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Abstract

Introduction

The world population life expectancy is increasing every year, especially in Western

countries, together with the demand of assistance and monitoring from the healthcare

system towards elderly people. Moreover, this year, the Covid-19 pandemic highlighted

the limited availability of accommodation and specialized personnel in healthcare struc-

tures. Furthermore, the need to maintain patients far from the hospitals, when possi-

ble, and to give care in remote to avoid the contagious spread, strongly demonstrated

the importance of telemedicine and dislocation of care solutions. Mobile-health tech-

nologies, which exploits smartphones to monitor health conditions, can improve and

facilitate the job of doctors and nurses. This is possible principally because m-health

technologies are cheap, easy to use and allow continuous control of the users situation.

The implementation of automatic algorithms on smartphones makes possible to detect

from voice analysis conditions such as aging, cognitive impairments, stress, emotions

like sadness and depression, which together allow to generally assess people quality of

life. In particular, the Covid-19 pandemic focused the world attention to respiratory

tract in general and, more specifically, to the virus symptoms: cough, fever, tiredness

and loss of taste and smell. In this context, this work was focused on the assessment of

the status of the respiratory tract through the count of cough events. Specifically, the

aim was to develop a classification algorithm to identify cough events based on acous-
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tic voice features, automatically extracted from audio recordings. The performance

of different classifiers, both classical machine learning methods (Random Forest with

Bagging, Support Vector Machine, K-Nearest Neighbours) and deep machine learn-

ing methods (Neural Network with Long Short-Term Memory), were compared. The

capability of the classifier to correctly identify cough events from speech signals and

environmental noises was analyzed on 313 cough sounds, manually labelled, 313 words

and 156 ambient sounds. This project should be considered as a preliminary work

towards the development of an application for smartphones, able to count the number

of cough events per day in a transparent and unobtrusive manner.

State of the art

In order to perform speech analysis, many studies applied features extraction and used

automatic classifiers. Speech analysis can help detect cognitive pathologies and condi-

tions that negatively affect the general quality of life of an individual. Among all the

possible applications of speech analysis some of the most related with health and aging

are assessing stress and some other conditions like dementia, Parkinson and loneliness

that strongly affect elderly people.

In order to assess the health of the respiratory tract, cough event detection can be

useful. Cough is a forceful explosive expiration of air from the airways. Usually, cough

could be a symptom of cold, flu, pneumonia, asthma or chronic bronchitis. The av-

erage duration of a cough event is between 300 ms and 650 ms. When the airflow is

obstructed, the event can reach a 20 kHz frequency, but usually high-energy peaks are

around 400 Hz and 1500 Hz. Cough can be detected mechanically with devices applied

on the chest wall, that register its movements, or with audio based systems can be

easily implemented in smartphones, making it possible to monitor the users every time

and everywhere with very low costs. Going deeper into the cough detection framework,

most of the times, predictors are extracted from an audio, that was previously divided

in frames, and are then used to train a classifier. Many different predictors have been

used in this field. For example, Pramono et al. [1] extracted temporal features, such

as the zero crossing rate, energy features, such as the energy level, and also spectral
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features, like spectral Kurtosis, spectral slope, spectral centroid and so on. Other stud-

ies, like the one conducted by Miranda et al [2], used spectral predictors, comparing

the simple Short Time Fourier Transform Coefficient with Mel spectrogram. The Mel

spectrogram was used also by Barata et al. [3] together with the Mel frequency cepstral

coefficients, derived by the Mel spectrogram using a discrete cosine transform. MFCCs

were used also by many other research groups, Di Perna [4], Swarnkar [5] and Tracey

[6] to cite some. Pramono et al. [7], in another study, explored the performance of the

Linear predictive coding coefficient, which is a time domain feature, and tonality index.

Some more structured predictors have been used by Monge et al [8], who used Local

Hu moments, which are advanced averages of the image or audio intensities, invariant

to translation, scale, and rotation.

After the features extraction, the predictors are used to train a classifier, that cat-

egorizes the data into classes and can distinguish a cough event from other sounds.

To perform this task many algorithms can be used. Logistic regression classifier was

used by Pramono et al [1] to perform cough detection, achieving a sensitivity of 92%.

Support vector machine, another classic machine learning method, was used by Di

Perna [4] to detect chronic obstructive pulmonary patients. They were able to detect

cough with value of Area Under Receiver Operating Curve (ROC) of 0.916. Also Liu

et al. [9] and Tracey et al. [6] used Support Vector Machines (SVMs) to classify cough

events achieving respectively 91% and 81% sensitivity. Lucio et al. [10] used K nearest

neighbour (KNN) obtaining 87% sensitivity in detecting cough events. Monge-Alvarez

[8] also used KNN but inside a decision tree method. Other works that used trees

are Larson, Lee et al. [11] who used a random forest classifier, achieving an average

sensitivity of 92%. The same method was used by Breiman et al. [12] who achieved a

sensitivity equal to 92%. Amrulloh et al. [13] used Artficial Neural Networks (ANNs)

classification to develop a cough detector achieving sensitivity of 93%. More advanced

ANN can be used, such as probabilistic neural network (PNN) [14] or Convolutional

Neural Network (CNN). The latter was used by Tracey et al. [6] in cooperation with

SVM, allowing to obtain 81% sensitivity. Miranda et al. [2] used and compared CNN,

Deep Neural Network and Long Short Term Memory Neural Network showing that

performance varies with different frame and segment lengths configurations. Finally,
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there is the Hidden Markov Model (HMM) used by Matos et al. [15] that is a key spot-

ting technique, in which the idea is to detect occurrences of keywords in a continuous

speech recording, this approach can be fit for cough as well.

An important issue in every audio recording application, and so for cough detection

as well, is to protect the privacy of the users. The main criticalities are found in the

possible recognition of the speaker from voice characteristics (pitch, formants), in the

reconstruction of a private conversation or of personal life activities during the day and

in the recognition of a person’s gender, accent, nationality and emotional state [16].

Materials And Methods

Audio samples were collected from online audio datasets; specifically, from Freesound1

and Commands Speech2. A total of 313 cough event samples were extracted from

Freesound dataset and labelled manually with the Matlab AudioLabeler App. Then,

156 random sounds, such as music or environmental sounds, were taken from Freesound

together with 313 random words from Speech Commands database. Two different

datasets were created. One, called “Speech & Cough”, was built with 313 cough

events and 313 words. The second one, called “Complete” was built to contain 313

cough sounds, 157 random words and 156 ambient sounds from Freesound. All the al-

gorithms and functions were implemented in Matlab R2020b (MathWorks, Inc. USA)

with the Audio Toolbox3 and the Deep Learning Toolbox4. After the datasets creation,

the audio were downsampled to 16kHz in order to have the same frequency for all audio

samples derived from different datasets. Since the amplitude of the audio signals is

affected by inter-subject variability and by the different distances of the subjects from

the recorder, an amplitude standardization was applied in order to make the audios

comparable. Then, a feature extractor object was created and used to extract 56 pre-

dictors from the audio samples. First, the feature extractor subdivides the audio in

frames of 64 ms duration with 50% overlap. The features extracted were Mel spectro-

gram coefficients, Mel Frequency Cepstral Coefficent, pitch, spectral Kurtosis, spectral

1The project and the dataset are available at: https://freesound.org
2The dataset is available from https://storage.googleapis.com/download.tensorflow.org

data/speechcommandsv0.01.tar.gz. Copyright Google 2017.
3Toolbox documentation avaible at: https://ch.mathworks.com/help/deeplearning/index.html
4Toolbox documentation avaible at: https://ch.mathworks.com/products/audio.html
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centroid, spectral crest, spectral entropy, spectral flatness, spectral flux, spectral roll

off, spectral slope and harmonic ratio. Then, data was evaluated with a Lilliefors test

to assess normality. If the features were normal, a t-test for independent samples was

used. If the features were not normal (p<0.05), a Wilcoxon rank sum test. Both

tests were applied to compare each feature between the two classes (”cough” assigned

to ”1” and ”no cough” assigned to ”0”). After this preliminary statistical analysis,

a minimum redundancy maximum relevance (MRMR) algorithm was applied to rank

the predictors according to a trade off between predictors importance and mutual in-

formation. Based on this algorithm, the 15 most relevant features were selected.

The following classifiers were compared in terms of their performance to automatically

identify cough events: Random Forest with Bagging, K Nearest Neighbour, Support

Vector Machine and Long Short Term Memory Neural Network. The classifiers were

trained in four modalities. The first two modality consisted in using the “Speech &

Cough” dataset using, on one side, all the 56 predictors and, on the other side, just

the 15 features selected by MRMR. The other two modalities consisted in using the

“Complete” dataset again with all the predictors in one case, and with the selected

ones in the other case. The training and testing performance metrics assessment was

done using a 10-fold cross validation. This allowed to average the results, thus obtain-

ing more robust performance indicators. These performance metrics used are accuracy,

precision and recall. The classifiers capacity of prediction with fresh data was made

with the test set and evaluated in terms of accuracy, precision and recall. Moreover,

the results were visualized into ROC curves. The area under the curve (AUC) is a

performance index. Finally, a Kruskal Wallis test was used to assess whether an algo-

rithm actually performed significantly better than another. The statistical significance

between training the classifiers with all the features or with just a subset was explored,

as well as the significance between using the two different datasets to train the algo-

rithms. Finally, the significance across the classifiers was evaluated, in order to assess

whether a classifier was performing better than another.

Results and Discussions

The statistical analysis carried out on the predictors showed that they did not follow
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a normal distributions. The Wilcoxon test highlighted significant difference for all the

predictors between the two classes “cough” and “no cough”, except for three predic-

tors of the “Complete” dataset. The MRMR algorithm selected the 15 most relevant

features. In particular, for the “Complete” dataset, the three features with the highest

predictor importance score were found to be “Mel4”, “MFCC9” and “spectralKurto-

sis”, while in the “Speech & Cough” dataset, the best features we found to be “Mel32”,

“MFCC12” and “MFCC8”.

All the classifiers performance metrics were computed as the median, with the cor-

responding interquartile range, of the single values obtained during the 10-fold cross

validation. An example is shown in table 1. The learner that generally showed the

best performance was LSTM. It performed classification with a sensitivity of 92.4 ±

3.3% when tested with the “Complete” dataset, considering all the 56 features. When

the “Speech & Cough” dataset was used, LSTM performed even better, achieving a

sensitivity of 98.2 ± 8.1%. And also Pramono et al [1], Larson et al. [11] and Breiman

et al. [12] that all obtained a sensitivity equal to 92%. The two datasets results were

compared to see whether, using a cleaner dataset such as “Speech & Cough”, with-

out noises, could improve the classifier performances with respect to the “Complete”

dataset. The statistical analysis showed that for KNN, when 56 features were used,

the behaviour was opposite than expected, with a larger accuracy for the “Complete”

dataset, 86.1 ± 3% against 79.8 ± 3.3% of the “Speech & Cough” dataset, the p-value

was lower than 0.001. In the SVM case, when using the 15 selected features, the choice

of the dataset showed again that the “Complete” dataset gave more information to the

classifier resulting in a better performance. In general, for the rest of the cases, the

presence of noises did not affect the results demonstrating that the classifiers are robust

to noise and sounds different from speech. Finally, we compared the performance of

each algorithm considering all features or just a subset and this analysis showed that

the features selection performed with MRMR generally did not influence the results,

meaning that the chosen predictors correctly stored most of the information. On the

other side, feature selection did not improve the classifiers’ performances. The only

exception occurred for KNN, for the “Complete” dataset, which was negatively effected

by feature selection. The precision was decreased from 82.6 ±6.2 % to 66.3 ± 2.3%
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when a subset of features were considered, the p-value for the precision was lower than

0.001. All the algorithms’ performances and significance, when comparing all the al-

gorithms between each other, for the “Complete” dataset using all the 56 feature, are

shown in table 1. Finally, the ROC curves of the 4 algorithms for the same training

Table 1: Comparison between the different classification algorithms in terms of accuracy, precision
and recall. Classifiers were trained on the “Complete” dataset, considering all 56 features

Metrics Classifiers P values

RF KNN SVM LSTM RF-KNN RF-SVM RF-LSTM KNN-SVM KNN-LSTM SVM-LSTM

Accuracy 88.2 ±1.7% 86.1 ±3% 87.6 ±1.3% 94.4 ±2.8% 0.151 0.915 0.068 0.465 0.001* 0.010*
Precision 76.3 ±9% 82.6 ±6.2 78.5 ±14.3% 96.8 ±2.4% 0.752 0.992 0.001* 0.894 0.014* 0.001*

Recall 82.5 ±8.5% 75.5 ±10.5% 80.5 ±14.3% 92.4 ±3.3% 0.152 0.984 0.035* 0.302 0.001* 0.012*

modality as in Table 1 (“Complete” dataset, 56 features) are shown in Figure 1. Using

AUC it is possible to confirm that LSTM achieved the best performance, followed by

RF, SVM and KNN, which obtained the worst performances.

Figure 1: ROC Curve: “Complete” Dataset, 56 Features

Conclusions

In conclusion, the LSTM was the best classifier. The LSTM performance metrics

outperformed other studies results, such as Liu et al. [9] and Tracey et al. [6] Lucio
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et al. [10] which achieved, with different methods, respectively 91%, 81% and 87%

sensitivity in detecting cough events. All algorithms were robust also to the presence

of environmental noise, indeed the classification performance did not decrease when

noise was added in the dataset. Features selection resulted to be not a mandatory

step, especially for the LSTM neural network. Anyway, because it did not decrease

the performance, it could be applied to reduce the dimensionality of the problem.

This could indeed help speeding up calculations, in view of a future development of

a smartphone application based on the best classifier, LSTM. Specifically, the trained

LSTM classifier could be used for a real time classification of cough events. The

smartphone application would automatically extract voice features in real time during

phone conversations or during the day and count the number of cough events per day

in a continuous and not intrusive way, for the purpose of assessing the respiratory tract

health.
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Sommario

Introduzione

L’aspettativa di vita della popolazione mondiale aumenta ogni anno, soprattutto nei

paesi occidentali, assieme al bisogno di assistenza e monitoraggio nei confronti degli

anziani da parte del sistema sanitario. Inoltre, quest’anno, la pandemia da Covid-19

ha evidenziato la limitata disponibilità di letti e personale specializzato nelle strutture

sanitarie. Inoltre, la necessità di mantenere i pazienti lontani dagli ospedali, quando

possibile, e di prestare assistenza a distanza per evitare la diffusione del contagio, ha

fortemente dimostrato l’importanza della telemedicina e delle soluzioni per disloca-

re l’assistenza ai pazienti. Le mobile-technologies, che sfruttano gli smartphone per

monitorare le condizioni di salute, possono migliorare e facilitare il lavoro di medi-

ci e infermieri. Questo è possibile principalmente perché le tecnologie m-health sono

economiche, facili da usare e permettono un controllo continuo della condizione degli

utenti. L’implementazione di algoritmi automatici sugli smartphone ha permesso di

rilevare dal linguaggio parlato molte informazioni. Per esempio, ha aiutato a rilevare

condizioni quali invecchiamento, disturbi cognitivi, stress, emozioni come tristezza e

depressione. Nell’insieme queste condizioni consentono di valutare la qualità di vita ge-

nerale degli utenti. In particolare, la pandemia di Covid-19 ha focalizzato l’attenzione

mondiale sulle vie respiratorie in generale e, più nello specifico, sui sintomi del virus:

tosse, febbre, stanchezza e la perdita del gusto e dell’olfatto. In questo contesto, lo
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scopo di questo lavoro è quello di sviluppare un modello di classificazione per valutare

la salute respiratoria e la qualità della vita degli utenti attraverso il conteggio degli

eventi di tosse. L’obiettivo principale di questo lavoro era quello di valutare e confron-

tare diversi classificatori atti a rilevare eventi di tosse all’interno di audio contenenti

parole e suoni ambientali. Gli algoritmi confrontati in questo lavoro erano sia metodi

di machine learning classici (Random Forest con Bagging, Support Vector Machine,

K-Nearest Neighbors) che metodi di deep machine learning (Neural Network con Long

Short-Term Memory). La capacità del classificatore di identificare correttamente gli

eventi di tosse da segnali vocali e rumori ambientali è stata analizzata su 313 suoni di

tosse, etichettati manualmente, 313 parole e 156 suoni ambientali. Questo progetto di

tesi deve essere considerato come un lavoro preliminare allo sviluppo di un’applicazio-

ne per smartphone, in grado di contare il numero di eventi di tosse al giorno in modo

trasparente e non invasivo.

Stato dell’arte

Nello stato dell’arte dell’analisi del parlato, molti studi hanno applicato l’estrazione di

feature e hanno utilizzato classifier automatici. L’analisi del parlato può aiutare a rile-

vare patologie cognitive e condizioni che influenzano negativamente la qualità generale

della vita di un individuo. Tra tutte le possibili applicazioni dell’analisi del linguaggio

alcune delle più legate alla salute e all’invecchiamento sono la valutazione dello stress

e alcune altre condizioni come la demenza, il Parkinson e la solitudine, che influenzano

fortemente anziani.

Per valutare la salute delle vie respiratorie, può essere utile il rilevamento degli even-

ti di tosse. La tosse è una forte espirazione esplosiva di aria emessa dalle vie aeree.

Può essere un sintomo di raffreddore, influenza, polmonite, asma o bronchite cronica,

per esempio. La tosse può essere rilevata meccanicamente con dispositivi applicati

sulla parete toracica, che ne registrano i movimenti oppure usando dei sistemi audio

based. I sistemi audio based possono essere facilmente implementati negli smartpho-

ne, rendendo possibile il monitoraggio dei pazienti in ogni momento e luogo con costi

molto contenuti. Approfondendo il processo di identificazione della tosse, di solito, i

predittori vengono estratti da un audio, precedentemente suddiviso in frames, e ven-
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gono quindi utilizzati per addestrare un classificatore. Per identificare la tosse sono

stati utilizzati molti predittori diversi. Ad esempio, Pramono et al. [1] hanno estratto

feature temporali, come lo zero crossing, feature energetiche, come il livello di ener-

gia, e anche caratteristiche spettrali, come spectral Kurtosis, spectral Slope, spectral

Centroid. Altri studi, come quello condotto da Miranda et al [2], hanno utilizzato pre-

dittori spettrali, confrontando i coefficienti della Short Time Fourier Transform con lo

spettrogramma di Mel. Lo spettrogramma di Mel è stato utilizzato anche da Barata et

al. [3] insieme ai Mel Frequency Cepstral Coefficient, derivati dallo spettrogramma di

Mel utilizzando una trasformata coseno discreta. Gli MFCC sono stati usati anche da

molti altri gruppi di ricerca, Di Perna [4], Swarnkar [5] e Tracey [6] per citarne alcuni.

