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1. Introduction
Each heartbeat is an extremely complex mul-
tiphysical phenomenon, which combines several
different aspects, such as fluid dynamics, biome-
chanics and electrophysiology [4]. In fact, the
main driver of blood ejection in the circulatory
system is given by the active ventricular contrac-
tion; the heart itself is able to produce the elec-
trical impulse that determines this contraction,
starting by a signal, in the form of an electric
transmembrane potential, that propagates along
all the cardiac muscle tissue. At the macro-
scopic level, this propagation is mathematically
described by a nonlinear reaction-diffusion par-
tial differential equation, suitably coupled to a
system of ordinary differential equations. These
latter model the ionic currents in the cells, de-
pending on a set of ionic variables, that can be
gating variables, indicating the activation of the
currents, and/or ionic concentrations.
On the other hand, the contraction mechanism
and, more in general, the deformation of the car-
diac tissue is modeled by the equations of elasto-
dynamics, with the myocardium usually consid-
ered as an orthotropic and hyperelastic material.
The orthotropic passive properties of the cardiac
tissue are described by strain energy functions of

exponential laws, while the active properties de-
pend on the cellular active tension; this latter di-
rectly depends on the intracellular calcium con-
centration released during the electrical propa-
gation.
At the numerical level, the approximation and
the simulation of the electrical and mechanical
models and, in particular, of their coupling, is a
very demanding task, because of nonlinear and
multiphysics interactions as well as the different
space and time scales of the two problems. Fur-
thermore, when simulating cardiac models, sev-
eral input data affect the problem under inves-
tigation, often varying within a broad range, in-
creasing even more the computational complex-
ity and making the use of high fidelity approxi-
mations, such as finite element methods, unfea-
sible.
In this work, we explore efficient and accurate
reduced-order models (ROMs) for the numeri-
cal approximation of parametrized problems in
cardiac electromechanics. Namely, we rely on
reduced basis methods to develop an efficient
one-way coupled parametrized electromechani-
cal model, following a global ROM strategy. In
particular, we explore several different reduced
basis techiniques in the construction of the re-
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duced order models, such as the gappy proper
orthogonal decomposition (POD) method, able
to attain a cost-effective evaluation of the ionic
variables in the ROM for cardiac electrophysi-
ology, which is of fundamental importance to to
efficiently compute the intracellular calcium con-
centration and efficiently develop the coupling
with the ROM for cardiac mechanics.

2. Core models for cardiac elec-
tromechanics

2.1. Cardiac electrophysiology
For cardiac electrophysiology, we consider a
three-dimensional monodomain model coupled
with the Bueno-Orovio ionic model. The latter
is characterized by a system of three ordinary
differential equations for the evolution of three
different gating variable w1, w2, w3, taking
values in [0, 1], where the gating variable w3

can be used as an indication of the intracellular
calcium concentration. Let us consider the
transmembrane potential u = u(X, t) and
the vector of ionic variables w = w(X, t) in
the reference undeformed domain Ω0 ⊂ R3

(which can be a portion of the myocardium
or the whole left ventricle), the coupled car-
diac electrophysiology model yields to the
following initial-boundary value problem:

Cm
∂u

∂t
−∇ · (D∇u)+

Iion(u,w1, w2, w3) = Iapp, inΩ0 × (0, T )
∂w1

∂t
= Fion,1(u,w1), inΩ0 × (0, T )

∂w2

∂t
= Fion,2(u,w2), inΩ0 × (0, T )

∂w3

∂t
= Fion,3(u,w3), inΩ0 × (0, T )

∂u

∂n
= 0, on ∂Ω0 × (0, T )

u(0) = u0, w1(0) = w0
1,

w2(0) = w0
2, w3(0) = w0

3, inΩ0 × {0},

where the parameter dependence is due mainly
to the variation of the conductivity coefficients,
along the principal directions, in the conductiv-
ity tensor D = D(µ), with µ ∈ P; here P ⊂ RNp

denotes the parameters space.

2.2. Cardiac mechanics
In order to exploit the cardiac mechanics
model, we consider, together to the reference

configuration Ω0, an actual configuration Ω(t)
at the current time t and we introduce the
body transformation map φ : Ω0 → Ω(t)
from the reference to the actual configura-
tion, such that x = φ(X) for any X ∈ Ω0,
x ∈ Ω(t). Denoting by d : Ω0 → Ω(t),
d(X) = φ(X) − X the displacement field, the
cardiac mechanical model considered yields
the following initial-boundary value problem:

ρ
∂2d
∂t2

−∇0 · P(d, Ta) = 0, inΩ0 × (0, T )

P(d, Ta)n + Kepid+

Cepi∂d
∂t

= 0, onΓepi
0 × (0, T )

P(d, Ta)n−
p(t)JF−Tn = 0, onΓendo

0 × (0, T )

P(d, Ta)n−
p(t)

∥∥JF−Tn
∥∥vbase = 0, onΓbase

0 × (0, T )

d = d0,
∂d
∂t

= ḋ0, inΩ0 × {0},

where Γepi
0 represents the epicardial boundary,

Γendo
0 the endocardial boundary and Γbase

0 the
boundary on the truncated part of the cardiac
tissue.
To model the Piola-Kirchhof tensor
P = Pp + Pa, we follow the active stress
approach, where Pp is the passive contribute
and Pa is the active contribute. Under the
hyperelasticity assumption, the former is
obtained from the Guccione strain energy
function, while the latter depends on the active
tension Ta, which determines the one-way
coupling from cardiac electrophysiology to
cardiac mechanics. In fact, the active tension
solves an activation model that depends on
the intracellular calcium concentration com-
ing from the electrical activation. In this
work, we consider a trivial activation model,
which consists in the following ODE problem:
∂Ta

∂t
=

1

τ
(T steady

a (w3, SL)− Ta), inΩ0 × (0, T )

Ta = Ta,0, inΩ0 × {0},

where Ta = Ta(w3(X, t)) evolves in time ac-
cording to the value of the third ionic variable
of the Bueno-Orovio model. In this way, the
parameter dependence in the cardiac electrome-
chanics can derive from parameter variations
in both cardiac electrophysiology and cardiac
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mechanics.
Finally, the pressure on the endocardial bound-
ary, which depends on the blood circulation in
the ventricle, is modeled coupling the mechani-
cal problem to a lumped parameters model for
closed-loop blood circulation, as in [5].

3. Reduced order modeling
In order to develop the reduced order models of
the problems considered, we derived first the full
order approximations, by means of a Galerkin
finite element method, and then we applied the
reduced basis (RB) method to attain more ef-
ficient numerical approximations. In fact, the
basic idea of any RB method is to approximate
the high-fidelity solution of a given problem by
means of a (Petrov-)Galerkin projection onto a
subspace of much smaller dimension than the
one, Nh, of the original full order model (FOM)
space. In this way, the resulting computational
costs and the required memory storage are much
smaller when dealing with a ROM, compared to
the FOM.
A RB method can be divided in two phases:
an offline phase, where the reduced basis func-
tions are computed and stored and the reduced-
order arrays are evaluated, and an online phase,
where the solution of the ROM is determined
for each new parameter instance. More specifi-
cally, the RB methods adopted in this work re-
lies on proper orthogonal decomposition (POD)
to generate a global lower dimensional subspace
in which the solution of the ROM problem is
sought. The reduced basis, whose vectors are
also called POD modes, consists of the first n ≪
Nh right singular vectors of a snapshot matrix S,
which columns are snapshots of the solution of
the FOM computed in time and for different pa-
rameters. By means of the stored reduced basis,
a linear, low dimensional subspace is generated;
then a Galerkin (or Petrov-Galerkin) projection
is applied to generate the reduced order arrays
and, ultimately, the RB problem.
Although the technique is performing extremely
well for linear PDEs and in particular when
dealing with affinely parametrized operators and
data, it is no longer efficient when dealing with
nonlinear problems, for which we rely on hyper-
reduction techniques, such as the discrete empir-
ical interpolation method (DEIM), to speed up
the evaluation of nonlinear arrays in the online

phase [2, 3, 7].
Moreover, in the hyper-ROM for cardiac elec-
trophysiology, we exploit the gappy POD, in or-
der to accurately reconstruct the ionic variables
in the original FOM space, starting from their
gappy form efficiently obtained in the online
phase. This has been a fundamental achieve-
ment in the construction of the coupled elec-
tromechanical ROM, since we adopt the intra-
cellular calcium reconstructed as an input to
the activation model for the cardiac mechanics
parametrized hyper-ROM.
The implementation of the models and the tech-
niques presented in this work have been devel-
oped and have contribuited to the extension of
the library pyfeX , which is a python library
binding a C++ high performance finite element
library for cardiac simulations and clinical ap-
plications, lifex, developed in the framework
of the iHEART project1.

4. Main results
Here we report the principal results of this work,
obtained by simulating the two core supbrob-
lems of cardiac electromechanics on a patient-
specific left ventricle, over the time interval
(0, T ), with T = 210ms. This time interval is
able to show the depolarization and a part of
the repolarization of the transmembrane poten-
tial u, as well as the systole for cardiac mechan-
ics, i.e. the contraction of the cardiac muscle in
an heartbeat.
In figures 2, 3, 4, 5 we show the evolution in time
of the transmembrane potential u and the ionic
variables w1, w2 and w3, respectively, comparing
the solution obtained by the FOM and the one
obtained by the hyper-ROM; this latter allows
to reach a speedup of more than 3x of the latter
with respect to the former. Then, in figures 6, 7,
8, 9, we show the main results of the electrome-
chanical parametrized model. In the latter, the
active contraction comes from the intracellular
calcium concentration, efficiently computed and
accurately reconstructed by the Gappy POD
method, and we vary parameters affecting the
cardiac contraction, comparing the FOM solu-
tion to the hyper-ROM one. In particular, from
figure 6 to figure 9 we show snaphots of the
calcium and the displacement under parameter
variations at the time steps 35ms, 70ms, 140ms

1https://iheart.polimi.it/
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and 210ms, respectively. The overall maximum
speedup obtained by simulating the electrome-
chanical ROM, so both the electrical and the me-
chanical ROM subproblems consecutively, has
been of almost 3x with respect to the FOM,
which is a remarkable result in terms of effi-
ciency considering the high-level of accuracy of
the reduced order solutions, representing a first
step towards the reduction of two-ways coupled
problems in cardiac electromechanics.

Figure 1: Colormaps for the values of the trans-
membrane potential, the ionic variables and the
displacement field as a reference for the figures
that follows.

(a) t=35ms, FOM (b) ROM

(c) t=70ms, FOM (d) ROM

(e) t=210ms, FOM (f) ROM

Figure 2: Evolution of the transmembrane po-
tential u in time; comparison between FOM and
online ROM.

(a) t=35ms, FOM (b) ROM

(c) t=70ms, FOM (d) ROM

(e) t=210ms, FOM (f) ROM

Figure 3: Evolution of the variable w1 in time;
comparison between FOM and online ROM.

(a) t=35ms, FOM (b) ROM

(c) t=70ms, FOM (d) ROM

(e) t=210ms, FOM (f) ROM

Figure 4: Evolution of the variable w2 in time;
comparison between FOM and online ROM.
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(a) t=35ms, FOM (b) ROM

(c) t=70ms, FOM (d) ROM

(e) t=210ms, FOM (f) ROM

Figure 5: Evolution of the intracellular calcium
concentration w3 in time; comparison between
FOM and online ROM.

(a) ROM electrophysiology

(b) µ10-FOM mechanics (c) µ10-ROM

(d) µ14-FOM mechanics (e) µ14-ROM

Figure 6: Calcium activation (top) and conse-
quent cardiac deformation at time 35ms. Com-
parison between FOM and online ROM.

(a) ROM electrophysiology

(b) µ10-FOM mechanics (c) µ10-ROM

(d) µ14-FOM mechanics (e) µ14-ROM

Figure 7: Calcium activation (top) and conse-
quent cardiac deformation at time 70ms. Com-
parison between FOM and online ROM.

(a) ROM electrophysiology

(b) µ10-FOM mechanics (c) µ10-HRROM

(d) µ14-FOM mechanics (e) µ14-HRROM

Figure 8: Calcium activation (top) and conse-
quent cardiac deformation at time 140ms. Com-
parison between FOM and online ROM.
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(a) ROM electrophysiology

(b) µ10-FOM mechanics (c) µ10-ROM

(d) µ14-FOM mechanics (e) µ14-ROM

Figure 9: Calcium activation (top) and conse-
quent cardiac deformation at time 140ms. Com-
parison between FOM and online ROM.

5. Conclusions
The main achievements of this work have been
the exploitment of the gappy proper orthogo-
nal decomposition method to efficiently eval-
uate the ionic variables in the electrophysiol-
ogy monodomain problem, and the development
of a one-way coupled parametrized electrome-
chanical problem in a reduced order modeling
framework, by means of a global ROM strat-
egy. In fact, the cost-effective evaluation of
the ionic variables involved in the electrophys-
iology model represents a fundamental task to
couple the ROMs of the core subproblems in
cardiac electromechanics, namely the electrical
and the mechanical one. In particular, in the
latter the active tension, which determines the
active contraction of the cardiac muscle, di-
rectly depends on the intracellular calcium con-
centration. Thus, by means of the trivial ac-
tivation model presented, we managed to cou-
ple the electrical propagation to the mechani-
cal contraction. Moreover, the electromechani-
cal model presented in this work is able to ef-
ficiently approximate the solutions of its core
subproblems under parameters variations and

such a result is potentially relevant in clini-
cal applications, where we need to consider the
inter-patient variability when modeling the car-
diac functions. Possible further extensions of
the work can be related to: the use of a local
ROM strategy for a more efficient construction
of the reduced order models, in particular for
cardiac electrophysiology, where the propagat-
ing fronts in the solutions affects the efficiency of
reduced order modeling when relying on a global
ROM strategy; the inclusion of some mechano-
electrical feedbacks to fully couple the two core
subproblems; the generalization to more com-
plete activation models, to reach an even more
reliable electromechanical model for real life ap-
plications.
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Abstract

Reduced-order modeling techniques are of fundamental importance when dealing with the
numerical approximation of partial differential equations characterized by nonlinearity or
high sensitivity to parameter variation, such as the ones arising from cardiac electrome-
chanics. In this work, we present an efficient numerical approximation of both cardiac
electrophysiology and cardiac mechanics, developing a one-way electromechanical cou-
pling in the reduced-order model framework, where the electrical propagation activates
cardiac contraction. In particular, we develop an efficient evaluation of the ionic vari-
ables in the cardiac electrophysiology monodomain model, exploiting the gappy proper
orthogonal decomposition (POD) method, coupling the two core subproblems by means
of a phenomenological activation model for cardiac mechanics, that takes as an input
the efficiently computed intracellular calcium concentration to evaluate the active ten-
sion that determines the active cardiac concraction. In this way, the electromechanical
reduced-order model presented is capable to approximate the solutions under parameter
variations from both the cardiac electrophysiology subproblem and the cardiac mechanics
subproblem. Moreover, a secondary achievement of this work consists in the investigation
of the performance of a least-squares Petrov-Galerkin projection approach in terms of ef-
ficiency and accuracy of a reduced-order model for the cardiac electrophysiology problem.
Numerical results assessing the accuracy and the efficiency of the proposed strategies deal
with the simulation of electrophysiology and one-way coupled electromechanics problems
on a patient-specific left ventricle geometry.

Keywords: Nonlinear PDEs; Cardiac electromechanics; Coupled problems; Reduced-
order models; Proper orthogonal decomposition (POD); Gappy POD.





Estratto

Le tecniche di modellazione di ordine ridotto sono di fondamentale importanza quando si
tratta l’approssimazione numerica di problemi caratterizzati da nonlinearità e sensibilità
alla variazione dei parametri considerati, come quelli che riguardano l’elettromeccanica
cardiaca. Nel seguente elaborato presentiamo un’ approssimazione numerica efficiente
dei problemi di elettrofisiologia e meccanica cardiaca, sviluppando, nel contesto dei mod-
elli di ordine ridotto, un modello elettromeccanico accoppiato unidirezionalmente, nel
quale la propagazione elettrica attiva la contrazione meccanica. In particolare, esplori-
amo il metodo gappy proper orthogonal decomposition (POD) per il calcolo efficiente
delle variabili ioniche nel modello del monodominio per l’elettrofisiologia e sviluppiamo
l’accoppiamento tramite un modello di attivazione fenomenologico per la meccanica car-
diaca, in grado di ottenere la tensione che determina la contrazione attiva delle fibre del
muscolo cardiaco attraverso il valore del calcio intracellulare, ottenuto dall’elettrofisiologia.
In questo modo, il modello di ordine ridotto elettromeccanico presentato è in grado di ot-
tenere approssimazioni accurate delle soluzioni, tenendo conto di variazioni dei parametri
sia dal sottoproblema elettrofisiologico che da quello meccanico. Inoltre, come risultato
secondario, in questo lavoro abbiamo investigato la performance dell’uso di una proiezione
ai minimi quadrati Petrov-Galerkin in termini di accuratezza ed efficienza nella costruzione
del modello di ordine ridotto relativo all’elettrofisiologia. I risultati numerici che valutano
l’accuratezza e l’efficienza dei metodi proposti riguardano la simulazione dei problemi
di elettrofisiologia e elettromeccanica accoppiata unidirezionalmente su una geometria di
ventricolo sinistro che si attiene a quella reale.

Parole chiave: EDPi nonlineari; Elettromeccanica cardiaca; Problemi accoppiati; Mod-
elli di ordine ridotto; Proper orthogonal decomposition (POD); Gappy POD.
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1

Introduction

Each heartbeat is a very complex multiphysical phenomenon, which combines several dif-
ferent aspects, such as fluid dynamics, biomechanics and electrophysiology [35]. In fact,
the main driver of blood ejection in the circulatory system is given by the active ventricu-
lar contraction. The heart itself is able to produce the electrical impulse that determines
this contraction, starting by a signal, in the form of an electric transmembrane potential,
that propagates along all the myocardium, the cardiac muscle tissue.
The evolution of the transmembrane potential is generated at the cell level by several ion
channels that open and close repeatedly. This gives rise to currents passing through the
cell membrane, that determine depolarization and repolarization phases characterizing
each heartbeat. At the macroscopic level, this propagation is mathematically described
by a nonlinear reaction-diffusion partial differential equation suitably coupled to a system
of ordinary differential equations, which model the ionic currents in the cells, depending
on a set of ionic variables, that can be gating variables, indicating the activation of the
currents, and/or ionic concentrations.
The more commonly used models to study the transmembrane potential dynamic are the
bidomain and the monodomain models [3, 36–38]. The former considers the cardiac tissue
as a syncytium made by intracellular and extracellular domains coexisting at each point
of the tissue. It is the most complete mathematical model for describing the electrical
signal propagation in the heart, however it is the most computationally demanding. On
the other hand, the latter is a simpler version, which considers intra and extracellular
domains to have equal anisotropy ratios, reducing thus the number of partial differential
equations considered with respect to the bidomain model and, as a consequence, reducing
the computational costs. The monodomain model is not suitable for the description of
a wide range of pathological situations as the former one, yet it is able to accurately
describe the cardiac tissue in physiological situations. Since the aim of this work is the
efficient evaluation of the ionic variables to develop an electromechanical coupling [3, 5]
in the cardiac left ventricular tissue under physiological conditions, we will rely on the
monodomain model.

