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Chapter 1

Introduction

This thesis is devoted to the development of a tool that enables the user to obtain optimized
propeller geometry for a propeller that is optimum for different kinds of purposes, for example,
but not necessarily, maximum efficiency in cruise conditions. On the one hand, there exists
similar software on the web that provide optimal geometries for these purposes. However, the
main advantage of designing such a tool relies on the definition of custom cost functions, and
the possibility of defining arbitrary blade geometries, making the code much more versatile
than those programs.

Firstly, is mandatory to obtain the capability of calculating propeller performance for
arbitrary designs. In order to do this, performance calculations are obtained throughout a
model widely studied in the past. The model utilized is the Blade Element Momentum The-
ory, for which geometry is parametrized in terms of diameter, number of blades, distribution
of stations along the blade, twist and chord distributions and airfoil of the section. Fluid
properties of the stream are also introduced in this model along with propeller working oper-
ation. The equations presented in Chapter 2 require the preparation of a polar database that
contains the aerodynamic coefficients of the airfoils used in propeller blade sections prior to
the start of the calculations.

Following model definition, it is necessary to verify the reliability of the calculations
performed. To do so, propeller performance studied by Xiang in [1] is compared with the
results obtained coming from the present model. In this article, Xiang proposes another kind
of model for propeller performance calculations and it is analysed with wind tunnel test data.
Later in this thesis, in Section 2.3, data from that experiment are used to validate the BEMT
model, used in this whole document.

Once the model is set up, a sensibility assessment on the impact of some parameters
that define propeller geometry in the solution is carried out in Chapter 3. Said parameters
are the number of stations and their distribution along blade span, with a comparison of
different distribution laws and the first station location, which is dependent on the hub
dimensions. This analysis is useful as it introduces the parameters that must be fixed prior
to an optimization routine.

Finally, the whole potential of the model is obtained in Chapter 4 where the first steps
of an optimization procedure are detailed. In this chapter, optimized propeller geometry
is calculated for a 19-passenger commuter in which the rest of the parameters that define
propeller geometry are used as variables of optimization.

Finally, in Chapter 5, conclusions on the work performed along with recommendations
for future studies are described, Appendix A contains a pseudocode of the implemented tool
while Appendix B, contains a sensibility study on one of the minimization routine parameters.
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Chapter 2

Synthesis of a blade performance
model for design

The calculation of propeller performance have been studied long. Glauert in [2], analyses the
different equations that model the propeller. A particular theory is exploited in this docu-
ment: The Blade Element Momentum Theory. This model joins unidimensional momentum
theory, in which the airscrews are approximated to a very thin disc that exchanges energy
with airflow, and blade element theory, that takes into account the number of blades and
their shapes to calculate the balance of forces in the rotor. Equations 2.1 to 2.4 display the
main equations of momentum theory, while 2.5 to 2.7 those of blade element.

dT = CT
1
2ρV

2
x dA (2.1)

dQ = CQ
1
2ρV

2
x dAr (2.2)

In these equations of momentum theory, in order to calculate the forces that appear, the
airscrew disk is divided in annular shapes of infinitesimal radius dr. For these annuli, the
area dA can be approximated to rdr. In this manner, dT and dQ correspond to thrust and
torque obtained in each annulus, and, to obtain the global forces, they should be integrated.
For each annulus, thrust and torque coefficients are associated, namely CT and CQ. These
coefficients are directly proportional to the acceleration that the fluid is subjected to, when
passing through disk. This acceleration is taken into account with the help of the definition
of interference parameters, ax, that represent the axial acceleration, and ay, that is related
to the imprint of rotational motion to the fluid. These parameters appear in equations 2.3
and 2.4 along with F, a parameter that accounts for energy losses because of vortexes that
appear.

CT = 4Fax(1 + ax) (2.3)

CQ = 4Fay(1 + ax)
Vy
Vx

(2.4)

As it was mentioned, blade element theory uses airfoil polars, that in the tool developed
are obtained as described in Section 2.1.3. In this case, it can be written:

dT = BCx
1
2ρW

2cdr (2.5)

dQ = BCy
1
2ρW

2crdr (2.6)

3



Synthesis of a blade performance model for design

Figure 2.1: Forces in blade section [3]

Where again, the airscrew, now made up of blades, is divided radially in stations. For each
station, the forces that appear in each of the blades must be taken into account. Therefore, in
equations 2.5 and 2.6, B stands for the number of blades, CT and CQ have the same meaning,
but are calculated differently as they are a function of the plan form of the blade section, c is
the chord of the airfoil at the station and with W =

√
((Vx(1 + ax))2 + (Vy(1− ay))2, being

W the module of the airflow speed, but in this case:[
Cx
Cy

]
=
[
cosφ − sinφ
sinφ cosφ

] [
Cl
Cd

]
(2.7)

With Cl, Cd, being lift and drag coefficients and Cx, Cy, being force coefficients in axial
and tangential directions respectively. By making equal the quantities dT and dQ obtained
from the different theories, these equations lead to the following coupled solution, where φ is
the inflow angle (or the difference between local β and α), angle that fixes the direction of
local airstream:

ax = Cxσ

4F sin2 φ− Cxσ
(2.8)

ay = Cyσ

2F sin 2φ+ Cyσ
(2.9)

Knowing the value of the interference parameters, the rest of the parameters involved in
past equations can be obtained. This model is used to obtain propeller performance and,
to solve the past equations, an assessment is carried out in Section 2.2, where the methods
proposed by Adkins [4] and by Ning [5] are compared.

Once BEMT equations are solved, and the quantities Cx and Cy are known, thrust and
torque per station are computed through equations 2.5 and 2.6. Then, total thrust and
torque are obtained, summing the contributions of each section in which the blade is divided
in, through a trapezoidal approximation, where the subindexes i and i+1 correspond to their
corresponding stations, and r is the station axial position:

4



T =
n−1∑
i=1

dTi + dTi+1

2 ri+1 − ri (2.10)

Q =
n−1∑
i=1

dQi + dQi+1

2 ri+1 − ri (2.11)

Special attention must be paid at this point to how the spatial distribution is defined,
since different distributions lead to different length of sections. An assessment on the effect
of these distributions on the results is carried out in Section 3.1. Propeller efficiency is
defined as, the coefficient between useful power, thrust force (T) by aircraft speed (V), and
power required: torque needed (Q) at rotational speed of the engine (Ω). The choice of this
definition is not arbitrary. In case of helicopters, where a hover flight condition is possible,
this definition should be changed and written after a different figure of merit, since in hover,
the airspeed far from the disk is zero, and, therefore, the efficiency would be null too.

η = TV

ΩQ (2.12)

Other non dimensional quantities that help compare propeller performance are now de-
fined in equations from 2.13 to 2.16:

J = V

nsD
(2.13)

CT = T

ρn2
sD

4 (2.14)

CQ = Q

ρn2
sD

5 (2.15)

CP = Q

ρn3
sD

5 (2.16)

Parameter J is called advance ratio and is used when operating conditions of a propeller
are defined, so that propeller performance CT and CQ CP and η, can be recalled.

