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Abstract 

 

Every day new strategies are studied to reduce the computational cost and the time 

consumption for the preliminary design phase of composite material structures. 

Surrogate models and optimization algorithms that are no gradient based are 

particularly interesting due to their efficiency with a relatively small consumption 

of resources. The goal of this work is to develop a computational tool based on 

Artificial Neural Networks for analysing structural problems. The study is focused 

on free vibration and buckling problems of variables stiffness panels (VSP) 

maximizing the value of the first natural frequency and the first buckling load, 

respectively. Furthermore, in the analysis is introduced a parametrization of the 

orientation angles of the fibres by using Lamination Parameters. However, this 

conversion of the design variables introduces non-linear constraints that requires 

some attention during sampling procedures. One crucial aspect associated with the 

use of Lamination Parameters is the need for recovering a set of orientation angles 

if the laminate that is optimized would be manufactured. The maximization of the 

considered values is obtained implementing a particle swarm optimization (PSO) 

algorithm inside the process. Furthermore, the PSO is used also to obtain the angle 

orientation from the lamination parameters. All the computational parts are done 

using MATLAB® with the use of codes written for this study and ones already 

implemented in the software. The work demonstrates that the process studied 

halves significatively the time consumption respect classical methods, introducing 

in the process an error of maximum 3%. 

 

Keywords: variable stiffness panels, lamination parameters, artificial 

neural network, particle swarm optimization, transfer-learning. 
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Chapter 1 
 

Introduction 
 

 

When a structural part is designed, preliminary analysis are conducted to evaluate 

the effects of material, thickness, or other characteristic on the desired 

performances. Different methods are commonly used. The most common strategy 

refers to the use of the finite element analysis (FEM). However, the time 

consumption can be relatively high for preliminary design studies. New strategies 

are thus of interest to reduce the time spent and the computational costs, while 

guaranteeing similar level of prediction accuracy respect the standard strategies. 

One of the possibilities is that of using a surrogate model, i.e. a data-driven model 

that mimics the physics of the problem. 

Goal of this investigation is the analysis of variable-stiffness plates (VSP) obtained 

by means of curvilinear fibre paths. Different schemes were proposed in the 

literature [1][2] for the orientation of the fibres for this kind of composite 

structures, increasing the complexity of the problem as the distribution is more 

elaborate. In fact, where the path of the fibres is not straight, a series of parameters 

are added to fully describe the laminate. 

To simplify the problem reducing the number of design variables, a parametrization 

is implemented by Sethoodeh et al. [3][4] and by IJsselmuiden [5]. Therefore, the 

orientation angles of the fibres are converted in a set of lamination parameters. 

However, this conversion has some drawbacks. A post-processing is needed to 

evaluate the orientation angles distribution in each ply related to the lamination 

parameters sets. Another drawback that is introduced by the parametrization, is 

the need of a different failure criterion that does not depend on the orientation 

angles. 

Due to the large number of degrees of freedom of VSP structures, non gradient-

based optimization methods are preferable for a more efficient analysis [6]-[9]. The 

particle swarm optimization algorithm (PSO) or the genetic algorithm (GA) are 

examples of non gradient-based algorithms. 

The work focuses on the evaluation and maximization of the first natural frequency 

and the first buckling load. 
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1.1   Variable stiffness laminates 
 

Composite laminates can be subdivided into two main categories depending on the 

scheme used to place the fibres in the plies. The first category refers to the classical 

laminate fibres orientation, where each ply has a constant orientation angles along 

the ply. The second category is composed by the variable stiffness composites 

(VSP). This kind of composite structure can be manufacturable due to the 

innovation on the fibre placement that allows a curvilinear displacement of the 

fibres. 

Variable stiffness structures have different patterns of orientation angles of the 

fibres, that are placed with a linear or with a greater order of variation along one or 

both axes [1][2]. As a reference, different patterns are reported in the following 

figure: 

 

 

Figure 1: Curvilinear fibre path along one axis in a ply that varies linearly (a), quadratically 

(b), and cubically (c) [1] 

 

This kind of composite structure are characterised by a larger amount of degrees of 

freedom respect to the classical laminate structure, i.e. a quadratic distribution 

along both axes leads to 9 variables for each ply. The degrees of freedom obtained 

in this way allow a more efficient design obtaining structures with improved 

properties. 
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Gürdal et al. [10] considered the orientation angles of the fibres in some defined 

points of the structure, obtaining the angles between them by interpolation. 

However, due to the augmented complexity, in literature parametrization of the 

orientation angles are commonly used in order to reduce the number of design 

variables that have to be tuned [3]-[5].  

The advantages of such strategies were expressed by Pasini et al. [2] comparing the 

properties of classical and variable stiffness plate. In fact, the VSP structures allow 

a better distribution of the stiffness of the plate. For example, the application of 

span-wise constant membrane load might results in a non-constant membrane 

deformation [11], as reported in the figure below: 

 

 

Figure 2: Example of VSP where the dash lines represent the deformation related to the load 
applied [11] 

 

The deformations shown in Figure 2 are due to the misalignment of the orientation 

of the fibres respect to the direction of the load. The structural benefits of VSP are 

obtained by tailoring the material properties in directions that are more favourable 

to carry loads within the laminates. Liu et al. [12] and Gürdal et al. [13] 

demonstrated a better resistance to instability of the VSP structures. Furthermore, 

Khashaba et al. [14] shown the possibility to build VSP with even the presence of 

one or more holes. 
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1.2   Manufacture of composite materials 
 

The technologies behind the manufacture of composite materials change and 

evolve during years. The classical composite structure can be built by manual 

placement of each ply or even with the use of mechanical processes, i.e. robotic 

harms. Robotic harms were used in filament winding and the implementation of 

complex algorithms inside those ones grant the possibility to build more elaborate 

patterns of the fibres with an excellent precision. Furthermore, more complex 

shapes of structures can be built with these robotic harms, reducing the efforts, and 

saving time. In figure below is reported an example of automated fibre placement 

machine: 

