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Abstract

Recommender Systems are algorithms which main purpose is to provide per-
sonalized recommendations to users about items to buy or content to interact
with. In the last years, because of their effectiveness, they spread on a large
scale, being widely applied on many platforms and services. According to
the available information, many techniques may be employed in order to pro-
vide such suggestions, each of which exploits the data in different ways. It is
possible to combine them using a set of techniques that falls under the name
of Hybrid Recommender Systems, in this way it is possible, by exploiting
different kinds of information, to have an increase in accuracy.
Among the most competitive and performing hybrids techniques there are
the stacking ensembles. They consist in aggregating the forecasts made by
different models in order to overcome their weaknesses and make more accu-
rate predictions by using a meta-model. A meta-model is a machine learning
algorithm trained with the sole purpose of aggregating the predictions made
by other models. Also stacking ensembles are in general more reliable and
robust to the noise in the data.
This thesis studies such techniques, in particular the ones performed using
gradient boosting decision trees algorithms, with the purpose of exploring the
ways ensembles can be implemented and trying to propose innovative alter-
natives. By doing so, two different categories of experiments were proposed,
each of which exploited a particular aspect of the ensemble, with the goal of
enhancing their performance. The performed division resulted in architec-
ture and data manipulation experiments.
The dataset used to perform such work is the one provided in occasion of the
RecSys Challenge 2020, where we, a group of MSc students form Politecnico
di Milano, took part achieving the overall 4th position and the 1st among
academics teams.
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Sommario

I Recommender Systems sono algoritmi il cui scopo principale è quello di
suggerire agli utenti, oggetti o contenuti con i quali interagire. Negli ul-
timi anni, per via della loro efficacia, si sono diffusi su larga scala venendo
applicati in diverse piattaforme e servizi. A seconda dei dati che hanno a
disposizione, questi impiegano strategie differenti per le raccomandazioni,
ognuno dei quali li sfrutta in modo differente. Esiste la possibilità di com-
binare questi suggerimenti usando un insieme di tecniche che prende il nome
di Hybrid Recommender Systems. Usandoli è possibile sfruttare differenti
tipi di informazioni per poter aumentare l’accuratezza delle predizioni.
Tra gli approci ibridi più competitivi e performanti si trovano gli stacking
ensmeble. Questi consistono nell’aggregare le predizioni fatte da modelli di-
versi, in modo tale da compensare le loro debolezze e fare suggerimenti con
maggiore accuratezza per mezzo di un meta-modello. Un meta-modello è
un algoritmo di machine learning utilizzato con il solo scopo di aggregare
al meglio le predizioni fatte dagli altri algoritmi. Un’altra caratteristica che
rende gli stacking ensemble interessanti è la loro robustezza rispetto al ru-
more nei dati.
In questa tesi vengono studiate queste tecniche, in particolare quelle che imp-
iegano i gradient boosting decision trees nell’ensemble, esplorando il modo in
cui questi modelli vengono combinati e proponendo soluzioni innovative. Nel
fare ciò, due differenti categorie di esperimenti sono state proposte, ognuna
delle quali ha sfruttato un aspetto particolare dell’ensemble con lo scopo di
aumentarne le performance. Le soluzioni proposte sono quindi state divise
in: manipolazione dei dati e esperimenti sull’architettura.
Il dataset su cui è stato fatto tale lavoro è quello fornito in occasione della
RecSys Challenge 2020, alla quale il nostro team, composto da cinque stu-
denti magistrali iscritti al Politecnico di Milano, ha preso parte ottenendo la
4a posizione nella classifica complessiva e la 1a tra i team accademici.
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Chapter 1

Introduction

Recommender Systems are a class of algorithms, which goal is to make per-
sonalized suggestions to users. In their most common form, given the history
of interactions between a user and an item, they aim to predict their future
connections. They make use of different approaches, as machine learning,
data mining and information retrieval techniques, taking into account also
social dynamics, psychological aspects and trends.
In the last twenty years, the use of e-commerce services and social net-
works grew exponentially and so did the use of Recommender Systems. They
earned popularity, becoming a crucial resource in many successful applica-
tions.
Among the famous companies which heavily rely on Recommender Systems
stand out examples like Amazon or Facebook. They use these engines to
make their service more pleasant and enhance the user experience. The field
of application of these kind of algorithms is very large, they are widely em-
ployed, as previously said, both in e-commerce and social networks, but also
in services of music and film streaming as in job research platforms.
Due to the nature of these problems, several competitions are organized ev-
ery year in order to experiment innovative solutions to ever new problems.
One of the greatest competitions in the field was the Netflix Price, held in
2016 and hosted by Netflix. They offered a million dollar to whoever could
raise the accuracy of their Recommender System of at least 10%. The com-
petition lasted three years and was won by a joint-team composed by several
researcher called BellKor in BigChaos.
This thesis work is evolved around one of these challenges: the RecSys Chal-
lenge 2020. This competition is held every year by a different company in
occasion of the ACM International Conference on Recommender Systems.
In 2020 the host was Twitter the company that owns the homonym social
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2 Chapter 1. Introduction

network. We took part at this challenge as a team formed by five MSc
students of Politecnico di Milano, under the name BanaNeverAlone. We
achieved the 4th place in the competition (first considering only academic
teams). The paper we presented after our solution, Multi-Objective Blended
Ensemble For Highly Imbalanced Sequence Aware Tweet Engagement Predic-
tion, was accepted and published in the proceedings of the conference.
The task presented by Twitter was in the domain of social networks recom-
mendations, but with several peculiarities. Instead of asking to recommend
a list of contents to each user, it was asked to predict the possibility that
a user would’ve interacted with a specific content. Making forecasts, as ac-
curate as possible, about users’ tastes, it is crucial for social networks. By
doing this they increase the pleasantness of their service, in order to arouse
interest in users and make them spend more time on it.
The works performed in this thesis is based on the dataset and the en-
semble solution provided by our team, BanaNeverAlone, for the challenge.
Ensemble approaches are commonly used in the fields of Machine Learning
and Recommender Systems, to combine the solutions generated by different
models. This approach is particularly good because it allows to overcome
some weaknesses of non-combined algorithms and provide solution that, in
terms of accuracy and reliability, overcomes the single models.
There are a lot of possibilities when it comes to implementing this technique.
Each of them tries to exploit diverse aspects with the goal of increasing the
performance. In the context of this thesis two main approaches are explored:
the manipulation of the dataset and the use of different structures. For each
of them, some experiments were designed over well known and brand new
ideas. These solutions are then tested within an ad-hoc environment de-
veloped starting from the solution our team used for the RecSys Challenge
2020.

1.1 Thesis Structure

This thesis is structured as follows

• Chapter 2 provides a brief description about the RecSys Challenge 2020
task and the solution our team submitted.

• Chapter 3 contains a review of the literature works that are used in
this thesis and inspired some of the provided solutions.

• Chapter 4 analyzes the environment more in depth, illustrating the
dataset provided by Twitter and some of the approaches our team
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used.

• Chapter 5 describes the design of the proposed solutions and the setup
of the environment on which to run them.

• Chapter 6 shows and compares the solutions to the experiments.

• In Chapter 7 reside the conclusions and considerations drawn from the
results.
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Chapter 2

Problem Description

This section briefly presents the problem in the context of the attended
competition, hence an insight on the object of study of this thesis. In the first
section the challenge as long as the problem are shown and briefly analyzed,
while the second part shows the approach used to compete.

2.1 ACM RecSys Challenge 2020

Every year since 2010 in conjunction with the ACM International Confer-
ence of Recommender Systems is held the RecSys Challenge, sponsored by a
company that has interest in the field.
In 2020, RecSys Challenge [2] was hosted by Twitter, the company that owns
the famous social network. Unlikely many previous years’ problems, the one
presented in 2020 was quite different, in fact it was requested to classify some
user-tweet interactions. Specifically it was asked to predict, in percentage,
which action a user would have taken with respect to a tweet. There were
four different kind of interactions, respectively like, retweet, reply and retweet
with comment, each of which came with a different distribution of positive
and negative samples. In the dataset there were a high number of negative
interactions, in which either a user saw a tweet and ignored it or didn’t see
it at all. The imbalance among positive and negative samples ranged from
an almost balanced problem for the like class to a heavily imbalanced one
for the retweet with comment class.
The challenge was split in two different phases. In the first one, competitors
were allowed to test their model on a public test set with tweets sampled a
week after the sampling of the training set. While in the last phase, which
lasted more or less a week, the private test set was released with tweets
sampled two weeks after the training set. Unlikely the other challenges in

5



6 Chapter 2. Problem Description

both phases the competitors had the chance to submit an unlimited amount
of solutions, this was possible due to the nature of the dataset, containing
roughly three-hundred millions of interactions user-tweet, so the submission
limit was implicitly forced by the duration of the training phase of the mod-
els.
One additional peculiarity of this challenge was that two different metrics,
PR-AUC and RCE have been employed in order to better evaluate the so-
lutions. The final score on the leaderboard was calculated by summing the
rank obtained by the two metrics, the lower was the total score the higher
the solution was ranked.

2.2 Problem Solution

Our team, BanaNeverAlone, was composed by five members, working re-
motely due to covid-19 restrictions.
The first part of the proposed solution consist an accurate engineering of the
dataset. Initially we began to extract brand new features from it, regarding
both the users and the tweets. This resulted in almost 300 new features of
which only half were used. Among the ones about the tweets, there were:
text, hashtags and other domain specific information. These were converted
into tokens by using a multilingual pretrained version of BERT [10], a trans-
former model introduced by Google. Due to the complexity of textual data,
we decided to process it separately from the other features. In order to do
so, we fine-tuned a DistilBERT [30] model, that allowed us to transform
the text tokens into embeddings: vectors of fixed length encapsulating the
core textual data. Their excessive size didn’t make them suitable to be used
as features for gradient boosting decision trees algorithms, so we created an
apposite model. It was a multi-classification feed forward neural network
trained on both the embeddings and a set of other core features. Its pur-
pose was to output a vector of predictions for each class. The preprocessing
pipeline of the textual features is shown schematically in figure 2.1.
To process the non-textual features we followed a different approach. We

chose to use two distinct implementations of the gradient boosting decision
trees (GBDT) algorithm: XGBoost and LightGBM. Unlikely the neural net-
work, these models didn’t allow to make multi-class predictions, so we had to
split the problem training both of them for each class. To optimize their hy-
perparameters we used an automated hybrid optimization technique, which
merged both random and bayesian optimizations.
In order to combine the predictions we used a stacked ensemble approach
using a LightGBM meta-model. Due to the impossibility to perform the
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Figure 2.1: Schematics of the text processing pipeline.

multi-classification with these models, a meta-model had to be employed to
combine the forecasts made on each label. Their training set consisted in a
combination of a subset of core features and predictions made from the other
models. Moreover two different training set choices were employed for meta-
models, the first for the like class and the second for the remaining classes.
The structure of the ensembles, along with their features is provided in figure
2.2. Our solution achieved the 4th position in the challenge, an overview of

Figure 2.2: Schematics of BanaNeverAlone solution ensemble.

which is provided in the paper Multi-Objective Blended Ensemble For Highly
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Imbalanced Sequence Aware Tweet Engagement Prediction [14].