5



Synthesis of a blade performance model for design

2.1 Model implementation
The tool developed in this thesis implements the set of equations presented at the beginning
of this chapter. In order to solve these equations, it is necessary to provide the tool the
different parameters that affect propeller performance, and that are present in said equations.
These parameters are geometrical, related to air flow conditions, and aerodynamic; and are
explained in the following sections: Section 2.1.1, Section 2.1.2 and Section 2.1.3, respectively.

2.1.1 Geometry
A systematic approach to geometry definition is of paramount importance when developing a
tool that is oriented to propeller design, especially because geometry characterization is one
of the goals of this tool. A list of the parameters that must be determined is here presented.

• Number of blades (B)

• Diameter (D)

• Cut-off ratio (RCut-off)

• Distribution of stations along the blade (ξ(r))

• Chord and twist distributions (c(ξ(r)) and β(ξ(r)))

and also, another important parameter that have an impact on propeller geometry is:

• Number of stations (n)

Number of blades, diameter and cut-off are scalar magnitudes and do not present difficul-
ties to be defined. On the other hand, twist and chord distributions require more attention:
They can be figured out as curves that are a function of the distance from the axis of rota-
tion, and therefore, there must be an adequate correlation between their definition and the
distribution of stations along blade span.

Distribution of stations along the blade, twist and chord distributions are then carefully
implemented as vectors, taking care that each position of twist and chord values are correctly
assigned. Related to this, is the number of stations, a parameter that takes an important
role in the quality of the results. The effect on the results of spatial resolution (in terms of
number of stations) and the distribution of blades along the span is assessed in Section 3.1.

All past parameters are enough to describe propeller geometry. However, other parameters
can be derived from them that take an active part in the BEMT equations, such as blade
solidity, present in equations 2.27 and 2.28 and defined as the ratio of the total blade area to
that of the circular disc swept by the blades.

σ = Bc

2πr (2.17)

.
There also exist other aspects that can help comparing propellers of different geometries,

like the geometrical pitch. Twist distribution of a propeller, namely, the set of angles of the
sections with respect to the plane of rotation, determine the pitch of the airscrew. If the
motion of the airscrew were that of a screw in a rigid medium, each section would advance

6



2.1. Model implementation

a distance 2πr tan β. This distance, H, is called the geometrical pitch of the propeller. A
propeller of which its twist distribution follows the law present in equation 2.18, is said to
have constant geometric pitch. For propellers that do not follow this twist distribution, their
geometrical pitch is defined with the twist angle of a section, typically at 70% of the blade
span. Geometrical pitch H, has no aerodynamic significance. However, the ratio of H/D is
a useful measure to classify propellers. In fact, Figure 2.2 display the efficiency vs. advance
ratio curves for a family of propellers for different values of H/D ratio.

tan β = H

2πr (2.18)

Figure 2.2: Efficiencies of a propeller family [2]

2.1.2 Air conditions
Propeller performance depends naturally on the fluid properties it is working in. The main
important parameters are the following:

• Forward speed of the aircraft (V)

• Rotational speed (Ω or RPM)

• Density (ρ)

• Speed of sound (Vs)

7



Synthesis of a blade performance model for design

Forward speed and rotational speed are summed to compute the module of the local flow
speed, as in Figure 2.1. The tool works with the module of these speeds and are of easy
implementation as they are scalar parameters. Density and temperature that are depend
on the phase of the aircraft mission are needed to compute Reynolds and Mach numbers,
numbers that lift and drag coefficients are function of.

2.1.3 Aerodynamics

The whole description of the blade element of BEMT reflects the necessity of knowing, at
some point of the calculations, lift and drag coefficients of the section. These are a function
of Reynolds and Mach numbers; section angle of attack; and of course, airfoil of the section.
Two main issues arise when trying to write a code that solve the BEMT equations, which
are: how to obtain airfoil characteristics and when does the routine need them. Starting by
the latter, it is clear that, the process of solving BEMT equations affects the times in which
the user needs to provide lift an drag coefficients as an input, and depending on the routine,
this number of times varies, as in Section 2.2 in which two different procedures are presented.

The characterization of lift and drag coefficients of wings with different airfoils have been
studied long, and many methods that provide approximations exist. A possible solution
for the problem of providing lift and drag coefficients could be calculating them directly by
an implementation of any existing method. On the other hand, it is possible to call other
routines that calculate aerodynamic coefficients only when it is needed to. XFOIL is an
interactive program for the design and analysis of subsonic isolated airfoils [6]. Developed
by professor Mark Drela and released under the GNU General Public License,can be used to
obtain the aerodynamic information searched. Therefore it is possible to call XFOIL during
the resolution of the BEMT equations, or write a program that automatizes the creation of a
database of polar curves for different Reynolds and Mach numbers. This database is created
prior to the start of the calculations and retrieved during program execution.

Figure 2.3: XFOIL environment

8



2.1. Model implementation

Calling XFOIL between iterations in order to obtain directly lift and drag coefficients
is very flexible, and, in the case it was necessary, could allow a parametrization of airfoil
geometry in order to include this parametrization as a variable during propeller geometry
optimization. However, this would be very time consuming. In fact, in [3], Tarraran carries
out an assessment on what is better in terms of computational time, and creating a database of
polars reduces it drastically. This database of polars is unique for each airfoil, and therefore,
said parametrization could not be considered, since airfoil shape between iterations is not
known until the optimization routine starts.

Preparing a polar database presents new difficulties itself. XFOIL is designed to provide
subsonic data and, for high subsonic Mach numbers, it is inaccurate, therefore, other sources
of aerodynamic data must be considered in order to compensate the absence this data. In fact,
for the optimizations performed in Chapter 4, it was necessary to consult other references,
and to extrapolate data for angles of attack higher than that of stall with Viterna method
[7] that is explained in Paragraph 2.1.3. In [8], data for the NACA 0012 symmetric airfoil
at high subsonic Mach numbers, gathered from wind tunnel experiments, is provided. An
example of this data is displayed in Figure 2.4.

Figure 2.4: CL and CD of NACA 0012 M = 0.74 [8]

The database is therefore, created in XFOIL. This program allows to export the calcu-
lations as text files that saved into a folder an lately, opened by other computer programs.
Thus, once the text files are created, the database should be ready. This is what Tarraran
did in [3]. At this point, other text files containing polars can be created from other sources
and included in the database. Finally, it is highly recommended to prepare a routine that
reads every text file present in the database folder so all the data can be stowed in a variable
in the environment in which the model is implemented, following the flow displayed in Figure
2.5, so that it is not necessary to open and close text files, but to read a local variable. The
main drawback of loading the database directly in this manner is that it is required that the
computer saves memory for this variable, however, the computational time is highly reduced
thanks to this.

9



Synthesis of a blade performance model for design

Figure 2.5: Polar database preparation flow

Text files that form the polar database are composed of columns of data of lift and drag
coefficients as a function of angle of attack. Every text file contains these values for a couple of
Reynolds and Mach values. For every airfoil used during the work of this thesis, the Reynolds
and Mach numbers of which the database is made of, take discrete values from 5 104 up to
5 106 in steps of 5 104 in the case of Reynolds number and 0 up to 0.5 in steps of 0.05. Every
time it is wanted to consult the database, it is necessary to perform an interpolation between
the files that contain the closest Reynolds and Mach numbers available.