 

 

Figure 3: Automated fibre placement machine [15] 

 

The placement head of the fibre placement machine can soften the prepreg tows 

and places it on the surface of the mold according to the predetermined path, and 

then presses it with the compaction roller. The tow contains many fibres and 

several of these generate the tow bands. Each tow can be cut and resent 

independently, and the angle of the tow can be changed. Furthermore, the placed 

fibres have to be bent with a radius bigger than the maximum radius of curvature 

allowed for the fibre, in order to avoid their cracks during the placement procedure 

or avoid wrong placement due to the mechanical properties of the material. Zheng 

et al. [15] studied methods to avoid gap and defect locations in the placement of 
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the tows due to the cutting of the fibres. The properties of the gap and defected 

areas are not the one obtained from the project design, generating regions where 

the stiffness drops, or cracks can happen more easily. A graphical representation of 

the two different areas is reported in figure: 

 

 

Figure 4: Example of gap region in grey (left), and completed gap regions obtaining defected 
areas in green (right) [15] 

 

The manufacture disposition of the fibres can also modify the buckling load 

capability [15] because the overlapped parts act as ribs, increasing the range of 

loads that can be applied. 

 

1.3   Lamination parameters 
 

Lamination parameters are employed in substitution of the orientation angles. 

Classical structural optimization problems can be solved with the use of lamination 

parameters [16][17] and also for problems with variables stiffness composite 

structures [3]-[5]. 

The lamination parameters can be used to obtain the lamination constitutive 

matrices of the classical lamination theory, using material invariants and reduced 

stiffness components. Furthermore, lamination parameters can define the shear 

terms of the laminate constitutive matrices and the ones referred to the thermal 

load [5][16]. However, lamination parameters must verify some non-linear 
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constrains, introduced by their definition, in order to have a physical meaning [18]-

[20]. 

The use of a VSP increases the number of parameters that have to be taken into 

account during the whole optimization process, reflecting on the complexity of the 

surrogate model and on the optimization algorithm. The increase of the number of 

degrees of freedom is balanced by the reduction apported by the conversion 

because, instead of a large number of orientation angles, only a small set of 

numbers is sufficient to fully describe the laminate. In fact, lamination parameters 

condense all the angles in a set of 12 values, independently from the number of 

plies [3]-[5][18]. However, as the complexity of the orientation of the fibres 

increase in the VSP, more parameters are needed to properly describe the laminate 

configuration. For example, if the variation of fibre orientation is at most linear 

along a single direction, 2 sets of lamination parameters are needed. 

One of the main advantages of introducing lamination parameters in optimization 

processes, it is that the optimization surface become convex, allowing a more 

efficient convergence to the optimal value, as reported by Setoodeh et al. [3].  

The use of lamination parameters requires a conversion procedure after the 

optimization process to define the orientation angles of the laminate and make the 

manufacture feasible. There exist different strategies to convert back the 

lamination parameters to the orientation angles. Among the others, optimization 

algorithms, as studied by Friswell et al. [21], or conversion with the use of stream 

function, as reported by Setoodeh et al. [4], can be used. The process to obtain the 

orientation angles from the lamination parameters is affected by errors depending 

on the complexity of the algorithm used, that varies on the number of variables 

considered. The design variables of the post-processing conversion can span over 

different characteristics of the material and the structure, i.e. orientation of the 

fibres, curvature radius (for VSP), thickness of the ply, differences between the 

angles of one ply with the following one. 

The lamination parameters can also be used in the context of failure analysis. 

However, classical methods reported in literature [22] implemented criteria that 

need the orientation angles to obtain the strain distribution in each ply in order to 

check if failures occur. Therefore, a new strategy has to be introduced to check if 

failure occurs in the laminate using directly the parametrization. 
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1.4   Failure analysis 
 

Failure analysis is often conducted, at least in the early design steps, referring to a 

first ply failure criterion. Among the many criteria available in the literature, the 

maximum stress criterion, the maximum strain criterion, the Tsai-Hill criterion, the 

Hoffmann criterion, and the Tsai-Wu criterion [22] are the most commonly 

implemented. All the aforelisted criteria are used to determine if a structure can 

withstand a certain load, depending on the orientation angles of the fibres. 

However, if the orientation angles are substituted by lamination parameters, these 

criteria need to be reformulated accordingly. 

A criterion that can be applied irrespective of the stacking sequence is needed. For 

instance, IJsselmuiden et al. [5][23] presented a solution that solve this kind of 

problem. The strategy implements a Tsai-Wu failure criterion analysis that use the 

lamination parameters to check every possible associated orientation of the angles 

- not only the one presented in the structure considered as in the classical methods 

- and verifies if a failure occurs. The modified Tsai-Wu method presented refers to 

a first-ply-failure criterion. This implies that the laminate is considered damaged 

when the first failure appears in a ply of the structure. 

 

1.5   Surrogate models 
 
Surrogate models are used to reduce time consumption and computational costs 

while guaranteeing a reasonable level of accuracy. Different types of surrogate 

models exist, i.e. Polynomial Regression (PR), Radial Basis Function (RBF), Artificial 

Neural Networks (ANN), Kriging (KRG), and Support Vector Regression (SVR) 

[24][25]. Each surrogate model is composed by polynomials or functions that 

approximate the interconnection between the input data and the output. Pasini et 

al. [2] consider some surrogate models (not the ANN), i.e. the “Polynomial 

Regression (PR)”, the “Radial Basis Function (RBF)”, the “Kriging KRG)”, and the 

“Support Vector Regression (SVR)”. From this analysis, it is determined that the best 

performance for VSP are obtained using KRG algorithm. 