Chapter 3

State of the Art

In this chapter we provide an analysis of the state of the art regarding Rec-
ommender Systems and related machine learning techniques.

3.1 Recommender Systems

Recommender systems are a subset of information filtering systems that try
to predict the ratings or the preferences that a user would give to an item.
They have become very popular in recent years and they are used in a lot of
areas such as movies, musics, e-commerce, advertising and social network,
in order to provide different and personalized results for each user [28].
The most common problem they’re picked to solve is the recommendation
of an item to a user, one of the machine learning techniques most used for
recommendations are the Gradient Boosting Machines [15][16][24]. These
algorithms, being powerful and robust, in a short time became a standard
among the challenges and high-end applications.
Recommender systems can be roughly split in two macro categories, collab-
orative filtering, content-based.

3.2 Collaborative Recommender Systems

This technique is one of the most popular in the field of recommender sys-
tems due to its simplicity and accuracy. Collaborative filtering methods pro-
duce user specific recommendations based on their history patterns, without
using exogenous information about either users or items. This kind of rec-
ommender systems relies on the feedbacks provided by users either implicit
or explicit. Due to the lack of explicit feedbacks it is not rare to use the
implicit ones, that are a pleasantness index extracted from the user behavior

9



10 Chapter 3. State of the Art

with respect a specific item.
This data is stored in a matrix named User Rating Matrix (URM), that on
the rows has the users, on the columns the items, while on the cells the
ratings. Collaborative filtering algorithms make use of similarity among the
users’ interactions contained in the URM in order to find the most likely
item to recommend.

3.3 Content-based Recommender Systems

This approach is also very popular in the field of recommender systems.
While the collaborative filtering methods try to exploit similarity among the
users’ interaction history pattern, this kind of recommender systems try to
exploit the similarities among items’ or users’ informations, called features.
In this case there are two kind of matrices that can be used in order to
compute the similarities: Item Content Matrix (ICM) and User Content
Matrix (UCM). The first one on the row, has the items, on the columns the
items’ features and expresses items’ attributes. The second similarly have
the users on the rows, the features on the columns and expresses the users’
characteristics.

3.4 Hybrid Recommender Systems

These recommender systems are based on the combination of two or more
simple models. The idea is that the prediction of a model can be used to
reinforce the predictions of another one and cover its weaknesses [6]. In
order to maximize the revenue provided by this approach it is necessary that
the diversity among the predictions, hence among the models, is as great
as possible. This status can be reached by using different models, also by
training them on subset of features or samples, so each of them would capture
only a unique part of the underlying dynamics of the data, rather than a
single, but possibly noisier representation of the overall data distribution.

3.4.1 Averaging and Voting

The most common techniques used in hybrid recommender systems and more
in general hybrid machine learning models is the averaging for regression
problems and voting for classification problems. These techniques are com-
putationally fast, in situations where there are a large number of models to
hybridize these approaches are very competitive due to absence of training
time and simplicity.
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3.4.1.1 Averaging

The idea behind this algorithm is to train several models and take the sug-
gestions from all of them [3]. Their contribute may be weighted and usually
proportional to their individual accuracy, in order to compute the weighted
average among them and taking that as prediction. The main contribution
of this algorithm is to reduce the variance of the system, hence increasing
its robustness and decreasing overfitting, because various guesses are taken
into account.
Another approach used in averaging is to introduce a machine learning model
to tune the weights of the linear combination [36] [19]. In this way the weights
are no longer arbitrarily proportional to the model accuracy, but finely tuned
by an apposite machine learning meta-model. The most common technique
is a linear regression, but many other approaches were explored.

y =

∑M
m=1 αmpm∑M
m=1 αm

(3.1)

Equation 3.1 represents the averaging formula, where M are the number
of models to hybridize αm is the weight of the mth algorithm and pm its
predictions.

3.4.1.2 Voting

In case of classification, a democratic choice between classes is made by using
voting [20], where, after training several models, each of them votes for the
class it has predicted, even in this case it is possible to assign weights to the
votes proportional to the model’s accuracy.
Majority voting [23], one of the most common solutions for this approach,
consists of selecting a set of models to ensemble, let every model vote for the
class it has predicted and finally choose the class with the major number of
votes for prediction. Voting:

y =
M

argmax
m=1

(pm)

Where M are the number of models to hybridize and pm the models’ pre-
dictions.

3.4.2 Switching

A switching hybrid [17] uses some criteria or rules in order to choose the
best available prediction among the ones provided by hybridized models.
By choosing this approach the predictions are not directly combined as in
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averaging or voting, which in absence of a strong rule to do so could be a
winning approach.
This technique is often used to deal with the cold start problem and use
ad-hoc predictions for recently added users or items.

3.4.3 Cascade

Cascade hybridization involves a staged process. The first stage produces
a coarse ranking among recommendations while the second one refines this
ranking in order to increase its accuracy.
Cascading allows the system to avoid employing the second, lower-priority,
technique on items that are already well-differentiated by the first. In ad-
dition, the cascade is by its nature tolerant to the noise introduced by the
low-priority technique, since recommendations provided by the high-priority
model can only be refined, not overturned [5].

3.4.4 Stacked Generalization

Stacked Generalization [39] formalizes the idea of using a meta-model of
machine learning to ensemble other models.
This approach is based on a multi level schema. There are two or more
generalizers in each level apart from the last one, which has only one. A
generalizer is a mapping from both a dataset {xk ∈ Rn, yk ∈ R}Mk=1 of
M samples and a question ∈ Rn, into a guess ∈ R, where R and Rn are
coordinate spaces over the real numbers with dimension respectively of 1
and n. These models are trained on the predictions made by the previous
level, with the only exception of the first one, trained on the original dataset.
The level-0 learning set is simply the original dataset D0 = {(fn, yn), n =

1 . . . N} where fn are the features of the original dataset and yn its label on
the nth sample. Level-0 generalizers Gk,D0 are processes which generalize
directly from it, their guesses on the training set are defined as yk,D0 , whose
are made by cross validating it, in order to make them more reliable.
Level-1 learning set, is built by aggregating the guesses of the K previous
level’s models, being D1 = {(y0,n,D0 . . . yK,n,D0), n = 1 . . . N}, while level-1
generalizers Gk,D1 are processes which learns and subsequently guess on the
D1 dataset the same way level-0 models did on D0. Following this insight
it is possible to build an undefined number of levels. It is important that
the last level uses a single generalizer in order to ensemble all the previous
level predictions into a single one, which may require to be transformed in a
level-0 prediction if its form has been altered through the various stages.
This approach performs generally better with respect to other hybridization
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or ensemble methods, as it reduces the generalization error rate. The main
drawback is that training and prediction times could become difficult to
manage by adding layers.

3.5 Bagging

Bagging [4][13], also called bootstrap aggregating, is a machine learning en-
semble meta-algorithm whose goal is to reduce variance of machine learning
models, hence increasing stability and accuracy while reducing overfitting.
Before actually speaking of bagging a core concept needs to be introduced:
bootstrapping, whose goal is, given a datasetD, to create pseudo-independent
subsets Dm maintaining the data distribution. From the full starting dataset
of fixed size N , this technique requires to sample with replacement, a fixed
number of samples M times, one for each subset.
While theoretically simple, some requirements must be fulfilled in order to let
this approach work in a real-world environment. The initial dataset of size
N should be large enough in order to capture the underlying data dynamics
even under an appropriate subsampling. Second, the number of samples of
the original dataset N should be large enough with respect to the times the
dataset gets sampled for each subset in order to keep a low correlation among
the data. These two requirements falls under the names of representativity
and independence.
Once obtained the Dm learning subsets, either with totally independent or
pseudo-independent observations, the following step is to trainM weak learn-
ers, one on each subset. The insight is to learn the complete dynamics of
the underlying data by means of several weak learners, then combine their
results in order to overcome their weakness and have the accuracy of a strong
learner. The technique used to combine these models are averaging in case
of regression problems and voting in case of classification problems. Figure
3.1 provides an overview of the bagging process.

3.6 Boosting

Boosting [31][32] is an ensemble meta-algorithm whose main goal is reducing
bias. The idea behind this technique is that a set of weak learners can create
a single strong learner.
The core concept of boosting is the re-weighting of the dataset. By doing
so iteratively after the sequential training of several weak learners through
various stages the future learners will apprehend easily the dynamics of the
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Figure 3.1: Schematic example of bagging.

data that its predecessors weren’t able to learn, being more valuable in terms
of weight.
The final predictions are obtained by computing the weighted average among
all the predictions of the weak learners.
To have a more precise idea of how this works the most important steps are
shown below.

1. Weight equally all the train samples in the dataset.

1.1 Train the weak learner using the weighted samples.

1.2 Compute the error of the weak learner on the training set.

1.3 Increase the weight of the mispredicted samples.

1.4 Repeat until satisfied.

2. Final prediction as the weighted average of predictions of each model.

Algorithm 1 shows the pseudocode of one the most popular boosting algo-
rithms, nonetheless the first one to achieve a great success: AdaBoost in
its simplest version. The pseudocode is really similar to the description of
a general boosting algorithm, but it formalizes the problem giving a more
practical insight.

3.7 Gradient Boosting Decision Trees

This algorithm rely on the support of several weak learners in order to in-
crease its accuracy.
A weak learner, is a learning algorithm with error rate sightly less than 1

2 ,
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Algorithm 1 AdaBoost.M1.

1. Initialize the observation weights wi = 1/N , i = 1, 2, . . . , N

2. For m = 1 to M :

(a) Fit a classifier Gm(x) to the training data x using weights wi.

(b) Compute the error on the training samples.

errm =

∑N
i=1wiI(yi 6= Gm(xi))∑N

i=1wi
.

where xi is the ith training sample, and yi is its true label.

(c) Compute αm = log((1− errm)/errm).

(d) Set wi ← wi · exp[αm · I(yi 6= Gm(xi))], i = 1, 2, . . . , N .

3. Output G(x) = sign
[∑M

m=1 αmGm(x)
]
.

so it is an algorithm which performs barely better than a random guessing.
A strong learner, instead, is an algorithm that has high recognition accuracy
and its execution time is polynomially upper bounded. Gradient boosting
decision trees algorithm exploits both bagging and boosting techniques in
order to enhance the accuracy by reducing bias and variance. Its aim is to
combine many decision trees whose are weak learners in order to get a strong
learner out of them.
The overall model F (x) is defined as:

F (x) =
M∑
i=0

γihi(x) (3.2)

where x is the input sample, h represents a decision tree, γ is the weight of
such tree and M is the maximum number of regression trees.
Let D = {(xi, yi)}Ni=1 be the collection of samples of size N which constitute
the dataset, h(x) be the weak learner, L the loss function andM the number
of iterations, then the general algorithm of a gradient boosting decision trees
can be synthesized by the following steps [37].