Specifically, we will exploit a one-way electromechanical coupling, where the mechanical
activation depends on the intracellular calcium concentration released during electrical
activation. In fact, the intracellular calcium concentration is the main responsible of the
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cardiac muscle contraction and couples the electrical and mechanical phenomena of the
heartbeat, since it is an input of the active tension model, which describes the generation
of active force within each myocyte [31, 34]. The deformation of the cardiac tissue is then
modeled by the equations of elastodynamics, with the myocardium being an orthotropic
and hyperelastic material. The orthotropic passive properties of the cardiac tissue are
described by strain energy functions of exponential laws [17, 18, 30], while the active
properties depend on the cellular active tension.
At the numerical level, the approximation and simulation of cardiac electromechanics is
a very demanding and expensive task, because of the very different space and time scales
associated with the electrical and mechanical models, as well as their nonlinear and mul-
tiphysics interactions. In fact, to correctly track the wave-front solution representing the
propagation of the transmembrane potential in cardiac electrophysiology, fine computa-
tional grids are needed, thus leading to a very large-scale algebraic problem to be solved.
Moreover, to describe the mechanics of the cardiac tissue we need to rely on complex
constitutive laws, resulting in a complex highly nonlinear model. This turns into the need
of assembling involved Jacobian matrices when relying, e.g., on the Newton method for
the solution of nonlinear systems of equations.
Furthermore, when simulating cardiac models, several input data affect the problem un-
der investigation, often varying within a broad range and possibly affected by uncertainty.
Since it is of fundamental importance to address the impact of input variations on out-
put quantities of interest, in order to obtain reliable results and calibrate the numerical
solvers, several numerical simulations have to be carried out, increasing even more the
computational complexity and making unfeasible the use of high fidelity approximations
obtained by applying, e.g., finite element methods. The need of solving these problems
efficiently calls for the development of efficient and accurate reduced-order modeling tech-
niques in electromechanics.

Reduced basis (RB) methods and, more generally, reduced-order models (ROMs), have
been extensively investigated in the last decades. The basic idea of any RB method is to
approximate the high-fidelity solution of a given problem by means of a (Petrov-)Galerkin
projection onto a subspace of much smaller dimension than the one, Nh, of the original
FOM space. In this way, the resulting computational costs and the required memory stor-
age are much smaller when dealing with a ROM, compared to the FOM. A RB method
can be divided in two phases: an offline phase, where the reduced basis functions are
computed and stored and the reduced-order arrays are evaluated, and an online phase,
where the solution of the ROM is determined for each new parameter instance. More
specifically, the RB method can rely on proper orthogonal decomposition (POD) to gen-
erate a global low dimensional subspace in which the solution of the ROM problem is
sought. The reduced basis, whose vectors are also called POD modes, consists of the first
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n≪ Nh right singular vectors of a snapshot matrix S collecting the solution of the FOM
computed following different criteria, such as time instants and/or different parameters
for parametrized problems. By means of the stored reduced basis, a linear, low dimen-
sional subspace is generated; then a Galerkin (or Petrov-Galerkin) projection is applied to
generate the reduced-order arrays and, ultimately, the RB problem. Although the tech-
nique shows good performance in terms of efficiency for linear PDEs and, in particular,
when dealing with affinely parametrized operators and data, it is no longer efficient when
dealing with nonlinear problems, unless hyper-reduction techniques (such as the discrete
empirical interpolation method (DEIM) or the gappy proper orthogonal decomposition)
are applied to speed up the evaluation of nonlinear arrays in the offline phase, see [1, 3, 8].

In order to develop an efficient one way electromechanical coupling, in this work we ex-
ploit the gappy proper orthogonal composition to compute and extrapolate the evolution
of the intracellular calcium, in each point of the domain, from the ROM for cardiac elec-
trophysiology and we apply it in a simple, phenomenological activation model based on
the solution of the Hill equation [33, 34], which consists in ordinary differential equation,
solved at each point of the domain, to compute the evolution in time of the active tension
responsible to the active ventricular tissue contraction in the cardiac mechanical reduced-
order model.
The main achievements of this thesis are related with the efficient and accurate evaluation
of ionic variables in a parametrized cardiac electrophysiology problem and the develop-
ment of an efficient coupling between cardiac electrophysiology and cardiac mechanics.
In particular, in the framework of reduced-order modeling, we built an efficient numerical
approximation of the electromechanical problem, which is able to account the effects of
parameter variations to the solutions. In fact, the model has been implemented in such
a way it can consider variations of parameters in both cardiac electrophysiology and car-
diac mechanics, to also understand how the former influences the latter. In this work, in
particular, we show the results of the electromechanical coupling for a parametrization
coming from the mechanical subproblem, where there are several parameters of interest
in clinical applications such as, e.g., the Bulk modulus, that regulates the compressibility
of the cardiac tissue.

The implementation of the models and the techniques presented in this thesis have been
developed and have contribuited to the extension of the library pyfeX , which is a python
library for efficient numerical cardiac simulations and clinical applications, binding a C++
high performance finite element library, lifex, developed in the framework of the iHEART
project1.

1http://iheart.polimi.it
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The structure of the thesis is as follows:

• in the first chapter we introduce the core mathematical models for cardiac electro-
physiology and cardiac mechanics adopted in this work;

• in the second chapter we present the numerical approximation of the core models
by full-order modeling, using a Galerkin-finite element method;

• in the third chapter we develop an efficient numerical approximation by reduced-
order modeling of the parametrized problems considered, in particular we present
the RB techniques applied to efficiently compute the ionic variables, the potential
and the displacement field;

• in the fourth chapter we present the numerical results related to the ROM for
cardiac electrophysiology, with a particular attention to the efficient computation
of the ionic variable by the Gappy POD method and to the effects of parameter
variations;

• in the fifth chapter we present the numerical results related to the electromechani-
cal reduced-order model, looking at efficiency and accuracy under the variation of
parameters involved in the cardiac mechanics.
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1| Mathematical Models for

cardiac electromechanics

In this chapter we present an overview of the electromechanics mathematical models.
We consider the monodomain model for cardiac electrophysiology, the so-called minimal
Bueno-Orovio model as ionic model (to describe ionic concentrations, such as sodium
and calcium), and the hyperelastic Guccione model for the passive ventricular mechanics,
adopting an active-stress formulation to take into account active mechanics. This latter
requires the introduction of a dynamical system which describes fibers shortening as a
function of the calcium concentration.

1.1. Cardiac electrophysiology

To characterize the evolution of the transmembrane potential we rely on the monodomain
model, which is a reduced version of the bidomain model. Both models have been widely
used in the last decades to study cardiac electrophysiology [39, 40], arising from a ho-
mogenization process applied to the cardiac tissue. These continuous models describe the
spreading of the signal in the heart tissue and are usually coupled to a ionic model which
describes the evolution of ion concentrations and the ionic currents inside the cells. In
this work, as ionic model we will consider the Bueno-Orovio ionic model and we couple
it to the monodomain equation.

1.1.1. The monodomain model

Let us consider the transmembrane potential u = u(X, t) coupled with a ionic model
depending on a set of ionic variables w = w(X, t), in a Lipschitz domain Ω0 in R3, which
can be a portion of the myocardium or the whole left ventricle, where X ∈ Ω0 denotes a
coordinate in the reference configuration.
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The monodomain model yields the following initial-boundary value problem:

Cm
∂u

∂t
−∇ · (D∇u) + Iion(u,w) = Iapp(X; t), X ∈ Ω0, t ∈ (0, T )

∂w
∂t

= Fion(u,w), X ∈ Ω0, t ∈ (0, T )

∂u

∂n
= 0, X ∈ ∂Ω0, t ∈ (0, T )

u(X, 0) = u0 w(X, 0) = w0, X ∈ Ω0,

(1.1)

where the Neumann boundary conditions express the fact that the cardiac tissue is elec-
trically insulated. Here, Cm is the transmembrane capacitance, Iion(u,w) is the sum of
the current densities through the membrane, Iapp = Iapp(x, t) is an external applied cur-
rent density representing the initial activation of the tissue, D is the (positive definite)
conductivity tensor, that depends on the fibers-sheet structure of the tissue, t is a rescaled
time and n denotes the outward unit normal vector to the boundary ∂Ω0. Both Iion and
Fion depend on u and w, thus making the PDE and the ODEs two ways coupled.
The characterization of the functions Iion and Fion, and the number of functions Fion, i.e.
the number of ionic variables, depend on the considered ionic model. There exist several
ionic models in order to accurately describe the evolution of the transmembrane potential
and the regulation of the ionic fluxes thorugh the membrane. The ionic model adopted
for this work is the Bueno-Orovio model, which is described in the next section.

1.1.2. Bueno-Orovio model

The Bueno-Orovio model, also called minimal model, is characterized by a system of three
ordinary differential equations for the evolution of three different gating variable w1, w2,
w3, taking values in [0, 1], where the first two gating variables represent the portion of
open channels on the membrane, while the gating variable w3, which also takes values in
[0, 1], can be used as an indication of the intracellular calcium concentration. The coupled
monodomain Bueno-Orovio system reads as follows:

Cm
∂u

∂t
−∇ · (D∇u) + Iion(u,w1, w2, w3) = Iapp, in Ω0 × (0, T )

∂w1

∂t
= Fion,1(u,w1), in Ω0 × (0, T )

∂w2

∂t
= Fion,2(u,w2), in Ω0 × (0, T )

∂w3

∂t
= Fion,3(u,w3), in Ω0 × (0, T )

∂u

∂n
= 0, on ∂Ω0 × (0, T )

u(0) = u0, w1(0) = w0
1, w2(0) = w0

2, w3(0) = w0
3, in Ω0,

(1.2)
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where

Fion,1(u,w1) = [1−H(u− θw1)]
w1,∞ − w1

τ−w1

−H(u− θw1)
w1

τ+w1

,

Fion,2(u,w2) = [1−H(u− θw2)]
w2,∞ − w2

τ−w2

−H(u− θw2)
w2

τ+w2

,

Fion,3(u,w3) =
[1 + tanh(kw3(u− uw3))]/2− w3

τw3

,

while Iion(u,w1, w2, w3) is the sum of three currents, Iion(u,w1, w2, w3) = Ifi(u,w1) +

Iso(u) + Isi(u,w2, w3), defined as follows:

Ifi(u,w1) = w1
(u− θw1)(cu − u)H(u− θw1)

τfi
,

Iso(u) =
(u− u0)(1−H(u− θw2))

τ0
+
H(u− θw2)

τso
,

Isi(u,w2, w3) = w2w3
H(u− θw2)

τsi
,

which represent the fast inward, the overall slow outward and the slow inward currents,
respectively. Here H(·) denotes the Heaviside function.
Some of the constants of the model are deduced by the following formulas:

τ−w1
= (1−H(u− θ−w1

))τ−w1,1
+H(u− θ−w1

)τ−w1,2
,

τ−w2
= τ−w2,1

+ (τ−w2,2
− τ−w2,1

)(1 + tanh(k−w2
(u− u−w2

)))/2,

τso = τso,1 + (τso,2 − τso,1)(1 + tanh(kso(u− uso)))/2,

τw3 = (1−H(u− θw2))τw3,1 +H(u− θw2)τw3,2,

τ0 = (1−H(u− θ0))τ0,1 +H(u− θ0)τ0,2,

w1,∞ = 1−H(u− θ−w1
),

w2,∞ = (1−H(u− θ0))
(
1− u

τw2,∞

)
+H(u− θ0)w

∗
2,∞.

The model parameters, see appendix A, allow to reproduce the action potential mor-
phologies, see, e.g., [2], and can be fitted to replicate accurately the dynamics of more
complex ionic models as well as experimental data, such as action potential duration and
conduction velocity restitution curve, upstroke velocities, thresholds for excitation, mini-
mum action-potential durations and diastolic intervals before reaching conduction block.
For instance, the conductivity tensor D = D(X) ∈ R3 models the anisotropy of the
cardiac tissue, characterized by a higher conductivity in the fiber direction, and can be
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expressed as:

D(X) = zσt
mI+ z(σl

m − σt
m)f0 ⊗ f0 + (σn

m − σt
m)n0 ⊗ n0,

1

where σl
m, σt

m and σn
m are electrical conductivity coefficients along the fibers, the transver-

sal and the normal directions respectively. Namely, here, f0 is the fibers direction, n0 is the
normal direction and I is the identity matrix. As input parameters, then, we consider the
conductivity coefficients described above and the parameters which describe the external
applied current Iapp. Finally, the initial data for the ionic variable are w0

1 = 1, w0
2 = 1,

w0
3 = 0, while the initial potential is u0 = 0.

1.2. Cardiac mechanics

The description of cardiac mechanics involves both a passive and an active contribution.
In fact, the active contraction of the muscular fibers has to be included in the force balance
when modeling the systolic part of the cardiac cycle.
In order to exploit the cardiac mechanics model, we consider a reference configuration
Ω0 and an actual configuration Ω(t) at the current time t. We denote by X the spatial
variable in Ω0 and by x the spatial variable in Ω(t). It is possible to introduce the body
transformation as the map φ : Ω0 → Ω(t) from the reference to the actual configuration,
such that x = φ(X) for any X ∈ Ω0, x ∈ Ω(t). The deformation gradient tensor F is
defined as:

F =
∂φ

∂X
, [Fi,j] =

∂φi

∂Xj

, i, j = 1, 2, 3. (1.3)

By denoting d : Ω0 → Ω(t), d(X) = φ(X) − X the displacement field, the deformation
gradient tensor F can be written as F = I + d. Moreover, we denote by J = det(F) the
determinant of the deformation gradient tensor F and by C = FTF the left Cauchy-Green
strain tensor.
In order to model the active mechanics, the two paradigms commonly used are the active
stress and the active strain approaches, see [3, 20] . Both strategies allow to couple
electrophysiology and mechanics, defining a modified first Piola-Kirchhoff tensor P which
involves a passive and an active component. The former describes the stress required
to obtain a given deformation of the passive myocardium; the latter is responisble of
the tension generated by the depolarization of the propagating electrical signal, that
provides internal active forces responsible for the contraction. In this work, the active

1The parameter z is a specific parameter set in order to simulate ischemic regions. However, in the
physiological case, as the one considered, it is set to z = 1.
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stress approach has been considered, namely we write the first Piola-Kirchhof tensor as
follows:

P = Pp + Pa, (1.4)

where Pp is the passive contribute and Pa is the active contribute to the Piola-Kirchhoff
tensor.

1.2.1. Passive mechanics

The cardiac mechanical response, similarly to the the electrical propagation, is highly
dependent on the presence of fibers and sheets. For this reason, the passive myocardium
is modeled as an orthotropic, hyperelastic material.
The equations of motion for the cardiac tissue express the balance of linear momentum
in material coordinates, which reads as

ρ
∂2d
∂t2

−∇0 · Pp(d) = b0, (1.5)

where ρ is the tissue density and b0 are the body forces. Here, Pp is the first (passive)
Piola-Kirchhoff tensor, which is related to the surface tractions on the reference configuta-
tion.
We impose Neumann boundary conditions on the endocardium (ΓN = Γendo) to model
the effect of blood pressure, and Robin boundary conditions on the epicardium and on the
base (ΓR = Γepi ∪Γbase). We also neglect the body forces b0 because their contribution is
negligible [29]. Finally, in a Lagrangian framework, the cardiac deformation under passive
mechanics written in the reference configuration solve the following initial-boundary value
problem: 

ρ
∂2d
∂t2

−∇0 · Pp(d) = 0, in Ω0 × (0, T )

Pp(d)n + Kepid + Cepi∂d
∂t

= 0, on Γepi
0 × (0, T )

Pp(d)n − p(t)JF−Tn = 0, on Γendo
0 × (0, T )

Pp(d)n − p(t)
∥∥JF−Tn

∥∥vbase = 0, on Γbase
0 × (0, T )

d = d0,
∂d
∂t

= ḋ0, in Ω0 × {0},

(1.6)

where n is the outward normal to Ω0 and the initial conditions are set to d0 = 0 and ḋ0 =

0. Under the hyperelasticity assumption, once the strain energy function W : Ω0 → R is
introduced, the passive part of the Piola-Kirchhoff tensor reads as

Pp =
∂W
∂F

.

Several models have been proposed in literature to describe the orthotropic nature of the
cardiac muscle tissue. In this work, the Guccione strain energy function is considered
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[17, 18], for which
W(F) =

c

2
(eQ − 1) +Wvol(J), (1.7)

with

Q = bffE
2
ff + bssE

2
ss + bnnE

2
nn + bfs(E

2
fs +E2

sf ) + bfn(E
2
fn +E2

nf ) + bsn(E
2
sn +E2

ns), (1.8)

where Eab = Ea0b0, for a, b ∈ {f, s, n}, the principal directions in the reference configu-

ration, are the entries of E =
1

2
(C − I), i.e. of the Green-Lagrange strain energy tensor.

We consider a further term, defined as

Wvol(J) =
B

2
(J − 1), (1.9)

convex in J , with J = 1 as a global minimum, which penalizes large volume variations,
thus obtaining the model a weakly incompressible material; B ∈ R+ represents the bulk
modulus. Further details regarding the parameters of the model are reported in the
appendix A.

1.2.2. Active mechanics

The electrical activation of the cardiomyocytes in the cardiac muscle is responsible of
their contraction, without the need of an external impulse. This behavior can be modeled
by including the active contraction of the muscular fibers in the force balance (1.6). In
particular, the active component Pa of the first Piola-Kirchhoff tensor P denotes the
tension generated by the depolarization of the propagating electrical signal, that provides
the internal active forces leading to the contraction. We can express Pa as

Pa = Ta
Ff0 ⊗ f0√

I4f

,

where I4f = Ff0 ·Ff0 is a measure of the tissue stretch along the fibers direction [25], while
Ta = Ta(X, t) denotes the active tension, which is mainly regulated by the intracellular
calcium ions concentration ([Ca2+]i) and the sarcomere length (SL) [31]. In this work, to
describe the evolution of the active tension Ta in time, we consider a phenomenological
activation model:

∂Ta
∂t

= A([Ca2+]i, Ta) =
1

τ
(T steady

a ([Ca2+]i, SL)− Ta), in Ω0 × (0, T )

Ta = Ta,0, in Ω× {0},
(1.10)

where Ta depends on space and time by the intracellular calcium concentration spreading
in the cardiac muscle, namely Ta = Ta([Ca

2+]), Ta,0 = 0 and T steady
a ([Ca2+]i, SL) denotes

the steady-state active tension, representing a force-calcium relationship well described
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by the Hill equation [32–34]:

T steady
a ([Ca2+]i, SL) =

Tmax
a

1 +
( EC50

[Ca2+]i

)nH
. (1.11)

In (1.11), Tmax
a is the maximum tension, EC50 is the half maximal effective concentration

and nH is the Hill coefficient.
Through the active mechanics contribution, Eq. (1.6) thus becomes:

ρ
∂2d
∂t2

−∇0 · P(d, Ta) = 0, in Ω0 × (0, T )

P(d, Ta)n + Kepid + Cepi∂d
∂t

= 0, on Γepi
0 × (0, T )

P(d, Ta)n − p(t)JF−Tn = 0, on Γendo
0 × (0, T )

P(d, Ta)n − p(t)
∥∥JF−Tn

∥∥vbase = 0, on Γbase
0 × (0, T )

d = d0,
∂d
∂t

= ḋ0, in Ω0 × {0},

(1.12)

where we have now highlighted the fact that the electrical potential affects cardiac de-
formations, thus requiring a coupled electromechanical problem to fully understand the
behavior of the heart muscular tissue during each heartbeat.
Looking in more detail to the boundary conditions, we have that, on the epicardial bound-
ary Γepi

0 , the generalized Robin boundary condition models the interaction of the left
ventricle with pericardium [24], namely, in (1.12)2, we define the following tensors

Kepi = Kepi
⊥ (n ⊗ n) +Kepi

∥ (I − n ⊗ n),

Cepi = Cepi
⊥ (n ⊗ n) + Cepi

∥ (I − n ⊗ n),
(1.13)

where the constants Kepi
⊥ , Kepi

∥ , Kepi
⊥ , Cepi

∥ are local values of stiffness and viscosity of
the epicardial tissue in the normal or tangential directions. At the endocardium Γendo

0 ,
equation (1.12)3 accounts for the pressure p(t) exerted by the blood contained in the
ventricular chamber by a lumped parameters model. Finally, at the base Γbase

0 , we set the
energy-consistent boundary condition (1.12)4, originally proposed in [21], that provides an
explicit expression for the stresses located at the boundary Γbase

0 , where we have defined
the vector

vbase(t) =

∫
Γendo
0

JF−TndΓ0∫
Γbase
0

∥∥JF−Tn
∥∥ dΓ0

.

In particular, Γbase
0 is an artificial boundary and it is provided with boundary conditions

that account for the effect of the neglected part of the domain on the considered part,
which is mainly due to the blood pressure in the endocardial boundary over the truncated
part. Thanks to Eq. (1.12)4, in fact, the stress on Γbase

0 perfectly balances the stress
exerted on Γendo

0 , which is in contact with the blood, so the net force exerted by the fluid
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on the solid is null. This is coherent with the hydrostatic nature of the pressure force,
which contributes to the energy of the system, but not to its momentum.