Pramono et al. [7], in un altro studio, ha esplorato le prestazioni del Linear predictive

coding coefficient, che è una feature nel dominio del tempo e del Tonality Index. Alcuni

predittori più complessi sono stati utilizzati da Monge et al [8], che hanno utilizzato

i Local Hu Moments, che sono elaborazioni avanzate delle intensità dell’immagine o

dell’audio, e sono degli invarianti a traslazione, scala e rotazione.

Dopo l’estrazione delle feature, i predittori vengono utilizzati per addestrare un classi-

ficatore, che classifica i dati in classi e può distinguere un evento di tosse da altri suoni.

Per eseguire questa operazione, è possibile utilizzare molti algoritmi. La regressione

logistica è stata utilizzata da Pramono et al [1] per rilevare la tosse ottenendo una

sensibilità del 92%. Le Support vector machines (SVM), sono un altro metodo classico

di machine learning, utilizzate ad esempio da Di Perna [4] per rilevare i pazienti con

polmonite ostruttiva cronica. Liu et al. [9] e Tracey et al. [6] hanno utilizzato le

Support Vector Machines per classificare gli eventi di tosse ottenendo rispettivamente

il 91% e l’81% di sensibilità. Lucio et al. [10] hanno usato K nearest neighbour ot-

tenendo una sensibilità dell’87% nel rilevare i colpi di tosse. Anche Monge-Alvarez et

al. [8] hanno usato le KNN ma all’interno di un metodo che usa gli alberi decisionali

(decision tree). Altri lavori che hanno utilizzato alberi sono Larson, Lee et al. [11], che

hanno utilizzato un Random Forest classifier e hanno ottenuto una sensibilità media

del 92 %. Lo stesso metodo è stato utilizzato da Breiman et al. [12] raggiungendo

una sensibilità pari al 92%. Amrulloh et al. [13] hanno utilizzato un Artifical Neural

Network (ANN) per sviluppare un rilevatore di tosse con una sensibilità del 93%. È
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possibile utilizzare ANN più avanzate, come Probabilistic Neural Network (PNN) [14]

o Current Neural Network (CNN). Quest’ultima è stata utilizzata da Tracey et al. [6]

assieme alle SVM, consentendo di ottenere una sensibilità dell’81 %. Miranda et al.

[2] hanno utilizzato e confrontato Current Neural Network, Deep Neural Network e

Long Short Term Memory Neural Network, dimostrando che le prestazioni variano a

seconda delle diverse configurazioni di frame e lunghezza dei segmenti. Infine, l’Hidden

Markov Model (HMM), utilizzato da Matos et al. [15], è una tecnica di keyspotting,

in cui l’idea è di rilevare le occorrenze di parole chiave in una registrazione continua

del parlato. Questo approccio può essere adattato anche per la tosse.

Un problema importante nell’analisi di registrazione audio, e quindi anche per il ri-

levamento della tosse, è proteggere la privacy degli utenti. Le principali criticità si

riscontrano nell’eventuale riconoscimento di chi parla dalle caratteristiche vocali (into-

nazione, formanti), nella ricostruzione di una conversazione privata o di attività private

e nel riconoscimento del genere, dell’accento, della nazionalità e dell’emotività di una

persona [16].

Materiali e Metodi

I campioni audio sono stati raccolti da dataset di audio online. In particolare, da

Freesound 5 e Commands Speech6. 313 campioni di colpi di tosse sono stati estratti

dall’audio dataset Freesound ed etichettati manualmente con l’app Matlab AudioLa-

beler. 156 suoni casuali, come musica o suoni ambientali, sono stati presi da Freesound

insieme a 313 parole casuali prese da Speech Commands. Sono stati creati due diversi

dataset. Uno, chiamato “Speech & Cough”, è stato costruito con 313 eventi di tosse e

313 parole. Il secondo, chiamato “Complete”, è stato costruito con 313 colpi di tosse,

157 parole casuali e 156 suoni ambientali di Freesound. Tutti gli algoritmi e le fun-

zioni sono stati imlementati su Matlab R2020b (MathWorks, Inc. USA) usando anche

l’Audio Toolbox7 e il Deep Learning Toolbox8. Dopo la creazione dei dataset, l’audio

è stato sottocampionato a 16 kHz in modo da avere la stessa frequenza tra i campioni

5Progetto e dataset sono disponibili al sito: https://freesound.org
6Il dataset è disponibile su: https://storage.googleapis.com/download.tensorflow.org

data/speechcommandsv0.01.tar.gz. Copyright Google 2017.
7Documentazione del Toolbox disponibile su: https://ch.mathworks.com/help/deeplearning/index.html
8Documentazione del Toolbox disponibile su: https://ch.mathworks.com/products/audio.html
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audio dei diversi set di dati. Poiché l’ampiezza dei segnali audio è influenzata dalla

variabilità inter-soggetto e dalle possibili distanze diverse dal registratore quando una

persona parla, è stata applicata una standardizzazione dell’ampiezza per rendere gli

audio confrontabili. Un feature extractor object è stato creato su Matlab e utilizzato

per estrarre 56 feature dai campioni audio. Innanzitutto, il feature extractor suddivide

l’audio in frames della durata di 64 ms che si sovrappongono del 50%. Esempi dei

predittori estratti sono i coefficienti dello spettrogramma di Mel, gli MFCC, il pitch

(tono), Spectral Kurtosis, spectral centroid, spectral crest, spectral entropy, spectral

flatness, spectral flux, spectral roll off, spectral slope and harmonic ratio. Successiva-

mente, i dati sono stati valutati con un test di Lilliefors per valutarne la normalità. Se

le feature erano normali è stato utilizzato un t-test per campioni indipendenti. Se le

caratteristiche non erano normali (p < 0,05), è stato utilizzato un Wilcoxon rank sum

test. Entrambi i test sono stati applicati per confrontare ciascuna feature tra le due

classi (”tosse” assegnata a ”1” e ”no tosse” assegnata a ”0”). Dopo questa valutazione,

è stato applicato un algoritmo di minimum redundancy maximum relevance (MRMR)

per classificare i predittori in base a un compromesso tra l’importanza dei predittori e

la loro mutua informazione. Le 15 migliori features sono state selezionate.

I classificatori valutati sono stati Random Forest, K Nearest Neighbor, Support Vec-

tor Machine e Long Short Term Memory Neural Network. I classificatori sono stati

addestrati in quattro modalità. Le prime due consistevano nell’utilizzo del dataset

“Speech & Cough ” utilizzando, da un lato, tutte le 56 feature e, dall’altro, solo le 15

feature selezionate da MRMR. Le altre due modalità consistevano nell’usare il dataset

“ Complete ” con tutti i predittori in un caso e con quelli selezionati nell’altro. La va-

lutazione delle metriche di performance dell’addestramento e del test è stata effettuata

utilizzando una 10-fold cross validation. Questo ha permesso di ottenere la mediana

dei risultati, avendo cos̀ı degli indicatori di performance più robusti. Le metriche di

performance usate sono accuratezza, precisione e sensitività. La capacità di previsione

dei classifier con nuovi dati è stata effettuata con il test set e valutata con accuracy, pre-

cision e recall. Inoltre, i risultati sono stati visualizzati con delle curve ROC. Infine, è

stato utilizzato un test di Kruskal Wallis per valutare se un algoritmo avesse classificato

significativamente meglio di un altro. È stata esplorata la significatività statistica tra
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l’addestramento dei classificatori con tutte le feature o con un sottoinsieme di feature.

Poi, la significatività tra l’utilizzo dei due diversi dataset per addestrare gli algoritmi.

Infine, la significatività tra i classificatori, al fine di valutare se un classificatore aveva

prestazioni migliori di un altro.

Risultati e Discussioni

L’analisi statistica dei predittori ha mostrato che non seguono una distribuzione norma-

le. Il test di Wilcoxon ha evidenziato una differenza significativa per tutti i predittori

tra le due classi “cough” e “no cough”, ad eccezione di tre predittori del dataset “Com-

plete” che non sono risultati significativamente differenti tra le classi. L’algoritmo

MRMR ha selezionato le migliori 15 feature. In particolare, per il dataset “Complete”,

le tre feature con il valore della capacità di predizione più alto individuate sono state “

Mel4 ”, “ MFCC9 ” e “ SpectralKurtosis ”, mentre in “ Speech & Cough ”, le migliori

caratteristiche trovate sono “ Mel32 ”, “ MFCC12 ” e “ MFCC8 ”.

Tutte le metriche di performance dei classificatori sono state calcolate come media-

na, con l’intervallo interquartile corrispondente,dai singoli valori ottenuti durante la 10

cross validation. Un esempio è mostrato in tabella 2. Il classificatore che generalmente

ha mostrato le migliori prestazioni è stato LSTM. Ha eseguito la classificazione con una

sensibilità di 92,4 ± 3,3 % quando testato con il set di dati “Complete”, utilizzando

tutte le 56 feature. Quando è stato utilizzato il dataset “ Speech & Cough ”, LSTM ha

ottenuto dei risultati persino migliori, 98,2 ± 8,1 %. Le performance di LSTM hanno

superato i risultati di altri studi, come Liu et al. [9] e Tracey et al. [6] Lucio et al. [10]

che hanno raggiunto, con metodi differenti, rispettivamente il 91%, l’81% e l’87% di

sensibilità nel rilevare i colpi di tosse. E anche Pramono et al. [1], Larson et al. [11] e

Breiman et al. [12] hanno ottenuto tutti una sensibilità pari al 92 %. I risultati dei due

dataset sono stati confrontati per vedere se, l’utilizzo un dataset più semplice come “

Speech & Cough ”, quindi senza rumori, possa migliorare le prestazioni del classifica-

tore rispetto al dataset “ Complete ”. I risultati del p-value hanno mostrato che per

KNN, quando vengono utilizzate 56 feature, il comportamento si è rivelato opposto al

previsto, cioè con una una maggior precision con il dataset “ Complete”, 86,1 ± 3 %

contro 79,8 ± 3,3% del dataset “ Speech & Cough ”, con p-value minore di 0.001. Nel
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caso delle SVM, quando si utilizzano le 15 feature selezionate, la scelta del dataset ha

mostrato ancora una volta che il set di dati “Complete” ha fornito più informazioni

al classificatore con un conseguente miglioramento delle prestazioni. In generale, per

il resto dei casi, la presenza di rumori non ha influenzato i risultati dimostrando che

i classificatori sono robusti al rumore e ai suoni diversi dal parlato. Gli altri risultati

hanno mostrato che la feature selection eseguita con MRMR in generale non ha influen-

zato i risultati, il che significa che i predittori scelti hanno memorizzato correttamente

la maggior parte dell’informazione. D’altro canto, la selezione delle feature non ha

migliorato le prestazioni dei classificatori. L’unica eccezione è quella di KNN, che per

il dataset “Complete”, è stato influenzato negativamente dalla feature selection. La

precision è passata da 82,6 ± 6,2 % a 66,3 ± 2,3 % quando le features sono diminuite.

Tutte le performance e la significatività degli algoritmi, quando vengono confrontati

tutti gli algoritmi tra di loro, per il dataset “Complete” utilizzando tutte le 56 feature,

sono mostrati nella tabella 2. Infine, gli algoritmi sono stati reppresentati tramite una

Tabella 2: Confronto tra gli algoritmi: “Complete” dataset, 56 features

Metrics Classifiers P values

RF KNN SVM LSTM RF-KNN RF-SVM RF-LSTM KNN-SVM KNN-LSTM SVM-LSTM

Accuracy 88.2 ±1.7% 86.1 ±3% 87.6 ±1.3% 94.4 ±2.8% 0.151 0.915 0.068 0.465 0.001* 0.010*
Precision 76.3 ±9% 82.6 ±6.2 78.5 ±14.3% 96.8 ±2.4% 0.752 0.992 0.001* 0.894 0.014* 0.001*

Recall 82.5 ±8.5% 75.5 ±10.5% 80.5 ±14.3% 92.4 ±3.3% 0.152 0.984 0.035* 0.302 0.001* 0.012*

curva ROC (Receiver Operating Curve) per poter confrontare visivamente le diverse

performance. Il caso più rappresentativo è quello con il dataset “Complete” e con tutte

le 56 features utilizzate, mostrato in figura 2. Poichè l’area sotto la curva (AUC) è un

indice di performance, è possibile osservare che LSTM è il miglior classificatore, seguito

da RF, SVM e KNN, che ha ottenuto le peggiori prestazioni.

Conclusioni

In conclusione, la rete neurale LSTM è stato il miglior classificatore. Le metriche di

prestazione della LSTM hanno superato i risultati di altri studi, come Liu et al. [9],

Tracey et al. [6] e Lucio et al. [10] che hanno raggiunto, con metodi differenti, ri-

spettivamente il 91%, l’81 % e l’87 % di sensibilità nel rilevare eventi di tosse. Tutti i

metodi hanno mostrato robustezza sia con un dataset con solo tosse e parole sia con
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Figura 2: Curva ROC: “Complete” Dataset, 56 Features

uno contenente tosse, parlato e rumori esterni. La feature selection non si è rivelata

un passaggio obbligatorio, soprattutto per la rete neurale LSTM. In ogni caso, poiché

non diminuiva le prestazioni, può essere applicata per ridurre la dimensionalità del

problema. Utile per diminuire i tempi di calcolo. Il miglior classificatore è risultato

essere LSTM e quindi è la scelta indicata per eventuali sviluppi futuri. Questi risultati

potrebbero essere sfruttati per un ulteriore lavoro in cui il classificatore LSTM adde-

strato può essere utilizzato per una classificazione in tempo reale dei colpi di tosse.

Il metodo finale potrebbe essere implementato in un’applicazione per smartphone che

possa estrarre automaticamente le feature vocali in tempo reale durante le conversa-

zioni telefoniche o in background durante la giornata. Dalle feature estratte, potrebbe

poi contare il numero di eventi di tosse al giorno in modo continuo e non invasivo, con

la finalità di valutare lo stato di salute delle vie respiratorie.
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Chapter 1

Introduction

The constant increase in life expectancy [17], poses important challenges to researches,

whose goal is to improve not only life duration but quality of life as well. As shown

in figure 1.1, the Western population life expectancy at birth increases every year.

This trend shows that the number of elderly people increases as well, together with

their need of assistance from the healthcare system, specifically, the need and demand

for care due to the physiological and/or pathological decline of physical and cognitive

functions. To face this increasing demand, there is a rapidly developing interest in the

Figure 1.1: Life Expectancy at birth Europe-27 -Source Eurostat.

use of information and communications technology (ICT) for the non constrained and

remote monitoring of physiological and health variables at home. Evidence for this

interest are major research programs in Europe, initiated under the general umbrella
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Chapter 1: Introduction

of the Advanced Informatics in Medicine (AIM) program, which has as a major theme

the application of Telematics Systems in Health Care [18]. Omnipresent available ICT,

such as smartphones or wearable devices, can be used to unobtrusively monitor pa-

tients’ health condition as these devices are everywhere and almost always carried by

individuals [19]. In this direction, the mobile-health (m-health) technologies are also

important. The World Health Organization (WHO) defined m-Health as ”medical and

public health practice supported by mobile devices, such as mobile phones, patient

monitoring devices, personal digital assistants , and other wireless devices” [20]. m-

Health can contribute to achieving universal health coverage (UHC) through making

services available to remote populations and communities and providing mechanisms

for data exchange on patients and services. It can be used to increase access to and

provision of health services in areas where there is little infrastructure to support the

internet (or other technologies) or traditional health services, but where mobile com-

munications technology infrastructure has been prioritized. Moreover, supplying the

technology for mobile communications is cheaper than providing in-person services.

The use of mobile devices has been increasing exponentially internationally – from 2.2

billion global mobile phone subscriptions (82 per 100 inhabitants) in 2005 to more

than 7 billion (120 per 100 inhabitants) by the end of 2015 [21]. Therefore, their use in

healthcare is surely a good way to improve general health on the global scale. More-

over, m-Health is valuable also in high income countries because it permits to be always

connected with physicians and sanitary personnel, at any distance.

Nowadays, healthcare providers are facing growing challenges in patient diagnostics

and information gathering due to in-adequate infrastructure and insufficient number

of health-care professionals to perform such operations. In fact, the traditional way

of patient information gathering is largely based on text and dependent on self-report

surveys and infrequent doctor consultations. Using mobile device based on distributed

sensors can improve remote diagnostics and healthcare information gathering [22]. In

particular, this year, the Covid-19 pandemic highlighted the limited availability of ac-

commodation and specialized personnel in healthcare structures. Furthermore, the

need to maintain patients far from the hospitals, when possible, and to give care

in remote to avoid the contagious spread, strongly demonstrated the importance of
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telemedicine and dislocation of care solutions. Mobile-health technologies, which ex-

ploits smartphones to monitor health conditions, can improve and facilitate the job

of doctors and nurses. This is possible principally because m-health technologies are

cheap, easy to use and allow continuous control of the patients situation. Mobile de-

vices permit a cheap, easy and possibly all time recording of voice and respiratory

sounds. Furthermore, due to the great spread of mobile phones and home assistant de-

vices that allows human-machine interaction, it is more and more common extracting

relevant information from speech other than just the message itself. For example, it is

possible to extract the speaker identity, ethnicity, emotion and age so that it can be

used to improve customer services and offer tailored products [23].

