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Sommario

Il cambiamento climatico ha reso la transizione verso la sostenibilità un processo
necessario. Il settore dei trasporti è profondamente coinvolto in tale transizione
in quanto è uno dei maggiori responsabili dell’inquinamento atmosferico. Nel
contesto urbano, i sistemi di trasporto pubblico stanno convertendo le loro flotte in
elettriche. In questo scenario è assolutamente necessaria una corretta pianificazione
per ricaricare i veicoli per garantire il corretto funzionamento del servizio. Tale
piano e’ inoltre indespensabile affinchè i costi dell’energia e quelli per la potenza
richiesta alla rete siano ottimizzati. Allo stesso tempo, un corretto processo di
ricarica può aiutare a rallentare il deterioramento delle batterie. Tramite nuove
tecnologie chiamate Vehicle-to-Grid, i veicoli elettrici sono in grado di restituire
energia alla rete scaricando parzialmente la loro batteria. Queste tecnologie possono
risultare vantaggiose per la gestione della flotta. In questo lavoro viene sviluppata
una formulazione MILP per pianificare il piano di ricarica di una flotta di autobus
elettrici. Il modello tiene conto dei costi dell’energia, della potenza massima
richiesta alla rete e cerca di quantificare anche un costo causato dal deterioramento
delle batterie. Inoltre, le sopracitate tecnologie Vehicle-to-Grid sono integrate nel
contesto. Il modello si basa sul sistema di trasporto pubblico della città di Milano.
Vengono modellizzate anche delle istanze di test basate su di esso. Viene quindi
proposta una strategia per la risoluzione del problema e questa è anche applicata
su un insieme di istanze basate sulle reali condizioni operative a Milano. Vengono
poi eseguiti alcuni esperimenti per convalidare sia modello che l’euristica. Infine,
attraverso un’analisi di sensibilità è indagato l’impatto delle tecnologie V2G sulla
flotta.
Parole chiave: autobus elettrici, V2G, mezzi di trasporto pubblico strategie di

ricarica, trasporti sostenibili, deterioramento delle batterie, logistica urbana

xi



Abstract

The current climate condition has made a transition towards sustainability
necessary. The transport sector is deeply involved in such a transition as it is
responsible for a significant portion of air pollution.
In urban environments, public transportation systems are converting their fleets
into electrical ones. In this scenario an optimised charging schedule is absolutely
necessary to ensure the proper operation of the fleet. Furthermore, coordination is
necessary to keep the cost for withdrawing energy low while avoiding the overloading
of the grid. At the same time, a proper charging schedule may slow the degradation
of batteries. Furthermore, bidirectional flow of the current can be achieved thanks to
Vehicle-to-Grid (V2G) technologies. Such technologies are thought to be beneficial
for the operations of the fleet.
In this work a MILP formulation for the charge scheduling of a fleet of electric
buses is developed. The model takes into account the costs of energy, the maximum
power requested from the grid and the degradation of batteries. Furthermore,
V2G technologies are explicitly modelled. A matheuristic is then proposed for
the efficiently solving the resulting problem. A set of instances based on the real
operational conditions in Milan is proposed. Extensive experiments are performed
to validate the model and the heuristic. Finally, a sensitivity analysis investigating
the impact of V2Gs over a variety of setting is performed.
Keywords: electric buses, V2G, public transportation, charge scheduling, green

transportation, battery degradation, city logistics
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Chapter 1

Introduction

It is now common knowledge that air pollution plays a key role in damaging the
ecosystem and human health. Indeed, right after climate change, air pollution is
considered the second most important environmental concern for Europeans (EEA,
2020a). Despite the increasing efforts in cleaning Europe’s air, improvements in
air pollution are not yet satisfactory. A special attention is devoted to the level
of particulate matter (PM), ammonia (NH3) and nitrogen oxides (NOX). Their
concentration is higher in cities, where they are typically above the standard levels
set in the World Health Organization’s guidelines for clean air. The majority of EU
Member States are currently implementing measures aimed at drastically reducing
emissions by 2030 (EEA, 2020b). Sectors addressed as principal responsibles for air
pollution are agriculture, energy production and transportation. In the European
contest, emissions due to domestic navigation and railway transportation have
decreased since 1990 (E. EEA, 2019). The same trend does not apply for road
transport, international maritime transport nor aviation. However, emissions due
to road transports, which constitute the highest proportion over the total (71%
in 2018), are expected to decrease in the next years. Indeed, one of the major
initiatives regards the structural change of the transportation sector, mainly in
urban context. Road traffic is also considered the principal contributor to noise
pollution, which is a growing environmental concern and has severe impacts on
health conditions and other important aspects of life, such as cognitive impairment
on children (EEA, 2021).

Switching to electric vehicles (EVs) seems to address the above-mentioned
problems, as they are well known to reduce noise pollution and the greenhouse
gases (GHG) emissions. Especially, local CO2 emissions are almost 10 times lower
compared to vehicles with internal combustion engines (Teixeira and Sodré, 2018).
Furthermore, given the target of zero emissions established in the European Green
Deal, the reduction of CO2 emission will also interest the production of the energy
to charge the fleet (EEA, 2020c). Despite their advantages, EVs are not widely
employed. For instance, the percentage of private electric cars, even if increasing,
in 2019 represented only the 3% of the total vehicles. The main causes are the high
initial investments required for these fleets and logistic challenges which arise with
their operation. However, batteries costs are estimated to decrease of 18% within
10 years (Schmidt et al., 2017, Finance, 2020) as well as their associated costs, like
maintenance and storage. On the other hand, many studies are evaluating the
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2 Introduction

best operating conditions to properly adopt an electric fleet. Furthermore, with
their progressive usage, the required facilities, as for instance charging stations, are
increasing.

The public transportation sector is part of this epochal change. For instance, the
public transportation system of the city of Milan (ATM) is transitioning to having
a fleet of fully electric buses (EB) by 2030 (ATMWebsite, n.d.). Such a scenario will
be taken into account in this work, with a focus on the charging process of the fleet.
Apart from the required equipment for charging, the process itself can be really
slow. This could make EVs appear less powerful than ICEs. However, in urban
context EVs are showed to be more efficient (Brito et al., 2013). Special equipment,
such as fast chargers, are able to speed up the charging process. Unfortunately,
they are more expensive than the slow chargers, therefore there are usually few of
them. Furthermore, these efficient technologies require a very high power, which
may lead to an excessive load of the grid.

Another important aspect is the lifetime of the batteries. Due to the high
replacement price, the investment in batteries is pivotal in the operational costs
of the fleet. In some cases then, like for the mostly used Lithium-Ione batteries
(LIB), there are other issues, like the environmental costs for their disposal and
uncertainties with respect to Lithium itself. Even though these aspects are being
investigated and efficient recycling process for LIBs are being developed (Ziemann
et al., 2018), preservation of batteries themselves cannot be ignored while charging
the fleet.

Lastly, costs incurred when charging the fleet may be subjected to great vari-
ability. This is due to the energy plans, whose costs for kWhs typically fluctuates
during the day. In particular, industrial energy contracts usually stipulate a fee
related with the maximum power retrieved from the grid, adding uncertainty to
the total costs.

Vehicle-to-Grid (V2G) technologies enable EVs to support bidirectional flow of
current. EVs provided with such technologies (EV-V2Gs) are able to return energy
to the grid with a partial discharge of their battery. Thus, EV-V2Gs can also serve
as a source of energy storage. EV-V2Gs can also decrease the operational costs. As
prices of energy vary during the day, energy bougth during cheaper periods can
be discharged to other EVs in a high cost period. Nevertheless, since less power
is retrieved from the grid, an efficient usage of V2G technologies could reduce the
maximum charging power required in the planning period.

To properly address all these operational aspects, it is necessary to plan ahead
the charging process. In literature these types of problems are called Charge
Scheduling Problems. This class of problems is very wide. It can include different
types of electric vehicles, like shared vehicles, electric freight (EFVs), EBs. Thus,
the specific assumptions used in charge scheduling problems depend to the specific
assumption of the context. This work inherits the assumptions of the charging
scheduling problem for a fleet of EFVs in Pelletier et al., 2018, adapts them in the
context of EBs of a public transportation. The contributions of this thesis are as
follows.

1. We propose an enhanced Mixed integer linear program (MILP) formulation
for the charge scheduling problem of Pelletier et al., 2018.
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2. We introduce V2G technologies in the context of the charge scheduling problem
associated to EBs.

3. We propose an effective matheuristic for the resulting problem.

4. We generate a set of test instances based on the real operational conditions
in Milan.

5. We demonstrate the effectiveness of our models and heuristic on a broad set
of experiments. Furthermore, we analyse the sensitivity of various problem
features through a comprehensive set of experiments.

The reminder of the thesis is organized as follows. In chapter 2 a survey of
relevant literature is reported. The model is then explained in detail in chapter 3
and in chapter 4 we present the instances generated. chapter 5 summarizes all the
experiments performed and finally chapter 6 presents the conclusions on the work.





Chapter 2

Literature review

Electric vehicles (EVs) and their charging infrastructures have been widely
studied in the Transportation Science and Logistics literature (Shen et al., 2019,
Erdelić and Carić, 2019). Even if Vehicle-to-Grid (V2G) technologies have always
been considered as a tool to increment the usage of EVs, they are not widely
explored yet (Sovacool et al., 2018). Sortomme and El-Sharkawi, 2010 used vehicles
with V2G technologies as a tool to control some aspects of the grid, called ancillary
services, such as the load regulation and the spinning reserves. The optimization of
the V2G assets is perform by an aggregator whose profit increases with regulation
services. Zhang et al., 2021 embedded V2G technologies into an EV sharing. They
formulated a two-stage stochastic IP model to optimize over the service opening,
the capacity design and the fleet allocation under uncertainties. In the setting of
a smart grid with heterogeneous charging facilities, Tang et al., 2017 proposed a
model to jointly optimize the routing and charging scheduling. They adopted a
distributed algorithm to ensure independence and privacy of the EV drivers. This
problem has been extended by Triviño-Cabrera et al., 2019, to include also battery
degradation. These authors introduced an agent in conjunction with the grid aimed
at maximizing the drivers revenues.

With the progressive electrification of the public transports (PT), the interest in
electric buses (EBs) is increasing as well (Deng et al., 2019). The electric conversion
of fleets poses several questions regarding the fleet itself and the charging equipment.
Several authors tackled this problem from a strategic planning perspective. At
this aim, An, 2020 proposed a strategic plan taking into account the bus fleet size,
time-of-use electricity price and stochastic charging demands. The same problem is
tackled in S. Pelletier, Jabali, Mendoza, et al., 2019, where several scenarios for
electric targets, EBs characteristics and type of chargers are considered. Other
approaches instead, integrated a charging plan strategy to a vehicle routing problem
for the buses. Zhou et al., 2020 developed a multi objective bi-level programming
model for a mixed bus system fleet recharging at a single depot, optimizing both
vehicle scheduling and charging scheduling and developed an efficient algorithm.
The same problem, but with multiple depots and charging technologies is tackled
by Yıldırım and Yıldız, 2021. Y. Wang et al., 2017 proposed a model for both a
charging schedule procedure and a planning for the charging stations and charger
purchase. Furthermore this model is applied in a real case study setting in Davis,
California. Finally, Abdelwahed et al., 2020 proposed a MILP formulation to
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6 Chapter 2. Literature review

optimize the opportunity fast-charging schedule of a fleet of EBs, minimizing the
energy costs and the impact on the grid.

The Electric Vehicle Scheduling Problems (E-VSPs) is probably the most similar
problem to the one of this work. In these problems the charging scheduling process
is tackled while solving an assignment problem of routes. Wen et al., 2016 propose
a MILP model to assign routes and minimize the total travel distances of EBs.
In the model, the charge process of EBs is subordinated to the route assignment
problem. EBs indeed are charged according to the time they stay in a station and
the remaining battery charged. Furthermore, the recharging time is assumed to
be a linear function of the amount of charged battery and no restrictions on the
charger facilities are considered. In Yao et al., 2020 routes are assigned to a fleet
of heterogeneous vehicles, and the authors solved an electric vehicle scheduling
problem with multiple vehicle types (MVT-E-VSP) and optimizing both purchase
and operational costs. For what concern the charging process itself however, the
authors assumed that any type of EB is fully charged at the end of each route
with a fixed cost and that each EB is provided with a fast charger. Alvo et al.,
2021 adopted a two stage approach to solve the problem, minimizing the number of
diesel buses employed in an heterogeneous fleet. They extended the previous setting
by adding more flexibility in the charging process. Parallel charging of vehicles is
limited by the number of chargers at the depot and the partial charging is allowed.
However, the state of charge of vehicle is assumed to be linear in the charging time.
In particular they considered a heterogeneous fleet of EBs and diesel buses and
aim at minimizing the number of diesel buses employed. Janovec and Koháni, 2019
develop a linear model once again assigning routes to the smallest number of EBs.
In particular they allow charging at multiple locations and introduced constraints
on the number of chargers. The energy charged is linear in the charging time. It
is also interest to notice that authors aimed at limiting the battery degradation
effect by means of low values for the state of charge of vehicles. Nevertheless, an
actual estimation of the degradation is ignored. Different charging strategies are
analyzed in Spitzer et al., 2019. The authors deeply focused on analyzing the
load of low voltage distribution grids and provided charging schedules feasible with
respect to them. Among the scenarios presented, some of them aimed at minimizing
charging costs of energy under time varying prices, others focused on the load of
the grid. However, vehicles are still assumed to be fully charged before every route.
A model which relies on the wireless charging of the on-line electric vehicle (OLEV)
technology is developed by Jang et al., 2015. Still on the base of wireless charging,
Yang et al., 2017 presented a model to minimize energy costs in the day ahead
market. These two works however, are not really comparable with ours since they
deeply depend on the wireless technologies which are not employed in this setting.

The problem analyzed in this work fits exactly in none of the field described.
No strategic decisions regarding the fleet compositions are done indeed, as in the
real scenario considered these decisions have already been made. Given the high
complexity of VRPs, in order to make them feasible, usually many simplification
are done regarding the charging process. On the other hand, the work presented
here, deeply focuses on the charging process. The main characteristics of the work
are inherited from Pelletier et al., 2018. Here, a charge scheduling process for a
fleet of electric freight vehicles (EFV) is developed to optimize the operational
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costs of the grid and the degradation of batteries. Simulations from the model
battery of Tremblay et al., 2007, provide an approximation of a piece-wise linear
charging process. As a results, the level of charge is non-linear with respect to the
time. Furthermore, they include energy time variant prices and a fixed cost for the
maximum power. In this work V2G technologies are incorporated in the fleet of
EBs. Even if V2G technologies can be embedded directly in the model of Pelletier
et al., 2018, in this work an enhanced version of this model is considered.

Table 2.1 summarises the features of the main works related with this thesis. In
particular, it emphasizes how this work ignores the strategic planning of the fleet
but focuses deeply on the charging process.

Reference Strategic
fleet compo-
sition

Routes as-
signment

Piece-wise
linear
charging

#chargers Time-
energy
e

V2G

Wen et al., 2016 7 3 7 7 7 7
Yao et al., 2020 3 3 7 7 7 7
Alvo et al., 2021 7 3 7 3 7 7
Janovec and Koháni, 2019 7 3 7 3 7 7
Spitzer et al., 2019 7 7 7 3 3 3
Pelletier et al., 2018 7 7 3 7 3 7

EEV-CSP-V2G 7 7 3 3 3 3

Table 2.1: Summary of the related literature





Chapter 3

The EEV-CPS-V2G problem

In this chapter we introduce the enhanced electric vehicle charge scheduling
problem with V2G technologies (EEV-CSP-V2G), starting from the electric vehicles
charging scheduling problem (EV-CSP) of Pelletier et al., 2018. As already said,
this problem aims at charging a fleet of EFV. Particular attention of the work is
devoted to model the charging process itself. The state of charge (SOC) of EFVs
is approximated as a piece wise linear function of time, depending on the current
and the battery capacity. Hence, more accurate values for the SOC values are
attained and at the same time overcharging is avoided. A quick review of the main
battery models is presented in section 3.1. The charging process resulting from
it is then presented in section 3.2. Another important aspect is the model of the
degradation costs. The author exploited the approach followed by Han et al., 2014,
which is explained in section section 3.3. We describe in details the problem setting
in section 3.4. In section 3.5 we present the EV-CSP model and in section 3.6
its enhanced version. Finally in section 3.7 we introduce V2G technologies and
we present the EEV-CPS-V2G model. The heuristic approach developed is then
reported in section 3.8

3.1 Model battery review
The easiest model of a battery is a simple circuit with a voltage source VOC in

series with a resistance R (Figure 3.1). It follows that the battery instantaneous

Figure 3.1: Simplest battery representation (adapted from Larminie and Lowry, 2012)

actual voltage is connected with the other terms with the relation

Vterm(t) = VOC(t)−Ri(t) (3.1)

9



10 Chapter 3. The EEV-CPS-V2G problem

The model of the open voltage VOC is therefore pivotal in the battery model itself.
As reported in the detailed description of Larminie and Lowry, 2012, typically
the open voltage depends on the number of cells and the depth of discharge DoD,
where the former a parameter known from the manufacturer of the battery itself
and the latter is modeled from the Peukert Capacity. The resistance is assumed
to be dependent on the SOC and changes with the flow of the current. Instead
of modeling the open voltage circuit, other approaches exploit pre-estabilished
mathematical relationships, as in Shepherd, 1965. The author obtains the equation
for the VOC by monitoring the charging and discharging process of a battery. In his
model battery the resistance R and the intensity of the current flowing are assumed
to be constant during time, while specific behaviours on the polarization and the
material of anode and cathode are assumed. The equation obtained is 3.2:

VOC = Vc −K
(

Q

Q− it

)
i (3.2)

where Vc is a simplified form of a constant potential, K is the coefficient of polariza-
tion of the cathode, Q is the residual capacity on the cathode or anode. Equation 3.2
is then substituted into Equation 3.1, which is used to simulate curves. From the
comparison of the simulated with the real ones, a new term can be added to take
into account an initial drop of potential and correct the simulations. The resulting
equation from Shepherd (1965) becomes

VOC = Vc −K
(

Q

Q− it

)
i+ A exp (−Bit) (3.3)

where A and B are parameters that depend on the exponential zone that was
missing in the first comparison of the curves mentioned before. Furthermore, the
author provides the reader with a procedure to approximate the parameters from the
discharging curves of the batteries. The main drawback of the equation proposed
by Shepherd (1965) is that the non linear term in 3.3 causes an algebraic loop
in simulation phase making this model unmanageable. On the other hand, these
equations are very interesting since they model both charge and discharge processes.
The work of Tremblay et al., 2007 extends Shepard’s equations by modifying the
non linear term in 3.3. The equation deriving from it is the following:

VOC (t) = Vc −K
(

Q

Q−
∫
idt

)
+ A exp

(
−B

∫
idt

)
(3.4)

which can be further modified. Letting 1
SOC(t)

= Q
Q−

∫
idt
, it follows

∫
idt =

Q (1− SOC(t)) and by substitution we get

VOC (t) = Vc −
K

SOC(t)
+ A exp (−BQ (1− SOC(t))) (3.5)

It is interesting to notice the definition of the SOC:

SOC(t) =
Q−

∫
idt

Q
(3.6)
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as it is indeed the amount of charge the battery contains divided by its maximum
charge capacity Q. Finally we obtain the equation of terminal voltage both for
charging and discharging reported in Pelletier et al., 2018

Vterm (t) = Vc −
K

SOC(t)
+ A exp (−BQ (1− SOC(t)))−Ri (t) (3.7)

then letting OV C = VOC , the equation of Pelletier et al. (2018) is obtained:

Vterm (t) = OV C(SOC(t))−Ri (t) (3.8)

It is important to remark that the equation derived in Shepherd, 1965 holds both
for charging and discharging, as well for the extension of Tremblay et al., 2007. It
follows that all the charging processes that exploit such a battery model, are valid
in both the directions.