Figure 1.1: Representation of the left ventricle and its boundaries [25, 45].

1.2.3. A lumped parameters model for closed-loop blood circu-

lation

Figure 1.2: Heart anatomy and schematical representation of blood circulation.2

To surrogate the intracavity blood flow in the endocardium, without coupling the me-
chanical model with Navier-Stokes equations for the blood flow inside the cavity as in
[41, 42], we consider a simplified lumped description [5, 21, 43].

2https://www.ezmedlearning.com/blog/heart-blood-flow-diagram
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The pressure p = p(t) in the left ventricular (LV) cavity follows a relatively simple closed-
loop model, based on the following four phases:

1. Isovolumetric LV contraction phase, where p(t) increases from the end diastolic
pressure (EDP) pED to the pressure reached when the aortic valve opens pAV O,
with the ventricular volume V constant;

2. Ejection phase, where the pressure-volume relationship is described by the following
two-element Windkessel model [44]:

C
dp

dt
= − p

R
− dV

dt
, t ∈ (T1, T2]

p(T1) = pAV O,
(1.14)

where T1 is the time when the aortic valve opens and T2 > T1 is the time when
the aortic valve closes. The latter coincides to the end of volume reduction, that

is, to the time at which
dV

dt
changes sign. The parameters C,R > 0 represent the

capacitance and the resistance of the equivalent electric circuit associated to the
model, respecively;

3. Isovolumetric LV relaxation phase, where p(t) decreases to the pressure pMVO reached
when the mitral valve opens;

4. Filling phase, where p(t) increases linearly to the end diastolic pressure pED.

To compute the ventricular volume V we use the following formula, as in [43] ( see [29]
for its derivation):

V (t) =

∫
Γendo
0

J(d)ξ · F−T (d)n dΓ0, (1.15)

where ξ is a vector directed as the centerline of the left ventricle.

1.3. Electromechanical coupling

As we have seen in section 1.2.2, the values of the calcium ion concentration [Ca2+]i

are used to compute the active stress tension Ta in order to model the internal active
forces responsible for the contraction. Sometimes those values are prescribed as a given
data to the mechanics problem, as, e.g., in [46], however, to have a more complete and
reliable description of the cardiac contraction mechanism, they should be obtained from
the monodomain problem, leading to a one-way coupled electromechanical problem.
Moreover, the mechanics problem influences the electrical problem, yielding to a fully
coupled electromechanical problem; in fact, the electrical propagation needs to account
to the evolution of the domain in time, due to cardiac relaxation and contraction. This
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can be modeled by the introduction of some mechano-electrical feedbacks in the electrical
model written in the reference configuration, such as the dependence of the ionic current
on the stretch in the fiber direction (for further details see [6, 49, 50]). However, in this
work, we consider the former, simpler, yet not trivial case, by neglecting any form of
mechano-electrical feedback.

1.3.1. Electrical solution influence on cardiac deformation

As we introduced, the one-way electromechanical coupling develops around the fact that
the active tension depends on the ionic model solution. In particular, the third ionic
variable w3 in the Bueno-Orovio model (1.2) is an adimensional indicator of intracellular
calcium concentration, which can be rescaled to the interval [0, 2.5] µM and can be used as
input in the computation of the active tension. Namely, the activation model considered,
Eq. (1.10), becomes:

∂Ta
∂t

= A(w3, Ta) =
1

τ
(T steady

a (w3, SL)− Ta), in Ω0 × (0, T )

Ta = Ta,0, in Ω× {0}
(1.16)

where the active tension Ta = Ta(w3(X, t)) evolves in time according to the propagation
of intracellular calcium concentration in the reference undeformed configuration Ω0.
Thus, the solution of the cardiac electromechanics problem consists in the following steps:

• Step 1: we solve the the cardiac electrophysiology problem, Eq. (1.2), on the
reference undeformed configuration Ω0 to find the propagation of the potential u
and the intracellular calcium concentration w3 in time;

• Step 2: the propagation of calcium influences the evolution of the active tension,
which is obtained solving Eq. (1.20), on the reference configuration;

• Step 3: we solve the cardiac mechanics problem (1.12), where, through the active
component of the Piola-Kirchhoff tensor Pa, the cardiac deformation depends in
time by the evolution of the active tension Ta and, as a consequence, depends
indirectly on the variation of the intracellular calcium on the reference undeformed
domain Ω0.

In figure 1.3 a schematical representation of the electromechanical coupling is shown.
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Figure 1.3: Schematical representation of the one-way electromechanical coupling.
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Hence, for completeness, here we report the coupled EM problem:

Cm
∂u

∂t
−∇ · (D∇u) + Iion(u,w1, w2, w3) = Iapp, in Ω0 × (0, T )

∂w1

∂t
= Fion,1(u,w1), in Ω0 × (0, T )

∂w2

∂t
= Fion,2(u,w2), in Ω0 × (0, T )

∂w3

∂t
= Fion,3(u,w3), in Ω0 × (0, T )

∂u

∂n
= 0, on ∂Ω0 × (0, T )

u(0) = u0, w1(0) = w0
1, w2(0) = w0

2, w3(0) = w0
3, in Ω0 × {0},

∂Ta
∂t

= A(w3, Ta) =
1

τ
(T steady

a (w3, SL)− Ta), in Ω0 × (0, T )

Ta = Ta,0, in Ω0 × {0}

ρ
∂2d
∂t2

−∇0 · P(d, Ta) = 0, in Ω0 × (0, T )

P(d, Ta)n + Kepid + Cepi∂d
∂t

= 0, on Γepi
0 × (0, T )

P(d, Ta)n − pJF−Tn = 0, on Γendo
0 × (0, T )

P(d, Ta)n − p
∥∥JF−Tn

∥∥vbase = 0, on Γbase
0 × (0, T )

d = d0,
∂d
∂t

= ḋ0, in Ω0 × {0},

(1.17)

where the endocardial pressure p has to be determined, depending on the cardiac cycle
phase, by the lumped parameters model presented in section 1.2.3. Namely, coupling
(1.12), where T ∈ (0, T4), with

V (d(t)) = V (d(0)), in (0, T1]

p(0) = pED, in 0

C
dp

dt
= − p

R
− dV

dt
, in (T1, T2]

p(T1) = pAV O, in T1

V (d(t)) = V (d(T2)), in (T2, T3]

p(T2) = pEV R, in T2,

(1.18)

where pED is the end diastolic pressure, pAV O is the pressure when the aortic valve opens
and pEV R is the pressure when the left ventricle volume reduction ends (the end of the
ejection phase). Then, from T3 to T4, there is the filling phase, where p(t) from the value
of pMVO, the pressure when the mitrial valve opens, linearly increases to pED, in order to
start again the loop. However, in this work, we will focus only on the first two phases,
representing the systole in each heartbeat. In Eq. (1.18), the pressure is continuous in
time and the time instants T1 < T2 < T3 < T4 refers to the times when the pressure of a
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phase reaches the value of the initial pressure of the following phase.

1.4. Parameters of interest

The problems introduced so far needs to be solved in different scenarios in order to asses
the effect of clinically relevant parameters on their solutions, by taking into account, for
example, a possible inter-patient variability. We denote by µ ∈ P ⊂ RNp the set of Np

selected parameters.
In particular, when considering an electromechanical coupling, we are interested in an-
alyzing how the electrical conductivities σl

m, σ
t
m, σ

n
m or the fibers orientation f0 affect

heart contraction. In fact, electrical conductivities significantly influence the propagation
of the electrical signal and, consequently, the displacement of the cardiac muscle. In this
work, in particular, we show the results of a variation of the conductivity coefficient along
the fiber direction and how it affects the propagation of the transmembrane potential
and the intracellular calcium concentration. Additional parameters of interest are the
ones involved in the cardiac mechanics, such as, e.g.: the coefficients of the strain energy
function, in Eq. (1.8); the Bulk modulus B, in Eq. (1.9), related to the material incom-
pressibility; the parameters in the Windkessel model, Eq. (1.14). In this work, we focus
our attention on the variations of the Bulk modulus and the peripheral resistance R in
the Windkessel model, to understand how they influences the cardiac deformation in the
mechanic contraction, where the active contraction comes from the electrical propagation.

Regarding the cardiac electrophysiology, we thus have D = D(µ) and the parametrized
version of the electrical model (1.2) reads as:

Cm
∂u(µ)

∂t
−∇ · (D(µ)∇u(µ))+

+Iion(u(µ), w1(µ), w2(µ), w3(µ)) = Iapp, in Ω0 × (0, T )

∂w1(µ)

∂t
= Fion,1(u(µ), w1(µ)), in Ω0 × (0, T )

∂w2(µ)

∂t
= Fion,2(u(µ), w2(µ)), in Ω0 × (0, T )

∂w3(µ)

∂t
= Fion,3(u(µ), w3(µ)), in Ω0 × (0, T )

∂u(µ)

∂n
= 0, on ∂Ω0 × (0, T )

u(0) = u0, w1(0) = w0
1, w2(0) = w0

2, w3(0) = w0
3, in Ω0,

(1.19)

If D is µ-dependent, also the potential and the ionic variables will depend on parameters.
Since the activation equation depends on the solution of the electrical problem, we also
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have Ta = Ta(µ), so that (1.20) reads as

∂Ta(µ)

∂t
= A(w3(µ), Ta(µ)) =

1

τ
(T steady

a (w3(µ), SL)− Ta(µ)). (1.20)

Similarly, for the mechanical problem, we have d = d(µ) and p(t) = p(t;µ), either if
we consider parameters that directly affects mechanics or parameters coming from the
electrophysiology from the electromechanical coupling. Namely, the parametrized version
of (1.12) becomes:

ρ
∂2d(µ)
∂t2

−∇0 · P(d(µ), Ta(µ)) = 0, in Ω0 × (0, T )

P(d(µ), Ta(µ))n + Kepid(µ) + Cepi∂d(µ)
∂t

= 0 on Γepi
0 × (0, T )

P(d(µ), Ta(µ))n − p(t;µ)JF−Tn = 0 on Γendo
0 × (0, T )

P(d(µ), Ta(µ))n − p(t;µ)
∥∥JF−Tn

∥∥vbase = 0 on Γbase
0 × (0, T )

d = d0,
∂d
∂t

= ḋ0 in Ω0 × {0}.

(1.21)
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2| Numerical approximations by

full order methods

The full-order numerical approximation of the core models considered in this work is
performed through a Galerkin-Finite Element Method (FEM) for the space discretization
and Finite Differences for time discretization1. Moreover, we consider a finer discretization
in space for the cardiac electrophysiology model (1.2) than the one used for the mechanical
model (1.12). This is motivated by the requirement of a higher resolution for (1.2) due to
the sharp wavefronts characterizing electrophysiological solutions, while the mechanical
model feature larger spatial scales [47, 48]. Namely, we consider two nested hexahedral
meshes The and Thm of the reference undeformed computational domain Ω0, where The has
been generated by uniformly refining Thm according to an octree structure [26], i.e. by
recursively splitting each parent element of Thm into eight sub-elements for a prescribed
number of times corresponding to the number of refinement steps chosen. Here he and
hm (with he < hm) represent the mesh sizes, which are computed as the mean diameter
over all the elements. The elements of the FEM adopted consist in continuous, piecewise
polynomials of degree 1 for both the cardiac electrophysiology and the cardiac mechanics
space discretization.
We then denote by Nu, Nw1 , Nw3 , Nw3 , NTa and Nd the number of degrees of freedom
(DOFs) for the transmembrane potential, the three ionic variables, the active tension and
the displacement, respectively.
For the sake of notation, the dependence on the parameter vector µ is understood in this
chapter.

2.1. Cardiac Electrophysiology

In this section we briefly review the construction of high-fidelity full order models for
cardiac electrophysiology relying on the Galerkin-Finite Element method.

1For further details on the implementation of the full order approximation methods presented in this
chapter, see https://lifex.gitlab.io/lifex/
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2.1.1. Weak formulation

In order to construct the FOM, let us consider the weak formulation of problem (1.19).
For t > 0, given Iapp(t) ∈ L2(Ω0), find u(t) ∈ X = H1(Ω0) and w(t) ∈ (L2(Ω0))

3 s.t.:∫
Ω0

(
Cm

∂u

∂t
+ Iion(u,w1, w2, w3)

)
φdΩ0

+

∫
Ω0

D∇u · ∇φdx =

∫
Ω0

Iappφdx ∀φ ∈ H1(Ω0),∫
Ω0

∂w1

∂t
ξ1dx =

∫
Ω0

Fion,1(u,w1)ξ1dx ∀ξ1 ∈ L2(Ω0),∫
Ω0

∂w2

∂t
ξ2dx =

∫
Ω0

Fion,2(u,w2)ξ2dx ∀ξ2 ∈ L2(Ω0),∫
Ω0

∂w3

∂t
ξ3dx =

∫
Ω0

Fion,3(u,w3)ξ3dx ∀ξ3 ∈ L2(Ω0),

u(0) = u0, w1(0) = w1,0, w2(0) = w2,0, w3(0) = w3,0.

(2.1)

This coupled problem is well-posed and its wel-posedness can be derived from the more
general results estabilished for the bidomain model, see e.g. [1, 3].

2.1.2. Galerkin FE method

Considering the mesh The , we introduce the finite-dimensional space Xhe ⊂ X = H1(Ω)

of dimension dim(Xhe) = Nhe . In particular, we have that Nu = Nhe .
Let {ψj}

Nhe
j=1 be a set of basis functions of the FE space Xhe . Then, the discrete approxi-

mations of u(X, t) reads as:

uhe(t) =

Nhe∑
i=1

ui(t)ψi,

where the vector uhe = [u1, ..., uNhe
]T , is obtained by solving the following semi-discretized

monodomain equation: find uhe such thatM
∂uhe

∂t
+ Auhe + Iion(uhe ,w1,he ,w2,he ,w3,he) = Iapp(t), t ∈ (0, T )

uhe(0) = u0,
(2.2)

where

(M)ij = Cm

∫
Ω0

ψiψjdΩ0, (A)ij =

∫
Ω0

D∇ψi · ∇ψjdΩ0,

(Iapp)j =
∫
Ω0

Iapp(t)ψjdΩ0,
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are, respectively, the mass matrix, the stiffness matrix and the activation term.
The nonlinear vector representing the ionic current is instead:

(Iion(uhe ,w1,he ,w2,he ,w3,he))j =

∫
Ω0

Iion(uhe ,w1,he ,w2,he ,w3,he)ψjdΩ0.

Then, the vectors w1,he = [w1,1, ..., w1,Nhe
]T , w2,he = [w2,1, ..., w2,Nhe

]T and w3,he =

[w3,1, ..., w3,Nhe
]T represent the semi-discretized ionic variables, which indirectly depends

on the space variable over the mesh The through the transmembrane potential, namely we
have Nw1 = Nw2 = Nw3 = Nhe . The semi-discretized version of the Bueno-Orovio ionic
model can be written as follows:

∂w1,he

∂t
= Fion,1(uhe ,w1,he), t ∈ (0, T )

∂w2,he

∂t
= Fion,2(uhe ,w2,he), t ∈ (0, T )

∂w3,he

∂t
= Fion,3(uhe ,w3,he), t ∈ (0, T )

w1,he(0) = w1,0, w2,he(0) = w2,0, w3,he(0) = w3,0,

(2.3)

where the vectors Fion,k(uhe ,w2,he) ∈ RNhe , k = 1, 2, 3, are nonlinear terms.

2.1.3. Time discretization and algebraic formulation

The time discretization of the semi-discretized monodomain system (2.2) and ionic model
(2.3) are obtained relying on a finite difference scheme, namely the backward differentia-
tion formula (BDF), of order σ, where σ can assume different values (e.g. 1, 2, ..). In this
work we consider a first order scheme, so σ is set to 1.
Given a partition of the time interval (0, T ) intoNt subintervals (t(l), t(l+1)), l = 0, ..., Nt−
1, of length ∆te = t(l+1) − t(l), we have that u(l)

he
≈ uhe(t

(l)), w(l)
1,he

≈ w1,he(t
(l)), w(l)

2,he
≈

w2,he(t
(l)), w(l)

3,he
≈ w3,he(t

(l)) and I(l)app ≈ Iapp(t(l)) ∀l = 0, ..., Nt.
For what concerns the nonlinear terms, a semi-implicit approach is considered, for which
the nonlinear vector Iion can be evaluated around the solution already computed at time
t(l) and this decouples the PDE from the ODE, leading to a linear system to be solved
at each time step. Moreover, an hybrid ionic current interpolation strategy is used to
evaluate the ionic current term [12].
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The full-order model of (1.2) thus becomes: find u(l+1)
he

, w(l+1)
1,he

, w(l+1)
2,he

and w(l+1)
3,he

such
that u(0)

he
= u0, w(0)

1,he
= w1,0, w(0)

2,he
= w2,0, w(0)

3,he
= w3,0 and, for l = 0, ..., Nt − 1,



w(l+1)
1,he

− w(l)
1,he

∆te
− Fion,1(u

(l)
he
,w(l+1)

1,he
) = 0,

w(l+1)
2,he

− w(l)
2,he

∆te
− Fion,2(u

(l)
he
,w(l+1)

2,he
) = 0,

w(l+1)
3,he

− w(l)
3,he

∆te
− Fion,3(u

(l)
he
,w(l+1)

3,he
) = 0,

M
u(l+1)
he

− u(l)
he

∆te
+ Au(l+1)

he
+ Iion(u

(l)
he
,u(l+1)

he
,w(l+1)

1,he
,w(l+1)

2,he
,w(l+1)

3,he
)− I(l+1)

app = 0,

(2.4)

where we udpate first the ionic model, by one iteration of the fixed point method, and then
we solve the monodomain equation by the Newthon method to update the transmembrane
potential. In fact, the equation (2.4)4 can be rewritten in a residual form as follows:

r(u(l+1)
he

,w(l+1)
1,he

,w(l+1)
2,he

,w(l+1)
3,he

) = L(u(l+1)
he

,w(l+1)
1,he

,w(l+1)
2,he

,w(l+1)
3,he

)− f = 0,

where

L(u(l+1)
he

,w(l+1)
1,he

,w(l+1)
2,he

,w(l+1)
3,he

) =

M
u(l+1)
he

− u(l)
he

∆te
+ Au(l+1)

he
+ Iion(u

(l)
he
,u(l+1)

he
,w(l+1)

1,he
,w(l+1)

2,he
,w(l+1)

3,he
),

f = I(l+1)
app .

Hence, we define the residual r as

r(u(l+1)
he

,w(l+1)
1,he

,w(l+1)
2,he

,w(l+1)
3,he

) =

M
u(l+1)
he

− u(l)
he

∆te
+ Au(l+1)

he
+ Iion(u

(l)
he
,u(l+1)

he
,w(l+1)

1,he
,w(l+1)

2,he
,w(l+1)

3,he
)− I(l+1)

app .
(2.5)

Equation (2.5) represents the residual form of the monodomain equation and it is nonlin-
ear; hence, it is linearized and solved at each time step using one iteration of the Newton
method. Here is the scheme of the form

Jδuhe = r(u(l+1)
he,0

,w(l+1)
1,he

,w(l+1)
2,he

,w(l+1)
3,he

),

u(l+1)
he

= u(l+1)
he,0

− δuhe ,
(2.6)

where J is the Jacobian operator of L, defined as:

Jδu = M
δu
∆te

+ Aδu. (2.7)

Since we are treating the ionic current Iion semi-implicitly with respect to u(l+1)
he

, we have
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that J is a constant term with respect to u(l+1)
he,0

. Moreover, for the Bueno-Orovio model,
the semi-implicit approach adopted for the nonlinear term Iion yields to dIion = 0. In this
way, the Jacobian doesn’t need to be updated at each time-step and can be assembled
just once. The initial guess of the Newton method is u(l+1)

he,0
= u(l)

he
.