From an healthcare point of view, speech can be useful in finding out patients aging,

cognitive impairments, stress, emotions, such as sadness and depression, and finally

can give a general idea of their quality of life, for example from their social interaction

and from the symptoms recorded during the day. Such symptoms may include tired-

ness during speaking, number of cough events, number of sneezing, number of pauses.

Speech can be used to guess people age just using neural networks, Fedorova et al.

[24] were able to find out the age with a maximum mean absolute error of 6.35 years.

Ultimately, on the wave of Covid-19 pandemic many studies focused on the respiratory

tract. For example, speech analysis can be used to detect respiratory sounds in order

to have a general overview of a person life quality and respiratory health. Respiratory

sound analysis can be made with smartphones so that it would not only guarantee

scalability and cost-efficiency, but would also provide a reproducible measurement of

the respiratory activity [3]. A basic indicator of respiratory tract health it’s the number

of cough events, occurrence of a typical respiratory symptom, over time, whose value is

supposed to be low, almost zero times for day, in a healthy subject. Also, cough is one

of the most frequent symptoms among various pathologies and it impacts negatively

the daily life. It can reveal respiratory disorders in all population but it especially

impacts the categories most at risk, like seniors or persons with respiratory diseases,

hence it’s a good index of general health. Cough is controlled through the cerebral

cortex. Hence, a cerebrovascular disease can block the control of the neural pathway

and result in an elevated threshold for the cough reflex. For this reason, cough reflex
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sensitivity can be used as indicator of dementia [25]. Decreased cough reflex sensitivity

has been established, also, as one of the risk factors for the onset of aspiration pneu-

monia in elderly people [26].

In this context, this work aim is to generally assess breathing quality of a subject dur-

ing his daily life using a classification algorithm that identifies the cough events from

audio recordings. Moreover, this work tests and validates those different classification

algorithms. This preliminary study focused on studying which are the optimal choices

of audio features, machine learning classifiers and segments length to assess the cough

detection. The features investigated are spectral formants present in literature: Mel

Spectrogram, Mel Formant Cepstral Coefficients and other spectrals features. Then,

the algorithms, both classical (Random Forest with Bagging, Support Vector Machine,

K-Nearest Neighbours) and deep machine learning method (Neural Network with Long

Short-Term Memory), were evaluated. The algorithms were trained and validated on

voice recordings downloaded from two online datasets: Freesound1 and Commands

Speech2. This work has to be considered a preliminary work towards the development

of an application for smartphone, able to count the number of cough events per day in

a transparent and unobtrusive manner.

1The project and the dataset are available at: https://freesound.org
2The dataset is available from https://storage.googleapis.com/download.tensorflow.org

data/speechcommandsv0.01.tar.gz. Copyright Google 2017.
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State of the art

2.1 Speech analysis in quality of life assessment

As briefly introduced in Chapter 1, speech analysis made by machine learning algo-

rithms can help detect cognitive pathologies and conditions that negatively affect the

general quality of life of an individual. Among all the possible applications of speech

analysis some of the most related with health and aging are assessing stress, since it is a

condition that influences every aspect of the life of a person, and some other conditions

like dementia, Parkinson and loneliness that strongly affect elderly people. Finally, it

is important to underline how cough is connected with dementia and general every day

health. In the following sections the main applications of speech analysis will be briefly

discussed.

2.1.1 Stress

Stress and its management are important indicators of general health, at every age. It

is a serious problem that can adversely affect different life situations and also carry a

wide range of health-related diseases, including cardiovascular disease, cerebrovascu-

lar disease, diabetes, and immune deficiencies [27]. Over the past decades the effect

of stress onto the speech production has been well studied. Respiration is strongly

correlated with some emotional situations. For example, if a subject is in a stressful

5



Chapter 2: State of the art

situation, the respiration rate increases. Usually, this brings to an increase of subglottal

pressure during speech, and consequently the pitch (or fundamental frequency of the

signal) increases during the voiced section [28]. Moreover, a respiration rate increase

can cause a shorter duration of speech between breaths which affects the speech artic-

ulation rate.

Kurniawan et al. [29] used several subsets to find stress correlated information in

speech, including smoothed energy computed using the overlapping time frames, voiced

and unvoiced speech, pitch, Mel Frequency Cepstral Coefficients (MFCCs) that rep-

resent human audio perception and Relative Spectral Transform - Perceptual Linear

Perception [30]. All these features were shown to be robust to static noise [29]. Pathak

et al. [16] simply trained an Support Vector Machine extracting MFCC from a small

dataset with audios from stressing situations like police emergencies or after traumatic

event such COVID-19 pandemic, acid attack survivors speech, other judicial victims of

various cases. They obtained a good 83.4% accuracy using just 100 samples indicating

speech as a viable indicator for detecting stressing scenarios. Simantiraki et al. [31]

proposed a new set of features to detect stress based on the spectral tilt of the glottal

source and of the speech signal itself. They used the three most probable Probability

Density Function (PDF) of the spectral slopes from the glottal source and from the

speech signal, obtained on a word level.

2.1.2 Fatigue and sleepiness

Sleepiness is an important state which affects safety, performance and comfort [32].

Sleepiness levels can be simply monitored thanks to the variations in signal band-

width, since perceived timbre, dullness and muffling effects in speech change according

to the sleepiness level, resulting in different perceptual bandwidths for non sleepy and

sleepy audio. Greeley et al. [33] in a preliminary study confirmed the existence of a

dependence between formant frequencies and fatigue. They used the Mel frequency

cepstrum coefficients, together with their first and second derivatives, to obtain the

formants frequencies. MFCCs are coefficients obtained dividing the audio sample in

windows, in which a Discrete Fourier Transform is applied to acquire a periodogram.

Then, a Mel filter is used to transform from Hz scale to Mel scale and finally, the
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MFCCS are extracted from the spectrogram applying a Discrete Time Cosine trans-

form. This final step is made to uncorrelate the Mel filter values. They found that

certain formant frequencies are more related to sleep latency tests results, the gold

standard for sleepiness testing, which calculates the time necessary for a subject to

fall asleep [34]. Hence, it is useful to analyze the MFCCs of different phonemes and

determine the phonemes that show good variations in the spectral domain, this means

that these phonemes are a more accurate fatigue indicator. It’s possible to observe that

the correlation between Trial 1 (12 hrs awake) and Trial 10 (39 hrs awake) is higher

(0.82) when compared to the correlation between Trial 1 and Trial 21 (78 hrs awake)

(0.19). This is an indication that the MFCC components change as the subject gets in-

creasingly fatigued [35], suggesting that speech can also be used for fatigue assessment.

Gunsel et al. [36] used cepstral features obtained from a Short Time Fourier Trans-

form to train a Support Vector Machine classifier that distinguishes between sleepy

and well-rested subjects.

2.1.3 Loneliness

Recently, there has been a rise in suicide rates and opioid use, lost of productivity,

health care costs and mortality in the United States due to loneliness. Lonely individ-

uals show an increased risk of cognitive decline and development of dementia, which

negatively impacts the economy [37] [38]. Additionally, the Covid-19 pandemic and the

resulting lockdowns have increased the amount of time people have spent in solitude,

worsening this situation [39]. For example, this year, the 85% of residents living in

an independent senior housing community in San Diego reported moderate to severe

levels of loneliness [40]. Language processing techniques and machine learning models

can predict loneliness. In Badal et. al project [41], natural language processing (NLU)

is used to perform an unbiased quantitative assessment of expressed emotion and sen-

timent, that has been compared with the UCLA Loneliness Scale, that is the most

commonly used measure of loneliness [42]. Their study [41] focused on 80 independent

senior living residents aged between 66 and 94 years, with a mean age of 83 years. Nat-

ural language patterns and machine learning were used to systematically examine long

interviews from many individuals and explore how some speech features can help to
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detect emotions like sadness that consequently may indicate loneliness. One advantage

of using an Artificial Intelligence (AI) is that it is not open to bias and lack consistency

as humans naturally are. The tool developed is powerful because it does not use only

a dictionary-based approach – for example searching for specific words that reflect fear

– but it looks at specific patterns across the words used in the responses. They made

audio interviews with questions created with the purpose to assess loneliness, then all

the material was transcripted in order to permit an examination with natural language

processing tools such as IBM’s Watson Natural Language Understanding (WNLU) soft-

ware, that quantifies sentiment and expressed emotions [43]. WNLU uses deep learning

to extract metadata from keywords, categories, sentiment, emotion and syntax. Senti-

ment (positive and negative) is represented as a number (continuous range between -

1.0 and 1.0), indicating if the speaker is in disagreement or agreement with the current

context of the conversation, for example a question from the interviewer. Emotion is

instead represented by a five-tuple of sentiments (sadness, joy, fear, disgust, anger)

with values ranging from 0.0 to 1.0 in proportion with the predicted strength of each

emotion [44]. They mapped the distribution of emotions expressed in the responses to

their questions. The respondents who acknowledged feeling lonely were more likely to

express sadness in their responses. Expression of sentiment and other emotions (dis-

gust, anger, joy, fear) did not differ between lonely versus non-lonely groups, as it is

visible in fig 2.1.

The algorithm could predict loneliness with 94% precision when compared against

Figure 2.1: Emotional composition of response to Question 1 (“Do you ever feel lonely and if so,
how often?”) by (A) Qualitative loneliness. Dashed lines in the middle of distribution indicate median
(second quartile) and dotted lines indicates first and third quartiles in the distribution [41].
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the ’quantitative model, the UCLA Loneliness Scale compiled by the participants that

is considered perfectly accurate.

2.1.4 Parkinson Disease

In Gomez-Vilda et al. work [45], it is described how the articulation dynamics in speech

is correlated with the kinematic behavior of the jaw-tongue biomechanical system, en-

coded as a probability distribution of an absolute joint velocity. This distribution may

be used in detecting and grading speech from patients affected by neurodegenerative

illnesses, such as Parkinson Disease (PD). The correlation exists because vowel posi-

tions are related to formant descriptors, that are acoustic properties, and so, through

formant kinematics, it is possible to estimate articulation dynamics (Carmona et al.

[46]). Phonation is controlled by laryngeal nerves (vagus), whereas articulation de-

pends mainly on jaw, lingual and facial nerves. PD tremors depend on neuromotor

pathways and so they can affect phonation and articulation. Specifically, the Authors

calculated from the first and second MFCC formant the absolute kinematic velocity

(AKV), whose probability density function is a good marker to establish differentiation

between stable and unstable articulation induced by PD. A dataset of sustained vowels

recorded from Parkinson Disease patients was compared with similar recordings from

normal subjects. The AKV probability density of the jaw-tongue system was extracted

from each utterance. A Random Least Squares Feed-Forward Network (RLSFN) was

used as a binary classifier in a leave-one-out strategy. As result, they obtained an error

rates under 0.6% (Accuracy over 99.4%) [45].

2.1.5 Dementia

Speech parameters can also help to detect more specific conditions connected with

aging, like dementia. In this case, it is useful to assess Mild Cognitive Impairment

(MCI), a condition that often precedes dementia. MCI is a condition characterized by

cognitive impairments that are visible on clinical exams or formal cognitive testing,

but that are not yet producing a clinically significant impairment in daily functioning

[47]. Additionally, due to the fact that Alzheimer’s disease (AD) is part of a diffuse
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cognitive disorganization and language impairment, MCI is one of the first symptoms

that are developed in this condition. Caielli [48] has shown that voice breaks, speech

rate, phonation, syllables duration and pauses duration are valid predictors for dis-

criminating people with a slightly compromised cognitive function from seniors with

an preserved cognitive function. Therefore, speech can be considered an important

source of information to detect, assess and diagnose early dementia. In fact, dementia

affects speech at the linguistic level (what is said) and paralinguistic level (how it is

said). In more detail, temporal parameters of speech, such as longer hesitation time

and lower speech rates, are indicator of the first phase of dementia [49]. People with AD

tend to decrease speech fluency, by increasing the number and decreasing the length

of voice segments [50] as well as by increasing the number of word finding pauses and

the percentage of voiceless segments [51]. Another interesting way to detect dementia

is using the cough reflex sensitivity. This parameter is estimated as the number of

induced coughs after inhalation of a solution of physiological saline with increasing

concentration of citric acid. The acid elicits the cough reflex and the sensitivity is

estimated by the lowest concentration of citric acid that is able to arouse two or more

coughs and the lowest concentration of citric acid that is able to arouse five or more

coughs [52]. Cough reflex sensitivity and urge-to-cough deterioration can be used as

indicators of dementia with Lewy bodies development [25]. This is possible because

cough is controlled via the nucleus of the solitary tract in the brainstem and through

the cerebral cortex. Urge-to-cough (UTC) is the sensation that initiates and inhibits

the reflexive cough and is controlled by cerebral cortex as well. So, the occurrence of

a cerebrovascular disease could impede the control of the modified pathway from the

upper cough centre to the cough reflex arch, resulting in an elevated threshold for the

cough reflex evoked by citric acid inhalation. For this reason, cough reflex sensitivity

and Urge To Cough (UTC) are negatively correlated with cognitive function.

2.2 Respiratory System

An overview about the respiratory system structure and about how speech and cough

are generated from it is needed. The respiratory system is composed by many different
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parts that work together to permit breathing. The airways goal is to deliver air to the

lungs. The airways are a made of different parts, which are shown in figure 2.2. They

start with mouth and nose, that are openings from which the air is pulled from outside

into the respiratory system. The sinuses are the hollow areas between the bones in

the head that help regulate the temperature and humidity of the air inhaled. The

pharynx, or throat is the tube that delivers air from mouth and nose to the trachea

(windpipe), which is the structure that connects throat and lungs. Then, the bronchial

tubes from the trachea divide the air flux into the two lungs. The lungs are the two

organs that remove oxygen from the air and pass it into the blood. Then, the carbon

dioxide is taken from the blood and passed into the air. This exchange of oxygen and

carbon dioxide takes place in the alveoli, tiny air sacs in the lungs. From the lungs, the

bloodstream delivers oxygen to all the organs and other tissues and the air breathed

out expels carbon dioxide, water vapor and other waste gases [53]. Muscles and bones

Figure 2.2: Respiratory System [54].
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help move the air inhaled into and out of the lungs. The most important muscle in the

respiratory system is the diaphragm, that pulls the air in and out. During inhalation,

the diaphragm and the ribs muscles contract enlarging the thoracical cavity respectively

in vertical and in horizontal dimension. The enlarged cavity creates a pressure fall and

the air flows through the airways until the lungs. During exhalation the diaphragm

and intercostal muscles relax. Then, the chest and abdomen thanks to their anatomical

elasticity return to a resting position and the air flows out.

Disorders of the respiratory system can be classified into several groups:

• Airway obstructive conditions: emphysema, bronchitis, asthma...

• Pulmonary restrictive conditions: fibrosis, sarcoidosis, alveolar damage, pleural

effusion...

• Vascular diseases: pulmonary edema, pulmonary embolism, pulmonary hyper-

tension...

• Infectious, environmental and other ”diseases”: pneumonia, tuberculosis, as-

bestosis, particulate pollutants...

• Severe acute respiratory syndromes, such as COVID-19 [55].

Other functions carried out by the respiratory system, other than breathing, are pro-

tection, with chemical and mechanical defenses, and speaking. To protect the body

from external elements present in the air, there is a chemical response. The respira-

tory epithelium can secrete a variety of molecules that help defend the lungs. These

include secretory immunoglobulins, collectins, defensins and other peptides and pro-

teases. These secretions can act directly as antimicrobials to help keep the airway free

of infections. Chemokines and cytokines are also secreted to recruit the traditional

immune cells to the site of infections.

There is also a mechanical response to defend the body from external elements, cough

reflex and sneezing are induced by the irritation of nerve endings in the nasal passages

or in the airways. These responses cause air to be expelled forcefully from the trachea

or the nose, respectively. In this manner, irritants caught in the mucus are expelled

from the respiratory tract or moved to the mouth where they can be swallowed [56].
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Speaking and phonation are allowed by the movement of air through the larynx, phar-

ynx and mouth. In particular, the vibration of air flowing across the larynx, where vocal

cords are located, results in sound. Hence, the respiratory system, in particular the

vocal tract, is at the basis of speech communication. The mechanism behind speech

and the cough reflex are explained in detail in the following subsections, subsection

2.2.1 and subsection 2.2.2.

2.2.1 Vocalization

Figure 2.3: Vocal Tract [57].

The human vocal tract system starts from the vocal cords, or glottis, and ends at

the lips. A general representation of the vocal tract is shown in figure 2.3. The nasal

tract is the region between nostrils, nose holes and velum, which is near nasal pharynx.

The vocal tract acts as a resonator and as a filter for the sounds produced by the

vocal folds. Speech production starts with the entrance of air into the lungs, which
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is known as normal breathing. At this step, sounds or speech are not produced yet.

The vocal cords are then tensed and, While the air inside the lungs is expelled, the

vocal cords vibrate due to the air pressure in the glottis. The glottis converts the air

into quasi-periodic pulses by opening and closing. The quasi-periodic pulses are then

frequency-shaped while passing through the pharynx, mouth cavity and nasal cavity.

Finally, the sound is determined by the positions of the jaw, tongue, velum, lips and

mouth [58]. More in detail, the sound is created thanks to muscles that can change the

size and the shape of the vocal tract. Every time the size and shape change anywhere

along the vocal tract, the change has an effect on the original sound which is filtered

or amplified. A speech sentence usually is made of a part that carries information and

a silent or noisy part, which does not contain verbal information. The verbal part can

be divided into voiced and unvoiced speech. The first consists mainly of vowel sounds

produced by the closing and the opening of the vocal cords adjusting the tension and

modifying the air passing from the glottis. The latter is instead generated by forcing

the air through a constriction in the vocal tract to produce turbulence. The ability to

discriminate these three parts is fundamental in speech signal analysis [48].