3.2 Charging process

To prevent batteries from degradation, they are typically charged under a CC-
CV regime which is made up of two phases. In the first one the charging current that
flows in the battery is kept constant (CC). Because of the battery model assumed,
the current, terminal voltage and SOC are linked according to Equation 3.8. In
particular if i(t) is constant in the definition of SOC (3.6), the integral becomes
just the product it leading to SOC(t) = 1− i

Q
t. Namely the SOC is linear in the

time when the current is constant and it has coefficients i
Q
. Hence, during the

CC phase, by setting i (t) = iCC in Equation 3.8 and in Equation 3.6, the SOC(t)
itself is linear in t with a coefficient of iCC/Q, while the terminal voltage increases
according to the OV C(SOC(t)). To avoid damages to the battery, the terminal
voltage cannot be greater than VCV . Once reached, this value is kept constant and
the constant voltage (CV) phase starts. Here the current decreases with time while
the SOC(t) is no more linear but still increases. As already remarked, the CC-CV
curve can be used both the directions. As in Pelletier et al., 2018, a piece-wise
approximation of the curve is employed to model SOC(t). In this way, in every
segment, the SOC is linear in t with respect to a coefficient given by the maximum
current applied in that piece divided by Q.

3.3 Degradation costs

The investment in batteries and their replacements have an high impact on the
overall costs of the fleet. Modeling the impact on the total operational costs could
therefore lead to a better charging schedule. In this section the approach used to
model them is described.
Lithium-ion batteries are subjected to two types of degradation which both affect
their actual life duration. Battery life can be estimated with the calendar life, which
is mainly related with its storage, or with the cycle life, that counts the number
of charge-discharge cycles available before its capacity goes below the 80%. Since
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Figure 3.2: Examples of CC-CV curves (source: S. Pelletier, Jabali, Laporte, et al.,
2017)

calendar life is independent on the charging schedule followed (Farzin et al. (2016)),
in this work only the second contribution is modeled.

Cycle life is mainly related with the loss of active lithium ions. While developing
their model for charge/discharge, Ning et al. (2006) explained that the loss of active
lithium ions is due to electrochemical solvent reduction reaction at anode/electrolyte
interface. With a physic approach it is possible to model these electrochemical
reactions as a function of the operational conditions. The performance of batteries
is then simulated by means of analytical methods. Aside from this approach, in
literature there are models for the cycle life estimation neglecting the internal
chemical interactions occurring in the charge/discharge process. This second type
of approach is followed here, in particular the one adopted in Han et al., 2014 which
is now described.

In order to develop a battery model degradation, several experiments on batteries
are necessary. The high costs of experiments result in poor data for batteries.
However, among them, the curve of the number of achievable cycle count (ACC)
with respect to the depth-of-discharge (DOD) is always available. ACC-DOD curves
(Figure 3.3) are the only manufacturing data exploited in Han et al., 2014.

From these curves, the authors develop a wear density function (WDF) which
express a cost for the usage of battering while charging/discharging and uses as
control parameter the state of charge of the vehicle (SOC) and its variation. For
an accurate model of the battery wear, several parameters should be incorporated.
Firstly, the SOC needs to be accounted for as it is strictly related with the battery
wear and is also linked to the DOD. In principle, also the temperature should be
considered as its variation may have an impact on the battery wear. However, for
most applications, temperature itself can be easily omitted. It is enough to use
experimental data obtained under the working temperature of the application. As
result, the wear cost function depends only on the transferred energy (∆kW) and
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Figure 3.3: Example of a manufacturing ACC-DOD curve for a lithium-ion battery
(source: Han et al., 2014)

the SOC:
WearCost = W (∆kW, SOC) (3.9)

Starting from the ACC-DOD curve, the authors first derive an average wear
cost (AWC) per unit of energy transferred [$/kWh]. In particular, this cost is the
ratio between the initial battery price and the total energy transferable during the
life cycle. This last term can be computed as the quantity of energy transferable
during every cycle times the number of cycles. Then it is corrected with a factor µ
which represents the efficiency of the process. The energy transferred in a cycle
depends on the depth of discharge that we reach and it is D · BatterySize. The
number of cycle instead is obtainable from the ACC-DOD curve. As discharging
needs to be considered too, this number is doubled.

AWC(D) =
BatteryPrice

2 · ACC(D) ·D ·BattterySize · µ2
(3.10)

AWC costs do not take into account the interval of SOC in which the
charge/discharge process happens and assumes that the battery is always full when
discharge happens. Since in most applications various ranges of SOC are employed,
the authors extend this method. They introduce a wear density function (WDF) in
order to express the AWC cost as the integral mean of this function. Therefore it
holds the relation:

AWC(D) =
1

D

∫ D

1−D
W (s)ds (3.11)

By substituting this equation in Equation 3.10, it is possible to fit the function
W(s). Once obtained the wear cost density function, degradation costs are computed
by means of the following expression:

TotalWearCost = BatterySize ·
∫ T

0

W (SOC(t)) |dSOC(t)

dt
|dt (3.12)



14 Chapter 3. The EEV-CPS-V2G problem

To get a discrete version of the wear cost function, the procedure is really
similar and it starts again from Equation 3.10. The average wear cost function
then is modified to take into account the different states of charge of EVs, namely
Equation 3.11 becomes

AWCe(D) =
1

D

1−∆s∑
s=1−D

Wd(s)∆q(s) (3.13)

where ∆q is the energy corresponding to ∆s andWd(s) is the cost of transferring the
energy in the SOC from range s to s+ ∆s. When substituting it in Equation 3.10,
the BatterySize at the denominator simplifies with the one in Equation 3.13.
Equation 3.10 becomes then:

1

D

1−∆s∑
s=1−D

Wd(s)∆q(s) =
BatteryPrice

2 · ACC(D) ·D · µ2
(3.14)

and isolating Wd

1−∆s∑
s=1−D

Wd(s) =
BatteryPrice

2 · ACC(D) ·
∑1−∆s

s=1−D ∆q(s) · µ2
(3.15)

Once fixed a number of breakpoints D each one of length ∆s, from Equation 3.15
is possible to obtain the system


1 0 0 . . . 0
1 1 0 . . . 0
...

...
...

...
...

1 1 0 . . . 0



Wd(1−∆s)
Wd(1− 2∆s)

...
Wd(0)

 =


BatteryPrice

2·ACC(D)·∆q(1−∆s)·µ2

BatteryPrice

2·ACC(D)·
∑1−2∆s
s=1−D ∆q(s)·µ2

...
BatteryPrice

2·ACC(D)·
∑1
s=0 ∆q(s)·µ2


which solution is the discretized wear cost function.

Figure 3.4: From Han et al., 2014: example of a continuous and discrete wear cost
function for a a 16-kW h, $10,000 battery obtained from ACC-DOD curve
in Figure 3.3
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Figure 3.5: CC-CV curve (source: Froger et al., 2019)

3.4 The EEV-CPS-V2G setting

The charging plan is over a day divided in a set of discrete periods {1 . . . np},
each one of δ duration. A homogeneous fleet of EV is given and it is formalized
in the set K. Each EVs is provided with a battery of charge capacity Q and E
energy capacity. The routes to be performed in the planning horizon are known in
advanced and indexed on R. So we know the first route they have to perform fk
as well as the last one lk. For each route, the departure βr period, the arrival αr
one as well as their SOC consumption ∆SOCr are known. Furthermore they are
assigned to a vehicle of the fleet.

Vehicles can be charged with the chargers available in the depot. There are s
different types of chargers represented in the set S. For each type, a given number
of chargers κs is available. The charging process is modeled as a piece-wise linear
approximation of the CC-CV curve similar to Froger et al., 2019 (Figure 3.5). For
each charger type s, a set of breakpoints Bs is given. The SOC is then divided into
bs intervals, leading to bs + 1 different values of SOC asi is associated. In every
interval of the curve the SOC is linear in the time with slope given by a value of
the current Isi over the battery capacity Q. Furthermore, the usage of a charger
requires a power Ps from the grid.

In a real application, it can happen that EVs must be positioned in dedicated
spaces of the depot in order to be charged. It is therefore preferable to avoid a
frequent swap of chargers and EVs. For this reason, we assume that the EVs can
be plugged in at most C times before every route. When a vehicles starts charging,
we will refer to it as a "charging event".

The energy plan adopted includes two different types of costs: a cost per period
cp and a cost F depending on the maximum power retrieved in the planning period.
The grid can support a maximum charge G. Along with these costs, there are the
ones related to the battery degradation phenomena. They are calibrated into D
points of the SOC and are expressed as wd. The length of each interval is L.

In this problem there are several types of costs to be taken into account. The
first one is a cost per period cp. This cost depends on the quantity of energy
requested from the grid in every period to charge the vehicle. Namely, it is related
with the energy that enters the vehicles: if a vehicle charges q KWh at period p,
this will costs cp · q, then all the EVs and all the periods must be considered. The
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second one instead is related with the maximum power retrieved from the grid.
In every period, it is necessary to consider the power requested to the grid: the
maximum value among all periods is then multiplied by the facility related demand
(FDR) cost F . Finally, in order to calibrate the wear cost function in Equation 3.15
the set of points D, every point of this set is associated with an interval of SOC
upper bounded by δd. Since everything we charge in the vehicle also needs to be
discharged, the costs w(s) need to be doubled. To compute the total degradation
costs, it is necessary to multiply every point in the discrete function with the
quantity of energy used in that range during the whole planning. These three costs
need to be modeled and the total costs is given by their sum. A complete list of
the used parameters is found in Table A.1 of the appendix.

To solve this problem is necessary to schedule the charge of EVs. This means
deciding for every period in the planning horizon whether to charge or not a vehicle.
Furthermore, if an EV is charged, we must choose the type of charger to use and
how much to charge. Of course the charging process will aim at minimizing the
three types of costs described, but at the same time there are important conditions
to be taken into account. For sure vehicles cannot be charged when they are not in
the depot and their charge must guarantee that they are able to perform the routes
assigned every time they leave the depot. At the same time the level of charge
must be in a proper range. While charging, every vehicle must be connected with
one and only one charger considering the availability of each type in the depot. To
guarantee a realistic planning, it is better to avoid plugging and unplugging an EV
frequently. Then, for what concerns degradation costs, it is necessary to compute
the SOC actually charged in every interval used to calibrate the wear cost function.

Lastly, it is necessary to monitor the charging process following the CC-CV
curve. In section 3.5 we present the EV-CSP model of Pelletier et al., 2018. In
section 3.6, we propose a number of enhancements of the EV-CSP model. In
section 3.7 we integrate V2G technologies in the EEV-CSP model, resulting in the
EEV-CPS-V2G model.

3.5 EV-CSP

In this model, EVs are assumed to be charged with a slope that can be smaller
than the one in the CC-CV approximation. Thus, we may have a different value
of the current for every piece of the curve. The current which enters in an EB
cannot be larger that the corresponding value. With this aim, the set of real
positive variables ipk is used to measure the current entering the vehicle k in period
p, together with the set of binary variables xpksi that is used to control whether
vehicle k is charging at time p along the ith segment of the CC-CV curve of charger
type s. This happens when the SOC of k is between as,i−1 and as,i. The SOC of
EVs is monitored at every period p for each vehicle k by means of variables SOCpk.
The real positive variable y measures the peak of energy and is used to compute
the FRD costs. Charging events are counted with the binary variables zpk that
have value 1 if the vehicle k starts being charged during period p. The variables
soc+

rd and u+
rd are used to split the SOC charged before every routes into the proper

interval of D. For a complete list of variables we refer the reader to Table A.2 of
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the Appendix A.
We present now the MILP formulation of the EV-CSP model.

min
∑
p∈P

∑
k∈K

cp · E ·
δipk
Q

+ F · y +
∑
r∈R

∑
d∈D

2wdE · soc+
dr (3.16)

s.t.
αr∑
p=βr

∑
s∈S

∑
i∈BS\{0}

xpvrsi = 0 r ∈ R (3.17)

∑
k∈K

∑
i∈Bs\{0}

xpksi ≤ κs p ∈ P, s ∈ S \ {0} (3.18)

∑
s∈S

∑
i∈Bs\{0}

xpksi ≤ 1 k ∈ K, p ∈ P (3.19)

0 ≤ ipk ≤
∑
s∈S

∑
i∈Bs\{0}

Isi · xpksi k ∈ K, p ∈ p (3.20)

SOCp+1,k ≤ as,i + 1− xpksi k ∈ K, p ∈ P, s ∈ S, i ∈ Bs \ {0} (3.21)
SOCp,k ≥ as,i−1 − 1 + xpksi k ∈ K, p ∈ P, s ∈ S, i ∈ Bs \ {0} (3.22)

SOCp,k = SOCp−1,k +
ip−1,k

Q
· δ k ∈ K, p ∈ P \ {0} (3.23)

SOCαr,vr = SOCβr,vr −∆SOCr r ∈ R (3.24)

SOC0k = ˆSOC0k k ∈ K (3.25)
SOCmin ≤ SOCpk ≤ SOCmax k ∈ K, p ∈ P (3.26)∑
k∈K

∑
s∈S

∑
i∈Bs\{0}

Ps · xpksi ≤ y p ∈ P (3.27)

0 ≤ y ≤ G (3.28)

zpk ≥
∑

i∈Bs\{0}

xpksi −
∑

i∈Bs\{0}

xp−1,ksi k ∈ K, p ∈ P \ {1} , s ∈ S (3.29)

z1k ≥
∑

i∈Bs\{0}

x1ksi k ∈ K, s ∈ S (3.30)

βr−1∑
p=αηr

zpvr ≤ C r ∈ R (3.31)∑
d∈D

soc+
dr = SOCβrvr − SOCαηr ,vr r ∈ R (3.32)

soc+
dr ≤ δ̄d − SOCαηr ,vr +

(
1− u+

dr

) (
1− δd

)
d ∈ D, r ∈ R (3.33)

0 ≤ soc+
dr ≤ L · u+

dr d ∈ D, r ∈ R (3.34)
0 ≤ SOCpk ≤ 1 k ∈ K, p ∈ P (3.35)
y ≥ 0 (3.36)
xpksi ∈ {0, 1} k ∈ K, p ∈ P, s ∈ S, i ∈ Bs \ {0} (3.37)
zpk ∈ {0, 1} k ∈ K, p ∈ P (3.38)
0 ≤ soc+

dr ≤ 1 d ∈ D, r ∈ R (3.39)
u+
dr ∈ {0, 1} d ∈ D, r ∈ R (3.40)
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The objective function (3.16) minimizes the total costs given by the energy costs,
FRD costs and degradation costs. Constraints (3.17) forbid charging EVs while they
are outside the depot. The connection of EVs to the grid needs to take into account
the number of each type of charger (3.18) and each vehicle must be connected
only to one charger (3.19). The block of constraints (3.20) - (3.24) is used to
model the charging process. First of all, the charging current that flows in an EV
during a period is bounded by the current of the corresponding segment of the
CC-CV curve (3.20); then the values of SOC during the charging must lie inside
the proper interval of SOC ((3.21)-(3.22)). Finally, if an EV is charged, its SOC is
increased according to constraint (3.23). The SOC consumption due to the routes
is accounted in (3.24). Furthermore, we assume that the initial value of the SOC
is given (3.25) and we ensure that the SOC is inside a range for the whole period
(3.26). Constraints (3.27) set the maximum power, while (3.28) ensures that grid
capacity is not exceeded. Constraints (3.29) - (3.30) are employed to count the
charging events whose number is bounded in (3.31). Constraint (3.32) ensures that
while considering degradation costs, all the SOC charged before the route is taken
into account. Then (3.33) and (3.34) split the variation into the proper interval of
D, exploiting the monotonicity of the wear cost function. Finally in (3.35) - (3.40)
all the variables domains are specified.

3.6 EEV-CSP

Starting from the model of Pelletier et al., 2018, we developed an enhanced
electric vehicle charge scheduling problem (EEV-CSP). In particular, in our formu-
lation we propose a more accurate approach to model the charging process and a
more realistic charging routine for the schedule itself.

3.6.1 Charging process in the EEV-CSP

Our first contribution is in the charging process approximation. As already
mentioned, the charging process follows a CC-CV curve and the SOC is a piece-wise
linear function of time. However, the set of variables used in Pelletier et al., 2018
model, have the effect of limiting the charging process in reality. Assume for
instance that during period p vehicle k is charging. We assume that it uses charger
s and that the SOC of the vehicle is within the interval [as,i−1, asi], meaning that
the binary variable xpksi is equal to 1. Assume also that the value of SOC is really
close to the upper bound asi. What happens in practice is that the model will force
the value of the current in that period ipk to be such that the SOC at the end of
the period will be exactly equal to asi. Then, in the next period, the SOC will
belong to the next interval, variable xpks,i+1 will be 1 and, if it is what the schedule
was prescribing, the charging process will go on according to the next segment of
the CC-CV curve.

In practice, in Pelletier et al., 2018, by allowing to charge only along one segment
of the CC-CV curve in a single period, some periods at the depot are wasted as
they are just used to reach the proper breakpoint. With our EEV-CSP model,
we aim at relaxing this assumption allowing the usage of two or more consecutive
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segments during a given period. In order to do this, we assume that the charging
current that we use to charge to the EBs is always equal to the one in the CC-CV
approximation. Therefore, the set of variables ipk of EV-CSP are not employed.
On the other hand, in order to model this more realistic charging process, we need
to introduce new variables. We use the set of real variables Φpksi to control the
quantity of SOC that is charged in vehicle k at time p the s charger along segment
i. Then we introduce the set of binary variables qpks defined like 1 if vehicle k uses
the charger type s during period p, 0 otherwise.

Notice that, since we are no longer using the variables for the current, we need
to compute the energy withdrawn from the grid with these new variables. As
variables Φpksi express the increase of SOC of vehicles, in order to know the energy
used during a time period p, it is enough to multiply by the battery capacity E
with the total increase of SOC during that period p. The energy contribution (3.41)
for the objective function becomes then∑

p∈P

∑
k∈K

cpE
∑
s∈S

∑
i∈Bs\{0}

Φpksi. (3.41)

Then, we model the new charging process. First of all, we omit the assumption
that the charging happens along one segment only, namely constraints (3.19) and
we impose that only one type of charger can be used in every period by a vehicle,
as it is written in Equation 3.42∑

s∈S

qpks ≤ 1 p ∈ P , k ∈ K (3.42)

Then for sure the usage of a charger along its segments needs to be linked with the
usage of the charger itself. These coherence constraints are modeled in (3.43) and
(3.44).

qpks ≥ xpksi p ∈ P , k ∈ K, s ∈ S, i ∈ Bs \ {0} (3.43)

qpks ≤
∑

i∈Bs\{0}

xpksi p ∈ P , k ∈ K, s ∈ S (3.44)

In particular, we are imposing that whenever we use a segment we must consider the
associated charger as used (Equation 3.43). Also if we use a charger at time p, then
the charging process needs to be on at least one of its segments (Equation 3.44).
The constraints of EV-CSP that ensure that the SOC is in the correct interval
((3.21)-((3.22)) then must be modified. Indeed we need to make sure that every
time that the segment i is changed we have reached the upper bound asi. At the
same time we need to be sure that we are not charging more than what we can
along one segments. These conditions are expressed in the new constraints (3.45)
and (3.46).