Therefore, we can rewrite the FOM as follow: find u(l+1)
he

, w(l+1)
1,he

, w(l+1)
2,he

and w(l+1)
3,he

such
that u(0)

he
= u0, w(0)

1,he
= w1,0, w(0)

2,he
= w2,0, w(0)

3,he
= w3,0 and, for l = 0, ..., Nt − 1,

w(l+1)
1,he

− w(l)
1,he

∆te
− Fion,1(u

(l)
he
,w(l+1)

1,he
) = 0,

w(l+1)
2,he

− w(l)
2,he

∆te
− Fion,2(u

(l)
he
,w(l+1)

2,he
) = 0,

w(l+1)
3,he

− w(l)
3,he

∆te
− Fion,3(u

(l)
he
,w(l+1)

3,he
) = 0,

Jδuhe = r(u(l+1)
he,0

,w(l+1)
1,he

,w(l+1)
2,he

,w(l+1)
3,he

),

u(l+1)
he

= u(l+1)
he,0

− δuhe , u(l+1)
he,0

= u(l)
he
.

(2.8)

The most demanding computational tasks are related to the assembling of the terms Iion
and Fion,k, k = 1, 2, 3, at each time step, and to the solution of the linearized system
(2.8)4. Moreover, the time step ∆te is required to be small to ensure convergence.

2.2. Cardiac Mechanics

In this section, similarly to what we have seen in the previous one, we briefly review
the construction of high-fidelity full order models for cardiac mechanics relying on the
Galerkin-Finite Element method.

2.2.1. Semi-discretization by Galerkin FE method

Mechanical activation model

The semi-discrete formulation of the activation model (1.20), which is developed on the
mesh Thm , reads: find Ta,hm such that:

∂Ta,hm

∂t
=

1

τ
(Tsteady

a,hm
(w3,hm(t), SL)− Ta,hm) t ∈ (0, T )

Ta,hm(0) = Ta,0,
(2.9)

where Ta,hm ,T
steady
a,hm

∈ RNTa and w3,hm(t) is obtained by mapping the intracellular calcium
concentration of the Bueno-Orovio model from the finer mesh The , adopted to discretize
in space the electrical problem, to the coarser mesh Thm , adopted to discretize in space the
mechanical problem. The map as been built by means of an intergrid transfer operator
[26] between the two meshes, thus obtaining w3,hm(t) ∈ RNTa from w3,he(t) ∈ RNhe .
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Mechanical model

Denoting by [Xhm ]
3 the finite dimensional subspace of vector valued functions, where

Xhm ⊂ X = H1(Ω0), and by {ϕi}Nd
i its basis, the semi-discretized version of problem

(1.12) reads: given Ta,hm(t), find, ∀t ∈ (0, T ), dhm(t) ∈ [Xhm ]
3 such that∫

Ω0

ρd̈hm(t) · ϕidΩ0 +

∫
Ω0

P(dhm(t),Ta,hm) : ∇ϕidΩ0

+

∫
dΓepi

0

[(n ⊗ n)(Kepi
⊥ dhm(t) + Cepi

⊥ dhm(t))

+ (I − n ⊗ n)(Kepi
∥ dhm(t) + Cepi

∥ dhm(t))] · ϕidΓ
epi
0 =

− p(t)

∫
dΓendo

0

JhmF−T
hm

n · ϕidΓ
endo
0

+ p(t)

∫
dΓbase

0

∥∥JhmF−T
hm

n
∥∥vbase

hm
· ϕidΓ

base
0 ∀i = 1, ..., Nd,

(2.10)

with dhm(0) = d0,hm , ḋhm(0) = ḋ0,hm and

vbase(t) =

∫
Γendo
0

JF−TndΓ0∫
Γbase
0

∥∥JF−Tn
∥∥ dΓ0

.

The corresponding semi-discretized algebraic formulation reads: find dhm
(t) such thatρMd̈hm

(t) + F ḋhm
(t) + Gdhm

(t) + S(dhm
(t),Ta,hm(t)) = p(t)p(dhm

(t)), t ∈ (0, T )

dhm
(0) = d0,hm

, ḋhm
(0) = ḋ0,hm

,

(2.11)
with :

(M)i,j =

∫
Ω0

ϕjϕidΩ0,

(S)(dhm
(t),Ta,hm(t)))i =

∫
Ω0

P(dhm(t),Ta,hm) : ∇ϕidΩ0,

(F)i,j =

∫
dΓepi

0

[(n ⊗ n)Kepi
⊥ + (I − n ⊗ n)Kepi

∥ ]ϕj · ϕidΓ
epi
0 ,

(G)i,j =
∫
dΓepi

0

[(n ⊗ n)Cepi
⊥ + (I − n ⊗ n)Cepi

∥ ]ϕj · ϕidΓ
epi
0 ,

(p(dhm
(t)))i =

∫
dΓbase

0

∥∥JhmF−T
hm

n
∥∥vbase

hm
· ϕidΓ

base
0

−
∫
dΓendo

0

JhmF−T
hm

n · ϕidΓ
endo
0 ,

where dhm
(t) = [d1,hm(t),d2,hm(t), ...,dNd,hm(t)]

T denotes the semi-discretized version of
the displacement field.
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2.2.2. Time discretization and algebraic formulation

For what concerns the time discretization of problems (2.9) and (2.11), we use a similar
approach to the one described in section 2.1.3, that is, we rely on a BDF of order σ = 1.
However, we consider a bigger time-step than the one used for cardiac electrophysiology,
since in the mechanical problem we are not dealing with traveling waves that require a
finer discretization in time. Namely, given a partition of the time interval (0, T ) into
Ntm subintervals (t(k), t(k+1)), k = 0, ..., Ntm − 1, of length ∆tm = t(k+1) − t(k), where
∆tm > ∆te, we have that d(k)

hm
≈ dhm

(t(k)) and T(k)
a,hm

≈ Ta,hm(t
(k)) ∀k = 0, ..., Ntm .

Moreover, let us consider q =
∆tm
∆te

, which denotes the number of time-steps ∆te re-

quired to complete a time-step ∆tm. Thus, we introduce the notation t(k) = tq(l) ∀k =

l = 0, ..., Ntm , to indicate the same time instant in the two different time discretizations
adopted for the mechanical and the electrical problem, respectively.
The activation model is discretized following an implicit approach, namely the problem
reads: find T(k+1)

a,hm
such that

T(k+1)
a,hm

− T(k)
a,hm

∆tm
=

1

τ
(Tsteady

a,hm
(wq(l+1)

3,hm
, SL)− T(k+1)

a,hm
), k = 0, .., Ntm − 1

T(0)
a,hm

= Ta,0,

(2.12)

and it is solved at each time step by the fixed point method, using a tolerance equal to
10−8 and a maximum number of iteration equal to 30.
For the mechanical problem the treatment of the nonlinear terms also follows an implicit
approach, due to the fact that the highly nonlinear (exponential) terms of the strain
energy function W would need a restriction on the time step in both the semi-implicit
and explicit contexts. The full-order model of problem (1.21) thus reads: find d(k+1)

hm
such

that d(0)
hm

= d0,hm
, d(1)

hm
= d0,hm

+∆tmḋ0,hm
and, for each k = 1, ..., Ntm − 1

(
ρ

1

∆t2m
M +

1

∆tm
F + G

)
d(k+1)
hm

+ S(d(k+1)
hm

,T(k+1)
a,hm

) =

ρ
2

∆t2m
Md(k)

hm
− ρ

1

∆t2m
Md(k−1)

hm
+

1

∆tm
Fd(k)

hm
+ p(k+1)p(d(k)

hm
,d(k+1)

hm
).

(2.13)

To deal with the interaction of blood on the endocardium Γendo
0 , in order to model the

evolution of the pressure in time, we need to account the different phases of the cardiac
cycle presented in subsection 1.2.3; namely we couple Eq. (2.13) to the discretization of
Eq. (1.18). We then solve the coupled problem for the pressure and the displacement
field by means of a Newton strategy.
Going into details, in the isovolumetric phases, we solve Eq. (2.13) coupled with the
condition V (d(k+1)

hm
) = V (d(k)

hm
). This is a saddle-point problem, in the unknowns d(k+1)

hm
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and p(k+1), which is solved by Schur complement reduction (see [21, 26] for more details).
Namely, by moving all the terms in Eq. (2.13) to the left hand side we rewrite the equation
in a residual form as

r(k+1)
d (d(k+1)

hm
, p(k+1)) = 0,

Then, by introducing the residual

r(k+1)
p (d(k+1)

hm
) = V (d(k+1)

hm
)− V (d(k)

hm
) = 0,

for j = 0, 1, ... iterations of the Newton method, we solve the two linear systems:

J
(k+1),(j)
d,d v(k+1),(j) = r(k+1),(j)

d , J
(k+1),(j)
d,d b(k+1),(j) = J

(k+1),(j)
d,p (2.14)

where, at each time-step, for each iteration, Jd,d ∈ RNd×Nd is defined as Jd,d =
∂

∂d
rd,

and Jd,p ∈ RNd is defined as Jd,p =
∂

∂p
rd, with rd ∈ RNd , v ∈ RNd and w ∈ RNd .

Thus, by the Schur complement method, we set

δp(k+1),(j) =
p(k+1),(j) − J

(k+1),(j)
p,d v(k+1),(j)

J
(k+1),(j)
p,d b(k+1),(j)

,

δd(k+1),(j)
hm

= −(v(k+1),(j) + b(k+1),(j)δp(k+1),(j)),

(2.15)

where JT
p,d ∈ RNd is defined as Jp,d =

∂

∂d
rp, with rp ∈ R.

We then update

d(k+1),(j+1)
hm

= d(k+1),(j)
hm

+ δd(k+1),(j)
hm

p(k+1),(j+1) = p(k+1),(j) + δp(k+1),(j)

choosing as initial guesses d(k+1),(0)
hm

= d(k)
hm

and p(k+1),(0) = p(k).

When
∥∥∥r(k+1),(j)

d

∥∥∥
2
< ϵ, for ϵ sufficiently small, and j ≤ Nmax

iter , we set

d(k+1)
hm

= d(k+1),(j)
hm

, p(k+1) = p(k+1),(j).

On the other hand, during the ejection phase, the pressure is updated before solving the
mechanical problem, with an implicit treatment of p. In particular, here, the residual
r(k+1)
d (d(k+1)

hm
, p(k+1)) = r(k+1)

d (d(k+1)
hm

) does not depend on the pressure at time t(k+1), since
it is update before solving the Newton step to update the displacement field. Namely, we
solve the following two-element Windkessel model (1.14): for each k such that t(k+1) ∈
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(T1, T2], find p(k+1) such that:C
p(k+1) − p(k)

∆tm
= −p

(k+1)

R
− V (k) − V (k−1)

∆tm
,

p(T1) = pAV O,

(2.16)

and then we solve Eq. (2.13) by the Newton method: for j = 0, 1, ..., until a convergence
criterion is fulfilled J

(k+1),(j)
d,d δd(k+1),(j)

hm
= −r(k+1),(j)

d ,

d(k+1),(j+1)
hm

= d(k+1),(j)
hm

+ δd(k+1),(j)
hm

.
(2.17)

choosing as initial guess d(k+1),(0)
hm

= d(k)
hm

.

When
∥∥∥r(k+1),(j)

d (µ)
∥∥∥
2
< ϵ, for ϵ sufficiently small, and j ≤ Nmax

iter , we set

d(k+1)
hm

= d(k+1),(j)
hm

.

A similar approach to the latter one is followed for the filling phase, where the pressure
is linearly updated at each time step, before the update of the displacement field. The
pressure increases until the end-diastolic pressure value pED, which corresponds to the
end of the closed-loop for the blood circulation considered for each heartbeat.
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one-way coupled problems

The accurate solution of a coupled system like (1.1) is computationally demanding when
full-order models (FOMs) such as the one introduced in the previous chapter are adopted.
In fact, in order to capture the evolution of a very steep front and the fast dynamics of
the electric signal propagation, strong constraints on the spatial mesh size and very small
time steps are needed, thus yielding to the assembling of huge matrices. On the other
hand, the mechanical problem is characterized by a complex nonlinear constitutive law,
where the computational burden is represented by assembling the Jacobian matrices at
each Newton step; moreover problem (1.12) depends on time through its coupling with
the electrophysiology model, increasing its unsteadiness. Relying on full-order is thus
prohibitive whenever such problems have to be solved many times, varying parameter
dependent features affecting operators and/or data. In this chapter we present a possible
reducedorder modeling strategy to address this computational task.

3.1. Reduced-order modeling

In this these we rely on the reduced basis method for parametrized problem, estending
it to handle one-way coupled problems in cardiac electromechanics. The application of a
projection-based ROM consists into the approximation of the solution of a FOM by means
of a linear combination of few, problem-specific, global-basis functions obtained from a
set of FOM snapshots. In particular, in the offline phase of the method, we consider
proper orthogonal decomposition to build a reduced basis space and a (Petrov-)Galerkin
projection to generate the ROM. Then, by means of the discrete empirical interpolation
method (DEIM), we enhance the efficiency in the assembling of the nonlinear terms, lead-
ing to anhyper-ROM, which is solved in the online phase.

The method of snapshots to perform POD has been introduced by Sirovich [7] and relies on
the collection of a series of full-order solutions, performing a singular value decomposition
of the set of snapshots, and truncating the resulting left singular vectors set to create the
reduced basis.



30 3| Reduced-order models for one-way coupled problems

3.1.1. Proper Orthogonal Decomposition

For non-parametrized time-dependent PDEs, the criteria to choose the snapshots, in order
to build a global ROM basis, consists in storing the full order solution at each timestep,
namely:

S = [s1, s2, ..., sNT
] ∈ RNh×NT ,

where sl ∈ RNh is the FOM solution at time t(l), l = 0, ..., NT . On the other hand,
for parametrized time-dependent PDEs, where multiple evaluations of the solution are
required for several values of the parameter µ ∈ P , the criteria to choose snapshots
involves both the time and parameter dependency, namely:

S = [s1(µ1), s2(µ1), ..., s1(µ2), s2(µ2), ..., sNT
(µNµ)] ∈ RNh×(NT ·Ntrain),

where sl(µj) ∈ RNh is the FOM solution at time t(l), l = 0, ..., NT , for the parameter µj.
Ntrain indicates the number of parameters µj considered to store the snapshots.
The vector s, in this work, represent the solution of our problems of interest, namely it
can be, e.g, the displacement field d(k)

hm
(µ), the transmembrane potential u(l)

he
(µ) or a ionic

variable w(l)
he
(µ). Then, depending on the time discretization considered, NT can be either

Ntm , for the mechanical problem, or Nt, for the electrical problem.
Proper orthogonal decomposition, then, constructs n orthogonal functions ϕj ∈ L2(Ω)

such that the following projection error is minimized:

J (ϕ1,ϕ2, ...,ϕn) =

Nsnapshots∑
l=1

∥∥∥∥∥sl −
n∑

j=1

⟨sl,ϕj⟩ϕj

∥∥∥∥∥
2

2

,

where ⟨·, ·⟩ is the scalar product and the norm is the Euclidean norm.
Moreover, a minimum of the functional J can be computed through the Singular Value
Decomposition of the matrix STS 1 and the reduced basis vectors ϕj consist in the left
singular vectors set [4, 15].
Denoting by {λj}

Nsnapshots

j=1 the positive eigenvalues of STS sorted in decreasing order, where
Nsnapshots can be either NT or NT ·Ntrain, the error associated with the minimum of the
functional becomes

J (ϕ1,ϕ2, ...,ϕn) =

Nsnapshots∑
j=n+1

λj.

Since each basis vector is associated with a singular value, the singular vectors are ranked
in order of importance, so that the Nsnapshots−n basis vectors associated to small singular
values can be removed without losses in solution space approximation.

1Since the matrix STS is a symmetric positive-definite matrix, its Singular Value Decomposition
consists in its eigendecomposition.
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In fact, given a POD tolerance tolPOD ≪ 1, n is selected as the smallest dimension s.t.
the relative truncation error is smaller than tolPOD, namely∑Nsnapshots

j=n+1 λj∑Nsnapshots

j=1 λj
< tolPOD,

which can be seen as the following minimization problem:

n = argmin
k

( ∑k
j=1 λj∑Nsnapshots

j=1 λj
≥ 1− tolPOD

)
,

from which we are able to select the dimension of the truncated reduced basis that better
approximate the original solution space. Of course, this approximation highly depends on
the problem considered. In fact, e.g., for parameter dependent problems, the dimension
of the training set Ntrain may influence the singular values decay of the snapshots matrix,
and, as a consequence, the dimension of the reduced basis in the ROM approximation.
Thus, in such cases, in order to correctly capture the variability of the solution over the
parameter space, the dimension of the training should be sufficiently rich. However, more
in general, for problems characterized by large parameter variations, different physical
regimes, or moving features such as fronts or discontinuities, the singular values decay of
the snapshots matrix can be extremely slow, due to the high variability of the solutions
stored, and this highly affect the dimensions of the truncated basis when relying on a global
ROM strategy as the one presented in this work, in order to approximate the original
solution space. In those scenarios, there is the need to rely on different techniques, such
as the local reduced-order model presented in [1], which, however, hasn’t been exploited
in this work.

3.1.2. Global ROM construction for parametrized problems

Solving a parametrized, time-dependent problem for different values of the parameter
µ ∈ P , at different time-steps, represents a particularly difficult computational task.
Thus, relying on RB methods, provides a twofold advantage in this case, since we can
construct an efficient numerical approximation which accounts for parameter variations
and compute an accurate solution at lower computational costs and memory storage.
In this work, we adopt the following scheme to build a global reduced-order model for
parametrized problems:

• during the offline phase, the parameter domain is explored and, for Nµ different
instances of the parameter µ, we compute and store a set of high fidelity solution
snapshots, taken at each time-step, for each parameter;

• the set of snapshots stored is used to generate, by means of POD, a low dimensional
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global RB space for the solution, namely we have that the dimension is n≪ Nh;

• then, during the online phase, for each new value of µ ∈ P , we solve the reduced
model combining the reduced arrays stored offline, whose complexity no longer
depends on Nh, thus reducing the computational complexity with respect to the
FOM.

.

3.2. A reduced-order model for the cardiac electro-

physiology subproblem

In order to develop a reduced-order model for the cardiac electrophysiology subproblem,
let us write the parametrized version of its full-order model (3.1). Namely: given µ ∈ P ,
find u(l+1)

he
= u(l+1)

he
(µ), w(l+1)

1,he
= w(l+1)

1,he
(µ), w(l+1)

2,he
= w(l+1)

2,he
(µ) and w(l+1)

3,he
= w(l+1)

3,he
(µ)

such that , for l = 0, ..., Nt − 1

w(l+1)
1,he

− w(l)
1,he

∆te
− Fion,1(u

(l)
he
,w(l+1)

1,he
;µ) = 0,

w(l+1)
2,he

− w(l)
2,he

∆te
− Fion,2(u

(l)
he
,w(l+1)

2,he
;µ) = 0,

w(l+1)
3,he

− w(l)
3,he

∆te
− Fion,3(u

(l)
he
,w(l+1)

3,he
;µ) = 0,

w(0)
1,he

= w1,0(µ),w
(0)
2,he

= w2,0(µ),w
(0)
3,he

= w3,0(µ),

J(µ)δuhe = r(u(l+1)
he,0

,w(l+1)
1,he

,w(l+1)
2,he

,w(l+1)
3,he

; (µ)),

u(l+1)
he

= u(l+1)
he,0

− δuhe , u(l+1)
he,0

= u(l)
he
.

u(0)
he

= u0(µ),

(3.1)

where we update first the ionic model, Eq.s (3.1)1−4, by the fixed point method and then
Eq. (3.1)5−7, by one iteration of the Newton method, as presented in chaper 2.

