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1. Introduction
Turbulence is the natural state of fluid mo-
tion. Its study and understanding it’s the key
to improve our ability to predict the mean flow
and consequently to enhance the performance
of aerodynamic bodies. Of the three numerical
methods for predicting turbulence, i.e. Direct
Numerical Simulation (DNS), Large Eddy Sim-
ulation (LES) and Reynolds Averaged Navier
Stokes (RANS), RANS approach has an inher-
ent peculiarity: it only resolves the mean flow,
averaging out the turbulent fluctuations. There-
fore, in order to achieve a more comprehensive
understanding of turbulent flows, additional in-
formation about their instantaneous nature are
required. For this reason, high fidelity simula-
tions, as LES and DNS, are necessary. In terms
of computational and time requirements, LES
occupies an intermediate position between DNS
and RANS. Hence, in recent years, also due to
the increase in available computational power,
LES has been considered more and more attrac-
tive for the prediction of turbulent flows.
The goal of this work is to assess the abil-
ity of the research code Zephyrus, developed
in-house at the University of Bath, to sim-
ulate a fundamental turbulent flow, such as

the turbulent flow over a bump, through LES.
The solver, originally designed for compressible
RANS and URANS simulations of turbomachin-
ery flows, has no Sub-Grid Stress (SGS) models
and can run Implicit LES. In ILES the numerical
schemes ensure that the inviscid energy cascade
through the inertial range is accurately captured
and the inherent numerical dissipation emulates
the effects of the dynamics beyond the grid-scale
filter cut-off.
To benchmark the results against another finite-
volume code, the compressible OpenFOAM
solver rhoPimpleFOAM is chosen. A SGS model
is enabled in OpenFOAM, and its effect on the
solution will be evaluated to verify that the nu-
merical grid is fine enough to capture most of
the phenomena related to turbulent kinetic en-
ergy in the domain.
The incompressible DNS dataset of the turbu-
lent flow over a bump presented in [1] is taken
as reference and reproduced. High-fidelity sim-
ulations of compressible turbulent channels and
bumps are also common in the literature, but
most involve transonic or supersonic flows, or
high Reynolds numbers. High Reynolds num-
bers would have resulted in prohibitively com-
putationally expensive grid resolutions, also due
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to the lack of a SGS model. A supersonic test
case would increase the complexity of the prob-
lem at this preliminary stage of code evaluation,
so it was decided to consider incompressible data
as a reference. Accordingly, Zephyrus and Open-
FOAM compressible simulations setup is tuned
to simulate a flow with Mach number low enough
to be reasonably below the compressible thresh-
old.
The HPC-Europe3 Transnational Access pro-
gram provided the computational resources on
the UK’s HPC clusters Cirrus and Archer2.

2. CFD solvers
2.1. Governing equations
Both solvers, Zephyrus and OpenFOAM, solve
the Favre-filtered Navier–Stokes equations for
compressible flows. The working fluid is air and
it is treated as calorically perfect gas while γ
and the Prandtl number Pr are held constant
at 1.4 and 0.72 respectively. µ is evaluated by
Sutherland’s law.

2.2. Numerical schemes

2.2.1. Zephyrus
The CFD solver Zephyrus, known in literature
as AU3X [3], is a finite volume density-based
CFD solver developed at the University of Bath.
The inviscid fluxes are computed by the upwind
scheme using the approximated Riemann solver
of Roe. Second order spatial discretisation is ob-
tained by extrapolating the values from the cell
centre to the interface via the MUSCL scheme
with the van Albada limiter. The viscous fluxes
at the interface are computed by using the in-
verse of the distance weighting from the ones
evaluated at the cell centres on both sides of the
interface while the source terms are evaluated at
the cell centres and are assumed to be piecewise
constant in the cell. Cell-averaged flow gradient
is computed at the cell centre using the weighted
least square procedure.
The second order accurate backward Euler nu-
merical scheme is applied in time discretization.

2.2.2. OpenFOAM
The numerical schemes employed in Open-
FOAM, are second-order accurate in space and
time: the Gauss linear divergence scheme has

been used for all the terms in the equations ex-
cept for pressure, discretized by Linear-Upwind
Stabilised Transport (LUST ). The backward
scheme is used for the temporal term. Regarding
the solution procedure, the GAMG is employed
for the pressure while smoothSolver for all the
other quantities. The solver employed is rhopim-
pleFoam, a pressure-based solver which uses the
PIMPLE algorithm.

3. Reference case
The reference case is the incompressible DNS re-
ported in [1]. The computational domain, shown
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Figure 1: Sketch of the computational domain
used in [1].

in Fig. 1, consists of two adjacent sections,
aligned along the streamwise direction: an up-
stream channel with cyclic boundary conditions
in the streamwise and spanwise directions, which
feeds the downstream bump domain. A constant
flow rate (CFR) is imposed in the channel. The
bump domain has cyclic conditions in the span-
wise direction. It takes as inflow the outflow
from the upstream channel domain, while con-
vective conditions are used at the outlet. The
dimensions of the whole computational domain
are (Lp

x + Lnp
x , Ly, Lz) = (4πδ + 12δ, πδ, 2δ) in

the streamwise, spanwise and wall-normal di-
rections respectively, with δ representing the
channel half-height. The bump geometry which
produces an attached flow is chosen. Simula-
tions are performed at a bulk Reynolds number
Reb = Ubδ/ν = 3173 corresponding to a fric-
tion Reynolds number Reτ = uτδ/ν = 200 for
the channel, where the velocity scale is the bulk
velocity Ub in the former case and the friction
velocity uτ =

√
τw/ρ.

Since the reference DNS data are incompressible,
yet two compressible solvers are being utilized,
the domain setup is adapted to simulate a flow
with a Mach number Ma = 0.14, low enough to
stay reasonably below the compressible thresh-
old, with the compressibility effects being less
than 1%.
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4. Numerical simulations
4.1. Channel
In the reference case [1], the bump domain
is directly fed by the outflow of a turbulent
channel flow at Reb = 3173 and Reτ = 200. In
Zephyrus, since an algorithm to impose constant
flow rate along with cyclic boundary conditions
is not yet implemented, it was not possible
to simulate the turbulent channel flow and
couple the domains. Therefore, OpenFOAM is
employed to perform the preliminary simulation
of the turbulent channel flow, necessary to
obtain the instantaneous fields needed in inflow
to the bump domain. Through the sampling
function, the instantaneous fields at the channel
outlet are saved to file each timestep.

4.1.1. Grid generation
LES simulations compute the solution of the
filtered equations, resolving large eddies, while
eddies below the filter size are modeled. The
separation wavenumber between computed and
modelled eddies is set by the filter width, linked
directly to the mesh resolution. Therefore, the
grid plays a fundamental role in obtaining accu-
rate results.
The channel domain (Lx, Ly, Lz) = (12δ, πδ, 2δ)
is discretized with (nx, ny, nz) = (207, 110, 186)
points in the streamwise, spanwise and wall-
normal direction respectively. The computa-
tional grid is created with the open-source soft-
ware GMSH [2].
The mesh spacing in spanwise and streamwise
direction is uniform and corresponds to ∆x+ =
12 and ∆y+ = 6 respectively. In the wall-
normal direction a non-uniform distribution ac-
cording to the bump algorithm is implemented
This a GMSH algorithm that locally increases
the point density near the wall, keeping the dis-
cretization coarse close to the centerline. Thus
it is possible to obtain a sufficiently fine grid
close to the walls, where the main phenomena
related to viscous dissipation take place, and
slightly coarser near the centerline, saving com-
putational resources. The cells at the wall cor-
respond to ∆z+ = 0.1.

4.1.2. Boundary conditions
Cyclic boundary conditions are enforced in both
the spanwise and streamwise directions. A Con-
stant flow rate (CFR) is enforced through the
OpenFOAM option meanVelocityForce applied
to the entire domain, tuned with a bulk velocity
matching a Reb = 3173. On the lower and up-
per walls, no-slip and non penetration boundary
conditions are imposed. A zeroGradient bound-
ary condition is enforced at the walls for the tem-
perature and pressure fields.

4.2. Bump
Simulations of turbulent flow over the bump are
performed with both solvers on the same compu-
tational grid, with similar boundary conditions,
and the same time step is employed.

4.2.1. Grid generation
The same spatial discretization implemented in
the channel domain, is also employed for the
bump: the domain (Lx, Ly, Lz) = (12δ, πδ, 2δ)
is discretized with (nx, ny, nz) = (207, 110, 186)
nodes. Consequently, the cell sizes in inner units
are ∆x+ = 12, ∆y+ = 6 and ∆z+ = 0.1 at the
inlet and ∆x+ = 20, ∆y+ = 10 and ∆z+ = 0.2
at the bump tip, according to the local uτ .

4.2.2. Boundary conditions
The spanwise direction is made homogeneous
by applying cyclic conditions, whereas no-slip
and non-penetration conditions are applied to
the lower and upper wall. The channel outlet
instantaneous fields are set as input to the bump
domain. This corresponds to a constant flow
rate condition, being the mass flow rate fixed
at the channel inlet. The fields are set using
timeVaryingMappedFixedValue in OpenFOAM
and TuInl (Turbulent Inlet) in Zephyrus. In
a compressible simulation the static pressure
is needed at the outlet. Therefore, the static
pressure in outflow in OpenFOAM is set with
the boundary condition fixedValue, for the
other variables the condition zeroGradient
is set. In Zephyrus, the boundary condition
FreeExit is employed. It imposes the static pres-
sure in outflow and extrapolates from the inside.
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4.3. Simulations settings
The timestep is set to ∆t = 1.5×10−7, resulting
in an average CFL = 0.1 in the channel domain
and to an average CFL = 0.4 in the bump do-
main.
In OpenFOAM the subgrid stress are modelled
with the kEquation model.

5. Results
5.1. Channel
The turbulent channel flow simulation in Open-
FOAM is let to develop for 120 t in order to
obtain a statistically steady state. Here t is de-
fined as:

t =
δ

Ub
(1)

Subsequently, about 600 t have been used for
accumulating the istantaneous fields (roughly
80000 timesteps).
The values of the skin friction coefficient Cf and
the ratio of the mean centerline velocity Uc to
the mean bulk velocity Ub, given in Table 1, are
in good agreement with the values obtained by
Banchetti et al. [1], Reb and Reτ correspond to
the reference values.

OpenFOAM DNS
Cf 7.826× 10−3 7.833× 10−3

Uc/Ub 1.164 1.168

Table 1: Comparison of Cf and Uc/Ub values
between OpenFOAM simulation and reference
incompressible DNS data.

5.2. Bump
A major difference between the simulations per-
formed with the two solvers is the presence of the
SGS model in OpenFOAM simulations. For this
reason, before starting to compare the results,
the contribution of the kEquation SGS model
employed in OpenFOAM is analyzed. This pre-
liminary analysis allows us to verify that the re-
sults obtained in Zephyrus are not adversely af-
fected by the absence of the model.