SOCpk +
∑
i′≤i

Φpksi′ ≤ asixpksi + (1− xpksi) p ∈ P , k ∈ K, s ∈ S, i ∈ Bs \ {0}

(3.45)

SOCpk +
∑
i′<i

Φpksi′ ≥ as,i−1xpksi + (xpksi − 1) p ∈ P , k ∈ K, s ∈ S, i ∈ Bs \ {0}

(3.46)
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We also add (3.47) to link the variables that express the usage of a segment and
obtain a bound on the SOC that can be charged along each segment.

Φpksi ≤ (asi − as,i−1)xpksi p ∈ P , k ∈ K, s ∈ S, i ∈ Bs \ {0} (3.47)

In order to have a correct model then, we need to be sure that the SOC the we
charge in the vehicles during a period is actually obtainable from the grid. Indeed,
we have assumed that the level of current applied is fixed and we have only modeled
the SOC that is charged in the vehicles. However, as it is clear from the charging
process approximation, given the level of current Is, a certain time is needed to
obtain the desired increase of SOC. We need to ensure that the required time in
every period, is not longer than the length of the period itself δ. This can be
expressed by adding Equation 3.48∑

s∈S

∑
i∈Bs\{0}

Φpksi

Isi
Q ≤ δ ∀p ∈ P , k ∈ K, (3.48)

which indeed ensures that the charging process lasts less than the period itself.
Finally, the SOC at the end of period p becomes simply the sum of the SOC at the
beginning of period p and the SOC charged during p (Equation 3.49).

SOCp+1,k = SOCpk +
∑
s∈S

∑
i∈Bs\{0}

Φpksi ∀p ∈ P \ {np} , k ∈ K, (3.49)

3.6.2 Cyclic charging schedule

In the EV-CSP model the original time horizon is of 3 days. Even if it is still
short, this length allowed the authors to make a strong distinction between the
initial time of the planning horizon and the final one. For instance, they assume
that the initial SOC is known for all the EVs. No assumptions are made instead on
the final SOC.

Recall then, that when it is in the depot there is a limitation in the number
of times that an EV can be plugged in. In the model of Pelletier et al., 2018, the
number of charging event is bounded only before the routes.

In our EEV-CSP model instead, we consider the whole charging planning in
a cyclic fashion. First of all, we assume that the initial SOC is equal to the final.
Furthermore, we do not set an initial level of SOC for the EVs but we let the model
decide it. Then, we do not split the count of charging event based on the end of
the time horizon, but we just base it on the departures from the depot. To clarify
this concept, let us make an example. Suppose that the EV k has to perform only
one route that starts at period 4 and ends at 20. We will impose that the number
of charging events from period 20 to the end of the time horizon and from the
beginning of the time horizon up to period 4 is strictly less than C, where C is the
maximum number of charging events.

With this idea, as we have already imposed that what happens during period
p influences what happens at period p+ 1, we do the same for the final period in
the horizon np and the initial period 1. Therefore, we modify the formulation to
account for as follows ((3.50)-(3.53)).
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SOC1k = SOCnpk +
∑
s∈S

∑
i∈Bs\{0}

Φ+
npksi

k ∈ K (3.50)

z1k ≥ q+
1ks − q

+
npks

k ∈ K, s ∈ S (3.51)
βr−1∑
p=αηr

zpvr ≤ C r ∈ R \ {fk|k ∈ K} (3.52)

βfk−1∑
p=αlk

zpk ≤ C k ∈ K (3.53)

In particular, in Equation 3.50 we link the initial SOC with the final SOC. Then,
in Equation 3.51 we count the charging events at the initial period on the base of
what happens in the final one. Equation 3.52 is similar to the one in the model of
Pelletier et al., 2018 (3.31) as they both count the number of charging events before
every route, but we exclude the earliest route for every EB. Indeed, the number
of charging events before the first routes must be considered with the ones of the
latest (3.73).

We report now the complete MILP formulation for the EEV-CSP . We remind
the reader that the complete list of variables is in Appendix A.

min
∑
p∈P

∑
k∈K

cpE
∑
s∈S

∑
i∈Bs\{0}

Φpksi + F · y +
∑
r∈R

∑
d∈D

2wdE · soc+
dr (3.54)

s.t.
αr∑
p=βr

∑
s∈S

qpvrs = 0 r ∈ R (3.55)∑
k∈K

qpks ≤ κs p ∈ P , s ∈ S (3.56)∑
s∈S

qpks ≤ 1 p ∈ P , k ∈ K (3.57)

qpks ≤
∑

i∈Bs\{0}

xpksi p ∈ P , k ∈ K, s ∈ S (3.58)

qpks ≥ xpksi p ∈ P , k ∈ K, s ∈ S, i ∈ Bs \ {0} (3.59)
SOCαr,kr = SOCβr,kr −∆SOCr r ∈ R (3.60)

SOCpk +
∑
i′≤i

Φpksi′ ≤ asixpksi + (1− xpksi) p ∈ P , k ∈ K, s ∈ S, i ∈ Bs \ {0}

(3.61)

SOCpk +
∑
i′<i

Φpksi′ ≥ as,i−1xpksi + (xpksi − 1) p ∈ P , k ∈ K, s ∈ S, i ∈ Bs \ {0}

(3.62)
Φpksi ≤ (asi − as,i−1)xpksi p ∈ P , k ∈ K, s ∈ S, i ∈ Bs \ {0} (3.63)∑
s∈S

∑
i∈Bs\{0}

Φpksi

Isi
Q ≤ δ ∀p ∈ P , k ∈ K (3.64)
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SOCp+1,k = SOCpk +
∑
s∈S

∑
i∈Bs\{0}

Φpksi ∀p ∈ P \ {np} , k ∈ K (3.65)

SOC1k = SOCnpk +
∑
s∈S

∑
i∈Bs\{0}

Φ+
npksi

k ∈ K (3.66)

SOCmin ≤ SOCpk ≤ SOCmax p ∈ P , k ∈ K (3.67)∑
k∈K

∑
s∈S

Ps · qpks ≤ y p ∈ P (3.68)

0 ≤ y ≤ G (3.69)
zpk ≥ qpks − qp−1,ks p ∈ P \ 0, k ∈ K, s ∈ S (3.70)
z1k ≥ q+

1ks − q
+
npks

k ∈ K, s ∈ S (3.71)
βr−1∑
p=αηr

zpvr ≤ C r ∈ R \ {fk|k ∈ K} (3.72)

βfk−1∑
p=αlk

zpk ≤ C k ∈ K (3.73)

∑
d∈D

soc+
dr = SOCβrvr − SOCαηr ,vr r ∈ R (3.74)

soc+
dr ≤ δ̄d − SOCαηr ,vr +

(
1− u+

dr

) (
1− δd

)
d ∈ D, r ∈ R (3.75)

0 ≤ soc+
dr ≤ L · u+

dr d ∈ D, r ∈ R (3.76)
SOCmin ≤ SOCpk ≤ SOCmax p ∈ P , k ∈ K (3.77)
xpksi ∈ {0, 1} p ∈ P , k ∈ K, s ∈ S, i ∈ Bs \ {0} (3.78)
Φpksi ≥ 0 p ∈ P , k ∈ K, s ∈ S, i ∈ Bs \ {0} (3.79)
y ≥ 0 (3.80)
zpk ∈ {0, 1} p ∈ P , k ∈ K (3.81)
0 ≤ soc+

dr ≤ 1 d ∈ D, r ∈ R, (3.82)
u+
dr ∈ {0, 1} d ∈ D, r ∈ R (3.83)

(3.84)

3.7 EEV-CSP-V2G

From the literature review on the battery models in section 3.1, it follows that
the battery model in EV-CSP and EEV-CSP can still be employed for bidirectional
flow. In particular, the CC-CV process still holds. However, introducing V2G
technologies to this setting, requires some changes. First of all, we assume that
some EVs as well as some chargers support the bidirectional flow of current. Then,
it is also necessary to understand how V2G technologies can affect the problem.
Under this scenario, we assume that the set H ⊂ K is a subset of EVs. We refer
to the EV in H as EV-V2Gs. Furthermore, let T ⊂ S be the set of chargers that
support the bidirectional flow. The parameter ηinv is used for the dissipation of
power from EV provided with V2G technologies (EV-V2Gs) towards the grid.

We consider also the energy that is needed for the operation of the depot is
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given. Thus, we also assume now that the depot itself requires a certain amount of
energy at every period πp. The energy and the power related to the depot contribute
as well to the total costs. The complete list of parameters is in Table A.1 in the
Appendix.

The decisions to be taken in this scenario, are the same as the ones described in
section 3.4. In addition, for each EV-V2Gs we have to decide whether it discharges
some energy and how much.

Almost all the variables used in EEV-CSP are used, many of them are doubles
to model the opposite flow of the current. The set of binary variables x+

pksi is still
used to model the charging process along the CC-CV curve when the current is
entering the EV and x+

pksi is the analogous for discharging. The SOC variation on
every piece of the curve i for every charger s and every time p and vehicle k is
monitored by Φ+

pksi and Φ−pksi. The same for the binary variables q+
pks and q

−
pks for

the usage of the chargers. Finally, for reasons explained in subsection 3.7.3, the
variables for monitoring the increased SOC are modified. They are indexed also
over the time periods. So we have soc+

pdk to model the quantity of SOC charged
during period p along segment d in vehicle k and the analogous for u+

pdk. Also these
variables are included in Table A.2.

Note that, if there are no EVs provided with V2G technologies, the problem
becomes the same of EEV-CSP (except for the variables used to model the degrada-
tion). Indeed, we add a constraint that restrict the bidirectional flow to EV-V2Gs
(3.85). The binary variables q−pks allow the opposite flow of current, so if they are
all set to zero, the discharging process in the model is neglected.

q−pks = 0 k ∈ K \ H, s ∈ S \ T , p ∈ P (3.85)

3.7.1 Revenue of the grid

V2G technologies are added to the contest in section 3.4 in order to decrease the
power retrieved from the grid thanks to their peak-shaveing effect. It is necessary
then, to quantify the revenue attainable by the grid when the fleet is provided
with such technologies. A practical way to estimate the grid revenue is detailed
in Kempton and Tomić, 2005. In the paper it is stated that the power gained
by the grid is limited by three factors. The first is the power limited by the line,
which depends on the capacity of the wires and the circuits connecting to the grid.
Then there is the power limited by the vehicle’s stored energy, which depends on
the power dispatched by the energy dispatched by the vehicle. The last is the
rated maximum power of the vehicle’s power electronics. The maximum power
attainable as grid revenue corresponds to the lowest among the three. Kempton
and Tomić (2005) explain also that typically the third quantity is much larger than
the others. Furthermore, being a depot of a large public transportation service,
it is reasonable to assume that the structure of the line itself is not limiting the
grid. As a results, the grid revenue depends on the power limited by the vehicle’s
stored energy. Let this quantity be Pvehicle. It is now explained how to achieve a
reasonable approximation of this value.
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Kempton and Tomić, 2005 compute it as

Pvehicle =
(Es − dd+drb

ηveh
)

tdisp
· ηinv (3.86)

where Es is the maximum quantity of energy the vehicle could store, dd is the
distance driven since the energy storage was full, drb express the distance that the
driver still want to be able to cover, ηveh is the vehicle driving efficiency and ηinv
takes into account the conversion from DC to AC. This equation is not directly
applicable to the situation of this problem, so it is necessary to understand the
meaning of the quantity that it is trying to explain and adapt them to the contest.
The numerator of Equation 3.86 is made up of three addends:

Es −
dd
ηveh
− drb
ηveh

(3.87)

which are the total capacity, the energy used so far and the energy to be used in
the future. It basically measures the energy that the vehicle can give to the grid.
In this situation, it directly corresponds to the one dispatched by the vehicle while
discharging. This quantity must be related with the variation of SOC, but cannot
be really computed from it. Indeed by rewriting the SOC definition (Equation 3.6)
we have that

SOC(t+ δ)− SOC(t) =

∫ t+δ
t

idt

Q
=

∫ t+δ

t

i

Q
dt (3.88)

where the integral is the area above the curve of charging as shown in Figure 3.6 The

Figure 3.6: Relationship between SOC variation and dispatched power

area that we can compute has no dimensions, so it cannot be a power. Once again
the results in Pelletier et al., 2018 are exploited by analogy. Indeed in the paper,
starting from the battery model of Tremblay et al., 2007, some numerical simulation
conducted on the CC-CV process showed that the cumulative energy recharged in
a EV is linear with respect to the SOC. From this, the energy recharged in the
battery is computed as the SOC variation by the energy capacity E. It follows

Pvehicle =
E ·∆SOC

δ
ηinv (3.89)

which is indeed a power [W]. Since Equation 3.89 computes the power dispatched
by a vehicle, for the consideration made at the beginning of this chapter, the power
retrieved from an EV-V2G by the grid is the opposite of it. Notice that since the
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SOC of a vehicle decreases while discharging, the power obtained by the grid, being
the opposite, is positive.

As the variables Φ−pksi are used for the decrease of SOC due to the discharging,
they can be directly used in Equation 3.89. For coherence, the power requested
from the grid for the charging, is no longer modified as the instantaneous power
in constraint (3.68), but instead we consider the medium power which depends on
energy used for charging. Finally, again from the relation between energy and power,
we add the contribution of the power requested from the depot. The resulting
constraint is reported in Equation 3.90.

πp
δ

+
E

δ

∑
k∈K

∑
s∈S

∑
i∈Bs\{0}

(
Φ+
pksi − ηinvΦ

−
pksi

) ≤ y p ∈ P (3.90)

3.7.2 Load valley effect

Another important aspect of V2G-technologies is their load valley filling. With
this term we refer to the possibility of exploiting such technologies to buy energy
at cheaper prices and use it during high-cost periods. Namely, since in this setting
energy prices vary with periods, an EV could be charged during a low cost period
and discharged at a high cost period. In this way the grid would be able to exploit
energy bought at a discounted price. Note that, because of inefficiency in the flow
of current from the vehicle to the grid, a factor of ηinv of energy will be lost during
the process. The energy discharged by EV-V2Gs can also be beneficial for the
depot itself as it may help or satisfy the depot demand.

To integrate V2Gs in the model, we modify the objective function. In particular,
we have a revenue every time we used energy from other vehicles. The contribution
for the energy costs becomes

∑
p∈P

cp

πp + E
∑
k∈K

∑
s∈S

∑
i∈Bs\{0}

(
Φ+
pksi − ηinvΦ

−
pksi

) , (3.91)

where indeed we have the depot demand, the energy used for charging and a discount
for the discharged energy weighed by ηinv. Notice that the cost in Equation 3.91
related to the depot demand is a sort of a fixed cost: we always have to buy energy
for a cost of cp · πp, but if some EV-V2G discharges some energy, than we will have
a reduction on it.

We report here also the modifications due to the charging process. As already
remarked the discharging process is modeled according to the CC-CV curve as
well. So, to integrate it in the model, it is enough to adapt Equation 3.46 and
Equation 3.45, as in (3.92) and (3.93). Constraints (3.47) are extended to discharge
in Equation 3.94. The same reasoning of EEV-CSP is applied to the usage of the
chargers for the discharging process (3.95) and (3.96).

SOCpk −
∑
i′≥i

Φ−pksi′ ≥ as,i−1x
−
pksi + SOCmin

(
1− x−pksi

)
(3.92)
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p ∈ P , k ∈ K, s ∈ S, i ∈ Bs \ {0}

SOCpk −
∑
i′>i

Φ−pksi′ ≤ asix
−
pksi + SOCmax

(
1− x+

pksi

)
(3.93)

p ∈ P , k ∈ K, s ∈ S, i ∈ Bs \ {0}
Φ−pksi ≤ (asi − as,i−1)x−pksi p ∈ P , k ∈ K, s ∈ S, i ∈ Bs \ {0} (3.94)

q−pks ≤
∑

i∈Bs\{0}

x−pksi p ∈ P , k ∈ K, s ∈ S (3.95)

q−pks ≥ x−pksi p ∈ P , k ∈ K, s ∈ S, i ∈ Bs \ {0} (3.96)

Finally, the SOC update (3.49) of EV-V2Gs needs to take into account also
the loss of SOC due to the discharging process. Note that in Equation 3.97 the
variables Φ−pksi are not discounted by ηinv, as the dissipation happens when the
energy returns to the grid.

SOCp+1,k = SOCpk +
∑
s∈S

∑
i∈Bs\{0}

(
Φ+
pksi − Φ−pksi

)
p ∈ P \ {np} , k ∈ K (3.97)

3.7.3 Degradation costs for the V2G setting

When introducing V2G technologies, the charging and discharging process of
the batteries could become more frequent. This would lead to a higher impact on
the degradation costs. In this section it is explained how the wear cost function
presented in section 3.1 is adapted to the V2G scenario.

In the last section of the paper, Han et al., 2014 propose also a model to compute
degradation costs when employing V2G technologies. In particular they show its
application on their previous model in S. Han et al. (2012). For sake of a better
comprehension of the application, this problem will be quickly resumed.

In the setting in S. Han et al. (2012), a house is equipped with a solar photovoltaic
system (PV). An electric vehicle provided with V2G technologies with initial SOCinit
is connected to the grid until time T . The control model aims at understanding
the power ri that must be used to charge the vehicle guaranteeing the requested
state of charge at time T , namely in a range SOCTL − SOCTU . V2G technologies
are used for their ancillary services, in particular for the regulation. The agent
has a reward both for the regulation up (PRUi) and the regulation down (PRDi).
These to are also weighted according to WRD and WRU . Regulation services can
be apply up to a maximum value charge C and discharge D power. The profile
of the expected energy load for the house in every period is known Ei along with
the expected amount of PV generation Gi. A control problem is then modeled to
understand the average charging power ri for the vehicle. Power can be bought or
sell with a reward of Pep. The state of charge si is used as a proxy variable in every
period i. The control model is as follows.

argmaxri

N∑
i=1

(WRD(si)PRDi(C − ri) +WRU(si)PRUi(D + ri)) (3.98)

+ Pep(Ei + ri −Gi)



3.7. EEV-CSP-V2G 27

s.t. SOCTL ≤ sN ≤ SOCTU (3.99)

si+1 = si +
ri
Q

i = 1 . . . N (3.100)

−D ≤ ri ≤ C i = 1 . . . N (3.101)
s0 = SOCinit (3.102)

The control variable for the charging current ri typically is constant for periods
which last even a hour and are indexed on i. Regulation instead varies more
frequently, just after seconds. When considering the degradation costs for V2G
vehicles, the authors model a new variable for the power pi,j defined as

pi,j = ri + vj, j ∈ Ti (3.103)

where vj is the regulation power which varies over few seconds. Seconds are indexed
on j and Tj is indeed the time set for regulation at the i-th period. Let t be the
length of the period indexed in i. With this new definition of power pi,j , degradation
costs are computed as follows.