3.2.1. POD-Galerkin and hyper-reduction techniques

When aiming at building a ROM for a problem such as (3.1), the nature of the problem
leads to a different treatment for the potential variable and the ionic variables, since
the former is the solution of a PDE, while the latter varies in space indirectly, due to
the dependence on the transmembrane potential. The approximation of uhe(µ) can be
written as

u(l)
he
(µ) ≈ Vuu(l)

n (µ), (3.2)
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where the columns of Vu ∈ RNh×nu (nu ≪ Nh) are basis functions (eigenmodes) obtained
by POD, thus Vu is an orthogonal matrix and takes the name of transformation matrix.
The approximation of the ionic variables wk,h, k = 1, 2, 3, is instead obtained by evaluating
the ODEs only at a subset of mesh nodes, the so called reduced mesh, involved in the
efficient evaluation of the nonlinear term Iion. In fact, the ionic variables are gappy data
and, as we will see later on, in order to reconstruct them over all the domain, at each
time, the Gappy POD method can be used instead, which requires anyway a set of basis
functions for each ionic variable, similarly to equation (3.2) for the potential.
Hence, assuming that the ionic model has already been updated at time t(l+1) by solving
(3.1)1−4, the reduced-order model for the monodomain equation is obtained by inserting
(3.2) into (3.1)5 and performing a Galerkin projection, which consists in a left projection
of the monodomain equation onto the column space of the trasformation matrix Vu, i.e
our reduced space for the transmembrane potential. Hence, the Galerkin-RB problem
for the increment form of the monodomain equation reads: find u(l+1)

n = u(l+1)
n (µ), l =

0, ..., Nt − 1, such that


VT

uJ(µ)Vuδun = VT
u r(Vuu

(l+1)
n,0 ,w(l+1)

1,he
,w(l+1)

2,he
,w(l+1)

3,he
;µ),

u(l+1)
n = u(l+1)

n,0 − δun, u(l+1)
n,0 = u(l)

n ,

u(0)
n = VT

uu0,

(3.3)

However, the residual r, defined in Eq. (2.5), is a nonlinear term, since it requires the
assembling of the nonlinear term Iion. Thus, the µ-dependence in this case is nonaffine
and the evaluation of the vector, at each time-step, is still performed on the full-order
space, compromising the overall ROM efficiency. In order to efficiently evaluate also
the nonlinear terms, in this work we rely on the discrete empirical interpolation method
(DEIM) [1]. Namely, we interpolate the nonlinear residual over m interpolation points
to get its approximate affine expansion at each time step. This leads to the following
hyper-reduced order model for the increment of the transmembrane potential (for the sake
of notation, we will indicate the dependence on the three ionic variables using just one,
more general, ionic variable w(l+1)

he
representing them): find u(l+1)

n , l = 0, ..., Nt − 1, such
that 

VT
uJ(µ)Vuδun = VT

uΦ(PTΦ)−1r(PTVuu
(l+1)
n,0 ,PTw(l+1)

he
;µ),

u(l+1)
n = u(l+1)

n,0 − δun, u(l+1)
n,0 = u(l)

n ,

u(0)
n = VT

uu0.

(3.4)

The columns of the matrix Φ ∈ RNhe×m are the m POD modes obtained by applying
POD to the snapshot matrix of the nonlinear residual r.
The matrix P ∈ RNhe×m is a reduction matrix, defined as P = [eI1 | ... | eIm ], where
eIi = [0, ..., 0, 1, 0, ..., 0]T ∈ RNhe is the Ii-th column of the identity matrix I ∈ RNhe×Nhe
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and I ⊂ {1, ..., Nhe} is the set of the |I| = m interpolation indices adopted for the DEIM.
The indices are selected iteratively, by a greedy process, through the so-called magic points
algorithm [1].
The matrix Φ(PTΦ)−1 can be pre-assembled, enhancing the efficient computation of the
nonlinear terms on the m dofs I1, ..., Im forming the reduced mesh (we can indeed consider
the matrix P as a projection matrix onto the reduced mesh).
Then, the hyper-reduced order model reads: find u(l+1)

n , w(l+1)
1,he

, w(l+1)
2,he

and w(l+1)
3,he

, for
l = 0, ..., Nt − 1 such that

PT
w(l+1)

1,he
− w(l)

1,he

∆te
− Fion,1(PTVuu

(l)
n ,PTw(l+1)

1,he
;µ) = 0,

PT
w(l+1)

2,he
− w(l)

2,he

∆te
− Fion,2(PTVuu

(l)
n ,PTw(l+1)

2,he
;µ) = 0,

PT
w(l+1)

3,he
− w(l)

3,he

∆te
− Fion,3(PTVuu

(l)
n ,PTw(l+1)

3,he
;µ) = 0,

VT
uJ(µ)Vuδun = VT

uΦ(PTΦ)−1r(PTVuu
(l+1)
n,0 ,PTw(l+1)

he
;µ),

u(l+1)
n = u(l+1)

n,0 − δun, u(l+1)
n,0 = u(l)

n ,

u(0)
n = VT

uu0.

(3.5)

The model above represents a very efficient way to solve the coupled monodomain Bueno-
Orovio system. However, although the transmembrane potential uhe can be obtained by
a linear combination of the nu POD modes (columns of Vu) with the ROM solution un,
on each point of the grid, at each time (cf. equation (3.2)) and for each new instance of
the parameter µ, the same procedure is not possible for the ionic variables, which are just
evaluated at the points forming the reduced mesh and belong only to that subspace.
Nonetheless, the ionic variables, in particular the calcium ion concentration, are directly
responsible for the cardiac cell contraction. For this reason, their efficient and accurate
evaluation is of crucial importance in the electromechanical coupling, especially in the
field of RB methods, since it is of fundamental importance to consider how variations
of the parameters in the electrical problem indirectly affects the cardiac contractions in
clinical applications.
In the following subsection we introduce a new strategy to approximate the ionic variables,
interponing their calculation in the reduced-order framework we have introduced.

3.2.2. Gappy POD for ionic variables reconstruction

Above we have investigated the role of the DEIM in the efficient evaluation of the nonlinear
terms included in the monodomain equation. In the DEIM the number of interpolation
points corresponds to the dimension m of the reduced space spanned by Φ, namely the
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matrix PTΦ is a square matrix.
On the other hand, Gappy POD is a ROM technique that considers the case where more
sampling points m > n than the dimension n of the reduced space are used, which is
indeed the case of gappy data.
Let us consider equations (3.5)1−3, namely the hyper-reduced system of ODEs regulating
ionic variables activation, which returns the ionic variables computed only at the set of
m interpolation points forming the reduced mesh. Moreover, let us introduce a reduced
basis approximation of w(l)

k,he
= w(l)

k,he
(µ), given by w(l)

k,he
≈ Vwk

w(l)
k,n, k = 1, 2, 3.

Hence, for each ionic variable w(l+1)
k,he

, k = 1, 2, 3, we can write the solution of the hyper-
reduced ionic model (3.5)1−3 as follows: for l = 0, ..., Nt − 1, we set

PTw(l+1)
k,he

≈ PT

nwk∑
i=1

b
(l+1)
i ϕi = PTVwk

w(l+1)
k,n , (3.6)

where ϕi is a basis function, corresponding to the i-th column of the transformation matrix
Vwk

∈ RNhe×nwk , obtained by the POD method applied to the snapshots matrix Swk
of

the k-th ionic variable, for each k = 1, 2, 3.
The matrix PTVwk

∈ Rm×nwk is not a squared matrix, since we build the model in such
a way that m > nwk

for each k, i.e., the number of points at which the ionic variables
are evaluated is larger than the dimension nwk

of the space spanned by the columns of
the transformation matrix Vwk

. From (3.6), we have that the ROM approximation of the
k-th ionic variable at each time t(l+1) is

w(l+1)
k,n ≈ (PTVwk

)†PTw(l+1)
k,he

,

which can be reprojected on the full domain, at each time, leading to the following ap-
proximation:

w(l+1)
k,rec = Vwk

w(l+1)
k,n ≈ Vwk

(PTVwk
)†PTw(l+1)

k,he
.

where (PTVwk
)† is the Moore-Penrose inverse of PTVwk

and can be efficiently pre-
computed by using the QR decomposition, namely, given PTVwk

= QPTVwk
RPTVwk

,
QPTVwk

∈ Rm×n and RPTVwk
∈ Rn×n we have that

w(l+1)
k,rec = Vwk

w(l+1)
k,n ≈ Vwk

R−1
PTVwk

QT
PTVwk

PTw(l+1)
k,he

,

where Vwk
R−1

PTVwk

QT
PTVwk

is precomputed and stored in the offline phase.
Hence, when solving the system (3.5), at each time step, for each parameter, we can
efficiently evaluate the ionic variables all over the domain by means of the Gappy POD
method.



36 3| Reduced-order models for one-way coupled problems

3.2.3. Least square Petrov-Galerkin method

In the subsection 3.2.1 we presented the POD-Galerkin approach to develop the reduced-
order model (3.3), namely we have applied a Galerkin projection to the increment equation
(3.3)1, leading to the following reduced Newton method:

VT
uJVuδuh = VT

u r,

u(l+1)
n = u(l+1)

n,0 − δun.
(3.7)

The Jacobian matrix is assembled in such a way it is symmetric and positive definite,
moreover it is assembled only once and just the residuals need to be updated at each time
step. As suggested by [4], this leads to seeking optimal solution of equation (3.7), that
correspond to the minimum of the following error functional:

δun = arg min
a∈Rnu

∥∥Vua − J−1r
∥∥
Θ
, (3.8)

where Θ = J. However, when the dimension of the column space of Vu is small, nu-
merical instabilities might affect the solution of the ROM (3.3), due to the nature of the
electrophysiology problem, which consists in the propagation of a very steep wave.
In order to reduce the numerical instabilities, a least-squares Petrov-Galerkin (LSPG)
approach has been investigated as an alternative to the Galerkin projection in the offline
phase. The LSPG approach is able to seek an optimal solution to the minimization prob-
lem (3.8) even when the Jacobian J is not SPD, which is often the case when dealing
with nonlinear problems [4]. This is because the minimization problem (3.8) corresponds
to the normal form of the least squares problem when Θ = JTJ:

δun = arg min
a∈Rnu

∥JVua + r∥2 = arg min
a∈Rnu

∥∥Vua − J−1r
∥∥

JTJ , (3.9)

so that the reduced Newton method with least-squares Petrov Galerkin projection be-
comes:

VT
uJTJVuδuh = −VT

uJT r,

u(l+1)
n = u(l+1)

n,0 + δun.
(3.10)

Similarly to the Gappy POD method, the system (3.10) can be efficiently solved by QR
decomposition, namely JVu = QJVu

RJVu where QJVu
∈ RNh×nu and

RJVu ∈ Rnu×nu , leading to an equivalent form of (3.10):

RJVuδuh = −QT
JVu

r,

u(l+1)
n = u(l+1)

n,0 + δun.
(3.11)
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The least-squares Petrov-Galerkin represents a valid alternative to the Galerkin one, even
when both the methods lead to optimal solutions as the case in analysis, in order to gain
stability and accuracy; this is why it is of interest to study the behavior of ROM with
both the approaches. For what concerns the computational costs, we expect the LSPG
projection to be slightly less efficient than the Galerkin projection, due to the assembling
of the left projection operator JVu and the QR decomposition. However, compared to the
FOM, the two approaches represent both an improvement in terms of efficiency, since they
are able to seek the solution of the cardiac electrophysiology subproblem on a subspace
of much smaller dimensions than the original one.

3.3. A reduced-order model for the cardiac mechan-

ical subproblem

The construction of a ROM for the mechanical subproblem follows a similar approach to
the one we exploited in subsection 3.2.1. Namely we consider a POD-Galerkin method to
build a first reduced-order model and then we apply the DEIM for the hyper-reduction,
to efficiently compute the nonlinear terms.
Let us consider the parametrized version of problem (2.13), namely, given µ ∈ P , we
have that d(k)

hm
= d(k)

hm
(µ) and p(k) = p(k)(µ). As we have done for the full-order model,

due to the interaction of blood with the endocardium, to update the pressure we have
to distinguish the problem depending on the related cardiac cycle phase. Namely, in the
isovolumetric phases, the parametrized version of the problem becomes: given d(k+1),(0)

hm
=

d(k)
hm

and p(k+1),(0) = p(k) as initial guesses for the Newthon method, for each k such that
t(k+1) belongs to an isovolumetric phase, for j ≥ 0 solve

Jd,d
(
d(k+1),(j)
hm

, p(k+1),(j);µ
)
v(k+1),(j)(µ) = rd

(
d(k+1),(j)
hm

, p(k+1),(j);µ
)
,

Jd,d
(
d(k+1),(j)
hm

, p(k+1),(j);µ
)
b(k+1),(j)(µ) = J

(k+1),(j)
d,p (µ),

δp(k+1),(j) =
p(k+1),(j) − J

(k+1),(j)
p,d (µ)v(k+1),(j)(µ)

J
(l+1),(j)
p,d (µ)b(k+1),(j)(µ)

,

δd(k+1),(j)
hm

= −(v(k+1),(j)(µ) + b(k+1),(j)(µ)δp(k+1),(j)),

d(k+1),(j+1)
hm

= d(k+1),(j)
hm

+ δd(k+1),(j)
hm

,

p(k+1),(j+1) = p(k+1),(j) + δp(k+1),(j),

(3.12)

until
∥∥∥r(k+1),(j)

d

(
dhm

(µ), p(k+1),(j)(µ)
)∥∥∥

2
< ϵ, for ϵ sufficiently small, and j ≤ Nmax

iter , where
j is the index of the Newton iteration.
For the other two phases, where the pressure is updated before solving Eq. (2.13), the
parametrized version reads: given d(k+1),(0)

hm
= d(k)

hm
as initial guess of the Newthon method

at each iteration, for each k such that t(k+1) belongs to the ejection or the filling phase,
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for j ≥ 0 solve Jd,d
(
d(k+1),(j)
hm

;µ
)
δd(k+1),(j)

hm
= −rd

(
d(k+1),(j)
hm

;µ
)
,

d(k+1),(j+1)
hm

= d(k+1),(j)
hm

+ δd(k+1),(j)
hm

,
(3.13)

until
∥∥∥r(k+1),(j)

d (µ)
∥∥∥
2
< ϵ and j ≤ Nmax

iter , where j is the index of the Newton iteration.
Here, it is important to point out that, in the construction of the ROM for the cardiac
mechanics, we adopt a global reduced basis, built by means of a POD over a snapshots
matrix that consider snapshots of the displacement from all the sequential phases of the
cardiac cycle, for each parameter. Thus, we assume there is not a distinction between
the different phases, since they mainly affect the evolution of the pressure p and the left
ventricle volume V , and only indirectly the displacement field. Moreover, the passage
from a phase of the cardiac cycle to the sequent phase is only due to the values of the
pressure on the endocardium Γendo

0 and how we model its evolution in time, as we have
seen in Eq. (1.18), but it doesn’t modify the way we model the cardiac deformation.

3.3.1. POD-Galerkin and hyper-reduction techniques

The approximation of d(k+1)
hm

(µ), ∀k = 0, ..., Ntm − 1 can be written as

d(k+1)
hm

(µ) ≈ Vdd(k+1)
n (µ), (3.14)

where the columns of the transformation matrix Vd ∈ RNd×nd (nd ≪ Nd) are the or-
thonormal basis functions obtained by proper orthogonal decomposition over the snap-
shots matrix for the displacement.
Substituting (3.14) in problem (3.12), and performing a Galerkin projection, we thus ob-
tain: given d(k+1),(0)

n = d(k)
n and p(k+1),(0) = p(k), for each k such that t(k+1) belong to an

isovolumetric phase, for j ≥ 0 solve

VT
dJd,d

(
Vdd(k+1),(j)

n , p(k+1),(j);µ
)
Vdv

(k+1),(j)
n (µ) =

VT
drd

(
Vddn, p

(k+1),(j);µ
)
,

VT
dJd,d

(
Vdd(k+1),(j)

n , p(k+1),(j);µ
)
Vdb(k+1),(j)

n (µ) =

VT
dJ

(k+1),(j)
d,p (µ),

δp(k+1),(j) =
p(k+1),(j) − VT

dJ
(k+1),(j)
p,d (µ)Vdv

(k+1),(j)
n (µ)

VT
dJ

(k+1),(j)
n,p,d (µ)Vdb(k+1),(j)

n (µ)
,

δd(k+1),(j)
n = −(v(k+1),(j)

n (µ) + b(k+1),(j)
n (µ)δp(k+1),(j)),

d(k+1),(j+1)
n = d(k+1),(j)

n + δd(k+1),(j)
n ,

p(k+1),(j+1) = p(k+1),(j) + δp(k+1),(j),

(3.15)
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until
∥∥∥r(k+1),(j)

d (µ)
∥∥∥
2
< ϵ, for ϵ sufficiently small, and j ≤ Nmax

iter , where v(k+1),(j)
n (µ) =

VT
dv(k+1),(j)(µ) and b(k+1),(j)

n (µ) = VT
db(k+1),(j)(µ) are the projections of v(k+1),(j)(µ) and

b(k+1),(j)(µ) on the reduced space generated by the basis functions for the displacement
field, respectively.
We substitute Eq. (3.14) also in (3.13) and, performing a Galerkin projection onto Vd,
we obtain the followin Galerkin-RB problem: given d(k+1),(0)

n (µ) = d(k)
n (µ), for each k

such that t(k+1) belong to the ejection or the filling phase, for j ≥ 0 solveVT
dJd,d

(
Vdd(k+1),(j)

n ;µ
)
Vdδd(k+1),(j)

n = −VT
drd

(
Vdd(k+1),(j)

n ;µ
)
,

d(k+1),(j+1)
n = d(k+1),(j)

n + δd(k+1),(j)
n ,

(3.16)

until
∥∥∥r(k+1),(j)

d (µ)
∥∥∥
2
< ϵ and j ≤ Nmax

iter .
At this stage of the mechanical reduce-order model, the nonlinear residual rd and, as a
consequence, the jacobian matrix Jd,d are still assembled at each time, for each Newton
iteration, on the original FOM space and then projected on the reduced space, thus limit-
ing the efficiency of the ROM. As we have done for the cardiac electrophysiology ROM, in
order to efficiently assemble those terms, we rely on the discrete empirical interpolation
method (DEIM). Namely, by collecting snapshots of the nonlinear residual rd at each
time-step and for each parameter instance µ ∈ P , and by applying proper orthogonal
decomposition to the obtained snapshots matrix, we compute the transformation matrix
Φd ∈ RNd×md . We then introduce the restriction matrix Pd ∈ RNd×md , which is a pro-
jection matrix onto the reduced mesh formed by the md interpolation indices adopted for
the DEIM. Hence, we can approximate the nonlinear terms in an efficient way as follows

rd
(
Vdd(k+1),(j)

n (µ), p(k+1),(j)(µ)
)
≈

Φd
(
PT

dΦd
)−1rd

(
PT

dVdd(k+1),(j)
n (µ), p(k+1),(j)(µ)

)
,

Jd,d
(
Vdd(k+1),(j)

n (µ), p(k+1),(j)(µ)
)
≈

Φd
(
PT

dΦd
)−1

Jd,d
(
PT

dVdd(k+1),(j)
n (µ), p(k+1),(j)(µ)

)
.

