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1. Introduction
The number of artificial materials around the
Earth, no longer functional for operative appli-
cations, has gradually increased since the start
of space activity.
LEO represents the most adopted region for re-
mote sensing, imaging, and commercial applica-
tions due to its close proximity to the Earth.
The intensive usage of this space sector trans-
forms it into a bullets depository. Furthermore,
the proliferation of space junk continues essen-
tially unabated owing to rocket bodies, paint
flecks, mission-related payloads, and fragments
resulting from previous collisions.
The situation in the GEO ring is widely differ-
ent because, as far as it is known, the debris
spatial density is lower than in some LEO alti-
tudes. The reason relies on the lower number of
space missions that interest this region and on
the higher distance that gives a higher resident
volume. However, the total number of operating
objects is overwhelming, and different actions
have been taken to cope with this problem at a
global level.
Among them, this work focuses on computa-
tionally efficient Collision Avoidance Maneuvers
(CAMs) in LEO and GEO to make a step for-

ward toward onboard planning. During CAM
design, the Probability of Collision (PoC) and
the required ∆v are minimized. One peculiar
aspect of the GEO regime is the satellites slot
allocation defined by sharp values of latitude
and longitude, also called station-keeping boxes.
They must be respected for the entire operative
life. For this reason, satellites are forced to fre-
quently perform station-keeping cycles to coun-
teract the perturbation effects on their nominal
orbits.
This work initially addresses analytical CAM
with a formulation stemmed from [1], by care-
fully planning the re-enter to the nominal trajec-
tory for the LEO scenario. Bearing in mind that
none of the current existing strategies for ma-
neuver execution includes station-keeping, the
second part of the research is a procedure capa-
ble to solve the EOP associated to SK maneu-
ver including an eventual CAM, still featuring
an analytical solution.

2. Fundamentals
This section describes the theoretical back-
ground needed to the analytical CAM formula-
tion.
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2.1. Conjunction definition
The CAM design process starts considering the
short-term encounter between a satellite and de-
bris. The controllable object (in the following
called primary object) is described by a state
xp = [rp;vp] while debris (secondary object) is
identified by the state xs = [rs;vs]. In this equa-
tions, ri and vi are the position and the velocity
of the centre of mass of the single object mea-
sured in a generic reference ℜ̂.
To compute the collision probability, it is useful
to introduce a coordinate system called B-Plane.
The origin of this frame lies at the centre of the
secondary object at the time of closest approach
as depicted in Fig. 1, with the following axes
direction:

uξ =
vp × vs

||vp × vs||
, uη =

vp − vs

||vp − vs||
, uζ = uξ × uη

(1)

Figure 1: BPlane source [1]

Consequently, the position vector in the B-Plane
reference frame is identified as b3D = [ξ, η, ζ]⊤.
The rotation matrix to pass from the inertial
reference to the B-Plane one is defined as:

Rb,3D = [uξ,uη,uζ ]
⊤ (2)

Additionally, the projection on the η axis is
given by:

Rb,2D = [uξ,uζ ]
⊤ (3)

Consequently, the 2D position vector in the B-
Plane is defined as b = [ξ, ζ]⊤.

2.2. Chan’s PoC model
PoC between the primary and secondary ob-
jects experiencing a short-term conjunction can
be obtained by integrating the relative position
probability density function over a sphere of ra-
dius RA (i.e. the hard body sphere given by the

summed primary and secondary radii) at TCA.
This assumption is made up for the lack of infor-
mation about attitude and geometry, especially
for the secondary object [2]. Assuming that
the relative probability distribution function is
Gaussian, an approximated collision probability
is obtained with the Chan’s method of equiva-
lent cross sectional areas:

PoC(u, v) = e−
v
2

∞∑
m=0

vm

2mm!

[
1− e−

u
2

m∑
k=0

uk

2kk!

]
(4)

Where u is the ratio of the impact cross-sectional
area to the 1σ B-Plane covariance ellipse area:

u =
s2A

σξσζ
√
1− ρ2ξζ

(5)

and v is the Squared Mahalanobis Distance
(SMD):

v = (rp − rs)
⊤R⊤

b,2DC
−1Rb,2D(rp − rs) =

= b⊤
p C

−1bp

(6)

where: C is the covariance matrix, and bp is the
primary object position relative to the secondary
object in the B-Plane framework.