WearCostij = W (E [sij])d∆Qij (3.104)
where

E [sij] = sij +
1

2

E [pij] t

BatterySize
(3.105)

∆Qi,j = E [|pij|] t (3.106)

Then the authors develop these terms. In particular they obtain equations that
depend on the power ri rather than the state of charge. However since the models
in this work have a direct control on the state of charge of the batteries by means
of the variables SOCpk, there is no need to go further and it is just sufficient to
interpret equations (3.104) - (3.106) and adapt them to the context. In particular
it can be noticed that:

• the wear cost function is the same as the one fitted for the vehicles without
V2G from Equation 3.3

• such function must be evaluated in the SOC of the period we are considering

• both the absolute value of outgoing and incoming energy must be taken into
account when computing ∆q

In analogy with Equation 3.106, all the contributions must be considered with their
absolute value. Basically this means that the area represented by Equation 3.12 is
computed following every step the trajectory of the SOC. Since we are assuming
that the final and the initial SOC are equal, we can consider the contributions only
along one direction and double the wear cost parameters wd. We model the increase
of SOC and Equation 3.12 is modelled as∑

d∈D

soc+
pdk =

∑
s∈S

∑
i∈Bs\{0}

Φ+
pksi p ∈ P , k ∈ K, (3.107)
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so that all the increase of SOC are accounted.
Notice that Equation 3.107 considers only the total variation of SOC, but then

this value needs to be divided into the proper interval D. To do this, being now
the model really complex, we do not rely anymore on the monotonicity of the wear
cost function but instead we use an exact approach. We model this following the
same idea of the charging process in EEV-CSP. Indeed, for every segment we have
an amount of SOC charged and a binary variable that tells whether that segment
is used or not. So, to split the model, the part of the degradation of battery needs
to be modified as in (3.108) - (3.110).

soc+
pdk ≤ Lu+

pdk d ∈ D, k ∈ K, p ∈ P (3.108)

SOCpk +
∑
d′<d

soc+
pd′k ≥ δd−1u

+
pdk + SOCmin

(
1− u+

pdk

)
p ∈ P , d ∈ D, k ∈ K, p /∈ Ak

(3.109)

SOCpk +
∑
d′≤d

soc+
pd′k ≤ δdu

+
pdk + SOCmax

(
1− u+

pdk

)
p ∈ P , d ∈ D, k ∈ K, p /∈ Ak

(3.110)

We report now the MILP formulation of the EEV-CSP-V2G.

min
∑
p∈P

cp

πp + E
∑
k∈K

∑
s∈S

∑
i∈Bs\{0}

(
Φ+
pksi − ηinvΦ

−
pksi

)+ F · y+ (3.111)

2wdE
∑
d∈D

∑
k∈K

∑
p∈P

soc+
pdk

s.t. q−pks = 0 k ∈ K \ H, s ∈ S \ T , p ∈ P (3.112)

πp + E ·

∑
k∈K

∑
s∈S

∑
i∈Bs\{0}

Φ+
pksi − ηinv

∑
k∈K

∑
s∈S

∑
i∈Bs\{0}

Φ−pksi

 ≥ 0 p ∈ P

(3.113)
αr∑
p=βr

∑
s∈S

(
q+
pvrs + q−pvrs

)
= 0 r ∈ R (3.114)∑

k∈K

(
q+
pks + q−pks

)
≤ κs p ∈ P , s ∈ S (3.115)∑

s∈S

(
q+
pks + q−pks

)
≤ 1 p ∈ P , k ∈ K (3.116)

q+
pks ≤

∑
i∈Bs\{0}

x+
pksi p ∈ P , k ∈ K, s ∈ S (3.117)

q+
pks ≥ x+

pksi p ∈ P , k ∈ K, s ∈ S, i ∈ Bs \ {0} (3.118)

q−pks ≤
∑

i∈Bs\{0}

x−pksi p ∈ P , k ∈ K, s ∈ S (3.119)

q−pks ≥ x−pksi p ∈ P , k ∈ K, s ∈ S, i ∈ Bs \ {0} (3.120)

SOCαr,kr = SOCβr,kr −∆SOCr r ∈ R (3.121)
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SOCpk +
∑
i′≤i

Φ+
pksi′ ≤ asix

+
pksi + SOCmax

(
1− x+

pksi

)
(3.122)

p ∈ P , k ∈ K, s ∈ S, i ∈ Bs \ {0}

SOCpk +
∑
i′<i

Φ+
pksi′ ≥ as,i−1x

+
pksi + SOCmin

(
1− x+

pksi

)
(3.123)

p ∈ P , k ∈ K, s ∈ S, i ∈ Bs \ {0}

SOCpk −
∑
i′≥i

Φ−pksi′ ≥ as,i−1x
−
pksi + SOCmin

(
1− x−pksi

)
(3.124)

p ∈ P , k ∈ K, s ∈ S, i ∈ Bs \ {0}

SOCpk −
∑
i′>i

Φ−pksi′ ≤ asix
−
pksi + SOCmax

(
1− x+

pksi

)
(3.125)

p ∈ P , k ∈ K, s ∈ S, i ∈ Bs \ {0}
Φ+
pksi ≤ (asi − as,i−1)x+

pksi p ∈ P , k ∈ K, s ∈ S, i ∈ Bs \ {0} (3.126)

Φ−pksi ≤ (asi − as,i−1)x−pksi p ∈ P , k ∈ K, s ∈ S, i ∈ Bs \ {0} (3.127)

SOCp+1,k = SOCpk +
∑
s∈S

∑
i∈Bs\{0}

(
Φ+
pksi − Φ−pksi

)
p ∈ P \ {np} , k ∈ K

(3.128)

SOC1k = SOCnpk +
∑
s∈S

∑
i∈Bs\{0}

(
Φ+
npksi

− Φ−npksi

)
k ∈ K (3.129)

∑
s∈S

∑
i∈Bs\{0}

Φ+
pksi + Φ−pksi

Isi
Q ≤ δ p ∈ P , k ∈ K (3.130)

SOCmin ≤ SOCpk ≤ SOCmax p ∈ P , k ∈ K (3.131)

πp
δ

+
E

δ

∑
k∈K

∑
s∈S

∑
i∈Bs\{0}

(
Φ+
pksi − ηinvΦ

−
pksi

) ≤ y p ∈ P (3.132)

0 ≤ y ≤ G (3.133)
z1k ≥ q+

1ks − q
+
npks

k ∈ K, s ∈ S (3.134)

zpk ≥ q+
pks − q

+
p−1,ks p ∈ P \ {1} , k ∈ K, s ∈ S (3.135)

zpk ≥ q−pks − q
−
p−1,ks p ∈ P \ {1} , k ∈ K, s ∈ S (3.136)

z1k ≥ q−1ks − q
−
npks

k ∈ K, s ∈ S (3.137)
βr−1∑
p=αηr

zpvr ≤ C r ∈ R \ {fk|k ∈ K} (3.138)

βfk−1∑
p=αlk

zpk ≤ C k ∈ K (3.139)

∑
d∈D

soc+
pdk =

∑
s∈S

∑
i∈Bs\{0}

Φ+
pksi p ∈ P , k ∈ K (3.140)

soc+
pdk ≤ Lu+

pdk d ∈ D, k ∈ K, p ∈ P (3.141)
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SOCpk +
∑
d′<d

soc+
pd′k ≥ δd−1u

+
pdk + SOCmin

(
1− u+

pdk

)
(3.142)

p ∈ P , d ∈ D, k ∈ K, p /∈ Ak
SOCpk +

∑
d′≤d

soc+
pd′k ≤ δdu

+
pdk + SOCmax

(
1− u+

pdk

)
(3.143)

p ∈ P , d ∈ D, k ∈ K, p /∈ Ak
0 ≤ SOCpk ≤ 1 p ∈ P , k ∈ K (3.144)
x+
pksi ∈ {0, 1} p ∈ P , k ∈ K, s ∈ S, i ∈ Bs \ {0} (3.145)

x−pksi ∈ {0, 1} p ∈ P , k ∈ K, s ∈ S, i ∈ Bs \ {0} (3.146)

q+
pks ∈ {0, 1} p ∈ P , k ∈ K, s ∈ S (3.147)

q−pks ∈ {0, 1} p ∈ P , k ∈ K, s ∈ S (3.148)

Φ+
pksi ≥ 0 p ∈ P , k ∈ K, s ∈ S, i ∈ Bs \ {0} (3.149)

Φ−pksi ≥ 0 p ∈ P , k ∈ K, s ∈ S, i ∈ Bs \ {0} (3.150)

y ≥ 0 (3.151)
zpk ∈ {0, 1} p ∈ P , k ∈ K (3.152)
soc+

pdk ≥ 0 p ∈ P \ {1} , d ∈ D, k ∈ K (3.153)

u+
pdk ∈ {0, 1} p ∈ P \ {1} , d ∈ D, k ∈ K (3.154)

Each one of the panels in Figure 3.7 represents a schedule of the fleet. Every
line is associated with an EB. Blue bars are for the routes. The usage of a charger
is represented by the green bars when charging and by red bars when discharging.
In particular, if the a bar is dark green it means that we the vehicle is using a fast
charger, while light green bars are for slow chargers. At the same time, dark red bars
are used whenever an EV-V2G is discharging energy by means of a fast charger and
light red when instead a slow charger is used. In Figure 3.7 we compare three charge
schedules obtained with the three models discussed. In particular, we notice that
in the one of EV-CSP (3.7a), all EVs are fully charged at the beginning of the time
horizon while their SOC is really low at the end of the period. Then, 3.7b shows
the schedule obtained according to EEV-CSP, while 3.7c is for EEV-CSP-V2G.
Notice that, even if V2Gs are not used in 3.7c, the schedule is different from the
one of EEV-CSP as it is indeed a different model.

3.8 A heuristic for the EEV-CSP-V2G
As it will be analyzed in details in the chapter 5, the solution of EEV-CPS-V2G

is rather difficult for medium-sized instances. Therefore, in order to have a solution
method able to tackle a real problem, we developed an heuristic We note that it is
not straightforward the reasons behind the complexity of resolution the model.

We have attempted to developed and tried several matheuristics to solve the
problem. We tried to remove the grid restriction and the maximum power retrieved.
Indeed, when optimizing the variable y, we are trying to solve a min-max problem
which can make the process really difficult for the solver. Once obtained the solution
of this first step is obtained, we computed how much it was charged in every cost
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(a) Charge scheduling with EV-CSP model
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Figure 3.7: Comparison of the charge scheduling obtained according to the different
models
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period. We tried to use this information to guide the solution of the whole problem.
Unfortunately, this procedure has not been effective. In particular, even removing
the constraints related with the y variable the derived problem was still hard to be
solved.

We decided then to focus on other coupling constraints. As the constraints
related with y do not change the complexity of the model, we decided to remove
the constraints on the number of chargers (3.115). We substituted them with a soft
version. Given the number of chargers available in the depot, we computed the
mean of the SOC that EBs can charged. In the new constraint, we ensured that the
total SOC charged is less or equal than the estimated value. Then we optimized
the problem. The solution of this problem is really fast. However, typically the
number of chargers used exceeds the available ones, leading to infeasible solutions.
To overcome this issue, we developed a second step to obtain a feasible solution.
Again, for every cost period we computed the amount of energy charged and use it
in the second step. However, this second problem proved to be really hard to be
solved and also this heuristic was not effective.

Given the difficulties in the improvement of the second step, instead of removing
or substituting constraints, we decided to solve the problem with a restricted
objective function. In this way indeed, even if a further second step is not able
to find an optimal solution, the one found in the first step is a solution for the
whole problem, even if sub optimal. We analyzed the solution for different sub
problems, optimizing each time only a subset of the objective function. All the
results obtained for the subproblems are reported in chapter 5. In general, we have
different situations depending on the sub-problem we are solving. The optimization
of the degradation costs seems to increase the complexity of the model. On the
other hand, when optimizing only the energy component, the FRD costs or these
two together, the solver is always able to provide a solution within the time limit. In
particular, the optimization of energy and FRD costs jointly, produces a good quality
solution for all the instances and takes into account the two major components
of the costs. Therefore, the resolution of this sub-problem is exploited to find a
feasible solution for the EEV-CSP-V2G. As second step, we tried first to use the
solver with a cutoff. Since it was not effective, we used instead a warm-up. This
last heuristic has proved to be beneficial. Thus, our heuristic is made of two steps
that we summarized here:

• The model is solved optimizing energy and FRD costs

• The solution found in step 1 is passed to the solver as MIP start and the
complete model is solved

In chapter 5 we show the application of such heuristic on a variety of experiments.



Chapter 4

Case study

The base case instances are inspired from the public transportation system
of the city of Milan (ATM). As stated in the communication "ATM: DAL 2030
FULL ELECTRIC" on ATM website, a fleet of exclusively EBs will be available
by 2030. ATM announced that each of the 12 meter EBs will be equipped with
a 240kWh lithium-phosphate battery, allowing an autonomy of almost 180 km.
As a consequence, the battery charge capacity will be of 120 Ah. The specific
characteristics of the batteries of EBs are not known, so several assumptions are
made on the base of the studies on the EBs fleet in New Energy Outlook 2020 and
S. Pelletier, Jabali, Mendoza, et al., 2019.

We assume that two types of chargers are available at the depot, slow and fast
chargers. The former have a power of 80kW and are able to fully charge an EB in 5
hours (4.1a). The latter are of 120 kW and the complete charge takes less then 4
hours (4.1a). The number of the charger facilities depends on the fleet itself in the
ratio of 1:2 and 1:3 respectively. For both chargers a CC-CV curve is approximated
by means of the following piece-wise linear approximations (Figure 4.1).

To estimate the wear cost function, it is necessary to know the initial price
of batteries. In New Energy Outlook 2020 report, the trend of battery prices is
explained. The initial price of batteries is subjected to a great variability depending
on the year. In particular, it decreases over years. Given the time horizon of
this work, with a plan of conversion of the fleet from 2020 to 2030, a price of
81,79e/kWh is a reasonable estimate. The wear cost function wd is then fitted
according to the procedure described in section 3.3 using a set of 4 equidistant
points. It follows that |D|= 4, with L = 0.25. The interval for the SOC calibration
as well as the values of the wear cost function are reported in Table 4.1.

We assume that the depot is under an industrial energy contract that simulates
the "Enel Energy Placet Fix" plan for commercial users (ROSSETTI, 2020). The
time dependent energy prices cp have 3 different values with a peak period from 8.00
to 19.00. Low energy prices are available during the night from 23.00 to 7.00, while
in all the other periods energy has an intermediate cost. The FRD cost F is equal
to 144 e/kW every year. Assuming 20 working day per month, it is equivalent to
0.6e/kW for a daily planning horizon. These costs are summarized in Table 4.2.

The maximum load supported by the grid is not specified in the contract.
Usually indeed the grid capacity depends on its employment. To approximate this
value, we have computed the biggest load that could be required to the grid, which
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Figure 4.1: CC-CV curve of a slow and a fast charger

SOC interval Degradation costs
0-0.25 e0.10/kWh
0.25-0.50 e0.10/kWh
0.50-0.75 e0.12/kWh
0.75-1.0 e0.16/kWh

Table 4.1: Battery wear cost function

is obtained when the depot demand is maximal and all the chargers are used with
maximum power. The grid capacity parameter G is then 80% of the this worst case
scenario.

As already discussed, we have introduced also a demand profile of the depot. In
this scenario, this is obtained with a perturbation of the profile energy of a non
refrigerated warehouse in Washington US in 2016-2017. Due to privacy reasons we
cannot disclose the source of this data.

Data are cyclic with respect to the year and seasonal along with seasons.
Furthermore there is a daily variation in the demand. From the average hourly
energy demand during working days the following profiles for summer and winter
are obtained.

Period Cost
Peak (8.00-19.00) 0.111
Mid (7.00-8.00, 19.00-23.00) 0.108
Off-peak (23.00-7.00) 0.095
FRD charges 144

Table 4.2: Rates (e/kWh) and yearly FRD charge (e/kW)
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Figure 4.2: Depot demand over 2016-2017
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Figure 4.3: Depot energy profile of a random day

The planning horizon is of one day and it is divided into periods of 30 minutes.
Additional assumptions are that between routes it is possible to plug in an EB only
three times and their SOC needs to be in the range [0.050.99].

4.0.1 Instances

The routes planning is based on the fleet of buses of ATM. Data are available
on ATM website (di Milano, n.d.(a)-di Milano, n.d.(b)). Lines 44 50 54 56 57 59
60 73 74 80 88 89 95 121 of ATM service have been considered. The frequencies of
buses are available from ATM timetables (4.5).
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demand in a day

Figure 4.5: Example of an ATM time table for a bus line

Furthermore, the travel time for a journey is different according to the day time.
The hourly travel time is the mean of the values reported at differen hours on
GoogleMaps. With these data, a simple model to estimate the SOC consumption
of an EB that leaves the depot at time t1 and returns at time t2is developed as
follows:

∆SOCt1,t2 = ηconv · SeasonFactor ·
t2∑
t=t1

(0.95 ·MeanDistance(t) ·∆t) (4.1)
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where ηconv is the energy consumption per kilometers (0.99), season factor is a
value that takes into account the different consumption in during winter (1.14)
and summer (1.09). Finally, MeanDistance (t) is a function that returns the mean
distance of the considered bus at time t. According to (4.1), the average SOC
consumption relies only on the departure and arrival at the depot. Therefore, in
order to simulate the instances it is just necessary to simulate the departure and
arrival of every route and then compute the SOC consumption on their base. With
such route planning, we try to capture the behavior of the fleet during the day as
described on ATM Website.

Peak hours are at (7.00-9.00) and mid-peak hours (17.00-20.00). Also in the
night bus frequencies decrease a lot. The service starts at 5.00 and ends around
1.00. To simulate this behaviour, all the EBs are forced to leave the depot in the
morning at a period that is sampled between 5.00 and 7.00, with a probability given
by the frequencies of the data set. After the peak time, an EB may come back
at the depot. Based on the frequencies in data-set, the event "EB returns at the
depot" is distributed as a Bernoulli variable of parameter 0.3, Be (0.3). This means
that one third of the fleet is expected to come back in the depot. The return time at
the depot after peak hours is randomly generated as a uniform from 10.00 to 12.00.
A second route is assigned to these vehicles, which are forced to get outside again
for the second peak of the fleet, again uniformly between 16.00 and 17.00. At night,
EBs come back in the depot starting from 20.30 up until 1.30 according to the
frequencies of the dataset. Furthermore, in order to ensure feasibility of the routes,
some breaks at the depot are randomly added for the vehicles which are suppose
to perform an initial route requiring more that 100% of the SOC. Instances are
simulated for fleet of 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 vehicles. Five instances
are generated for each configuration. In figure 4.6 we show the route planning for
some of these instances.

https://www.atm.it/it/viaggiaconnoi/pagine/orari_calendario.aspx
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Figure 4.6: Some examples of the route scheduling for the fleets



Chapter 5

Computational experiments

A computational analysis on the scenario of chapter 4 has been performed to
understand the complexity of the problem as well as investigating the employment
of V2G technologies in the charge scheduling. The EEV-CPS-V2G model is
implemented in C++ using the calleble library of the solver CPLEX 12.10. All the
instances were solved up to an optimality GAP of 0.1%.