5.2.1. SGS model contribution
To study the effects of the sub-grid stress model
in detail, some function Objects are created in
OpenFOAM to compute the following fields:

resolved turbulent kinetic energy, SGS dissi-
pation, viscous dissipation, turbulent kinetic
energy production.

(a)

(b)

Figure 2: Plot of the resolved turbulent kinetic
energy (a) and modeled (b).

The resolved turbulent kinetic energy, in agree-
ment with [1], shows in Figure 2 two high-value
regions: one right upstream the bump and one,
more intense, towards the end of the bump.
The modeled turbulent kinetic energy has in-
stead its maximum intensity just after the tip of
the bump, however, with much lower magnitude
than the resolved one. Regardless, the contribu-
tion of the turbulent kinetic energy provided by
the model to the total kinetic energy is around
2% over the whole domin. Similar results are
also obtained when analyzing the contribution
of the dissipation due to the modeled turbulent
viscosity νt to the total dissipation due to phys-
ical viscosity ν and turbulent viscosity νt: the
modeled component has much lower magnitude
than the resolved one, and it is mainly found in
the area just after the bump tip. The results
show that the numerical grid is fine enough to
capture the main phenomena related to turbu-
lent kinetic energy, and therefore it is legitimate
to use the same grid on Zephyrus, which is not
provided with SGS model.

5.2.2. Solvers comparison
The time-averaged results of the velocity pro-
files, Figure 3 and of the six components of the
Reynolds stress tensor, Figure 4 highlight that
the stress tensor component ⟨w′w′⟩ in Zephyrus
is already significantly reduced at the first cell
center downstream the (recall that w is the ve-
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Figure 3: Plot of the bulk mean velocity profile
at increasing x-coordinates.

(a) (b)

(c) (d)

Figure 4: Plot of the ⟨u′u′⟩ (a), ⟨u′w′⟩ (b),
⟨v′v′⟩ (c), ⟨w′w′⟩ (d) component of the Reynolds
stresses at increasing x-coordinate.

locity normal to the wall for how the axes of
the reference system are oriented). This phe-
nomenon, related to the lower intensity of the
fluctuations, also occurs in all other components
of the Reynolds stresses and becomes more pro-
nounced along the streamwise direction of the
bump domain. The decrease in intensity of the
velocity fluctuations also affects the mean ve-
locity profile. Indeed, at the outlet, the mean
velocity profile obtained with Zephyrus deviates
significantly from the one obtained with Open-
FOAM, exhibiting a lower derivative at the wall
and a higher mean velocity in the area of the
domain near the centerline.

The averaged skin friction coefficient for the

Figure 5: Comparison plot of the skin friction
coefficient Cf .

reference case and the two solvers is compared
Fig. 5. At the inlet, the Cf is similar between
the two codes, with OpenFOAM exhibiting very
good agreement with the incompressible DNS
data. The Cf obtained in Zephyrus drops in
the first few cells, consistently with the decrease
in the intensity of the velocity fluctuations, to
a value roughly half of the reference value. The
Reτ drops from the value of Reτ = 200 at the
inlet to Reτ = 150 after the bump, which is re-
tained until the domain outlet.

Fig. 6 shows the mean Cp averaged in time

Figure 6: Comparison plot of the pressure coef-
ficient Cp.

and in space over the lower wall. The calcu-
lated pressure coefficient Cp is set to 0 at the
outlet of the domain. The pressure coefficient
has a minimum exactly at the tip of the bump.
Away from the bump, the pressure coefficient
has a linear trend (i.e. uniform mean pressure
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gradient), as expected for a plane channel flow.
Again, OpenFOAM has an excellent agreement
with DNS data. Zephyrus shows a worse be-
havior: at the outlet the pressure maintains the
value enforced via the Free Exit boundary con-
dition, while the inflow pressure read from file is
adapted to a higher value, leading to a greater
∆p across the domain.
A similar trend is observed in the results av-
eraged for 120 t of an OpenFOAM LES simula-
tion with the kEquation subgrid model and first-
order accurate UPWIND numerical schemes in
space, backward Euler second-order scheme in
time. OpenFOAM results can be justified by
the highly diffusive numerical method, which
leads to the decrease in turbulent fluctuations
and flow transition to a lower Reτ .
As for Zephyrus, further investigation is needed.
The fundamental turbulent flow analyzed is
mainly characterized by being a wall-bounded
flow and by the presence of a curvature (bump)
on the lower wall. It might be useful to sepa-
rate these two effects to assess the presence in
the code of any issue regarding the inner face
numerical flux (and thus related to the dissipa-
tion of the numerical method) or concerning the
treatment of the wall face flux near the bump
curvature.

6. Conclusions
In this thesis, the main features of Large Eddy
Simulations with and without SGS model are re-
viewed. The scope is to assess the ability of the
compressible CFD solver Zephyrus to simulate
a turbulent flow over a bump using ILES and
to develop the routines needed to get the task
accomplished.
A turbulent channel flow is simulated in Open-
FOAM to generate the instantaneous turbulent
fields needed as inflow boundary condition for
the bump domain. The effect of the SGS model
set in OpenFOAM is carefully analyzed to verify
that the grid resolution is sufficient to capture
the main phenomena related to turbulent kinetic
energy k.
The results show that in Zephyrus the turbu-
lent fluctuations are greatly reduced after few
cells from the inlet and that the flow tends
to re-laminarize toward a turbulent condition
corresponding to Reτ = 150. This diffusion
phenomenon of turbulent fluctuations also af-

fects the inlet-outlet pressure gradient. Counter-
intuitively, a decrease in the friction coefficient
corresponds to an increase of ∆p. However, this
phenomenon is also displayed in an OpenFOAM
simulation with UPWIND first-order accurate
numerical schemes in space.
In Zephyrus the cause of the decreased intensity
of turbulent fluctuations has been attributed to
the high dissipation of the implemented numer-
ical methods, which cause the transition to a
lower Reτ .
Future developments involve investigating fur-
ther and simulating in Zephyrus a turbulent
channel flow with parallel walls (eliminating the
effect of curvature) and performing a simulation
similar to the one presented by Saad et al in [4]:
a study of the decay of homogeneous isotropic
turbulence in a 3D cube with cyclic conditions
applied in all directions, allowing the dissipation
of the numerical method to be evaluated in the
absence of walls.
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Abstract

Turbulence is the natural state of fluid motion, is ubiquitous and influences many phe-
nomena in engineering and the natural sciences. Historically, numerical simulations have
proved very beneficial in the study of turbulent flows, as they allow the measurement
of quantities that cannot be measured experimentally. In this context, the Reynolds-
Averaged Navier Stokes (RANS) and Unsteady-RANS simulations approach is unable to
provide high-fidelity results, as they are based on limited, albeit complex, models for re-
solving the mean component of the flow. Therefore, to gain a deeper understanding and
gather information on the instantaneous fluctuations characteristic of turbulent flows,
high-fidelity instationary simulations are needed, carried out with fine numerical grids,
such as Large Eddy Simulation (LES) or Direct Numerical Simulation (DNS).

The finite-volume CFD code Zephyrus, developed at the Turbomachinery Research Center
at the University of Bath, was originally designed to simulate compressible turbomachin-
ery flows with RANS and URANS models. The purpose of this thesis is to investigate
the ability of Zephyrus to perform compressible LES simulations without a subgrid model
(Implicit LES, or ILES), comparing its accuracy with the open-source OpenFOAM code.
Turbulent flow over a bump is a widely used case study, as it reproduces typical charac-
teristics of realistic applications, such as favorable and adverse pressure gradients, non-
constant friction along the flow direction, and possibly separations.

The results obtained in OpenFOAM have a very good match with DNS data, while
Zephyrus shows a tendency to re-laminize. In fact, the turbulent Reynolds decreases from
a value Reτ = 200 at the domain entrance to Reτ = 150 downstream of the bump. Con-
textually, the Cf , turbulent fluctuations and components of the Reynolds stress tensor are
attenuated compared to the values obtained with OpenFOAM. This behavior was mainly
attributed to the excessive dissipation of the numerical scheme used in Zephyrus.

Keywords: Turbulence, LES, ILES, OpenFoam, Turbulent channel, Bump



Abstract in lingua italiana

La turbolenza è lo stato naturale del moto dei fluidi, è onnipresente e influenza molti
fenomeni dell’ingegneria e delle scienze naturali. Storicamente, le simulazioni numeriche si
sono rivelate molto vantaggiose nello studio dei flussi turbolenti, poiché permettono la mis-
urazione di quantità non rilevabili sperimentalmente. In questo contesto, l’approccio con
simulazioni RANS (Reynolds-Averaged Navier Stokes) e Unsteady-RANS non è in grado di
fornire risultati ad alta fedeltà, in quanto basate su modelli limitati, per quanto complessi,
per la risoluzione della componente media del flusso. Pertanto, per ottenere una compren-
sione più profonda e raccogliere informazioni sulle fluttuazioni istantanee caratteristiche
dei flussi turbolenti, sono necessarie simulazioni instazionarie ad alta fedeltà„realizzate con
griglie numeriche fini, come Large Eddy Simulation (LES) o Direct Numerical Simulation
(DNS).

Il codice CFD ai volumi finiti Zephyrus, sviluppato presso il Turbomachinery Research
Center dell’Università di Bath, è stato originariamente ideato per simulare flussi comprim-
ibili in turbomacchine con modelli RANS e URANS. Lo scopo di questa tesi è di indagare
la capacità di Zephyrus di eseguire simulazioni LES comprimibili senza modello di sot-
togriglia (Implicit LES, o ILES), confrontandone l’accuratezza con il codice oepn-source
OpenFOAM. Il flusso turbolento sopra un bump è un caso studio ampiamente utilizzato,
in quanto riproduce caratteristiche tipiche di applicazioni realistiche, come gradienti di
pressione favorevoli ed avversi, un attrito non costante lungo la direzione del flusso ed
eventualmente separazioni.

I risultati ottenuti in OpenFOAM hanno un’ottima corrispondenza con i dati DNS, men-
tre Zephyrus mostra una tendenza a ri-laminizzare. Infatti, il Reynolds turbolento si
riduce da un valore Reτ = 200 all’ingresso del dominio a Reτ = 150 a valle del bump.
Contestualmente, il Cf , le fluttuazioni turbolente e le componenti del tensore degli stress
di Reynolds risultano attenuati rispetto ai valori ottenuti con OpenFOAM. Questo com-
portamento è stato prevalentemente attribuito alla eccessiva dissipazione dello schema
numerico utilizzato in Zephyrus.

