
42 % Augment H with the new Hi
43 H = [H;Hi];
44 end
45

46 H_up = zeros(3,nn);
47 H = [H_up; H];
48 H(1,1) = 1;
49 H(2,2) = 1;
50 H(3,3) = 1;
51

52 % Construct the sensor noise matrix Q
53 Q = 200* eye (2*m+3);
54

55 % Compute the Kalman gain
56 K = sigma*H’*inv(H*sigma*(H’) + Q);
57

58 mu = mu + K*(Z - expectedZ);
59 sigma = (eye (103) - K*H)*sigma;
60 mu(3) = normalize_angle(mu(3));

Listing A.21: Correction step

After the correction step function only few steps remain in the algorithm. They are ded-
icated to the storage of the several variables, for the preparation of the variables for the
plots and for the computation of the error between the EKF SLAM trajectory and the
nominal non-noisy trajectory desired.

113

List of Algorithms
2.1 Rover trajectory drawing . 26
2.2 Odometry motion model . 27
2.3 Simulation Part 1: sensor data generation 32
2.4 Simulation Part 2: sensor data to point cloud and landmarks 32
2.5 Simulation Part 3: Extended Kalman Filter SLAM 33
3.1 Kalman Filter . 39
3.2 Extended Kalman Filter . 43
3.3 Extended Kalman Filter SLAM . 50
4.1 Data Association procedure . 58
4.2 Least-Squares Fitting of Two 3-D Point Sets 59

115

Listings
4.1 Matching features function . 60
A.1 Example code . 95
A.2 Map dimensions setup . 96
A.3 Drawing of the trajectory . 96
A.4 Trajectory to Control Input . 97
A.5 Calling of trajectory to control input . 97
A.6 Disparity Map computation . 99
A.7 Disparity Map Block Matching function 100
A.8 Disparity Map to point cloud . 100
A.9 Point cloud clustering . 101
A.10 Landmark center coordinates . 102
A.11 EKF SLAM initialization . 103
A.12 EKF SLAM loop . 104
A.13 Prediction step . 105
A.14 Filtering out the rover . 106
A.15 Observed landmarks function . 107
A.16 Cluster association scoring . 107
A.17 Matching features function . 108
A.18 Cluster scoring evaluation . 109
A.19 Correction step function . 110
A.20 Measurements uncertainty matrix . 110
A.21 Correction step . 111

117

List of Figures

2.1 Nodes in Blender shading section . 16
2.2 Mars ground reproduction . 16
2.3 Examples of rocks created in Blender . 17
2.4 Final render of Mars surface (detailed version with hills and slopes) 19
2.5 Simulation 3D Actor Transform Set block and Unreal Engine actor 22
2.6 Lidar sensor in Simulink and Unreal Engine 23
2.7 StereoCam sensor in Simulink and Unreal Engine 24
2.8 StereoCam calibration . 25
2.9 Rover trajectory drawing . 26
2.10 Odometry motion model . 27
2.11 StereoCam and Lidar output data types 28
2.12 Disparity Map . 30
2.13 Clusters example . 31
2.14 Simulink simulation model . 33
2.15 Simulation architecture . 34

3.1 Online SLAM . 35
3.2 Full SLAM . 36
3.3 Kalman filter functioning . 40
3.4 Graphical representation of linearization 42
3.5 Covariance filling evolution . 52
3.6 Landmarks correlation . 53
3.7 Uncertainties evolution in SLAM . 54
3.8 Landmark covariance, limit case . 54
3.9 Loop Closure in SLAM . 55

4.1 Examples of associated landmarks . 61

5.1 Lidar point cloud visualization . 64
5.2 Lidar point cloud visualization zoomed . 65
5.3 Stereo image from the left and right camera 65