Viterna extrapolation

In order to be as robust as possible, the tool must be able to provide propeller performance
in conditions in which not only some of the stations are subjected to local post-stall angles
of attack, but also when the whole blade is stalled. This situation can appear for several
reasons: low horizontal speed versus rotational speed ratio, high pitch of the blade, etcetera.
It is necessary to extrapolate the data of aerodynamic coefficients for post stall angles so
that it is possible to obtain lift an drag coefficients, regardless local angle of attack, within
optimization routines, like in Chapter 4.

Viterna extrapolation is performed according to the equations of [7], compared with other
methods in [9]. This method takes into account stall angle of attack and lift coefficient,
maximum drag coefficient and aspect ratio of the blade to provide this extrapolation with
the following equations:

CD = B1 sin2 α +B2 cos2 α (2.19)

CL = A1 sin 2α + A2
cos2 α

sinα ; (2.20)

Being CL and CD the lift and drag coefficients that are wanted to approximate. The whole
behaviour of the polar must be known prior to doing this approximation, as lift and drag
coefficients at stall angle of attack (CLs , CDs and αs) must be provided along with maximum
drag (CDm). In this case, A1, A2, B1, B2 are defined and are proportional to said quantities:

A1 = B1/2; (2.21)

A2 = (CLs − CDm sinαs cosαs)
sinαs
cos2 αs

; (2.22)

10



2.2. Robustness assessment

B1 = CDm (2.23)

B2 = (CDs − CDm)sin2 αs
cosαs

; (2.24)

2.2 Robustness assessment
How the BEMT equations are solved can lead to problems depending on the method used.
In fact, Tarraran used in his final master degree thesis [3], an iterative method proposed
by Adkins in [4]. This article contains two iterative algorithms: one for optimum propeller
design, in which geometry of the design point is retrieved for when minimum energy loss
conditions are met; and another that enables the calculation of propeller performance for
arbitrary designs. Figure 2.6 displays the latter.

Input Data
B, D, 
V, Ω, 

c(r), θ(r)

ϕguess

ϕtipα

Airfoil Data

CL, CD

T and Q
coefficients
CX and CY

Goldstein loss
factors
K, K'

Interference
loss factors

a, a'

Prandtl loss
factor F

ϕnew |ϕnew -ϕguess|

ϕnew  = ϕguess

> Toll

< Toll

η, CT, CP

BEMT ITERATION

Figure 2.6: BEMT equations calculation algorithm [4]

Starting with known chord and twist distributions, number of blades, airfoil of the section
and diameter of the propeller, an initial guess is used for φ. Figure 2.1 displays the relationship
between inflow angle, angle of attack and local twist angle. Knowing this relationship, angle
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Synthesis of a blade performance model for design

of attack is obtained with the initial guess and the known twist distribution. Angle of attack,
Reynolds and Mach numbers make it possible to compute the lift and drag coefficients. Cx
and Cy are later computed through 2.7 and the process continues by calculating Goldstein
loss factors K and K’ as:

K = Cy
4 sin2 φ

(2.25)

and
K ′ = Cx

4 cosφ sinφ (2.26)

Being these factors two parameters that account for losses and help the manipulation of
BEMT equations for finding the searched solution. Thank to these, it is possible to calculate
the interference factors, ax and ay as:

ax = σK

F − σK
(2.27)

ay = σK ′

F + σK ′
(2.28)

Prantl factor F for tip losses is calculated after the following expression taken from [4] (where
π is the number π):

F = 2
π

arccos e−f (2.29)

and where f is defined as in the following, being φt the value of the inflow angle at the tip.

f = B

2 (1− ξ)/ sinφt (2.30)

Since BEMT equations are solved independently for each station, the calculations of inflow
angle at the tip follow the condition of vortex sheet in the wake is a rigid screw surface, and
this is obtained through the following equation:

tanφt = ξ tanφ (2.31)

Finally, knowing the updated interference factors, recalling the triangle of speeds conformed
by the axial (V) and rotational speeds (Ω) modified by the interference factors of Figure 2.1,
the new direction of local airstream provides a new value of inflow angle, which is obtained
through the following equation:

φnew = arctan V (1 + ax)
rΩ(1− ay)

(2.32)

This new angle φ is compared with the value corresponding to current iteration value. If
the difference is higher than the error admitted, the inflow angle value is updated and the
algorithm restarts until φ converges. At this point, all the variables are already calculated and
it is possible to obtain the propeller performance as detailed in Section 2.1. This algorithm
may stop before arriving to convergence, as the calculations are sensitive once the Prandtl
loss factor is calculated (eq. 2.29).

Even though past method is adequate for solving BEMT equations, the tool developed
implements the solution found by Ning in [5], in which it is demonstrated that it is always
possible to find a solution for equation 2.33. This equation is only function of the inflow
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2.2. Robustness assessment

angle φ. Having fixed propeller geometry (σ), for given flight conditions of horizontal speed
(Vx) and rotational speed (Vy at the station), and of course, having prepared a database of
polars as provided in Section 2.1.3, it is only necessary to find the φ value that is solution of
this equation.

Vy(4F sin2 φ− Cxσ)− Vx(2F sin 2φ+ Cyσ) = 0 (2.33)

Using Ning’s approach to resolve BEMT equations the performance of a propeller that
helped as an example in [4] was obtained. Adkins provides an example of the use of the
algorithm described in its article and displayed in 2.6 for arbitrary design propeller perfor-
mance. The propeller was designed to work at 110 mph (49m/s) and 2400 rpm. The airfoil
of the section is the NACA 4415 and is maintained constant along the span. An extract of
the article in which the geometry is defined is present in Table 2.1.

Table 2.1: Adkins’ propeller example geometry definition [4]

r [mm] c [mm] β [deg] φ [deg]
152.4 104.3 58.3 54.8
273.0 140.3 41.8 38.3
393.7 130.1 32.2 28.7
514.3 108.7 22.2 22.7
634.9 85.2 18.7 18.7
755.6 58.3 15.9 15.9
876.3 0.0 13.8 13.3
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(b) Twist distribution

Figure 2.7: Adkins propeller geometry

For this propeller, its performance was calculated and confronted with the results achieved
in the article. Figures 2.8(c), 2.8(a) and 2.8(b) display two curves. Those in blue are obtained
with the tool developed and in orange is the data present in the article, while an asterisk
marks the design point for which the propeller was designed. Figure 2.8(d) does not provide
information about the required torque coefficient obtained through Adkins algorithm as it
there was no data provided.
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Figure 2.8: Adkins propeller performance

The method proposed by Ning and the one by Adkins present a good agreement in the
calculations. In fact, both procedures solve the same equations in a different manner.

Figures 2.8(a) and 2.8(b) display a slight deviation at values close to J = 0.45. In fact,
there is no data available for J < 0.4 in the article. Recalling Section 2.1.3 in which the
approximation of the aerodynamic coefficients for post-stall angles of attack is described,
at J = 0.4, three out of the seven stations in which the blade is divided in are subjected
to post stall angles of attack. This means that, for that small interval of advance ratio at
which Adkins’ data starts, different aerodynamic coefficients are used during the solving of
propeller performance, and the approximating method utilized provides a small discrepancy
in the results. It is thought that, if Adkins’ data started at lower advance ratios, this difference
would increase.