Parole chiave: Turbolenza, LES, ILES, OpenFoam, canale turbolento, Bump
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Introduction

Turbulence is the natural state of fluid motion, it is ubiquitous, and affects many phe-
nomena in engineering and the natural sciences. The aerodynamic or hydrodynamic
performance of aircraft, cars and ships depends critically on the turbulent flow around
the bodies. Hence the dynamics of velocity fluctuations in turbulent flows and their
mechanisms of formation, dissipation and transport have aroused interest from the fluid
dynamic community for years, as their study and understanding would improve our abil-
ity to predict the mean flow and consequently to possibly improve the performance of
aerodynamic bodies.
In this context, Computational Fluid Dynamics (CFD) has proven useful to provide a bet-
ter understanding of such turbulent flow, allowing for the measurement of key quantities
not accessible with standard measurement techniques. Of the three numerical methods for
predicting turbulence, i.e. Reynolds Averaged Navier Stokes (RANS), Large Eddy Simula-
tion (LES) and Direct Numerical Simulation (DNS), RANS methods are most commonly
used in the industrial field. By definition, the RANS approach only resolves the mean
flow, averaging out the turbulent fluctuations. Due to this simplification, RANS and
URANS computations are the lightest ones in terms of computational time. Nevertheless,
in many cases, in order to achieve a more comprehensive understanding, additional infor-
mation about the instantaneous nature of turbulent flows is required. This drawback is
only partially overcome by URANS, whereas high fidelity simulations, as LES and DNS,
are necessary. Large Eddy Simulation aims at resolving most of the turbulent spectrum,
limiting modelling to the smallest scales. In Direct Numerical Simulation the whole spec-
trum is resolved.
In the past, the use of these techniques was limited by the available computational power.
In fact, the required computation time heavily depends on the number of grid points se-
lected to represent the computational domain under consideration, where LES and DNS
require fine grids. The increasing computational power has made the use of these tech-
niques more and more attractive and feasible. In terms of computational requirements and
time, LES occupies an intermediate position between DNS and RANS. For this reason, in
the last years, LES has been considered more and more interesting for the modelling of
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turbulent flows. Meshing in LES is extremely important, as the grid size is linked to the
filter that separates the resolved scales from the modelled ones. Various meshing guide-
lines are available in literature, based on both experience and theory, see for example the
estimation proposed by H. Choi et al [1]. Such guidelines are aimed at reducing the com-
putational effort, while keeping an acceptable level of accuracy of involved phenomena.
The turbulent flow over a bump is a widely considered case of study, as it reproduces
features typical of real-world applications, as well as favorable and adverse pressure gra-
dients, a non-constant friction along the streamwise direction and, eventually, separation
of the flow. These are, indeed, characteristics of many aerodynamic flows such as flow past
airfoils, sails and gas turbine blades. The turbulent flow over a bump has been extensively
studied experimentally and numerically. Over the years, it has been used as a test case
for the development, validation and accuracy estimation of both RANS models and LES
subgrid stress models; see for example [2–4]. The domain with the bump described by
Banchetti et al. in [5] is considered as the reference case.
The CFD solvers selected for the study are OpenFOAM and Zephyrus, known in literature
as AU3X [6]. Zephyrus is a CFD solver developed in-house at the Turbomachinery Re-
search Center (University of Bath). The solver was originally developed for compressible
RANS and URANS simulations of turbomachinery flows. Recently, interest has arisen in
high-fidelity simulations, as they allow more accurate prediction of flow features such as
heat transfer or flow separation. Therefore, the code is tested in LES modelling with the
goal of developing the necessary routines and performing an assessment of the accuracy
in the prediction of turbulent flows.
The HPC-Europe3 Transnational Access program provided the computational resources
on the UK’s HPC clusters Cirrus and Archer2.

Project rationale

RANS simulations are unable to capture the instantaneous properties of a turbulent flow,
furthermore, turbulent models can lead to incorrect results when used in flows with sep-
arations, as is often the case in turbomachinery. For this reason, the state of the art
in turbomachinery research is moving toward LES simulations, which can provide more
accurate results.
The scope of this work is to assess the ability of the research code developed in-house at
the University of Bath, Zephyrus, originally designed to solve compressible RANS and
URANS simulations of turbomachinery flows, to simulate a fundamental turbulent flow,
such as the turbulent flow over a bump, through LES. The solver has no SGS models,
implying that the simulations are Implicit LES. This approach was introduced in [7] (see



| Introduction 3

also [8]), under the name Monotone Integrated Large Eddy Simulation (MILES), but has
recently come to encompass a wider range of schemes under the name ILES. These are
numerical methods that capture the inertial and energy-containing ranges of turbulent
flows, relying on their inherent dissipation to act as a subgrid model.
To compare the results with another finite-volume code, the OpenFOAM solver rhoPim-
pleFOAM is chosen. A SGS model is considered in OpenFOAM, and its contribution to
the solution is evaluated to verify that the numerical grid is fine enough to capture the
main phenomena related to turbulent kinetic energy even in the case of Zephyrus, which
does not have a SGS model.
Incompressible DNS data presented in [5] are taken as reference. This choice might seem
not entirely appropriate for the assessment of a compressible solver. However, high-fidelity
simulations of compressible turbulent channels and bumps in the literature often involve
transonic or supersonic flows, or flows at high Reynolds number, as in [9, 10]. High
Reynolds numbers would have resulted in prohibitively computationally expensive grid
resolutions, also due to the lack of a SGS model, while it is intended to avoid simulating
a supersonic test case so as to not increase the complexity of the problem. Therefore,
the domain setup is adapted to simulate a flow with Mach number low enough to stay
reasonably below the compressible threshold.
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1| Large Eddy Simulation

1.1. Formulation of LES

Large Eddy Simulation (LES) stands in an intermediate position between DNS and RANS.
In turbulence the small eddies can be considered nearly isotropic while the large eddies are
more anisotropic and influenced by the geometry of the considered domain as well as by the
boundary conditions. The LES approach is to compute exactly the large energy-carrying
eddies, while the effect of the small scales of turbulence is modelled. The separation
between exactly-computed and modelled eddies is done by defining a spatial filtering
function. The filter width is then of particular interest in this kind of simulations: as the
width decreases, LES becomes closer to DNS as it improves its accuracy as well as its
computational cost; the opposite occurs with a “larger” filter width. In most finite volume
implementations the filter width is identical to the grid width (implicit filter width), then a
correct meshing for LES is essential to obtain high fidelity results in describing turbulence
with an acceptable computational cost [11].
The general filtered function, integrated in space and not in time, can be written as
follows:

ϕ̄ (x, t) =

∫∫∫ ∞

−∞
G (x,x′,∆)ϕ (x, t) dx′

1dx
′
2dx

′
3 (1.1)

where:

• G (x,x′,∆) is the filter function;

• ϕ (x, t) is the original function;

• ϕ̄ (x, t) is the filtered function;

• ∆ is the filter width i.e. the smallest wavelength retained by the filter [12].

In the finite volume implementations of LES the filter function is usually the so called
“box filter”; this is defined as:

G (x,x′,∆) =
1

∆3
(1.2)
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for x− ∆
2
≤ x′ ≤ x+ ∆

2
.

The filtered equations, describing the motion of large eddies, are computed directly, while
the motion of smaller eddies is modelled through a subgrid-scale stress term (SGS) or
residual stress tensor τ rij equal to:

τ rij = uiuj − ujui (1.3)

The LES modelling approach is to take information from the smallest resolved scales and
then to use them as boundary conditions for the modelled scales. The different LES
methods are characterized by the modelling procedures of the residual stress tensor, that
links exactly-computed with modelled eddies. This relation can be written as follows:

τ rij −
δij
3
τ rkk = −2νSij (1.4)

where Sij is the filtered (or large-scale) rate of strain tensor defined as:

Sij = 2
(
SijSij

)
(1.5)

1.1.1. Subgrid-Scale Modelling

LES models are usually called subgrid-scale (SGS) models to emphasize the key role
of the residual stress tensor in this kind of modelled turbulence. In this section some
SGS models, i.e. LES no-model, Smagorinsky model (1963) and the one-equation eddy-
viscosity SGS model by A. Yoshizawa and K. Horiuti (1985) [13], will be illustrated. In
this thesis only the LES no-model and the one-equation eddy-viscosity model have been
applied (the latter also known as the k-equation model).

LES Smagorinsky Model

The Smagorinsky model (1963) assumes that, because the smallest eddies are almost
isotropic, the Boussinesq hypothesis is able to provide a good description of the effects of
unresolved eddies on the resolved flow. This consideration allows to state that the local
SGS stresses τ rij are proportional to the local rate of strain of the resolved eddies Sij.
Thus, the relation between filtered and modelled quantities can be written as follows:

τ rij = −2νSGSSij +
1

3
τ rijδij = −νSGS

(
∂ui

∂xj

+
∂uj

∂xi

)
+

1

3
τ rijδij (1.6)
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where νSGS is the subgrid kinematic viscosity. For this model, the length scale is chosen
as a grid-characteristic length scale or filter-width length scale, ∆ = (hxhyhz)

1/3. The
time scale is defined from the norm of the strain rate tensor |S|. This finally gives:

νSGS = (CS∆)2 |S| = (CS∆)2
√

SijSij (1.7)

where CS is the Smagorinsky constant. As CS is real and positive, this model is purely
dissipative and does not account for backscatter (inverse energy cascade). In several stud-
ies (e.g. Rogallo and Moin (1984) [14]) CS was shown not to be a constant, depending on
the Reynolds number and the case geometry. For strongly not isotropic geometries (such
as channel flows), the assumption of proportionality decays and the constant has to be
adapted.

k Equation Model

As in the case of the Smagorinsky model, the one equation eddy viscosity SGS model uses
the eddy viscosity approximation, so the subgrid scale stress tensor τ rij is approximated
as before. The subgrid scale eddy viscosity νSGS is computed using kSGS:

νSGS = Ck

√
kSGS∆ (1.8)

where kSGS = 1/2τ rkk and Ck is a model constant whose default value is 0.094.
The procedure so far is the same as in the Smagorinsky model but these models are
different in terms of how they compute kSGS. The Smagorinsky model assumes the local
equilibrium to compute kSGS but the one equation eddy viscosity model solves a transport
equation for kSGS [13]. The main reason to develop the one-equation SGS models is to
overcome the deficiency of local balance assumption between the SGS energy production
and dissipation adopted in algebraic eddy viscosity models. A transportation equation
is derived to account for the historic effect of kSGS due to production, dissipation and
diffusion:

∂ρkSGS

∂t
+

∂(ρujkSGS)

∂xj

− ∂

∂xj

[
ρ

(
ν + νSGS

∂kSGS

∂xj

)]
= −ρτ rij : Sij − Cϵ

ρk
3/2
SGS

∆
(1.9)

where Cϵ is another model constant. The terms in 1.9 are from left to right, the time
derivative term, convective term, diffusion term, production term and dissipation term.
In the case of the Smagorinsky SGS model, only the production and dissipation terms are
taken into account with the assumption of local equilibrium. The production term in 1.9
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can be rearranged to yield the expression used in the source code as follows:

∂ρkSGS

∂t
+

∂(ρujkSGS)

∂xj

− ∂

∂xj

[
ρ

(
ν + νSGS

∂kSGS

∂xj

)]
= ρG− 2

3
ρkSGS

∂uk

∂xk

− Cϵ
ρk

3/2
SGS

∆
+ Sk

(1.10)

Implicit LES

In ILES (Implicit LES) or LES no-model the modelling of the small scales is avoided:
no subgrid-scale stress tensor is used. The main difference between LES no-model and
DNS lies in the numerical method: the numerical method for ILES is usually a Finite
Difference Method (FDM) or Finite Volume Method (FVM) second order accurate in
space and time, while in DNS spectral methods and fourth order or higher discretization
methods are usually implemented [15].
The main advantage in using LES no-model lies in its applicability to more complicate
geometries and higher Reynolds number turbulent flows. On the other hand, one must be
aware that LES no-model is not a DNS: some information, especially regarding the small
scales of turbulence, is definitely lost.
In ILES the numerical schemes are used such that the inviscid energy cascade through
the inertial range is accurately captured and the inherent numerical dissipation emulates
the effects of the dynamics beyond the grid-scale cut-off. For this reason the numerical
grid acquires a key role in modelling the main processes responsible for the production
and dissipation of turbulent kinetic energy
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2| CFD solvers

This chapter presents the main features of Zephyrus and OpenFoam [16] CFD solvers in
the context of the compressible LES simulations that are object of this thesis.