Another promising surrogate method present in the literature, that is not analysed 

by Pasini et al. [2], is the Artificial Neural Network. This method is widely employed 

in literature to solve structural problems due to its versatility and efficiency. Bisagni 

et al. [6] optimize the post-buckling properties of composite stiffened panels using 
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ANN, determining not only the number of plies with orientation ±45°, but also the 

number and the side dimension of the stiffeners. Cardozo et al. [7]  minimized the 

cost and weight of an in-plane loaded composite laminated plates, maximized the 

stiffness shell, and maximized the first natural frequency of a laminated plate. 

Ruijter et al. [8] used ANN to predict the strain and buckling multipliers for 

composite panels with the presence of holes and stiffeners. Shakeri et al. [9] 

investigated the stacking sequence optimization of laminated cylindrical panels 

with the first natural frequency as the objective function. Cardoso and Shakeri 

demonstrated that the procedure that involves ANN is comparable in performance 

with the ones that implements nearly exact numerical computations. They 

demonstrated that ANN has a small difference in accuracy, but also shown a 

reduction in the computational time consumption, using the surrogate model 

instead of the numerical one. 

ANN are also employed in fields that do not involve structural problems thanks to 

their capability of manipulate a large amount of data and their ability to generalize 

result. Some examples of ANN implementation are about time series prediction 

with trend and seasonal behaviour [26][27], research of mathematical function to 

be employed inside ANN [28], detection of leaks in gas pipelines with acoustic 

method [29], optimization of chemical process (industrial cracking furnace) [30], 

optimization of the performance of an aircraft wing modifying the geometric 

parameters [31], and micro-mechanical models approximation to detect the 

mechanical properties of carbon nanotubes fibres [32]. 

Artificial neural networks are composed by a series of neurons organized in 

different layers, that are interconnected one with the other with various topologies 

[33][34]. In literature multilayer perceptron (MLP) network are largely employed 

[2][6]-[9][26][27][29][31][32] with different architectures like “bridge networks”, 

“cascade networks”, or “Radial Basis Function networks (RBFn)” [29]. For tasks that 

could be affected by noise, the RBFn is the best architecture to obtain small errors 

[29][35][36], but generally the other topologies of MLP have smaller errors [35][36]. 

The ANN has to be designed in order to have the smallest number of neurons 

possible. This has to be done to avoid losses in generality, maintaining a good 

approximation level [33], and this task can be done also using automata algorithm 

[37]. Each neuron has inside an activation function to elaborate the input data and 

obtaining an output. For what concerns this functions, Karlik et al. [38], and Zhang 

et al. [39] investigated the performances of different activation functions, 

increasing even more the degree of freedom that have to be tuned to obtain the 

most efficient ANN for the every specific problem. Furthermore, Zoph et al. [28] 
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studied a method to use artificial neural networks to optimise the activation 

function inside the neurons, building new function with the use of an ANN. 

Artificial neural networks need to be trained to perform their tasks by using sets of 

input-output data. The sets are obtained with observation measurements or by 

numerical programmes, such as finite element analysis (FEM) or Ritz’s analysis. 

Therefore, if the sets are obtained by observation measurements, the number of 

sets that are available is fixed, otherwise this number can be treated as a design 

variable. In all the studies in the literature reported, FEM is used to obtain data to 

train the ANN. For what concerns the training, there exist different algorithms and 

even more strategies that modify these methods in order to make them faster or 

more accurate, i.e. changing some internal parameters [40]-[42], increasing the 

order of the algorithm [34][43] and implementing a reduced matrix to speed up the 

process [44][45]. Even optimization algorithms can be used to train an ANN 

[46][47], or to find the optimal number of neurons that have to be considered inside 

the ANN itself [30][48][49]. 

The ANN has also to be tested in order to verify its accuracy, using sets of input-

output data that are not used for the training process. The error on the test sets 

rates the level of approximation, allowing a comparison between different training 

strategies and compositions of the network [34]. 

Generally, surrogate models are implemented in optimization procedures as 

objective function to solve computational heavy problems that require a huge 

amount of time to obtain the results. These methods grant a good level of 

approximation as demonstrated by Pasini et al. [2], Queipo et al. [24], and Hamadi 

et al. [25]. 

 

1.6   Optimization methods 
 
Structural optimizations are often conducted during the early design steps and, for 

this scope, different optimization algorithms are available. 

There exist different strategies of algorithms such as the “Simplex method” (Dantziy 

1947), “branch and bound method” [17], “Newton method”, “feasible direction 

method”, “Prim’s algorithm” and “Kruskal’s algorithm” (for tree problems). A wide 

class of techniques refers to evolutionary algorithms. This kind of optimization 

algorithms tries to mimic the nature like insect swarm (particle swarm 

optimization), ant colonies (ant colony optimization) or even chromosome 
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crossover and breeding (genetic algorithm optimization). Both “particle swarm 

optimization algorithm (PSO)” [11][26][46][50] and “genetic algorithm (GA)” [6]-[9] 

were implemented in structural optimization. This gradient free optimization 

techniques requires a large number of evaluations. Therefore, the strategies that 

implements this kind of algorithms are useful if the analysis takes a small amount 

of time. Furthermore, Venter et al. [46] and Ghashochi Bargh et al. [50] 

demonstrated that for structural problem the PSO algorithm could have better 

performance with respect to the others. 

Some of the internal parameters of the optimization algorithms must be tuned to 

allow a global convergence. In fact, depending on the starting point the optimum 

search can be trapped in a local global, that it could be mistaken for the optimal 

value of the desired characteristic. There exist algorithms, such as the PSO, where 

the starting point does not affect the convergence of the optimization process [46]. 

However, even for this optimization algorithm, the possibility to remain trapped in 

local optimum exists. 

Another aspect that has to be taken into account is the boundary condition of the 

design variables. Most of the algorithms cannot consider complex constraints, but 

only simple upper and lower bound on the value of the variables [46]. Therefore, 

penalty terms must be introduced inside the objective function [11][21], allowing 

the introduction of linear and non-linear constraints, and even Boolean ones. 