1. The initial constant value of model γ is given by:

F0(x) = argmin
γ

N∑
i=1

L(yi, γ) (3.3)
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2. For m = 1 to M :

1.1 Compute the so-called pseudo-residuals:

rim = −

[
∂L(yi, F (xi))

∂F (xi)

]
F (xi)=Fm−1(xi))

, for i = 1, 2, .., n (3.4)

1.2 Fit a weak learner hm(x) to the pseudo-residuals using the train-
ing set {(xi, rim)}ni=1.

1.3 Compute multiplier γm by solving the following one dimensional
optimization problem:

γm = argmin
γ

n∑
i=1

L(yi, Fm−1(xi) + γhm(xi)) (3.5)

1.4 Update the model:

Fm(x) = Fm−1(x) + γmhm(x) (3.6)

3. Output FM (x).

3.7.1 GBDT Implementations

There are several algorithms which implement GBDT algorithm, the ones
treated in this thesis are XGBoost [8], LightGBM [22] and Catboost [11].
These implementations in the last years were widely used in challenges and
high-end applications [33], [21], [12].
Every model shows some core similarities to the other, as they’re based on
the same algorithm, but there are important differences among them that
justify their use in a hybrid context. Among these there surely are structural
differences, as in hyperparameters, in treatment of categorical features and
in computational engines.

3.7.1.1 XGBoost

Among the unique characteristics of these model we have the regularization,
XGBoost in fact has the possibility of using both Ridge and Lasso regu-
larizations independently in order to deal with complex models and reduce
overfitting. Another notable characteristic is that it optimizes also the out-
of-core computation, in order to process efficiently datasets that wouldn’t fit
in memory [8].
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3.7.1.2 LightGBM

One of the greatest differences between LightGBM and the other models is
that this one implements GOSS (Gradient-based One-Side Sampling) [22] a
novel sampling method which down-samples the instances on basis of gradi-
ents. This technique retains instances with large gradients, which have the
greater training error, while performing random sampling on instances with
small gradients, that have a small training error.
LightGBM is lighter in terms of computation, because with its innovative
sampling approach it increases the convergence speed of the algorithm.

3.7.1.3 CatBoost

One of the unique characteristics of CatBoost is the algorithm used to process
the categorical features. The main advantages of this innovative approach
are two. These features no longer need to be pre-processed as it is performed
out of the box and the model’s performance is competitive with respect to
the other implementations when categorical features are involved.
Another important characteristic is ordered boosting. While other implemen-
tations tend to have some problems of overfitting dealing with small datasets,
CatBoost implements a special modification for such cases. This increases
CatBoost ’s robustness and reliability when dealing with these problems [12].

3.8 Deep Forest

The Deep Forest [41] is a technique based on the stacked generalization in-
sight which also takes inspiration from the Deep Neural Networks.
This model is developed on a multi level structure. Every level has a prede-
fined number of generalizers, as described in section 3.4.4. The level-0 learns
directly from the original dataset, while following levels learn from a dataset
build aggregating the predictions of the precedent level’s models and some
features drawn from the original dataset.
To formalize this, given θ0 which is the original dataset, we have K different
generalizers Gk,θ0 which learn from it. Defining yk,0 the array of predictions
made on the training set by one of the kth models at level-0 and fm,θ0 one of
the M features from the original dataset θ0, then the dataset of level-1 : θ1,
is constructed as follows θ1 = [f1,θ0 . . . fM,θ0 , y1,0 . . . yK,0]. Then every level-1
generalizer Gk,θ1 learns from θ1. By following this insight it is possible to go
on building as many level as required. Once reached the final layer, the last
prediction is obtained through the averaging methodology.
This approach tends to build a structure similar to a Fully Connected Feed
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Forward Neural Network, where neurons are strong ensemble algorithms. All
the models on middle layers are trained with an aggregation of the predic-
tions made by the previous level and a set of features extracted from the
original dataset, hence the predictions are combined through averaging on
the final layer. The structure of this algorithm is schematically represented
in figure 3.2
The Deep Forest showed to be competitive in many tasks with respect to neu-
ral networks and other machine learning algorithms, however it is strongly
computationally demanding, so the cases in which it could be used must be
carefully analyzed.

Figure 3.2: Structure of Deep Forest.

3.9 Evaluation

In the field of recommender systems, as in machine learning, choosing how
to evaluate the accuracy of the recommendations is a difficult problem. An
accuracy metric empirically measures how close a recommender system’s pre-
diction for a user is from the user’s true preference [7]. Different evaluation
metrics are used to optimize different aspects of the problem, so a good met-
ric should be able to model accurately the objective of the problem. When a
single metric doesn’t model well enough the goal of the problem it is possible
to combine two or more of them in order to achieve a better optimization.
In the last years many metrics have been proposed and used quantitatively
to evaluate the performance of recommender systems and to this day, due
to their nature, there isn’t a standard in the field [18].
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3.9.1 Precision-Recall Area Under Curve

This metric, also called (PR-AUC) is very useful when classes are highly
imbalanced.
In order to compare different classification algorithms and to define metrics,
four sets, usually contained in a confusion matrix, are employed. These sets
compare the predicted values with respect to the ground truth: the target
values.

• True Positive - Tp: Number of positive predictions that are positive in
the ground truth.

• True Negative - Tn: Number of negative predictions that are negative
in the ground truth.

• False Positive - Fp: Number of positive predictions that are negative
in the ground truth.

• False Negative - Fn: Number of negative predictions that are positive
in the ground truth.

Precision and Recall are two metrics defined using these sets as:

Precision =
Tp

Tp + Fp
(3.7)

Recall =
Tp

Tp + Fn
(3.8)

Precision, which can be seen as a measures the number of correct identifica-
tions over all the positive predictions. Recall instead measures the number
of actual positives that was identified correctly.
The precision-recall curve shows the tradeoff between precision and recall
for different thresholds. An elevated value of the area under curve, which
indicates a good prediction, states that both precision and recall have a high
value.
Once computed precision and recall it is possible to calculate the PR-AUC,
by calculating the area under curve (AUC) of these two metrics using an
approach called trapezoidal rule.

PRAUC = AUC(Precision,Recall) (3.9)
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3.9.2 Cross Entropy

Cross entropy [9] measures the performance of classification models with
probabilistic output, giving a measure of how far is the predicted value from
the true label.

CE = −y · log(ŷ) (3.10)

Where y is the prediction vector of the model and ŷ is the ground truth: the
vector containing the actual values to predict.

3.9.3 Relative Cross Entropy

This metric corresponds to the relative improvement of a prediction com-
pared to a naive prediction baseline, measured in cross entropy [2]. Naive
predictions can only assume the value p, which expresses the average prob-
ability of the positive class, given by:

p =
ŷp

ŷp + ŷn
(3.11)

where ŷp represents the number of ground truth’s positive labels while ŷn the
number of the negative ones.
At this point the naive cross entropy CEnaive can be defined as:

CEnaive = −p · log(ŷ) (3.12)

While the relative cross entropy (RCE) is defined as follows:

RCE =
(CEnaive − CE)

CEnaive
· 100 (3.13)

Where CE is the cross entropy described computed over the predictions as
described in subsection 3.9.2.

3.9.4 Root Mean Squared Logarithmic Error

This metric, also called RMSLE describes a variation of the root-mean-square
error, which aims to aggregate the magnitudes of the errors in predictions
into a single measure of predictive power. These kind of metrics provide an
estimation of the accuracy of the model, in order to have the possibility to
compare predictions made by different models.

RMSLE =

√√√√ 1

n

n∑
i=1

(log(yi + 1)− log(ŷi + 1))2 (3.14)

Where n is the total number of observations in the dataset, yi is the predic-
tion made by the model while ŷ is the ground truth.



3.10. Optimization 21

3.10 Optimization

In most of machine learning alorithms there are also external variables that
need to be tuned in order to achieve a good performance. They are called
hyperparameters and it is important to have a methodology to automatically
optimize them.
Many optimization algorithms try exploit some rules in order to search the
multidimensional space of the hyperparameters to find the best possible con-
figuration.

3.10.1 Random Optimization

This family of techniques is one of the simplest, yet enough effective to take
into account [25]. With this approach the space of the hyperparameters is
explored randomly or pseudo-randomly, useful in exploring functions with
either more local maxima or minima. Due to its random exploration ap-
proach, this technique is particularly useful to deal with non-continuous or
non-differentiable functions’ optimization.

3.10.2 Bayesian Optimization

This approach provides very good performance if compared with other state
of the art techniques, because it is able to balance effectively exploration
and exploitation. Bayesian Optimization [34] tries to find the minimum of
a function f(x) on some bounded set X. Building probabilistic model for
f(x), this optimization technique uses it to pick the points of X in which
the function will be evaluated the next time.
Bayesian optimization approach has two main components, the first one
is a prior over the function f(x). The most used is the Gaussian process
prior. The second one, instead, is the acquisition function, which choose the
points to evaluate. The bayesian optimization, in fact, treats the function
to optimize as a random function placing a prior over it, which captures the
beliefs about that function.
A Gaussian process [26] is a distribution over functions, such that the results
of the evaluations made on these functions at arbitrary points, jointly have
Gaussian distribution.
Acquisition functions are approaches that guides the hyperparameter space
exploration. They predict the mean and the variance of the Gaussian process
and combine them according to some criteria that will direct the search
towards the optimum.
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Algorithm 2 Simple Bayesian Optimization algorithm.

1. Input: Data D1 = {(xi, yi)}Ni=1 containing prior knowledge about the
function f .

(a) Choose xt by optimizing the acquisition function, a, over a Gaus-
sian Process (GP) such that:

xt = argmax
x

a(x|D)

(b) Sample the objective function yt = f(xt) + εt

(c) Augment the data Dt = {D1:t−1 ∪ (xt, yt)}

(d) Repeat from point (a) until the maximum number of iteration is
reached.

In order to speed up the convergence of this algorithm, it is possible to
initialize the prior by using the knowledge acquired from random optimiza-
tion run in advance. After evaluating several points in the function, the prior
is updated according to these results that are nothing less than the posterior
distribution over the objective function.

3.11 Troika Architecture

Troika is an approach to solve classification and multiclassification problems
based on stacking ensemble [27].
The architecture of this model, shown in figure 3.3, is distributed among four
different levels. In the level-0 the problem’s domain is split among several
base-classifiers. Their predictions are fed in input to the specialized-classifiers
of level-1, each of which focus on a specific task exclusively classifying only
a single pair of classes. In this way, being ci and cj two distinct classes
each level-1 model predicts a unique vector of complementary probabilities
{[P (ci), P (cj)] where i 6= j}.
Being N the number of classes in the problem domain, then the exact num-
ber of level-1 classifiers is computed as

(
N
2

)
.