2.1. Zephyrus

2.1.1. Governing Equation

In compressible flows, it is convenient to use Favre-filtering to avoid the introduction of
subfilter-scale term in the equation of conservation of mass. A Favre-filtered variable is
defined as:

f̃ =
ρf

ρ
(2.1)

The Favre-filtered Navier–Stokes equations for compressible flows in the differential form
read: 

∂ρ

∂t
+

∂ (ρũi)

∂xj

= 0,

∂ (ρũi)

∂t
+

∂ (ρũiũj)

∂xj

= − ∂p

∂xi

+
∂

∂xj

(
τ̃ij + τ rij

)
,

∂ (ρẽ)

∂t
+

∂
(
ρũjh̃

)
∂xj

= − ∂

∂xj

(
κ
∂T̃

∂xj

+ ũi

(
τ̃ij + τ rij

))
,

(2.2a)

(2.2b)

(2.2c)

where:

τ̃ij = 2µ

(
S̃ij −

1

3

∂ũk

∂xk

δij

)
p = (γ − 1) ρ

(
ẽ− 1

2
ũjũj

)
κ
∂T

∂xj

=
γ

γ − 1

µ

Pr

∂

∂xj

(
p

rho

)
(2.3)

(2.4)

(2.5)

τ rij is equal to 0 since there is no SGS model implemented yet. The working fluid is air
and it is treated as calorically perfect gas while γ and the Prandtl number Pr are held
constant at 1.4 and 0.72 respectively, alongside with µ which is evaluated by Sutherland’s
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law and is based on a reference viscosity of 1.7894 × 10−5 kg
ms

together with a reference
temperature of 288.15K and Sutherland’s constant at 110K.

2.1.2. Numerical schemes

In Zephyrus the flow variables are stored at the cell centres and the boundary conditions
are applied at the ghost cells, the positions of which are generated by mirroring the posi-
tions of the cells immediately adjacent to the boundary. The inviscid fluxes are computed
by the upwind scheme using the approximated Riemann solver of Roe [17]. Second order
spatial discretisation is obtained by extrapolating the values from the cell centre to the
interface via the MUSCL scheme [18] with the van Albada limiter [19]. The viscous fluxes
at the interface are computed by using the inverse of the distance weighting from the
ones evaluated at the cell centres on both sides of the interface while the source terms
are evaluated at the cell centres and are assumed to be piecewise constant in the cell.
Cell-averaged flow gradient is computed at the cell centre using the weighted least square
procedure [20]. The matrix of the weighted least square gradient is evaluated once at
pre-processing for static grids.

2.1.3. Time integration

Steady solution

After inviscid, viscous fluxes and source terms are computed for each cell, the coupled
system in 2.2 can be described as the following:

Ωi
dUi

dt
= −

N∑
j=1

Ri (Uj) (2.6)

where Ui are the conservative variables of cell i, namely (ρ, ρũi, ρẽ)
T , Ωi the cell volume, Uj

the conservative variables in the neighbouring cells of Ui, N the number of neighbouring
cells and Ri the residual of cell i, which is the net balance of fluxes evaluated at each
cell. Here we assume no mesh motion and Ωi remains a constant for each cell in the
computation.
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The system in 2.2 is solved implicitly by first applying the backward Euler scheme:

Ωi
∆Ui

∆t
= −

N∑
j=1

Ri

(
Un
j

)
−

N∑
j=1

∂
(
Ri

(
Un
j

))
∂Uj

∆Un
j (2.7)

where the last term is the flux Jacobian. Equation 2.7 can be rearranged and the flux
Jacobian is approximated by its spectral radius. The resulting linear system reads:

[
Jn
i

(
Ωi

Jn
i ∆t

+ 1

)]
∆Un

i = −
N∑
j=1

Ri

(
Un
j

)
(2.8)

Equation 2.8 is the resulting linear system to march the solution from time level n to n+1,
where Jn

i is the spectral radius of the flux Jacobian matrix which is accumulated across

the cell interfaces. Linearised fluxes
∂(Ri(Un

j ))
∂Uj

∆Un
j are required to update the solutions at

each Newton–Jacobi iteration and they are evaluated exactly for the inviscid and viscous
fluxes. The Newton–Jacobi method is executed for user-specified iterations to march
the solution from n to n + 1, the right and left hand sides are then updated, and the
Newton–Jacobi is invoked again. This process proceeds until a user-specified convergence
criterion is met.

Unsteady solution

Zephyrus, uses an implicit, dual-time stepping approach for time-dependent problems.
Equation (2.6) also applies here, consequently, the treatment of an unsteady problem is
analogous to the treatment of steady problems. Again, Equation (2.8) is solved until
the desired convergence is reached, as the problem was steady. Then the solution is
advanced in physical time by updating the time derivative approximation, according to
the backward Euler scheme.

2.2. OpenFoam

This chapter presents an overview of the CFD package used, i.e. OpenFoam v2006,
as well as the numerical schemes used to carry out LES and how the system of the
governing equations is solved. OpenFOAM is a free, open source CFD software developed
primarily by OpenCFD Ltd since 2004, distributed by OpenCFD Ltd and the OpenFOAM
Foundation. It has a large user base across most areas of engineering and science, from
both commercial and academic organisations.
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2.2.1. Governing equation

OpenFoam compressible LES simulations also solve the Favre-filtered compressible Navier–
Stokes equations (2.2). In this case the term τ rij is calculated according to the one eddy
kEquation subgrid model (1.10). The settings setted in turbulence properties for the sim-
ulations presented in this thesis are shown in Figure 2.1.

1 simulationType LES;
2 LES
3 {
4 LESModel kEqn;
5 kEqnCoeffs
6 {
7 Ce 1.048;
8 Ck 0.02654; // set to approximate a Cs of 0.065
9 }

10 turbulence on;
11 printCoeffs on;
12 delta cubeRootVol;
13 delta vanDriest;
14 vanDriestCoeffs
15 {
16 delta cubeRootVol;
17 cubeRootVolCoeffs
18 {
19 deltaCoeff 1;
20 }
21 smoothCoeffs
22 {
23 delta cubeRootVol;
24 cubeRootVolCoeffs
25 {
26 deltaCoeff 1;
27 }
28 maxDeltaRatio 1.1;
29 }
30 Aplus 26;
31 Cdelta 0.158;
32 }
33 smoothCoeffs
34 {
35 delta cubeRootVol;
36 cubeRootVolCoeffs
37 {
38 deltaCoeff 1;
39 }
40 maxDeltaRatio 1.1;
41 }
42 }

Figure 2.1: OpenFoam settings in turbulenceProperties

The two possible OpenFoam solvers suitable for unsteady compressible LES application
are rhoCentralFoam and rhoPimpleFoam. The former is a density-based solver based on
a central-upwind scheme. The latter is a pressure-based solver which uses the PIMPLE
algorithm (see below). Unfortunately, while rhoCentralFoam is able to solve discontinuity
problems, it is not able to model turbulences in a physically correct way due to the
dissipative nature of the underlying algorithm [21]. This leaves rhoPimpleFoam as the
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preferred solver. rhoPimpleFoam is solver for unsteady, compressible, non isothermal
single phase fluid flows. It uses the PIMPLE algorithms to solve the flow equations.

PIMPLE algorithm

The PIMPLE algorithm is a combination of the SIMPLE (acronym for Semi-Implicit
Method for Pressure-Linked Equations) developed by Patankar and Spalding and pub-
lished in 1972 [22] and the PISO algorithm (acronym for Pressure-Implicit with Splitting
of Operators) published by Issa in 1986 [23].
For each time step, a steady state solution that converges is sought after, using a speci-
fied number of correction loops. After that, all other transport equations are solved. This
would be equal to the PISO algorithms with the specified number of correction loops. But
following this, the algorithm loops back over the entire time step and solves the PISO
algorithm again with a new initial guess. A simplified flow diagram of the algorithm is
shown in Figure 2.2

Figure 2.2: Simplified flow chart of the PIMPLE algorithm.
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2.2.2. Spatial and temporal discretisation

For a detailed description of the finite-volume discretisation as applied in OpenFOAM
refer to de Villiers [24] and Jasak [25]. In the following, the main lines are summarized.
The general form of the transport equation for a scalar ϕ in OpenFOAM is:

∂ (ρϕ)

∂t
+ ∇⃗ · (ρu⃗ϕ)− ∇⃗ ·

(
ρΓϕ∇⃗ϕ

)
= Sϕ (ϕ) (2.9)

where Γ is the diffusivity coefficient. Its integral form for the arbitrary control volume VP

reads: ∫ t+∆t

t

[∫
VP

∂ (ρϕ)

∂t
dV +

∫
VP

∇⃗ · (ρu⃗ϕ) dV −
∫
VP

∇⃗ ·
(
ρΓϕ∇⃗ϕ

)
dV

]
dt

=

∫ t+∆t

t

[∫
VP

Sϕ (ϕ) dV

]
dt

(2.10)

The numerical solution of Eq. 2.10 basically consists of integration and interpolation. In
relation to this, the goal is to have a second-order accurate solution in space and time.
In order to obtain second-order accuracy, the variation of ϕ = ϕ (x, t) has to be linear in
both space and time, that is, it is assumed that

ϕ (x⃗) = ϕP +
(
X⃗ − x⃗P

)
·
(
∇⃗ϕ
)
P
,

ϕ (t+∆t) = ϕt +∆t

(
∂ϕ

∂t

)t

(2.11)