5.1 Base case results

The results of the EEV-CPS-V2G are presented in Table 5.1. Instances are
denoted according to the fleet size. For example, "10_3" refers to the third instance
among the ones with a fleet of 10 EBs. Each instance was run with a time limit of
2 hours. Whenever the solver is able to find a solution, all the partial contributions
are reported as well as the total. Furthermore we report the GAP optimality and
the time it took to find the solution. When the solver was not able to find a solution,
the line is blank (except for the time limit). All the costs in the tables are in e,
while the time is in seconds (s).

In Table 5.1 we report the results obtained when the EEV-CPS-V2G is solved
to optimality. We have reported instances up to 30 EBs only since no solutions are
found for larger fleets. Notice that neither for the smallest instances, the problem

Energy FRD Deg Total GAP Time
10_1 263.72 75.58 192.52 531.82 1.59% 7200
10_2 283.42 79.76 208.45 571.62 1.15% 7200
10_3 292.76 80.85 220.77 594.38 1.44% 7200
10_4 281.64 78.59 219.24 579.46 2.82% 7200
10_5 261.90 71.98 187.49 521.37 1.49% 7200
20_1 478.86 139.05 413.18 1031.09 2.32% 7200
20_2 492.10 139.59 425.44 1057.13 2.25% 7200
20_3 7200
20_4 469.99 133.17 396.87 1000.03 1.59% 7200
20_5 466.19 130.68 395.05 991.91 1.98% 7200
30_1 7200
30_2 688.50 194.56 625.58 1508.64 2.39% 7200
30_3 7200
30_4 7200
30_5 7200

Table 5.1: Optimization of EEV-CPS-V2G in the base case scenario

39
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Fleet size Average cost Average GAP Average Time Optimal Found solution
10 828.39 0.06% 14.70 5 5
20 1488.89 0.05% 61.81 5 5
30 2097.45 0.08% 185.19 5 5
40 2820.93 0.06% 320.22 5 5
50 3387.92 0.07% 1020.40 5 5
60 4068.60 0.05% 2546.17 5 5
70 4661.44 0.06% 3459.09 3 4
80 5254.60 0.09% 4566.41 3 3
90 5993.99 0.04% 5370.28 3 3

100 6543.18 0.05% 5518.72 4 4

Table 5.2: Summary of the results obtained optimizing only the energy costs. For the
detailed results check Table 5.6

Fleet size Average cost Average GAP Average Time Optimal Found solution
10 560.97 0.02% 10.41 5 5
20 1035.92 0.00% 38.34 5 5
30 1494.12 0.00% 76.39 5 5
40 2005.84 0.00% 144.14 5 5
50 2472.80 0.02% 173.32 5 5
60 2954.03 0.00% 296.55 5 5
70 3413.35 0.00% 312.95 5 5
80 3889.29 0.00% 350.78 5 5
90 4372.66 0.00% 399.93 5 5

100 4831.50 0.00% 489.78 5 5

Table 5.3: Summary of the results obtained optimizing FRD costs. For the detailed
results check Table 5.7

is not solved up to optimality and we always reach the time limit.
These results show the necessity of a heuristic approach to solve the problem.

As we have already explained in section 3.8 when we have introduced our heuristic,
the first step of our strategy relies on the solution of the EEV-CPS-V2G , but with
a subset of its objective function. We report here the different results obtained
when we optimize these subproblems. Instances are solved optimizing only the
degradation costs (Table 5.5), the energy costs (Table 5.6), the FRD costs (Table 5.7)
or a combination of energy and FRD (Table 5.8).

In the instances where we optimize only the degradation costs (Table 5.5), we
obtain poor results. No instances are solved up to optimality and the average GAP
is 4.42% and the time limit is always reached.

As the other tables report the results for all the instances, we summarize them.
In particular, for every fleet size, we report the average total costs, the average
GAP and the average time to get a solution. Furthermore, we report the column
"Optimal" that says how many instances are solved within our gap of optimality
and "Found solution" to report the number of instances for which the solver is able
to find a solution.

The solutions in which we optimized only the energy costs (5.6) are summarized
in Table 5.2. Notice that out of the five instances for each category, when the fleet
size is smaller than 50 EBs, we are always able to find an optimal solution. This is
no longer the case for the largest instances. However, even here, when we find a
solution, it is always optimal.

The solutions of the problems with only the FRD (5.7) and the ones with FRD
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Fleet size Average cost Average GAP Average Time Optimals Found solution
10 560.88 0.03% 9.74 5 5
20 1036.18 0.00% 34.74 5 5
30 1495.46 0.00% 82.52 5 5
40 2003.44 0.00% 117.13 5 5
50 2476.67 0.00% 194.27 5 5
60 2956.18 0.00% 272.88 5 5
70 3416.63 0.00% 383.25 5 5
80 3891.43 0.00% 384.74 5 5
90 4370.27 0.00% 335.57 5 5

100 4839.64 0.00% 724.46 5 5

Table 5.4: Summary of the results obtained optimizing energy and FRD. For the detailed
results check Table 5.8

Energy FRD Deg Total GAP Time
10_1 261.76 163.78 192.52 618.07 4.14% 7200
10_2 283.99 190.40 207.06 681.45 2.46% 7200
10_3 290.04 203.82 220.77 714.63 4.14% 7200
10_4 276.41 195.31 216.25 687.97 8.06% 7200
10_5 257.75 199.21 185.88 642.84 3.32% 7200
20_1 475.90 285.43 413.18 1174.51 5.98% 7200
20_2 486.73 319.31 425.44 1231.47 5.26% 7200
20_3 503.55 305.74 431.18 1240.47 3.45% 7200
20_4 465.89 317.95 396.87 1180.70 3.91% 7200
20_5 465.15 276.11 395.05 1136.31 4.92% 7200
30_1 667.14 455.48 613.17 1735.79 4.97% 7200
30_2 7200
30_3 692.07 407.52 625.75 1725.34 3.69% 7200
30_4 675.51 506.24 613.60 1795.36 4.56% 7200
30_5 643.75 385.98 581.53 1611.26 3.88% 7200
40_1 7200
40_2 7200
40_3 894.13 571.74 829.06 2294.93 3.70% 7200
40_4 874.96 590.03 813.43 2278.42 4.35% 7200
40_5 7200

Table 5.5: Optimization of degradation costs

and energy (5.8) are summarized in Table 5.3 and in Table 5.4. In both situations,
the solver is always able to find an optimal solution. Furthermore, the solver is rally
fast in finding solutions as it takes less 15 minutes even for the largest instances.

We have very good results in both cases, but the average time is lower in the
instances with only FRD costs. However, for the first step of our heuristic we have
decided to optimize both energy and FRD costs. Indeed, as it is shown in Table 5.4,
we are able to achieve optimal solutions in less than 15 minutes while optimizing
already two different costs.

We reported now in Table 5.9 the results obtained with our heuristic. For every
instance we report the results of the two steps. Therefore, the values under the
column "First step" refer to the results of the problem where we optimize energy
and FRD costs. The results under the column "Second step" refer to the model of
the second step, that is the EEV-CSP-V2Gindeed.

It is interesting to notice that with the second step we are able to improve the
degradation costs of the first step of 2.08%. This quantity is computed as the ratio
of the difference of the two costs and the degradation costs in the first step. We
computed the same quantity for the total costs in the two steps and there is a
global improvement of 0.87%. We have already remarked that the first step is really
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Energy FRD Deg Total GAP Time
10_1 245.93 260.41 277.24 783.59 0.01% 17
10_2 265.03 266.09 326.44 857.57 0.09% 10
10_3 273.86 265.60 312.04 851.51 0.10% 6
10_4 262.66 267.88 340.84 871.38 0.01% 21
10_5 243.71 250.89 283.31 777.90 0.09% 20
20_1 442.89 509.61 623.31 1575.80 0.02% 41
20_2 454.74 530.77 488.93 1474.45 0.07% 131
20_3 469.13 543.13 536.44 1548.71 0.06% 36
20_4 434.23 492.06 483.24 1409.53 0.05% 57
20_5 429.74 483.39 522.82 1435.96 0.05% 44
30_1 627.99 741.41 677.60 2047.00 0.08% 116
30_2 633.49 749.72 780.04 2163.26 0.10% 343
30_3 645.63 766.10 814.51 2226.23 0.08% 70
30_4 629.10 740.32 715.65 2085.07 0.03% 290
30_5 604.33 685.57 675.78 1965.67 0.09% 107
40_1 849.66 1037.82 1075.32 2962.80 0.08% 320
40_2 832.21 996.16 970.35 2798.72 0.08% 272
40_3 831.68 1000.72 949.79 2782.18 0.05% 315
40_4 811.79 961.18 1050.04 2823.02 0.05% 328
40_5 813.76 967.74 956.44 2737.94 0.04% 366
50_1 1032.76 1247.10 1224.51 3504.37 0.05% 1555
50_2 1019.41 1219.04 1183.82 3422.28 0.09% 2505
50_3 1014.04 1220.49 1119.71 3354.23 0.07% 468
50_4 1012.55 1199.37 1124.58 3336.50 0.10% 381
50_5 999.54 1191.02 1131.66 3322.22 0.04% 193
60_1 1229.87 1496.62 1381.70 4108.19 0.04% 3836
60_2 1214.62 1458.81 1436.51 4109.94 0.03% 6853
60_3 1191.49 1426.78 1434.71 4052.99 0.09% 788
60_4 1192.70 1423.84 1374.89 3991.43 0.03% 707
60_5 1188.51 1420.71 1471.24 4080.46 0.06% 546
70_1 1428.73 1750.94 1784.03 4963.69 0.10% 625
70_2 7202
70_3 1355.57 1618.34 1516.22 4490.13 0.08% 614
70_4 1378.00 1662.04 1518.11 4558.15 0.05% 5812
70_5 1391.14 1679.41 1563.24 4633.80 0.02% 3043
80_1 7201
80_2 7202
80_3 1554.51 1877.17 1879.64 5311.32 0.09% 726
80_4 1567.30 1893.62 1898.11 5359.02 0.07% 932
80_5 1570.52 1894.83 1628.11 5093.45 0.10% 6771
90_1 7202
90_2 1761.42 2109.75 2135.91 6007.08 0.01% 4641
90_3 7202
90_4 1762.18 2150.46 2141.64 6054.28 0.09% 851
90_5 1770.29 2152.21 1998.11 5920.61 0.03% 6955
100_1 7202
100_2 1942.91 2319.89 2214.05 6476.85 0.01% 5270
100_3 1933.43 2330.42 2295.10 6558.95 0.10% 5860
100_4 1944.40 2356.67 2104.11 6405.18 0.05% 4819
100_5 1945.81 2344.44 2441.50 6731.75 0.03% 4443

Table 5.6: Optimization of energy costs
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Energy FRD Deg Total GAP Time
10_1 263.73 75.62 192.65 532.00 0.05% 11
10_2 283.42 79.76 208.63 571.81 0.00% 8
10_3 292.76 80.85 221.46 595.07 0.00% 11
10_4 281.83 77.72 221.18 580.74 0.03% 11
10_5 261.90 71.98 191.38 525.26 0.00% 11
20_1 478.86 139.05 418.31 1036.22 0.00% 40
20_2 492.10 139.59 426.24 1057.93 0.00% 43
20_3 506.55 143.86 435.72 1086.13 0.00% 27
20_4 469.99 133.17 401.03 1004.19 0.00% 44
20_5 466.19 130.68 398.27 995.13 0.00% 38
30_1 681.19 198.72 613.25 1493.17 0.00% 72
30_2 688.50 194.56 630.51 1513.57 0.00% 93
30_3 700.69 201.17 635.55 1537.41 0.00% 56
30_4 683.85 193.23 621.68 1498.76 0.00% 104
30_5 657.09 185.54 585.08 1427.71 0.00% 57
40_1 923.80 265.37 886.08 2075.25 0.00% 170
40_2 906.71 257.27 847.15 2011.12 0.00% 137
40_3 904.06 264.04 851.27 2019.37 0.00% 162
40_4 884.32 250.83 819.45 1954.60 0.00% 132
40_5 886.50 251.46 830.88 1968.84 0.00% 119
50_1 1124.75 326.06 1074.67 2525.48 0.00% 156
50_2 1111.82 316.21 1058.80 2486.82 0.00% 146
50_3 1104.35 316.36 1035.11 2455.82 0.08% 161
50_4 1104.17 314.01 1039.35 2457.52 0.00% 191
50_5 1090.24 310.01 1038.08 2438.33 0.00% 214
60_1 1340.17 388.28 1302.99 3031.44 0.00% 240
60_2 1326.48 377.89 1294.88 2999.26 0.00% 612
60_3 1297.92 373.07 1225.35 2896.35 0.00% 125
60_4 1302.27 371.79 1244.61 2918.67 0.00% 218
60_5 1297.53 369.57 1257.36 2924.46 0.00% 287
70_1 1557.30 450.61 1519.83 3527.75 0.00% 325
70_2 1510.96 431.62 1467.90 3410.48 0.00% 451
70_3 1480.14 422.52 1410.69 3313.36 0.00% 228
70_4 1504.05 431.35 1451.04 3386.43 0.00% 289
70_5 1519.03 433.22 1476.46 3428.70 0.00% 272
80_1 1762.26 507.58 1724.09 3993.93 0.00% 321
80_2 1727.14 493.02 1682.49 3902.64 0.00% 347
80_3 1697.28 484.85 1630.22 3812.36 0.00% 432
80_4 1711.09 490.70 1656.43 3858.22 0.00% 290
80_5 1715.39 489.65 1674.26 3879.30 0.00% 365
90_1 1961.68 564.67 1936.44 4462.79 0.00% 380
90_2 1926.96 550.89 1898.08 4375.93 0.00% 493
90_3 1907.78 546.99 1848.08 4302.85 0.00% 284
90_4 1923.96 550.00 1863.53 4337.49 0.00% 403
90_5 1934.15 552.51 1897.56 4384.22 0.00% 438
100_1 2161.54 623.68 2129.65 4914.86 0.00% 407
100_2 2126.55 609.81 2104.73 4841.09 0.00% 539
100_3 2112.49 603.76 2050.31 4766.56 0.00% 431
100_4 2124.92 609.32 2082.07 4816.31 0.00% 531
100_5 2127.79 608.15 2082.72 4818.66 0.00% 541

Table 5.7: Optimization of FRD costs
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Energy FRD Deg Total GAP Time
10_1 263.72 197.18 75.58 536.48 0.00% 11.81
10_2 283.37 208.78 79.95 572.10 0.04% 7.48
10_3 292.72 222.16 81.03 595.91 0.04% 7.03
10_4 281.75 219.20 78.10 579.04 0.09% 11.95
10_5 261.90 186.99 71.98 520.87 0.00% 10.43
20_1 478.86 415.74 139.05 1033.65 0.00% 28.43
20_2 492.09 429.88 139.70 1061.67 0.02% 32.96
20_3 506.55 438.52 143.86 1088.93 0.00% 30.56
20_4 469.99 398.77 133.17 1001.94 0.00% 39.75
20_5 466.19 397.84 130.68 994.71 0.00% 41.99
30_1 681.19 619.09 198.72 1499.00 0.00% 87.22
30_2 688.50 627.83 194.56 1510.89 0.00% 90.26
30_3 700.69 633.03 201.17 1534.89 0.00% 41.70
30_4 683.85 621.41 193.23 1498.49 0.00% 102.69
30_5 657.09 591.39 185.54 1434.02 0.00% 90.71
40_1 923.80 867.58 265.37 2056.76 0.00% 93.53
40_2 906.71 854.88 257.27 2018.86 0.00% 91.85
40_3 904.06 841.75 264.04 2009.85 0.00% 123.24
40_4 884.32 820.82 250.83 1955.97 0.00% 151.28
40_5 886.50 837.80 251.46 1975.76 0.00% 125.74
50_1 1124.75 1074.69 326.06 2525.50 0.00% 176.24
50_2 1111.82 1061.70 316.21 2489.73 0.00% 239.04
50_3 1104.29 1039.30 316.13 2459.71 0.00% 131.05
50_4 1104.17 1045.31 314.01 2463.49 0.00% 232.61
50_5 1090.24 1044.68 310.01 2444.92 0.00% 192.41
60_1 1340.17 1315.10 388.28 3043.54 0.00% 322.69
60_2 1326.48 1290.09 377.89 2994.46 0.00% 221.86
60_3 1297.92 1235.75 373.07 2906.75 0.00% 238.58
60_4 1302.27 1242.62 371.79 2916.68 0.00% 306.51
60_5 1297.53 1252.39 369.57 2919.49 0.00% 274.78
70_1 1557.30 1511.17 450.61 3519.08 0.00% 254.18
70_2 1510.96 1485.97 431.62 3428.55 0.00% 704.83
70_3 1480.14 1430.35 422.52 3333.02 0.00% 298.81
70_4 1504.05 1441.32 431.35 3376.72 0.00% 337.05
70_5 1519.03 1473.55 433.22 3425.80 0.00% 321.36
80_1 1762.26 1723.77 507.58 3993.61 0.00% 460.29
80_2 1727.14 1685.72 493.02 3905.87 0.00% 387.37
80_3 1697.28 1629.63 484.85 3811.77 0.00% 303.38
80_4 1711.09 1668.25 490.70 3870.05 0.00% 335.02
80_5 1715.39 1670.79 489.65 3875.83 0.00% 437.62
90_1 1961.68 1942.09 564.67 4468.44 0.00% 339.63
90_2 1926.96 1892.42 550.89 4370.27 0.00% 411.66
90_3 1907.78 1844.07 546.99 4298.84 0.00% 267.63
90_4 1923.96 1868.65 550.00 4342.61 0.00% 346.56
90_5 1934.15 1884.53 552.51 4371.19 0.00% 312.36
100_1 2161.54 2169.43 623.68 4954.65 0.00% 1579.46
100_2 2126.55 2103.88 609.81 4840.24 0.00% 421.33
100_3 2112.49 2054.33 603.76 4770.58 0.00% 786.84
100_4 2124.92 2074.34 609.32 4808.58 0.00% 393.04
100_5 2127.79 2088.21 608.15 4824.15 0.00% 441.62

Table 5.8: Optimization of energy and FRD costs
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First step Second step