At this point it is introduced a layer with the main purpose of learning the dy-
namics of the previous one. Level-2 models are calledmeta-classifiers, each of
them aims to predict the probability for a single class. A meta-classifier with
target class ck, receives inputs exclusively by specialized-classifiers whose
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predictions are in the form {[P (ck), P (cj)] where k 6= j and cj ∈ C\{ck}}.
Where C\{ck} is the set containing all the domain’s classes but ck. The
level-3 of the Troika architecture contains only a single classifier, namely
super-classifier, that simply ensembles the predictions of the previous level
producing N predictions vectors, one for each class.
While being slow to train, this structure have been proven to successfully
increase accuracy with respect to traditional stacking and surpassed simpler
classifiers.

Figure 3.3: Troika ensemble architecture.

3.12 Robust Application of Stacked Generalization

The solution proposed in [35] is an application of stacked generalization on
two levels, as shown in figure 3.4, using several algorithms based on decision
trees.
In level-0 four different algorithms make their prediction on the overall train-
ing data, using among the others gradient boosting decision trees. In level-1
a the linear regression was used in order to ensemble the predictions of the
previous level, generating the final forecast.
This approach predicted the demand on an e-commerce site being compet-
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itive with respect to simple classifiers. In particular, by training it using
only 20% of the original data, its predictions were at least good as the ones
provided by simple models trained on the overall dataset. This result is in-
teresting because stacked generalization is proved to be robust and reliable
even with a significant reduction in the dataset.

Figure 3.4: Structure used to perform robustly the prediction over the demand of
goods in an e-commerce site.

3.13 RecSys Challenge 2020 Winning Solution

This work [33] refers to the winning solution of ACM RecSys Challenge 2020.
The model employed in the context of this challenge is an implementation
of the generalized stacking model on two levels. While the architecture
is similar to the one described in section 3.12 there are some notable and
interesting differences. All the algorithms used were XGBoost, that they
found out to be the best in terms of performance. Moreover the three level-0
models were trained on different subsets of features and different subsets of
samples. While two of these models were validated using the last two days of
sampling, the third was validated using two folds that didn’t have tweets in
common. The strongest point of this solution was to learn different dynamics
in the data by manipulating the dataset and by using different strategies of
validation in level-0 models.
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3.14 Differentiation Approaches for Ensembles

The review [29] talks about the importance of diversity in the ensemble
methods. In fact the employ of diverse models lead to uncorrelated prediction
errors, hence, by combining their forecasts, the overall accuracy is increased.
There are several approaches that is possible to use in order to increase the
diversification, the most used are:

• Manipulation of the generalizer :

1. Manipulation of the generalizer’s hyperparameters: By changing
the hyperparameters of a model, it will learn different dynamics
of the underlying data.

2. Differ starting point in hypothesis space: Some inducers can gain
diversity by starting the search in the Hypothesis Space from
different points. For example the simplest way to manipulate
the back-propagation inducer is to assign different initial weights
to the network.

3. Hypothesis space traversal : This strategy, similarly to the previ-
ous one, tries to provide diversification by acting on the hypothesis
space. In particular it tends to differentiate the way an optimiza-
tion process travels to the hypothesis space through two main
strategies: random and collective performance.

– Random-based strategy : This approach simply inject a certain
level of randomness in the traveling policy, so two different
runs would end up into two different positions.

– Collective Performance based strategy : This strategy exploits
the evaluation function, by adding a penalty term that en-
courages diversity.

• Manipulating the training samples: This method aims to train each
generalizer on a different variation or subset of the original training
set.

1. Resampling : Resampling technique can be resumed in two main
approaches, the ones used in bagging and boosting. The first
approach is sampling with replacement, while the second is the
weighting of the dataset, explained respectively in section 3.5 and
section 3.6

2. Creation: This approach relies on the iterative training of models.
Each time a model is trained new artificial instances are added
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to the original dataset. These samples are generated according to
the original distribution, but their target value is chosen in order
to differ maximally from their current ensemble prediction.

• Manipulating the target attribute representation: This approach aims
to split the original problem into many sub-problems. In order to do
so many different algorithms are employed. In this way, instead of
having a single complicated problem, the various models can specialize
on a simpler task. An example may be the classification on K different
classes split on among K − 1 classifiers.

• Partitioning : This technique consists of generating cuts into the orig-
inal dataset in order to have two or more sub-sets. Then feed the
sub-sets to different models. With partitioning every generalizer learns
only from part of the data, which is particularly helpful in dealing with
complex problems.

1. Horizontal Partitioning : The horizontal partitioning generates
different subsets, which maintain the same number of features,
but differs in sample. Many approaches can be employed in or-
der to achieve such result, for example cutting horizontally the
dataset or a sampling approach.

2. Vertical Partitioning : In this case a vertical cut on the dataset is
performed, in this case the number of sample remains the same
among all the different sub-sets created, but the number of fea-
tures in each sub-set is different.

• Use different types of generalizer in ensembling frameworks: This strat-
egy, differently from the others suggests to use different algorithms
within the ensemble to vary the predictions.
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Environment Analysis

This chapter contains the description of the environment around which the
thesis project was developed. This work in fact evolved around the solution
of our team, BanaNeverAlone, provided for the ACM RecSys Challenge 2020,
sponsored by Twitter, the famous social network.

4.1 Domain and Problem Description

Twitter is an international social network which allows its users to share their
thoughts and information attached with images and link through a channel
known as "Tweet". With the large amount of data available nowadays it
is very important for this provider to recommend the right content to each
user, in order to maximize the interest with respect to the content itself and
the number of engagement towards it, hence increasing the pleasantness of
the social network usage. Twitter’s home timeline, where a model predicts
which kind of tweets to display and how to rank them according to the user
tastes, is the most likely place where interactions among users and tweets
happen. So it is crucial to have the most accurate predictions as possible, in
order to enhance the user experience.
Unlike the most common recommendation tasks where it is asked to suggest
an item to a user by ranking a list of possible candidates, the 2020’s problem
was a classification task. More specifically, user-tweet pairs were given, with
four kind of possible labels like, retweet, reply and retweet with comment,
and the request was to predict the probabilistic likelihood of each class’
interactions.

27
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4.2 Dataset Description

This section provides information and explainations about the dataset used
during the challenge and, sampled, for the purposes of this thesis.

4.2.1 Sampling over Time

The dataset provided for this challenge contained roughly 160 millions of
samples. The training set’s interactions were sampled during an entire week,
the test set during the following weeks, while the final test set, in the same
way, two week after the training set. The goal of this sampling approach is
to have models that learn the weekly invariant dynamics of the data.

4.2.2 Privacy Ensurance

In this competition Twitter decided to focus on the respect of the privacy of
its sampled users. The most impactful decisions were to anonymize the data
and forbid both the decryption of the encoded tweets and the information
gathering about users from its APIs. This policy was reinforced by keeping
the dataset continuously compliant with the General Data Protection Regu-
lation (GPDR) policy, so if users would have decided to either remove tweets
or set them private, or for example to delete their account, all the related
data would also be removed from the challenge dataset. Due to this practice
several versions of the dataset were released, each with a reduced number
of tweets, reaching 121 millions of samples in the last release of the training
set.

4.2.3 Imbalance

An important characteristic of this challenge’s dataset was the imbalance. In
fact not only the dataset was provided with positive and negative samples,
but also with pseudo negative ones in order to ensure users’ privacy, hence
avoiding the possibility of creating a privacy leak. The positive ones were
obtained by sampling the effective interactions of tweet account, while the
negative could either be true negatives, when the users did see the content
and chose to not interact with it, or pseudo-negatives which are tweets the
user didn’t see at all. The positive samples in the various classes are 43.4%

for like which is almost a balanced problem, 10.9% for retweet, 2.5% for
reply and 0.7% for retweet with comment being the most heavily unbalanced.
Hence each class needed to be tackled with some differences.
Moreover among positive and negative samples there also was a high number
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of cold users: around 24% of all the samples had a cold user engager (the one
who interacted with the tweet). Cold users are customers that are new to the
system, hence they contextually have no history and their past interactions
cannot be used in order to make recommendations. In this specific task, the
cold users are the ones that appear only once in the dataset by making a
single interaction with a tweet.

4.2.4 Features Description

The features provided in order to describe the user-tweet interaction were
split in four main categories each of which described a particular aspect.
The categories were respectively Tweet features, which encapsulated the core
information about the tweet. Engaged With User Features which were the
most relevant information about the tweets’ creators account. Engaging
User Features, having the same content as the previous category, were act to
describe the accounts of the interacting users. The last category, Engagement
Features described the interaction itself. Where a feature for each class had
either a timestamp, in case of positive interaction or a null-value in case of
a negative one. The timestamp indicated the moment when an interaction
occurred.
Table 4.1 shows the names of these features and their related category.

4.3 Feature Engineered Dataset

Feature engineering was an important step in the development of the project.
It permitted, in fact, to achieve competitive results by extracting and making
explicit some hidden dynamics of the dataset. In this way we obtain around
150 useful features. They were generated following two distinct policies.
Timestamp-aware, which took into account only information prior to the
interaction and cumulative, which, by also taking into account the "future"
information, generated the time-independent features.
The obtained user-related features can be split in three main categories:

• Number of Active and Passive Engagements. This feature group takes
into account: both the active and passive engagements for each class
and also the positive interactions made and received on tweets. These
features, by considering a class at a time, count the number of engage-
ments, in each of the previous cases for all the users.
The active users’ features model how likely the users are to interact
with tweets, on the other hand the passive users’ features model how
popular the users are.
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Table 4.1: List of Twitter dataset’s features.

Tweet Features

Text tokens
Hashtags
Tweet id
Present media
Present links
Present domains
Tweet type
Language
Timestamp

Engaged With User Fea-
tures

User id
Follower count
Following count
Is verified?
Account creation time

Engaging User Features

User id
Follower count
Following count
Is verified?
Account creation time

Engagement Features

Engagee follows engager?
Reply engagement timestamp
Retweet engagement timestamp
Retweet with comment engagement timestamp
Like engagement timestamp

• Number of Engagements with Language/Hashtag. This features group
counts the number of previous engagements a user had with respect
to tweets of the same languages, or similarly to tweets containing a
specific hashtag.
While the features related to the languages model the likelihood of
users to interact with certain languages, the ones related to the hashtag
provide a semantic indicator of users’ interests.

• User Similarity. By means of an undirected graph, where nodes rep-
resent users and edges engagements, this group of features expose the
similarity among users. The same edge captures active engagements
happened among two users it is connecting and its weight is equal the
sum of the number of these engagements.
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The similarity is expressed for directly connected users and users con-
nected by two edges. In both cases it is represented by both a binary
value that tells if the users are connected or not and the overall weight
of the path that connects them.