(2.12)

where ϕP = ϕ (x⃗p) and ϕt = ϕ (t). Application of Gauss’ theorem together with Eq. 2.11
in the spatial integration of Eq. 2.10 yields the following semi-discretised form

∫ t+∆t

t

[(
∂ (ρϕ)

∂t

)
VP +

∑
f

ϕfFf −
∑
f

(ρΓϕ)f

(
∇⃗ϕ
)
f
· n⃗fSf

]
dt

=

∫ t+∆t

t

[(SC + SPϕP )Vp] dt

(2.13)

where the face flux Ff is introduced as Ff = (ρu⃗) · n⃗fSf and where the source term
Sϕ has been linearized as Sϕ = SC + SPϕP . Furthermore, the unit normal vector of Sf

is denoted by nf . In this thesis the temporal term is discretised using a second-order
implicit backward differencing scheme based on three time levels (as in Zephyrus), named
backward in OpenFOAM,

∂ϕ

∂t
=

3
2
ϕn − 2ϕn−1 + 1

2
ϕn−2

∆t
(2.14)
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where ϕn = ϕ (t+∆t). By assuming that the density, the convective fluxes, and the
diffusive fluxes do not change in time within each time step, the final form of the discretised
transport equation becomes

3
2
ϕn − 2ϕn−1 + 1

2
ϕn−2

∆t
ρPVP +

∑
f

ϕn
fFf −

∑
f

(ρΓϕ)f

(
∇⃗ϕ
)n
f
· n⃗fSf = (SC + SPϕ

n
P )Vp

(2.15)

For the convection term in Eq. 2.15, the values of ϕ need to be interpolated on the cell
faces using the so-called Convection Differencing Scheme (CDS) [26].
In OpenFOAM, the central differencing scheme is indicated as the linear differencing
scheme, since it corresponds to linear interpolation. Gauss linear scheme have been used
for all the terms in the equations. Furthermore both the laplacian scheme and surface
normal gradient scheme are uncorrected since the mesh is structured, therefore, its non-
orhogonality is very low.
The discretisation procedure produces a system of linear algebraic equations that must
be solved for ϕn

P . The Geometric agglomerated Algebraic Multi-Grid solver (GAMG, also
named generalized Geometric-Algebraic Multi-Grid solver in the OpenFOAM manual)
has been applied for pressure, while smoothSolver GaussSeidel for all the other quantities
(Fig. 2.3).
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1 solvers
2 {
3 "(p|rho)"
4 {
5 solver GAMG;
6 tolerance 1e-6;
7 relTol 0.001;
8 smoother GaussSeidel;
9 }

10
11 "(p|rho)Final"
12 {
13 $p;
14 tolerance 1e-06;
15 relTol 0;
16 }
17
18 "(U|e|k|nuTilda)"
19 {
20 solver smoothSolver;
21 smoother symGaussSeidel;
22 tolerance 1e-05;
23 relTol 0.01;
24 }
25
26 "(U|e|k|nuTilda)Final"
27 {
28 $U;
29 tolerance 1e-05;
30 relTol 0;
31 }
32 }

Figure 2.3: OpenFoam settings in fvSolution

2.3. Summary of the major differences between the

two solvers

This section reports the main differences between the Zephyrus and OpenFOAM solvers
presented in this chapter. The main difference between the two solvers is the way the
Favre filtered NS equations are solved.
RhoPimpleFoam is a compressible pressure-based solver. This means that a pressure
equation is solved and the density is related to the pressure via an equation of state.
The solver follows a segregated solution strategy. This means that the equations for each
variable that characterizes the system are solved sequentially, and the solution of the
previous equations is included in the next equation. The nonlinearity that appears in the
momentum equation is solved by calculating it from the velocity and pressure values of
the previous iteration. In addition, the discretization scheme for gradients is based on the
standard finite-volume discretization of Gaussian integration.
Zephyrus, on the other hand, is a density-based CFD code, which solves the equations via
Roe’s Riemann solver implicitly. The gradient discretization scheme is still second-order,
but based on the least-squares method.
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3| Reference case

To quantitatively compare the results, the incompressible DNS dataset reported in [5]
is chosen as a reference. The reference data compare two different bump geometries
described analytically as the sum of two overlapping Gaussian curves:

G1 (x) = a · exp

[
−
(
x− b

c

)2
]
+ a′ · exp

[
−
(
x− b′

c′

)2
]

(3.1)

The values of the parameters are a = 0.0505, b = 4, c = 0.2922 and a′ = 0.060425, b′ =

4.36, c′ = 0.3847, resulting in a bump with maximum height hb = 0.0837δ, with δ repre-
senting the channel half-height. The bump is similar to the one considered by Marquillie
et al. [27], but with significantly smaller size, to reduce blockage. The two resulting
bumps, G1 and G2, have the same height and produce an attached and a separated flow,
respectively. The G2 geometry is identical to G1 in the front part, from the domain inlet
to the bump tip, but shows a streamwise expansion factor 2.5 applied to the rear part of
the bump. In this thesis, only the G2 geometry is considered, as it produces an attached
flow.

periodic b.c.

inflow b.c.

outflow b.c.

Ly

Lz

Lp
x

Lnp
x

x, uy, v

z, w

Figure 3.1: Sketch of the computational domain used in [5].

The computational domain adopted in the DNS study, shown in Fig. 3.1, consists of two
domains adjacent along the streamwise direction: a channel with parallel walls and peri-
odic conditions in both streamwise and spanwise directions, which feeds the downstream
domain with the bump. The downstream domain has cyclic conditions in the spanwise
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direction. It takes as inflow the outflow from the upstream domain, whereas convective
conditions are used at the outlet [28]. No-slip and non-penetration conditions are applied
on the walls of both domains.
The size of the whole computational domain is (Lp

x + Lnp
x , Ly, Lz) = (4πδ + 12δ, πδ, 2δ)

in the streamwise, spanwise and wall-normal directions respectively. The upstream por-
tion of the domain simulates a standard DNS turbulent channel flow of length Lp

x = 4πδ

with constant flow rate. The channel domain has a spatial resolution of (nx, ny, nz) =

(360, 312, 241). The discretization points are uniformly spaced in streamwise and span-
wise directions, with ∆x = 0.04 that corresponds to ∆x+ = 8 and ∆y = 0.01 equivalent
to ∆y+ = 2 based on the inlet uτ . In the wall-normal direction the discretization points
are neither uniformly nor symmetrically distributed with respect to the centerline. A
constant ∆z = 0.001, which corresponds to ∆z+ = 0.2 at the inlet, is adopted from the
lower wall to the height corresponding to the tip of the downstream bump, z = hb. Then
∆z gradually increases until ∆z = 0.02 at the centerline, and then decreases again to
∆z = 0.004 at the upper wall.
The downstream domain with the bump is discretized with (nx, ny, nz) = (800, 312, 241)

discretization points. In the wall-normal and spanwise directions the same discretization
is maintained to avoid interpolation at the interface. While in the streamwise direction
the grid spacing is not uniform, rather it is finer near the bump, reaching a minimum up
to ∆x+ = 2.
The simulations are carried out at a bulk Reynolds number Reb = Ubδ/ν = 3173 which
in the reference case corresponds to a friction Reynolds number Reτ = uτδ/ν = 200 in
the plane channel, where the velocity scale is the bulk velocity Ub in the former case and
the friction velocity uτ =

√
τw/ρ in the latter. The time step is set in order to obtain an

average Courant–Friedrichs–Lewy (CFL) number of approximately 0.5.
This choice of an incompressible dataset as a reference might seem not entirely appro-
priate for the assessment of a compressible solver. However, high-fidelity simulations of
compressible turbulent channels and bumps in the literature often involve transonic or
supersonic flows, or flows at high Reynolds number. High Reynolds numbers would have
resulted in prohibitively computationally expensive grid resolutions, also due to the lack
of a SGS model, while it is intended to avoid simulating a supersonic test case so as to
not increase the complexity of the problem. Therefore, the domain setup is adapted to
simulate a flow with a Mach number Ma = 0.14, low enough to stay reasonably below
the compressible threshold, with the compressibility effects being less than 1%.
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4| Simulation Setup

The scope of this work is to assess the capability of the compressible CFD solver Zephyrus,
to simulate the turbulent flow over a bump, through Implicit Large Eddy Simulation. To
achieve the goal, an LES of a turbulent channel is carried out with OpenFOAM in order
to generate the instantaneous fields to be given in inflow to the simulation with the bump.
In addition, the domain with the bump is simulated by both Zephyrus and OpenFOAM,
so that a comparison between two compressible LES simulations can be performed.
In this chapter, the grid generation, the applied boundary conditions and the setup of the
simulations performed is therefore reported.

4.1. Channel

In the reference case chapter 3, the computational domain with the bump is directly fed
by the outflow of a turbulent channel flow at Reb = 3173 and Reτ = 200. In Zephyrus,
since an algorithm to impose constant flow rate along with cyclic boundary conditions
is not yet implemented, it was not possible to simulate the turbulent channel flow and
couple the domains. Therefore, it was not possible to replicate exactly what is done in
the DNS reference case. To perform the preliminary simulation of the turbulent channel
flow, necessary to obtain the instantaneous fields needed in inflow to the domain with
the bump, OpenFOAM is employed, which has already been validated for this type of
simulation [29]. Through the sampling function, the instantaneous fields of velocity, pres-
sure, temperature, subgrid viscosity and k at the channel outlet are saved to file at each
timestep.
Multiple ways exist to simulate a fully turbulent channel flow; a possibility is to enforce
at the inlet of the channel the synthetic turbulent fluctuations through the function tur-
bulentDFSEMInlet [30]. To enable reproducibility, a more traditional approach is consid-
ered. The flow is first initialized with a steady RANS simulation with the k−ω turbulence
model, and then it is used as the starting solution for the LES simulation.
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4.1.1. Grid generation

In LES simulations the numerical grid plays a fundamental role in obtaining accurate
results. This kind of simulations computes the solution of the filtered equations, which
resolve large eddies, while eddies below the filter size are modeled. The separation be-
tween computed and modelled eddies is set by the filter width, linked directly to the
mesh resolution. A systematic grid-convergence study would offer no greater benefit, as
a grid-independent LES is a DNS and therefore loses its economical advantage on DNS,
on account of resolving only the most energetic eddies [31].
There are several databases and DNS studies of turbulent channel flow [15, 32] that is pos-
sible to refer to in order to have an estimate a priori of the Kolmogorov length scale η and
of the number of discretization points necessary to have a sufficient resolution of the grid.
Based on these considerations and considering the amount of computational resources
needed to complete the simulations, the channel domain (Lx, Ly, Lz) = (12δ, πδ, 2δ) is
discretized with (nx, ny, nz) = (207, 110, 186) points in the streamwise, spanwise and
wall-normal direction respectively. The computational grid is created with the open-
source software GMSH [33].
The grid spacing in spanwise and streamwise direction is uniform and corresponds to
∆x+ = 12 and ∆y+ = 6 respectively, values similar to those from Kim et al. [34]. In
the wall-normal direction a non-uniform distribution according to the bump algorithm is
implemented. This is a GMSH algorithm that locally increases the point density near the
wall, keeping the discretization coarse close to the centerline. In this way it is possible
to obtain a sufficiently fine grid close to the walls, where the main phenomena of vis-
cous dissipation take place, and slightly coarser near the centerline, saving computational
resources. The wall cell height in inner units corresponds to z+ = 0.1.