Energy FRD Deg Total Time GAP Energy FRD Deg Total Time GAP
10_1 263.7 75.6 199.8 539.1 11 0.00% 263.7 75.6 192.5 531.8 7200 1.86%
10_2 283.4 80.0 210.8 574.1 7 0.04% 283.4 79.8 208.5 571.6 7200 1.13%
10_3 292.7 81.0 224.8 598.6 7 0.04% 292.8 80.8 220.8 594.4 7200 1.47%
10_4 281.7 78.1 222.2 582.0 12 0.09% 281.6 78.6 219.2 579.5 7200 2.82%
10_5 261.9 72.0 189.0 522.8 10 0.00% 261.9 72.0 187.5 521.4 7200 1.49%
20_1 478.9 139.0 420.9 1038.8 27 0.00% 478.9 139.0 413.2 1031.1 7200 2.32%
20_2 492.1 139.7 434.8 1066.6 34 0.02% 492.1 139.6 425.4 1057.1 7200 2.24%
20_3 506.6 143.9 443.1 1093.6 30 0.00% 506.6 143.9 432.6 1083.0 7200 1.54%
20_4 470.0 133.2 403.3 1006.4 38 0.00% 470.0 133.2 396.9 1000.0 7200 1.58%
20_5 466.2 130.7 402.7 999.6 41 0.00% 466.2 130.7 395.1 991.9 7200 1.96%
30_1 681.2 198.7 626.6 1506.5 83 0.00% 681.2 198.7 613.2 1493.1 7200 2.05%
30_2 688.5 194.6 634.7 1517.8 84 0.00% 688.5 194.6 625.6 1508.6 7200 2.39%
30_3 700.7 201.2 639.7 1541.6 44 0.00% 700.7 201.2 625.8 1527.6 7200 1.51%
30_4 683.9 193.2 628.9 1506.0 95 0.00% 683.9 193.2 613.6 1490.7 7200 1.85%
30_5 657.1 185.5 598.4 1441.0 87 0.00% 657.1 185.5 581.5 1424.2 7200 1.63%
40_1 923.8 265.4 878.1 2067.3 91 0.00% 923.8 265.4 861.0 2050.2 7200 2.14%
40_2 906.7 257.3 864.4 2028.3 97 0.00% 906.7 257.3 845.9 2009.8 7200 2.35%
40_3 904.1 264.0 850.0 2018.1 116 0.00% 904.1 264.0 829.1 1997.2 7200 1.56%
40_4 884.3 250.8 829.5 1964.6 141 0.00% 884.3 250.8 813.4 1948.6 7200 1.85%
40_5 886.5 251.5 847.1 1985.1 127 0.00% 886.5 251.5 823.4 1961.4 7200 2.24%
50_1 1124.7 326.1 1087.8 2538.6 180 0.00% 1124.7 326.1 1069.7 2520.6 7200 2.38%
50_2 1111.8 316.2 1074.7 2502.7 232 0.00% 1111.8 316.2 1056.1 2484.1 7200 2.51%
50_3 1104.3 316.1 1050.1 2470.5 133 0.00% 1104.3 316.1 1024.8 2445.2 7200 1.49%
50_4 1104.2 314.0 1056.8 2475.0 235 0.00% 1104.2 314.0 1033.8 2452.0 7200 1.93%
50_5 1090.2 310.0 1057.9 2458.1 202 0.00% 1090.2 310.0 1025.6 2425.8 7200 2.16%
60_1 1340.2 388.3 1332.2 3060.7 331 0.00% 1340.2 388.3 1292.5 3020.9 7200 2.58%
60_2 1326.5 377.9 1306.1 3010.5 210 0.00% 1326.5 377.9 1277.7 2982.1 7200 2.56%
60_3 1297.9 373.1 1248.2 2919.2 231 0.00% 1297.9 373.1 1220.2 2891.2 7200 1.58%
60_4 1302.3 371.8 1255.7 2929.7 310 0.00% 1302.3 371.8 1236.5 2910.6 7200 2.01%
60_5 1297.5 369.6 1266.7 2933.8 261 0.00% 1297.5 369.6 1235.1 2902.2 7200 2.18%
70_1 1557.3 450.6 1528.9 3536.8 247 0.00% 1557.3 450.6 1505.6 3513.5 7200 2.31%
70_2 1511.0 431.6 1504.5 3447.1 675 0.00% 1511.0 431.6 1459.6 3402.2 7200 2.45%
70_3 1480.1 422.5 1445.3 3347.9 282 0.00% 1480.1 422.5 1401.3 3304.0 7200 1.61%
70_4 1504.0 431.4 1457.3 3392.7 329 0.00% 1504.0 431.4 1433.4 3368.8 7200 1.85%
70_5 1519.0 433.2 1492.4 3444.6 332 0.00% 1519.0 433.2 1461.7 3414.0 7200 2.28%
80_1 1762.3 507.6 1742.9 4012.8 454 0.00% 1762.3 507.6 1705.9 3975.7 7200 2.18%
80_2 1727.1 493.0 1704.9 3925.0 375 0.00% 1727.1 493.0 1675.8 3895.9 7200 2.38%
80_3 1697.3 484.9 1646.8 3829.0 282 0.00% 1697.3 484.9 1620.0 3802.1 7200 1.68%
80_4 1711.1 490.7 1687.8 3889.6 328 0.00% 1711.1 490.7 1648.9 3850.7 7200 2.06%
80_5 1715.4 489.6 1691.2 3896.2 422 0.00% 1715.4 489.6 1661.3 3866.4 7200 2.31%
90_1 1961.7 564.7 1966.6 4492.9 349 0.00% 1961.7 564.7 1921.0 4447.4 7200 2.48%
90_2 1927.0 550.9 1915.0 4392.8 394 0.00% 1927.0 550.9 1880.5 4358.3 7200 2.36%
90_3 1907.8 547.0 1863.6 4318.4 262 0.00% 1907.8 547.0 1832.6 4287.4 7200 1.73%
90_4 1924.0 550.0 1888.3 4362.3 335 0.00% 1924.0 550.0 1857.3 4331.2 7200 1.92%
90_5 1934.2 552.5 1906.7 4393.4 285 0.00% 1934.2 552.5 1880.1 4366.8 7200 2.20%
100_1 2161.5 623.7 2198.4 4983.7 1489 0.00% 2161.5 623.7 2118.7 4904.0 7200 2.38%
100_2 2126.6 609.8 2129.5 4865.9 409 0.00% 2126.6 609.8 2080.6 4816.9 7200 2.35%
100_3 2112.5 603.8 2078.2 4794.5 751 0.00% 2112.5 603.8 2038.2 4754.4 7200 1.77%
100_4 2124.9 609.3 2097.0 4831.3 382 0.00% 2124.9 609.3 2068.0 4802.2 7200 2.10%
100_5 2127.8 608.2 2112.8 4848.7 418 0.00% 2127.8 608.2 2074.5 4810.4 7200 2.24%

Table 5.9: Heuristic results
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fast and solve up to optimality. On the other hand the second step solution is not
optimal and the time limit is always reached. Nevertheless, thanks to this heuristic,
it is possible to find solutions for all the instances, which is a great improvement if
compared with the results of Table 5.1.

5.2 Managerial insights

In this section, we perform sensitivity analyses by varying a number of parameters
from the base scenario. some perturbations of the parameters of the base case
scenario of chapter 4 are done. Then, the problems are solved with the heuristic in
section 3.8.

The aim of these experiments is twofold. First of all, changing some parameters
could affect the solution procedure. But most importantly, we aim at investigating
whether V2G technologies can be beneficial for the operation of the fleet. Indeed
in all the solutions of the base case scenario (5.9), the total amount of energy
discharged is null. This means that for this particular problem, it is not convenient
to use V2G technologies. Namely, a fleet of EVs instead of EV-V2Gs would lead
to the same results. The reasons behind these are not straightforward. The first
hypothesis could be that this is due to the degradation costs. Indeed, in order to be
able to discharge EBs, they need to be overcharged and we know that overcharging
usually increases damages of batteries. Another reason could be due to a lack of
flexibility in the base case scenario. Indeed, apart from night time, EBs do not
spend a lot of time in the depot. The time they spend in the depot therefore, could
not be enough both for charging and discharging. Or maybe the number of chargers
in the depot are not enough to allow it. Finally, since the the plan is over 24 hours
and the cost incurred for the FRD component is high when compared to other
costs, the maximum power itself could discourage the use of V2Gs, contradicting
the idea of the peak-shaving effect of V2Gs. Indeed, even if V2Gs can for sure
decrease the power retrieved from the grid while discharging, the higher level of
SOC they require in order to do that could lead to a higher load in other periods.
Thus, V2Gs might not be convenient. Therefore, it would also be interesting to see
if restricting the grid capacity without modifying the degradation costs, V2Gs are
employed to find a feasible solution.

Following these ideas, the tests performed are aimed at perturbing the degrada-
tion costs (5.2.1), increasing the number of chargers in the depot (5.2.2), adding
other vehicles which have more flexibility in the route planning (5.2.3), modifying
the costs for the maximum power (5.2.4) and decreasing the capacity of the grid
(5.2.5).

5.2.1 Impact of degradation costs

As already explained, it is worth investigating the part of the EEV-CPS-V2G
related to the battery degradation. Indeed, in order to be able to discharge, EBs
must be charged longer as they need to store more energy than what they would
have needed otherwise. Since the wear cost function increases with the state of
charge, this would lead to a higher contribution of the degradation part. If the
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increase of degradation costs is higher than the benefits due to the usage of V2G
technologies, then V2G would not be exploited.

At first, the wear cost function is modified using only 2 points to calibrate it.
Namely, we set |D|= 2, L = 0.5 and wd of 0.100, 0.136. Then the degradation costs
are modified basing on battery price of 2030 (New Energy Outlook 2020 ). The
results for this setting are reported in Table 5.10.

In addition to the values reported before, here we add the columns "V2G" that
says whether V2G technologies are used or not and their percentage usage (V2G%).
The V2G percentage usage is computed as the quantity of energy discharged by
the fleet and the total quantity of energy of the planning period. The total cost,
GAP optimality and time occurred in the base case are also reported.

We have also run the instances with a different configuration of the wear costs
parameters wd. In particular, we have considered batteries at half price. Starting
from the initial price of 51e and with 4 interpolation points for the wear cost
function, we have obtained 0.060, 0.064, 0.072, 0.098 as parameters for the wear cost
function. The results for this setting are reported in Table 5.11.

Unfortunately, V2G are not beneficial under these conditions, not even when
considering half contribution for the degradation costs. It is also interesting to
notice that, even if the variables soc+

pdk (used for degradation costs) seem as one of
the possible causes that make the problem hard to be solved, when they are halved
the problem does not become easier. Indeed the GAP in this scenario is always
higher than the base scenario.

5.2.2 Impact of the number of chargers

Another aspect that could be beneficial both for the solution quality and the
usage of V2G is the number of available chargers. As already discussed (chapter 2),
many other approaches do not impose restrictions on the number of chargers. In
this spirit we assume that every EB is equipped with both a slow and a fast charger.
Namely, this means that the coupling constraints (3.115) are removed from the
EEV-CPS-V2G formulation. The results for this setting are reported in Table 5.12.

Also in this situation V2G vehicles are not used. Adding this type of flexibility
to the setting is not beneficial. Notice however that, as expected, for most of the
instances in the perturbed scenario, the optimality GAP is better than the one in
the base case.

5.2.3 Impact of fleet scheduling

In this section we add a number of EBs without routes assigned. Also this case
is inspired from the real applications. Indeed, depots typically maintain a few buses
on standby in case of emergency. The idea is that being in the depot, they could
be able to charge in every moment, and discharge when most needed. For every
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2 breakpoints wear cost function Base case

Energy FRD Deg Total GAP Time V2G V2G % Total GAP Time

10_1 263.72 75.58 195.16 534.46 2.19% 7200 0 0 531.82 1.86% 7211
10_2 283.42 79.76 214.02 577.20 1.79% 7200 0 0 571.62 1.13% 7207
10_3 292.76 80.85 224.30 597.90 1.78% 7200 0 0 594.38 1.47% 7207
10_4 280.35 84.48 219.71 584.53 3.24% 7200 0 0 579.46 2.82% 7211
10_5 261.21 75.09 190.34 526.64 2.38% 7200 0 0 521.37 1.49% 7210
20_1 478.86 139.05 418.91 1036.82 2.77% 7200 0 0 1031.09 2.32% 7228
20_2 492.10 139.59 432.38 1064.07 2.60% 7200 0 0 1057.13 2.24% 7233
20_3 506.55 143.86 441.64 1092.05 2.24% 7200 0 0 1083.04 1.54% 7230
20_4 469.99 133.17 403.62 1006.78 2.14% 7200 0 0 1000.03 1.58% 7239
20_5 466.19 130.68 402.21 999.07 2.68% 7200 0 0 991.91 1.96% 7241
30_1 681.19 198.72 622.53 1502.45 2.66% 7200 0 0 1493.09 2.05% 7284
30_2 688.50 194.56 634.92 1517.98 2.91% 7200 0 0 1508.64 2.39% 7283
30_3 700.69 201.17 637.66 1539.52 2.22% 7200 0 0 1527.61 1.51% 7242
30_4 683.85 193.23 624.27 1501.35 2.51% 7200 0 0 1490.68 1.85% 7297
30_5 657.09 185.54 593.99 1436.62 2.46% 7200 0 0 1424.15 1.63% 7289
40_1 923.80 265.37 876.62 2065.79 2.76% 7200 0 0 2050.17 2.14% 7288
40_2 906.71 257.27 859.11 2023.09 2.89% 7200 0 0 2009.84 2.35% 7290
40_3 904.06 264.04 844.33 2012.43 2.19% 7200 0 0 1997.16 1.56% 7314
40_4 884.32 250.83 826.80 1961.95 2.44% 7200 0 0 1948.58 1.85% 7345
40_5 886.50 251.46 837.41 1975.37 2.87% 7200 0 0 1961.39 2.24% 7318
50_1 1124.75 326.06 1089.27 2540.08 3.05% 7200 0 0 2520.55 2.38% 7374
50_2 1111.82 316.21 1073.32 2501.35 3.07% 7200 0 0 2484.09 2.51% 7421
50_3 1104.29 316.13 1043.49 2463.90 2.11% 7200 0 0 2445.18 1.49% 7334
50_4 1104.17 314.01 1052.45 2470.63 2.57% 7200 0 0 2451.98 1.93% 7413
50_5 1090.24 310.01 1044.85 2445.10 2.85% 7200 0 0 2425.84 2.16% 7393
60_1 1340.17 388.28 1315.77 3044.22 3.23% 7200 0 0 3020.90 2.58% 7527
60_2 1326.46 377.99 1299.87 3004.32 3.16% 7200 0 0 2982.09 2.56% 7405
60_3 1297.92 373.07 1241.59 2912.59 2.13% 7200 0 0 2891.20 1.58% 7429
60_4 1302.27 371.79 1256.07 2930.13 2.58% 7200 0 0 2910.59 2.01% 7496
60_5 1297.53 369.57 1256.08 2923.18 2.83% 7200 0 0 2902.18 2.18% 7439
70_1 1557.30 450.61 1531.61 3539.53 2.94% 7200 0 0 3513.50 2.31% 7447
70_2 1510.96 431.62 1481.08 3423.65 2.98% 7200 0 0 3402.22 2.45% 7878
70_3 1480.14 422.52 1424.57 3327.24 2.23% 7200 0 0 3303.96 1.61% 7519
70_4 1504.05 431.35 1458.79 3394.18 2.54% 7200 0 0 3368.81 1.85% 7524
70_5 1519.03 433.22 1489.48 3441.73 2.90% 7200 0 0 3413.96 2.28% 7519
80_1 1762.26 507.58 1736.47 4006.31 2.85% 7200 0 0 3975.69 2.18% 7649
80_2 1727.14 493.02 1704.38 3924.53 2.99% 7200 0 0 3895.93 2.38% 7563
80_3 1697.28 484.85 1649.51 3831.64 2.34% 7200 0 0 3802.14 1.68% 7462
80_4 1711.09 490.70 1677.44 3879.23 2.70% 7200 0 0 3850.70 2.06% 7509
80_5 1715.39 489.65 1691.11 3896.15 3.00% 7200 0 0 3866.38 2.31% 7614
90_1 1961.64 564.84 1952.91 4479.39 3.14% 7200 0 0 4447.36 2.48% 7549
90_2 1926.96 550.89 1913.22 4391.07 2.99% 7200 0 0 4358.33 2.36% 7602
90_3 1907.78 546.99 1866.27 4321.05 2.43% 7200 0 0 4287.41 1.73% 7465
90_4 1923.96 550.00 1890.74 4364.71 2.56% 7200 0 0 4331.24 1.92% 7539
90_5 1934.15 552.51 1913.43 4400.09 2.85% 7200 0 0 4366.76 2.20% 7477
100_1 2161.54 623.68 2152.90 4938.11 3.04% 7200 0 0 4903.96 2.38% 8623
100_2 2126.55 609.81 2115.87 4852.23 2.98% 7200 0 0 4816.93 2.35% 7608
100_3 2112.49 603.76 2075.30 4791.55 2.47% 7200 0 0 4754.42 1.77% 7963
100_4 2124.92 609.32 2104.32 4838.56 2.76% 7200 0 0 4802.23 2.10% 7609
100_5 2127.79 608.15 2107.95 4843.89 2.86% 7200 0 0 4810.44 2.24% 7200

Table 5.10: Results obtained with the wear cost function calibrated over two points
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Half battery price Base case

Energy FRD Deg Total GAP Time V2G V2G % Total GAP Time

10_1 263.72 75.58 119.00 458.29 2.08% 7212 0 0 531.82 1.86% 7200
10_2 283.42 79.76 128.83 492.00 1.29% 7207 0 0 571.62 1.13% 7200
10_3 292.76 80.85 136.36 509.96 1.54% 7207 0 0 594.38 1.47% 7200
10_4 281.69 78.38 134.92 494.98 2.40% 7212 0 0 579.46 2.82% 7200
10_5 261.90 71.98 115.35 449.22 1.50% 7210 0 0 521.37 1.49% 7200
20_1 478.86 139.05 255.17 873.08 2.31% 7229 0 0 1031.09 2.32% 7200
20_2 492.10 139.59 262.20 893.89 2.15% 7233 0 0 1057.13 2.24% 7200
20_3 506.55 143.86 267.36 917.76 1.63% 7231 0 0 1083.04 1.54% 7200
20_4 469.99 133.17 244.79 847.96 1.81% 7240 0 0 1000.03 1.58% 7200
20_5 466.19 130.68 243.76 840.63 2.09% 7243 0 0 991.91 1.96% 7200
30_1 681.19 198.72 378.50 1258.42 2.17% 7292 0 0 1493.09 2.05% 7200
30_2 688.50 194.56 386.00 1269.06 2.35% 7285 0 0 1508.64 2.39% 7200
30_3 700.69 201.17 385.92 1287.78 1.72% 7242 0 0 1527.61 1.51% 7200
30_4 683.85 193.23 377.87 1254.95 2.00% 7303 0 0 1490.68 1.85% 7200
30_5 657.09 185.54 357.95 1200.58 1.82% 7291 0 0 1424.15 1.63% 7200
40_1 923.80 265.37 531.21 1720.38 2.19% 7289 0 0 2050.17 2.14% 7200
40_2 906.71 257.27 522.04 1686.02 2.38% 7289 0 0 2009.84 2.35% 7200
40_3 904.06 264.04 511.86 1679.96 1.83% 7318 0 0 1997.16 1.56% 7200
40_4 884.32 250.83 501.17 1636.31 2.00% 7354 0 0 1948.58 1.85% 7200
40_5 886.50 251.46 508.78 1646.74 2.34% 7319 0 0 1961.39 2.24% 7200
50_1 1124.75 326.06 660.49 2111.30 2.44% 7390 0 0 2520.55 2.38% 7200
50_2 1111.82 316.21 654.09 2082.11 2.61% 7435 0 0 2484.09 2.51% 7200
50_3 1104.29 316.13 635.35 2055.76 1.89% 7335 0 0 2445.18 1.49% 7200
50_4 1104.17 314.01 637.20 2055.38 2.04% 7418 0 0 2451.98 1.93% 7200
50_5 1090.24 310.01 636.66 2036.91 2.49% 7401 0 0 2425.84 2.16% 7200
60_1 1340.17 388.28 797.58 2526.03 2.54% 7527 0 0 3020.90 2.58% 7200
60_2 1326.48 377.89 790.29 2494.66 2.65% 7411 0 0 2982.09 2.56% 7200
60_3 1297.92 373.07 752.54 2423.54 1.79% 7430 0 0 2891.20 1.58% 7200
60_4 1302.27 371.79 767.12 2441.17 2.34% 7504 0 0 2910.59 2.01% 7200
60_5 1297.53 369.57 762.42 2429.52 2.33% 7450 0 0 2902.18 2.18% 7200
70_1 1557.30 450.61 931.02 2938.94 2.44% 7461 0 0 3513.50 2.31% 7200
70_2 1510.96 431.62 902.79 2845.37 2.62% 7902 0 0 3402.22 2.45% 7200
70_3 1480.14 422.52 878.59 2781.26 2.42% 7490 0 0 3303.96 1.61% 7200
70_4 1504.05 431.35 888.73 2824.12 2.22% 7535 0 0 3368.81 1.85% 7200
70_5 1519.03 433.22 902.45 2854.70 2.39% 7546 0 0 3413.96 2.28% 7200
80_1 1762.26 507.58 1057.16 3327.00 2.41% 7670 0 0 3975.69 2.18% 7200
80_2 1727.14 493.02 1039.15 3259.31 2.61% 7576 0 0 3895.93 2.38% 7200
80_3 1697.28 484.85 1004.16 3186.29 2.09% 7497 0 0 3802.14 1.68% 7200
80_4 1711.05 490.89 1023.20 3225.14 2.39% 7537 0 0 3850.70 2.06% 7200
80_5 1715.39 489.65 1028.26 3233.30 2.52% 7632 0 0 3866.38 2.31% 7200
90_1 1961.68 564.67 1197.30 3723.65 2.83% 7570 0 0 4447.36 2.48% 7200
90_2 1926.96 550.89 1164.14 3641.99 2.59% 7599 0 0 4358.33 2.36% 7200
90_3 1907.78 546.99 1135.13 3589.91 2.14% 7454 0 0 4287.41 1.73% 7200
90_4 1923.89 550.41 1151.54 3625.83 2.30% 7553 0 0 4331.24 1.92% 7200
90_5 1934.15 552.51 1163.78 3650.44 2.45% 7497 0 0 4366.76 2.20% 7200
100_1 2161.54 623.68 1323.32 4108.53 2.86% 8724 0 0 4903.96 2.38% 7200
100_2 2126.55 609.81 1295.39 4031.75 2.78% 7608 0 0 4816.93 2.35% 7200
100_3 2112.49 603.76 1265.37 3981.62 2.26% 7921 0 0 4754.42 1.77% 7200
100_4 2124.84 609.66 1283.60 4018.11 2.47% 7583 0 0 4802.23 2.10% 7200
100_5 2127.79 608.15 1286.39 4022.33 2.50% 7609 0 0 4810.44 2.24% 7200