Tweet features, instead, were processed in two different ways. In order
to use them in a neural network we generated text embeddings using Distil-
BERT, as described in section 2.2. While to use them in Gradient Boosting
Decision Trees we created specific features from the tokens. Their purpose
was to represent some important text information usable by GBDT models.
The most important are:

• Unique Word Frequency. This features consider how many times users
wrote unique words: vocables used only once. It is computed by con-
catenating all text the user wrote in previous tweets, hence calculating
the ratio between the number of unique tokens and the total number
of tokens. It can be useful to identify bots and recurrent patterns.

• Tweet Topic. We identified some trend topics in the text and manually
associated each of these to a list of most used words. Then, for each
tweet, we counted the number of words of a certain topic it contains.

4.4 Optimization and Metrics

The hyperparameters tuning was performed with a combination of both Ran-
dom and Bayesian Optimization, by using the scikit-learn library.
In order to perform the tuning, a custom metric to maximize was designed,
as the one used to rank teams in the ladder couldn’t be replicated locally.
This new metric is a nonlinear function dependent on the two score metrics,
PRAUC and RCE combined as follows.

obj(PRAUC,RCE) =

{
RCE · PRAUC if RCE > 0
RCE

PRAUC otherwise
(4.1)

There were several problems in finding good combination rules. The first one
was the diversity in the range of possible values of the two metrics. While
PRAUC is between 0 and 1, RCE varies from − inf to 100. By having two
such different ranges, it becomes crucial to scale the metrics in a correct way
to give the right importance to each of them.
The second difficulty arose by noticing a flaw in PRAUC metric. By always
predicting 0, in fact, it had a high score, hence when this prediction had too
much weight in the combination all the predictions tended to shrink towards
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zero. This, however, lowered significantly the score of the RCE, leading to
an overall bad solution.
While a possible solution could be to evaluate only RCE, since being not
flawed a raised in this metric lead to a consequent raise in PRAUC, the
objective would be less representative of the problem. Our solution instead
addressed the two difficulties differently. It was about giving less importance
to PRAUC in the combination of the two metrics, in such a way that the
RCE would drive the optimization. In order to do this it wasn’t necessary to
scale the metrics, because with their range values most of the times we had
that |RCE| � PRAUC. Then we found the nonlinear function 4.1, where by
respectively multiplying and dividing RCE by PRAUC the smallest metric
acted as penalty, letting the bigger one leading the optimization.



Chapter 5

Experimental Evaluation

Nowadays most of the competitive models in recommender systems are built
using hybrid approaches. A method of particular interest is the stacking
ensemble, described in section 3.4.4. This technique, by combining several
algorithms, is in general more reliable and accurate with respect to the single
models. Since the usage of this architecture in combination with the gradient
boosting decision trees (GBDT), in the last years became a common solu-
tion in challenges and high-end applications, arose the necessity to further
increase their reliability and accuracy even with imbalanced datasets.
By exploiting the environment described in chapter 4, here are provided an
analysis of such problem and a set of possible solutions.

5.1 Problem Analysis

To perform stacking ensemble with GBDT models, there are several design
choices to take into account which lead to total different implementations.
Many of the solutions in literature try to find a tradeoff between the accuracy
and the complexity of the ensemble. The first choices that need to be made
regards its architecture. The number of layers to employ and the number of
models for each layer, in fact, vary a lot its complexity and consequently its
training time. Another important choice regarding the architecture is how
to connect two adjacent levels. In fact there are a lot of possibilities and
variations to do so. For example it is possible to aggregate the predictions
and feed them directly to the next level, to aggregate not only the predic-
tions, but also the original features or employing a strategy where only a
subset of predictions are fed to each model as in the solution presented in
section 3.11.
Once designed the architecture another fundamental choice is, which imple-
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mentations of GBDT to use. This choice needs to be careful as these models
may learn different dynamics from the same dataset. The most popular im-
plementations of GBDT, also used in this work, can be found in section 3.7.
Another possibility to use in order to enhance the accuracy of the ensemble
is the partitioning of the dataset, according to the techniques described in
section 3.14. Then a consequent problem is which model train with which
sub-set.
These choices need to be made in order to have a robust approach able to
make accurate predictions in both balanced and imbalanced problems. In
a way the task performed in this chapter can be seen as an optimization
problem where the accuracy has to be optimized for three different problems
in function of the datasets, the choice of implementations and the design
parameters of the architecture. In order to look for good solutions it is
important to balance exploration and exploitation.

5.2 Environment Setup

5.2.1 Sampling

Due to the huge dimension of the challenge’s dataset, for the purposes of
this thesis a reduction was performed. In order to maintain the distribution
of both the samples and the labels, the dataset was sampled according to a
uniform distribution. The sampling ratio was chosen in order to significantly
reduce the dimension of the dataset, while keeping enough instances to per-
form valuable predictions. A fitting value to do so was 0.02, hence picking a
sample every fifty. As may be seen from table 5.1, despite the strong sam-
pling, the distribution of the samples among the classes it has been about
maintained.
This procedure was replicated on each of the available set: the training set,
the test set and the final test set.

Table 5.1: Percentage of positive interactions’ samples in the original and sampled
dataset.

Label Original Sampled

Like 43.4% 41.2%

Retweet 10.9% 9.5%

Reply 2.5% 2.4%
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5.2.2 Models

The choice of the models to use fell on three different implementations of
GBDT: XGBoost, LightGBM and CatBoost. Despite CatBoost wasn’t used
in the solution provided for the challenge, it is a popular and performing
implementation which is worth using in the context of these experiments.
The main motivations behind the use of this family of algorithms are their
elevated accuracy, their robustness with respect to the noise in the data and
their capability to work on non-normalized data.
The reason why three different implementation were chosen, instead, resides
in some of the motivations explored in section 3.14. Despite all belonging to
the family of algorithms, GBDT, they have different internal dynamic and
different hyperparameters, which justifies the diversity among their predic-
tions.

5.2.3 Optimization and Early Stopping

The optimization in this case was used in order to find a good hyperparam-
eters configurations to enhance the performance of the models constituting
the ensemble. It is performed, for each of them, using a combination of
random and Bayesian optimizer, which are described in section 3.10. The
number of points evaluated for each technique was respectively 15 for the
random and 5 for the Bayesian, giving more importance to the exploration
of new hyperparameters configuration.
Each model had a different set of hyperparameters to optimize, they were:
13 for XGBoost, 11 for LightGBM and 9 for CatBoost.
In order to deal with the overfitting problem, the models, during the op-
timization phase, were trained with the support of early stopping. This
technique consists in training a model iteratively and test its performance
on an apposite validation set. The number of iterations is then incremented
until the error on the validation set don’t decrease for an arbitrary number
of rounds.
While the test set was used to perform optimizations, the final test set for
evaluating the accuracy of the ensemble and the training set to make the
models learn, it was necessary to create an apposite validation set for the
purpose of early stopping. This new set was created by cutting the last
10% samples from the training set, which was about ten times bigger than
the other sets, with the purpose of making it similar to them, in terms of
dynamics and dimensions.
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5.2.4 Cross Validation

In order to treat a model’s predictions as features for the subsequent level
models, the use of cross validation was crucial. In fact in order to do so, it is
necessary to have predictions available for every set. It is not a big problem
when dealing with validation and test sets, but predictions made on the
training set are they are highly subject to overfitting. To solve this a leave
K out approach was employed: the training set was divided in five chunks
of almost equal dimension by generating cuts every 20% of samples. The
model was then trained using only four of them of while making predictions
on the fifth. By repeating this process on every chunk, reliable predictions
for the test set are available.

5.2.5 Features and Ensemble Strategy

In order to perform these experiments, almost all the features from the chal-
lenge solution’s dataset were employed, using 123 of them. Two feature
division strategies are used in this work.

5.2.5.1 Category Split

The first approach aim to split them by category generating five completely
different subsets:

• Raw : These features are the ones coming from the non processed
dataset provided by Twitter describing both the creator of the tweet
and its engager.

• Tweet : In this category there are the ones which provide information
about the tweet, from its most relevant metadata to the topic detection.

• Engagement : These features, describe the interactions and the dynam-
ics among the users.

• Creator : Creator features are the ones that describe the users who
created the tweets, by means of an analysis on interactions given and
received.

• Engager : This last group is like the previous, with the difference that
the analysis is performed on the user that interacted with the tweet.

Each of these categories represent a different aspect of the problem, while
maintaining enough information to be a representative subproblem.
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5.2.5.2 Relevance Split

The second division, as long as the ensemble strategy is bound to a pre-
liminary analysis performed on the sampled datasets. An XGBoost model
was trained and a features analysis was performed. By doing this, we found
that using only 60% of the features the accuracy of the models didn’t almost
suffered any reduction. In light of this, the idea of the second split configu-
ration came out. It was about maintaining the 60% core features and split
the remaining equally, in a random way, to the other subsets.
This idea is also used to build the datasets to feed to the meta-models of
each ensemble. In fact, on the last layer, the predictions are aggregated to
a dataset containing the 60% core features. This is motivated by a com-
putational speedup and by the possibility for the model to focus more its
learning on the second-last layer predictions. This dataset is then fed, in ev-
ery ensemble, to the last layer, where an XGBoost model is trained on it and
makes the final predictions. The choice of using XGBoost implementation
was due to the high accuracy shown during the challenge [33] [14].

5.3 Experimental Design

In this section are shown the proposed solutions and the ideas behind them.
The experiments are divided into two categories. The first one shows dif-
ferences among different data partitioning approaches, while the second one
shows different strategies employed in the architecture. These experiments
are then replicated three times for the labels like, retweet and reply. Due
to the different balance of the samples, predicting each of these three tar-
get classes is a different problem. The distribution of positive, negative and
pseudo-negative samples on the reduced dataset, for each class, it is almost
equal to the original, due to the uniform sampling approach.

5.3.1 Dataset Partitioning Experiments

Here is presented the first slot of experiments. The ensemble used for these
ones is one of the most common in literature: the two level stacked general-
ization. Applications of this model can be seen both in section 3.12 and in
section 3.13.
The idea is to propose different solutions based on dataset partitioning and
different choices of models, based on this architecture.
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5.3.1.1 Full Dataset with Different Models

This first experiment’s structure is developed on two levels. In level-0 there
are three different models: XGBoost, LightGBM and CatBoost, while in
level-1, there is an XGBoost model that performs the ensemble as shown in
figure 5.1.
Being the full dataset D = {fi, yi}ni=1 of n samples, where fi is the set of the
features of this dataset, yi its target labels, the models on the first level are
trained using D. Given their predictions px, pl and pc, where the subscript
it is the initial of the model that generated it. Being D60% = {di, yi}ni=1,
where d ⊂ f , a subset of the original dataset containing the same amount of
samples of D, but 60% of the most important features, the predictions are
aggregated with it. Then the dataset on which the level-1 model is trained
is Dens = {[di, px,i, pl,i, pc,i], yi}ni=1.
The goal of this experiment is, given that GBM are strong learners, to test
their performance in an ensemble while using different implementations of
the algorithm trained on the same complete data.

Figure 5.1: Full dataset with different models, solution layout. Where XGB repre-
sents the XGBoost implementation, LGBM represents LightGBM and CAT repre-
sents CatBoost.