 

1.7   Aim of the study 
 
The aim of the study is to develop a procedure to solve structural optimization 

problems with reduced CPU efforts. Two example problems are proposed to fulfil 

this task, where the aim is to find the optimal value for the first natural frequency 

and the first buckling load for a VSP structure. 

Lamination parameters are implemented to reduce the number of design variables. 

To obtain the starting data to train the ANN, a Ritz’s analysis is executed. 

The artificial neural network is selected as surrogate model due to reduce the CPU 

efforts with a small loss in the accuracy. Two separated networks are trained, one 

for the buckling problem and the other one for the free vibration problem. In 

addition, the transfer learning strategy is implemented to further reduce the time 

consumptions. However, the efficiency of this method has to be demonstrated. 
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Classical ANNs are to be preferred over RBF networks due to the better 

performances for problems where noiseless data are available, as reported by 

Pasini et al. [2]. 

The optimization is solved by implementing in the process the PSO. Furthermore, 

this algorithm is also used in this work to solve the post-processing conversion to 

obtain the orientation angles to make the manufacture feasible. 

In addition, a failure criterion to check if the laminate described with the use of 

lamination parameters suffers cracks under the action of a specific load applied is 

introduced to complete the design process. 

The configuration that implements lamination parameters, ANN, and PSO is not 

used all together in literature. In addition, smaller innovations are present in some 

parts of the work, i.e. the transfer-learning analysis to connect the buckling and the 

free vibrational problem, and the weights determination for the PSO objective 

function in the post-processing phase. In this latter case, the strain energy [51] is 

used to determine the weights of the different parts inside the objective function. 

This allows to select the weights in order to keep some properties that could be lost 

if they are selected in other ways. 

 

1.8   Outline 
 
The thesis is structured as follow: 

 

• In Chapter 2 the Ritz’s analysis method is briefly explained. The number 

of the function used, and the number of integration points are reported 

with motivations. Then a validation of the numerical method is done for 

both the problem considered in order to check the accuracy of the 

algorithms implemented. 

 

• The lamination parameters conversion is reported in Chapter 3. The 

difference between the evaluation process of the stiffness tensors with 

the use of the lamination parameters and the orientation angles of the 

fibres is reported. Then the sampling method implemented to obtain the 

training and testing set for the ANN is shown. Furthermore, the failure 

criterion is expressed, reporting all the formulas. Finally, the data sets 
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obtained for solve the example problems are reported, with also a final 

validation section of the implemented failure analysis. 

 

• In Chapter 4 the artificial neural network parts are explained. The 

different ANN architectures and the possible activation function that can 

be selected for the neurons are shown. The most used training algorithm 

are reported with all the formulas. Furthermore, how the training sets are 

obtained, and the explanation of the testing part are presented. Then the 

transfer-learning strategy is explained, and finally all the design process 

results are reported. Finally, validations are done in order to verify the 

efficiency of the ANN obtained. 

 

• In Chapter 5 the PSO algorithm is explained. A list of different methods to 

implement constraints checks and the method to add penalty terms 

depending on the needs are shown. How the ANN find place inside the 

optimization algorithm is briefly explained, also reporting some parts of 

the MATLAB® code. Then the methods chosen to how determine some 

internal variables values are explained. Finally, the results of the 

optimization process are reported and compared with the ones 

outputted from a Ritz’s analysis. This is done to evaluate the efficiency of 

the PSO. 

 

• The post-processing procedure that converts the lamination parameters 

in the orientation angles of the fibres is reported in Chapter 6. The 

method based on the strain energy to determine the objective function 

weights is shown. Similar for what done for the PSO, some internal 

parameters have been tuned. Furthermore, a validation is done to 

demonstrate that the code executes the conversion properly. Then the 

final conversion results, with the relative errors, and the values of the 

internal variables are reported. 

 

• The numerical results for two different example problems are reported in 

Chapter 7 (free vibration problem and buckling problem). 

 

• In Chapter 8 the final considerations and some future developments of 

the procedure presented in this study are expressed.  



 

Chapter 2 
 

Ritz’s method 
 

 

In this chapter the Ritz’s method analysis that focus on VSP is explained. This kind 

of numerical analysis will be used to obtain all the data needed for the input-output 

data sets used in future part of this work. Furthermore, it allows also to evaluate 

average load, stress, and strains that can be used to determine some weights 

parameters for the post-processing procedure. 

 

2.1   Ritz’s method and example problems resolution 

process 
 

The Ritz’s method transforms the partial differential equations of the structural 

problem in systems of algebraic equations. The method relies on approximating the 

unknown displacement field as a truncated summation of known shape functions 

and unknown amplitudes. For instance, the out of plane displacement of a plate is 

expressed as: 

 

𝑤(𝑥, 𝑦, 𝑡) =  ∑ 𝜙𝑖(𝑥, 𝑦)𝑢𝑖(𝑡)
𝑇
𝑖=1                               (2.1) 

 

where 𝑤 is the displacement along the z-axis, 𝑇 represent the total number of 

degrees of freedom considered (𝑖 = 1: 𝑇 with 𝑇 = 𝑅 x 𝑆), 𝜙𝑖(𝑥, 𝑦) is the 𝑖-th Ritz’s 

function depending on the position on the plate (𝑥, 𝑦), while 𝑢𝑖(𝑡) is the generalized 

coordinate or Ritz’s amplitude referred to the 𝑖-th degree of freedom. The 

amplitudes are the unknows that have to be determined in order to obtain the 

displacements. The equation (3.1) can be generalized to the other 5 degrees of 

freedom (displacements and rotation), introducing also prescribed displacement 

along the plate boundaries. The 6 equations can be put in vector form as reported 

in equation (2.2). 
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𝑑0 = [
𝝓𝒖 0
0 𝝓𝝋

] {
𝑎𝑢

𝑎𝜑
} + {𝝓𝒖

̅̅ ̅̅

0
} =  𝚽𝑎 + 𝚽̅                          (2.2) 

 

where 𝑑0 is the vector that collects the generalized displacement components 𝑢𝑜 

and 𝜑 of the kinematic model along the three axes, 𝑎 is the vector of the Ritz 

unknown amplitudes, 𝝓𝒖 and 𝝓𝝋 are the matrices containing the column vectors 

of dimension Ri x Si collecting the trial functions for the generalized displacement 

and generalized curvature, respectively [52]. 