118 | List of Figures

5.4 StereoCam left and right image comparison 66
5.5 Stereo Anaglyph Graph . 67
5.6 Disparity map changes with Range and Uniqueness Threshold 68
5.7 StereoCam point cloud result in OpenCV 69
5.8 StereoCam point cloud result in Matlab . 69
5.9 Cluster changes with the parameters setup 70
5.10 First cluster comparison . 71
5.11 Landmarks geometric centre visualization 72
5.12 Landmarks number variation with Euclidean Distance Threshold 72
5.13 Landmarks number variation with Angular Threshold 73
5.14 Nominal trajectory drawing . 74
5.15 Nominal trajectory and Noisy trajectory 75
5.16 Error in time between nominal and noisy trajectory 76
5.17 EKF SLAM trajectory . 76
5.18 EKF SLAM trajectory in detail . 77
5.19 EKF SLAM error . 78
5.20 EKF SLAM error comparison . 79
5.21 EKF SLAM, different Q comparison . 81
5.22 EKF SLAM errors with distance . 84
5.23 EKF SLAM error with trajectory shape . 85
5.24 Expected errors for different path shapes 86

6.1 Different sensor data exploitations . 88
6.2 In loop simulation architecture . 90

A.1 Rover trajectory drawing . 97
A.2 StereoCam and Lidar output data types 98
A.3 Disparity Map . 100
A.4 Clusters example . 102
A.5 First associations storage variable . 109

119

List of Tables

2.1 Lidar parameters . 23
2.2 StereoCam parameters . 24

3.1 EKF and KF comparison . 43

5.1 Values of Q and respective errors . 80

121

List of Symbols

Variable Description SI unit

EKF Extended Kalman Filter -

KF Kalman Filter -

SLAM Simultaneous Localization and Mapping -

CML Concurrent Mapping and Localization -

µ Mean vector -

Σ Covariance matrix -

µ̄ Predicted Mean vector -

Σ̄ Predicted Covariance matrix -

K Kalman Gain -

R Motion uncertainty matrix -

Q Measurement uncertainty matrix -

z Sensors measurements -

u Control input -

x Rover state vector -

m Map -

g Motion model function -

G Jacobian of the motion model -

h Measurement model function -

H Jacobian of the measurement model -

P () Probability of... -

b Stereo Baseline m

f.o.v. Field of View °

t Time s

123

Acknowledgements

First of all, I would like to thank my advisor, professor Mauro Massari, for the oppor-
tunity he gave me with this thesis and for all the help he gave me during these months.
This work has opened my eyes on several interesting engineering topics and space research
areas I would have never explored by myself.

I would like to thank my family: my sister, my mother and my father, for all the support
given to me in these years. A special thought goes to my grandparents Anna and Benito,
they have always been my lighthouse in the world of knowledge since I was a kid.
A big thank you goes to my colleagues at university: Filippo, Lorenzo, Davide, Alessandro
and Marcello. They have always been there for help with university subjects and I have
plenty of good memories with them.
Incredible amount of appreciation goes to my friends who have been with me for more
than a decade: Tex, Diego, Rave, Nando and Jonny, your contribution has been priceless.
A special thank you goes to Rudolf, for sure my Kalman Filter master. Impossible to
forget to thank my friend Anita for the many hours spent at listening my complaints and
thanks also to my surf buddy Elisa. Thanks to all friends who helped me in these years.
Incredible thanks to Niccolò, Giulia and Berse: my guides in the adulthood matters.
Thanks to Ksenia, Giorgio, Toma, Gabriel and Giorgio, the best duckies in the world.

It is impossible to quantify the amount of thanks I owe to a special person who I have
the fortune to have in my life: for every up and down of this master degree, since that
afternoon during the pandemic and even before, thank you Gloria for standing by me.

The work presented in this thesis is the conclusion of a long path. However, I prefer to
see it as the starting point for something bigger and just the beginning of my learning
process: I would so like to thank professors Marco Quadrelli and Krisptopher Wehage to
have accepted me as a colleague in their research team at Jet Propulsion Laboratory for
the next months. Dare mighty things

124 | Acknowledgements

125

Ringraziamenti

Prima di tutto, vorrei ringraziare il mio relatore, professore Mauro Massari, per l’opportunità
datami con questa tesi e per tutto l’aiuto datomi in questi mesi. Questo lavoro mi ha
aperto gli occhi su numerosi argomenti di ricerca che mai avrei approfondito da solo e che
mi hanno affascinato.