4.1.2. Boundary conditions

The boundary conditions are cyclic in both the spanwise and streamwise direction, a
constant flow rate (CFR) is imposed through the OpenFOAM option meanVelocityForce
applied to the entire domain, tuned with a bulk velocity that leads to Reb = 3173. On
the lower and upper walls, no-slip and no-penetration boundary conditions are imposed.
zeroGradient boundary condition is enforced at the walls for the temperature and pressure
fields. The boundary conditions for the different variables are summarized in Table 4.1.
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Patch U p T νt k

Inlet
cyclic cyclic cyclic cyclic cyclicOutlet

Sides (y-dir)
Walls (z-dir) noSlip zeroGradient zeroGradient fixedValue: 0 fixedValue: 0

Table 4.1: OpenFOAM channel boundary conditions.

4.1.3. LES simulation settings

The timestep is set to ∆t = 1.5× 10−7, resulting in a CFLmean = 0.1 and CFLmax = 0.3.
The numerical schemes employed in OpenFOAM, described in Section 2.2.2, are second-
order accurate in space and time: the Gauss linear divergence scheme has been used for all
the terms in the equations except for pressure, for which Linear-Upwind Stabilised Trans-
port (LUST ) is employed. Furthermore both the laplacian scheme and surface normal
gradient scheme are uncorrected. The backward scheme is used for the temporal term. Re-
garding the solvers settings, the GAMG is employed for the pressure while smoothSolver
for all the other quantities. Among the subgrid stress models available in OpenFOAM,
the kEquation model [35] is selected.

4.2. Bump

The bump domain is simulated by both Zephyrus and OpenFOAM, with the same com-
putational grid, so that a comparison can be made between two compressible LES simu-
lations.

4.2.1. Grid generation

The same spatial discretization implemented in the channel domain and described in Sec-
tion 4.1.1, is also used for the bump: the domain (Lx, Ly, Lz) = (12δ, πδ, 2δ) is discretized
with (nx, ny, nz) = (207, 110, 186) discretization points. Consequently, the cell sizes in
inner units are ∆x+ = 12, ∆y+ = 6 and ∆z+ = 0.1 at the inlet and ∆x+ = 20, ∆y+ = 10

and ∆z+ = 0.2 at the bump tip, according to the local uτ .
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4.2.2. Boundary Conditions

The spanwise direction is made homogeneous by applying cyclic conditions, whereas no-
slip and non-penetration conditions are applied to the lower and upper wall. At the bump
inflow constant flow rate is enforced, through the imposition of the instantaneous fields
obtained with the CFR cannel. In OpenFOAM the function timeVaryingMappedFixed-
Value is employed to enforce the instantaneous fields at the bump domain inflow. In
Zephyrus, a boundary condition named TuInl (Turbulent Inlet) has been implemented:
the variables (face center coordinates, velocity, temperature and pressure) are read from
file and set in the ghost-cell nearest to the given position.
To obtain a well-posed and stable compressible simulation, several possible combinations
of boundary conditions exist. The one used in our case is: constant mass flow rate in
inflow, and fixed static pressure in outflow. In OpenFOAM the outlet static pressure
is set with the boundary condition fixedValue, whereas for other variables the condition
zeroGradient is set. In Zephyrus, the boundary condition FreeExit is employed, imposing
the static pressure at the outlet and extrapolating the remaining variables from the inner
domain.
For a faster comparison, the boundary conditions implemented in OpenFOAM and Zephyrus
are shown in the following Tables 4.2 to 4.5.

Patch Condition OpenFOAM Condition Zephyrus

Inlet timeVaryingMappedFixedValue TuInl
Outlet zeroGradient FreeExit

Sides (y-dir) cyclic cyclic
Walls (z-dir) no-slip, non penetration no-slip, non penetration

Table 4.2: Bump boundary conditions, Velocity field U .

Patch Condition OpenFOAM Condition Zephyrus

Inlet timeVaryingMappedFixedValue TuInl
Outlet fixedValue FreeExit

Sides (y-dir) cyclic cyclic
Walls (z-dir) zeroGradient zeroGradient

Table 4.3: Bump boundary conditions, Pressure field p.
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Patch Condition OpenFOAM Condition Zephyrus

Inlet timeVaryingMappedFixedValue TuInl
Outlet zeroGradient FreeExit

Sides (y-dir) cyclic cyclic
Walls (z-dir) zeroGradient zeroGradient

Table 4.4: Bump boundary conditions, Temperature field T .

Patch νt k

Inlet timeVaryingMappedFixedValue timeVaryingMappedFixedValue
Outlet zeroGradient zeroGradient

Sides (y-dir) cyclic cyclic
Walls (z-dir) fixedValue 0 fixedValue 0

Table 4.5: OpenFOAM Bump boundary conditions, νt and k fields.

4.2.3. LES Simulation Settings

The time step remains unchanged, ∆t = 1.5× 10−7, corresponding to an average CFL =

0.4 and to a maximum CFL = 0.6. The numerical methods and the subgrid model used
in OpenFOAM are as given in 4.1.3. In Zephyrus the numerical methods are second order
accurate: MUSCL with Van Albada limiter in space and backward Euler in time.
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5| Results

5.1. Turbulent channel flow

The results presented in this paragraph are related to the fully turbulent channel flow
obtained in OpenFOAM. This is a preliminary simulation necessary to generate the tur-
bulent fields for the inlet of the bump domain.
The channel is initialized with a RANS simulation with the k−ω turbulence model to ob-
tain a preliminary solution with a developed turbulent boundary layer and with an initial
field for the turbulent kinetic energy k, so as to help convergence for the first time-steps
of the LES simulation and to have the field k initialized for the SGS kEquation model.
Before starting to save variables on the outlet plane, 120 t were needed for the flow to
develop into a statistically stable state. Here t is defined as:

t =
δ

Ub

(5.1)

Subsequently, about 600 t have been used for accumulating the istantaneous fields (roughly
80000 timesteps).

5.1.1. Istantaneous and Mean flow properties

To begin with a qualitative picture of the flow, Fig. 5.1 represents the instantaneous
fluctuations of the three velocity components in the channel adimensionalized by the mean
bulk velocity Ub. The statistics are averaged for 600 t with the use of the OpenFOAM
function fieldAverage. The Reynolds number based on the bulk mean velocity and the half-
height of the channel (2δ) is Rem = 3143. The skin friction coefficient, Cf = τw/

1
2
ρU2

b =

7.826× 10−3, which is in good agreement with Dean’s correlation of Cf = 0.073Re−0.25
m =

8.1799×10−3 and in excellent agreement with Banchetti et al. [5], Cf = 7.833×10−3. The
ratio between the mean velocity at the centerline and the bulk mean velocity, Uc/Ub =

1.164, again in excellent agreement with Dean’s correlation, Uc/Ub = 1.28Re−0.0116
m =

1.156 and the averaged value by Banchetti et al, Uc/Ub = 1.168.
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Figure 5.1: Istantaneous velocity fluctuations field u′ = Umean−U
Ub

.

5.1.2. SGS contribution

Since it was possible to set the SGS model only in OpenFOAM simulations, it is inter-
esting to investigate the contribution of the modelled turbulent viscosity with respect to
the physical viscosity of the fluid.
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Figure 5.2: Representation of an instantaneous field νt/ν.

It is observed that in an instantaneous field, Fig. 5.2, the maximum value of the modelled
turbulent viscosity νSGS is less than 10% of the value of the physical viscosity ν. Over
the whole domain, the model’s contribution to the effective viscosity, νeff = ν + νSGS, is
about 2%.
Alternatively, the ratio of the resolved turbulent kinetic energy to the total turbulent
kinetic energy (namely the LES index) is analysed, leading to similar results:

LESindex =
kres

kres + kSGS

× 100 = 97.8% (5.2)

5.2. Bump

Once the outflow statistics of the channel flow are saved for a total of 600 t, it is possible
to begin simulating the domain with the bump with the two codes.
Some analysis about the contribution of the SGS model are carried out. This preliminary
analysis allows to verify that Zephyrus results are not adversely affected by the absence
of the model.

5.2.1. OpenFOAM bump analysis

To study the effects of the sub-grid model in detail, some function Objects are created in
OpenFOAM to compute the fields: resolved turbulent kinetic energy kres, SGS dissipation
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ϵSGS, viscous dissipation ϵvisc, turbulent kinetic energy production P . Their implementa-
tion is reported in Appendix A.

(a)

(b)

Figure 5.3: Plot of the turbulent kinetic energy resolved (a) and modeled (b).

Fig. 5.3 shows the modeled kSGS and resolved turbulent kinetic energy:

kres =
1

2
⟨u′

iu
′
i⟩ (5.3)

The resolved turbulent kinetic energy (TKE), in agreement with the literature, shows
two main areas of high k: one just before the bump and one, more intense, toward the
end of the bump. The modeled turbulent kinetic energy has its maximum intensity just
after the tip of the bump, with a value equal to 3.4% of the maximum intensity of the
resolved TKE. In general, it can be observed that the model does not operate at the cells
at the wall, but at a distance from the wall of a few cells; this is due to the discretization
methodology. A smoother rate of progression, or a larger number of discretization points
in the wall-normal direction, would allow for smaller cells in that area, resulting in a
smaller fraction of modeled TKE.
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(a)

(b)

Figure 5.4: Plot of the viscous dissipation (a) and SGS dissipation (b) of turbulent kinetic
energy.

Fig. 5.4 shows the turbulent kinetic energy dissipation due to physical viscosity and due
to SGS viscosity.

ϵvisc = 2ν (SijSij)

ϵSGS = 2νSGS (SijSij)

(5.4)

(5.5)

Maximum resolved dissipation is concentrated at the front of the bump , with intermedi-
ate values behind the tip and near wall. Again, as in the channel, the turbulent viscosity
νt is much lower than the physical viscosity ν, consequently the SGS dissipation is also
lower than the resolved dissipation. Regarding its distribution in the domain, the same
considerations made for the kSGS apply.
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Figure 5.5: Plot of the production P of turbulent kinetic energy.