2.2.2 Cough Reflex

As mentioned in section 2.2 cough is a normal reflex action of the body to clear the

throat and the respiratory tract from foreign substances or irritants. During coughing,

contraction of the smooth muscles in the airway walls narrows the trachea. This in-

creases the expired airflow rate so that any irritant particle or mucus is removed. Cough

may affect the subject life during all day, with an annoying and potentially painful ef-

fect. Moreover, it is one of the most frequent symptoms for many pathologies. Chronic

cough, which is defined as the cough that persists for more than six weeks, is usually a

symptom of chronic bronchitis, asthma, allergy, chronic obstructive pulmonary disease

(COPD), gastroesophageal disease (GERD). Acute cough, lasting from few days or to

two-three weeks, instead, may be caused by cold or upper respiratory tract infections

like flu or pneumonia [59]. Counting the number of cough events over time, can be a

valid index of the respiratory tract condition. A reliable evaluation of cough is there-

fore needed so that the severity of cough in a particular patient and the effectiveness
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of treatment can be assessed. This cough severity test has so far relied mainly on sub-

jective measures, such as cough reflex sensitivity, explained in subsection 2.1.5, and on

the patient’s perception of the symptoms, assessed by cough analogue scores, quality

of life questionnaires, cough symptom scores and patient’s diaries. Cough can be used

as an index to detect dementia but also to assess the general health of the respiratory

tract.

The cough reflex starts from an irritation of the afferent cough receptors in the air-

ways. Efferent nerve impulses stimulate the diaphragm, the intercostal muscles and

the larynx to produce the forceful explosive expiration of cough. Once triggered, the

cough reflex consists of four phases [60]:

1. Inspiratory phase, which consists in an initial deep inspiration and glottal closure.

2. Compressive phase, consisting in a contraction of the expiratory muscles against

the closed glottis.

3. Expulsive phase, in which there is a sudden glottis opening with an explosive

expiration and fast expiratory airflows.

4. Wheezing phase, in which a wheeze or “voiced” sound is emitted.

Previous studies show that the glottis closure and expulsive phase can be repeated

several times without any inspiration [11].

2.2.3 Cough duration and frequency

The average duration of a cough is approximately between 300 ms and 650 ms. Ob-

structed airflow can produce noises with frequencies up to 20 kHz but cough char-

acteristic and most energetic sounds are associated with frequencies below 10 kHz.

Therefore, a way to extract the main characteristics of cough sounds consists in down-

sampling the signals to 22.05 kHz after applying an anti-aliasing filter. Its spectrum

exhibits a high-energy peak around 400 Hz and a secondary peak between 1000 and

1500 Hz as shown in figure2.4, in the left spectrogram the first peak is highlighted in

the white box 1 and the second peak in the box 2 [3].
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Figure 2.4: Cough Spectrograms, adapted from Larson et al. [11]. On the left, an example of cough
spectrogram is shown. At the right, an example of spectrogram of cough and non-cough audio sounds
is shown.

2.3 General Cough Detection

The most common technique for estimating cough frequency is to have patients self-

reports using numeric scoring (0-5) or Visual Analog Scoring (VAS), where the subject

is asked to mark on a 100 mm scale between ‘no cough’ and ‘the worst cough sever-

ity’ [61]. However, numerous studies have shown self-report to be highly inaccurate.

The number of cough events a patient self-reports has been shown to be significantly

influenced by other factors such as patient’s mood, vigilance, and expectations so that

his/her perception of the cough severity is not objective [62]. Cough diaries comprise

questions relating to cough frequency but they correlate poorly with objectively mea-

sured cough frequency [63]. Moreover, patients cannot accurately track trends in their

cough frequency from hour to hour, or when they are asleep. For these reasons, more

objective methods have been developed for counting cough events. Many of them re-

quire expensive and bulky equipment, like the chest wall device developed by Kraman

et Al. [64], or require paid annotators to listen to recordings and manually annotate

cough sounds [62]. Starting from the 1950s, researchers developed methods for mea-

suring thoracic pressure changes (airflow from the mouth) in order to obtain unbiased

measures of cough frequency [65]. Semi autonomous methods exist: an example is

the “Overnight Cough Monitoring System”, which consists in attaching an air-coupled

microphone to the chest wall or over the trachea when the participant is sleeping [66].
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Kraman et al. [64] created an accelerometer-based system placed on the participant’s

chest wall, but required someone to manually count coughs based on the visualization

of the acquired data. VitaloJAK [67] is a commercial product that uses a piezoelectric

sensor attached to the chest wall to detect cough events. The reported true positive

rate was 91.3-99.5% after an initial calibration. The VivoMetrics Lifeshirt [68] is an-

other commercial product that incorporates various physiological sensors to monitor

breathing rate, heart rate, activity, posture, and skin temperature. It can be used to

detect coughs adding an extra throat microphone to the existing sensors system. They

reported true positive rate equal to 78.2% and false positive rate of 0.4%. Each of these

methods have the same problems: users must wear specialized equipment and sensors

on the chest wall or around their body that increase cost, make the system uncom-

fortable and limit the use of the system in ambulatory settings. Audio based systems,

are instead easy to deploy in an ambulatory setting and can be made extremely low

cost. These systems have become more accurate and less expensive over recent years.

Barry et al. created a system called the Hull Automated Cough Counter (HACC) [69],

using a microphone and a wearable recording device. Using as predictors mel-frequency

cepstral coefficients (MFCCs) and linear predictive cepstral coefficients (LPCC). The

LPCCs are obtained from a simple recursion of the LPCs, that are spectral envelopes

of a digital signal of speech in compressed form, using the information of a linear pre-

dictive model. However, they recorded audio signals in an outpatient clinic for only

one hour per person, which is a relatively controlled and noise-reduced environment.

Similarly, Matos et al. created a system called the Leicester Cough Monitor (LCM)

[15], which uses a microphone with a portable audio recorder. They used MFCCs (with

derivatives) as features to a Hidden-Markov Model (HMM). Moreover, audio based sys-

tem can be easy implemented in smartphones making possible monitoring the users

every time and everywhere with very low costs.

2.4 Acoustic features

As seen in the previous Section 2.3, audio based systems use engineered methods and

algorithms to extract speech and sounds features. This step permits to represent infor-
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mation in a more effective and lower dimensional way with respect to the simple raw

audio, facilitating the subsequent learning and generalization steps. Feature extraction

is a method of constructing combinations of the variables to solve the problem of having

a large datasets, the need of a high computation power and to avoid overfitting, while

still describing the data with sufficient accuracy. Overfitting occurs when the classifier

fits the training data too precisely and loses his generalization capacity. In the task of

automatic detection of cough events, many features have been used in literature. One

of the simplest and most used features is Short Time Fourier Transform (STFT). STFT

is a Fourier transform used to extract the sinusoidal frequency and phase from local

section of a signal changing over time [70]. In practice, the procedure for computing

STFTs is to divide a longer time signal into shorter segments of equal length, which

can be overlapped, and then compute the Fourier transform separately on each shorter

segment, revealing the Fourier spectrum on each one. The plots of the changing spec-

tra as a function of time is called spectrogram. Starting from STFTs it is possible to

obtain the Mel spectrogram if a transformation from Hertz to Mel is made and a Mel

filter Banks is applied subsequently, which is usually a set of 20-40 triangular filters.

A deeper explanation of this feature can be found in subsection 3.2.1. Other features

that can be obtained following these steps are the Mel Frequency Cepstral Coefficients

(MFCCs), as already explained in subsection 2.1.2. Starting from the Mel spectrogram

a Discrete Time Cosine Transform is applied in order to obtain the coefficients that,

thanks to this transformation, became uncorrelated. MFCCs are a representation of

the short-term power spectrum of a sound, based on the linear cosine transform of

the log power spectrum on the Mel frequency scale. They are composed by twelve

coefficients plus the frame’s logarithmic energy. Usually, first and second derivatives

of the coefficients are calculated as well and used as features. In the Liftered-MFCC a

liftering on the raw MFCC weights is made using the following formula:

wi = 1 +
M

2
sin
( πi
M

)
(2.1)

Gammatone Frequency Cepstral Coefficient (GFCCs) are very similar to MFCCs, dif-

fering only in the type of filter banks applied: instead of Mel filter Gammatone, filter
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banks are used. A gammatone filter is a linear filter described by an impulse response

that is the product of a gamma distribution and sinusoidal tone (pure sound). The

gammatone impulse response is visible in fig. 2.5. The main idea of the GFCCs is based

Figure 2.5: Gammatone Filter Response. Author Roger Wilco

on an auditory periphery model that imitates the human cochlear filtering mechanism.

The auditory model is represented by a bank of Gammatone filters that decompose the

input speech into a Time-Frequency representation.

Local Hu Moments are very advanced and engineered features that were initially used

for Visual Pattern Recognition in images[71]. They are particular weighted averages

of the image or audio intensities. Hu moments are derived from central moments and

they are invariant with respect to translation, scale, and rotation.

These features have been applied in many works of which some significant examples

are shown here. Barata et al. [3] implemented a new method using Mel Spectrogram.

Monge et al. [8] used Local Hu Moments in their studies. Pramono et al. [7] preferred

to use LPCC, Linear predictive coding coefficient, which is a time domain feature that

can be used to predict the next signal value from the previous samples, described in

section 2.3, with sensitivity 86,6% and specificity 99,42%. They used also Tonality In-

dex, that is the arrangement of pitches and it’s useful to distinguish speech from cough,

and Spectral Flatness, which is a measure of how noise-like a sound is, obtaining a sen-

sitivity of the 86,8% and a specificity of the 99,42%. Miranda et al. [2] used STFT, Mel

scale filter banks and MFCC and L-MFCC. The Mel filter banks is calculated applying

40 triangular filters on a Mel-scale to the power spectrum to extract frequency bands.
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STFT and MFB features provided the best cough detection accuracies. MFCC first

and second derivatives did not prove to enhance performance and could be omitted,

thereby reducing feature dimensionality. MFCC were used by Miranda et al. [2] and

Di Perna et al. [4], as well. Other possible features, used for example by Pramono

[1], are Zero-crossing rate that represents the frequency of sign-changes in a signal,

the Crest Factor, which is the ratio of the value of a peak in a waveform relative to

its root mean square (RMS) value and the Energy Level, which, in an audio frame, is

calculated as the RMS of the frame. Since cough is an explosive sound, it has bursts

of energy increase in short time for this reason Spectral Roll-Off (SRO) is useful in dis-

tinguishing sounds with different energy distributions. Spectral Skewness, which is a

measure of the asymmetry in the power spectrum of a signal on its mean and it is useful

in understanding if the power distribution in PSD estimate will have more density in

lower or higher frequency. It is computed as the third moment divided by the cube of

the standard deviation. Spectral Kurtosis Coefficient is a measure of the peak of the

power spectrum and describes the shape of the probability distribution of the energy in

the power spectrum of a signal. It is computed by using the fourth moment. Spectral

centroid represents the equivalent of the center of mass in a spectrum and is computed

as a weighted mean of the spectrum. Swarnkar et al. [5] used other spectral features

such as formant frequencies, Kurtosis, and B–score together with MFCC features for

cough detection.

2.5 Classification algorithms of cough events based

on acoustic features

As already mentioned, cough detection has been under research and development since

the 1950s [72]. Fig. 2.6 gives an overview of the state of art in automated cough

detection algorithms [3].

In machine learning, classification is the process of categorizing a given set of data

into classes. The goal is predicting the class of future given data points. The classes

are often referred to as targets, labels or categories. In order to perform classification

many methods have been used, which can be subdivided into two main categories: the
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Figure 2.6: Classification Algorithms [3].
HACC: Hull Automatic Cough Counter PNN: Probabilistic Neural Network

LCM: Leicester Cough Monitor HMM: Hidden Markov Model
ANN: Artifical Neural Network RF: Random Forest

GMM: Gaussian Mixture Model RBF: Radial Basis Function
TDNN: Temporal difference Neural Network CNN: Convolutional Neural Network

RNN: Recurrent Neural Network KNN: K Nearest Neighbour

classical classification methods and the more modern deep learning ones, that exploits

neural networks. Most of the approaches developed are based on feature extraction.

In conventional machine learning, features are typically selected and manipulated with

the goal of reducing the data size to make the classification or solve the specific issue.

Then, the features are used as input for the algorithm to train and make possible the

learning of a pattern represented in the data, such as coughs. Some advantages of this

approach are that a smaller data representation requires less memory, less computation

power and lastly reduces the risk of over fitting the model on the training data, which

consists in scarce generalization with new samples. This comes with the risk of losing

valuable information and limiting the representation power of the learning algorithm.

By contrast, deep learning, shifts the complexity of handcrafted feature engineering to-

wards model optimization. Deep learning permits to use better computation power and

data complexity [73]. For this reason, these architectures have increased their impor-

tance in various domains, such as speech recognition [74] and image classification [75].

Usually, they are based on artificial neural networks with multiple layers of nonlinear

functions and information processing [76]. The difficulty in using deep learning is that

deeper networks need the collecting of larger amounts of data from real subjects. The
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main classification methods will be briefly explained in the following section, while a

focus on the ones that have been adopted in this work will be given in the chapter 3.

2.5.1 Classical Algorithms

With the name of classical algorithms are considered the machine learning methods

used before the arrival of deep neural networks. Some of the most used are Support

Vector Machine, Logistic Regression, K-Nearest Neighbours, Decision trees, specially

expanded with Random Forest or Bagging techniques. Among these methods, Princi-

pal Component Analysis (PCA) is often used, that is the computation of the principal

components of the data, which is the direction that best fits the data while being

orthogonal with the previous components and that explain the most variance in the

data. PCA is used in exploratory data analysis and for making predictive models. It is

commonly used for dimensionality reduction by projecting each data point only onto

the first few principal components to obtain lower-dimensional data while preserving

as much of the data’s variation as possible [77].

Support Vector Machine (SVM) algorithm has the objective to find a hyperplane in

an N-dimensional space (N, the number of features) that distinctly classifies the data

points [78]. If the number of input features is 2, then the hyperplane is just a line. If the

number of input features is 3, then the hyperplane becomes a two-dimensional plane.

The objective of SVM is to find a plane that has the maximum margin, i.e the maxi-

mum distance, between data points of both classes. Maximizing the margin distance

provides some reinforcement so that future data points can be classified with more con-

fidence. Hyperplanes are decision boundaries that help classify the data points. Data

points falling on either side of the hyperplane will be attributed to different classes.

Support vectors are the data points that are closer to the hyperplane and influence the

position and orientation of the hyperplane. Using these support vectors, the margin of

the classifier is maximized. The support vectors are the only points actually used to

build the SVM’s hyperplane. The loss function that helps maximizing the margin is

hinge loss. The loss is 0 if the predicted value and the actual value are of the same sign.

If they are not, the loss value is computed. It also adds a regularization parameter

to the cost function. The objective of the regularization parameter is to balance the
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margin maximization and loss. In SVMs the margin distance has to be maximized

and the regularization part has to be minimized. In the regularization part a penalty

cost is given for every Support vector inside the margins or misclassified [79]. Support

Vector Machines algorithm has been used by Di Perna, Spina et al. [4] to detect cough

in chronic obstructive pulmonary patients. In their work they detected cough (with

value of Area Under ROC curve of 0.916) and COPD cough (with best value of 0.950

AUC), trying different implementations of the SVM algorithm. Liu et al. [9] used

Gammatone Cepstral Coefficient features with SVM classification of 903 coughs from

4 subjects resulting in sensitivity and specificity of 91% and 95% respectively. Tracey

et al. [6] developed an algorithm for cough detection to monitor patients’ recovery from

tuberculosis. They extracted MFCCs from the audio signals of 10 test subjects. These

were used to detect coughs with a combination of artificial neural network (ANN) and

support vector machine (SVM) classifiers achieving an overall sensitivity of 81%.

Logistic regression algorithm uses a linear equation with independent predictors to

predict a value. It is an adaptation of the linear regression for classification[80]. Sim-

ple linear regression is a type of regression analysis where the number of independent

variables is one and there is a linear relationship between the independent (x) and de-

pendent (y) variable. Based on the given data points, it creates a line that best models

the points. The line can be modelled based on the linear equation: y = a0 +a1 ∗x. The

predicted value can be anywhere between negative infinity to positive infinity, hence,

it is not optimal for classification. The outcome improves if the variable used is a class

variable, 0-no, 1-yes. Therefore, a sigmoid function is used to compress the predicted

value between 0 and 1. Pramono et al. [1] used a Logistic regression classifier to make

cough detection, cough classification and whooping sound detection. The output pro-

vides a pertussis likelihood diagnosis. The performance of the proposed algorithm is

evaluated using audio recordings from 38 patients. It can automatically detect indi-

vidual cough sounds with 92% accuracy.

K-nearest neighbors is a non-parametric method used for classification and regression.

The basic logic behind KNN is to explore its neighborhood, assume the test datapoint

to be similar to training ones and derive the output. In order to make the prediction, k

neighbors are used. In case of KNN classification, a majority voting is applied over the
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k nearest datapoints whereas, in KNN regression, the mean of k nearest datapoints is

calculated as the output. So, it’s better to select odd numbers as k so that the voting

can’t produce an even result. KNN is a lazy learning model where the computations

happens only runtime. There is no training involved in KNN. During testing, the

k neighbors with minimum distance will take part in classification/regression. KNN

represents an easy and simple machine learning model with few hyperparameters to

tune. Some disadvantages are that the number of neighbors should be selected pre-

viously and, if the sample size is large, the computational cost during runtime could

be high[81]. The distance function could be Euclidean distance,Manhattan distance,

Hamming Distance, Minkowski distance. K-nearest neighbors has been used many

times, for example by C.Barcelò and J. Monge-Alvarez [8] using Hu Moments as fea-

ture. In order to tune the algorithm, they used three types of Metric trees to permit

binary classification and speed up the process. Moreover, they used three distance

functions: Euclidean, Manhattan and Euclidean2 (squared) resulting in same accuracy

for the two Euclidean methods (96.1%). They also observed that normalization had

a positive impact on the accuracy of the classifier. They obtained an accuracy that

goes from 90% at -15dB noise to signal ratio until 98% for 0 dB SNR. Lucio et al. [10]

extracted 79 MFCC and Fast Fourier Transform (FFT) coefficients and used k-Nearest

Neighbor (KNN) for classification. From a dataset acquired from 50 individuals, their

algorithm achieved sensitivity of 87% in classifying 411 cough sounds with specificity

of 84%.

