
Executive Summary of the Thesis

Engineering microservice-based Self-Adaptive Systems: the case of
RAMSES

Laurea Magistrale in Computer Science and Engineering - Ingegneria Informatica

Authors: Giancarlo Sorrentino, Vincenzo Riccio

Advisor: Prof. Raffaela Mirandola

Co-advisor: Prof. Matteo Camilli

Academic year: 2021-2022

1. Introduction
As the size and complexity of software sys-
tems keep increasing, a microservice architec-
ture is often chosen as an architectural style for
service-based systems (SBSs). These systems in-
tegrate several (micro)services, which are com-
monly located in multiple computing infrastruc-
tures, spread across the world. In this context,
the problem of managing such big and complex
systems is noteworthy, since direct human in-
tervention is challenging, time-consuming and
error-prone.
Self-Adaptive Systems (SASs) tackle this prob-
lem by autonomously adapting themselves, in
order to achieve user-defined goals in response to
changes in the underlying environment or in the
system itself, without human intervention [6].
However, SASs are usually challenging and ex-
pensive to develop, both in terms of time and
resources.
To address this problem, we developed an ex-
tensible software framework called RAMSES,
a Reusable Autonomic Manager for microSer-
vicES. The goal of RAMSES is to enforce the
satisfaction of user-defined Quality-of-Service
(QoS) specifications for the target SBS at
runtime, while improving its overall perfor-

mance. Our work also includes a standalone
microservice-based application – SEFA – that
serves as a managed subsystem, providing the
scientific community with a fully-implemented
SAS, which comprises two reusable and indepen-
dent subsystems.
RAMSES implements a microservice-based
MAPE-K loop, and it has been designed to ease
the (re)use of the system by a user who wants
to adapt a preexisting service-based application.
As a consequence, a common technology stack
was chosen for the implementation (e.g., Java,
Spring).
We corroborate our work with an experimen-
tal campaign, to analyse how RAMSES behaves
in specific scenarios that synthetically reproduce
relevant operating conditions.
Finally, we present the conclusion of our work
and the future research directions.

2. Background and Related
Work

During the last years, the complexity of software
systems started increasing fast. They became no
longer restricted to few components located in
small and easily controllable areas, but made of
a huge number of interconnected and distributed

1



Executive summary Giancarlo Sorrentino, Vincenzo Riccio

Figure 1: A Conceptual Architecture for Self-
Adaptive Software Systems [1]

devices, as in the Internet of Things field. Hence,
the need for automatic (re)configuration and op-
timization mechanisms for those systems arose,
aiming at satisfying their admin’s goals with-
out human intervention. Self-adaptation is com-
monly recognised as an effective approach to
cope with this need [6, 7].
Self-Adaptive Systems are systems capable of
adjusting their behaviour in response to their
perception of the environment and of the over-
all system [2]. As outlined in Figure 1, they
promote separation of concerns between a Man-

aging (Sub)system and a Managed (Sub)system.
The Managing Subsystem implements the adap-
tation logic to manage the Managed Subsys-
tem, which encloses the domain logic. The self-
adaptive system operates in an observable en-
vironment, which might affect the adaptation
logic. The concerns of the managing system over
the managed system are known as adaptation

goals and can be grouped into four categories:
self-configuration (i.e., to configure themselves
automatically given a set of high-level policies),
self-optimisation (i.e., to adapt themselves to
improve their performance or cost), self-healing
(to detect and repair internal problems), and
self-protection (to protect themselves from ma-
licious attacks or harmful problems).
The managing subsystem is often modelled as a
feedback loop made of four stages:

1. monitoring (M) of the environment and of
the managed subsystem;

2. analysis (A) of the data;
3. plan (P) of the adaptation strategies;
4. execution (E) the adaptation.