2.3. Dynamics
The dynamics of space objects in the approxima-
tion of a two body encounter can be formulated
in terms of the equation of motion:

r̈ = − µ

r3
r (7)

where r is the object position in ECI reference.
Developing this equation in a state matrix form,
and introducing the control acceleration ac, the
two-body dynamics can be rewritten as:{

ṙ = v

v̇ = − µ

r3
r+ ac

(8)

This model can be used to implement the CAM
in LEO. In the thesis work, the keplerian model
is also adopted using as state the classical orbital
elements. With reference to the CAM design in
GEO, the geopotential perturbation is the ma-
jor responsible for deviating a satellite from the
nominal trajectory. Specifically, the associated
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power series is indeed expanded up to the J22
term. Therefore, the system dynamics becomes:{

ṙ = v

v̇ = − µ

r3
r+ ac + ageo

(9)

where ageo = f(r, ψ, λ), r is the radial distance,
ψ is the geocentric latitude, and λ is the geocen-
tric longitude in polar coordinates (for ageo see
[3]). The previous dynamical model is rerframed
using the Equinoctial Orbital Elements (EOE).
The mathematical formulation of the linearized
dynamics can be seen in [4] and leads to.

ẋ = A(t)x+D(t) +B(t)u (10)

where:
A(t) = Akep(t) +AJ2(t)

D(t) = Dkep(t) +DJ2(t)
(11)

2.4. State Transition Matrix
Given the non-linear dynamics described in the
previous section, the STM labelled as Φ allows
to map an arbitrary state variation at a certain
time t0 to a final one at tf according to the fol-
lowing equation:

δxf = Φδx0 (12)

For time-varying systems, Φ(t, t0) can be found
by integrating the following equation:

Φ̇(t, t0) = A(t)Φ(t, t0), Φ(t0, t0) = I (13)

where Φ(t0, t0) is the initial condition and A(t)
is the state matrix obtained by means of a
linearization of the dynamical system f(x, t)
around the nominal trajectory xn:

A =
∂f(x, t)

∂x

∣∣∣∣
xn

(14)

3. LEO EOP Design
The LEO design is subdivided in two control
strategies. The first is based on cartesian coor-
dinates and fixes the final state after the maneu-
ver. The second one adopts orbital elements and
imposes the re-entry at any point of the orbit.

3.1. Point to Point
The main objective of CAMs is to minimize
both the PoC and the propellant consumption
through the definition of a cost function J :

J := νΨ(tca,x(tca)) +

∫ tf

ti

1

2
ac

Tacdt (15)

where: Ψ represents the interior point equality
constraint on the SMD at the time of closest ap-
proach (tca).
Thanks to the Pontryiagin’s maximum princi-
ple, the optimal control solution can be founded
by solving the following Multy Point Boundary
Value Problem (MPBVP):

ṙ = v

v̇ = −mu
r3

r− λv

λ̇r =
µ

r3
λv − 3µrTλv

r5
r

λ̇v = −λr

x(t0) = x0

x(tca−) = x(tca+)

ν
∂Ψ

∂x̃(tca)
− λT (t−ca) + λT (t+ca) = 0

x(tf ) = xf

Ψ(tca) = 0

(16)

The problem requires to find the initial co-state,
λr0 and λv0 , and the value of the multiplier ν. In
order to perform this operation analytically, It
is necessary to approximate the model dynamics
through a linearization. This operation is per-
formed thanks to the STM applied on the two
trajectory segments interspersed by the TCA.
The procedure leads to the expression of the ini-
tial co-state as a function of ν. After algebraic
operations, the multiplier can be found by solv-
ing the fourth-degree equation 17:

ν2bimp
TZTC−1Zbimp+

− νbimp
T [ZTC−1 +C−1Z]bimp =

det(I− νU)2SMD − bimp
TC−1bimp

(17)

All the terms expressed in the Eq.17 can be rep-
resented as function of known quantities thanks
to the STM.