Decision tree is a tree based algorithm used to solve regression and classification prob-

lems. The tree is inverted so it starts from a homogeneous root node and goes to highly

heterogeneous leaf nodes that are the output. Regression trees are used for dependent

variable with continuous values and classification trees are used for dependent variable

with discrete values. Decision tree is derived from the independent variables, with each

node having a condition over a feature. The nodes generator decides which node to

navigate next based on the condition. Once the leaf node is reached, an output is

predicted. The right sequence of conditions makes the tree efficient [82]. Entropy/In-

formation gain are used as the criteria to select the conditions in nodes. A recursive,

greedy based algorithm is used to derive the tree structure. A random forest consists
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of multiple random decision trees. Two types of randomnesses are built into the trees.

First, each tree is built on a random sample from the original data. Second, at each

tree node, a subset of features are randomly selected to generate the best split. Each

individual tree in the random forest spits out a class prediction and the class with the

most votes becomes the model’s prediction. The fundamental concept behind random

forest is the wisdom of crowds. So that, a large number of relatively uncorrelated mod-

els (trees) operating as a committee will outperform any of the individual constituent

models. The low correlation between models is the key [83]. The training algorithm

for random forests applies the general technique of bootstrap aggregating, or bagging,

to tree learners. The bagging repeatedly selects a random sample from the original

training set, to create new training sets and uses those to fit the trees. This means

that it is possible for an already chosen observation to be chosen again [84]. Trees

are often used for cough detection sometimes inside other algorithms, [8] sometimes

to directly classify. Larson, Lee et al. [11] after event extraction, trained a random

forest classifier [12] on the feature set of the training fold. All features are obtained as

eigenvalues from a PCA application and they are all used to train the classifier. The

maximum number of trees was set to 500, since usually over fitting is not a problem.

RF classifier has empirically been shown to work as well as support vector machines

and neural networks, but it is less sensitive to parameter variation [12]. After a 5 cross-

validation they obtained sensitivity equal to 92%. Di Perna et al. [4] obtained the best

performance with XGBoost, an ensemble method based on decision trees. The classi-

fier achieved an accuracy of 91,6%. XGBoost is Gradient Boosting and weak learner,

meaning that it uses simple trees but applied many times with a gradient function.

2.5.2 Deep Learning Algorithms

Deep learning algorithms differ from classical methods since they are based on artifi-

cial neural networks (ANN) and use multiple layers to progressively extract higher-level

features from the raw input. In deep learning, each level learns to transform its input

data into a slightly more abstract and composite representation. They use the neural

network to find associations between a set of inputs and outputs. The basic structure of

a neural network is shown in fig.2.7. ANNs are composed of input, hidden, and output
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Figure 2.7: Neural Network basic structure .

layers — all of which are composed of “nodes”. Input layers take in a numerical repre-

sentation of data (e.g. images), output layers output predictions, while hidden layers

are correlated with most of the computation [85]. More in detail, neural networks can

be used with different configurations and implementations.

Convolutional Neural Networks (CNN) were inspired by biological processes as the

connectivity pattern between neurons resembles the organization of the animal visual

cortex [86]. The hidden layers of a CNN typically consist of a series of convolutional

layers that convolve with a multiplication. The convolution depends on the activation

map of the layer that looks for a particular characteristic of the data (e.g. countours

of an image). The activation function is commonly a ReLU layer, which returns 0 if

it receives a negative input, while if it receives a positive value, it returns that same

value back. It’s followed by a max pooling operation, which consists in selecting the

maximum element from the region of the feature map covered by the filter. Hence, the

output after max-pooling layer would be a feature map containing the most prominent

features of the previous feature map, reducing the feature map dimension. Then, the

final convolution gives out the outputs [87].

A deconvolutional neural network (DNN) is a neural network that performs an inverse

convolution model. The work of a deconvolutional neural network could be described

as constructing layers from an image in an upward direction or as “reverse engineering”

the input parameters of a convolutional neural network model.

Long Short Term Memory networks (LSTMs) are a type of Recurrent Neural Networks

(RNNs), capable of learning long-term dependencies. They were introduced by Hochre-

iter & Schmidhuber (1997) [88]. LSTMs are explicitly designed to avoid the long-term

dependency problem, that instead affects simple RNNs. The input vector is splitted
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into time sequences and then looped through the sequences to train the network. Since

it is the same set of neurons that are trained in every time instance, it is necessary a

“state information” across time.

A probabilistic neural network (PNN) [14] is a feedforward neural network, which is

widely used in classification and pattern recognition problems. In the PNN algorithm,

the parent probability distribution function (PDF) of each class is approximated. Then,

using PDF of each class, the class probability of a new input data is estimated and

Bayes’ rule is then employed to allocate the class with the highest posterior PDF to new

input data. It was introduced by D.F. Specht in 1966 [89]. In a PNN, the operations are

organized into a multilayered feedforward network with four layers: Input layer, Pattern

layer, Summation layer and Output layer. A Markov stochastic process in system states

is a random process in which the probability of transition to a system state depends only

on the state of the immediately preceding system (Markov property) and not on how it

came to that state [90]. A Hidden Markov Model (HMM) is a Markov chain in which

states are not directly observable. More precisely: the chain has a number of states

that evolve according to a Markov chain, each one generating an event with a certain

probability distribution that depends only on the state. The event is observable but

the state is not. Hidden Markov models are particularly known for their applications

in recognizing the temporal pattern of spoken speech, handwriting, texture recogni-

tion, and bioinformatics (eg HMMer). These methods are generally used in machine

learning and for automatic cough segmentation as well. Martinek et al. [91] extracted

several time, frequency and entropy features and used a decision tree to discriminate

between voluntary cough sounds and speech. They used data from 20 subjects, col-

lecting 46 coughs from each subject, and reported median sensitivity and specificity

values of 100% and 95% respectively. However, their method is subject–dependent

since the subjects are required to cough at the beginning of each recording in order to

obtain individual cough signal patterns. Barry et al. [69] used linear predictive coding

coefficients (LPCC) with a probabilistic neural network (PNN) classifier to create an

automatic cough counting tool called Hull Automatic Cough Counter (HACC). This

successfully discriminated between cough and non–cough events from 33 subjects with

a sensitivity of 80% and specificity of 96%. Tracey et al. [6] developed an algorithm for
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cough detection to monitor patient recovery from tuberculosis. They extracted MFCCs

from the audio signals of 10 test subjects. These were used to detect coughs with a

combination of artificial neural network (ANN) and support vector machine (SVM)

classifiers achieving an overall sensitivity of 81%. Pramono et al. [1] proposed a convo-

lutional neural network (CNN) architecture and exploited an ensemble implementation

to further boost the performance in a device agnostic preserving manner. Barata et al.

[3] used Ensemble CNN performing with accuracy of 88,7%. Among the most promi-

nent CNN architectures, there is VGG (Visual Geometry Group) net [92], which was

able to significantly improve image recognition accuracies by pushing the depth to 19

layers and increasing the amount of convolutional layers. Miranda et al. [2] evaluated

their features with DNN, CNN and LSTM classifiers, using the area under the receiver

operating characteristic curve (AUC) as a performance measure. Their classifiers ar-

chitectures were inspired by previous work on small-footprint keyword spotting [93].

The DNN implementation consisted of three hidden layers with 128 ReLu units per

layer. The CNN had one convolutional layer and two 128-unit hidden layers. Two 832-

unit layers were adopted for the LSTM implementation. The output is for all models

a two-class softmax layer. Their experiments indicate that using a single long audio

segment during feature computation provides better performance than the subdivision

into smaller overlapped segments. They obtained a maximum of 95,5% accuracy with

CNN. They used MFCC obtaining accuracy 93,5% using LSTM network. Additionally,

better performance was obtained using frames longer than 25 ms window. Matos et al.

[15] proposed the use of hidden Markov models to automatically detect cough sounds,

using data collected from continuous ambulatory recordings. HMMs is a statistical

method used for characterizing the spectral properties of a signal and has been mainly

used in speech recognition systems because of its ability to represent variability and

time varying nature of signals [94]. The average detection rate was 82% with a false

alarm rate of seven events/h, when considering only events above an energy threshold

relative to each recording’s average energy. These results suggest that HMMs could

be used to the detect cough sounds from ambulatory patients [15]. HMMs represents

well the time varying characteristics of cough sounds. The approach, based on HMMs,

is a key spotting one, so the idea is to detect occurrences of keywords in a continuous
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speech recording [95]. Amrulloh et al. [13] used ANN classification to develop a cough

detector using over 1400 cough sounds from 14 subjects from a non–contact recording

system achieving sensitivity of 93% and 98% specificity.

2.5.3 Algorithms used on Smartphones

This section simply shows some previous studies that detected cough sounds using

the microphones integrated in smartphones, underlying how this can be done and also

which algorithms perform better in these scenario. Pramono et al.[1] chose to use

a logistic regression model to perform the classification of the isolated cough events.

The features extracted from the training set, as explained in previous section, 2.4,

are the 13 MFCCs and other spectral attributes. Some of the extracted sound events

posses a length that are not typical of a cough sound. Only sound events with length

typical of a cough sound are selected to be used in the automatic classification while

others are discarded by setting a threshold for duration. This expedient permits a

reduction in the calculation effort, an important characteristic due to the generally

limited smartphone computation power. [1] In Barata et al. study is well underlined

how using a different smartphone can affect the results even though, in general, the

scalability between devices is possible. They also observed that the quality of the

devices’ recordings is reflected in the results, meaning that the accuracy values on low

quality devices recordings are lower in comparison to the accuracy values of other higher

quality devices [3]. The Khomsay et al. paper presents a cough detection method using

Principal Component Analysis (PCA) and Deep Learning Networks (DLN). PCA is

used to perform feature extraction before sending the data to train a model by DLN.

This step helps data reduction and speeds up the calculation, which is very important

in smartphones. They obtained an accuracy of 94.4% [96]. Other approaches have

focused on computationally efficient solutions providing cough detection algorithms

for the smartphone [8] [11].
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2.6 Privacy Issues in voice recordings

In every audio recording application, and so for cough detection as well, an important

issue is protecting the privacy of the users. The main criticalities are the possible recog-

nition of the speaker from voice characteristics (pitch, formants), the reconstruction of

a private conversation or of personal life activities during the day and the recognition

of a person’s gender, accent, nationality and emotional state[16]. Many past works in

audio privacy tried to hide some cues about the speakers and conversations around

them with the purpose of making not possible for a machine learning algorithm to

reconstruct valuable information from the feature sets. Therefore, Wyatt et al. have

devised audio features that can successfully hide speech intelligibility, while simulta-

neously providing cues for prosody and recognition of conversations [97]. Most of the

related audio privacy works attempt to preserve certain quantities while providing poor

features for modern speech recognizers [98]. Chen et al. [99], on the other hand, used

linear prediction to replace vowels in speech, while keeping environmental noises as

cars and running water intelligible to subjects. Larson et al. [11] attempted to make

the speech unintelligible, while preserving the possibility to reconstruct cough sounds.

They used a different methodology that consists in applying PCA on the audio spec-

trum obtaining that, with 25 components, cough can be well classified and the 84% of

the spoken words can not be recognised with a reconstruction algorithm. Best results

in order to protect privacy of speech were obtained by using less than 15 components,

reaching more than 95% of the words as intelligible. In this work, the approach fol-

lowed to protect the user’s privacy is similar to Wyatt et al.[97] one. In the future

application, the features could be used in real time for the cough detection and then

being deleted. Moreover, the single segment is too small to contain more than one

word, thus ensuring that it is not possible to build a word and moreover a sentence

using the segment that the algorithm is processing. This guarantees the privacy for the

user about his personal conversation and every day life. In this case, the cough event

could be considered as a keyword spotting system, that detects if a specified keyword

has occurred in a recording, thus obtaining a system that can detect only the presence

of the keyword, which is the cough event in this work, without having access to the
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speech recording. This solution enables privacy preserving in applications for extract-

ing statistics about the occurrence of specific keywords in a collection of recordings,

while not learning anything else about the speech data [16].

2.7 Segment and frame length

In order to choose segment and frame length, Miranda et al. [2] made a complete study

using different frame/segment combinations. They performed a grid search in order

to evaluate the chosen features (STFT, MFB, MFCC and L-MFCC) extracted with

different segment and frame duration for each classifier, DNN, CNN and LSTM. They

used as segment lengths values of 160, 320, 480, 640, 800 and 960 ms, while values of 24,

32, 64 and 128 ms for frame lengths. Within each segment, frames were extracted with a

50% overlap. Segments were extracted from the audio event with a 25% overlap until a

maximum length of 1 s was reached, which corresponds to the maximum cough duration

[100]. All features were computed using the logarithm of the squared magnitude of

the spectral coefficients, with a 40-dimensional mel scaling applied for MFB, MFCC

and L-MFCC. For both types of MFCCs, the first 13 cepstral coefficients were used as

features. Although there is no single best configuration of segment and frame duration,

larger values generally exhibit better performance across all considered features and

classifiers. Some configurations with short segments also performed well when using a

LSTM classifier, producing the best outcome for L-MFCC. The success of long frame

lengths is an important observation, as it differs from established practice in automatic

speech recognition systems and also from most previous cough detectors, which almost

always use 25 ms frames. This is consistent with the fact that deep architectures have

the ability to learn from low level features [2]. 640 ms segments and 64 ms frames

perform well across all classifiers and features considered, especially for LSTM with a

0.938 AUC.
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2.8 Aim and structure of the work

This work fits in the general field of automatic sounds and speech analysis. In partic-

ular, it consists in the complex task of identifying respiratory sounds and extracting

meaningful information from them. The aim of this work is to develop a classification

model to assess the status of the respiratory tract through the count of cough events.

The count of the number of cough events is, in fact, a repeatable and easy to measure

metric that can be easily assessed once the classification algorithm works. Moreover,

cough itself is an important symptom of many common diseases and, if frequent, can

strongly affect a person’s life quality. For these reasons, the focus of this work was to

evaluate and compare different classifiers with the aim of detecting cough events inside

audios containing speech and environmental sounds. The algorithms compared in this

work were both classical machine learning methods (Random Forest with Bagging,

Support Vector Machine, K-Nearest Neighbours) and deep machine learning methods

(Neural Network with Long Short-Term Memory). These methods were mostly used in

the literature. The LSMT exploits the new direction of study that uses deep learning

with recurrent networks to perform classification. This work investigate the effect of

using two different datasets to train the classifier. Specifically, it studied the impact

of adding to a dataset with only cough sounds and speech, different noises and sound

similar to the cough sounds that the classifier is trying to detect. Moreover, the im-

portance of features selection was explored as well, along with the significance of every

single feature in giving information able to divide the sample belonging to the “cough”

class from the ones belonging to “no cough ” class. Then, the final goal was to study

the classifiers with their behavior in a complete panorama of possible sounds and to

find the classifier with the best performances. The outcome of this work should be

considered as a starting point for the future development of a smartphone application

that automatically counts cough events during the day or during phone calls, respect-

ing the user’s privacy and without interfering with daily life.

The thesis is structured as follows. The first chapter is the introduction, which gives

and overview of the context in which the work is inserted. It explains the actual situ-

ation of aging of the population and of the issues caused by the Covid-19 pandemic to
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the healthcare system. It illustrates the possible solutions, including assisting the pa-

tients remotely, using information and communications technology (ICT) , especially

smartphones, to make possible to monitor the users at anytime and at a low cost.

Then, the importance of speech in detecting diseases and assessing the quality of life

is introduced. Finally, the importance of cough and its role in general quality of life

and health of the respiratory tract is explained.

In the second chapter the state of art is overviewed. It starts from the great impact

that speech analysis had on the prediction and assessment of various diseases, emotions

and problematic conditions. Then the attention was focused onto cough physiology,

with particular interest on its phases and temporal and spectral characteristics. At

this point, the methods used to count cough events, from mechanical based to audi-

tory based, are listed. In the category of auditory based, the features extracted in

other works aiming to detect cough events from audio recordings are presented. The

same was made after illustrating the various classification methods that can be used

to discern cough from other sounds. Then, some studies that employed smartphones

recordings and not from professional microphones or ambulatory recordings are shown.

Finally, privacy protection techniques and frame-segment settings are described.

The third chapter illustrates the methods used in the work. Firstly, the datasets used

and the audio labelling are explained. Then, data preprocessing, including downsam-

pling and standardization are described. After, in the statistical analysis the features

normality and significance between classes are evaluated. At this point, all the features

extracted are explained in detail, as well as the classifiers analysed. In the last part,

cross validation and the performance metrics are illustrated.

In the fourth chapter, the results are analyzed. In particular comparing the per-

formances between the algorithms in order to assess the best ones. Then, also the

significance between the two dataset is tested, along with the significance between the

classifiers performances when the features are selected or not. All the tables with the

performance metrics and the p-values significance are shown. In the last part, the ROC

curves are shown as well.

The last chapter concerns the conclusions. It explains again the aim of the work at

the light of the most important results achieve. Finally the limits of the work and the
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possible developments are explained.
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Materials and methods

3.1 Audio Dataset

3.1.1 Freesound, ESC500 and Speech Commands Dataset

In order to have a sufficient amount of audio data for the study, many online datasets

were searched and scanned. Among the possible datasets, the Freesound and the Speech

Commands Dataset were chosen to be used in this work. It is important to underline

that both exploit the AudioSet Ontology defined by Google to organize the labels.

The ontology includes many different areas: Music, Animals, Sound of things, Natural

sounds, Channel environment and background, Source-ambiguous sounds and finally,

Human sounds. Inside this last folder respiratory sounds, such as cough, sneeze, sniff

and breathing, are included as well.

Freesound Dataset Kaggle 2018 Freesound Dataset Kaggle 2018 is an audio

dataset containing 11,073 audio files annotated with 41 labels according to the AudioSet

Ontology, as mentioned previously. All audio samples in the dataset were gathered

from Freesound and were uncompressed PCM 16bit, 44.1 kHz, mono audio files, of

different length. ESC50 is a labeled collection of 2000 environmental audio recordings

suitable for bench marking methods of environmental sound classification. The dataset

consists of 5-second-long recordings organized into 50 semantical classes (coughing and

breathing included). Speech Commands Dataset is an audio dataset of spoken
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words designed to help train and evaluate keyword spotting systems. Its primary goal

is to provide a way to build and test small models that detect when a single word

belonging to a set of target words is spoken, with as few false positives as possible,

discriminating from background noise or unrelated speech. This dataset is composed

by 65034 audios of 1 second duration of 32 different words, with a frequency of 16KHz

and mono format.