Turbulent kinetic energy production:

P = −
〈
u′
iu

′
j

〉 ∂ ⟨u′
i⟩

∂xj

(5.6)

is plotted in Fig.5.5 to show that its spatial distribution is consistent with k and that the
values are comparable with those found by Banchetti et al. [5].
It can be concluded that the grid is fine enough to be able to capture the main mechanisms
of turbulent kinetic energy production and dissipation. Furthermore, a test simulation
in OpenFOAM has been carried out without a subgrid stress model and the results have
been averaged for 120 t, showing no significant difference between the results of the two
simulations.

5.2.2. Solvers comparison

Since a function to average run-time the variable fields is not available in Zephyrus, a
database of the results obtained throughout 600 t is created. In order to obtain the
averaged statistics in Zephyrus the solution is saved every 5 t (≈ 700 timesteps), hence
obtaining a database of 160 statistically independent timesteps and saving space on the
HPC clusters.
The velocity profiles and the six components of the Reynolds stress tensor for seven
increasing x-coordinates of the domain are shown in Figures 5.6 to 5.12.
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Figure 5.6: Plot of the bulk mean velocity profile at increasing x-coordinates.

Figure 5.7: Plot of the first component of the Reynolds stresses ⟨u′u′⟩ at increasing x-
coordinates.
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Figure 5.8: Plot of the second component of the Reynolds stresses ⟨u′v′⟩ at increasing
x-coordinates.

Figure 5.9: Plot of the third component of the Reynolds stresses ⟨u′w′⟩ at increasing
x-coordinates.
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Figure 5.10: Plot of the fourth component of the Reynolds stresses ⟨v′v′⟩ at increasing
x-coordinates.

Figure 5.11: Plot of the fifth component of the Reynolds stresses ⟨v′w′⟩ at increasing
x-coordinates.
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Figure 5.12: Plot of the sixth component of the Reynolds stresses ⟨w′w′⟩ at increasing
x-coordinates.

At the inlet, first plot at x = 0.15%Lx in Figures 5.6 to 5.12, corresponding to the solu-
tion in the first cell center streamwise, the velocity profile and Reynolds stress components
have no significant differences between the two solvers, apart from the stress tensor com-
ponent ⟨w′w′⟩ (recall that w is the wall-normal velocity for how the axes of the reference
system are oriented). Indeed, it is evident how the wall-normal fluctuations are attenu-
ated after the first cell already. This phenomenon, related to the lower intensity of the
fluctuations, also occurs in the other components of the Reynolds stresses and become
more pronounced as the x-coordinate increases along the bump domain. At x = 83%Lx

the ⟨u′u′⟩ component is found to be significantly lower compared to the value obtained
with OF, whereas for the ⟨u′w′⟩,⟨v′v′⟩ and ⟨w′w′⟩ components the reduction is more pro-
nounced. The decrease in the intensity of the velocity fluctuations also affects the average
velocity profile. At the outlet, the mean velocity profile obtained with Zephyrus deviates
significantly from the mean turbulent profile obtained with OpenFOAM, showing a lower
derivative at the wall and a higher mean velocity in the area of the domain near the
centerline, which is consistent with less turbulent flow.
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Figure 5.13: Comparison plot of the skin friction coefficient Cf .

The skin friction coefficient:

Cf (x) =
2 ⟨τw (x)⟩

ρU2
b

(5.7)

is compared in Fig. 5.13. At the inlet, the Cf value is similar between the two codes,
with OpenFOAM exhibiting very good agreement with the incompressible DNS data.
The Cf obtained in Zephyrus drops dramatically in the first few cells, consistent with
the decrease in the intensity of the velocity fluctuations, to a value roughly half of the
reference value. The Reτ drops from the value of Reτ = 200 at the inlet to Reτ = 150

after the bump, which is retained until the domain outlet. The turbulent solution thus
tends to re-laminarize.

The calculated pressure coefficient is:

Cp (x) =
2 ⟨p⟩ (x)
ρU2

b

(5.8)

Where the mean pressure ⟨p⟩ is set to 0 at the outlet of the domain.
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Figure 5.14: Comparison plot of the pressure coefficient Cp.

Fig. 5.14 shows the mean Cp averaged in time and in space over the lower wall. The pres-
sure coefficient has a minimum exactly at the tip of the bump. Away from the bump, the
pressure coefficient has a linear trend (i.e. uniform mean pressure gradient), as expected
for a plane channel flow. Similarly to Cf , OpenFOAM has an excellent agreement with
DNS data. Zephyrus has a different behavior: at the outlet the pressure maintains the
value enforced via the Free Exit boundary condition, while it adapts the inflow pressure
read from file to a higher value, leading to a ∆p across the domain greater than expected.
A trend similar to the one just reported is observed in the results averaged for 120 t of
an OpenFOAM LES simulation with the kEquation subgrid model and first-order accu-
rate UPWIND numerical schemes in space, backward Euler second-order scheme in time.
OpenFOAM results with first-order accurate numerical schemes in space can be justified
by the highly diffusive numerical method, which leads to the decrease in turbulent fluc-
tuations and flow transition to a lower Reτ .
As for Zephyrus, in which the numerical schemes are second-order accurate both in space
and time, further investigation is needed. The fundamental turbulent flow analyzed is
mainly characterized by being a wall-bounded flow and by the presence of a curvature
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(bump) on the lower wall. It might be useful to separate these two effects to assess the
presence in the code of any problem regarding the inner face numerical flux (and thus
related to the dissipation of the numerical method) or related to the treatment of the wall
face flux near the bump curvature.
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6| Conclusions and future

developements

In this thesis, the main features of Large Eddy Simulations with and without SGS model
are reviewed. The scope is to assess the ability of the compressible CFD solver Zephyrus
to simulate a turbulent flow over a bump using ILES and to develop the routines needed
to get the task accomplished.
A turbulent channel flow is simulated in OpenFOAM to generate the instantaneous tur-
bulent fields needed as inflow boundary condition for the doamin with the bump. The
effect of the SGS model set in OpenFOAM is carefully analyzed to verify that the grid
resolution is sufficient to capture the main phenomena related to turbulent kinetic energy
k. To enable the solver Zephyrus to switch to solving ILES, modifications to the code were
necessary in terms of pre-processing, boundary conditions, and post-processing functions.
The results show that in Zephyrus the turbulent fluctuations are greatly reduced after
few cells from the inlet and that the flow tends to re-laminarize toward an intermediate
turbulent condition corresponding to Reτ = 150. This diffusion phenomenon of turbulent
fluctuations also affects the inlet-outlet pressure gradient. Counter-intuitively, a decrease
in the friction coefficient corresponds to an increase of ∆p. However, this phenomenon is
also displayed in an OpenFOAM simulation with UPWIND first-order accurate numerical
schemes in space.
In Zephyrus the cause of the decreased intensity of turbulent fluctuations has been at-
tributed to the high difssipation of the implemented numerical methods, which cause the
transition to a lower Reτ . As for Zephyrus, further investigations are needed. The fun-
damental turbulent flow analyzed is mainly characterized by being a wall-bounded flow
and by the presence of a curvature (bump) on the lower wall.
Future developments involve investigating further and simulating in Zephyrus a turbu-
lent channel flow with parallel walls (eliminating the domain curvature) and performing
a study similar to the one presented by Saad et al in [36]: a study of the decay of homo-
geneous isotropic turbulence in a 3D cube with cyclic conditions applied in all directions,
allowing the dissipation of the numerical method to be evaluated in the absence of walls.



37

Bibliography

[1] H. Choi and P.Moin. Grid-point requirements for large eddy simulation: Chapman’s
estimates revisited. Physics of Fluids, 24(1):011702, 2012.

[2] M. Breuer, N. Peller, Ch. Rapp, and M. Manhart. Flow over periodic hills – Numerical
and experimental study in a wide range of Reynolds numbers. Computers & Fluids,
38(2):433–457, 2009.

[3] L. Temmerman and M. A. Leschziner. Large eddy simulation of separated flow in
a streamwise periodic channel constriction. In Proceeding of Second Symposium on
Turbulence and Shear Flow Phenomena, pages 399–404, KTH, Stockholm, Sweden,
2001. Begellhouse.

[4] X. Wu and K. D. Squires. Numerical investigation of the turbulent boundary layer
over a bump. Journal of Fluid Mechanics, 362:229–271, 1998.

[5] J. Banchetti, P. Luchini, and M. Quadrio. Turbulent drag reduction over curved
walls. Journal of Fluid Mechanics, 896:A10, 2020.

[6] I. Hadade, F. Wang, M. Carnevale, and L. di Mare. Some useful optimisations
for unstructured computational fluid dynamics codes on multicore and manycore
architectures. Computer Physics Communications, 235:305–323, 2019.

[7] J. P. Boris. On large eddy simulation using subgrid turbulence models. In J. L.
Lumley, editor, Whither Turbulence? Turbulence at the Crossroads, volume 357,
pages 344–353. Springer Berlin Heidelberg, Berlin, Heidelberg, 1989. Series Title:
Lecture Notes in Physics.

[8] J. P. Boris, F. F. Grinstein, E. S. Oran, and R. L. Kolbe. New insights into large
eddy simulation. Fluid Dynamics Research, 10(4-6):199–228, 1992.

[9] P. G. Huang, G. N. Coleman, and P. Bradshaw. Compressible turbulent channel flows:
DNS results and modelling. Journal of Fluid Mechanics, 305:185–218, December
1995. Publisher: Cambridge University Press.

[10] N. D. Sandham, Y. F. Yao, and A. A. Lawal. Large-eddy simulation of transonic



| Bibliography 38

turbulent flow over a bump. International Journal of Heat and Fluid Flow, 24(4):584–
595, August 2003.

[11] S. B. Pope. Turbulent flows. Cambridge University Press, Cambridge ; New York,
2000.

[12] U. Piomelli. Large-eddy simulation: achievements and challenges. Progress in
Aerospace Sciences, 35(4):335–362, 1999.

[13] S. Huang and Q. S. Li. A new dynamic one-equation subgrid-scale model for large
eddy simulations. International Journal for Numerical Methods in Engineering, pages
835–865, 2009.

[14] R. S. Rogallo and P. Moin. Numerical simulation of turbulent flows. Annual Review
of Fluid Mechanics, 16:99–137, 1984. ADS Bibcode: 1984AnRFM..16...99R.

[15] DNS Database of Wall Turbulence and Heat Transfer at Tokyo University of Science.
http://www.rs.tus.ac.jp/t2lab/db/.

[16] H.G. Weller, G. Tabor, H. Jasak, and C. Fureby. A tensorial approach to com-
putational continuum mechanics using object orientated techniques. Computers in
Physics, 12:620–631, 1998.

[17] P. L. Roe. Approximate Riemann solvers, parameter vectors, and difference schemes.
Journal of Computational Physics, 43(2):357–372, 1981.

[18] B. van Leer. Towards the ultimate conservative difference scheme. V. A second-order
sequel to Godunov’s method. Journal of Computational Physics, 32(1):101–136, 1979.