This kind of loop, shown in Figure 2, is referred
to as MAPE-K, and it involves a shared Knowl-
edge (K) serving as a repository for the data
needed by the loop execution. Self-adaptive sys-
tems gained more and more attention from the

Figure 2: Structure of a SAS implementing a
MAPE-K loop (based on [6])

scientific community, whose research focused on
different applications of such systems. To anal-
yse the studies conducted so far, the systematic
review of SASs proposed in [7] by Wong et al.
was used as a reference. In addition, some ex-
emplars published on the website on Software

Engineering for Self-Adaptive Systems
1 were ex-

amined.
Recent surveys and systematic reviews [4, 6, 7]
stress the problem of engineering such systems.
The ideal solution to build a Self-Adaptive Sys-
tem would be to design both the Managing and
the Managed System together, optimizing their
interaction: indeed, the Managing subsystem
would be tailored to the Managed one, that in
turn would be designed to efficiently and effec-
tively interact with the former. However, this
approach is expensive, both in terms of time and
resources.
Frameworks like RAINBOW [3] address this
problem by proposing a reusable infrastructure,
which still requires some effort to fully under-
stand how to set it up and combine it with a pre-
existing web or service-based application. More-
over, it needs both a formal definition of the
model – using the ad-hoc Stitch self-adaptation
language – and a translation infrastructure for
communications from and to the managed sys-
tem, which implies both a high design and de-
velopment complexity.
When dealing with SBSs, different Self-Adaptive
Systems usually share part of their adaptation
goals. More specifically, they usually address the
problem of dynamically ensuring some Quality-
of-Service (QoS) specifications while optimizing
the overall system’s performance. Differently

1http://www.self-adaptive.org/exemplars

2

http://www.self-adaptive.org/exemplars


Executive summary Giancarlo Sorrentino, Vincenzo Riccio

Scenario Observable Properties Examples of Adaptation

S1: Violation of QoS
specifications

Values of the QoS indicators of the
service over time (e.g., availability,
average response time)

– Change the current service implementation
– Add instances in parallel
– Shutdown of an instance with low performance
– Change configuration properties

S2: Service unavailable Success or failure of each service in-
vocation

– Change the current service implementation
– Add instances in parallel

S3: Better service im-
plementation available

Properties of the service implemen-
tations

– Change the current service implementation

Table 1: Adaptation scenarios

from the studies analysed during our work, our
solution is not limited to domain-specific adap-
tations or to a specific technology stack but aims
at providing a flexible and reusable Managing
System, focused on dynamic QoS management
and optimization for different SBSs.
Our domain of interest is the one in which an
already existing service-based application needs
to be extended with a managing subsystem to
perform self-adaptation, implementing a man-
aging subsystem. In this case, the best solution
would be to design an ad-hoc Managing System,
that suits the specific domain and needs of the
Managed one. However, this approach intro-
duces tight coupling in the overall SAS, which
could lead to maintainability issues and increas-
ing costs.
To overcome these drawbacks, we propose the
engineering of a reusable self-adaptive system.
To bring this approach to fruition, we have im-
plemented:
• SEFA, a SErvice-based eFood Application

implementing the managed subsystem;
• RAMSES, a Reusable Autonomic Manager

for microServicES implementing the appli-
cation logic.

As the name suggests, SEFA is a Java-based mi-
croservice application that allows customers to
browse a list of restaurants and their respective
menus, choose some dishes, and finally place or-
ders, paying for them by credit card and getting
them delivered to a specific address.
On the other side, RAMSES represents the man-
aging subsystem, and it is made of configurable
and extendable components, whose behaviour
does not depend on the specific Managed Sys-
tem to be adapted. The design of RAMSES was
driven by the adaptation scenarios described in
Table 1.

Figure 3: High-level architecture of the proposed
SAS

The complete architecture is summarized in Fig-
ure 3.

3. SEFA
To test the proposed solution and to build a
microservice-based system that could be easily
reused and adapted for research purposes, we de-
veloped SEFA. It is implemented in Java and de-
veloped using the Spring Boot and Spring Cloud
frameworks. As the architecture is designed ac-
cording to the microservice pattern, the server-
side logic is made up of multiple microservices,

3



Executive summary Giancarlo Sorrentino, Vincenzo Riccio

which expose REST APIs using the JSON for-
mat. Such services are the following:
• the Restaurant Service, in charge of manag-

ing the restaurants available on the appli-
cation and their respective menus;

• the Ordering Service, in charge of manag-
ing all the customers’ carts, and of allowing
them to place their orders; it interacts with
the Restaurant Service and with the two
proxy services (adapter pattern) to reach its
goal;

• the Payment Proxy Service, in charge of me-
diating with a third-party payment service
provider (i.e., who processes the payment)
during the elaboration of the order;

• the Delivery Proxy Service, in charge of me-
diating with a third-party delivery service
provider (i.e., who delivers the order to the
customer) during the elaboration of the or-
der.