3.1.2 AudioDataset Creation

In the Matlab R2020b (MathWorks, Inc. USA) workspace the audioDatastore object,

that helps in the management and elaboration of audio files collection thanks to em-

bedded functions and libraries, was added. In order to use this element, the audios

from the Speech Command and Freesound datasets were reworked in the following way:

in a new folder named ‘nocough’, which corresponds to the name for the label, were

uploaded 313 random words from the first dataset. In another folder named ‘cough’,

311 audios that were manually classified from Freesounds audioset using the Matlab

AudioLabeler App as explained in section 3.1.3, were added. In this way we obtained

2 folders that Matlab reads as 2 different labels corresponding to the ones we want for

our classification of cough events against the other sounds. This first built dataset has

been named ”Speech” because it included the speech words from Speech Command as

well as the cough sounds. These last speech sounds have been chosen randomly, and

consists of words like ”bed”, ”down”, ”five”, ”no”, ”stop”, ”wow”, for a total of 32

different words. This workframe has been used to create another dataset. This second

one has been called ”All” because it contains also environmental, music sounds or daily

life noises in addition to cough and speech. In particular is composed by 313 cough

sounds, 157 words from Speech Command and finally the new samples from Freesound

that are 156 sounds. In total the dataset has 622 audios as well.

3.1.3 Manual Labelling

Because the audios collected from Freesound present more than one cough event, and

sometimes also other sounds, it is necessary to extract and label every single event
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before using it. To perform this operation the Matlab tool called AudioLabeler was

used. This application permits to create every type of labels, from boolean to string,

and to select in the audio the Regions of Interest (ROI) where the sound that correspond

to the label is present, as visible in the yellow areas in fig. 3.1. All the audios were

exported in a mat file. When the mat file it’s uploaded, a function can see the ROI

start and end time for every label and use it to divide the audio areas where cough is

present from the areas without and from the silenced parts or where other noises are

present.

Figure 3.1: AudioLabeler App

3.2 Data analysis

An important part of the pre-processing of the signals consists in downsampling of the

audios taken from Freesound, that were recorded at 41.1 KHz, to 16 KHz, as the Speech

Command Audiodataset files. This has been done to provide coherence in the dataset

but also to speed up the calculations. This downsampling is also justified by literature

that shows how the sounds we are interested to classify contain frequencies lower than

8 KHz. Therefore, by choosing 16 KHz the Shannon theorem is fulfilled and important

information are not lost. Standardization was performed because the audio signals

amplitude is different for each recording and, in general, for each subject (due to the
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fact that not all the subjects spoke with the same voice intensity). Using this method,

the mean of the signals is set to 0 and the standard deviation to 1. Standardization

was performed according to the following formulation:

yi = (xi − µx)/σx (3.1)

where xi is a sample from the original signal, µx and σx are respectively the signal’s

mean and standard deviation, yi is the corresponding sample of the resulting standard-

ized signal.

3.2.1 Features Extraction

In order to have a compact and easy to use instrument to perform features extraction,

a streamline audio feature extractor by Matlab was used. Using this tool makes it

easy to insert the window length, the overlap and the features to extract. The frames

dimension was chosen according to the values used in literature, in particular, that

used by Miranda et al. [2]. The final choice was to select a 64ms frame length with

50% overlap between adjacent frames. With this setting, privacy can be guaranteed

thanks to the use of very short frames and small segments of 640 ms in which the

features are extracted and the classification is made. At the end, they could be deleted

immediately after. The Matlab Audio Toolbox has been used to perform the feature

extraction and to analyze the audios. In the following sections, the specific features

extracted by the audioFeatureExtractor are explained in detail.

Pitch

Pitch is the relative highness or lowness of a tone as, perceived by the ear, which

depends on the vibration frequency of the vocal cords. Pitch tracking refers to the

task of estimating the contour of the fundamental frequency F0, i.e. the harmonic

corresponding to the lowest frequency present in the voice signal. Such a system is of

particular interest in several applications of speech processing, such as speech coding,

analysis, synthesis or recognition [101].
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Harmonic Ratio

Harmonic ratio is a measure which allows to distinguish odd harmonic energy (such

as clarinet) from even important harmonic energy sounds (such as trumpet). The

formulation is expressed as:

HR =

∑H
h=1:even α

2 (h)∑H
h=2:odd α

2 (h)
(3.2)

Spectral Flatness

Spectral flatness, or tonality coefficient, is a measure used to characterize an audio

spectrum. It quantifies how much a sound is tone-like with respect to being noise-like.

[102] It’s called tonality coefficient with the meaning that the number of peaks in a

power spectrum opposed to the white noise flat spectrum. A high spectral flatness

(approaching 1.0 for white noise) indicates that the spectrum has a similar amount

of power in all spectral bands — this would sound similar to white noise, and the

graph of the spectrum would appear relatively flat and smooth. A low spectral flatness

(approaching 0.0 for a pure tone) indicates that the spectral power is concentrated in

a relatively small number of bands — this would typically sound like a mixture of sine

waves, and the spectrum would appear ”spiky”. The spectral flatness is calculated

by dividing the geometric mean of the power spectrum by the arithmetic mean of the

power spectrum, i.e.:

Flatness =

N

√∏N−1
n=0 x(n)∑N−1

n=0 x(n)

N

=
exp

(
1
N

∑N−1
n=0 lnx(n)

)
1
N

∑N−1
n=0 x(n)

(3.3)

where x(n) represents the magnitude of bin number n. Note that a single (or more)

empty bin yields a flatness of 0, so this measure is most useful when bins are generally

not empty [103].
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Spectral Kurtosis

Kurtosis measures the flatness of a distribution around its mean value. It’s obtained

from the 4th order moment:

Kurt[X] = E

[(
X − µ
σ

)4
]

=
E [(X − µ)4]

(E [(X − µ)2])2 =
µ4

σ4
, (3.4)

X is the sample value in analysis, µ is the mean value and σ is the variance [103].

Different values of the kurtosis correspond to different distributions’ shapes:

• K=3 for a normal distribution;

• K<3 for a flatter one;

• K>3 for a more ”spiky” one;

Spectral Entropy

Spectral Entropy is defined as the Shannon entropy of the power spectral density (PSD)

of the data:

H(x, sf) = −0fs/2P (f)log2[P (f)] (3.5)

Where P is the normalised PSD, and fs is the sampling frequency [104].

Spectral Flux

Spectral flux is a measure of how quickly the power spectrum of a signal is changing,

calculated by comparing the power spectrum for one frame against the power spectrum

of the previous frame[105]. More precisely, it is usually calculated as the 2-norm (also

known as the Euclidean distance) between the two normalised spectra. Calculated

this way, the spectral flux is not dependent upon overall power (since the spectra are

normalised), nor on phase considerations (since only the magnitudes are compared).

The spectral flux can be used to determine the timbre of an audio signal, or in onset

detection [106].
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Spectral Crest

Spectral crest is related to flatness and is computed as the ratio of the maximum value

within the band to the arithmetic mean of the energy spectrum value [103].

SCM (nband) =
max(a (k ∈ nband))

1
K

∑
k∈nband α(k)

(3.6)

a(k) is the amplitude in the frequency band k, “nband” represents the number of the

frequency bands in which the freqeuncy spectrum has been divided and K is the number

of the particular band under analysis.

Spectral Roll Off

The spectral roll-off point is the frequency so that 95 % of the signal energy is contained

below that frequency [103]. The formula defining the spectral roll-off is:

f∑
0

cα2 (f) = 0.95
s∑
0

r/2α2 (f) (3.7)

Spectral Slope

The spectral slope shows the amount of decreasing of the spectral amplitude and its

computed by linear regression as: a(f) = slope ∗ f + const [103]. The slope in an

example signal is shown in fig. 3.2.

Figure 3.2: Spectral slope in an example signal.
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Spectral Decrease

This spectral is also a representation of the decreasing of the spectral amplitude, but

this formulation comes from perceptual studies and it’s more correlated to human

perception [103]. The formula is:

decrease =
1∑K
k=2 α

K∑
k=2

a (K)− a (1)

k − 1
(3.8)

where a(K) is the amplitude of the K frequency band under analysis.

Spectral Centroid

The spectral centroid is a measure used in digital signal processing to characterise a

spectrum. It indicates where the center of mass of the spectrum is located. Perceptu-

ally, it has a robust connection with the impression of brightness of a sound [107]. It

is calculated as the weighted mean of the frequencies present in the signal, determined

using a Fourier transform:

Centroid =

∑N−1
n=0 f(n)x(n)∑N−1

n=0 x(n)
(3.9)

where x(n) represents the weighted frequency value, or the frequencies magnitude, of

bin number n, and f(n) represents the center frequency of that bin [103].

Mel Spectrogram

In order to obtain the Mel spectrogram and the Mel Frequency Cepstral Coefficients

(MFCC) there are some steps that have to be done. Firstly, it is necessary to divide the

audio in smaller windows called short-time frames. This is done since frequency varies

during time and because, after a Fourier transform is applied, the time information

would be lost without the frames. The second step is windowing used to counteract

the assumption made by the Fast Fourier Transform that the data is infinite and to

reduce spectral leakage. Usually an hamming window is applied, in fig. 3.3. At this

point, a periodogram is created, which is an estimate of the spectral density of a signal,

by making a Discrete Fourier Transform or NN-point FFT on each frame to calculate
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Figure 3.3: Hamming Window

the frequency spectrum. This operation is also called Short-Time Fourier-Transform

(STFT), where NN is typically 256 or 512. Then the power spectrum is computed.

Finally, a Mel spaced Filter Banks, which is a set of 20-40 triangular filters, is applied.

Each vector is mainly composed by zeros, but has non-zero elements for a certain

section of the spectrum. In order to calculate filterbank energies, each filterbank is

multiplied with the power spectrum and then the coefficients are added up. Once this

is performed, 20-40 numbers that give an indication of how much energy was in each

filterbank are available [108]. A representation of the filter banks is shown in fig. 3.4.

To get the filterbanks, lower and upper frequency are chosen and converted to Mels as

Figure 3.4: Filter Bank on a Mel Scale

follows:

m = 2595 log10

(
1 +

f

700

)
(3.10)
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Good values are 300 Hz for the lower and 8000 Hz for the upper frequency. After

applying the Filter Banks, the Mel spectrogram is obtained [109]. In fig. 3.5, a mel

spectrogram example is shown.

Figure 3.5: Mel Spectrogram of the signal

Mel Frequency Cepstral Coefficients

The issues with the Mel spectrogram is that the Filter bank coefficients are highly

correlated. Therefore, it is convenient to decorrelate them. For this reason, the logs

of the powers at each of the Mel frequencies are taken and a DCT (Discrete cosine

transform) is applied. In this way, we obtain the cepstral coefficients, which are the

amplitudes of the resulting spectrum [110].

3.2.2 Statistical Analysis

Normality tests are used to determine if a data set can be modeled by a normal distri-

bution and to compute how likely it is for a random variable underlying the data set

to be normally distributed (within some tolerance). To assess if the datasets used in

this work could be approximated by a normal distribution, the Lilliefors test was used.

The Lilliefors test is used to test the null hypothesis that data come from a normally

distributed population, when the null hypothesis does not specify the expected value

and variance of the distribution [111]. The Lilliefors test statistic formula is:

D∗ = max
∣∣∣F̂ (x)−G (x)

∣∣∣ (3.11)
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where F̂ (x) is the empirical cumulative distribution function (CDF) of the sample data

and G(x) is the CDF of the hypothesized distribution with estimated parameters equal

to the sample parameters.

In order to evaluate whether two normal distributions are significantly different, the

t-test can be used. The t-test is a statistical test of parametric type which is used

to verify whether the mean value of a distribution differs significantly from a certain

reference value [112]. In this test, the variance is unknown and, therefore, it is estimated

and used in the following statistic test:

Y0 =
X − µ0

s/
√
n

(3.12)

In the case of not normal distribution, in order to assess statistical significance between

groups, it is necessary to use a non-parametric method to verify the equality of the

medians. The method used was the Wilcoxon rank sum test, which is a non parametric

test for equality of population mean ranks of two dependent samples X and Y [113].

3.2.3 Features Selection

After features extraction was performed, a statistical study of the predictors was made

to assess if there were significant differences and independence among them. Then,

keeping in mind the features significance results, features were selected in order to

decrease the dimensionality of the problem. A type of feature selection is the filter

type feature selection algorithm, which measures the features’ importance based on

the characteristics of the features, such as feature variance and feature relevance to

the response. Filter type feature selection is uncorrelated to the training algorithm,

because it is as part of the data preprocessing step carried out before training a model.

Features can be selected in many different ways. One possibility is to select features

that possess a stronger correlation to the classification variable. This method is called

maximum-relevance selection. Many heuristic algorithms can be used, such as the

sequential forward, backward, or floating selections. On the other hand, features can
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be selected to be mutually far away from each other while still having ”high” correlation

to the classification variable. This scheme, termed as Minimum Redundancy Maximum

Relevance (MRMR) selection has been found to be more powerful than the maximum

relevance selection [114]. For this reason the MRMR was the type of feature selection

chosen. The MRMR algorithm [115] finds an optimal set of features that is mutually

and maximally dissimilar and can represent the response variable effectively. The

algorithm minimizes the redundancy of a feature set and maximizes the relevance of

a feature set to the response variable. The algorithm quantifies the redundancy and

the relevance using the mutual information of variables—pairwise, mutual information

of features and mutual information of a feature and the response [116]. The mutual

information between two variables measures how much uncertainty of one variable can

be reduced by knowing the other variable. The goal of the MRMR algorithm is to find

an optimal set S of features that maximizes VS, the relevance of S with respect to a

response variable y, and minimizes WS, the redundancy of S, where VS and WS are

defined with mutual information I:

Vs =
1

|S|
∑
x∈S

I (x, y) (3.13)

Ws =
1

|S|2
∑
x,z∈S

I (x, z) (3.14)

Where |S| is the number of features in S. Finding an optimal set S requires considering

all 2|Ω| combinations, where Ω is the entire feature set. Instead, the MRMR algorithm

ranks features through the forward addition scheme, which requires o(|Ω| · |S|) com-

putations, by using the mutual information quotient (MIQ) value. Then, the MRMR

has been applied to our features for both the two datasets. The 15 more important for

the first dataset and the 15 more important for the second were selected and used to

train the classifiers.
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3.3 Classification algorithms

Classification is a type of supervised learning, that uses a prediction label of the training

data. It specifies the class to which data elements belong to. In this ork, Matlab and its

Deep Learning Toolbox have been used to implement, train and test all the algorithms.

In detail, a binary classification was performed to divide the audios belonging to the

positive class, ”cough”, and the audios belonging to the negative one, ”no cough”.

Each classifier was trained with four different datasets:

• one containing all the 56 features extracted and containing both cough, speech

sounds and noises

• one containing all the 56 features extracted and containing only cough and speech

sounds

• one containing only the 15 features selected by MRMR, and containing both

cough, speech sounds and noises

• one containing only the 15 features selected by MRMR and containing only cough

and speech sounds

The features selection by MRMR, was explained in subsection 3.2.3. The classifiers

that were chosen to be used were:

• Random Forests

• K Nearest Neighbours

• Support Vector Machine

• Long Term Short Memory Neural Network

The first three methods are classical machine learning techniques, while the last one

is a deep learning technique which exploits a multi-layers neural network. In the next

Subsections the basic principles behind each one of the classifiers and the parameters’

choices adopted are explained.
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3.3.1 Random Forests

Decision tree is a tree based algorithm used to solve regression and classification prob-

lems. They have the form of an inverted tree, starting from a single root and subse-

quently dividing the data in subgroups called leaves. At every node, a split is made

choosing the predictors and their value according to an Entropy/Information gain cri-

teria. Random forest is an ensemble learning method that constructs multiple decision

trees during the training and chooses as class output the most present in the individ-

ual trees, using, therefore, a majority voting criteria. A simplified representation of

random forest is visible in figure 3.6. RFs are a way of averaging multiple deep trees

which avoids the problem of the high variance that single deep trees typically have [82].

Figure 3.6: Random Forest Diagram [117].

The cost of using random forests an increase in the bias, which is an error from erro-

neous assumptions in the learning algorithm, and some loss of interpretability. How-

ever, this approach normally greatly boosts the final model performance. The training

algorithm for RFs applies the bootstrap aggregating technique, or bagging technique,

to tree learners. The bagging repeatedly selects a random sample from the original
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training set, to create new training sets and uses those to fit the trees, as shown in

figure 3.7 [84]. This procedure leads to better model performance because it decreases

the variance of the model, without increasing the bias. So, while the predictions of a

single tree are highly sensitive to noise in its training set, the average of many trees is

not, if they are uncorrelated. The two hyperparameters tuned for this classifier were

Figure 3.7: Bootstrap Aggregating [118].

the number of bagged trees from 5 to 50 and the minimum number of observations per

tree leaf with values 5, 10, 20, 50, 100. Obtaining that better performance was when

the bagged trees were 50 and a value of 5 for the minimum observations for leaf was

selected.

3.3.2 K-Nearest Neighbors

K-nearest neighbors is a non-parametric method used for classification and regression.

It does not construct an internal model, but saves the training data instances. The

KNN explores the k nearest neighbours for each point, assumes the test datapoint to

be similar to the training ones and derives the output. For a classification problem, a

majority voting of the k nearest point is made. The training examples are vectors in a

multidimensional feature space, each one having a class label. The algorithm does not

have a proper training phase, since it only stores the feature vectors and class labels

of the training samples. In the classification phase, k is a constant, and an unlabeled
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vector is classified by assigning the label which is the most frequent among the k train-

ing samples nearest to the test point. A trivial example of how KNN works is shown

in figure 3.8. KNN represents an easy and simple machine learning model with few

hyperparameters to tune. Some disadvantages concerning the use of KNN are that

the number of neighbors has to be selected previously and, if the sample size is large,

the computational cost during runtime could be high [81]. The distance function used

could be Euclidean distance, Manhattan distance, Hamming Distance, Minkowski dis-

tance. For this work, the learner’s number of neighbors k was tuned in the range from

1 to 100 and the Euclidean distance was used.