5.3.1.2 Dataset Split with Same Models

The structure of this experiment is also developed on two levels. On level-0
there are 5 models, all of them are the same implementation of the XGBoost
algorithm. On level-1 instead, there still is an XGBoost ensemble model.
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This whole architecture is shown in figure 5.2.
The full dataset D = {fi, yi}ni=1, this time is split into 5 subsets each contain-
ing different features, but the same amount of samples Dj = {hi,j , yi}ni=1∀j ∈
[1, . . . , 5]. Being hj a subset of features, notice that hj ⊂ f ∀j ∈ [1, . . . , 5]

and, having two different subsets, hj , hk ⊂ f where j 6= k, then hj ∩ hf = ∅.
The subsets’ features categories were: raw, tweet, engagements, creator and
engager. Using them, five different XGBoost implementations were trained
in level-0, with predictions: pr, pt, pet, pc, per (the subscripts et and er repre-
sents respectively forecasts made by models trained on engagement and en-
gager datasets). These features were aggregated to D60% the same way of the
previous experiment in order to generateDens = {[di, pr, pt, pet, pc, per], yi}ni=1

to train the level-1 model. The goal of this experiment is to evaluate the
goodness of this split approach, without having differentiation in the used
models.

Figure 5.2: Dataset Split with same models, solution layout. The labels indicate the
group of features used.

5.3.1.3 Dataset Split with Different Models

This third experiment is very similar to the one presented in section 5.3.1.2,
maintaining the same splits of the dataset, and the same number of models,
the only difference was the differentiation in the level-0 algorithms as can be
seen in figure 5.3.
The subsets attributes’ categories were: raw, tweet, engagements, creator
and engager. The distribution of the datasets among the three kind of GBDT
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is the following: two XGBoost implementations are trained respectively us-
ing raw and creator subsets, LightGBM using tweet and engager ones, while
CatBoost was trained using the engagement subset. The choice of which
models to use twice is to accredit to their popularity and their proved effi-
ciency. The aggregation process and the generation of Dens is the same as
the second experiment. The goals of this experiment are two, to analyze the
relative difference in terms of metrics from the previous experiment and to
see if more in general, this split approach combined with diversification in
the models, performs well.

Figure 5.3: Dataset split with different models, solution layout. The labels indicate
the group of features used.

5.3.1.4 Dataset Split with Common Features and Same Models

This fourth experiment is employs the same structure and the same models
as the one in section 5.3.1.2, but it differs in the dataset splits.
The dataset is still divided in five different subsets maintaining the same
number of samples, but this time not all features are different.
Given the D60% = {di, yi}ni=1, we have that d, the 60% most performing
features, are present in all the subsets. The remaining f \ d, instead, are
assigned, in a random way, equally to all the splits.
In this case the dataset split can be formalized as follows. The full dataset
D = {fi, yi}ni=1, is still split into 5 subsets Dj = {hi,j , yi}ni=1∀j ∈ [1, . . . , 5]

with the same amount of samples. Differently, being hj a subset of features,
notice that hj ⊂ f ∀j ∈ [1, . . . , 5] and, having two different subsets, hj , hk ⊂
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f where j 6= k, then hj ∩ hf = d.
The aggregation phase, hence the level-1 model training are equal to the
second experiment. The complete layout of the experiment can be seen in
figure 5.4. The goal of this experiment is to test another splitting approach,
on a configuration that doesn’t have model diversity. This time instead of
dividing the problem in four uncorrelated sub problems, maintaining the core
information on each split.

Figure 5.4: Dataset Split with Common Features and Same Models, solution lay-
out. Due to the impossibility to distinguish the datasets by their content, they are
numbered.

5.3.1.5 Dataset Split with Common Features and Different Mod-
els

This fifth experiment is mostly equal to the one in section 5.3.1.4.
The only difference resides in models that are employed in level-0, in fact,
it makes use of all the three implementations, with two subsets assigned to
XGBoost, two assigned to LightBGM and one to CatBoost.
The overall layout can be seen in figure 5.5. The goals of this experiment are
to test the difference in accuracy with respect to the previous by adding the
differentiation in the models, and in general if this strategy is a good one.

5.3.2 Architecture Experiments

This second category of experiments focus more on exploiting different kind
of architectures.
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Figure 5.5: Split dataset with different models, solution layout.

The proposed architectures all evolve around a base architecture, the one
proposed in section 5.3.1.3. They use the same dataset split, because of
the insight of section 3.14: raising the ensemble accuracy by increasing the
diversity in its models. Also following this idea, all the implementations
of GBDT treated in this thesis are employed. The choice fell on this base
architecture in order to test not only the effectiveness of the proposals, but
also how the differentiation affects the ensembles.
The proposed architectures were mostly inspired by the works presented in
section 3.8 and in section 3.11.

5.3.2.1 Three Layer Fully Connected

This solution expands the base structure by adding an intermediate layer
having the same five models of the first one.
Level-0 is the same as the base structure, the first difference resides into its
prediction aggregation. To feed them to the level-1 layer, in fact, they are
aggregated to each of the level-0 subsets Dj = {hi,j , yi}ni=1∀j ∈ [1, . . . , 5].
The predictions made by the level-0 models p0,r, p0,t, p0,et, p0,c, p0,er are ag-
gregated to eachDj resulting in: D1,j = {[hi,j , p0,r, p0,t, p0,et, p0,c, p0,er], yi}ni=1

∀j ∈ [1, . . . , 5].
The strategy used to choose which level-1 model employ for each D1,j subset
is to keep the correlation group of features - implementation. For example,
in case j = 4, if D4 was used to train an XGBoost implementation then D1,4

will also be used to train XGBoost.
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To clarify, the D1,j subsets are used as follows. The ones containing the
raw features and the creator features are used to train XGBoost models, the
ones containing the tweet features and the engager features were used to
train LightGBM models while the one containing the engagement features
to train CatBoost. As in level-0.
The predictions made by the level-1 models are then aggregated with the
dataset containing the core features as in the base structure and fed to the
XGBoost model at level-2 in order to make the final forecasts.
The architecture presented may be seen in figure 5.6. The motivation be-
hind this experiment is the will to test the performance of a multilayered
structure with a strong differentiation in the datasets and a fully connected
aggregation strategy of the predictions.

Figure 5.6: Three layer fully connected, solution layout.

5.3.2.2 Four Layer Fully Connected

This solution evolves the previous, adding two intermediate layers, instead
of one, a schematic example of which is shown in figure 5.7.
The structure dynamics are the same, but it is important to specify how
the level-2 dataset are formed. In fact, the level-1 predictions p1,r, p1,t,
p1,et, p1,c, p1,er are aggregated to the D1,j datasets, resulting in: D2,j =

{[hi,j , p0,r, p0,t, p0,et, p0,c, p0,er, p1,r, p1,t, p1,et, p1,c, p1,er], yi}ni=1∀j ∈ [1, . . . , 5].
The number and the kind of models for each level are maintained such as
the datasets assignment strategy.
The goal of this experiment is to look for an increment in terms of accuracy
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increasing the ensemble complexity by means of more layers.

Figure 5.7: Four layer fully connected, solution layout. R1, T1, Et1, C1 and Er1
are the original subsets with aggregated all the predictions made by level-0 models.

5.3.2.3 Three Layers Circularly Connected

This experiment uses the same structure of the one presented in section
5.3.2.1, but it varies the predictions are combined to form the level-1. Its
architecture is the same shown in figure 5.6, where, in this case, the red node
implements the circular aggregation strategy.
This solution, in fact, implements a circular distribution of the features. This
strategy relies on the fact that, with this split of the dataset, the subsets
generated to train the models of intermediate level maintain their charac-
terizing features. When generating the training set for these levels, instead
of aggregating a feature to every available set, only one is picked to be
attached to every dataset using the circular approach. Consider the level-
0 models predictions: p0,j ∀j ∈ [1, . . . , 5]. Given the level-0 training sets
D0,j = {hi,j , yi}ni=1∀j ∈ [1, . . . , 5] then the level-1 datasets are built as D1,j =

{[hi,j , p0,(j+1) mod 5], yi}ni=1∀j ∈ [1, . . . , 5]. In general, datasets to feed to
level-k, with k ≥ 1, are defined as Dk,j = {[Dk−1,j , pk−1,(j+k) mod 5]}∀j ∈
[1, . . . , 5].
To better understand this technique let us consider the feature categories
ordered in a circular list as shown in figure 5.8.

The order of the attachments is the one shown in the figure. The names
in the linked list refer to the subsets holding that group of features. Then,
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Raw Tweet Engagement Creator Engager

Figure 5.8: Subset aggregation order with circular strategy.

the predictions made on one of these subsets, are initially attached, in level-
0, to the subsequent dataset in the list. Then, by adding layers, the order is
followed.
To provide an example, tweet predictions are aggregated to the engagement
subset in level-0, in level-1 they are attached to the creator subset, ending
up to be attached to the tweet subset in level-4.
It is important to notice that, as in experiments numbers 6 and 7, the predic-
tions made by a certain level are aggregated with the datasets used to train
such level. For example predictions made by level-0 are aggregated with the
dataset to train the models of that level, in order to provide a training set
for level-1. This obviously results in an increase of features over layers.
The other details of this solution are the same of the sixth experiment. The
goal of this solution is to test a different prediction aggregation technique
on a multilayer structure and to compare the results of this approach to the
ones obtained from fully connected strategy.

5.3.2.4 Four Layers Circularly Connected

This experiment combines the architecture of the one presented in section
5.3.2.2 with the aggregation strategy of section 5.3.2.3, resulting in a four
layer architecture connected circularly. A panoramic of this architecture
appears in figure 5.6, where, also in this case, the red node implements the
circular strategy.
The goal of this solution is to check the relative difference from the eighth
experiment in terms of accuracy, testing, in case of a weaker aggregation
approach, the variation of accuracy by increasing the ensmeble complexity.

5.3.2.5 Persistent Backpropagation

The tenth solution uses the architecture of section 5.3.1.3, assumed to be the
base structure, without adding any additional layer. The only difference is
that a particular form of backpropagation is implemented.
The base structure produces its final solution, then, at this point, instead of
taking them as ensemble solution they are aggregated with each of the initial
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level-0 subsets, then the whole ensemble is re-trained and process repeated
as many times as desired.
We called this technique persistent backpropagation, because commonly the
feedback provided by backpropagation is used to update values, while in this
case it is used as a new source of information which "persist" through the
various iterations.
The structure layout can be seen in figure 5.9.
The goal of this approach is to test this new technique on different numbers
of iterations, in order to see if it could lead to an increment in accuracy.

Figure 5.9: Backpropagation model, solution layout. The red line attaches the result
produced by the level-1 model to the level-0 datasets.