Table 5.11: Results obtained with the initial price of battery is halved
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No charger restrictions Base case

Energy FRD Deg Total GAP Time V2G V2G % Total GAP Time

10_1 263.72 75.58 192.52 531.82 1.67% 7200 0 0 531.82 1.86% 7212
10_2 283.42 79.76 208.45 571.62 1.13% 7200 0 0 571.62 1.13% 7209
10_3 292.76 80.85 220.77 594.38 1.42% 7200 0 0 594.38 1.47% 7209
10_4 281.64 78.59 219.24 579.46 2.77% 7200 0 0 579.46 2.82% 7215
10_5 261.90 71.98 187.49 521.37 1.49% 7200 0 0 521.37 1.49% 7212
20_1 478.86 139.05 413.18 1031.09 2.32% 7200 0 0 1031.09 2.32% 7235
20_2 492.10 139.59 425.44 1057.13 2.25% 7200 0 0 1057.13 2.24% 7238
20_3 506.55 143.86 432.63 1083.04 1.55% 7200 0 0 1083.04 1.54% 7230
20_4 469.99 133.17 396.87 1000.03 1.54% 7200 0 0 1000.03 1.58% 7232
20_5 466.19 130.68 395.05 991.91 1.98% 7200 0 0 991.91 1.96% 7244
30_1 681.19 198.72 613.17 1493.09 2.05% 7200 0 0 1493.09 2.05% 7300
30_2 688.50 194.56 625.58 1508.64 2.39% 7200 0 0 1508.64 2.39% 7288
30_3 700.69 201.17 625.75 1527.61 1.55% 7200 0 0 1527.61 1.51% 7254
30_4 683.85 193.23 613.60 1490.68 1.88% 7200 0 0 1490.68 1.85% 7273
30_5 657.09 185.54 581.53 1424.15 1.63% 7200 0 0 1424.15 1.63% 7307
40_1 923.80 265.37 860.99 2050.17 2.16% 7200 0 0 2050.17 2.14% 7306
40_2 906.71 257.27 845.87 2009.84 2.35% 7200 0 0 2009.84 2.35% 7327
40_3 904.06 264.04 829.06 1997.16 1.53% 7200 0 0 1997.16 1.56% 7285
40_4 884.32 250.83 813.43 1948.58 1.83% 7200 0 0 1948.58 1.85% 7341
40_5 886.50 251.46 823.43 1961.39 2.22% 7200 0 0 1961.39 2.24% 7333
50_1 1124.75 326.06 1069.81 2520.62 2.39% 7200 0 0 2520.55 2.38% 7379
50_2 1111.82 316.21 1056.07 2484.09 2.48% 7200 0 0 2484.09 2.51% 7348
50_3 1104.29 316.13 1024.76 2445.18 1.47% 7200 0 0 2445.18 1.49% 7338
50_4 1104.17 314.01 1033.80 2451.98 1.93% 7200 0 0 2451.98 1.93% 7338
50_5 1090.24 310.01 1025.59 2425.84 2.12% 7200 0 0 2425.84 2.16% 7356
60_1 1340.17 388.28 1292.45 3020.90 2.56% 7200 0 0 3020.90 2.58% 7449
60_2 1326.48 377.89 1278.27 2982.64 2.56% 7200 0 0 2982.09 2.56% 7452
60_3 1297.92 373.07 1220.21 2891.20 1.59% 7200 0 0 2891.20 1.58% 7378
60_4 1302.27 371.79 1236.53 2910.59 2.02% 7200 0 0 2910.59 2.01% 7456
60_5 1297.53 369.57 1235.07 2902.18 2.18% 7200 0 0 2902.18 2.18% 7401
70_1 1557.30 450.61 1505.59 3513.50 2.32% 7200 0 0 3513.50 2.31% 7464
70_2 1510.96 431.62 1459.64 3402.22 2.45% 7200 0 0 3402.22 2.45% 8275
70_3 1480.14 422.52 1401.29 3303.96 1.60% 7200 0 0 3303.96 1.61% 7408
70_4 1504.05 431.35 1433.41 3368.81 1.85% 7200 0 0 3368.81 1.85% 7426
70_5 1519.03 433.22 1461.72 3413.96 2.24% 7200 0 0 3413.96 2.28% 8303
80_1 1762.26 507.58 1705.85 3975.69 2.16% 7200 0 0 3975.69 2.18% 7551
80_2 1727.14 493.02 1674.99 3895.15 2.32% 7200 0 0 3895.93 2.38% 7648
80_3 1697.28 484.85 1620.01 3802.14 1.67% 7200 0 0 3802.14 1.68% 7628
80_4 1711.09 490.70 1648.91 3850.70 2.06% 7200 0 0 3850.70 2.06% 7644
80_5 1715.39 489.65 1661.34 3866.38 2.28% 7200 0 0 3866.38 2.31% 7457
90_1 1961.68 564.67 1921.27 4447.62 2.48% 7200 0 0 4447.36 2.48% 7669
90_2 1926.96 550.89 1882.81 4360.65 2.44% 7200 0 0 4358.33 2.36% 7521
90_3 1907.78 546.99 1832.63 4287.41 1.73% 7200 0 0 4287.41 1.73% 7544
90_4 1923.96 550.00 1855.39 4329.35 1.87% 7200 0 0 4331.24 1.92% 7609
90_5 1934.15 552.51 1879.93 4366.59 2.19% 7200 0 0 4366.76 2.20% 7905
100_1 2161.54 623.68 2117.90 4903.12 2.37% 7200 0 0 4903.96 2.38% 7636
100_2 2126.55 609.81 2080.29 4816.65 2.35% 7200 0 0 4816.93 2.35% 7854
100_3 2112.49 603.76 2038.17 4754.42 1.77% 7200 0 0 4754.42 1.77% 7685
100_4 2124.92 609.32 2068.70 4802.94 2.11% 7200 0 0 4802.23 2.10% 7663
100_5 2127.79 608.15 2072.01 4807.94 2.18% 7200 0 0 4810.44 2.24% 7619

Table 5.12: Results obtained with the assumption that every EB has a slow and a fast
charger always at disposal
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instance considered, a number of EBs equal to one third of the fleet is added. The
results for this setting are reported in Table 5.13.

V2G technologies are employed in almost 30 instances out of 50. However, on
average they are only account for the 0.46% of the total amount of energy that
flows.

It is also interesting to notice that in some of these situations, V2Gs are not
exploited because of the degradation costs. We remind that the solutions are
obtained at first considering only energy and FRD costs, and as second step also
the degradation. We have therefore two different solutions that can be compared.
In Figure 5.1 we report the solutions for the first instance of 5.13:

As already explained, the panels we represent the scheduling of the fleet. Every
line is associated with an EB. Blue lines are for the routes. The usage of a charger
is represented by the green line, when they discharge by a red one. If the color is
dark, it means that a fast charger is being used. In the first step (5.1a) the new EBs
are using V2G technologies. They are charged and discharged during the period.
When we consider also the degradation costs instead (5.1b), the new EBs are kept
at the minimum level of SOC possible for the whole time. Basically in the second
step, therefore in the solution of the EEV-CSP-V2G, they are completely ignored.

5.2.4 Impact of Facility related costs

In the base case study, we set the value of the FRD parameter F at 0.6e/kWh.
We decrease the value of F by 50%, 25%, 1%, 0.5% and 0.25%. For sake of simplicity
all the tables are not reported here but just a summary. In the first two cases,
V2Gs are not exploited. Then there are very few instances when they are used. The
most interesting part is that when the reduction of F is above 1%, the solver is not
able to find a solution for the first step. This means that the FRD component of
the solution drives the resolution. This also explains why the results of the model
with energy and FRD costs (Table 5.8) are found faster than for the model with
only energy (Table 5.6), despite the latter is a simpler case.

5.2.5 Impact of grid capacity

Lastly, the impact of the grid restriction is analyzed. The parameter G is
decreased by the 10%, 30%, 50% and 70% from the value of the base case scenario.
The idea behind this, is that V2G could be employed for necessity despite costs.
Instances with 10% are not feasible. For the other cases V2Gs are not used. The
results or this setting are reported in Table 5.14, Table 5.15 and Table 5.16.

5.2.6 Other cases

A last remark for the analysis of V2Gs usage, regards the base case scenario
solved only optimizing energy costs. In all these instances indeed, V2G technologies
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Extra vehicles Base case

Energy FRD Deg Total Time GAP V2G V2G % Total Time GAP

10_1 263.72 75.58 190.85 530.15 2.54% 7224 0 0.00% 531.817 1.86% 7200
10_2 283.42 79.76 206.62 569.79 1.91% 7227 0 0.00% 571.624 1.13% 7200
10_3 292.76 80.85 218.68 592.29 2.20% 7215 0 0.00% 594.382 1.47% 7200
10_4 281.64 78.59 215.98 576.21 3.41% 7226 0 0.00% 579.464 2.82% 7200
10_5 261.90 71.98 184.91 518.78 2.20% 7229 0 0.00% 521.369 1.49% 7200
20_1 478.86 139.05 409.21 1027.12 3.22% 7342 0 0.00% 1031.087 2.32% 7200
20_2 492.10 139.59 420.41 1052.10 3.01% 7292 0 0.00% 1057.130 2.24% 7200
20_3 506.55 143.86 428.76 1079.17 2.23% 7281 0 0.00% 1083.037 1.54% 7200
20_4 469.99 133.17 392.55 995.71 2.57% 7315 0 0.00% 1000.031 1.58% 7200
20_5 466.19 130.68 390.90 987.76 2.91% 7311 0 0.00% 991.913 1.96% 7200
30_1 681.19 198.72 607.09 1487.00 3.02% 7482 0 0.00% 1493.087 2.05% 7200
30_2 688.50 194.56 619.06 1502.12 3.27% 7460 0 0.00% 1508.636 2.39% 7200
30_3 700.69 201.17 619.06 1520.92 2.40% 7385 0 0.00% 1527.610 1.51% 7200
30_4 683.85 193.23 611.29 1488.37 3.17% 7447 0 0.00% 1490.685 1.85% 7200
30_5 657.09 185.54 573.89 1416.52 2.54% 7380 0 0.00% 1424.152 1.63% 7200
40_1 924.23 266.73 866.47 2057.42 3.82% 7507 1 0.44% 2050.168 2.14% 7200
40_2 907.03 258.98 854.63 2020.64 4.27% 7581 1 0.67% 2009.844 2.35% 7200
40_3 904.74 265.09 844.16 2013.99 3.79% 7556 1 0.74% 1997.159 1.56% 7200
40_4 884.32 250.83 811.59 1946.74 3.18% 7564 0 0.00% 1948.577 1.85% 7200
40_5 886.64 252.41 825.17 1964.21 3.77% 7495 1 0.23% 1961.389 2.24% 7200
50_1 1125.01 325.55 1068.52 2519.08 3.74% 7656 1 0.18% 2520.552 2.38% 7200
50_2 1114.51 313.74 1084.64 2512.89 4.97% 7979 1 1.52% 2484.094 2.51% 7200
50_3 1105.30 321.68 1051.90 2478.87 4.20% 7562 1 1.30% 2445.175 1.49% 7200
50_4 1104.48 313.52 1039.13 2457.13 3.50% 7576 1 0.18% 2451.979 1.93% 7200
50_5 1090.24 310.01 1015.24 2415.49 3.20% 8096 0 0.00% 2425.839 2.16% 7200
60_1 1339.96 389.85 1297.75 3027.55 4.15% 7896 0 0.00% 3020.901 2.58% 7200
60_2 1326.13 380.44 1276.38 2982.94 4.02% 7883 0 0.00% 2982.094 2.56% 7200
60_3 1298.17 379.99 1233.90 2912.06 3.69% 7814 1 0.66% 2891.205 1.58% 7200
60_4 1302.02 372.95 1250.79 2925.76 3.95% 7768 0 0.00% 2910.588 2.01% 7200
60_5 1297.53 369.57 1229.72 2896.83 3.47% 7741 0 0.00% 2902.176 2.18% 7200
70_1 1558.73 451.42 1535.41 3545.56 4.59% 7957 1 0.63% 3513.502 2.31% 7200
70_2 1512.38 431.72 1483.21 3427.31 4.65% 8004 1 0.81% 3402.218 2.45% 7200
70_3 1481.12 436.39 1447.99 3365.50 4.87% 7867 1 2.28% 3303.964 1.61% 7200
70_4 1504.29 436.88 1449.31 3390.48 3.93% 7857 1 0.56% 3368.807 1.85% 7200
70_5 1518.24 445.48 1477.91 3441.63 4.50% 7852 1 0.39% 3413.963 2.28% 7200
80_1 1763.12 508.00 1728.19 3999.30 4.16% 8496 1 0.55% 3975.693 2.18% 7200
80_2 1733.11 487.13 1729.51 3949.75 5.13% 13206 1 2.00% 3895.931 2.38% 7200
80_3 1694.05 514.97 1648.20 3857.21 4.50% 8042 1 1.06% 3802.143 1.68% 7200
80_4 1710.63 505.08 1667.45 3883.16 4.30% 7963 1 0.72% 3850.704 2.06% 7200
80_5 1717.45 488.54 1678.71 3884.70 4.23% 7830 1 0.71% 3866.379 2.31% 7200
90_1 7203 1 0.71% 4447.360 2.48% 7200
90_2 1928.17 550.22 1898.94 4377.34 4.30% 8243 1 0.54% 4358.332 2.36% 7200
90_3 1906.16 583.95 1854.56 4344.67 4.51% 8085 1 0.71% 4287.409 1.73% 7200
90_4 1921.81 576.00 1907.73 4405.54 5.02% 8251 1 1.75% 4331.240 1.92% 7200
90_5 1935.16 556.22 1912.22 4403.60 4.50% 8294 1 0.71% 4366.757 2.20% 7200
100_1 7203 1 0.71% 4903.957 2.38% 7200
100_2 7203 1 0.71% 4816.934 2.35% 7200
100_3 2113.94 608.52 2069.56 4792.03 4.06% 8647 1 1.02% 4754.418 1.77% 7200
100_4 2121.79 633.04 2089.49 4844.32 4.42% 8109 1 0.35% 4802.228 2.10% 7200
100_5 7203 1 0.35% 4810.438 2.24% 7200

Table 5.13: Results obtained with the assumption that in the depot there are additional
EBs with no routes assigned
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Energy FRD Deg Total GAP Time V2G V2G %
10_1 263.72 190.85 75.58 530.15 2.82% 3613 0 0
10_2 283.42 206.64 79.76 569.81 1.92% 3607 0 0
10_3 292.76 218.68 80.85 592.29 2.21% 3610 0 0
10_4 281.64 215.98 78.59 576.21 3.40% 3611 0 0
10_5 261.90 184.91 71.98 518.78 2.17% 3613 0 0
20_1 478.86 409.21 139.05 1027.12 3.22% 3644 0 0
20_2 492.10 420.41 139.59 1052.10 2.99% 3650 0 0
20_3 506.55 428.79 143.86 1079.20 2.28% 3628 0 0
20_4 469.99 392.55 133.17 995.71 2.57% 3628 0 0
20_5 466.19 390.90 130.68 987.76 2.96% 3642 0 0
30_1 681.19 607.00 198.72 1486.91 3.00% 3678 0 0
30_2 688.50 618.97 194.56 1502.02 3.23% 3690 0 0
30_3 700.69 618.85 201.17 1520.70 2.37% 3679 0 0
30_4 683.85 605.84 193.23 1482.92 2.76% 3669 0 0
30_5 657.09 573.89 185.54 1416.52 2.57% 3673 0 0
40_1 923.80 851.80 265.37 2040.98 3.03% 3985 0 0
40_2 906.71 837.13 257.27 2001.11 3.29% 3707 0 0
40_3 904.06 820.89 264.04 1988.99 2.55% 3670 0 0
40_4 884.32 803.56 250.83 1938.71 2.74% 3717 0 0
40_5 886.50 815.97 251.46 1953.93 3.26% 3728 0 0
50_1 1124.75 1059.59 326.06 2510.40 3.39% 3774 0 0
50_2 1111.82 1050.36 316.21 2478.38 3.62% 3793 0 0
50_3 1104.29 1014.21 316.13 2434.62 2.44% 3741 0 0
50_4 1104.17 1023.81 314.01 2441.99 2.89% 3794 0 0
50_5 1090.24 1015.20 310.01 2415.45 3.21% 4148 0 0
60_1 1340.17 1278.98 388.28 3007.43 3.51% 3887 0 0
60_2 1326.48 1265.27 377.89 2969.64 3.58% 3981 0 0
60_3 1297.92 1207.34 373.07 2878.34 2.55% 3780 0 0
60_4 1302.27 1223.19 371.79 2897.25 2.98% 3819 0 0
60_5 1297.53 1222.75 369.57 2889.86 3.24% 3860 0 0
70_1 1557.30 1496.00 450.61 3503.91 3.44% 3871 0 0
70_2 1510.96 1451.63 431.62 3394.21 3.72% 3980 0 0
70_3 1480.14 1390.39 422.52 3293.06 2.77% 3848 0 0
70_4 1504.05 1420.17 431.35 3355.57 2.91% 3900 0 0
70_5 1519.03 1449.20 433.22 3401.44 3.36% 3867 0 0
80_1 1762.26 1692.09 507.58 3961.93 3.23% 3883 0 0
80_2 1727.14 1663.94 493.02 3884.09 3.54% 3930 0 0
80_3 1697.28 1609.19 484.85 3791.33 2.87% 3895 0 0
80_4 1711.09 1641.40 490.70 3843.19 3.30% 3959 0 0
80_5 1715.39 1648.76 489.65 3853.80 3.47% 4067 0 0
90_1 1961.68 1909.94 564.67 4436.29 3.66% 3990 0 0
90_2 1926.96 1865.96 550.89 4343.80 3.56% 4023 0 0
90_3 1907.78 1826.08 546.99 4280.85 3.09% 3879 0 0
90_4 1923.92 1836.54 550.19 4310.65 2.93% 4041 0 0
90_5 1934.15 1862.73 552.51 4349.39 3.30% 6390 0 0
100_1 2161.54 2115.23 623.68 4900.45 3.79% 4227 0 0
100_2 2126.55 2101.46 609.81 4837.82 0.00% 535 0 0
100_3 2112.43 2036.79 604.32 4753.54 3.27% 4107 0 0
100_4 2124.92 2057.37 609.32 4791.61 3.35% 4150 0 0
100_5 2127.79 2062.66 608.15 4798.60 3.42% 4189 0 0