Since SEFA highly depends on the service
providers, the circuit breaker pattern is used, in
order to improve the resilience of the applica-
tion and to mitigate the impact that potential
failures or abnormal response times of the third-
party services may have on the end-user.
To exploit the advantages brought by the mi-
croservice architecture, multiple instances of
each service can run in parallel. This introduces
the problem of applying the same configuration
to all the instances of the same service, that has
been addressed by using a centralised configura-
tion server.
Being in a distributed setting, in order to dis-
cover the location of the instances and to choose
the one to make a request to, client-side service
discovery and load-balancing are applied. The
load balancer algorithm used is based on fitness

proportionate selection, also known as roulette

wheel selection [5].
Finally, in order to ease the communication,
SEFA includes a single entry point in charge of
processing and routing the end users’ requests
to the internal microservices, according to the
API gateway pattern.

4. RAMSES
RAMSES is a managing subsystem designed as a
distributed MAPE-K loop, implemented in Java
using the Spring Boot framework. Each stage
of the loop is implemented as a standalone mi-

croservice and is described in its respective sec-
tion.
As anticipated before, the main characteristic
of RAMSES is being reusable with different
service-based Managed Systems. To enforce this
feature, RAMSES is designed to interact with
the Managed System via two components: a
Probe component, that allows RAMSES to re-
trieve all the relevant data from the Managed
System, and an Actuator component, that al-
lows RAMSES to effectively perform operations
on the system. These components must be pro-
vided together with the Managed System itself,
and must offer a specific set of APIs, defined by
RAMSES.

4.1. Knowledge
The Knowledge component is the one holding
the system model. For this reason, it is the
source of truth for the entire loop. Indeed, the
Knowledge interacts with the other loop com-
ponents to maintain and provide them with an
up-to-date runtime model of the system.

4.2. Monitor
The Monitor component is in charge of collect-
ing data from the Managed System periodically.
At each iteration it queries the Probe compo-
nent provided by the Managed System, asking
to perform a snapshot of all the instances of each
service. Each snapshot contains statistics about
the resource usage of the instance (e.g., CPU
and disk usage), about the processed HTTP re-
quests (e.g., response time, number of errors)
and about the circuit breakers, if any.
The Monitor routine runs periodically and asyn-
chronously with respect to the rest of the loop:
it accumulates all the snapshots in a tempo-
rally ordered buffer, and it stores them in the
knowledge-base as soon as a new loop iteration
starts. When this happens, the Analyse compo-
nent is notified to start its iteration.

4.3. Analyse
The Analyse component is in charge of process-
ing the latest snapshots of all the service in-
stances and of updating the Knowledge with
the new values for the QoS indicators handled
by RAMSES, for all the services and their in-
stances. Furthermore, it is in charge of deter-
mining the adaptation options to force or pro-

4



Executive summary Giancarlo Sorrentino, Vincenzo Riccio

pose for each managed service.
The analysis starts as soon as this component
is notified by the Monitor. The first step is to
analyse the status of each instance i. If i is
considered suitable for the next steps, the lat-
est snapshots are processed in order to compute
a new value for each QoS property.
If undesired behaviours are detected during the
analysis of a service, RAMSES may impose some
forced adaptation options, that will be applied
in any case at the end of the current loop iter-
ation. Otherwise, for each QoS indicator, their
latest values are processed in order to determine
whether a service requires adaptation. If so, the
Analyse component proposes some adaptation
options, that will be evaluated during the Plan
stage.
For each service implementation s, the current
RAMSES implementation includes four different
types of adaptation options:
• the Add Instance option, which represents

the action of adding a new instance of s;
• the Shutdown Instance option, which repre-

sents the action of shutting down the spe-
cific instance it refers to;

• the Change Implementation option, which
represents the action of replacing the in-
stances of s with instances of the service
implementation specified by the option;

• the Change Load Balancer Weights op-
tion, which, for a service balanced using
a fitness proportionate selection algorithm,
represents the action of redistributing the
weights associated with all the running in-
stances of s.

Future versions of RAMSES may extend this list
by including new adaptation options.