On the other hand, for higher advance ratios, very small deviations in the calculations
performed are observed, being in accordance to what was said in the precedent paragraph.
For higher advance ratios, there is no need for an approximation since sections are subjected
to smaller angles of attack. These deviations may be due to the fact that Adkins’ procedure of
solving relies in the algorithm of Figure 2.6, and different choice of tolerances in the definition
of convergence could be the cause of said deviations.

Overall, there is a good correlation between the computations of the two calculating
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2.3. Validation

methods presented in this section.

2.3 Validation
The method proposed by Ning and adopted in the development of the tool, showed a good
agreement with the method proposed by Adkins for calculating propeller performance. This
concordance is promising, since in the article [4], the validity of the algorithm is positively
checked by confronting calculations with real propeller performance data coming from ex-
periments. Since the algorithm seems to provide results that are in accordance with tested
data, and being the calculations performed by the tool here developed similar to those of
the algorithm, it is possible to say that the tool provides reliable data. However, it has been
decided to perform another confrontation with real propeller performance data more.

In the article of S.Xiang et al. [1], another method in for optimum propeller design is
proposed and confronted with real data. The method is based on the article of optimum
propeller design of Angelo et al. described in [10]. This is different to that of the previous
section in the calculations of propeller performance. In fact, an algorithm for optimum
propeller design there provided consists in a minimization of the condition of Glauert for
energy losses by exploiting the use of Lagrange multipliers.

Similarly like in [4], the authors compared the results of their proposed method with data
coming from wind tunnel tests of a scaled version of a propeller designed by their method
in Northwestern Polytechnical University, China. The dimensions of the wind tunnel of
rectangular section are 3.5m width, 2.5m height and 12m length. Turbulivity during the test
was of 0.078%.

It is a two bladed propeller whose geometry is provided in Figure 2.9. Eight stations define
chord and twist distributions. The airfoil used is the RAF 6 and is maintained constant along
blade span. The diameter of the original propeller is 1.6 meters while the scaled version
holds 0.96 meters of diameter. Figure 2.9 displaying propeller geometry has been taken
directly from [1] and figures 2.9(a) and 2.9(b) display a linear behaviour of chord and twist
distributions between stations rather than a smooth curve for both cases.
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(b) Twist distribution

Figure 2.9: Xiang propeller geometry

Figure 2.10 display the comparison between results obtained with the tool developed in
blue, the calculations obtained with the method proposed by Xiang in orange and the data
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Synthesis of a blade performance model for design

coming from wind tunnel tests in yellow. Starting by the results obtained in [1], the trends of
tunnel tests and Xiangs’s method are in good accordance, however, a slight offset is present in
2.10(c). The results obtained with the tool developed in this thesis show a better agreement
with data coming of wind tunnel tests rather than with the calculations performed following
Xiang’s method.
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Figure 2.10: Xiang propeller performance

In Xiang’s article, the aerodynamic coefficients needed during the calculations are ob-
tained in the same manner as in this thesis, throughout XFOIL. Therefore, it is thought that
the discrepancies between the curves in blue of Figure 2.10 corresponding to the calculations
performed in this thesis and the curves in orange, those of the calculations performed in
Xiang’s article, must be caused because of the different methods used. These differences are
especially remarkable in the case of efficiency, in Figure 2.10(c).

On the other hand, the purpose of this analysis was to compare the calculations with ex-
periment data, so that the discrepancies between propeller performance calculating methods
is not that relevant. Comparing the blue curves with the yellow ones, a better agreement
can be found. Again, like in Adkins’ article, not data in the whole spectrum of J can be
found in Xiang’s document. It is noticeable that discrepancies occur at low J values, while a
better accordance is found at higher advance ratio values. One of the reasons could be the
small number of stations in which the blade was divided in to perform this assessment, since,
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2.3. Validation

as described in future Section 3.1, for less than ten stations with uniform distribution, high
errors can be encountered.
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Chapter 3

Numerical studies

In this chapter the influence of number of stations, along with the spatial distribution of
those and the influence of where the first station is placed is addressed. In these studies, the
same propeller is analysed, whose characteristics are described in Table 3.1:

Table 3.1: Propeller geometry of Chapter 3 studies

Common Section 3.1 Section 3.2
2 blades

Diameter 1.75m
NACA 4415 airfoil 20% ξcut-off 60 stations

900 RPM. n variable ξcut-off variable
ρ = 1.225 km/m3

V sound = 343 m/s

The geometry of this propeller is displayed in figures 3.1(a) and 3.1(b). Chord has been
chosen to be 100 mm and constant along the span. Twist is defined with the following
equation, equation 3.1:

tan β = 1.3D
2πξ (3.1)

This equation is similar to 2.18 in the Subsection 2.1.1, and it corresponds to a propeller
of 1.3 H/D ratio. Looking at Figure 2.2, it is expected that the maximum efficiency of this
propeller is in the advance ratio interval of [1:1.2], (which in fact it is, looking at 3.6). The
benefits of using this formulation for the definition of twist distribution is that, once the dis-
tribution of stations has been defined, the calculations of twist distribution is straightforward,
as a simple substitution in the past formula is enough.

Results of the following Sections show that efficiency is a parameter that is not much
sensitive to the variations of the number of stations and ξcut-off, while torque and thrust are.
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Figure 3.1: Assessment propeller geometry

3.1 Spatial resolution assessment
As it has been said so, BEMT equations are solved individually for each station in which
the blade is divided in, and each solution is not dependent on the other stations. In this
section, an assessment of which spatial distribution of stations along blade span is better in
terms of the quality of the result obtained is carried out. Two different distributions have
been considered: a distribution that places stations uniformly along the blade span and a
distribution that follows a cosine law that provides higher density near to the blade tip.

A good understanding about the effect of number of stations and how are they placed
along the blade span is of paramount importance, since a small number of stations leads to
errors in the calculations since geometry is poorly defined, and thrust and torque integration
are directly dependent on this definition; however, high number of stations leads to higher
computational time, an important quality aspect of the tool.

Figure 3.2 and equation 3.2 show how the distribution of stations with higher density
near the blade tip is obtained. In a circumference of unitary radius, the angle value of which
its cosine provides the desired position by the user of the first station is computed. Then,
this angle is divided in n-1 equal parts, corresponding to n-1 sections of which the blade
span is divided in, and their cosines are computed. It is trivial to remark that following this
procedure, station values lie in the interval [ξcut-off, 1].

ξi = cos
((

1− i− 1
n− 1

)
arccos ξcut−off

)
, i = 1, 2, ..., n (3.2)

The case for uniform distribution of stations follows equation 3.3. In this case, the density
of stations along the blade span is uniform and the length of each of the sections obtained is
constant.

ξi = ξcut−off
n− i
n− 1 + i− 1

n− 1 , i = 1, 2, ..., n (3.3)

Propellers analysed in Section 2.2 and Section 2.3, that of [4] and [1] respectively, have
a limited number of stations as it can be seen in figures 2.7 and 2.9. In fact, only seven
and eight stations were used in those references to calculate propeller performance. For this
assessment. Performance the propeller whose geometry is displayed in Figure 3.1, has been
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3.1. Spatial resolution assessment

Figure 3.2: Representation of cosine distribution

calculated repeatedly for several increasing values of number of stations and a comparison is
performed in figures 3.3(c), 3.3(b) and 3.3(a).