[19] C. Hirsch. Numerical computation of internal and external flows: fundamentals of
computational fluid dynamics. Elsevier/Butterworth-Heinemann, Oxford ; Burling-
ton, MA, 2nd ed edition, 2007.

[20] D. Mavriplis. Revisiting the Least-Squares Procedure for Gradient Reconstruction
on Unstructured Meshes. In 16th AIAA Computational Fluid Dynamics Conference,
Orlando, Florida, 2003. American Institute of Aeronautics and Astronautics.

[21] A. E. Bondarev and A. E. Kuvshinnikov. Analysis of the Accuracy of OpenFOAM
Solvers for the Problem of Supersonic Flow Around a Cone. In Y. Shi, H. Fu,
Y. Tian, V. V. Krzhizhanovskaya, M. H. Lees, J. Dongarra, and P. M. A. Sloot,
editors, Computational Science – ICCS 2018, volume 10862, pages 221–230. Springer
International Publishing, Cham, 2018. Series Title: Lecture Notes in Computer
Science.

http://www.rs.tus.ac.jp/t2lab/db/


| Bibliography 39

[22] S. V. Patankar and D. B. Spalding. A calculation procedure for heat, mass and
momentum transfer in three-dimensional parabolic flows. International Journal of
Heat and Mass Transfer, 15(10):1787–1806, 1972.

[23] R. I. Issa. Solution of the implicitly discretised fluid flow equations by operator-
splitting. Journal of Computational Physics, 62(1):40–65, 1986.

[24] E. de Villiers. The Potential of Large Eddy Simulation for the Modelling of Wall
Bounded Flows. page 377.

[25] H. Jasak. Error Analysis and Estimation for the Finite Volume Method with Appli-
cations to Fluid Flows. page 396.

[26] H. Jasak. Error analysis and estimation for the finite volume method with appli-
cations to fluid flows. 1996. Accepted: 2011-10-10T13:39:40Z Publisher: Imperial
College London (University of London).

[27] M. Marquillie, J.P. Laval, and R. Dolganov. Direct numerical simulation of a sepa-
rated channel flow with a smooth profile. Journal of Turbulence, 9:1–23, 2008.

[28] M. Quadrio and P. Luchini. Integral space–time scales in turbulent wall flows. Physics
of Fluids, 15(8):2219–2227, 2003.

[29] E. Komen, A. Shams, L. Camilo, and B. Koren. Quasi-DNS capabilities of Open-
FOAM for different mesh types. Computers & Fluids, 96:87–104, 2014.

[30] R. Poletto, T. Craft, and A. Revell. A New Divergence Free Synthetic Eddy Method
for the Reproduction of Inlet Flow Conditions for LES. Flow, Turbulence and Com-
bustion, 91:1–21, 2013.

[31] I. Celik. RANS/LES/DES/DNS: The Future Prospects of Turbulence Modeling.
Journal of Fluids Engineering, 127(5):829–830, 2005.

[32] turbulence fileserver. http://turbulence.oden.utexas.edu.

[33] C. Geuzaine and J.F. Remacle. Gmsh: a three-dimensional finite element mesh
generator with built-in pre- and post-processing facilities.

[34] J. Kim, P. Moin, and R. Moser. Turbulence statistics in fully developed channel flow
at low Reynolds number. Journal of Fluid Mechanics, 177:133–166, April 1987.

[35] A. Yoshizawa and K. Horiuti. A Statistically-Derived Subgrid-Scale Kinetic Energy
Model for the Large-Eddy Simulation of Turbulent Flows. Journal of The Physical
Society of Japan - J PHYS SOC JPN, 54:2834–2839, 1985.

http://turbulence.oden.utexas.edu


6| BIBLIOGRAPHY 40

[36] T. Saad, D. Cline, R. Stoll, and J. C. Sutherland. Scalable Tools for Generating
Synthetic Isotropic Turbulence with Arbitrary Spectra. AIAA Journal, 55(1):327–
331, 2017.



41

A| Appendix A

This appendix reports the implementation in the OpenFOAM source code of the func-
tionObjects developed to compute run-time, and eventually in post-processing, the fol-
lowing turbulent fields: turbulent kinetic energy production P , resolved turbulent kinetic
energy kres, SGS dissipation ϵSGS, viscous dissipation ϵvisc.

1 // * * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * //
2
3 bool Foam:: functionObjects :: tkeProd ::calc()
4 {
5 if (foundObject <volVectorField >( fieldName_))
6 {
7 if (foundObject <volVectorField >("UMean", false))
8 {
9 const volVectorField& UMean = lookupObject <volVectorField >("UMean");

10 const volVectorField& U = lookupObject <volVectorField >( fieldName_);
11 const volVectorField UPrime = (U - UMean);
12 return store
13 (
14 resultName_ ,
15 -(UPrime)*( UPrime) && fvc::grad(U)
16 );
17 }
18 else
19 {
20 const volVectorField& U = lookupObject <volVectorField >( fieldName_);
21 volVectorField UMean
22 (
23 IOobject
24 (
25 "UMean",
26 obr_.time().timeName (),
27 obr_ ,
28 IOobject ::MUST_READ ,
29 IOobject :: AUTO_WRITE
30 ),
31 U.mesh()
32 );
33 const volVectorField UPrime = (U - UMean);
34 return store
35 (
36 resultName_ ,
37 -(UPrime)*( UPrime) && fvc::grad(U)
38 );
39 }
40 }
41
42 return false;
43 }

Figure A.1: Implementation of functionObject P , which calculates the instantaneous field
of the turbulent kinetic energy production P
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1 // * * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * //
2
3 bool Foam:: functionObjects ::kRes::calc()
4 {
5 //In questo caso fieldName_ corrisponde a "U"
6 if (foundObject <volVectorField >( fieldName_))
7 {
8
9 if (foundObject <volVectorField >("UMean", false))

10 {
11 const volVectorField& UMean = lookupObject <volVectorField >("UMean");
12 const volVectorField& U = lookupObject <volVectorField >( fieldName_);
13 const volVectorField UPrime = (U - UMean);
14
15 return store
16 (
17 resultName_ ,
18 0.5*( UPrime & UPrime)
19 );
20 }
21 else
22 {
23 const volVectorField& U = lookupObject <volVectorField >( fieldName_);
24
25 volVectorField UMean
26 (
27 IOobject
28 (
29 "UMean",
30 obr_.time().timeName (),
31 obr_ ,
32 IOobject ::MUST_READ ,
33 IOobject :: AUTO_WRITE
34 ),
35 U.mesh()
36 );
37
38 const volVectorField UPrime = (U - UMean);
39
40 return store
41 (
42 resultName_ ,
43 0.5*( UPrime & UPrime)
44 );
45 }
46 }
47 return false;
48 }
49
50
51 // * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //

Figure A.2: Implementation of functionObject kRes, which calculates the instantaneous
field of the resolved turbulent kinetic energy kres
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1 // * * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * //
2
3 bool Foam:: functionObjects :: SGSDiss ::calc()
4 {
5 //In questo caso fieldName_ corrisponde a "U"
6 if (foundObject <volVectorField >( fieldName_))
7 {
8 const word turbModelName = Foam:: turbulenceModel :: propertiesName;
9

10 if (foundObject <volVectorField >("UMean", false))
11 {
12 const volVectorField& UMean = lookupObject <volVectorField >("UMean");
13 const volVectorField& U = lookupObject <volVectorField >( fieldName_);
14 const volVectorField UPrime = (U - UMean);
15 const volScalarField& rho = lookupObject <volScalarField >("rho");
16 const volScalarField nuSGS = (lookupObject <compressible :: turbulenceModel >( turbModelName).mut()) / (rho);
17 const volSymmTensorField B = -2.0* nuSGS*symm(fvc::grad(U));
18 const volSymmTensorField SGSstrainTensor = symm(fvc::grad(UPrime));
19
20 return store
21 (
22 resultName_ ,
23 B && SGSstrainTensor
24 );
25 }
26 else
27 {
28 const volVectorField& U = lookupObject <volVectorField >( fieldName_);
29
30 volVectorField UMean
31 (
32 IOobject
33 (
34 "UMean",
35 obr_.time().timeName (),
36 obr_ ,
37 IOobject ::MUST_READ ,
38 IOobject :: AUTO_WRITE
39 ),
40 U.mesh()
41 );
42
43 const volVectorField UPrime = (U - UMean);
44 const volScalarField& rho = lookupObject <volScalarField >("rho");
45 const volScalarField nuSGS = (lookupObject <compressible :: turbulenceModel >( turbModelName).mut()) / (rho);
46 const volSymmTensorField B = -2.0* nuSGS*symm(fvc::grad(U));
47 const volSymmTensorField SGSstrainTensor = symm(fvc::grad(UPrime));
48
49 return store
50 (
51 resultName_ ,
52 B && SGSstrainTensor
53 );
54 }
55 }
56
57 return false;
58 }

Figure A.3: Implementation of functionObject SGSDiss, which calculates the instanta-
neous field of the SGS dissipation ϵSGS
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1 // * * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * //
2
3 bool Foam:: functionObjects :: viscDiss ::calc()
4 {
5 if (foundObject <volVectorField >( fieldName_))
6 {
7 const word turbModelName = Foam:: turbulenceModel :: propertiesName;
8
9 if (foundObject <volVectorField >("UMean", false))

10 {
11 const volVectorField& UMean = lookupObject <volVectorField >("UMean");
12 const volVectorField& U = lookupObject <volVectorField >( fieldName_);
13 const volVectorField UPrime = (U - UMean);
14 const volScalarField& rho = lookupObject <volScalarField >("rho");
15 const volScalarField nuLam = 1.85*1e-5 / (rho);
16 const volSymmTensorField SGSstrainTensor = symm(fvc::grad(UPrime));
17
18 return store
19 (
20 resultName_ ,
21 -2.0* nuLam *( SGSstrainTensor && SGSstrainTensor)
22 );
23 }
24 else
25 {
26 const volVectorField& U = lookupObject <volVectorField >( fieldName_);
27
28 volVectorField UMean
29 (
30 IOobject
31 (
32 "UMean",
33 obr_.time().timeName (),
34 obr_ ,
35 IOobject ::MUST_READ ,
36 IOobject :: AUTO_WRITE
37 ),
38 U.mesh()
39 );
40
41 const volVectorField UPrime = (U - UMean);
42 const volScalarField& rho = lookupObject <volScalarField >("rho");
43 const volScalarField nuLam = 1.85*1e-5 / (rho);
44 const volSymmTensorField SGSstrainTensor = symm(fvc::grad(UPrime));
45
46 return store
47 (
48 resultName_ ,
49 -2.0* nuLam *( SGSstrainTensor && SGSstrainTensor)
50 );
51 }
52 }
53 return false;
54 }

Figure A.4: Implementation of functionObject viscDiss, which calculates the instanta-
neous field of the viscous dissipation ϵvisc
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