In this case, the Ritz’s functions can be defined as a combination of two functions 

along different axis as reported in the equation below: 

 

𝜙𝑖(𝑥, 𝑦) =  𝑋𝑚(𝑥)𝑌𝑛(𝑦)                                  (2.3) 

 

The Ritz’s functions can be polynomial or trigonometric, considering that the 

accuracy of the solution depends on the kind of function considered, and on the 

order of expansion. The convergence of a Ritz set is guaranteed if and only if the 

hypotheses of completeness and admissibility are satisfied. They have to be 

mathematically complete (no subscripts miss in the set of functions), the essential 

condition must be satisfied with a continuity order of 𝐶𝑛−1 where 𝑛 is the maximum 

order of the derivative present in the variational principle. If the Ritz’s functions set 

is an admissible one the convergence is granted. 

If the Ritz’s approximation is implemented inside the Principle of Virtual Works 

(PVW), and integrating the known form functions, is obtained an equation as 

reported in equation (2.4). It has to be highlighted that the values of the Ritz’s 

function and of the value of the mechanical properties of the plate has to be 

evaluated in the integration points, where their number must be larger than the set 

of the functions. 

 

𝑴(𝑥, 𝑦)𝑢̈(𝑡) + 𝑲(𝑥, 𝑦)𝑢(𝑡) = 𝐹(𝑥, 𝑦, 𝑡)                      (2.4) 
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where 𝑴(𝑥, 𝑦) and 𝑲(𝑥, 𝑦) are the mass matrix and the stiffness matrix of the 

plate, respectively, while 𝐹(𝑥, 𝑦, 𝑡) is the total applied load vector. It has to be 

underlined that the mass and stiffness matrices are composed by the integration 

on the plate surface of the partial differential Ritz’s functions multiplied by the mass 

per unit surface and the stiffness laminate constitutive matrices, respectively. 

To determine the first natural frequency a free vibrational problem has to be 

solved. Hypothesizing that the solution is in the form of: 

 

𝑢(𝑡) = 𝑈0𝑒
𝑖𝜔𝑡                                        (2.5) 

 

The problem is reduced in the form of: 

 

[−𝜔2𝑴(𝑥, 𝑦) + 𝑲(𝑥, 𝑦)]𝑈0 = 0                             (2.6) 

 

To avoid trivial solution, the terms in the square parenthesis has to define a null 

determinant. This can be achieved solving an eigenvalue problem: 

 

det (−𝜔2𝑴(𝑥, 𝑦) + 𝑲(𝑥, 𝑦)) = 0                       (2.7) 

 

The eigenvalues obtained in this way are the squared natural frequencies of the 

plate (𝜔2), while the eigenvectors are the amplitudes that are used to reconstruct 

the vibration modes. Furthermore, the smaller natural frequency (𝜔) is defined 

“first natural frequency”. 

For what concern the buckling problem, the non-linear terms of the deformation 

have to be taken into account in order to consider the coupling between the in-

plane loads and the bending moments. Considering the deformation with order of 

magnitude greater than 1, and applying the Trefftz’s criterion, two sets of equation 

are obtained: the pre-buckling and the buckling equations. These equations must 

be solved to obtain the first buckling load. The pre-buckling problem is analysed 
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solving a static problem, while the buckling one is composed by an eigenvalue 

problem. The smaller eigenvalue (min(λ)) is the multiplicator value to obtain the 

first buckling load, as reported in the following equation: 

 

(𝐊 − λ𝐊𝛔)𝑢(𝑡) = 0     →    𝑁𝑥𝑥𝑏𝑢𝑐𝑘
= 𝑚𝑖𝑛|𝜆|𝑁𝑥𝑥̂             (2.8) 

 

The matrices 𝐊 and 𝐊𝛔 are the stiffness matrix independent from the pre-buckling 

and the geometric stiffness matrix that contain the pre-buckling stresses, 

respectively. The 𝑁𝑥𝑥̂ is the applied load that has to be multiplied by min(λ) in 

order to obtain the exact value of the buckling load. The stiffness matrix (𝐊) is 

evaluated with the use of the laminate constitutive matrices. The geometric 

stiffness matrix (𝐊𝛔) is obtained from the linearization of the non-linear terms of 

the strain-displacement relation accordingly with the Von Kármán assumptions. 

Using a Ritz’s approximation, the geometric stiffness matrix is obtained as: 

 

𝐊𝛔 = ∫ ∫ (𝓑𝟐𝚽)𝑇 [
𝑁𝑥𝑥(𝜉, 𝜂) 𝑁𝑥𝑦(𝜉, 𝜂)

𝑁𝑥𝑦(𝜉, 𝜂) 𝑁𝑦𝑦(𝜉, 𝜂)
]

1

−1

1

−1
𝓑𝟐𝚽J 𝑑𝜉 𝑑𝜂            (2.9) 

 

where 𝓑𝟐 is a differential matrix, the pre-buckling force resultants 𝑁𝑖𝑘 are 

determined with an initial pre-buckling analysis based on an energy approach, and 

the terms 𝜉 and 𝜂 are the nondimensional coordinates (𝜉, 𝜂) ∈ [-1 , 1] [52]. In 

particular, 𝜉 = 2/𝑎 and 𝜂 = 2/𝑏 where a and b are the plate dimensions. The pre-

buckling analysis is executed with a linear static analysis on the laminate. The 

differential matrix introduced in equation (2.9) is expressed as: 

 

𝓑𝟐 = [
0 0
0 0

(∙),𝑥 0

(∙),𝑦 0
0 0
0 0

]                                  (2.10) 
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For variables stiffness laminate the assembled matrices are fully populated because 

of the numerical integration process. In the particular case of composite panels with 

straight fiber orientation, the Ritz’s integrals can be carried out analytically, 

increasing the degree of sparsity of the matrices, reducing the time required for the 

solution. 