3.2. Point to Orbit
The procedure adopted is similar to the one de-
scribed in Sect. 3.1. The objective is to mini-
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mize the following functional:

J := νΠ(tca,x(tca)) +

∫ tf

ti

1

2
ac

Tacdt (18)

where Π represents again the interior point
equality constraint on the SMD.
The main difference compared to the previous
method lies in the terminal constraints. In fact,
to fix the orbit reentry, it is easier to impose
five orbital elements, leaving free the final true
anomaly.
The Pontryagin’s maximum principle leads to
the definition of the following Three Point BVP:

ẋ = f(x,ac)

λ̇ = −
[
∂f

∂x

]T
λ

x(t0) = x0

x(tca−) = x(tca+)

ν
∂Π

∂x̃(tca)
− λT (t−ca) + λT (t+ca) = 0

x′(tf ) = x′
f

λθ(tf ) = 0

Π(tca) = 0

(19)

Once again, the problem is to find the initial
co-state and the multiplier ν. The procedure
is performed like the previous one by adopting
the STM to approximate the dynamical model.
However, differently from Sect. 3.1, even the in-
terior point constraint leads to a non-linear dis-
continuity on the co-state variables at TCA. So
that, another linearization on the co-state jump
has to be performed in order to find an analyti-
cal solution.

∂Π

∂x(tca)
= φ(xca) ≈ φ(xref (tca)) = φ (20)

The analytical solution can be found by using
the second order Taylor’s series respect to the
nominal point. The result is a second-degree
equation where all the terms are defined starting
from known quantities.

[rp(tca) + νJh− rs(tca)]
T Q

[rp(tca) + νJh− rs(tca)] =

SMD

(21)

Once the equation is solved, the value of the
multiplier serves for finding the initial co-state.

4. GEO EOP Design
In GEO, due to legal and practical reasons, the
spacecraft’s position is limited in a window of
longitude and latitude. Namely, the target ter-
minal state is chosen by maximizing the resi-
dent time in the limit box. The evolution of the
spacecraft’s location inside the box is governed
is mainly driven by the non-spherical Earth har-
monics; thus, they are accounted in the dynam-
ical model.
The state variables are represented by the EOE
that allows to easily define the target. The fi-
nal state can be computed with an optimization
procedure or analytically, by considering the bal-
listic motion of the longitude only.
The procedure starts by defining the functional:

J := νξ(tca,x(tca)) +

∫ tf

ti

1

2
ac

Tacdt (22)

where Π is the interior point equality constraint
on the SMD.
Via the Euler Lagrange Equations the linearized
state space representation of the MPBVP reads:{

ẋ = A(t)x−B(t)B(t)Tλ+D(t)

λ̇ = −A(t)tλ

x(t0) = x0

x(tf ) = xf

ν
∂ξ

∂x(tca)
− λT (t−ca) + λT (t+ca) = 0

ξ(tca) ≥ 0

(23)

Differently from the CAM provided in LEO, the
Maneuver has here the secondary objective to
perform the station-keeping re-asset. Therefore,
the variation of the state at the TCA is com-
posed by two contributions.

δxca = δxsk,ca + νhCAM (24)

If the SK effect is sufficient to respect the PoC
constraint, the multiplier value is considered
zero and the initial co-state is found by solv-
ing a linear system thanks to STM. Otherwise,
the procedure follows the approach of Sect. 3.2
by linearizing the discontinuity on the co-state
and developing with Taylor’s series:

[rp(tca) + νJh− rs(tca)]
T Q

[rp(tca) + νJh− rs(tca)] =

SMD

(25)
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5. FOP Transformation
The FOP transformation binds a fixed accel-
eration level. The bang-bang bang profile is
achieved thanks to a smoothing technique by us-
ing hyperbolic tangent.

J := νΠ(tca,x(tca)) + uth

∫ tf

ti

amaxϵdt (26)

where:

ϵ =
1

2

[
1− tanh

(
u(λ)− uth

ρ

)]
(27)

uth is the switch-on threshold for the thrusters,
while ρ is a scaling parameter that governs the
transition from continuous to step functions. An
iterative procedure changes the value of ρ until
matching a discontinuous profile. The algorithm
increases the parameter if the solver does not
find a solution.