(3.17)

For the sake of notation, let us rewrite the terms Jd,d
(
PT

dVdd(k+1),(j)
n (µ), p(k+1),(j)(µ)

)
∈

Rmd×Nd and rd
(
PT

dVdd(k+1),(j)
n (µ), p(k+1),(j)(µ)

)
∈ Rmd as follows:

J̃
(k+1),(j)
d,d (µ) = Jd,d

(
PT

dVdd(k+1),(j)
n (µ), p(k+1),(j)(µ)

)
,

r̃(k+1),(j)
d (µ) = rd

(
PT

dVdd(k+1),(j)
n (µ), p(k+1),(j)(µ)

)
Moreover the left projection matrix Φd

(
PT

dΦd
)−1 can be pre-assembled, reducing the

computational cost related to the assembling of the nonlinear terms on the reduced mesh.
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The approximation of the nonlinear terms by DEIM allows us to write the hyper-reduced
form of problems (3.15) and (3.16), which correspond to the mechanical reduced-order
model solved during the online phase, for each new instance of the parameter µ ∈ P . In
particular, for the isovolumetric phases, the hyper-ROM reads as follow: given d(k+1),(0)

n =

d(k)
n and p(k+1),(0) = p(l), for each k such that t(k+1) belong to an isovolumetric phase, for
j ≥ 0 solve 

VT
dΦd

(
PT

dΦd
)−1

J̃
(k+1),(j)
d,d (µ)Vdv

(k+1),(j)
n (µ) =

VT
dΦd

(
PT

dΦd
)−1r̃(k+1),(j)

d (µ),

VT
dΦd

(
PT

dΦd
)−1

J̃
(k+1),(j)
d,d (µ)Vdb(k+1),(j)

n (µ) =

VT
dJ

(k+1),(j)
d,p (µ),

δp(k+1),(j) =
p(k+1),(j) − VT

dJ
(k+1),(j)
p,d (µ)Vdv

(k+1),(j)
n (µ)

VT
dJ

(k+1),(j)
n,p,d (µ)Vdb(l+1),(j)

n (µ)
,

δd(k+1),(j)
n = −(v(k+1),(j)

n (µ) + b(k+1),(j)
n (µ)δp(k+1),(j)),

d(k+1),(j+1)
n = d(k+1),(j)

n + δd(k+1),(j)
n ,

p(k+1),(j+1) = p(k+1),(j) + δp(k+1),(j),

(3.18)

until
∥∥∥r̃(k+1),(j)

d (µ)
∥∥∥
2
< ϵ and j ≤ Nmax

iter .
For the remaining two phases of the considered cardiac cycle, the hyper-ROM reads: given
d(k+1),(0)
n (µ) = d(k)

n (µ), for each l such that t(k+1) belong to the ejection or the filling phase,
for j ≥ 0 solve

VT
dΦd

(
PT

dΦd
)−1

J̃
(k+1),(j)
d,d (µ)Vdδd(k+1),(j)

n =

−VT
dΦd

(
PT

dΦd
)−1r̃(k+1),(j)

d (µ),

d(k+1),(j+1)
n = d(k+1),(j)

n + δd(k+1),(j)
n ,

(3.19)

until
∥∥∥r̃(k+1),(j)

d (µ)
∥∥∥
2
< ϵ and j ≤ Nmax

iter .
Hence, the two hyper-reduced models presented, which varies only in the way the pressure
is updated in the different cardiac cycle phases, represent a very efficient way to solve the
cardiac mechanics problem. As we have seen in section 3.2.1 for the transmembrane
potential, the ROM approximation of the displacement field dhm

can be obtained by
a linear combination of the nd basis functions (columns of Vd ) with the online ROM
solution dhm

at each times-step, for each new instance of µ ∈ P .
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3.4. A reduced-order model for the one-way coupled

electromechanical problem

The reduced-order model for the one-way coupled electromechanical problem is obtained
by coupling the two ROMs for cardiac electrophysiology and cardiac mechanics introduced
in this chapter. As we anticipated in section 1.3, in this work we are considering a one-way
coupled electromechanical model, thus, solving the electromechanical ROM considered
consists in solving first the ROM for the electrophysiology subproblem and then the
ROM for the mechanical subproblem, where the active part depends at each time-step
by the intracellular calcium concentration through the activation model presented in Eq.
(1.10). The online phase of the electromechanical model is thus solved as follows: given
u(0)
he

= u0, w(0)
1,he

= w1,0, w(0)
2,he

= w2,0, w(0)
3,he

= w3,0 and T
(0)
a,hm

= Ta,0,d
(0)
hm

= d0,hm
,

d(1)
hm

= d0,hm
+∆tmḋ0,hm

• by an intergrid map, we interpolate the efficiently computed ionic variable w(l+1)
3,rec ,

representing the intracellular calcium dynamic, from The to Thm , to obtain w(l+1)
3,hm

,
for l = 0, ..., Nt − 1. In fact, due to the propagation of a very steep front, cardiac
electrophysiology needs to be solved on a finer mesh, The , with respect to the coarser
one, Thm , used for the mechanics problem, namely we considered two refinement
steps of the initial grid for the former and no refinement steps for the latter;

• we then find d(k+1)
hm

, for each k = 0, ..., Ntm − 1, solving the online phase of the
cardiac mechanics ROM subproblem, namely either (3.18) or (3.19), depending on
the value of the pressure on the endocardium, i.e. depending on the phases of the
cardiac cycle. The active part of (3.18) and (3.19) is assembled by evaluating, at
each time-step k, the active tension T

(k+1)
a,hm

through the activation model (2.12),
where wq·(l+1)

3,hm
= w(k+1)

3,hm
is the intracellular calcium concentration, evaluated at the

time intervals considered for the discretization of the mechanical problem, which
determines the electromechanical coupling.

We remark that the one-way coupled electromechanical ROM presented in this work
can efficiently simulate how the electrical propagation affetcs the cardiac deformations
under parameter variations, coming either from the electrical subproblem and/or from the
mechanical one. This is of fundamental importance when we consider clinical applications
of such model, where the solutions are highly dependent on parameter variations, due to
the inter-patient variability, and for which, relying on the full order methods, represent
an almost infeasible task, for the too demanding computational costs.
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4| Efficient evaluation of ionic
variables in cardiac
electrophysiology

In this chapter, we investigate the numerical performances of the RB methods for cardiac
electrophysiology, looking at efficiency and accuracy in the development of the ROM and,
in particular, the accuracy in the reconstruction of the ionic variables in all the domain
at each time. We are going to compare the two different approaches adopted in the
construction of the ROM in the offline phase, namely the Galerkin projection and the
least-squares Petrov-Galerkin, and how they affect the goodness of the solutions in the
online phase. The numerical simulations have been performed on a high performance
computer equipped with a Intel Xeon CPU E5-2640v4, 2.40GHz and 64 GB RAM.

4.1. Setting

Recalling what seen in chapter 3, the offline phase for the construction of a parametrized
electrophysiology ROM consists in the following consecutive steps:

• Step 1: Solve the FOM, Eq. (3.1), for Ntrain training parameters, to save snapshots
of the transmembrane potential and the ionic variables in time, for each parameter
µj, j = 1, ..., Ntrain, from which the transformation matrices Vu, Vw1 , Vw2 , Vw3 are
computed by means of proper orthogonal decomposition;

• Step 2: solve a first non hyper-ROM, descrived by (3.3), for Ntrain−ROM param-
eters, and save snapshots of the residual r in time, for each parameter µj, j =

1, ..., Ntrain−ROM , to construct the transformation matrix Φ through POD;

• Step 3: assemble and store the left projection matrices for the DEIM and the Gappy
POD method to develop the hyper-reduction.

Then, in the online phase (POD-Gaklerkin-DEIM phase), the ROM is built to efficiently
approximate the problem solution, assembling the non-linear terms on the reduced mesh
and solving the hyper-reduced system (3.5), for each new instance of the parameter µ ∈ P .
To compute the accuracy of the hyper-ROM approximations for the potential and the ionic
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variables, the following mean relative error is adopted (g is a generic variable representing
either the transmembrane potential or a ionic variable):

errg = meant∈(0,T )

∥∥gh(t;x)− VT
g gn(t;x)

∥∥
2

∥gh(t;x)∥2
, (4.1)

namely, at each time-step, not considering the initial one, the relative error for a vector
of the solution evolving in space with respect to the FOM solution is computed and then
the mean over all the time-steps is taken.

4.2. Test 1: Evaluation of ionic variables on a slab

domain

As first test case, we consider a three-dimensional monodomain model, which describes
the behavior of the transmembrane potential and the ionic variables over a slab of the
myocardial tissue, Ω0 = (0, 0.05)× (0, 0.001)× (0, 0.05) m3.
For the mesh The , two global refinement steps have been applied to the initial grid, leading
to 156800 cells and Nhe = 197985 dofs, in order to have a more realistic and less mesh
depending travelling wave.
The accuracy of the Gappy POD method in the approximation of the ionic variables and
the investigation of the performances for the two approaches POD-Galerkin and POD
least-squares Petrov-Galerkin in the construction of the ROM are considered first for
a non-parametrized electrophysiology problem. Namely, the train and the test in the
offline and online phases have been performed on the same instance of the conductivity
coefficients. In fact, in this first case tested, the conductivity tensor is fixed and reads:

D(x) = σt
m1+ (σl

m − σt
m)f0 ⊗ f0 + (σn

m − σt
m)n0 ⊗ n0,

with σl
m = 1.5 · 10−4 m2/s, σt

m = 7 · 10−5 m2/s and σn
m = 4 · 10−5 m2/s for the longitu-

dinal, transversal and normal conductivity coefficients respectively. These values provide
a propagation velocity of 0.75 m/s along the fibers direction, 0.62 m/s in the transversal
direction and 0.54 m/s along the normal direction.
In figure 4.1, we report the computational mesh The and the fibers vector field considered
over the slab domain.
The applied current consists in a Gaussian impulse set in the corner (0.0, 0.0, 0.05) and
reads as:

Iapp(x, t) = 400exp
(
− x21 + x22 + x23

0.005

)
I[0,0.003s](t),

where I is the indicator function.
The ionic model is the Bueno-Orovio model, presented in section (1.1.2), however, the



4| Efficient evaluation of ionic variables in cardiac electrophysiology 45

methods introduced and the relative implementations work fine also for other ionic models,
such as the Aliev-Panfilov or the FitzHugh Nagumo model.
As time interval, we consider the interval (0, T ), T = 120 ms, with a time step ∆te =

10−4s, which is able to catch both the depolarization and the start of the repolarization
of the cardiac membrane, meaning that the propagation of the steep wave generated by
the impulse reaches the whole domain and begins to dissipate in the last 20ms.

Figure 4.1: Computational mesh (The) over the slab domain (left) and fibers field (right).

4.2.1. Dimension of POD spaces varying the POD tolerance

As seen in subsection 3.1.1, the dimensions of the reduced basis, for each variable, depends
on the value of the POD tolerance used. To evaluate the accuracy of the ROM, the tests
are performed varying the dimension of the reduced basis. In table (4.1), for each variable,
we have the RB dimension corresponding to the respective POD tolerance adopted for
the simulations, which are tolPOD = 10−1, 10−2 and 10−3:

tolPOD 10−1 10−2 10−3

nu 18 151 339
nw1 10 68 369
nw2 1 2 9
nw3 8 43 150
m 600 986 1078

Table 4.1: Number of eigenmodes obtained by the POD method for the different variables
adopted in the two approaches varying the POD tolerance. The dimension m of the
nonlinear term’s reduced basis is obtained using tolPOD = 10−5 in all the three cases.

For what concerns the reduced-order representation of the nonlinear term, it is built
through POD using a POD tolerance fixed to 10−5 in all the case tested. The value is
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lower than the values adopted for the potential and the ionic variables in order to re-
tain stability; in fact, the number of bases m, corresponding also to the number of dofs
adopted for the DEIM and forming the reduced mesh, should be higher than the number
of basis functions for the variables, mainly to avoid ill-conditioning of the matrices of the
form PTV when considering the Gappy POD method.

4.2.2. Numerical results

In table 4.2 the relative errors related to the ROM built using a POD-Galerkin approach
are displayed. As we can see from table 4.1, for a high POD tolerance, the dimensions of
the reduced bases are small, leading to low-quality approximations of the variables and
high relative errors. This is due to the fact that there are not enough basis elements
able to represent all the characteristics of the spaces of expected solutions when the
POD tolerance for the proper orthogonal decomposition for the variables is high. This
is often the case when a global ROM is adopted to approximate stiff problems like the
monodomain model, characterized by the propagation of a very steep front. However,

Relative errors using
Galerkin projection

POD tolerance
10−1 10−2 10−3

erru−POD 1.00 3.62·10−1 1.46·10−2

erru−PODDEIM 1.00 3.82·10−1 2.76·10−2

errw1−Gappy 1.54 2.56·10−1 1.08·10−2

errw2−Gappy 1.78·10−1 1.11·10−2 8.79·10−4

errw3−Gappy 9.71·10−1 2.9·10−1 9.81·10−3

Table 4.2: Relative errors for the transmembrane potential and the ionic variables when
building the ROM with the POD-Galerkin approach.

by increasing the dimensions of the reduced basis for the variables, it is possible to see
a remarkable improvement in the approximations, while still having a great reduction of
the dimension Nhe of the original space and a lowering of the computational costs with
respect to the full order model (cf. figure 4.8).
In figures 4.2 and 4.3 we can see a snapshot at 60ms of the transmembrane potential and
the ionic variables, from the FOM solution to the one of the hyper-reduced model. In
particular, the approximation obtained using a tolPOD = 10−1, which is low-quality due
to the low number of bases adopted for the reduction, is shown in figure 4.2. The same
snapshot at 60ms, using a tolPOD = 10−3, which leads to higher dimensions of the reduced
spaces for the approximation, is shown in figure 4.3. We can see how the reconstruction
of the ionic variables by Gappy POD method and the transmembrane potential computed
by the hyper-ROM (3.5) are perfectly comparable to the ones obtained by the FOM, at
lower computational costs, as it is shown in figure 4.8, and lower memory storage.
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Figure 4.2: Snapshots of the transmembrane potential (first row) and the ionic variables
(from the second row to the last one, w1, w2,w3 rispectively) at 60ms in the POD-Galerkin
ROM and PODtol = 10−1. Left: FOM solutions; center: solutions of the POD-Galerkin
ROM without hyper-reduction; right: solutions of the hyper-ROM model with Gappy
POD reconstruction of the ionic variables (POD-Galerkin-DEIM ).
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Figure 4.3: Snapshots of the transmembrane potential (first row) and the ionic variables
(from the second row to the last one, w1, w2,w3 rispectively) at 60ms in the POD-Galerkin
ROM and PODtol = 10−3. Left: FOM solutions; center: solutions of the POD-Galerkin
ROM without hyper-reduction; right: solutions of the hyper-ROM model with Gappy
POD reconstruction of the ionic variables (POD-Galerkin-DEIM ).
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In table 4.3 the relative errors are reported, varying the POD tolerance, when the ROM
in the POD phase is built with a least-squares Petrov Galerkin projection.

Relative errors using
LSPG projection

POD tolerance
10−1 10−2 10−3

erru−POD 1.00 3.6·10−1 1.28·10−2

erru−PODDEIM 1.00 3.85·10−1 1.7·10−2

errw1−Gappy 1.01 2.58·10−1 6.53·10−3

errw2−Gappy 1.79·10−1 1.17·10−2 8.51·10−4

errw3−Gappy 9.71·10−1 2.93·10−1 6.05·10−3

Table 4.3: Relative errors for the transmembrane potential and the ionic variables when
building the ROM with the POD-LSPG approach.

The behavior of the solutions varying the POD tolerance is similar to the one resulting
from the Galerkin projection, with a slightly better accuracy when the POD tolerance
is equal to 10−3, as we can see also from figure 4.6. In figures 4.4 and 4.5 we can see
a snapshot at 120ms of the transmembrane potential and the ionic variables, from the
FOM solution to the one of the hyper-reduction when using LSPG projection in the POD
phase. At 120 ms it is possible to see the starting of the repolarization phase, which
brings the potential to a negative value just after the depolarization phase, where the
action potential changed the membrane potential to a positive value due to the applied
current impulse.
In figure 4.4 the solutions obtained with a POD tolerance equal to 10−1 are reported,
showing still a low-quality approximation of the variables, both in the POD-Galerkin
ROM and the POD-Galerkin-DEIM hyper-ROM, due to the low number of bases adopted
for the reduction. The use of LSPG does not increase the accuracy in this case, and this
is because both Galerkin and LSPG projection are able to find optimal solution to the
respective minimization problems (3.8) and (3.9), but the too low informations carried
by the reduced bases results in the search for a solution that is not optimal in the global
sense.

In figure 4.5 then, the solutions obtained with a POD tolerance equal to 10−3 are
reported. Overall, the solutions are well-approximated, even when considering a time
interval where both depolarization and repolarization phases are present, which represent
an increasing of the stiffness of the monodomain problem due to the progression and the
dissipation of the electric wave.
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Figure 4.4: Snapshots of the transmembrane potential (first row) and the ionic variables
(from the second row to the last one, w1, w2,w3 rispectively) at 60ms in the POD-LSPG
ROM and PODtol = 10−1. Left: FOM solutions; center: solutions of the POD-LSPG
ROM without hyper-reduction; right: solutions of the hyper-ROM model with Gappy
POD reconstruction of the ionic variables (POD-LSPG-DEIM ).
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Figure 4.5: Snapshots of the transmembrane potential (first row) and the ionic variables
(from the second row to the last one, w1, w2,w3 rispectively) at 60ms in the POD-LSPG
ROM and PODtol = 10−1. Left: FOM solutions; center: solutions of the POD-LSPG
ROM without hyper-reduction; right: solutions of the hyper-ROM model with Gappy
POD reconstruction of the ionic variables (POD-LSPG-DEIM ).



52 4| Efficient evaluation of ionic variables in cardiac electrophysiology

Figure 4.6: Relative errors varying the POD tolerance, comparing the POD-Galerkin
approach with the POD-LSPG approach.
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Figure 4.7: Relative errors varying the dimension of the reduced basis for the nonlinear
terms m, which is also the number of interpolation points of the DEIM and the dimension
of the reduced mesh, while keeping fixed the POD tolerance for the variables to 10−3.
Comparison of the POD-Galerkin approach with the POD-LSPG approach.

To evaluate also the accuracy varying the number of basis functions obtained by the POD
method for the nonlinear residuals and, equivalently, the number of interpolation points m
forming the reduced mesh, in figure 4.7 we show the relative errors related to the potential
and the ionic variables varying m, when the POD tolerance for the variables is fixed to
10−3. As we can see, the errors are higher for m close to the dimensions of the reduced
bases of the potential and the ionic variables and decrease when m increases. The last
cases tested, when m = 1078, correspond to the cases shown in figures 4.3 and 4.5, where,
for the nonlinear term, the reduced basis is built through POD using a POD tolerance
equal to 10−5. In general, for higher dimensions m, the LSPG projection results slighlty
more accurate than the Galerkin projection, while for lower m the POD-Galerkin method
gives better results, even though are the cases of less accurate approximations.
In figure 4.8 the efficiency of the ROM is evaluated, both in the POD and POD-DEIM
phases, comparing the two different approaches when building the ROM in the POD
phase.
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Figure 4.8: CPU time solving the POD-Galerkin ROM, without hyper-reduction, on the
left and the POD-Galerkin-DEIM hyper-ROM on the right, comparing the POD-Galerkin
approach with the POD-LSPG approach. The CPU time for solving the FOM is about
5400s.

The CPU time for solving the FOM is about 5400 s, so the computational speedup
provided by the introduced reduced-order modeling is evident, namely, in the most efficient
and accurate case, the speedup is 1.52x with respect to the FOM. In figure 4.8 we can
also see how the LSPG approach is slightly less efficient in the POD phase, while almost
comparable in the POD-DEIM phase when tolPOD = 10−3, which is the case where the
approximation of solutions with ROM are the most accurate.

4.3. Test 2: Parametrized electrophysiology on a slab

domain

The cardiac electrophysiology problem highly depends on parameters variations, as we
depicted in section 1.4. In this test we consider, for the electrical problem, µ ∈ P ⊂ R,
where µ = σl

m is the conductivity coefficient along the fibers direction. In particular, we
let vary σl

m in the interval [1.2 · 10−4, 2 · 10−4]m2/s to understand how the RB techniques
introduced, in particular the Gappy POD method, behave over parameters variations.
The other two conductivities coefficients are fixed to the values σt

m = 7 · 10−5 m2/s and
σn
m = 4 · 10−5 m2/s.