 

2.2   Validation and internal parameters values 
 

The Ritz’s method is coded in MATLAB® and must be validated to grant that the 

numerical results obtained are correct. The code implemented in the software is 

the same used by Vescovini et al. [52]. Two separate validations are done, one for 

the constant stiffness laminate and the other one for the VS plate. 

The first one is subdivided in free vibration and buckling problem. For the free 

vibration problem, the Ritz’s implemented code is validated comparing the results 

obtained with the ones reported by Crawley [53]. The problem to be solved is a 

cantilever composite plate, with dimension 76 mm x 76 mm x 1.04 mm where the 

nominal ply thickness is 0.13 mm. The plate is composed by 8 plies made of 

AS/3501-6 graphite/epoxy (material properties data are taken form [53]). The 

results obtained are reported in the table below: 

 

Laminate Observed Freq.  
(Hz) 

Calculated Freq.  
(Hz) 

% Diff. 

[02/±30]s 234.2 256.5 8.7 
[0/±45/90]s 196.4 219.5 10.5 
[±45/∓45]s 131.2 135.1 2.9 

 

Table 1: First natural frequency comparison for validation of the Ritz's method 

 

To solve the free vibrational problem, different number of Ritz’s function and 

integration points are tested. The smaller number of these parameters that grants 

the convergence is 12 Ritz’s function both along x and y, with 13 integration points 

both along x and y and 27 points along z (thickness). The obtained percentage errors 
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reported in Table 3 are in the order of 10% or even less, obtaining a good 

approximation of the first natural frequencies. 

For what concern the buckling problem, the validation is done analytically, resolving 

manually some simple cases and comparing the min(λ) value obtained. Also in this 

case, three different laminate are considered with dimensions equal to 1000 mm x 

1000 mm x 1.04 mm. The plates are simple supported and composed by 8 plies 

made of AS/3501-6 graphite/epoxy. The results obtained are reported in the 

following table: 

 

Laminate Analytical  λ Calculated  λ % Diff. 

[02/902]s 0.0272 0.0272 0 
[0/90/±45]s 0.0412 0.0412 0 
[±45/∓45]s 0.2004 0.2004 0 

 

Table 2: Multiplicator for the load applied to the plate to obtain the first buckling load for 
validation of the Ritz's method 

 

In the buckling load problem, the analytical and the calculated solutions match 

perfectly. The values of the parameters are the same one determined for the free 

vibrational problem: 12 Ritz’s function along x and y, with 13 integration points 

along x and y and 27 point along z (thickness). 

The Ritz’s method code used is validated also for VSP configurations. The buckling 

problem expressed in literature by Vescovini et al. [52] is considered, and the same 

validation procedure is done. The nondimensional buckling parameters 𝐾𝑐𝑟 =

𝑁𝑥𝑥
𝑐𝑟 𝑎2

𝐸11𝑡
3 for two different simply supported symmetric square plates of side 

dimension 254 mm under prescribed axial shortening are reported. The elastic 

properties of the material considered are reported in Table 3. 
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 Material Properties 

E11 181.000 MPa 
E22 10.270 MPa 
G12 7170 MPa 
G13 4000 MPa 
G23 4000 MPa 
ν12 0.28 
ρ 1.35E-9 t/mm3 

 

Table 3: Material thermo-elastic properties for VSP Ritz's method validation 

 

The two laminate are composed by 8 layers each with a thickness per play equal to 

0.127 mm. The Ritz’s analysis is executed with 15 functions along x and y, with 20 

integration points along x and y and 35 along z (thickness). Only the first 4 modes 

are considered and the fixed displacement along x is equal to 0.0016 mm in 

compression. The results obtained with the Ritz’s code implemented are compared 

with the ones reported by Wu et al. [54]. The results for the first two mode are 

reported in the table below for each configuration considered: 

 

Laminate Mode n. Ritz [54] Ritz % Diff. 

A 1 3.4991 3.5209 0.6 
2 3.5026 3.5250 0.6 

B 1 3.7112 3.6865 0.7 
2 3.7227 3.7075 0.4 

 

Table 4: Nondimensional buckling parameter 𝐾𝑐𝑟 for simply supported VSP under prescribed 
axial shortening 

 

The laminate A and B are composed by non-linear distribution of the angles of the 

form [±𝜗1/±𝜗2]s, where 𝜗𝑖 are vectors or matrices containing the angles in 3 or 9 

points on the surface of the plate, respectively. The mesh of these points is 

generated by a grid that subdivides equally the two half dimension of the plate. The 

two vectors for the laminate configurations are reported in Table 5. 
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 Laminate A Laminate B 

 
𝜗1 

 
[68 55 19] [

71 49.5 71.5
67 50 51
17 12 45

] 

 
   

 
𝜗2 

 
[−76 −55 9] [

−72.5 −59 −59.5
−65 −54 −50.5
14 11.5 6

] 

 

 

Table 5: Laminate configurations A and B of table 4 

 

The pre-buckling membrane resultants Nxx, Nyy, and Nxy for the laminate B are 

reported in the figure below: 

 

 

Figure 5: Pre-buckling membrane resultants for VSP loaded in compression (Nxx left, Nyy 
center, and Nxy right)(first row [54], second row implemented Ritz) 

 

In Figure 5 the first row represents the pre-buckling membrane resultants obtained 

in literature [54], while the second row is the resultants obtained with the Ritz’s 

method that is implemented in the software. 
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Observing the results obtained for both the validation processes, the Ritz’s method 

analysis implemented can be used to solve numerically structural problems. In fact, 

the percentage error founded during the validation process are only in the order of 

10% for the free vibration problem, while is under the 1% for the buckling one. This 

level of accuracy can be considered for a preliminary design phase. 
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Chapter 3 
 

Lamination Parameters 
 

 

Lamination parameters are introduced in this chapter. This parametrization of the 

orientation angles changes the set of design variables of the problem, describing 

the composite structure with a smaller number of variables. The lamination 

parameters are non-dimensional quantities that transform the laminate design 

parameters into a set of 12 values. Therefore, this new parametrization is 

independent from the number of the plies, reducing the complexity of the problem 

for structure with very elaborate fibres orientation variation. However, the 

implementation of this conversion implies that the laminate constitutive matrices 

have to be expressed in function of the lamination parameters. 