4.4. Plan
The goal of the Plan component is to determine
which are the best adaptation options among all
the ones proposed during the current loop iter-
ation. For each managed service, if there is at
least one forced option, the non-forced ones are
discarded, while all the forced ones are directly
chosen. Conversely, all the options are processed
and compared to extract the one estimated to
bring more benefits to the service it refers to.
The benefit of each option is computed by es-
timating the value that each QoS indicator is
expected to have after applying option. When

a service is load balanced using a fitness propor-

tionate selection algorithm, the weights of the
instances of the service involved are modified de-
pending on the option to apply:
• when an instance should be added, the Plan

assigns a fraction of the total weight to
the new instance, resizing the weight of the
other instances;

• when an instance should be shut down, the
Plan equally redistributes its weight among
the other instances;

• when the service implementation should be
changed, the Plan equally splits the total
weight between the instances of the new ser-
vice implementation;

• when the weights of the running instances
should be changed, the Plan redistributes
the instance weights by solving a mixed
integer linear programming (M-ILP) opti-
mization problem.

4.5. Execute
The Execute component retrieves from the
Knowledge all the adaptation options chosen by
the Plan during the current loop iteration, if any.
For each of them, according to their type, the
Execute contacts the Actuator component to ef-
fectively apply the changes required by the con-
sidered adaptation option.
The Execute component, and consequently
RAMSES itself, assumes that all the operations
requested to the Actuator are eventually exe-
cuted, and that all the changes of service config-
urations are performed within a reasonably short
amount of time.

5. Experimental Evaluation
An experimental campaign was conducted in or-
der to assess how RAMSES behaves in specific
scenarios that synthetically reproduce relevant
operating conditions, while at the same time de-
termining the impact that its configuration pa-
rameters have on the overall adaptation process.
In particular, SEFA was selected as the system
to be managed by RAMSES.
In order to create an experimental environment
in which the managed services exhibited un-
wanted behaviours (e.g., QoS constraints not
satisfied, high failure rate, etc.), we synthetically
injected issues in the managed system by manip-
ulating the services instances, artificially slow-

5



Executive summary Giancarlo Sorrentino, Vincenzo Riccio

ing their execution or causing failures. More-
over, to analyse the results in a quantitative way,
we adopt the so-called QoS Degradation Area
(QoSSDA) indicator. Given a managed service
and the plot of its values for the selected QoS in-
dicator, we define the QoSDA as the total area
between the considered QoS threshold and its
corresponding QoS value trend, in the portion
of the graph where the QoS specification is not
satisfied.

0 2 4 6 8 10

0.7

0.8

0.9

1

t

With adaptation
Without adaptation

Threshold
Adaptation point

Figure 4: Restaurant Service availability

With respect to the adaptation scenarios pro-
posed in Table 1, we noticed that our system is
capable of performing adaptation options that
actually improve the performance of SEFA. As
shown in Figure 4, concerning scenario S1 we ex-
perienced an improvement in the QoSDA value
for the availability of the Restaurant Service
(i.e., the red area) of 88%, with respect to the
case in which no adaptation is performed.

0 20 40 60 80 100

0

1

t

Client POV
Managing System POV

Figure 5: Payment Proxy Service running in-
stances

As shown in Figure 5, concerning scenario S2,
we assessed that RAMSES is actually capable
of detecting failures, replacing the unavailable
instances when needed. Moreover, it is also able
to effectively detect the instances prone to end
up in a failed or unreachable status, replacing
them with new ones.
Finally, concerning scenario S3, we assessed the

self-optimization capabilities of RAMSES. In
our experiment, RAMSES improved the perfor-
mance of the system by changing the service
implementation of the Payment Proxy Service,
which increased its availability from ⇡ 0.96 to
⇡ 1.0, even if its requirement was already satis-
fied.
To conclude our campaign, a final experiment
was conducted, replacing SEFA with a different
managed system, composed by two services:
• the Randint Producer Service, which gener-

ates random integer numbers upon request;
• the Randint Vendor Service, which contacts

the Randint Producer Service to obtain a
new random integer.

As shown in Figure 6, RAMSES was able to
adapt the new system and make it satisfy its
specification, without requiring any modifica-
tion to its adaptation logic.