The mesh, the fibers field and the time interval are the same considered in the previous
section, namely, in figure 4.1 are shown the computational mesh and the fibers field, while
the time interval is (0, T ), with T = 120ms, to proper characterize the depolarization
phase of the transmembrane potential.
From the previous results, we decided to adopt a POD-Galerkin projection, since the fact
that the Jacobian is symmetric and positive definite, in the problem considered, brings no
particular differences in the results with respect to the POD least-squares Petrov-Galerkin
projection.
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4.3.1. ROM setup

In the first training phase, we solve the FOM for Ntrain = 4 parameters, namely µ1−FOM =

1.2 ·10−4, µ2−FOM = 1.466 ·10−4, µ3−FOM = 1.733 ·10−4, µ4−FOM = 2 ·10−4, to save snap-
shots of the transmembrane potential and the ionic variables in time, for each parameter.
By the POD method we built the reduced basis, using a tolPOD = 10−3; then, in the
second training phase, we solve the ROM without hyper-reduction for Ntrain−ROM = 5

parameters, namely µ1−ROM = 1.2 · 10−4, µ2−ROM = 1.4 · 10−4, µ3−ROM = 1.6 · 10−4,
µ4−ROM = 1.8 · 10−4, µ5−ROM = 2 · 10−4, to save snapshots of the residual in time, for
each parameter. The transformation matrix Φ for the residual is obtained by POD with
a tolPOD = 10−4. We then selected the minimum dimension of the POD spaces for each
variable in order to attain accurate results; these values and the offline overall time for
the construction of the ROM are displayed in table 4.4.
The nature of the cardiac electrophysiology problem, which consists in the propagation of
a very steep wave, limits the efficiency of the parametrized ROM built, especially when re-
lying on global basis functions to approximate the solution, as the case in analysis. Thus,
an high number of reduced basis are needed to correctly approximate the high variability
of the solution in time and for different parameters. Moreover, the high dimensions of the
algebraic systems in the FOM represented a challenging task in the training simulations
over the high performance computer adopted, especially for memory allocation, since the
snapshots in time of the solutions and the nonlinear term, for each parameter in the
training phase, are dense matrices in R197985×1200, with a weight of 1.9 Gb, hence making
impossible to consider larger sets of training and limiting the diagnostic of the model.

Offline CPU time:
FOM training 21692.12s
Non hyper-ROM training 24701.53s
Total Offline time 46393.65s

POD spaces dimension:
nu 950
nw1 900
nw2 10
nw3 350
m 2000

Table 4.4: Offline phase CPU time and dimension of the POD spaces in the construction
of the hyper-ROM for the electrophysiology parametrized problem.



56 4| Efficient evaluation of ionic variables in cardiac electrophysiology

4.3.2. Numerical results

For testing, we consider Ntest = 3 new parameters, namely µ1 = 1.3 · 10−4, µ2 = 1.5 · 10−4

and µ3 = 1.9 · 10−4. In table 4.5 we report the mean of the relative errors over the
parameters tested, defined as follows

errg =
1

Ntest

Ntest∑
i=1

errg(µi),

where g is either the transmembrane potential or a ionic variable approximation com-
puted in the online phase. Moreover, in the table we show also the mean CPU time for
the FOM simulation and the one in the ROM online phase, together with the speedup
gained, which is low, 1.24x, mainly due to the high dimension of the reduced basis, as
depicted in the previous subsection. In figures 4.9 and 4.11 we show the evolution in

Mean relative error over the Ntest = 3 parameters

erru−PODDEIM 5.27·10−2

errw1−Gappy 1.12·10−1

errw2−Gappy 1.38·10−2

errw3−Gappy 2.53·10−2

Mean CPU time:
CPU time FOM 5127.49s
CPU time hyper-ROM 4131.12s
Speed up 1.24

Table 4.5: Mean of the relative error for the transmembrane potential and the ionic
variables ROM approximations and mean CPU time of the FOM and HRROM simulations
over the Ntest = 3 parameters tested.

time of the transmembrane potential u and the intracellular calcium concentration w3,
respectively, comparing the FOM solution to the online ROM approximation, obtained
by the parameter µ1. Similarly, in figures 4.10 and 4.12 we show the evolution in time
of the transmembrane potential u and the intracellular calcium concentration w3, respec-
tively, comparing the FOM solution to the online ROM approximation, obtained by the
parameter µ3.
The results of the ROM approximation are accurate with respect to the FOM solution,
meaning that the parametrized ROM constructed is able to characterize the evolution of
the solutions under parameters variation in the cardiac electrophysiology problem.
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(a) t=30ms, µ1−FOM (b) t=60ms, µ1−FOM (c) t=120ms, µ1−FOM

(d) t=30ms, µ1−ROM (e) t=60ms, µ1−ROM (f) t=120ms, µ1−ROM

Figure 4.9: Evolution of the transmembrane potential in time; comparison between FOM
(top) and online hyper-ROM (bottom) for the parameter µ1.

(a) t=30ms, µ3−FOM (b) t=60ms, µ3−FOM (c) t=120ms, µ3−FOM

(d) t=30ms, µ3−ROM (e) t=60ms, µ3−ROM (f) t=120ms, µ3ROM

Figure 4.10: Evolution of the transmembrane potential in time; comparison between FOM
(top) and online hyper-ROM (bottom) for the parameter µ3.
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(a) t=30ms, µ1−FOM (b) t=60ms, µ1−FOM (c) t=120ms, µ1−FOM

(d) t=30ms, µ1−ROM (e) t=60ms, µ1−ROM (f) t=120ms, µ1−ROM

Figure 4.11: Evolution of the intracellular calcium in time; comparison between FOM
(top) and online hyper-ROM (bottom) for the parameter µ1.

(a) t=30ms, µ3−FOM (b) t=60ms, µ3−FOM (c) t=120ms, µ3−FOM

(d) t=30ms, µ3−ROM (e) t=60ms, µ3−ROM (f) t=120ms, µ3ROM

Figure 4.12: Evolution of the intracellular calcium in time; comparison between FOM
(top) and online hyper-ROM (bottom) for the parameter µ3.
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4.4. Test 3: Evaluation of ionic variables on a left

ventricle

In this third test case, we consider the three-dimensional monodomain model over a
patient-specific left ventricle domain. The geometry derives from the Zygote Solid 3D
heart model [45].
Similarly to the case test 1, section 4.2, the mesh consists in two global refinement steps
of the initial grid, leading to 293632 cells and Nhe = 314129 degrees of freedom. In figure
4.13, the left ventricle computational mesh is displayed.

Figure 4.13: Left ventricle computational mesh for cardiac electrophysiology (The).

Figure 4.14: Representation of fibers, sheets and normal fields ,rispectively.

The fibers and sheets distribution is generated according to the rule-based algorithm pro-



60 4| Efficient evaluation of ionic variables in cardiac electrophysiology

posed in [51], in figure 4.14.
The time interval considered is (0, T ), with ∆te = 10−4 and T = 210ms, which is larger
than the one we used in the first test case, since it is of interest to explore and capture the
evolution of the transmembrane potential and, in particular, of the calcium concentration,
also during the repolarization phase. This is mainly due to the cardiac electromechanical
coupling, in fact the mechanical contraction, which depends on intracellular calcium con-
centration, is a much slower process than the electrical propagation.
Due to the high number of degrees of freedom needed to obtain a realistic and stable
solution, and the dimension of the time interval considered, the computational resources
adopted for the simulations weren’t sufficient to build a well trained parametrized electri-
cal ROM. Thus, we present the results by fixing the electrical conductivities, with the aim
to analyze efficiency and accuracy of the cardiac electrophysiology reduced-order model
in more complex scenarios. The conductivity tensor is the same considered in the first
test, namely

D(x) = σt
m1+ (σl

m − σt
m)f0 ⊗ f0 + (σn

m − σt
m)n0 ⊗ n0,

with σl
m = 1.5 ·10−4 m2/s, σt

m = 7 ·10−5 m2/s and σn
m = 4 ·10−5 m2/s for the longitudinal

to the fibers, transversal and normal conductivity coefficients respectively.
The electrical gaussian impulse Iapp is applied at three points, located on the endocardial
surface, close to the apex.

4.4.1. Dimensions of the reduced spaces varying the POD tol-

erance

As we have done in section 4.2, to evaluate the accuracy and the efficiency of reduced-
order model, the tests are performed varying the dimension of the reduced basis. In table
(4.6), for each variable, we have the POD space dimension corresponding to the respective
POD tolerance adopted for each simulation, which are tolPOD = 10−1, 10−2 and 10−3:

tolPOD 10−1 10−2 10−3

nu 5 74 182
nw1 7 44 249
nw2 1 2 16
nw3 3 17 69
m 75 510 566

Table 4.6: Dimensions of the reduced-order spaces for the different variables varying the
POD tolerance. The dimension m of the reduced space for the nonlinear terms is obtained
using a POD tolerance equal to 10−5 in all the three cases.

The POD tolerance adopted for the snapshot matrix of the nonlinear residuals is tolDEIM =

10−5 for all the case tested. Since those snapshots are taken by solving the reduced-order
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model without hyper-reduction, Eq. (3.3), the dimension m depends also on the dimension
of the reduced spaces for the variables, namely on the quality of the non hyper-reduced -
order approximation.

4.4.2. Numerical results

Here we present the numerical results of the propagation of the transmembrane potential
and the ionic variables over the left ventricle.
In table 4.7, where the relative errors are displayed for the three different reduced-order
models considered, we can see that the results are similar to the ones obtained over the
slab domain, in section 4.2. Namely, when the dimension of the reduced-order spaces
for the variables is small, the approximation by ROM is not accurate and it is mainly
due to the nature of problems like the monodomain model for cardiac electrophysiology.
By increasing the number of basis functions n· and interpolation points m considered
accuracy increases monotonically, however, too lower POD tolerances yield to unefficient
reduced-order modeling, so it is important to find the right trade-off between accuracy
and efficiency when building ROMs.
In table 4.8 and figure 4.15 we show the comparison of the computational costs between
the full-order model, the reduced-order model and the hyper-reduced-order model (online
phase). In particular, it is possible to see the great improvement in terms of CPU time of
the ROM’s online phase with respect to the FOM, even when considering a lower POD
tolerance, i.e. an higher number of basis functions, e.g. tolPOD = 10−3, which consists in
more accurate approximation obtained by reduced-order modeling. Namely, in the most
efficient and accurate case, the online phase simulation gains a speedup of 3.09x with
respect to the FOM simulation.

Relative errors POD tolerance

10−1 10−2 10−3

erru−POD 1.00 9.45·10−2 5.55·10−3

erru−PODDEIM ≫ 1 9.73·10−2 8.61·10−3

errw1−Gappy ≫ 1 7.84·10−1 8.26·10−2

errw2−Gappy 6.3·10−1 3.3·10−3 8.71·10−4

errw3−Gappy 9.82·10−1 5.31·10−2 4.03·10−3

Table 4.7: Relative errors for the transmembrane potential and the ionic variables hyper-
ROM approximations built varying the POD tolerance.
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CPU time [s] POD tolerance
10−1 10−2 10−3

FOM 17020.53 16878.27 17203.32

ROM 15268.62 15237.97 15652.19

hyper-ROM 4677.69 5464.27 5918.24

Table 4.8: CPU time of the full-order model and the reduced-order models varying the
POD tolerance.

Figure 4.15: CPU time [s] for the simulation of FOM (red), ROM (blue) and hyper-ROM
(green) varying the POD tolerance.

In figures 4.16 and 4.17, the comparison between the high-fidelity solution, obtained by
FOM, and the reduced-order approximation, obtained by Gappy POD reconstruction
during the online phase, with a tolPOD = 10−3, is displayed for the variables w1 and w2,
respectively. In particular, three snapshots in time are shown, namely 35ms, 70ms and
210ms, to characterize the evolution in time of the two ionic variables. The high accuracy
obtained by the hyper-reduced approximation of the solution with respect to FOM leads to
see no differences between the two solutions, whereas the computational costs are highly
reduced for the former, as we have seen in table 4.8.
On the other hand, in figures 4.18 and 4.19, we show the comparison between the high-
fidelity solution, obtained by FOM, and the reduced-order approximations, obtained dur-
ing the online phase, with a tolPOD = 10−3 and a tolPOD = 10−2, for the intracellular
calcium concentration w3 and the transmembrane potential u, respectively. The snap-
shots of the two variables are taken for four different time instants, namely 35ms, 70ms,
140ms and 210ms, which show the propagation in time, starting from the three initial
Iapp impulses. Moreover, the solution obtained by the ROM built with a POD tolerance
equal to 10−2 is displayed to show that also with a smaller number of basis functions
for the variables, with respect to the case where tolPOD = 10−3, the approximations are
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sufficiently accurate, while having a gain in efficiency. This is an important result for the
electromechanical reduced-order model, since, if we consider a tolPOD = 10−2, the intra-
cellular calcium concentration, responsible for the active contraction, can be accurately
obtained by the Gappy POD method, in the online phase, through a relatively small
number of basis, increasing the overall efficiency of the model.

(a) t=35ms, FOM (b) hyper-ROM

(c) t=70ms, FOM (d) hyper-ROM

(e) t=210ms, FOM (f) hyper-ROM

Figure 4.16: Evolution of w1 in time; comparison between FOM and online ROM when
tolPOD = 10−3.



64 4| Efficient evaluation of ionic variables in cardiac electrophysiology

(a) t=35ms, FOM (b) hyper-ROM

(c) t=70ms, FOM (d) hyper-ROM

(e) t=210ms, FOM (f) hyper-ROM

Figure 4.17: Evolution of w2 in time; comparison between FOM and online ROM when
tolPOD = 10−3.
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(a) t=35ms, FOM (b) ROM, tolPOD = 10−3 (c) ROM, tolPOD = 10−2

(d) t=70ms, FOM (e) ROM, tolPOD = 10−3 (f) ROM, tolPOD = 10−2

(g) t=140ms, FOM (h) ROM, tolPOD = 10−3 (i) ROM, tolPOD = 10−2

(j) t=210ms, FOM (k) ROM, tolPOD = 10−3 (l) ROM, tolPOD = 10−2

Figure 4.18: Evolution of the intracellular calcium (w3) in time; comparison between
FOM (left), online hyper-ROM when tolPOD = 10−3 (center), online hyper-ROM when
tolPOD = 10−2 (right).
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(a) t=35ms, FOM (b) ROM, tolPOD = 10−3 (c) ROM, tolPOD = 10−2

(d) t=70ms, FOM (e) ROM, tolPOD = 10−3 (f) ROM, tolPOD = 10−2

(g) t=1400ms, FOM (h) ROM, tolPOD = 10−3 (i) ROM, tolPOD = 10−2

(j) t=210ms, FOM (k) ROM, tolPOD = 10−3 (l) ROM, tolPOD = 10−2

Figure 4.19: Evolution of the transmembrane potential (u) in time; comparison between
FOM (left), online hyper- ROM when tolPOD = 10−3 (center), online hyper- ROM when
tolPOD = 10−2 (right).
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5| A parametrized one-way
coupled electromechanical
ROM

In this chapter, we analyze the numerical performances of reduced-order modeling for the
electromechanical coupling. In particular, we will analyze the overall efficiency and accu-
racy of the coupled reduced-order model under parameters variations for the mechanical
model, wherein the activation depends on the intracellular calcium concentration, effi-
ciently evaluated by the cardiac electrophysiology ROM.

5.1. Setting

5.1.1. Offline-online strategy

As we have done in the previous chapter for cardiac electrophysiology, we recall the steps
to build a ROM for the parametrized mechanical problem. Namely, given µj ∈ P , where
P is the parameters’ space and j = 1, ..., Ntrain, with Ntrain the training dimension, the
offline phase consists in the following steps:

• Step 1: solve the FOM, Eq. (2.13), for the Ntrain training parameters, to save
snapshots of the displacement field d(µj), from which the transformation matrix
Vd is computed by means of proper orthogonal decomposition;

• Step 2: solve a first non hyper-ROM, described by Eq.s (3.15) and (3.16), for
Ntrain−ROM parameters and save snapshots of the residual rd(µj) to construct the
transformation matrix Φd through POD;

• Step 3: assemble the left projection matrix for the DEIM in order to build an
hyper-ROM.

Once the offline phase is computed, in the online phase, for each new instance of µ ∈ P ,
we solve the hyper-reduced system (3.18) or (3.19), depending on the cardiac cycle phase,
to efficiently and accurately approximate the displacement field.
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The online phase of the one-way coupled electromechanical reduced-order model can be
summarized as follows:

• Solve the online phase for the cardiac electrophysiology, saving at each time step
l = 1, ..., Nt the reduced-order reconstructed ionic variable wl

3 ∈ RNhe ;

• Interpolate the ionic variable approximating calcium dynamics on the coarser mesh
Thm by an intergrid map to obtain wl

3,hm
∈ RNTa , for each l = 1, ..., Nt;

• Solve the online phase for the cardiac mechanics, where, at each time step k =

1, ..., Ntm , we update the active tension T k
a,hm

by solving Eq. (2.12), which depends
on the calcium concentration w3,hm .

To evaluate the accuracy of the ROM approximation for the displacement, we consider
the mean relative error presented in chapter 4, Eq. (4.1), where, here, g refers to the
displacement field d, namely we will refer to it as errd−online.

5.1.2. Parameters of interest and time interval

ROM techniques allow to efficiently solve parametric problems in different scenarios, in
order to asses the effect of some relevant parameters on the solutions, which is of crucial
importance in clinical applications to account a possible inter-patient variability. The
parameters’ space considered for the electromechanical problem is P ⊂ R2.
In particular, the two parameters of interest regards the mechanical subproblem and they
are the Bulk modulus B, in Eq. (1.9) , which influences the material incompressibility,
namely it indicates how much the cardiac tissue is resistent to compression, and the
peripheral resistance R in the two-element Windkessel model (1.14), which indicates the
resistance that must be overcome to push blood through the circulatory system and create
flow.
It is important to specify that the developed implementation of the model allows also to
consider parametrizations of the electrophysiology ROM system and how they affect the
mechanical solution, which is an important task in order to fully understand the various
dynamics of an heartbeat under parameter variations.
For what concerns the time interval, we consider (0, T ) with T = 210ms to evaluate
efficiency and accuracy of the ROM electromechanical coupling. This time interval allow
us to show the first two phases of the cardiac cycle, namely the first isovolumetric phase
and the ejection phase, which correspond to the cardiac systolic phase, i.e. the contraction
mechanism, wherein we can mainly characterize the influences of electrical propagation in
cardiac mechanics. Moreover, for the time discretization, we use a time step ∆te = 10−4

for cardiac electrophysiology and a time step ∆tm = 10−3 for cardiac mechanics, yielding

to Nt = 2100 timesteps and Ntm = 210 timesteps, respectively, and q =
∆tm
∆te

= 10.
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5.2. Parametrized one-way coupled electromechanics

on a left ventricle

In the following test cases, we evaluate the electromechanical coupling on the undeformed
reference domain Ω0, which is the patient-specific left ventricle presented in section 4.4.
For cardiac electrophysiology, the mesh considered is the one shown in figure 4.13, with two
refinement steps of the initial grid; for cardiac mechanics, the coarser mesh is presented
in figure 5.1 and consists in 4588 cells, with Nhm = Nd = 18501 dofs for the displacement
and NTa = 6167 dofs for the active tension.

Figure 5.1: Left ventricle computational mesh for cardiac mechanics (Thm).

5.2.1. ROM setup

Here we present the setting of the electromechanical reduced-order model considered in
the tests and we show the main results related to the offline phase, in order to develop
an efficient and accurate hyper-ROM.
For the cardiac electrophysiology, we fix the conductivity coefficients to σl

m = 1.5 ·
10−4 m2/s, σt

m = 7 · 10−5 m2/s and we build the reduced-order models varying the POD
tolerance; namely, the dimension of the reduced basis adopted are the ones displayed in
table 4.6, focusing on the cases tolPOD = 10−2 and tolPOD = 10−3.
On the other hand, as anticipated in subsection 5.1.2, for the mechanical problem we con-
sider a dependence on the parameter µ ∈ P , with µ = [B,R], where the Bulk modulus
B varies in the interval [2.5 · 104, 7.5 · 104]Pa and the peripheral resistance R varies in



70 5| A parametrized one-way coupled electromechanical ROM

[2.5 · 107, 4.5 · 107]Pa · s/m3.
The construction of the ROM for the parametrized mechanical problem involves two of-
fline training phases. The first training phase consists in solving the mechanical FOM for
Ntrain = 20 different parameters, selected homogeneously 1 on the intervals considered, to
generate snapshots of the displacement field. By proper orthogonal decomposition, with
a tolPOD = 10−3, we obtain nd = 31 basis functions for the displacement d. Then, in the
second training phase, we solve the ROM without hyper-reduction for Ntrain−ROM = 30

different parameters, to save snapshots of the residual. The transformation matrix Φd

of the residual is obtained by POD with a tolPOD = 4 · 10−4, leading to md = 519 basis
functions, which is also the dimension of the reduced mesh for the mechanical hyper-ROM.
The choices of the dimensions of the training sets, namely Ntrain = 20 and Ntrain−ROM =

30, have been derived by analyzing the trade-off between accuracy and efficiency in the
construction of an online ROM for cardiac mechanics able to accurately approximate the
solution of each new instance of the parameter µ.