Vorrei ringraziare la mia famiglia: mia sorella, mia madre e mio padre, per tutto il sup-
porto datomi in questi anni. Un pensiero speciale va ai miei nonni, Anna e Benito, che
da sempre sono stati il mio faro nel mondo della conoscenza.
Un grande grazie va ai miei compagni di università: Filippo, Lorenzo, Davide, Alessandro
e Marcello. Sono sempre stati presenti quando avevo bisogno in università e ho un sacco
di bei ricordi con loro.
Un incredibile grazie va ai miei amici da sempre: Tex, Diego, Rave, Nando e Jonny, il
vostro aiuto è stato incommensurabile. Un grazie speciale a Rudolf, il mio mastro del
Kalman Filter. Non posso non ringraziare Anita, per le mille ore spese ad ascoltare le mie
lamentele, e un grazie va anche ad Elisa, la mia surf buddy preferita. Grazie a tutti gli
amici che mi hanno aiutato in questi anni. Un grazie infinito a Niccolò, Giulia e Berse: le
mie guide nel mondo degli adulti. Grazie mille anche a Ksenia, Giorgio, Toma, Gabriel e
Giorgio, le migliori paperelle del mondo.

Non posso quantificare quanti grazie devo ad una persona speciale che ho la fortuna di
avere nella mia vita: per ogni alto e basso di questa laurea magistrale, da quel pomeriggio
durante la pandemia e fin da prima, grazie Gloria per stare al mio fianco ogni giorno.

Il lavoro di questa tesi rappresenta la conclusione di un lungo percorso. Tuttavia, mi piace
vederlo come un punto di partenza per qualcosa di più grande e come l’inizio del mio
percorso di conoscenza. Voglio così ringraziare i professori Marco Quadrelli e Kristopher
Wehage per avermi accettato come collega per i prossimi mesi nel loro gruppo al Jet
Propulsion Laboratory.

	Abstract
	Sommario
	Contents
	Introduction
	The need of a planetary SLAM
	The SLAM problem
	History of SLAM
	State of the Art
	Classical formulation of SLAM

	The Data Association problem
	Data Recognition
	Data Association
	Loop Closure

	Planetary SLAM
	Planetary environment
	Available sensors
	Computational resources

	Thesis objective
	Thesis structure

	Simulation environment
	Simulating Mars
	Simulation softwares
	Blender
	Unreal Engine
	Simulink
	Simulink-Unreal Engine link configuration

	Sensor data elaboration
	Sensor data to point clouds and landmarks

	Simulation Architecture

	Extended Kalman Filter SLAM
	Probabilistic SLAM
	The Kalman Filter
	The Extended Kalman Filter
	Extended Kalman Filter SLAM
	Motion model
	Measurement model
	Prediction step
	Correction step
	Unknown Correspondences

	Extended Kalman Filter SLAM properties
	Fully populated Kalman gain
	Uncertainties evolution
	Loop Closure

	EKF with unknown Data Association
	Unknown Data Association
	Rover filtering
	Huang-Arun algorithm
	Best features matching

	Results
	Simulation outputs
	Lidar acquisition
	StereoCam acquisition

	Landmarks identification outputs
	EKF SLAM outputs
	Nominal trajectory of the rover
	Noisy trajectory
	Extended Kalman Filter SLAM introduction
	EKF SLAM Sensor uncertainty matrix Q dependence
	EKF SLAM error with distance
	EKF SLAM error with trajectory shape

	Conclusions and future developments
	Simulation problems and possible developments
	Data Association problem
	Different SLAM implemetations
	More realistic simulation environment
	Search for increased robustness
	Sensor data elaboration
	In loop simulations
	Other applications

	Conclusion

	Bibliography
	Implementing the SLAM
	Sensor data generation
	Sensor data storage

	Sensor data to point clouds and landmarks
	StereoCam data elaboration
	Point clouds clustering in landmarks
	Landmarks coordinates

	Extended Kalman Filter SLAM implementation
	Prediction step
	Data Association
	Correction step

	List of Algorithms
	Listings
	List of Figures
	List of Tables
	List of Symbols
	Acknowledgements
	Ringraziamenti