5.3.2.6 Multiple Persistent Backpropagation

This last experiment uses the structure and the insight of the previous one,
but instead of backpropagating only the final predictions, each prediction
made by each level of the ensemble is attached to each level-0 subset. Its
layout can be seen in figure 5.10
This last structure’s goal it is to see if, by backpropagating more informa-
tion there is an increment or a decrement, in terms of performance, in the
ensemble.
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Figure 5.10: Multiple ackpropagation model, solution layout. The red line attaches
the result produced by the level-1 model to the level-0 datasets. The violet one
instead attaches to those datasets each prediction made by level-0 models. 5.9
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Chapter 6

Results and Considerations

This chapter illustrates the results of the experiments which are commented
in dedicated sections. These solutions were tested on three out of four dif-
ferent labels of the original problem: like, retweet and reply.

6.1 Data Partitioning Results

In this section we show the outcome of the data partitioning experiments.
All of them exploit the same architecture in order to be more comparable:
they use the stacked generalization approach, which is presented in section
3.4.4, implemented on two levels.
Table 6.1 shows the results of the data partitioning experiments for each
label. In this table we show RCE and PRAUC values along with the value
of the objective function in order to provide a more impactful comparison
among the solutions’ outcomes. For each label it is possible to see an em-
phasized row with the caption Challenge Solution. These rows provide the
performance of the models used by our team in the challenge, which details
are discussed in section 2.2. For the sake of comparability, such models are
trained on the same information as the proposed experiments, hence with-
out the data processed by the neural network. Without this information the
models had weaker results, being surpassed, in terms of objective function,
by every proposed solution.
It is possible to observe that for each label the scores aren’t too far from each
other. This is due to the robustness of both GBDT algorithms and stacked
generalization technique, that trained on a dataset with a large amount of
features generated in every case reliable predictions. The three classes, as
described in section 4.2.3, held different levels of imbalance. In table 6.1 can
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be seen that the more the classes are imbalanced the more the difference
among the scores and the scores theirself are in general lower. This is be-
cause, reducing information about the positive interactions makes harder to
learn their dynamics, reducing the learning ability of models.
Another interesting insight that is possible to infer from table 6.1 is that not
always increasing the diversity in the ensemble by providing different dataset
splits or using different models lead to an increase in performance. In fact
the Dataset Split with Different Models solution, which can be considered the
one with the most diverse ensemble, didn’t have an outstanding outcome.
On the other hand, an ensemble that trains its level-0 models on all the
information: Full Dataset with Different Models, provided the best predic-
tions for both like and retweet classes. Another experiment that follows this
dynamic Dataset Split with Common Features and Same Models, which, for
every label, scored the second best objective function maintaining stability
over the different imbalance of the classes. The motivations behind the suc-
cess of this last experiment, presented in section 5.3.1.4, are to find mostly
in the combination of the architecture with five level-0 models, combined
with a feature solution that is similar to the full dataset. The reasons for
its high performance in the like and retweet classes, instead, are attributable
to its training set’s choice of features, regarding its high accuracy on the
reply class however there is another reason. In fact the architecture used for
this experiment works really well with such level of imbalance. This theory
is reinforced by the scores of the Dataset Split with Same Models solution,
which employs the same architecture, but different training sets. It is also
able to provide the best predictions for the reply label.
We can state that for the more balanced classes: like and retweet the solu-
tions that perform better are the ones with a larger amount of features in
the training set, while for the most imbalanced increasing the diversification
in the training data is a winning approach.
The Dataset Split technique used in both section 5.3.1.2 and 5.3.1.3 didn’t
have an outstanding performance. This was probably due to the incapabil-
ity of the ensemble model to fully catch the information divided among the
base models. Such approach had however good results in reply class. In fact
with enough imbalance in the problem an incisive split strategy, which for
balanced classes resulted in a loss of performance, was able to focus more on
the hidden dynamics of the data, resulting in an increase in performance.



6.2. Architecture Results 51

Table 6.1: Performance of the dataset partitioning experiments. The comparison
shows the PRAUC and RCE metrics along with the objective function that combines
them.

LIKE PRAUC RCE obj
Challenge Solution 0.6357 11.6899 7.4312

Full Dataset with Different Models 0.6609 14.0137 9,2616
Dataset Split with Same Models 0.6447 12.2785 7,9159

Dataset Split with Different Models 0.6456 12.2709 7,9220
Dataset Split with Common Features and Same Models 0.6599 13.7938 9,1025

Dataset Split with Common Features and Different Models 0.6574 13.6369 8,9280
RETWEET

Challenge Solution 0.2786 10.7851 3.0047
Full Dataset with Different Models 0.2910 11.7686 3,4246
Dataset Split with Same Models 0.2874 11.4228 3,2829

Dataset Split with Different Models 0.2873 11.3922 3,2729
Dataset Split with Common Features and Same Models 0.2911 11.7643 3,4245

Dataset Split with Common Features and Different Models 0.2910 11.7471 3,4184
REPLY

Challenge Solution 0.0740 8.3411 0.6172
Full Dataset with Different Models 0.0782 7.9840 0,6243
Dataset Split with Same Models 0.0768 8.4168 0,6464

Dataset Split with Different Models 0.0763 8.1415 0,6211
Dataset Split with Common Features and Same Models 0.0778 8.2200 0,6395

Dataset Split with Common Features and Different Models 0.0780 7.9264 0,6182

6.2 Architecture Results

In this section are presented the results obtained from the experiments which
exploited the architecture of the ensemble.
Table 6.2 shows the outcomes in terms of RCE, PRAUC and objective func-
tion of the various experiments. Also in this table there are emphasized rows
which represent a baseline that models have to surpass to be actually con-
sidered good. The baseline is the outcome of the Dataset Split with Different
Models shown in table 6.1, because all the experiments evolve around this
ensemble which is presented in section 5.3.1.3. The reasons of this choice,
were discussed in section 5.3.2.
As can be seen in table 6.2, even by varying the architecture, the general

considerations on the results made in section 6.1 still hold. Among these ex-
periments the one that is always able to surpass the baseline is the Persistent
Backpropagation one. Its goodness it is hence independent from the imbal-
ance of the class, having stability and a considerable increase in accuracy. Of
particular interest are its scores for the reply class. The objective function
in this case stands out as it is significantly higher with respect to the others.
This solution, in fact, was able to replicate the strategy our model used in
the context of the challenge: slightly lowering the RCE as it considerably
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Table 6.2: Performance of the architecture experiments. The comparison shows the
PRAUC and RCE metrics along with the objective function that combines them.

LIKE PRAUC RCE obj
Challenge Solution 0.6357 11.6899 7.4312

Dataset Split with Different Models 0.6456 12.2709 7,9220
Three Layer Fully Connected 0.6448 12.1284 7,8203
Four Layer Fully Connected 0.6448 12.1813 7,8545

Three Layers Circularly Connected 0.6466 11.4338 7,3930
Four Layers Circularly Connected 0.6477 12.4754 8,0803

Persistent Backpropagation 0.6513 12.5149 8.1509
Multiple Persistent Backpropagation 0.6489 12.1593 7,8901

RETWEET
Challenge Solution 0.2786 10.7851 3.0047

Dataset Split with Different Models 0.2873 11.3922 3,2729
Three Layer Fully Connected 0.2845 11.1975 3,1856
Four Layer Fully Connected 0.2847 11.1609 3,1775

Three Layers Circularly Connected 0.2848 11.0822 3,1562
Four Layers Circularly Connected 0.2864 11.1858 3,2036

Persistent Backpropagation 0.2893 11.5276 3,2959
Multiple Persistent Backpropagation 0.2885 11.4625 3,3069

REPLY
Challenge Solution 0.0740 8.3411 0.6172

Dataset Split with Different Models 0.0763 8.1415 0,6211
Three Layer Fully Connected 0.0761 8.0120 0,6097
Four Layer Fully Connected 0.0741 7.8247 0,5798

Three Layers Circularly Connected 0.0762 7.9444 0,6053
Four Layers Circularly Connected 0.0767 8.1498 0,6250

Persistent Backpropagation 0.1000 8.0327 0,8032
Multiple Persistent Backpropagation 0.0770 7.8887 0,6074
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enhances the value of PRAUC, resulting in a consistent increase in the ob-
jective function.
Another good experiment that almost always surpasses the baseline is the
Four Layers Circulary Connected, exceeding it in both like and reply classes.
Moreover its objective function is incremented with respect to its three layer
version: Three Layers Circularly Connected, leading to the possibility of a
further increase in accuracy by tuning the complexity of the ensemble.
The approaches that aggregated the greatest number of features: both the
Fully Connected experiments and the Multiple Persistent Backpropagation
experiment didn’t perform very well. This suggests that even if the used
GBDT implementation had an internal mechanism of features selection, in
general attaching too many of them to the dataset is counterproductive and
lowers the outcome.

6.3 Distribution Comparison

In this section we provide an analysis of the models and their prediction
distributions among the labels. As it is possible to state by looking at figure
6.2 and figure 6.3 the different number positive interaction causes substantial
differences in the forecast distributions. For the like label the predictions
range through a wide range of the domain, covering it almost completely.
The same cannot be said for retweet and reply. In fact, the predictions are
condensed towards zero, increasing the amount of certain negative predic-
tions. Regarding the data partitioning experiments it is interesting to show

(a) Challenge Solution, like (b) Challenge Solution,
retweet

(c) Challenge Solution, reply

Figure 6.1: Distribution of predictions of the Challenge Solution for each label. On
the x-axis there are the predicted probabilities, while on the y-axis there is their
density.

some differences among models that did perform well along with models that
didn’t. An example of that is given by figure 6.2a and figure 6.1a: respec-
tively the most and the least performing models for the like label in the data
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(a) Full Dataset with
Different Models, like

(b) Full Dataset with
Different Models, retweet

(c) Full Dataset with
Different Models, reply

(d) Dataset Split with
Same Models, like

(e) Dataset Split with
Same Models, retweet

(f) Dataset Split with
Same Models, reply

(g) Dataset Split with
Different Models, like

(h) Dataset Split with
Different Models, retweet

(i) Dataset Split with
Different Models, reply

(j) Dataset Split with
Common Features and
Same Models, like

(k) Dataset Split with
Common Features and
Same Models, retweet

(l) Dataset Split with
Common Features and
Same Models, reply

(m) Dataset Split with
Common Features and
Different Models, like

(n) Dataset Split with
Common Features and

Different Models, retweet

(o) Dataset Split with
Common Features and
Different Models, reply

Figure 6.2: Distribution of predictions of the data partitioning experiments for each
label. On the x-axis there are the predicted probabilities, while on the y-axis there
is their density.
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(a) Three Layers Fully
Connected, like