Figure 3.8: KNN example [119]. The green circle represents the new data. If k=3, the neighbours
are the ones inside the plain line and the label for the new data will be ”red triangle”. If k=5, the
label assignment will be done considering the points inside the broken line area, resulting in ”blue
rectangle” classification.

3.3.3 Support Vector Machines

The SVMs training alghoritm creates a model that assigns new samples to a class,

acting like a binary linear classifier. The model is a representation of the samples in

a space and it tries to divide the samples of opposite classes with a gap as wide as

possible. Then, if a new sample falls in the positive class, it is classified as positive

and vice versa. In more detail, the SVMs build a hyperplane or a set of hyperplanes

in N-dimensional space (N, the number of features) that distinctly classifies the data
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points. The hyperplane that best divides the data is the one that has the largest

Figure 3.9: SVMs. Support vectors defining the hyperplane margins

distance between the nearest training-data point of each class, the margins are visible

in figure 3.9. These points are the support vectors that define the separation margins

and the objective is to maximize the margins distance, because it corresponds to the

lowest generalization error of the classifier. It often happens that the sets to classify

are not linearly separable in the finite space. For this reason, it could be necessary to

map the original finite-dimensional space into a much higher-dimensional one, where

the separation could be doable. The mappings used by SVMs schemes ensure that

dot products of pairs of input data vectors may be computed easily in terms of the

variables in the original space, by defining them in terms of a kernel function k(x; y)

selected according to the specific problem. In case of not linearly separable data, a

penalty parameter (C) is introduced that determines the trade-off between increasing

the margin size and ensuring that the new sample lies on the correct side of the margin.

A regularization parameter is added to balance the margin maximization with the error

loss. After adding the regularization parameter, the cost functions becomes:

minwλ‖w‖d2 +
n∑

i=1

(1− yi 〈xi, w〉) (3.15)
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In this formula, the first factor represents the opposite of margin distance, that has to

be minimized, and the second factor represents the regularization part, where a penalty

cost is given for every Support vector inside the margins or that was misclassified, so

that the SVM has soft margins [79]. Example of kernel functions are linear, nonlinear,

polynomial, radial basis function (RBF), and sigmoid. In this work, the SVMs used

the RBF Kernel which has localized and finite response along the entire x-axis. The

RBF Kernel is a general-purpose kernel, used when there is no prior knowledge about

the data. The equation describing it is:

k (xi, xj) = exp
(
−γ ‖xi − xj‖2) (3.16)

The SVMs classifiers were all tuned with Bayesian optimization and a 5-fold cross val-

idation on Matlab. The bayesian optimization works classifying the locations of points

from a Gaussian mixture model. This optimization automatically sets the penalty and

the kernel-coefficient hyperparameters.

3.3.4 Neural Network LSTM

A neural network (or artificial neural network) is an adaptive system that learns by

using interconnected nodes or neurons in a layered structure that resembles a human

brain. A neural network can learn from data, so it can be trained to recognize patterns,

classify data, and predict future events. A neural network breaks down the input into

abstracted layers. It consists of an input layer, one or more hidden layers, and an

output layer. In each layer there are several nodes, or neurons, with each layer using

the output of the previous layer as its input, so neurons interconnect the different layers,

shown in figure 3.10. It can be trained using many examples to recognize patterns in

speech or images, for example, just as the human brain does. Its behavior is defined

by the way its individual elements are connected and by the strength, or weights, of

those connections. These weights are automatically adjusted during training according

to a specified learning rule until the artificial neural network performs the desired task

correctly. Most deep learning methods use neural network architectures, which is why

deep learning models are often referred to as deep neural networks. The term “deep”
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usually refers to the number of hidden layers in the neural network. Traditional neural

networks only contain 2-3 hidden layers, while deep networks can have as many as

150. Deep learning models are trained by using large sets of labeled data and neural

network architectures that learn features directly from the data without the need for

manual feature extraction [120].

Long short-term memory (LSTM) is an artificial recurrent neural network (RNN)

Figure 3.10: Artificial Neural Networks [120]. Neural networks, organized in layers consisting of
a set of interconnected nodes. It’s possible to see the input layer, the hidden layers and the output
layer.

architecture used in deep learning [88]. Differently from standard feedforward neural

networks, LSTM has feedback connections. Hence, it can process more than single

data points, like images, but also entire sequences of data, like speech or video. LSTM

networks are well-suited for classifying, processing and making predictions based on

time series data, since there can be lags of unknown duration between important events

in a time series. LSTMs were developed to deal with the vanishing gradient problem

that can be encountered when training traditional RNNs. This is possible thanks to

the LSTM cell unit that has the ability to encapsulate forgetting part of its previously

stored memory while adding part of the new information. When training an RNN using

back-propagation, the gradients which are back-propagated can ”vanish”, meaning

that they can tend to zero, or ”explode”, meaning that they tend to infinity. The

reason behind this behaviour is the computations involved finite-precision numbers.

RNNs using LSTM units solve the vanishing gradient problem but still suffer from the

exploding gradient problem [121]. A common architecture is composed of a cell, the

memory part of the LSTM unit, and three ”regulators”, usually called gates, of the
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flow of information inside the LSTM unit: an input gate, an output gate and a forget

gate. The structure is represented in figure 3.11.

The cell is responsible for keeping track of the dependencies between the elements in

Figure 3.11: LSTM cell unit. Image by Klaus Greff [122]. The LSTM unit has four input weights
(from the data to the input and three gates) and four recurrent weights (from the output to the input
and the three gates). Peepholes are extra connections between the memory cell and the gates, but
they do not increase the performance by much and are often omitted for simplicity.

the input sequence. The input gate controls the measure to which a new value flows

into the cell, the forget gate controls which values remain in the cell and the output

gate controls the values the cell uses to compute the output activation of the LSTM

unit. The activation function of the LSTM gates is often the logistic sigmoid function.

There are connections into and out of the LSTM gates, a few of which are recurrent.

The weights of these connections, which need to be learned during training, determine

how the gates operate. The neural network was built in Matlab, with a sequence

input layer with a number of neurons equal to the dataset features, 56 and 15. A

second layer works as a bilateral LSTM with 100 neurons. This cell unit works in both

forward and backward direction, processing all the sentence and trying to adjust the

coefficients in order to detect the training keyword. The third layer is a fully connected

layer that classifies in the two labels. This layer combines all of the features and local

information learned by the previous layers across the image or speech to identify the
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patterns. For the classification problem, the last fully connected layer combines the

features to classify the images [123]. This is the reason why the output size argument

of the last fully connected layer of the network is equal to the number of classes of

the data set. In this work, this dimension is therefore set to two, respectively for the

”cough” and ”no cough” classes. The fourth layer is a softmax layer that takes as input

a vector of real numbers, that could be negative, or greater than one. After applying

softmax, each component will be in the interval 0 - 1 and the components will add

up to 1, so that they can be interpreted as probabilities [124]. Finally, the last layer

is the output that actually classifies the labels ”cough” and no cough”. The training

process uses an Adam method. The Adam optimization algorithm is an extension of

the stochastic gradient descent vastly used in deep learning applications in computer

vision and natural language processing. It is used to iteratively update the network

weights during the training. It works by adapting the parameter learning rates based

on the average first moment, the mean, and also the average of the second moments of

the gradients, the uncentered variance [125]. The training is repeated for 10 epochs,

where one epoch consists into one forward pass and one backward pass of all the

training examples, and 4 iterations for each epoch, where the number of iterations is

the number of passes, each pass using batch size number of examples. The batch size

was set to 128.

3.3.5 Cross Validation

At last, all the classifiers were trained with a 10 K fold cross validation, implemented in

Matlab, on both the dataset created, as explained in subsection 3.1.2. Cross-validation

is a technique for assessing the capability of a statistic model to generalize on an new

dataset. Its goal is to test the model’s ability to perform prediction using data that

was not used for training it, in order to avoid problems like overfitting or selection bias

[126].

In a prediction problem, a model is trained on a dataset of known data, the training

dataset, and is tested on a dataset of unknown data, called validation set or testing

set [127]. One round of cross-validation involves partitioning a sample of data into two

complementary subsets, respectively the training set and the validation set. Then, the
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performance analysis on the training set is performed and the performance analysis

on the validation set is used to validate the model. In the performance analysis the

training error and the validation error, respectively, are calculated. At this point,

multiple rounds of cross-validation are performed using different partitions, and the

validation results are combined over the rounds to give a better estimate of the model’s

predictive performance, aiming to see if the variance is changed. There are different

ways to implement this model. One technique is the Leave-p-out cross-validation (LpO

CV), which consists in choosing a number p of observations to use for the validation set

and using the remaining observations for the training. The particular case with p=1

is the Leave-one-out cross-validation (LOOCV). In the holdout method, data points

are randomly assigned to two sets, the training set and the test set. The size of each

of the sets is arbitrary, although typically the test set is smaller than the training

set.The model is built on the first set and evaluated on the second. The holdout

method involves a single run. So, it is the simplest way to perform cross validation

[128], but the indicator of predictive accuracy is unstable and not robust, since it is

not being smoothed out by multiple iterations. To avoid the holdout method weakness

the k-fold cross-validation could be used. In K fold method the original sample is

randomly partitioned into k equal sized subsamples. A single subsample is taken as

the validation data for testing the model, and the remaining k - 1 subsamples are used

to train the model. The cross-validation process is then repeated k times, with each

of the k subsamples used exactly once as validation data. The k results can then be

averaged to produce a single estimation. The advantage of this method over repeated

random sub-sampling is that all observations are used for both training and validation,

and each observation is used for validation exactly once. 5 or 10 fold cross validation

are commonly used [129], but in general k remains an unfixed parameter. When k = n

(the number of observations), k fold cross validation is equivalent to leave-one-out cross

validation. In stratified k fold cross-validation, the partitions are selected so that the

mean response value is approximately equal in all the partitions. In the case of binary

classification, this means that each partition contains roughly the same proportions of

the two types of class labels. All four classifiers were applied to the datasets with a

10-fold cross validation, keeping around 560 audio in the training set and 62 in the test
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Figure 3.12: 10-fold cross validation [130].

set. For the classical methods the classification has been made for each frame and not

on the entire audio.

3.4 Algorithms performance metrics

In order to evaluate the algorithms performances, a statistical evaluation of the results

is required. Typical metrics in two classes classification algorithms are accuracy, preci-

sion, recall, F1 score and ROC curve. Then, to assess if the feature selection actually

improved the method performance, a Wilcoxon Rank Sum Test was used. In statistics

and machine learning, a confusion matrix, or error matrix, [131] is a table with specific

form used to represent the predicted data respect the real data. It is usually used for

supervised learning, specially in classification. Each row of the matrix represents the

instances in a predicted class while each column represents the instances in an actual

class (or vice versa) [132]. In figure 3.13 a confusion matrix for binary classification is

shown. The table reports the number of false positives, false negatives, true positives,

and true negatives.

• False positives (FP) are the values which are predicted as positive, but whose

true class is negative.

• False negatives (FN) are the values which are predicted as negative, but whose

true class is positive.

• True positives (TP) are the correct predictions for the positive class.
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Figure 3.13: Confusion Matrix for binary classification

• True negatives (TN) are the correct predictions for the negative class.

With the confusion matrix it is possible to have a more complete description of the

performance than just with the proportion of correct classifications, called accuracy.

Accuracy counts the correct predictions comparing them with the real labelled values.

It is the closeness of the measurements to a specific value. It can be calculated as true

positive plus true negative divided by the total number of values:

Accuracy =
TP + TN

TP + TN + FP + FN
(3.17)

If the dataset is unbalanced, accuracy can give a misleading information. For this

reason, other metrics, easily computed from the confusion matrix, can be used.

Precision, or positive predictive value, is the closeness of the measurements to each

other, and it is obtained by dividing the true positives with true positives plus false

positives:

Precision =
TP

TP + FP
(3.18)

Sensitivity, or recall, measures the proportion of positives that are correctly identified,

so it is called true positive rate. It is calculated as true positives divided by true

positives plus false negatives, which are the totality of the true positives values (P)

[133]:

Recall =
TP

TP + FN
(3.19)
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Specificity is the true negative rate because shows how many times the negative class

has been correctly identified. It is calculated as true negatives divided by true negatives

plus false positives:

Specificity =
TN

TN + FP
(3.20)

Finally, the F1 score is the harmonic mean of the precision and recall [134]. It is defined

as:

F1 = 2 · precision · sensitivity
precision+ sensitivity

=
2TP

2TP + FP + FN
(3.21)

Sensitivity and specificity can be used in a graphical representations called ROC curve.

ROC stands for Receiver Operating Characteristic. It is represented by putting on the

X axis the sensitivity and on the Y axis 1-specificity, represented respectively by the

True Positive Rate (TPR) and the False Positive Rate (FPR). A ROC curve example

is shown in figure 3.14.

Figure 3.14: ROC curve example [135].

The ROC curves analysis of the classifier capacity of evaluating between the positive

and the negative class is assessed using the Area Under the Curve AUC. This value
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ranges between 0 and 1 and is equivalent to the probability that the classification

performance applied to a random sample from the negative class is higher than the

performance obtained randomly from the positive class. The diagonal line that goes

from (0,0) to (1,1) represents the random classifier (line of no-discrimination) and it

has AUC equals to 0.5 [136]. As shown in figure 3.14. These metrics were used to

compare the classifiers performances. In particular, accuracy, precision and recall were

calculated and compared. The ROC curves were plotted and used to compare the four

algorithms visually, for both the datasets and when using all the features extracted or

just the 15 selected by MRMR.

Finally, the Kruskal-Wallis test was used to evaluate whether the classifiers perfor-

mances were statistically different, before comparing them one versus one. This test

verifies if the groups come from the same population [137]. It performs an analysis of

variance replacing the data with their rank [138].

The other comparisons to assess differences in the performance metrics were made by

means of the Wilcoxon rank sum test, which has been already explained in subsec-

tion 3.2.2. The Wilcoxon test was used to compare the performances across the two

datasets, so if the classifiers trained with the “Complete” dataset performed better than

when the training was done with the “Speech & Cough” dataset. Then, the Wilcoxon

test was used to compare if there was a significant difference in the performance across

the number of features used. In other words, it was evaluated if the classifiers predicted

better when all the features extracted were utilized or when only the 15 selected by

MRMR were used in the training.
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Results and discussion

4.1 Extracted voice features

For all the features in both datasets and for both classes (cough versus no cough)

median and interquartile range were computed. A normality test, specifically the Lil-

liefors test, was applied on the two datasets’, “Complete” and “Speech & Cough”,

features, giving as results that, in both the populations the majority of the features

are not normally distributed. The only normal distribution is the feature “MFCC8”

of the class “cough”. Therefore, for the sake of simplicity, and since in the class “no

cough” there are no normal distributions at all, it was considered not normal as well.

For this reason a T test could not be applied to distinguish whether the features were

significantly different between the positive class, “cough”, and the negative class, “no-

cough”. To assess this difference, a Wilcoxon rank sum test was used, since it is

suitable to be applied to not normal distributions. The results obtained showed that,

in the “Complete” dataset, all the features, except three, were found significantly differ-

ent for the two populations. These three features are “MFCC13”, “spectralKurtosis”

and “spectralRolloffPoint”. The p-values obtained were respectively 0.955, 0.608 and

0.160. These three features, along with other features reported by way of example, are

represented in figure 4.1, where the boxes represent the median value and the red line

represents the interquartile range. The light blue colored boxes represent the features

that are not significantly different between classes. The same predictors extracted from
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Figure 4.1: Median and interquartile range for the extracted features. “Complete” Dataset. The
light blue colored boxes represent the features that are not significantly different between classes.

Figure 4.2: Median and interquartile range for the extracted features. “Speech & Cough” Dataset.
All the features are significantly different.
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the “Speech & Cough” dataset are shown in figure 4.2. In this case, the features re-

sulted all to be significantly different. Other than these nine features, taken as example,

the other features selected by the MRMR are represented into appendix A.

4.2 Selection of voice features

After assessing that the features showed significant difference between “cough” and “no

cough” population, an automatic feature selector was applied. The algorithm selecting

the features follows a Minimum Redundancy Maximum Relevance (MRMR) method,

as explained in subsection 3.2.3. The MRMR results for the “Complete” dataset are

shown in figure 4.3, which displays the best 15 features. The predictors shown in

the figure are ordered according to the predictor importance score, and the three best

predictors for this dataset are “Mel4”, “MFCC9” and “spectralKurtosis”. In figure

Figure 4.3: MRMR from “Complete” Dataset. Best 15 predictors obtained applying MRMR.

4.4, the MRMR values for the “Speech & Cough” dataset are shown. In this case,

the predictor importance scores are bigger with respect to the “Complete” dataset of

two orders of magnitude. The best features, according to the selector, are “Mel32”,

“MFCC12” and “MFCC8”.
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Figure 4.4: MRMR from “Speech & Cough” Dataset. Best 15 predictors obtained applying MRMR.

4.3 Classification Results

The classifiers performances results are summarized in table 4.1 and table 4.2. The per-

formance metrics used were accuracy, precision, recall. The statistical significance of

the performance results were assessed respectively between the two datasets, between

the two cases in which all the features were used and the case in which the fifteen

selected features were used, and across the different classifiers compared one by one.

All the performance metrics were computed as the median, with the corresponding

Table 4.1: Comparison between the different classification algorithms when all 56 features are used
respect to when only 15 selected features are used, in terms of accuracy, precision and recall. Classifiers
were trained with the “Complete” dataset.