0 5 10

100

150

200

250

t

With adaptation
Threshold

Adaptation point

Figure 6: Randint Vendor Service average re-
sponse time

6. Conclusions and Future
Work

Developing Self-Adaptive Systems is a challeng-
ing task. Their development process is cost
and time demanding, whether developing both
the Managing and Managed subsystems from
scratch or starting from a preexisting applica-
tion to be adapted.
Even if some works have already addressed this
problem by proposing a reusable infrastructure
to ease the engineering of SASs (e.g., the RAIN-
BOW framework [3]), they are not ready-to-use,
due to their abstraction and generality, and also
a significant amount of time and effort is re-
quired to set them up.
RAMSES aims at providing a Managing System
that is easily reusable for service-based applica-
tions. Given a probe and an actuator component

6



Executive summary Giancarlo Sorrentino, Vincenzo Riccio

offering specific interfaces and satisfying a set of
prerequisites, RAMSES is able to adapt differ-
ent applications without changing its managing
logic. Moreover, since it was designed according
to the microservice architectural pattern, it also
allows to exploit the advantages brought by the
use of this pattern, such as modularity, decou-
pling and easy maintainability.
The proposed solution is a first attempt at real-
ising a modular and reusable Managing System,
which is open to further improvements. Future
versions of RAMSES could propose a deeper
analysis process or extend its set of adaptation
options. In particular, an enhanced analysis rou-
tine could also take into account other metrics
(e.g., resources usage and circuit breakers met-
rics) in order to build more reliable indicators of
the managed services’ performances.
At the time of writing, the adaptation options
to apply are chosen by RAMSES according to
the benefit they are estimated to bring to the
system. Further versions of RAMSES could en-
compass a more complex decision-making pro-
cess, enriching the existing one by taking into
account the costs and the risks deriving from the
application of an adapt option. Moreover, the
benefit estimation could also consider analysing
the history of performed adaptation options, us-
ing machine-learning techniques to quantify the
actual benefits they brought to the managed sys-
tem.

References
[1] Jesper Andersson, Luciano Baresi, Nelly

Bencomo, Rogério de Lemos, Alessandra
Gorla, Paola Inverardi, and Thomas Vo-
gel. Software engineering processes for self-
adaptive systems. In Software Engineering

for Self-Adaptive Systems II, pages 51–75.
Springer, 2013.

[2] Betty H. C. Cheng, Rogério de Lemos, Hol-
ger Giese, Paola Inverardi, Jeff Magee, Jes-
per Andersson, Basil Becker, Nelly Ben-
como, Yuriy Brun, Bojan Cukic, Giovanna
Di Marzo Serugendo, Schahram Dustdar,
Anthony Finkelstein, Cristina Gacek, Kurt
Geihs, Vincenzo Grassi, Gabor Karsai, Hol-
ger M. Kienle, Jeff Kramer, Marin Litoiu,
Sam Malek, Raffaela Mirandola, Hausi A.
Müller, Sooyong Park, Mary Shaw, Matthias

Tichy, Massimo Tivoli, Danny Weyns, and
Jon Whittle. Software Engineering for Self-

Adaptive Systems: A Research Roadmap,
pages 1–26. Springer Berlin Heidelberg,
2009.

[3] D. Garlan, S.-W. Cheng, A.-C. Huang,
B. Schmerl, and P. Steenkiste. Rain-
bow: architecture-based self-adaptation
with reusable infrastructure. Computer,
37(10):46–54, 2004.

[4] Christian Krupitzer, Felix Maximilian Roth,
Sebastian VanSyckel, Gregor Schiele, and
Christian Becker. A survey on engineering
approaches for self-adaptive systems. Per-

vasive and Mobile Computing, 17:184–206,
2015.

[5] Melanie Mitchell. An Introduction to Ge-

netic Algorithms, pages 124–125. The MIT
Press, 1999.

[6] Danny Weyns. Engineering self-adaptive
software systems – an organized tour. In
2018 IEEE 3rd International Workshops on

Foundations and Applications of Self* Sys-

tems (FAS*W), pages 1–2, 2018.

[7] Terence Wong, Markus Wagner, and
Christoph Treude. Self-adaptive systems:
A systematic literature review across cat-
egories and domains. Information and

Software Technology, 148:106934, 2022.

7


	Introduction
	Background and Related Work
	SEFA
	RAMSES
	Knowledge
	Monitor
	Analyse
	Plan
	Execute

	Experimental Evaluation
	Conclusions and Future Work