Firstly, the blade is divided into n stations, according to the formulations described before
in equations 3.2 and 3.3. Then, chord and twist values are assigned properly to each station.
Once blade geometry has been computed, aerodynamics and flight conditions are applied.

In Figure 3.3 the vertical axis represents the percentage of the difference between the
calculated parameter with n number of stations and the same parameter but calculated with
150 stations with respect to the number of 150 stations like in equation 3.4, where P stands
for the value of any kind of result that is wanted to be analysed: thrust, torque or efficiency.
This equation allows the user to define a threshold of admitted error. In this assessment, a
threshold of ±1% has been utilized as an example, to compare the number of stations needed
to achieve this precision of the result with respect to the actual value.

Error = Pn − P150

P150
100 (3.4)

Figures 3.3(a) 3.3(b) display a negative error in the calculations for low values of number
of stations, meaning for these values, the propeller provides higher thrust demanding more
torque. In case of 3.3(c), it is displayed that the error is positive and therefore, the tool
provides higher efficiencies than the real value. There is a common trend in the three pictures,
that a cosine distribution converges more rapidly with less number of stations than the
uniform distribution. In fact, a threshold of ±1% error is achieved for less than 10 stations
if they are distributed according to the law described in equation 3.2 for thrust and torque
cases, and even less for the case of efficiency. A uniform distribution of stations is remarkably
worse in this terms, as the error threshold is obtained using more than 30 stations for thrust
and torque. In terms of efficiency, the threshold is obtained with less stations, however, the
cosine distribution is definitely better.
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10 20 30 40 50 60 70 80 90 100

n

-3

-2

-1

0

1

2

3

E
rr

o
r 

[%
]

Cosine distribution

Uniform distribution

(c) Efficiency error vs J.

Figure 3.3: Number of stations effect

3.2 Cut-off ratio study

Cut-off ratio is the blade percentage at which the first station is placed. The whole propeller
disk is not providing thrust as there is the hub in its centre which does not contribute to the
performance. The presence of this hub is taken into account with the cut-off ratio. In this
section, an assessment of the effect of the placement of the first station, that corresponding
to a spatial ξcut-off position, is performed. For this study, the same propeller of the previous
Section 3.1 was used. In this case, the cosine law of distribution of stations was used with
60 stations (so that, for low values oh ξcut-off, the density of stations at the root was enough
according to figures of Section 3.1, since low density of stations close to the root could mask
the results for low values of ξcut-off) and the cut-off ratio was introduces as a parameter.

Figures 3.4, 3.5 and 3.6 display the curves of thrust, torque and efficiency versus advance
ratio for different values of ξcut-off. It can be seen that, for values up to 30% thrust and torque
are very similar and little error is incurred in, while for efficiency, the difference cannot be
perceived.

Figures 3.4(b), 3.5(b) and 3.6(b) contain the curves for thrust, torque and efficiency for
values from 35% up to 55%. In this case, a non negligible difference is found at J = 0.5 for
thrust and at J = 0.6 for torque, these differences become smaller as J increases or diminishes.
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Figure 3.4: Influence of cut-off ratio in CT
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Figure 3.5: Influence of cut-off ratio in CQ

On the other hand, as it was anticipated, efficiency is virtually not altered.
Since the maximum of the difference in the final value for thrust and torque occurs at

around half of the working interval of J of the propeller, an analysis of the loading of the blade
was performed in order to assess the maximum error incurred by using one value of ξcut-off or
another. 3.7(a) shows the horizontal force coefficient distribution (see equation 2.33) along
the span, while 3.7(b) the value of thrust at the station, proportional to the product of CX
by W2 and the value of chord at the station (equation 2.1). In this figure, it can be seen
both tip losses and that stations near the blade tip provide higher values of thrust. Finally,
Figure 3.7(c) displays for each station the sum of the thrust of the sections up to that station,
providing cumulative curves that reach the total value of thrust obtained at ξ = 1.

In Figure 3.7, curves for different values of ξcut-off are provided. In the case of Figure
3.7(c), a dashed red line represent, as in Figure 3.3, the difference of 1%. ξcut-off values of less
than 20% provide values within the range of -1% (in the range of maximum difference; for
other values of J, the difference is minor and higher values of ξcut-off should be admitted).
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Figure 3.6: Influence of cut-off ratio in η
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Figure 3.7: Blade loading at J = 0.5
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Chapter 4

Optimization studies

In this chapter the benefit of having a tool that calculates propeller performance in any
condition is exploited. As it was mentioned, it is possible that fixing flight conditions, the
parameters that define propeller geometry are changed until an arbitrary cost function is
minimized.

Two different kinds of propeller optimizations will be performed for an 19-passenger com-
muter for which cruise and take-off phases are here detailed:

• Cruise design point:

– Altitude 8000 ft.
– True airspeed 115 m/s.
– Power required 1500 kW

• Thrust requirements at take-off:

– 54 kN at 31m/s.

The optimization routines here described focus mainly in obtaining high efficiency at cruise
conditions. However, any kind of optimization problem could be formulated, like minimizing
the size of the propeller or even, after the definition of such parameters, the minimization of
working associated noise of the propeller.

As an initial guess for propeller sizing, the propellers mounted in aircraft Beech 1900
and Do-228 were considered as they are similar airplanes to the one described before. These
two commuters obtain thrust with two engines that mount a propeller each, therefore, the
restrictions of power required and thrust at take off are divided by two in the calculations
performed.

4.1 Optimization variables and algorithm description
The parameters that permit obtaining propeller performance modifications were described
in the previous chapters. Propeller geometry is defined after the diameter (D), airfoil of the
section (such as RAF6 or NACA 4412 of Section 2.2 and Section 2.3 respectively), number
of blades (B), twist and chord distributions (β and c).

In these optimization studies, airfoil of the section is not considered to be an optimization
variable since a database of the aerodynamic coefficients must be computed and ready before

25



Optimization studies

any calculation is performed. Also, the routine for the optimization utilized does not allow
integer optimization, therefore, several optimizations in which number of blades was set
constant at the beginning of each optimization were performed.

Continuing with parameters that define propeller geometry, in his thesis, Tarraran de-
veloped the optimum propeller for a drone, utilizing second grade polynomial expressions
that defined twist and chord distributions [3]. These polynomials were defined by only three
parameters, and thus, require little effort to implement in the code. Another advantage of
using polynomial expressions is that only three variables are considered to be variables of
optimization. However, other methods that define curves can be utilized. In fact, in this the-
sis, Bézier curves are exploited, as they are simple to introduce, and have been used in many
engineering fields, including optimization of wind turbines [11]. Bézier curves are defined by
a set of control points, P0 to PN, where N is the order of the curve. These control points
here described are the variables of optimization that were considered.