6. Results
6.1. LEO Conjunction
The orbital parameters of the case analyzed in
LEO are presented in Tab. 1. The imposed
limit on the PoC is 10−6, that corresponds
to SMD = 26.9016, while the acceleration
imposed in the FOP is amax = 1.5 · 10−5 m

s2
.

a[km] e[-] i[deg] Ω [deg] ω [deg]

7186.7 0.00064 98.83 0 289.38

Table 1: Primary object orbital elements.

A grid composed of 15 points for each arc is
built. The transfer time spans between 2 and
4 periods. The objects’ position in b-plane, Fig.
2 and 3, verify that the algorithm is capable to
avoid the collision.
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Figure 2: B-plane representation for the EOP
PtP solution.
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Figure 3: B-plane representation for the EOP
PtO solution.

The analytic procedure reports the maneuver
costs presented in Fig. 4 and 5

1 TAfter [Periods]

2

1.5

1TBack [Periods]

2

1.5 0.115

0.12

0.125

"
v

[m
s
]

Figure 4: ∆v surface for the EOP PtP solution.
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Figure 5: ∆v surface for the EOP PtO solution.

The same results are reported for the FOP so-
lutions. Analyzing Fig. 6 and 7 it emerge that
the transformation reduce the needed ∆v.
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Figure 6: ∆v surface for the FOP PtP solution.
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Figure 7: ∆v surface for the FOP PtO solution.

The acceleration profiles of the optimal transfers
with minimum ∆v for PtP and PtO are reported
in Fig. 8 and 9.
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Figure 8: PtP acceleration solution.
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Figure 9: PtO acceleration solution.

6.2. GEO Conjunction
The orbital parameters of the case analyzed in
GEO are presented in Tab. 2. The imposed
limit on the PoC is 10−6, which corresponds
to SMD = 26.9016, while the acceleration
imposed in the FOP procedure is

a[km] e[-] i[deg] Ω [deg] ω [deg]

42220 0 1.55e-4 158.04 315.00

Table 2: Primary object orbital elements.

The initial and final maneuvering points are
spaced on a 10 per 10 grid that span between
1.5 to 2 orbital periods.
The ∆v required for the EOP and FOP problem
is reported in Fig. 10 and 11. It is possible to
notice as for certain transfers the FOP results
more expensive than the analytic solution. This
phenomenon may is be linked to the selected ac-
celeration level and the maneuvering times.
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Figure 10: ∆v surface for the EOP GEO solu-
tion.
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Figure 11: ∆v surface for the FOP GEO solu-
tion.

The shape of the acceleration required by the
optimal solution minimum ∆v is reported in Fig
12.
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Figure 12: GEO acceleration solution.

In all the cases presented, the perturbation on
the original trajectory induced by the station-
keeping is sufficient to overcome the limit on
the PoC. To verify the effectiveness of the CAM
practice, the position of the secondary object at
TCA is moved to the one reached by the opti-
mal transfer. Fig. 13 shows that the algorithm
is capable to modify the trajectory to reach the
SMD limit.
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Figure 13: B-plane CAM GEO.

7. Conclusions
The strategies developed here represent the im-
provement of the already existing collision avoid-
ance techniques. The introduction of a dynam-
ical model based on orbital elements was a cru-
cial aspect to analyze the problem from a dif-
ferent perspective. It allows reducing the prob-
lem complexity leading to an easier formula-
tion of the operative constraints opening new
borders on the application of collision avoid-
ance practices. Analyzing the obtained results,
the required ∆v is compatible with low-thrust
propulsion as long as the maneuver is executed
far enough from conjunction. Moreover, the
MPBVP strategy allows to combine CAM with
station-keeping, executing the latter only if it
is enough for satisfying the SMD constraint at
TCA. In all the cases, the computational time
required for the maneuver design is always in
the order of few seconds, which is deemed to be
acceptable for the onboard execution.
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