Accuracy Precision Recall

56 Features 15 Features p-value 56 Features 15 Features p-value 56 Features 15 Features p-value

RF 88.2 ±1.7% 86.1 ±4.8% 0.089 76.3 ±9% 75.1 ±4.8% 0.307 82.5 ±8.5% 78.7 ±9.3% 0.241
KNN 85.8 ±3% 76.5 ±2.3% 0.001* 82.6 ±6.2% 66.3 ±2.3% 0.001* 75.5 ±10.5% 60.9 ±10.5% 0.002*
SVM 87.6 ±1.3% 87.6 ±1.2% 0.678 78.5 ±14.3% 78.7 ±11.6% 0.734 80.5 ±14.3% 78.5 ±4.7% 0.545
LSTM 94.4 ±2.8% 91.1 ±6.5% 0.124 96.8 ±2.4 93.5 ±6.4% 0.163 92.4 ±3.3% 90.6 ±8.5% 0.239

p < 0.05 for Wilcoxon Test

interquartile range, of the single values obtained during the 10-fold cross validation. In

all the results tables, that follows, the combination that were significantly different are

highlighted in bold and with an asterisk, and their p-value, which is lower than 0.05,

is shown. Starting from the “Complete” dataset, the classifiers general performance is
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Table 4.2: Comparison between the different classification algorithms when all 56 features are used
respect to when only 15 selected features are used, in terms of accuracy, precision and recall. Classifiers
were trained with the “Speech & Cough” dataset

Accuracy Precision Recall

56 Features 15 Features p-value 56 Features 15 Features p-value 56 Features 15 Features p-value

RF 90.2 ±2.2% 89.8 ±3.9% 0.571 73.1 ±13.8 74.6 ±15.2 0.970 86.6 ±5.1% 85.3 ±6.7% 0.571
KNN 79.8 ±3.3 75.6 ±2.5% 0.011* 69.5 ±18.8% 61.3 ±16.2 0.121 63.9 ±9% 57 ±5.8% 0.212
SVM 85.2 ±2.9% 84.8 ±2.8% 0.678 76.5 ±4.6% 75.9 ±5.1% 0.734 65.6 ±17.7 65.4 ±18.5% 0.545
LSTM 95.9 ±2.8% 94.4 ±5.4% 0.001* 95.2 ±8.2% 93.2 ±8.9% 0.469 98.2 ±8.1% 93.3 ±5.1 0.354

p < 0.05 for Wilcoxon Test

good, ranging from a median of the accuracy of 94.4 ± 2.8 % for the Long Short Term

Memory Network to a 85.8 ± 3% for the KNN, when all the features are used. While 15

features are selected, the best performance is obtained by LSMT with 91.1 ± 6.5% and

the worst by KNN with 76.5 ± 2.3% Due to the fact that the algorithms were trained

and tested by frames, the originally balanced dataset became unbalanced towards the

negative “nocough” class. Hence, precision and recall are more robust indicator of the

performance. The KNN performance in the case when only 15 features were used is

significantly different from the one with all features, as shown in the table 4.1 in the

p-value column. p-values were obtained using the Wilcoxon rank sum test.

For what regards the “Speech & Cough” dataset, the classifiers’ performance ranges

from the larger 95.9 ± 2.8% accuracy for the LSTM to the lower 79.8 ± 3.3% for

the KNN, when all 56 features are used. If the classifiers utilize only the 15 selected

features the performance goes from an accuracy of 94.4 ± 5.4% to one of 75.6 ± 2.5%.

Then, only the accuracy metric of KNN and LSTM shows a statistical difference when

using all the features or just the selected ones, table 4.2. Generally, the selection of

the features did not bring any performance improvement, if not a decreasing capacity

of prediction in some cases.

The four tables, table 4.3, table 4.4, table 4.5 and table 4.6 compare the four algorithms:

RF, KNN, SVM and LSTM. The comparison is made for each dataset, “Complete” and

“Speech”, and for the two cases using all the 56 features and the 15 selected features.

From table 4.3, table 4.4, table 4.5 and table 4.6, it’s possible to see if there is significant

statistical difference between the four classifiers. The p values from the Kruskal Wallis

test made on all the algorithms together were lower then 0.001 for all cases. So, for the

sake of simplicity, has been omitted from the tables. As it is possible to observe, for all
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Table 4.3: Comparison between the different classification algorithms in terms of accuracy, precision
and recall. Classifiers were trained on the “Complete” dataset, considering all 56 features

Metrics Classifiers P values

RF KNN SVM LSTM RF-KNN RF-SVM RF-LSTM KNN-SVM KNN-LSTM SVM-LSTM

Accuracy 88.2 ±1.7% 86.1 ±3% 87.6 ±1.3% 94.4 ±2.8% 0.151 0.915 0.068 0.465 0.001* 0.010*
Precision 76.3 ±9% 82.6 ±6.2 78.5 ±14.3% 96.8 ±2.4% 0.752 0.992 0.001* 0.894 0.014* 0.001*

Recall 82.5 ±8.5% 75.5 ±10.5% 80.5 ±14.3% 92.4 ±3.3% 0.152 0.984 0.035* 0.302 0.001* 0.012*

p < 0.05 for Wilcoxon Test

Table 4.4: Comparison between the different classification algorithms in terms of accuracy, precision
and recall. Classifiers were trained on the “Complete” dataset, considering 15 selected features

Metrics Classifiers P values

RF KNN SVM LSTM RF-KNN RF-SVM RF-LSTM KNN-SVM KNN-LSTM SVM-LSTM

Accuracy 86.1 ±4.8% 76.5 ±2.3% 87.8 ±1.2% 91.1 ±6.5% 0,035* 0.886 0.059 0.003* 0.001* 0.283
Precision 75.1 ±2.3% 66.3 ±2.3% 78.7 ±11.6% 93.5 ±6.4% 0.489 0.436 0.001* 0.018* 0.001* 0.134

Recall 78.7 ±9.3% 60.9 ±10.5% 78.5 ±4.7% 90.6 ±8.5% 0.032* 0.996 0.039 0.016* 0.001* 0.072

p < 0.05 for Wilcoxon Test

the datasets, the classifiers present performance differences. So, a further analysis has

been made to evaluate whether every single method classifies differently from another,

by comparing them one versus one. Considering the case where all the features are

used, from the table 4.3 , dataset “Complete”, is possible to see that LSTM performs

better than the three other algorithms. In table 4.5, dataset “Speech & Cough” the

p-values indicate that LSTM is clearly better than SVM and KNN, while only the

precision is better than the RF’s one. Then, RF has a better recall than KNN. In the

case of the classifiers when only the 15 selected features are used, table 4.4 and table

4.6, show that KNN performs poorly with respect to all the other methods. LSTM per-

forms better than KNN, of course, and also than RF. The LSTM performance metrics

outperformed other studies results, such as Liu et al. [9] and Tracey et al. [6] Lucio

et al. [10] which achieved, with different methods, respectively the 91%, 81% and 87%

of sensitivity in detecting cough events. And also Pramono et al [1], Larson et al. [11]

and Breiman et al. [12] that all obtained a sensitivity equal to 92%.

In order to assess whether the classifiers perform better on a simpler dataset with just

cough and speech, like “Speech & Cough”, with respect to a more complete one with

cough, speech and ambient noises, like “Complete”, a Kruskal Wallis test was applied.

The test compares every algorithm for the “all features” case and for the “selected

features” one. The comparison was made for each algorithm where the training was

made with the first dataset and when has been made with the second. In table 4.7 the

66 Alessandro ZANINI



Chapter 4: Results and discussion

Table 4.5: Comparison between the different classification algorithms in terms of accuracy, precision
and recall. Classifiers were trained on the “Speech & Cough” dataset, considering all 56 features

Metrics Classifiers P values

RF KNN SVM LSTM RF-KNN RF- SVM RF-LSTM KNN-SVM KNN-LSTM SVM-LSTM

Accuracy 90.2 ±2.2% 79.8 ±3.3% 85.2 ±2.9% 95.9 ±2.8% 0.075 0.660 0.206 0.587 0.001* 0.001*
Precision 73.1 ±13.8% 69.5 ±18.8% 76.5% ±4.6% 95.2 ±8.2% 0.795 0.992 0.001* 0.922 0.014* 0.002*

Recall 86.6 ±5.1% 63.9 ±9% 85.6 ±17.7% 98.2 ±8.11% 0.019* 0.526 0.302 0.408 0.001* 0.010‘*

p < 0.05 for Wilcoxon Test

Table 4.6: Comparison between the different classification algorithms in terms of accuracy, precision
and recall. Classifiers were trained on the “Speech & Cough” dataset, considering all 15 features

Metrics Classifiers P values

RF KNN SVM LSTM RF-KNN RF- SVM RF-LSTM KNN-SVM KNN-LSTM SVM-LSTM

Accuracy 89.9 ±3.9% 75.6 ±2.5% 84.8 ±2.8% 94.4 ±5.4% 0.002* 0.894 0.550 0.020* 0.001* 0.178
Precision 74.6 ±15.2% 61.3 ±16.2% 75.9 ±5.1% 93.2 ±8.9% 0.199 0.790 0.008* 0.019* 0,001* 0.108

Recall 85.3 ±6.7 57 ±5.8% 65.4 ±18.5% 93.3 ±5.1% 0.002* 0.618 0.408 0.083 0.001* 0.029*

p < 0.05 for Wilcoxon Test

p-values point out that in KNN case with all features, the dataset has an impact on the

performance. In fact the precision went from 81.5% with “Complete’ dataset against

a 72.2% with “Speech & Cough”. The SVM has only the accuracy different when 15

features are used, as shown in table 4.8 so it has better accuracy when “Complete”

dataset is used. The LSTM has a significantly higher precision and recall when the

“Complete” dataset is used with respect to “Speech & Cough” one, when all features

are utilized.

Table 4.7: Comparison between the different datasets “Complete” and “Speech & Cough” in terms
of accuracy, precision and recall. The classifiers were trained with all the 56 features

Accuracy Precision Recall

Complete Speech & Cough p value Complete Speech & Cough p value Complete Speech & Cough p value

RF 88.2 ±1.7% 90.2 ±2.2% 0.162 76.3 ±9% 73 ±13.8% 0.734 82.5 ±8.5% 86.6 ±5.1% 0.162
KNN 86.1 ±3% 79.8 ±3.3% 0.001* 82.6 ±6.2% 69.5 ±18.8% 0.089 75.5 ±10.5% 63.9 ±9% 0.021*
SVM 87.6 ±1.3% 85.2 ±2.9% 0.054 78.5 ±14.3% 76.5 ±4.6% 0.623 80.5 ±14.3% 65.6 ±17.7% 0.140
LSTM 94.4 ±2.8% 95.9 ±2.8% 0.179 96.8 ±2.4% 95.2 ±8.2% 0.001* 92.4 ±3.3% 98.2 ±8.1% 0.001*

p < 0.05 for Wilcoxon Test

Table 4.8: Comparison between the different datasets “Complete” and “Speech & Cough” in terms
of accuracy, precision and recall. The classifiers were trained with 15 features selected

Accuracy Precision Recall

Complete Speech & Cough p value Complete Speech & Cough p value Complete Speech & Cough p value

RF 86.1 ±4.8% 89.8 ±3.9% 0.121 75.1 ±4.8% 74.6 ±15.2% 0.385 78.7 ±9.3% 85.3 ±6.7% 0.064
KNN 76.5 ±2.3% 75.6 ±2.5% 0.162 66.3 ±2.3% 61.3 ±16.2% 0.678 60.9 ±10.5% 57 ±5.8% 0.427
SVM 87.8 ±1.2% 84.8 ±2.8% 0.021* 78.7 ±11.6% 75.9 ±5.1% 0.427 78.5 ±4.7% 65.4 ±18.5% 0.186
LSTM 91.1 ±6.5% 94.4 ±5.4% 0.239 93.5 ±6.4% 93.2 ±8.9% 0.761 90.6 ±8.5% 93.3 ±5.1% 0.150

p < 0.05 for Wilcoxon Test
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4.3.1 ROC Curves

A simple way to visualize the different classifiers performances is by using the ROC

Curve. The ROC curve represents the “True positive rate” against the “False positive

rate”. The area under each curve, AUC, is computed and can be used as a performance

Figure 4.5: ROC when classification algorithms are trained with “Complete” dataset and all 56
Features

metric as well. The ROC Curves shown in figure 4.5 represent the results from “Com-

plete” dataset with all features used for the four different classification algorithms. As

it is possible to observe, the LTSM and RF have a greater area under the curve with

respect to SVM and KNN, showing a better general performance.

The ROC Curves shown in figure 4.6 represent the results from “Complete” dataset

with the selected 15 features used. The LTSM, RF and SVM have a greater area un-

der the curve with respect to KNN, showing a better general performance. The ROC

Curves in figure 4.7 represent the results from “Speech & Cough” dataset when all the

features are used. The classifiers show different curves, the best one is the LSMT’s one,

while RF ans SVM perform similarly and KNN presents the curve with the smaller

area, meaning the worst performance. The ROC Curves shown in figure 4.8 represent

the results from “Speech & Cough” dataset with the selected 15 features used. The

LTSM, RF and SVM have a greater area under the curve respect to KNN, showing a

better general performance.
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Figure 4.6: ROC when classification algorithms are trained with “Complete” dataset and selected
15 Features

Figure 4.7: ROC when classification algorithms are trained with “Speech & Cough” dataset and all
56 Features
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Figure 4.8: ROC when classification algorithms are trained with “Speech & Cough” dataset and
selected 15 Features
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Conclusions

5.1 Conclusions

This thesis work uses machine learning techniques typically used in speech recognition

to identify respiratory sounds and extract information from them. The aim of this

work was to develop a classification model to assess patients’ respiratory health and

quality of life through the count of cough events. This thesis work is articulated across

different fields of investigation. Initially, a deep study of the literature was performed

in order to identify which of the many parameters that could be extracted from the

audio were the more promising and which frame length was the more appropriate to

detect cough events. After those elements were defined, features were extracted from

the audio divided in overlapping frames. Then, through statistical analysis, the most

significant features were chosen to perform classification on the collected data. Different

classifiers, trained to detect cough events inside audios containing speech and environ-

mental sounds, were compared and evaluated. The algorithms compared in this work

were both classical machine learning methods, such as Random Forest with Bagging,

Support Vector Machine, K-Nearest Neighbours and deep machine learning methods,

Long Short-Term Memory. They were trained with two different datasets, one con-

taining speech sounds and cough, the other containing also environmental noises, to

investigate possible differences in performance when environmental noises were added.

The classifier performances were obtained after a 10-fold cross validation. The obtained

71



Chapter 5: Conclusions

performance metrics were analyzed and the overall classifiers analysis showed that there

was difference between them. The best classifier resulted to be LSTM. Its performance

metrics outperformed other studies results, such as Liu et al. [9] and Tracey et al. [6]

Lucio et al. [10] which achieved, with different methods, respectively 91%, 81% and

87% sensitivity in detecting cough events. LSTM instead performed with 92.4 ± 3.3%

sensitivity and 96.8 ± 2.4% precision, if trained with “Complete” dataset and all the

features. Then, the metrics analysis showed that all the methods were robust to noise.

This could be inferred from the fact that the algorithms’ performances did not show

significant difference when the two different datasets were used. Only for the KNN

classifier, when using the “Complete” dataset, an increase in the classification ability

was observed. LSTM, specifically, obtained p-values for both precision and sensitivity

lower than 0.001, showing that this method is robust to noise. The work explored the

statistical significance of the features selection, so if selecting 15 features instead of

using all the 56 brought benefits to the classification. The result was that, in the algo-

rithms used, it decreased the dimensionality of the problem but without improving or

decreasing the performance. KNN was the the algorithm whose performance decreased

with the features selection, showing that some important information for the classifier

was lost. The other classifiers did not show difference when the features used were only

15. In particular, LSTM did not show a significant difference when using the features

subset, obtaining p-values for precision and sensitivity equal to 0.163 and 0.239 respec-

tively. In general, features selection resulted not to be a mandatory step, especially

for the LSTM neural network. Anyway, because it did not decrease the performance,

it could be applied to reduce the dimensionality of the problem. In conclusion, LSTM

was shown to be significantly better than all the other methods, robust to noise and

still performing after features selection. For these reasons, it is the indicated choice for

future developments.

5.2 Limits and Future Developments

One of the limits of this work are the lack of different neural networks architectures

and the comparison with the VGG (Visual Geometry Group) method, developed at
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the University of Oxford. VGG nets are Convolutional neural networks developed to

perform localization and classification tasks [139]. They can be used as a method to

detect the cough events, along with the LSTM. Otherwise, they can be used as a com-

parison with the LSTM, due to the fact that VGG nets are already implemented and

optimized for sounds recognition, cough included. Moreover, some LSTM parameters,

such as hidden neurons number, could be tuned furthermore, and the most perform-

ing segment length for cough detection, which is the part of the audio that has to be

considered as the unit to classify, should be assessed. A possible development of this

work could be to evaluate and optimize the segment length, which is the part of the

audio used to identify the single cough event and that the algorithm tries to classify.

Another possibility could be assessing the minimum number of features the classifier

could use while maintaining good performance. Finally, a possible application of this

work could be using the best algorithm configuration to detect on-fly the cough events

and to count them during the day. Within this framework, the development of a mo-

bile app, which could be used on a day-by-day basis by a large amount of users, but

specially designed for elderly, in a transparent and non-intrusive way, would be useful.

Further improvements could consist in the creation of an User Interface and, in a more

advanced future, the insertion of an emotion analyzer from speech into the model, that

could be implemented with the same predictors, classifier and in a parallel algorithm.
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Full Features Statistical Analysis

The following figures represent all the features median and interquartile range for each

class. The predictors represented are the one chosen by MRMR, without the most

important that instead are represented in section 4.1. In figure A.1 and figure A.2 the

features from dataset “Complete” are represented. In figure A.3 and figure A.4 the

features from dataset “Speech & Cough” are shown.

Figure A.1: Median & IQR: “Complete”, part 2.
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Figure A.2: Median & IQR: “Complete”, part 3.

Figure A.3: Median & IQR: “Speech & Cough”, part 2.
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Figure A.4: Median & IQR: “Speech & Cough”, part 3.
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