B(t) =
N∑
i=0

Pibi,N(t), t ∈ [0, 1] (4.1)

where
bi,N(t) =

(
N

i

)
ti(1− t)N−i, i = 0, 1, ..., N (4.2)

These curves start and finish in control points P0 and PN. Figure 4.1 displays three Bézier
curves that start and finish in the same control points but are of different orders. As it can
be seen, higher order curves provide more complex shapes. In this thesis, three order curves
defined by four control points were utilized, since no more complexity is needed.
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Figure 4.1: Different Bézier curves and control points

In summary, the total eighteen optimization variables of the problem are:

Optimization variables:



4x abscissa chord control points
4x ordinate chord control points
4x abscissa twist control points
4x ordinate twist control points
D
RPM

26



4.1. Optimization variables and algorithm description

In the optimization performed in Section 4.4.1, two initial guesses for optimal geometry
were considered: The first one, present in Table 4.1 provides linear chord and linear twist
distributions and the second one, that of Table 4.2, constant chord and linear distribution of
twist angle. For twist and chord distributions, the initial values of Bézier control points were
considered such that two different twist and chord distributions could be defined:

Table 4.1: First initial geometry

Chord Twist
X Y X Y

B0 0.200 1.250 0.200 60
B1 0.466 0.833 0.466 46
B2 0.733 0.416 0.733 32
B3 1.000 0.000 1.000 20

Table 4.2: Second initial geometry

Chord Twist
X Y X Y

B0 0.200 0.750 0.200 60
B1 0.466 0.750 0.466 46
B2 0.733 0.750 0.733 32
B3 1.000 0.750 1.000 20

And 2.5 meters of diameter along with 2000 RPM.
In the problem described in equation 4.3, the minimum of a function is found taking into

consideration six different kinds of constraints. The first array of constraints are the linear
inequality constraints, defined by a matrix (A) and a vector (b). The second group is related
to the linear equality constraints, again defined by a matrix (Aeq) and a vector (beq). The
third and fourth groups of constraints are the non linear inequality and equality constraints
respectively, that are imposed by the user. Finally, fifth and sixth groups of constraints are
directly related to the domain of the parameters utilized, as they define the boundaries of
the parameters. The routine that provides propeller optimization based on the minimization
problem is described deeply in [?]:

min
x

f(x) such that



A · x ≤ b

Aeq · x = beq

nonlc ≤ 0
nonlc = 0
lb ≤ x ≤ ub

(4.3)

In order to completely define the optimization problem, it is necessary to define a cost
function (f(x), described in Section 4.2), the variables of optimization and the constraints
(4.3).
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There are also several options when choosing the optimization routine. There exists
different kind of algorithms, such as the one called but after an exploration on the quality
of the results provided by those different algorithms, a gradient-descent sequential quadratic
programming (SQP) algorithm was chosen. This algorithm is also utilized by Sartori in
[11] in an optimization problem similar to the one that is discussed in this thesis. For this
algorithm, several parameters can be changed, for example the minimum size of change in
the variables optimization between iterations. The influence of this parameter in the results
has been analysed in Appendix B.

4.2 Cost functions
Here, the possibility of choosing any kind of cost function is exploited and two different
optimizations were performed and discussed in Subsection 4.2.1 and Subsection 4.2.2.

4.2.1 Cruise performance optimization
In this case, cruise efficiency optimization is performed by calculating the efficiency at 115m/s
of true incoming airflow speed. The variables of optimization are the eight parameters of
the control points for chord distribution, symmetrically, eight points for twist distribution,
diameter and rotational speed of the propeller. In this case, the function that provides the
value of the cost function is quite simple:

1. Bézier control points are transformed into curves

2. Performance is calculated in cruise conditions

3. Cost function value is computed through equation 4.4

As it was mentioned, the optimization routine searches the minimum of a function, there-
fore, in order to obtain the maximum of the efficiency, the value of ηcruise must be changed
of sign.

CF = −η (4.4)

4.2.2 Wider interval of high efficiency
In this case, a loss in optimal cruise efficiency is admitted in exchange of a wider range in
terms of advance ration in which the efficiency is higher than a desired tolerance. This is
given by parameter γ, and the weight that high efficiency range of J has in the cost function
is controlled by parameter κ. In this case, cost function value is obtained through 4.5. The
cost follows these steps:

1. Bézier control points are transformed into curves

2. Performance computed multiple times in a range of speeds

3. ηmaximum is found

4. Jmin and Jmax are obtained
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5. ∆J is computed

6. Cost function value is computed through equation 4.5

Setting γ = 0.95 will provide a interval of J in which the efficiency is higher than 95% of
ηmax, complying with the restrictions of thrust at take-off and cruise.

CF = −(η + κ∆J) (4.5)
This kind of multi-objective optimization for which a Pareto-like diagram, similar to that

of Figure 4.2, can be performed, is the objective of this cost function. In this figure, each
star would correspond to an optimization in which a different value of κ was used, obtaining
lower maximum efficiencies for increasing values of κ.
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Figure 4.2: Example of Pareto diagram

4.3 Constraints
As described in equation 4.3, the minimization problem allows the inclusion of non linear
constraints. Thanks to this, it is easy to implement required thrust values during differ-
ent phases of the mission. In both optimizations performed, the next list summarizes the
constraints imposed, following the nomenclature required by 4.3:

1. TTO - T1 ≤ 0

2. TCruise -T2 ≤ 0

3. Mtip - Mlim ≤ 0

4. Remin - Rei ≤ 0

5. Bx0c - ξcut-off ≤ 0
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6. Bx0t - ξcut-off ≤ 0

7. 1 - Bx3c ≤ 0

8. 1 - Bx3t ≤ 0

Restrictions number 1. and 2. represent thrust constraints during different phases of
flight, as thrust at those phases must be higher to values prescribed at the beginning of the
optimization. Constraint number 3. limits the maximum value of the Mach number at the
blade tip to that of the maximum Mach number available in the database of polars. This
constraint is directly limiting the diameter of the propeller, as higher speeds are encountered
in the tip due to rotational speed. The other way around happens with constraint number 4;
this constraint is actually a group of n constraints, being n the number of stations. They force
that Reynolds number at each station is higher than the minimum Reynolds number present
in the database. This constraint is particularly important as the curve that defines chord
distribution may take lower than zero values between iterations of the optimization routine,
leading to negative chords. Since Reynolds number is a function of the chord, negative
chords would result in negative Reynolds number at the section and, following the procedure
of Section 2.1.3, the routine would utilize the polars of the lowest Reynolds number available
to obtain results, and therefore, the results obtained would not realistic as they come from
unfeasible chords. Constraints 5. to 8. are related to the abscissa coordinate of the Bézier
control points for both twist and chord distributions. They require that the first control point
must be to the left of the first station and that the last control point must be to the right of
the blade end, in order to have a single value of twist or chord at each station.

In summary, constraints 1 to 4 are contained in the non linear constraints group, while
constraints 5 to 8 belong to the boundaries of the values that the optimization parameters
can take.

4.4 Results

4.4.1 Cruise performance optimization
Two initial geometries to be optimized were considered. In the first case, linear chord and
twist distributions along blade span, while in the second, constant chord and linear twist
distributions are considered. Optimized propeller performance are confronted to those of the
initial guesses in figures 4.5 and 4.7. Both optimizations are confronted in Figure 4.9. In all
these figures, cruise and take off conditions are marked with dots of the colour of the line
that correspond to the geometry from which it was obtained. Initial guesses of geometries are
depicted along with their optimizations in figures 4.4 and 4.6 and the optimal geometries are
confronted in 4.8. Figure 4.3 displays a breakdown of execution times. It reveals that most
part of an optimization time is devoted to finding aerodynamic coefficients. This amount of
time highlights the need of a faster method of providing aerodynamic data to the tool.