The use of lamination parameters in place of ply angles is often preferable in 

optimization problems. In this latter case the objective function, that has to be 

maximised, is often non-convex. 

Another problem that is introduced with the implementation of this conversion is 

the failure analysis. A new strategy must be introduced to check if failure happens 

even without converting the lamination parameters in angles. Therefore, the Tsai-

Wu failure criterion is modified. 

 

3.1   Lamination parameters definition 
 

The lamination parameters are defined from the ply angles by integrating 

trigonometric functions along the normalized thickness. Considering a reference 

frame fixed in the center of the plate surface and on the middle plane, the 

mathematical transformation from angles to lamination parameters is expressed in 

the following equations (3.1) [4][5][18]. 
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𝜉[1,2,3,4]
𝐴  =   

1

2
 ∫ [ cos 2𝜗(𝑧̅) ,   sin 2𝜗(𝑧̅)  ,   cos 4𝜗(𝑧̅) ,    sin 4𝜗(𝑧̅) ]  𝑑 𝑧̅

1

−1

𝜉[1,2,3,4]
𝐵  =    ∫ [ cos 2𝜗(𝑧̅) ,   sin 2𝜗(𝑧̅) ,   cos 4𝜗(𝑧̅) ,    sin 4𝜗(𝑧̅) ] 𝑧̅   𝑑 𝑧̅

1

−1

𝜉[1,2,3,4]
𝐷  =  

3

2
∫ [ cos 2𝜗(𝑧̅) ,   sin 2𝜗(𝑧̅) ,   cos 4𝜗(𝑧̅) ,    sin 4𝜗(𝑧̅) ] 𝑧̅2 𝑑 𝑧̅

1

−1

    (3.1) 

 

where 𝜗(𝑧̅) is the distribution function of the ply orientation angles through 

normalized thickness coordinate 𝑧̅ = (2 ℎ⁄ )𝑧, where h is the thickness of the 

laminate and z is the coordinate along the normal. The A-B-D superscript are 

associated with the in-plane, coupling, and out-of-plane laminate constitutive 

matrices, respectively. This definition follows the nomenclature introduced by the 

classical laminate plate theory (Tsai & Hahn - 1980) reported in equation below 

[5][22]: 

 

{
𝑁

𝑀
} =  [

𝑨 𝑩
𝑩 𝑫

] {
𝜀0

𝑘
}                              (3.2) 

 

where 𝑁 is a vector of resultant membrane loads, 𝑀 is a vector of resultant out-of-

plane moments, 𝜀𝟎 is the vector of mid-plane strains, and 𝑘 is the vector of plate 

curvatures. 

For straight fiber laminates, only one set of 12 lamination parameters can fully 

describe the laminate constitutive matrices (four for each matrix). However, when 

the orientation angles vary along the in-plane directions, as in the case of Variables 

Stiffness Panels (VSP), the 12 lamination parameters are also function of the in-

plane position. The lamination parameters contain all the information needed to 

determine the elastic properties of a laminate, therefore they can be used in place 

of ply orientation as design variables. 

 

3.2   Laminate constitutive matrices determination 
 

The laminate constitutive matrices reported in equation (3.2) have to be evaluated 

in order to solve structural problems. With the classical definition of the problem, 
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where the orientation angles are given, the components of the three matrices are 

obtained as [22]: 

 

𝐴𝑖𝑗 =  ∑ 𝑄𝑖𝑗(𝑘)
(𝑧𝑘 − 𝑧𝑘−1)

𝑁
𝑘=1

𝐵𝑖𝑗 =
1

2
∑ 𝑄𝑖𝑗(𝑘)

(𝑧𝑘
2 − 𝑧𝑘−1

2 )𝑁
𝑘=1

𝐷𝑖𝑗 =
1

3
∑ 𝑄𝑖𝑗(𝑘)

(𝑧𝑘
3 − 𝑧𝑘−1

3 ) 𝑁
𝑘=1

         (𝑖 = 1, 2, 6)                (3.3) 

 

where N is the number of layers in the laminate, 𝑄𝑖𝑗(𝑘)
 are reduced stiffness for 

unidirectional lamina of layer 𝑘, and 𝑡𝑘 =  𝑧𝑘 − 𝑧𝑘−1 is the thickness of the 𝑘-th 

layer. The 𝑄𝑖𝑗 terms can be computed as reported [16][18][22]: 

 

𝑄11 = 𝐸11
2 (𝐸11 − 𝐸22𝜈12

2 )⁄        

𝑄22 = 𝐸11𝐸22 (𝐸11 − 𝐸22𝜈12
2 )⁄

𝑄12 = 𝜈12𝑄22                               
𝑄66 = 𝐺12                                     

                           (3.4) 

 

𝑄44 = 𝐺23

𝑄55 = 𝐺31
                                                     (3.5) 

 

where E11, E22, G12, G23 and G31 are the longitudinal, transverse and shear moduli, 

respectively, while 𝜈12 is the Poisson’s ratio for a unidirectional laminate. It can be 

observed that the reduced stiffness terms are dependent only on material 

properties. However, the direction 1, 2, and 3 used as subscripts are referred to the 

principal orientation of the material, without defining the orientation of the fibres 

with respect to the frame of reference. To fully describe a layer, the angles are 

needed in order to make a rotation of the values in order to align them with the 

frame of reference of the laminate. 