(b) Three Layers Fully
Connected, retweet

(c) Three Layers Fully
Connected, reply

(d) Four Layers Fully
Connected, like

(e) Four Layers Fully
Connected, retweet

(f) Four Layers Fully
Connected, reply

(g) Three Layers Cirularly
Connected, like

(h) Three Layers Cirularly
Connected, retweet

(i) Three Layers Cirularly
Connected, reply

(j) Four Layers Cirularly
Connected, like

(k) Four Layers Cirularly
Connected, retweet

(l) Four Layers Cirularly
Connected, reply

(m) Persistent
Backpropagation, like

(n) Persistent
Backpropagation, retweet

(o) Persistent
Backpropagation, reply

(p) Multiple Persistent
Backpropagation, like

(q) Multiple Persistent
Backpropagation, retweet

(r) Multiple Persistent
Backpropagation, reply

Figure 6.3: Distribution of predictions of the architecture experiments for each label.
On the x-axis there are the predicted probabilities, while on the y-axis there is their
density.
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partitioning experiments. These two charts are quite similar, although they
have some differences that justify the gap between their performance. While
the curve of figure 6.1a, the Challenge Solution, seems smoother it has less
certain prediction in the boundaries, respectively in the regions of probability
0 < p < 0.2 and 0.8 > p > 1. By pushing more predictions in such regions,
the Full Dataset with Different Models, in figure 6.2a, is able to reach higher
scores in the metrics. Another alike comparison, but for retweet label, can be
obtained by comparing the charts in figure 6.2b and in figure 6.1b. They also
show the most performing prediction in the data partitioning experiments is
compared with the worst one, which were generated by the same models as
before. In this case the distributions are quite similar, but there are some
small differences that justifies their difference in performance. As can be
seen the distribution shown in figure 6.2b has a higher pike in the proximity
of 0, and less density of predictions near the probability 0.2 with respect
of the histogram of figure 6.1b. Also this last chart shows that the model
with worst performance also predicted more positive values, especially with
probability 0.6 < p < 0.8. So due to the imbalance it is a better strategy to
predict negative interactions as these predictions are less likely to be wrong.
These differences, albeit small, justified an increment of 12% in the objective
function.
The most interesting analysis to perform belongs to the architecture experi-
ments. In fact the PRAUC unexpectedly high in the Persistent Backpropa-
gation experiment generated a way different distribution with respect to the
other models. In this case it is interesting to compare it with the second
best solution, the one provided by the Four Layers Circularly Connected, to
show how the prediction of an already good solution change to obtain such
increase.
As may be seen in figure 6.4 the two histograms are quite different. The
figure 6.4a shows the chart of the Persistent Backpropagation in which the
distribution of the prediction is way more discontinuous with respect to fig-
ure 6.4b, also the pike of the top chart’s predictions near the probability of
0 have almost three times the density of the lower chart. Moreover, in figure
6.4 we can observe that the histogram’s bars are thinner, implying that such
model predicted a wider range of values, which suggest a higher complexity.
This strategy slightly penalized the RCE score, certain incorrect predic-
tions results in a penalty in terms of this metric, but raises significantly the
PRAUC as most of certain predictions are correct. This is mainly possible
because of the imbalance, the model that generated such forecasts in fact ex-
ploited the tradeoff between these two metrics. In order to do so the model
condensed most of its predictions in a range of values trying to both mini-
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mized the misprediction penalty of RCE and maximized the PRAUC.
In highly imbalanced problems, in fact, there are little chances of mispre-
dicting a certain value, in particular in a class where only about 2.4% of the
overall interactions are positive. While this strategy cannot be applied to
balanced or almost balanced classed, the trained models didn’t succeed on
exploiting it in the retweet class, which, still imbalanced, have around 10%

of positive interactions, so it probably grow harder to use with respect to
the increment of positive interactions in the dataset.

6.4 Complexity Inspection

Among the proposed solutions, two of the experiments had an interesting be-
havior, the first is the Circularly Connected one, which surpassed the baseline
in the like and the reply classes. Also its relative increment in the Four Lay-
ers model with respect to to the Three Layers opened up the possibility of
a further increase by tuning the complexity of such technique.
The second is the Persistent Backpropagation model that did surpass in ev-
ery case the baseline and was the only one able to reach such high results
in the reply label. Even in this case the number of backpropagation cycles
was chosen arbitrarily, hence not tuned. So in this section we present an
inspection of these models’ performance, in order to study what happens by
increasing their complexity.

6.4.1 Circular Connection Inspection

In this section we study the behavior of the Circularly Connected model
architecture increasing the number layers up to eight.
Figure 6.5 shows nine different line charts, describing the evolution of RCE,
PRAUC and the objective function over the increasing complexity. They
show this for all the three labels, which lead to similar conclusions. We
can state that in general this kind of models obtain the highest value only
using few layers. The only exception is the chart shown in figure 6.5i for the
reply label which, increasing the complexity up to the eighth layer, becomes
able to exploit the tradeoff between the RCE and the PRAUC explained in
section 6.3, almost doubling the objective functions with respect to the other
predictions. This behavior can be observed also in figure 6.5c and figure 6.5c,
they show respectively a pike of PRAUC and a drop of RCE corresponding
to the eight layers model, confirming the existence of an exploitable tradeoff
between the two metrics.
For this approach, doesn’t seem necessary to push the complexity too far, as
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(a) Persistent Backpropagation

(b) Four Layers with Circularly Connected

Figure 6.4: Comparison among the distribution of the two most performing archi-
tecture experiments on reply label. On the x-axis there is the predicted probability
of such models, while on the y-axis the density of the predictions.
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(a) PRAUC, like (b) PRAUC, retweet (c) PRAUC, reply

(d) RCE, like (e) RCE, retweet (f) RCE, reply

(g) Objective Function, like (h) Objective Function,
retweet

(i) Objective Function, reply

Figure 6.5: Circularly Connected models’ performance with different number of
layers evaluated on PRAUC, RCE and objective function, for each label. On the
x-axis there is the number of layers, on the y-axis there are the metrics scores.

it always produced better predictions with less complex models, granting a
shorter training time, but denying the hoped-for accuracy increase.

6.4.2 Persistent Backpropagation Inspection

In this subsection we study the behavior of the Persistent Backpropagation
model, trying to figure out how its prediction accuracy would change by ex-
ploring the number of backpropagation cycles up to a maximum of 9.
In figure 6.6 there are nine different charts showing the evolution of PRAUC,
RCE and the objective function with respect to the number of backpropaga-
tion cycles for each label. The number of these rounds was arbitrarily set to
3, however in each of these plots a higher value is reached beyond the third.
So the best approach over the three label, as stated in section 6.2, it is to
tune the number of cycles due to the possibility of a further accuracy raise.
Another interesting aspect of this technique is in the reply label, in fact,
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it carries several solution which exploit the PRAUC and RCE tradeoff. In
particular, over nine solutions only two of them didn’t use it ending up to
be the less performing, respectively, the first and the fifth cycle solutions.
Another interesting aspect is the objective function charts’ likelihood. Each
of them in fact presents a minima on the fifth cycle and two pikes, one before
and one after it. In order to enlighten this behavior there is a dashed black
line on the charts. The empirical observations suggest that up to the fourth
round, increasing the number of backpropagation cycles raises the accuracy
of the models. From the fifth to the ninth one, instead, the models act un-
expectedly, in fact almost all the charts in figure 6.6 present a sudden and
impactful drop on the fifth cycle, then a growth on the sixth.
Even with different labels, hence diverse numbers of positive samples, these
models, which random optimization ran on different seeds, have a similar
learning dynamic with respect to the imbalance and the number of rounds.
Using this technique a fine extended tuning it is fundamental in order to
maximize its accuracy, which is also one of this technique’s drawbacks. In
fact, for each cycle the entire structure need to be trained again on the new
backpropagated dataset, resulting in an increase of training time.
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(a) PRAUC, like (b) PRAUC, retweet (c) PRAUC, reply

(d) RCE, like (e) RCE, retweet (f) RCE, reply

(g) Objective Function, like (h) Objective Function,
retweet

(i) Objective Function, reply

Figure 6.6: Persistent Backpropagation model’s performance with different number
of backpropagation cycles evaluated on PRAUC, RCE and objective function, for
each label. On the x-axis there is the number of cycles, while on the y-axis there
are the metrics scores.
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Chapter 7

Conclusions

The state of the art shows that nowadays most competitive and high-end
solutions in recommender systems make use of the ensemble approaches.
Among these a recurrent choice due to its accuracy and robustness is the
stacking ensemble. Despite this is one of the most common techniques to
perform the models ensemble, most of the literature work use very similar
structures: a two level stacking generalization, lacking of exploration.
The goal of this work is to propose and explore new ideas to further incre-
ment such technique’s performance and scalability over imbalance, relying
on two main strategies: the dataset partitioning and the modification of the
ensemble architectures. The results of these solutions, discussed in chapter
6, presented several unexpected implications.
From the data partitioning experiments’ results, presented in section 6.1, it
can be said that, in general, for balanced and for slightly unbalanced prob-
lem the best approach, among the tested ones, is to diversify the GBDT
implementations within the ensembles, then train them with the complete
dataset.
However there is another competitive solution, which strong points reside in
robustness and scalability. In fact, by dividing the dataset in five different
subsets, each containing the 60% most relevant features, with the strategy
presented in section 5.2.5, it is possible to achieve a high accuracy on each
one of the labels.
Considering that the two most performing results weren’t the most diverse
ensemble, we can state that the diversification level must be related to the
complexity of the problem dealt with. Hence trying to maximize the diversi-
fication in the ensemble, as the results in table 6.1 show, isn’t always a good
strategy. The dataset diversification instead, should be carefully taken into
account as a design hyperparameter.
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The architecture experiments held the most unexpected results. The best
model, according to its high accuracy in the tested environment, was the one
implementing the persistent backpropagation approach, singularly. Its per-
formance turned out to be excellent on each class, surpassing in each case
the score of the baseline, revealing to be an accurate, robust and scalable
approach. This technique, appositely created for the purpose of this thesis
opens up new possibilities. As demonstrated in section 6.4.2, it has a wide
margin of growth by tuning the number of backpropagation cycles. It could
also be tested with most performing splits of the dataset or on multilayer
structures in order to have a further enhancement of its qualities. Moreover
it would be interesting to investigate its behavior after the fourth backprop-
agation cycle with further work.
Another approach belonging to the architecture experiments that gave in-
teresting results is the circular aggregation technique. Despite it did not
notably increased the accuracy over the complexity tuning, the proposed
Four Layers Circularly Connected model obtained results higher than the
baseline’s ones for both the like and reply labels.
By taking up a consideration made in section 6.2, that is to aggregate too
much predictions in an ensemble could lead to a performance drop, we can
state that a maximum number of predictions to add on each dataset should
be set as a design hyperparameter. Once reached that number, an elimi-
nation system could be taken into account. For example keeping the most
recent predictions and removing the older ones could be a good strategy.
In conclusion the most promising results were obtained by exploiting the ar-
chitecture of the ensembles, providing two new approaches to test in different
contexts. While the data partitioning solutions showed that, for simple en-
sembles, approaches trained on a larger portion of features tend to perform
better. Also, when employing a dataset division strategy, it is better to use
a single, more performing GBDT algorithm, according to these results.
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