In terms of performance, Figure 4.5(c) shows a ten percent increment in efficiency at
cruise, the quantity that was being optimized. In figures 4.5(a) and 4.5(b) a slight increment
of thrust and torque coefficients curves with respect to J is present.
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Figure 4.3: Optimization breakdown times
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Figure 4.4: Cruise-optimized propeller geometry - Case 1
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Figure 4.5: Cruise-optimized propeller performance - Case 1
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Figure 4.6: Cruise-optimized propeller geometry - Case 2
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Figure 4.7: Cruise-optimized propeller performance - Case 2
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Figure 4.8: Cruise-optimized propeller geometries comparison

It is remarkable that, in the initial guess of linear chord distribution in which at ξcut-off a
chord of 1.25 meters was present, the optimization led to a close to zero value of chord for
that station, while, in the case of constant chord distribution, the value at that station is
higher than 0.5 meters. Also, the point of maximum chord differs, being in one case before
half of the blade and after in the other. However, in both cases, the chord is close to zero
(and not precisely zero, as discussed in Section 4.3) at the tip. However, at a first glance,
the optimal geometries coming from the optimization of a constant chord propeller are more
feasible, since a not null chord is present at the hub limit.

Optimized twist distributions are quite similar with a slight change in the twist angle at
the tip of the blade, meaning that, for this optimization, twist variables are of less importance
in comparison with Bézier control points of chord distribution.

Quite different optimal geometries present in Figure 4.8 led to the performances present
in 4.9. In fact, in these figures, very similar curves for thrust, torque needed and efficiency
with respect to J were obtained. In Figure 4.9(a), two dashed red segments representing
the constraints of thrust at take-off and cruise are present and, for the two constraints, both
optimizations are compliant with the requirements.

In terms of efficiency, optimal values at convergence in the two optimizations performed
increased the efficiency of their respective initial guesses, being their values almost equal. In
any case, the efficiency at this maximum is slightly over 80%, a value that is not excellent.
One cause of this "low" value for maximum efficiency at cruise could rely on the constraint
of using NACA 0012 airfoil, the only airfoil for which aerodynamic coefficients at M = 0.84
were known. This symmetric airfoil needs higher angles of attack than other known airfoils to
obtain the same lift coefficient and therefore, in order to satisfy the thrust constraints, large
geometries that compromised efficiency were encountered. It is thought that a relaxation of
these constraints could lead to higher efficiencies and the use of other airfoils could lead to
higher cruise efficiency.
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Figure 4.9: Cruise-optimized propeller performances comparison

4.4.2 Wider interval of high efficiency
Unlike in Section 4.4.1 where two initial guesses of geometry were considered, in this section,
only the propeller with linear chord and twist distributions was optimized, subjected to the
cost function of described in Section 4.2.2. Referring to the parameters previously defined in
that section, it was chosen a value for γ of 0.95, meaning that the interval of J introduced
in the cost function takes into account those advance ratio values whose efficiency is higher
than 95% of ηmax. In this section, an assessment on the value of κ that permits the desired
multi-objective optimization was performed.

Table 4.3 displays the results of different optimizations performed changing κ. This table
presents the maximum of the efficiency curve, the range of advance ratio for which efficiency is
higher than 95% and the percentage of total cost function devoted to increasing ∆J. Initially,
it was preferred that the contribution of the extended high-efficiency advanced ratio range was
around 1% and 10% so that the optimization routine does not deviate from the initial target,
ηmax, while complying with constraints. For each row in Table 4.3, optimized geometries were
obtained. Looking at Figure 4.12, for κ = 0.35, chord distribution adopted a non feasible
shape. In fact, the rest of optimizations performed for κ values higher than 0.35 display
similar trends of non feasible chord distributions at convergence.

Figure 4.10 displays the two contents of the cost function at convergence, not taking into
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Table 4.3: Multi-objective optimization results

κ ηmax [%] ∆J κ∆J
CF

[%]
0.000 81.69 0.2780 -
0.025 79.61 0.2868 0.89
0.050 81.07 0.2958 1.79
0.075 81.02 0.2947 2.65
0.100 81.02 0.2939 3.50
0.125 81.83 0.2909 4.25
0.150 81.54 0.2886 5.04
0.175 81.75 0.2720 5.50
0.200 81.07 0.3005 6.91
0.225 80.94 0.2962 7.60
0.250 80.95 0.2972 8.40
0.275 80.96 0.2977 9.18
0.300 81.55 0.3082 10.18
0.325 80.61 0.2996 10.77
0.500 78.25 0.2920 15.72
0.700 79.89 0.3110 21.41
1.000 78.09 0.3426 30.49

account the value of κ, but rather showing the desired ∆J value in 4.10(a) and with the
effect of the weighting parameter κ in 4.10(b). There are very small variations in the desired
high efficiency interval, with a trend of increasing said interval for κ values higher than
0.35, the limit of feasible chord distributions. In fact, for low values of κ, the component
κ∆J is relatively small, therefore, the proportion of κ∆J with respect to ηmax should be
higher in order to obtain a distinguishable improvement of this aspect. Optimal values of
CF components for κ up to 0.35 makes it difficult to provide a Pareto curve similar to that
of 4.2.

In any case, Figure 4.11 displays how total value of the cost function increases with
the value of κ. The value of this cost function is not as relevant as in the case of cruise
optimization but in this case, components that form the cost function and their proportion
are more important, since their corresponding weight in the CF determine which will be more
taken into account.

Figure 4.12 displays a sample of the kinds of geometries obtained in these optimizations.
The yellow curve corresponds to the mentioned unfeasible distribution. Orange curve is, on
the other hand, very similar to the optimization of cruise performance, due to the small κ
value.

Looking at 4.13, relaxing the constraints for thrust at take off, those that are in the limit,
could lead to an improvement of the chord distribution shapes, since large chord values would
not be necessary, similarly as described in Section 4.4.1 for the previous optimization.
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Figure 4.10: Cost function components at convergence
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Figure 4.12: Multi-objective-optimized propeller geometries
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Figure 4.13: Multi-objective-optimized propeller performances

38



Chapter 5

Conclusions and recommendations

5.1 Present work
The modelling of propeller performance has been a success: Firstly, in Chapter 2, the set of
the BEMT equations that conform the model were presented. These equations are solved
with the help of the method proposed by Ning in his article [12] and compared with other
methods in Section 2.2. Later in this chapter, a validation of the calculations performed was
carried by confronting the data provided by the tool with data obtained in tunnel testing of
the propeller analysed in [1].

Once the model was properly constructed and reliable results were obtained, two numer-
ical assessments were performed related to the influence of different parameters, that define
propeller geometry, have in the quality of the solution. In Chapter 3, firstly, the study of
number of stations revealed that depending on the kind of law for distribution of stations
along the blade span, the number of stations needed to incur a small error changes. In fact,
a cosine law distribution is better than a uniform law, since less stations are needed. Twenty
stations and a cosine law distribution provide good results. Secondly, the first station loca-
tion influence in the calculations was addressed. Figure 3.7(c) shows how up to a 20% of the
blade span near to the root can be neglected in the calculations with very small error.