Table 5.14: Results obtained with a grid of 30% of the capacity
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Energy FRD Deg Total GAP Time V2G V2G %
10_1 263.72 190.85 75.58 530.15 2.87% 3613 0.00 0.00
10_2 283.42 206.62 79.76 569.79 1.89% 3610 0.00 0.00
10_3 292.76 218.68 80.85 592.29 2.21% 3608 0.00 0.00
10_4 281.64 215.98 78.59 576.21 3.38% 3614 0.00 0.00
10_5 261.90 184.91 71.98 518.78 2.17% 3609 0.00 0.00
20_1 478.86 409.21 139.05 1027.12 3.19% 3636 0.00 0.00
20_2 492.10 420.41 139.59 1052.10 2.97% 3637 0.00 0.00
20_3 506.55 428.76 143.86 1079.17 2.23% 3630 0.00 0.00
20_4 469.99 392.55 133.17 995.71 2.55% 3631 0.00 0.00
20_5 466.19 390.90 130.68 987.76 2.94% 3645 0.00 0.00
30_1 681.19 607.00 198.72 1486.91 3.01% 3701 0.00 0.00
30_2 688.50 618.97 194.56 1502.02 3.22% 3682 0.00 0.00
30_3 700.69 618.87 201.17 1520.72 2.41% 3657 0.00 0.00
30_4 683.85 605.84 193.23 1482.92 2.80% 3671 0.00 0.00
30_5 657.09 573.93 185.54 1416.55 2.54% 3680 0.00 0.00
40_1 923.80 851.80 265.37 2040.98 3.03% 3706 0.00 0.00
40_2 906.71 837.15 257.27 2001.13 3.30% 3734 0.00 0.00
40_3 904.06 821.17 264.04 1989.27 2.57% 3681 0.00 0.00
40_4 884.32 803.56 250.83 1938.71 2.76% 3722 0.00 0.00
40_5 886.50 815.96 251.46 1953.92 3.24% 3733 0.00 0.00
50_1 1124.75 1060.88 326.06 2511.69 3.44% 3782 0.00 0.00
50_2 1111.82 1046.02 316.21 2474.05 3.45% 3751 0.00 0.00
50_3 1104.29 1014.49 316.13 2434.90 2.45% 3742 0.00 0.00
50_4 1104.17 1025.53 314.01 2443.71 2.97% 3741 0.00 0.00
50_5 1090.24 1016.68 310.01 2416.93 3.28% 3803 0.00 0.00
60_1 1340.17 1281.21 388.28 3009.66 3.58% 3930 0.00 0.00
60_2 1326.48 1264.85 377.89 2969.23 3.57% 3839 0.00 0.00
60_3 1297.92 1208.86 373.07 2879.86 2.59% 3767 0.00 0.00
60_4 1302.23 1223.75 371.97 2897.95 3.03% 3856 0.00 0.00
60_5 1297.53 1224.31 369.57 2891.42 3.30% 3815 0.00 0.00
70_1 1557.30 1494.44 450.61 3502.35 3.38% 3865 0.00 0.00
70_2 1510.96 1455.93 431.62 3398.51 3.85% 5237 0.00 0.00
70_3 1480.14 1390.87 422.52 3293.54 2.79% 3809 0.00 0.00
70_4 1504.05 1419.31 431.35 3354.70 2.90% 3836 0.00 0.00
70_5 1519.03 1463.35 433.22 3415.59 3.73% 5625 0.00 0.00
80_1 1762.26 1692.91 507.58 3962.75 3.24% 3888 0.00 0.00
80_2 1727.14 1663.67 493.02 3883.82 3.52% 4032 0.00 0.00
80_3 1697.24 1606.48 485.04 3788.76 2.78% 4031 0.00 0.00
80_4 1711.05 1633.59 490.89 3835.53 3.10% 4032 0.00 0.00
80_5 1715.39 1650.55 489.65 3855.58 3.51% 3945 0.00 0.00
90_1 1961.68 1910.71 564.67 4437.06 3.69% 4061 0.00 0.00
90_2 1926.92 1873.35 551.07 4351.34 3.71% 3946 0.00 0.00
90_3 1907.76 1834.30 547.08 4289.14 3.27% 3934 0.00 0.00
90_4 1923.96 1836.79 550.00 4310.75 2.92% 4024 0.00 0.00
90_5 1934.15 1881.87 552.51 4368.53 3.72% 4308 0.00 0.00
100_1 2161.54 2116.02 623.68 4901.24 3.79% 4028 0.00 0.00
100_2 2126.55 2092.46 609.81 4828.82 4.09% 5276 0.00 0.00
100_3 2112.49 2027.83 603.76 4744.08 3.10% 4099 0.00 0.00
100_4 2124.92 2052.05 609.32 4786.30 3.24% 4050 0.00 0.00

Table 5.15: Results obtained with a grid of 50% of the capacity
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Energy FRD Deg Total GAP Time V2G V2G %
10_1 263.72 75.58 190.85 530.15 2.87% 3613 0 0
10_2 283.42 79.76 206.62 569.79 1.89% 3610 0 0
10_3 292.76 80.85 218.68 592.29 2.21% 3608 0 0
10_4 281.64 78.59 215.98 576.21 3.38% 3614 0 0
10_5 261.90 71.98 184.91 518.78 2.17% 3609 0 0
20_1 478.86 139.05 409.21 1027.12 3.19% 3636 0 0
20_2 492.10 139.59 420.41 1052.10 2.97% 3637 0 0
20_3 506.55 143.86 428.76 1079.17 2.23% 3630 0 0
20_4 469.99 133.17 392.55 995.71 2.55% 3631 0 0
20_5 466.19 130.68 390.90 987.76 2.94% 3645 0 0
30_1 681.19 198.72 607.00 1486.91 3.01% 3701 0 0
30_2 688.50 194.56 618.97 1502.02 3.22% 3682 0 0
30_3 700.69 201.17 618.87 1520.72 2.41% 3657 0 0
30_4 683.85 193.23 605.84 1482.92 2.80% 3671 0 0
30_5 657.09 185.54 573.93 1416.55 2.54% 3680 0 0
40_1 923.80 265.37 851.80 2040.98 3.03% 3706 0 0
40_2 906.71 257.27 837.15 2001.13 3.30% 3734 0 0
40_3 904.06 264.04 821.17 1989.27 2.57% 3681 0 0
40_4 884.32 250.83 803.56 1938.71 2.76% 3722 0 0
40_5 886.50 251.46 815.96 1953.92 3.24% 3733 0 0
50_1 1124.75 326.06 1060.88 2511.69 3.44% 3782 0 0
50_2 1111.82 316.21 1046.02 2474.05 3.45% 3751 0 0
50_3 1104.29 316.13 1014.49 2434.90 2.45% 3742 0 0
50_4 1104.17 314.01 1025.53 2443.71 2.97% 3741 0 0
50_5 1090.24 310.01 1016.68 2416.93 3.28% 3803 0 0
60_1 1340.17 388.28 1281.21 3009.66 3.58% 3930 0 0
60_2 1326.48 377.89 1264.85 2969.23 3.57% 3839 0 0
60_3 1297.92 373.07 1208.86 2879.86 2.59% 3767 0 0
60_4 1302.23 371.97 1223.75 2897.95 3.03% 3856 0 0
60_5 1297.53 369.57 1224.31 2891.42 3.30% 3815 0 0
70_1 1557.30 450.61 1494.44 3502.35 3.38% 3865 0 0
70_2 1510.96 431.62 1455.93 3398.51 3.85% 5237 0 0
70_3 1480.14 422.52 1390.87 3293.54 2.79% 3809 0 0
70_4 1504.05 431.35 1419.31 3354.70 2.90% 3836 0 0
70_5 1519.03 433.22 1463.35 3415.59 3.73% 5625 0 0
80_1 1762.26 507.58 1692.91 3962.75 3.24% 3888 0 0
80_2 1727.14 493.02 1663.67 3883.82 3.52% 4032 0 0
80_3 1697.24 485.04 1606.48 3788.76 2.78% 4031 0 0
80_4 1711.05 490.89 1633.59 3835.53 3.10% 4032 0 0
80_5 1715.39 489.65 1650.55 3855.58 3.51% 3945 0 0
90_1 1961.68 564.67 1910.71 4437.06 3.69% 4061 0 0
90_2 1926.92 551.07 1873.35 4351.34 3.71% 3946 0 0
90_3 1907.76 547.08 1834.30 4289.14 3.27% 3934 0 0
90_4 1923.96 550.00 1836.79 4310.75 2.92% 4024 0 0
90_5 1934.15 552.51 1881.87 4368.53 3.72% 4308 0 0
100_1 2161.54 623.68 2116.02 4901.24 3.79% 4028 0 0
100_2 2126.55 609.81 2092.46 4828.82 4.09% 5276 0 0
100_3 2112.49 603.76 2027.83 4744.08 3.10% 4099 0 0
100_4 2124.92 609.32 2052.05 4786.30 3.24% 4050 0 0
100_5 2127.79 608.15 2055.16 4791.10 3.27% 4032 0 0

Table 5.16: Results obtained with a grid of 70% of the capacity
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are employed. In 5.2a there is a panel to show the behavior of a fleet of 10 vehicles
in such case.

In general, being more convenient in this case, EBs are charged during the night.
Some of them then, discharge energy when they are in the depot during the peak
price hours. Notice that the discharged energy is not used to charge other EBs,
since none is charging at the same time, but to satisfy the depot demand. This
could be an explanation for the poor results obtained in the above situations. It also
suggests that V2Gs could be beneficial in grids shared among different buildings.
However, the usage of V2Gs is strongly influenced by the context and in particular
the other costs. Indeed, the same instance optimized according to all the costs
(5.2b), produces a schedule that does not exploit V2Gs.
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(a) Charging plan for the fleet when only energy costs are optimized

(b) Charging plan for the fleet according to the full model

Figure 5.1: The two step solution obtained for the instance 10_1 considering extre
vehicles
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(a) Charging plan of the fleet with extra EBs when degradation costs are not
considered

(b) Charging plan of the fleet with extra EBs

Figure 5.2: Comparison of two charge scheduling for the same fleet



Chapter 6

Conclusions

An optimization model has been implemented to optimize the charging schedul-
ing of an electric fleet of buses provided with Vehicle-to-Grid technologies. The
objective of this scheduling is to develop a charge routing for the fleet which allows
all the buses to perform their routes. At the same time, it helps in keeping at
their lowest all the costs, such as the one for withdrawing electricity from the grid,
facility-related demand charges for the maximum charging power required and
degradation costs related to battery usage.

Particular attention has been devoted to the integration of V2G technologies
in the model. The revenue of the grid when adopting V2Gs has been computed
and, accordingly, the power requested to the grid in every period modified. A
contribution for the energy has been modelled too. Finally, also the degradation
costs are extended to the setting pf bidirectional current, considering a theoretical
framework to convert the usage into monetary costs.

A public transportation system setting has been recreated for the case study.
Data and instances have been investigated and simulated on the base of Milan
public transportation system. The model has proved to be inefficient in this setting,
as no solution are found within time limit if the fleets are above 30 units. For this
reason, sub-models of the original one have been solved analyzing their complexity.
On the base of the results, a two stage optimization strategy has been developed to
solve the problem. By means of this strategy, managerial insights are performed
to investigate whether V2G technologies are adopted and if the goodness of the
solution improves.

In most of the analyzed situation, V2G technologies are not beneficial, mainly
because they tend to increase the degradation costs and require higher power.
Indeed, we have seen that even if V2Gs are used when we optimize only the energy
or energy and FRD, once we introduce the degradation costs, these technologies
are no longer exploited. Furthermore, their usage is strictly related to the setting
and adding more flexibility can lead to better results. In particular, spare vehicles
without assigned routes contribute to the energy profile of the depot charging energy
in low cost periods and discharging during the high ones. Finally we have shown
how V2G technologies are exploited when energy costs are optimized. They are
used to store energy bought at cheap price and use it in high cost period. Providing
partially a fleet with V2G technologies can therefore be beneficial. Furthermore,
V2G technologies can be also beneficial for ancillary services that in this particular
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context are ignored. An analysis in such scenario could lead even to better results.
Lastly, the matheuristic developed relies on the fast resolution of particular sub
problems. This strongly depend on the choice of the parameters of the problem.
The development of a constructive heuristic could extend the applicability of the
model in wider contexts.
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Appendix: Table of notation

P Set of periods in the planning interval
np Number of periods in P
δ Length of each period in hours
πp Demand of the depot in every period p ∀p ∈ P
K Set of EVs
m Number of EVs in K
Q Battery charge capacity (Ah)
E Battery energy capacity (kWh)
fk Earliest route of vehicle k ∀k ∈ K
lk Latest route of vehicle k ∀k ∈ K

R Set of routes
∆SOCr Charge consumption of route r ∀r ∈ R
ηr Route of vehicle kr with the latest arrival period prior to βr ∀r ∈ R
βr Departure period of route r ∀r ∈ R
αr Arrival period of route r ∀r ∈ R
kr Vehicle that must perform route r ∀r ∈ R

S Set of types of chargers installed at the depot
Bs Set of breakpoints used in the piecewise linear approximation

of the CC-CV charging function of charger type s ∀s ∈ S
κs Number of chargers of type s installed at the depot ∀s ∈ S
asi SOC associated with breakpoint i ∈ Bs of the piecewise linear

approximation of the CC-CV charging function of charger type s
s ∈ S,∀i ∈ Bs \ {0}

Isi Charging current (A) used in the piecewise linear approximation
of the CC-CV charging function of charger type s between
breakpoints i and i− 1, with i ∈ Bs \ {0} , ∀s ∈ S,∀i ∈ Bs \ {0}

C Maximum number of charging events between each arrival and
departure for each vehicle

D Number of breakpoints in the wear cost function
L Length of each interval of the SOC
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δ̄d Upper bound in the d-th interval of the SOC ∀d ∈ D
wd Value of the wear cost function evaluated at d SOC ∀d ∈ D
cp Energy cost during period p ∀p ∈ P ($/kWh)
F FRD charge ($/kW)
G Grid restriction (kW)

Table A.1: Complete list of parameters

SOCpk Decision variable indicating the SOC of vehicle k
at the start of period p ∀p ∈ P , k ∈ K

ipk Decision variable indicating the charging current (A) applied to
vehicle k during period p ∀p ∈ P , k ∈ K

xpksi Binary decision variable worth 1 if vehicle k uses a charger of type s
along the segment i of the piece-wise linear approximation during
period p with SOC values at the start and end of p
∀p ∈ P , k ∈ K, s ∈ S, i ∈ Bs \ {0}
used in the non V2G settings

x+
pksi Binary decision variable worth 1 if vehicle k charges using a charger

of type s along the segment i of the piece-wise linear approximation
during period p with SOC values at the start and end of p
∀p ∈ P , k ∈ K, s ∈ S, i ∈ Bs \ {0}

x−pksi Binary decision variable worth 1 if vehicle k discharges using a charger
of type s along the segment i of the piece-wise linear approximation
during period p with SOC values at the start and end of p
∀p ∈ P , k ∈ K, s ∈ S, i ∈ Bs \ {0}

Φpksi Quantity of SOC charged in vehicle k at period p using the
charger s along the segment i of the piece-wise linear approximation
of the CC-CV curve ∀p ∈ P , k ∈ K, s ∈ S, i ∈ Bs \ {0}
used in the non V2G settings

Φ+
pksi Quantity of SOC charged in vehicle k at period p using the

charger s along the segment i of the piece-wise linear approximation
of the CC-CV curve ∀p ∈ P , k ∈ K, s ∈ S, i ∈ Bs \ {0}

Φ−pksi Quantity of SOC discharged in vehicle k at period p using the
charger s along the segment i of the piece-wise linear approximation
of the CC-CV curve ∀p ∈ P , k ∈ K, s ∈ S, i ∈ Bs \ {0}

qpks Binary variable that control whether vehicle k is being charged during
period p with charger s ∀p ∈ P , k ∈ K, s ∈ S
used in the non V2G settings

q+
pks Binary variable that control whether vehicle k is being charged during

period p with charger s ∀p ∈ P , k ∈ K, s ∈ S
q−pks Binary variable that control whether vehicle k is being discharged during

period p with charger s ∀p ∈ P , k ∈ K, s ∈ S
y Decision variable indicating the maximum charging power (kW)

retrieved from the grid during the planning interval



63

zpk Binary decision variable worth 1 if a charging event occurs for
vehicle k at time p during period p ∀p ∈ P , k ∈ K, s ∈ S, i ∈ Bs \ {0}

soc+
dr Quantity of SOC charged before route r in vehicle kr

along segment d ∀r ∈ R, d ∈ D
used in the non V2G settings

soc+
pdk Percentage of energy charged at period p by vehicle k along

segment d ∀p ∈ P , d ∈ D, k ∈ K
u+
dr Binary variable that indicates whether some SOC is charged before

route r in vehicle kr along segment d ∀r ∈ R, d ∈ D
used in the non V2G settings

u+
pdk Binary variable that indicates whether some SOC is charged at

period p by vehicle k along
segment d ∀p ∈ P , d ∈ D, k ∈ K

Table A.2: Complete list of variables





Acronyms

EV Electric Vehicle

V2G Vehicle-to-Grid

EV-V2G Electric Vehicle provided with Vehicle-to-Grid technologies

EB Electric Bus

FRD Facility Related Demand

EV-CSP Electric Vehicles Charge Scheduling Problem

EEV-CSP Enhanced Electric Vehicles Charge Scheduling Problem

EEV-CSP-V2G Enhanced Electric Vehicles Charge Scheduling Problem with Vehicle-
to-Grid technologies
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