In table 5.1 some results of the diagnostic of the mechanical ROM construction are dis-
played. Namely we consider, varying the dimension of the training sets, the CPU time to
collect the snapshots of the displacement field for the Ntrain parameters; the CPU time to
collect the snapshots of the nonlinear residual for the Ntrain−ROM parameters; the total
offline CPU time; and the minimum dimension of the POD spaces for the displacement
field and the nonlinear term in order to achieve accurate results in the online phase for
each new instance of the parameter. The approximation symbol in the table refers to an
approximated mean over the results of different parameters tested online.

Training sets (Ntrain;Ntrain−ROM)
(10; 10) (20; 20) (20; 30)

CPU time offline
FOM training

14931.52s 30412.14s 30412.14s

CPU time offline
ROM training

13242.78s 27651.9s 40148.23s

Total CPU time of-
fline

28174.3s 58064.04s 70560.37s

nd 31 31 31
md 965 680 519
errd−online ≈ 10−3 ≈ 10−3 ≈ 10−3

CPU time online ≈ 1250s ≈ 1000s ≈ 800s

Table 5.1: Diagnostic on the construction of the cardiac mechanics ROM varying the
dimensions of the training sets.

1In the training the exploration concerns the whole parameter space, thus, it is important to select
values that cover as much as possible the interval of variation considered for each parameter.
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In particular, from the results we can see how an higher number of interpolation points
for the DEIM is required to attain accurate approximations when the offline phase is
trained over a small amount of parameters, limiting the efficiency of the hyper-ROM.
This is due to the fact that the variability of the solution and the nonlinear term is not
sufficiently explored. This is furthermore explained in figure 5.2, where we report the
singular values decay for the solution and the nonlinear term, varying the dimension of
the training sets. Coherently with what we have seen at the end of section 3.1.1, we can
see how, to properly model the variability of the solution over the parameter space, we
need a sufficiently rich dimension of the training sets. In particular, for the solution, the
variability captured by the snapshots matrix noticeably increases when we save snapshots
coming from 20 different parameters instead of 10. On the other hand, for the non linear
term, the singular values decay increases going from 10 to 20 parameters considered in the
train, while it tends to have a similar trend for Ntrain−ROM = 20 and Ntrain−ROM = 30,
meaning that the variability may stagnate and the snapshots matrix for the nonlinear
term captures most of the possible behaviours varying µ ∈ P .

Figure 5.2: Singular values decay of the displacement (top) and the nonlinear term (bot-
tom).
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5.2.2. Test case 1: influences of the calcium ROM approxima-
tion’s accuracy on the displacement

As anticipated in the previous subsection, for the mechanical activation, we consider
the calcium obtained by Gappy POD reconstruction in the third test of chapter 4, a
non-parametrized electrical ROM, presented in section 4.4, varying the number of basis
functions employed, i.e. the POD tolerance adopted. In this first test case we evaluate
the overall efficiency and accuracy of the electromechanical reduced-order model varying
the accuracy in the approximation of calcium computed by the ROM for cardiac elec-
trophysiology. This comparison can be a relevant explorative analysis before considering
a parametrization of the cardiac electrophysiology ROM subproblem, since, in the latter
case, the level of accuracy highly impact on the training and the efficiency of the model.
From the results displayed in table 5.1, the mechanical hyper-ROM that we consider for
the numerical simulations in the online phase is the one trained on Ntrain = 20 and
Ntrain−ROM = 30 parameters for the displacement and the nonlinear term, respectively,
which leads to nd = 31 basis functions for the displacement and md = 519 interpolation
points for the DEIM.
The results are shown for the parameter µ = [B = 3.5 ·104, R = 3.5 ·107], however, similar
observations have been derived for other instances of the parameter µ ∈ P .
Specifically, in table 5.2 we show the relative errors for the two electromechanical ROM
built, namely coming from the two different POD tolerance considered in the construction
of the cardiac electrophysiology ROM. In particular, we can see how the level of accuracy
in the reconstruction of the calcium just slightly affects the accuracy of the approximation
of the displacement field by the cardiac mechanics ROM, in fact both the displacement
approximations in the online mechanical ROM show a mean relative error of order 10−3.
This is furthermore shown in figures 5.3, 5.4, 5.5 and 5.6, where we display the solutions

at time 35ms, 70ms, 140ms and 210ms, respectively. In fact, in the figures, there are no
differences in the evolution of the two solutions, considering the two approximations of
the calcium concentration. Thus, an accuracy of order ≈ 10−2 in the ROM approxima-
tion of the ionic variable w3 is sufficient to show the effects of the intracellular calcium
concentration in the cardiac deformation.

Relative errors POD tolerance electrophysiology
10−2 10−3

errw3−Gappy 5.31·10−2 4.03·10−3

errd−online 3.1·10−3 2.89·10−3

Table 5.2: Relative errors of the calcium concentration, varying the POD tolerance for
the cardiac electrophysiology ROM, and of the corresponding displacement.
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(a) ROM, tolPOD = 10−2 (b) ROM mechanics

(c) ROM, tolPOD = 10−3 (d) ROM mechanics

Figure 5.3: Comparison between the electromechanical hyper-ROM built with a tolPOD =
10−2 (first row) and with a tolPOD = 10−2 (second row) for the cardiac electrophysiology
subproblem. The calcium (left) and the corresponding cardiac mechanical deformation
(right) are snapshots taken at t=35ms.

(a) ROM, tolPOD = 10−2 (b) ROM mechanics

(c) ROM, tolPOD = 10−3 (d) ROM mechanics

Figure 5.4: Comparison between the electromechanical hyper-ROM built with a tolPOD =
10−2 (first row) and with a tolPOD = 10−2 (second row) for the cardiac electrophysiology
subproblem. The calcium (left) and the corresponding cardiac mechanical deformation
(right) are snapshots taken at t=70ms.
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(a) ROM, tolPOD = 10−2 (b) ROM mechanics

(c) ROM, tolPOD = 10−3 (d) ROM mechanics

Figure 5.5: Comparison between the electromechanical hyper-ROM built with a tolPOD =
10−2 (first row) and with a tolPOD = 10−2 (second row) for the cardiac electrophysiology
subproblem. The calcium (left) and the corresponding cardiac mechanical deformation
(right) are snapshots taken at t=140ms.

(a) ROM, tolPOD = 10−2 (b) ROM mechanics

(c) ROM, tolPOD = 10−3 (d) ROM mechanics

Figure 5.6: Comparison between the electromechanical hyper-ROM built with a tolPOD =
10−2 (first row) and with a tolPOD = 10−2 (second row) for the cardiac electrophysiology
subproblem. The calcium (left) and the corresponding cardiac mechanical deformation
(right) are snapshots taken at t=210ms.
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CPU time and
hyper-reduction speed up

POD tolerance electrophysiology
10−2 10−3

Electrophysiology:
FOM 16878.27s 17203.32s
hyper-ROM 5464.27s 5918.24s
Speed up 3.09 2.91

Mechanics:
FOM 1588.43s 1631.2s
hyper-ROM 777.26s 821.35s
Speed up 2.04 1.99

Electromechanics:
FOM 18466.7s 18834.52s
hyper-ROM 6241.53s 6739.59s
Overall speed up 2.96 2.79

Table 5.3: CPU time of the full-order models and the reduced-order models, and speed up
of the online ROM with respect to the FOM in the electromechanics simulation, varying
the POD tolerance adopted to build the cardiac electrophysiology ROM subproblem.

In table 5.3, we instead compare the overall efficiency of the electromechanical ROM in
the two different cases considered. In particular, since the accuracy of the solutions is high
for both the two ROM approximations, it is important to address to the overall efficiency
of the models.
In order to evaluate the speedup for the mechanical problem, we just relied on the time
related to the assembling of the systems and to their resolution, removing the CPU time
concerning everything not related to the order reduction, such as the computation of the
left ventricle volume, about 16s in total, and the solution of the activation model, about
60s in total, which are comparable for the FOM and the hyper-ROM simulations. The
results show that the speedup for the mechanical hyper-ROM is similar, around 2x in
the two cases considered. However, the difference is particularly relevant in the cardiac
electrophysiology online phase. In fact, the dimension of the POD spaces obtained by
varying the POD tolerance in the construction of the electrophysiology ROM, see table
4.6, highly influence the speedup of the electrical hyper-ROM simulation with respect to
the FOM simulation, as we have seen in figure 4.15. This also affects, as a consequence,
the overall speedup of the one-way coupled electromechanical ROM, yielding to prefer the
most efficient reduced-order model for both the subproblems, when the accuracy can be
considered comparable. Namely, the case of intracellular calcium concentration obtained
with a tolPOD = 10−2 brings an overall speedup of the electromechanical ROM of almost
3x with respect to the FOM, while the case of intracellular calcium concentration obtained
with a tolPOD = 10−3 brings a speedup of 2.79x with respect to FOM.
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5.2.3. Second test: Efficient evaluation of the cardiac deforma-
tion under parameter variations

From the results obtained in the previous subsection, we develop the one-way parametrized
electromechanical ROM considering, for the mechanical activation, a calcium obtained
with a tolPOD = 10−2 in the electrophysiology hyper-ROM. Then, the mechanical hyper-
ROM is the one obtained in the offline phase with Ntrain = 20 and Ntrain−ROM = 30

parameters for the solution and the nonlinear term, respectively. Namely, as seen in ta-
ble 5.1, we use nd = 31 basis functions to approximate the displacement and md = 519

interpolation points to assemble the Jacobian Jd,d and the residual rd at each iteration
of the Newton method, at each time-step.
The test has been performed over Ntest = 15 new, different parameters than the one
considered for the train. In particular, we want to show the high quality approximations
of the parametrized electromechanical ROM in terms of efficiency and accuracy with re-
spect to the high fidelity solutions, under the variation of parameters coming from the
mechanical subproblem, remarking the importance of efficient numerical approximations
in the cardiac electromechanics framework.
In table 5.4 we present the mean of the relative error in the approximation of the dis-
placement field over the Ntest = 15 parameters tested, namely we define it as

errd−online =
1

Ntest

Ntest∑
i=1

errd−online(µi).

Moreover, we also show the mean computational time for the FOM simulation and the
ROM simulation of the mechanical subproblem. In terms of efficiency, with the ROM
setup presented in the subsection 5.2.1, we gain a mean speedup of 2x with respect of the
cardiac mechanics FOM.

Mean relative error over the Ntest = 15 pa-
rameters

errd−online 4.02·10−3

Mean CPU time mechanical subproblem:

CPU time FOM 1628.74s

CPU time hyper-ROM 812.01s

Speed up 2.01

Table 5.4: Mean of the relative error for the displacement field ROM approximation and
the CPU time of the FOM and hyper-ROM simulations over the Ntest = 15 parameters.
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Mean CPU time at each Newton iteration FOM hyper-ROM

Assembling system 2.73s 1.42s
Solving Newton step 3.51 ·10−1s 2.69 ·10−3s

Table 5.5: Mean CPU time costs of assembling and solving the algebraic mechanical
system at each Newton interation, comparison between FOM and hyper-ROM.

In particular, the speedup is mainly related to the assembling of the nonlinear terms and
to the solution of the Newton step at each iteration of the method; in fact, the algebraic
system assembled and solved in the hyper-ROM, Eq. (3.18) or (3.19), is of low-dimension
with respect to FOM, Eq. (3.12) or (3.13). This is shown in table 5.5, where we report
the mean CPU time costs of assembling and solving the system at each Newton iteration,
comparing the two numerical approximations approaches.

On the other hand, in terms of accuracy, we obtain high-quality approximations for each
new instance of the parameter µ ∈ P , with a mean relative error over the different pa-
rameters tested of the order of 10−3.
In figures 5.7, 5.8, 5.9, 5.10 we show a comparison between the FOM solution and the ROM
solution for two different parameters µ10 and µ14, at 35ms, 70ms, 140ms, 210ms, respec-
tively. The two parameters are µ10 = [6.67 · 104, 3.1 · 107], where we consider an higher
Bulk modulus than the one shown in the previous section, and µ14 = [3 · 104, 4.43 · 107],
where, on the other hand, we consider an higher peripheral resistence.
The accuracy of the solution of the mechanical ROM subproblem in the online phase
for the two different new instances of the parameter µ is furthermore shown in figure
5.11, where we display the relative error in space, at each time-step, for the displacement
field ROM approximation. In particular, the relative error in space for the solution ob-
tained with the parameter µ10 is of the order 10−3 at almost all the time-steps, while
the one related to the solution obtained with the parameter µ14 is at least of the order
10−2, remarking the highly accurate approximations for the solutions under parameter
variations.
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(a) ROM electrophysiology

(b) µ10-FOM mechanics (c) µ10-ROM mechanics

(d) µ14-FOM mechanics (e) µ14-ROM mechanics

Figure 5.7: Comparison between the displacement field magnitude obtained by the FOM
(left) and obtained by the ROM online phase (right) for the two parameters µ10 (center)
and µ14 (bottom), at time 35ms. The calcium (on the top) , displayed in the reference
configuration Ω0, is the one adopted for the computation of the active tension in the
cardiac mechanics subproblem.
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(a) ROM electrophysiology

(b) µ10-FOM mechanics (c) µ10-ROM mechanics

(d) µ14-FOM mechanics (e) µ14-ROM mechanics

Figure 5.8: Comparison between the displacement field magnitude obtained by the FOM
(left) and obtained by the ROM online phase (right) for the two parameters µ10 (center)
and µ14 (bottom), at time 70ms. The calcium (on the top) , displayed in the reference
configuration Ω0, is the one adopted for the computation of the active tension in the
cardiac mechanics subproblem.
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(a) ROM electrophysiology

(b) µ10-FOM mechanics (c) µ10-ROM mechanics

(d) µ14-FOM mechanics (e) µ14-ROM mechanics

Figure 5.9: Comparison between the displacement field magnitude obtained by the FOM
(left) and obtained by the ROM online phase (right) for the two parameters µ10 (center)
and µ14 (bottom), at time 140ms. The calcium (on the top) , displayed in the reference
configuration Ω0, is the one adopted for the computation of the active tension in the
cardiac mechanics subproblem.



5| A parametrized one-way coupled electromechanical ROM 81

(a) ROM electrophysiology

(b) µ10-FOM mechanics (c) µ10-ROM mechanics

(d) µ14-FOM mechanics (e) µ14-ROM mechanics

Figure 5.10: Comparison between the displacement field magnitude obtained by the FOM
(left) and obtained by the ROM online phase (right) for the two parameters µ10 (center)
and µ14 (bottom), at time 210ms. The calcium (on the top) , displayed in the reference
configuration Ω0, is the one adopted for the computation of the active tension in the
cardiac mechanics subproblem.
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Figure 5.11: Relative error in space at each time-step of the displacement field varying
the parameter µ
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Conclusions

In this work we presented an efficient numerical approximation, by reduced-order model-
ing, of parametrized problems in cardiac electromechanics. In particular, for what con-
cerns cardiac electrophysiology, we developed an efficient evaluation of the ionic variables
in the monodomain problem. This has been possible by means of the gappy proper orthog-
onal decomposition method, which is able to accurately reconstruct the ionic variables in
the original domain at each time-step, for each parameter considered, from their reduced-
order gappy approximations computed in the online phase of the electrical parametrized
ROM. Specifically, in chapter 4 we showed how the accuracy in the reconstruction of the
the ionic variables is characterized by a mean relative error of order at least of 10−2, with
a proper tuning of the reduced-order model. Moreover, in terms of efficiency, we gained
a speedup in the online phase of 1.52 with respect to FOM in the case of a slab domain,
while even more relevant results have been achieved for the more complex domain repre-
sented by the left ventricle, where the hyper-reduced ROM simulation was 3 times faster
than the full order one. The cost-effective evaluation of the ionic variables introduced,
in particular of the intracellular calcium concentration, has been an extremely important
result in the development of a parametrized one-way coupled electromechanical reduced-
order model.
In fact, the tests presented in chapter 5 show how the latter is capable to find accurate
solutions under parameters variations affecting the cardiac mechanics at reduced compu-
tational costs. Namely, the mean relative error for the displacement approximation found
is of the order of 10−3 for all the parameters tested in the mechanical online phase, while
the total speedup in the simulations related to the coupling of the two hyper-reduced -order
models has been of 3x with respect to the coupling of the respective full order models.

The achievements of this work represent a preliminary investigation of efficient numeri-
cal approximations for parametrized problems in cardiac electromechanics. In particular,
the model introduced allows to consider parametrizations coming both from cardiac elec-
trophysiology and cardiac mechanics, in order to also understand how variations of the
electrical propagation influence the mechanical activation in each heartbeat. However, as
we have seen in section 4.3, the construction of an efficient parametrized electrophysiol-
ogy reduced-order model represented a challenging task when relying on a global ROM
strategy, as we did in this work. This is mainly due to the nature of the electrophysiology
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problem, which is characterized by the propagation of a very steep wave, that requires
the assembling of huge matrices when considering the full order modeling and large sets
of basis functions to approximate the solutions when relying on a global reduced-order
modeling strategy. Thus, a possible development of this work can be to adopt different
strategies in the construction of the ROM for cardiac electrophysiology, such as, e.g., a lo-
cal ROM strategy, where the solution can be better approximated in a lower-dimensional
subspace generated by local basis vectors, rather than in a unique subspace spanned by
global basis vectors, enhancing the efficiency of reduced-order modeling.
Moreover, another relevant development can be related to the inclusion of more complete
activation models as well as to the introduction of a mechano-electrical feedback in order
to develop a fully coupled, and even more reliable, electromechanical ROM for real cases
simulating physiological and pathological scenarios of real life interest.
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Here we present further details on the parameters of the models presented in chapter 1.
In table A.1 we report the parameters considered for the Bueno-Orovio model (1.2).

Parameter value Parameter value

Cm 1 τw3,1 2.7342·10−3s−1

θw1 0.3 τw3,2 0.003 s−1

θ−w1
0.015 τ0,1 6·10−3s−1

τ+w1
1.4506·10−3s−1 τ0,2 6·10−3s−1

τ−w1,1
0.06 s−1 τ−w1,2

1.15 s−1

θw2 0.015 uw3 0.9087

τ+w2
0.28 s−1 kw3 2.0994

τ−w2,1
0.07 s−1 u−

w2
0.03

τ−w2,2
0.02 s−1 k−

w2
65

uso 0.65 θ0 0.006

cu 1.58 w∗
2,∞ 0.94

τfi 1.1·10−4s−1 τw2,∞ 0.07 s−1

τso,1 4.3·10−2s−1 τsi 2.8723·10−3s−1

τso,2 2·10−4s−1 kso 2.0

Table A.1: Bueno-Orovio model parameters
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In table A.2 we report the parameters of the Guccione strain energy function (1.7) adopted
for the passive mechanics (1.6).

Parameter value

bff 8

bss 6

bnn 3

bfs 12

bfn 3

bsn 3

B (bulk) [2.5·104, 7.5 · 104]Pa

c 8.8·102Pa

ρ (tissue density) 103kg/m3

Kepi
⊥ 2·105Pa/m

Kepi
∥ 2·104Pa/m

Cepi
⊥ 2·104Pa/m

Cepi
∥ 2·102Pa/m

Table A.2: Guccione strain energy function and mechanical model parameters

In table A.3 we report the parameters of the activation model (1.10) adopted for the
active mechanics.

Parameter value

τ 0.05

Tmax
a 10000 Pa

EC50 0.8 µM

nH 5

Table A.3: Activation model parameters
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Finally, in table A.4 we report the parameters of the lumped parameter model and the
values of the pressure in the different phases of the blood circulation closed-loop 1.2.3.

Pressure

Variable value

Phase 0 initial pressure (end-diastolic
pressure LV)

pED 1333 Pa

Phase 1 initial pressure (aortic valve
opening pressure LV)

pAV O 11000 Pa

Phase 3 initial pressure (mitral valve
opening pressure LV)

pMVO 667 Pa

Two-elements Windkessel model parameters

Parameter Value

C (arterial compliance) 4.5 ·10−9m3/Pa

R (peripheral resistance) [2.5·107, 4.5 · 107]Pa · s/m3

Table A.4: Blood circulation closed-loop parameters and thresholds
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