Finally, thanks to the modelling of propeller performance parametrically, achieved during
the realization of this thesis, allowed to perform several optimization studies. In Chapter 4,
in fact, two kinds of optimizations were performed. Firstly, two optimizations of propeller
performance in cruise conditions for a 19-passenger commuter were performed for different
values of initial geometry guesses. For these optimizations, a maximum efficiency of around
80% were encountered, evidencing the importance of the airfoil of the section an the con-
straints related to the minimization problem. Secondly, a multi-objective optimization study
was performed with an assessment on the influence of parameter κ in the results. Dur-
ing this optimizations non feasible chord distributions were encountered, but the results are
satisfactory.

5.2 Further studies
Regarding future studies for this work, other phenomena occurring during propeller operation
can be introduced in the model. For example, this model lacks a description of the contraction
of the slipstream in the wake. A model of noise and vibrations could be also introduced so
that it can serve as a parameter in the optimization routines of quieter propellers.
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Conclusions and recommendations

Even though the modelling of propeller performance calculations was properly imple-
mented and the quality of the results was good, there is still margin to improve.

1. In Section 2.1.3, the aerodynamics implementation is described. During Chapter 3,
only data coming from XFOIL was needed, however, when performing optimizations in
which high subsonic Mach numbers are reached, the addition of other data sources is
required. It is thought that maximum efficiencies obtained in 4.4 could be higher using
another airfoil, but to obtain this, the database of polars should be expanded for these
new airfoils, as performed for the NACA 0012.

2. For low advance ratio values, thrust and torque curves display oscillations. At this
conditions, a big amount of the blade is stalled and the aerodynamic coefficients are
approximated with the Viterna method. This approximation could be enhanced by
using other methods.

3. Continuing with the database extension, even though other databases of polars for
different airfoils were here used, all the studies performed considered constant airfoil
along the span. Including the capability of changing airfoil along the span could enhance
optimization results.

4. Finding other ways of implementing the aerodynamics in the tool, by the use of approx-
imations with correcting coefficients, could reduce the computational time, the main
drawback of this implementation.

5. Appendix B contains the results of optimizations in which the option ‘DiffMinChange’
was changed. The influence of other parameters of the minimization routine in opti-
mization results should be also studied, as very different propeller geometries lead to
similar results in terms of performance.
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Appendix A

Pseudocode

This chapter contains a summary of the functions used to develop the tool. In order to be
as much as understandable as possible, but also to reduce space, it has been chosen to show
this pseudocode rather than MATLAB language directly.
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Pseudocode

Function: SinglePerformance

Input: Aerodynamics, Geometry, Conditions.
Result: η, T, Q, CT, CQ
Result: φ, CX, CY, a, a’, AoA, dT, dQ

σ
c
β

while ε ≤ εmax ∧ iter ≥ itermax do
for i < n do

Re
M
solve fref(φ) = 0
CXi = f(φ)
CYi = f(φ)
Fi = f(φ)
aix = f(φ)
aix = f(φ)

end
ε = εnew

end

dT = f(CX)
dQ = f(CY)

T = trapez(dT)
Q = trapez(dQ)
η = TV

ΩQ

end SinglePerformance
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Function: CX

Input: Aerodynamics, Geometry, Conditions.
Result: CX

Compute AoA

if AoA ∈ AoA database then
call SearchPolars
call InterpolatePolars

else
if AoA = AoAmax + margin ‖ AoA = AoAmin - margin then

call SearchPolars
call ViternaMethod
Weighted average: [Database ; Viterna]

else
call ViternaMethod

end
end

CX = CLcosφ - CDsinφ

end CX

45



Pseudocode

Function: CY

Input: Aerodynamics, Geometry, Conditions.
Result: CX

Compute AoA

if AoA ∈ AoA database then
call SearchPolars
call InterpolatePolars

else
if AoA = AoAmax + margin ‖ AoA = AoAmin - margin then

call SearchPolars
call ViternaMethod
Weighted average: [Database ; Viterna]

else
call ViternaMethod

end
end

CY = CLsinφ + CDcosφ

end CY

Function: SearchPolars

Input: PolarDatabase, Re, M.
Result: UpperReUpperM, LowerReUpperM, UpperReLowerM, LowerReLowerM

Find the two closer Re numbers in database.
Compute difference to that numbers.

Find the two closer M numbers in database.
Compute difference to that numbers.

end SearchPolars
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Function: InterpolatePolars

Input: UpperReUpperM, LowerReUpperM, UpperReLowerM, LowerReLowerM,
distances, φ, θ

Result: CL, CD

Compute AoA
Find the two closer AoA numbers in database.
Compute difference to that numbers.
Compute weighted average of the eight couples of CL and CD

• Four weighted average computations for AoA

• Two weighted average computations for Re

• One weighted average computation for M

end SearchPolars

Function: BezierCurve

Input: Control points
Result: X and Y vector coordinates of Bezier curve defined by control points

t = 0:0.001:1
binomial
Bernstein
sum binomial Bernstein
X
Y

end Bezier2Cosine
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Pseudocode

Function: Bezier2Cosine

Input: Cut-off ratio, number of stations, Bezier control points of twist and chord
distributions

Result: Twist and chord distributions vectors

call BezierCurve (control points for twist)
call BezierCurve (control points for chord)
call CosineDistribution (Cut-off ratio, number of stations)

Discard twist and chord curve points that do not belong to CosineDistribution

end Bezier2Cosine

Function: CosineDistribution

Input: Cut-off ratio, number of stations
Result: Vector of spatial distribution of stations along the blade

for i = 1:number of stations do
Compute eq 3.2

end

end CosineDistribution

Function: CostFunction1

Input: Optimization variables, Aerodynamic database, Geometry
Result: ηobj

call: Bezier2Cosine
call: SinglePerformance

ηobj = −ηcruise
end CostFunction1
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Function: CostFunction2

Input: Optimization variables, Aerodynamic database, Geometry
Result: Jobj

call: Bezier2Cosine

for J = J1:J2 do
call: SinglePerformance
ηJi

end
∆J = J ∈ [Jmax(1-γ), Jmax(1+γ)]
Jobj = −(ηmax + k∆J)

end CostFunction2
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Pseudocode
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Appendix B

DiffMinChange

This chapter contains a brief summary of the optimizations performed to ηcruise by changing
the minimum value of the steps in optimization variables in the gradient based minimization
routine, DiffMinChange, for different initial guesses of propeller geometry, constant and linear
chord distributions respectively. Figures B.1, B.4 and B.7 reveals that for very small values of
DiffMinChange, (10-7 and 10-8), optimal results at convergence (optimal geometry and ηcruise)
in both cases is to that of DiffMinChange equal to zero. During this thesis, the default value
for DiffMinChange was then kept to zero.
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(b) Second initial guess

Figure B.1: ηcruise vs DiffMinChange.
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Figure B.2: Optimal geometries. First initial guess - 1 (3)
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Figure B.3: Optimal geometries. First initial guess - 2 (3)
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Figure B.4: Optimal geometries. First initial guess - 3 (3)
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Figure B.5: Optimal geometries. Second initial guess - 1 (3)
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Figure B.6: Optimal geometries. Second initial guess - 2 (3)
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Figure B.7: Optimal geometries. Second initial guess - 3 (3)
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