The components of the tensors A, B and D could be defined also with linear 

functions of lamination parameters and material invariants [5][16][18], as 

expressed in equation (3.6-9). 
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(

 
 
 

𝐴11

𝐴22

𝐴12

𝐴66

𝐴16

𝐴26)

 
 
 

= ℎ

[
 
 
 
 
 
 1   𝜉1

𝐴

1 −𝜉1
𝐴  

0 0

  𝜉3
𝐴 0 0

  𝜉3
𝐴 0 0

−𝜉3
𝐴 1 0

0 0
0 𝜉2

𝐴 2⁄

0 𝜉2
𝐴 2⁄

−𝜉3
𝐴 0 1

  𝜉4
𝐴 0 0

−𝜉4
𝐴 0 0]

 
 
 
 
 
 

(

 
 

𝑈1

𝑈2

𝑈3

𝑈4

𝑈5)

 
 

                    (3.6) 

 

(

 
 
 

𝐵11

𝐵22

𝐵12

𝐵66

𝐵16

𝐵26)

 
 
 

=
ℎ2

4

[
 
 
 
 
 
 0   𝜉1

𝐵

0 −𝜉1
𝐵  

0 0

  𝜉3
𝐵 0 0

  𝜉3
𝐵 0 0

−𝜉3
𝐵 0 0

0 0
0 𝜉2

𝐵 2⁄

0 𝜉2
𝐵 2⁄

−𝜉3
𝐵 0 0

  𝜉4
𝐵 0 0

−𝜉4
𝐵 0 0]

 
 
 
 
 
 

(

 
 

𝑈1

𝑈2

𝑈3

𝑈4

𝑈5)

 
 

                    (3.7) 

 

(

 
 
 

𝐷11

𝐷22

𝐷12

𝐷66

𝐷16

𝐷26)

 
 
 

=
ℎ3

12

[
 
 
 
 
 
 1   𝜉1

𝐷

1 −𝜉1
𝐷  

0 0

  𝜉3
𝐷 0 0

  𝜉3
𝐷 0 0

−𝜉3
𝐷 1 0

0 0
0 𝜉2

𝐷 2⁄

0 𝜉2
𝐷 2⁄

−𝜉3
𝐷 0 1

  𝜉4
𝐷 0 0

−𝜉4
𝐷 0 0]

 
 
 
 
 
 

(

 
 

𝑈1

𝑈2

𝑈3

𝑈4

𝑈5)

 
 

                    (3.8) 

 

(

𝐴44

𝐴45

𝐴55

) = ℎ [

1    𝜉1
𝐴

1  −𝜉1
𝐴

0  −𝜉2
𝐴

] (
𝑈1

′

𝑈2
′)                             (3.9) 

 

Additionally, the material invariants are defined in equation (3.10) [16][18][22]. 
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𝑈1  =  [3𝑄11 + 3𝑄22 + 2𝑄12 + 4𝑄66]/8

𝑈2  =  [𝑄11 − 𝑄22] 2                                 ⁄  

𝑈3  =  [𝑄11 + 𝑄22 − 2𝑄12 − 4𝑄66] 8⁄      

𝑈4  =  [𝑄11 + 𝑄22 + 6𝑄12 − 4𝑄66] 8⁄

𝑈5  =  [𝑄11 + 𝑄22 − 2𝑄12 + 4𝑄66] 8⁄
     

                    (3.10) 

 

𝑈1
′ = 1 2𝑄44 + 1 2𝑄55⁄⁄

𝑈2
′ = 1 2𝑄44 − 1 2𝑄55 ⁄⁄

                                       (3.11) 

 

According to equations (3.4 - 11), the material properties and the total thickness of 

the laminate are the only quantities involved in the computation of the laminate 

composite matrices. 

Through the lamination parameters it is also possible to evaluate the thermal 

membrane load and moment stress vectors resultants [5]: 

 

𝑁𝑇ℎ =  ℎ(Λ0 + 𝜉1
𝐴Λ1 + 𝜉2

𝐴Λ2)Δ𝑇

𝑀𝑇ℎ = 
ℎ2

4
(𝜉1

𝐵Λ1 + 𝜉2
𝐵Λ2)Δ𝑇         

                     (3.12) 

 

where Δ𝑇 is the applied temperature difference that induces the thermal strains 

and Λ𝑖  are vectors defined as: 

 

Λ0 = (𝛼1𝑄11 + (𝛼1 + 𝛼2)𝑄12  + 𝛼2𝑄22) ⋅ {1 1 0}𝑇   

Λ1 = (𝛼1𝑄11 + (𝛼1 − 𝛼2)𝑄12  − 𝛼2𝑄22) ⋅ {1 −1 0}𝑇

Λ2 = (𝛼1𝑄11 + (𝛼1 − 𝛼2)𝑄12  − 𝛼2𝑄22) ⋅ {0 0 1}𝑇   

        (3.13) 

 

where 𝛼1 and 𝛼2 are the coefficients of thermal expansion along primary material 

directions, and 𝑄𝑖𝑗 are the reduced lamina stiffness components, that are reported 

in equation (3.4). 
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3.3   Constraints 
 

Although each lamination parameter can take values between -1 and +1, not every 

combination is admissible as the trigonometric function used in equation (3.1) are 

not independent each other. Diaconu et al. [19] derived the whole set of constraints 

of the twelve lamination parameters, implementing the variational approach 

developed by Grenestedt and Gudmundson in 1993 [20]. The feasible domain for 

the in-plane lamination parameters is defined as [16][18][19]: 

 

2𝜉1
𝐴2

(1 − 𝜉3
𝐴) + 2𝜉2

𝐴2
(1 + 𝜉2

𝐴) + 𝜉3
𝐴2

+ 𝜉4
𝐴2

− 4𝜉1
𝐴𝜉2

𝐴𝜉4
𝐴  ≤  1 

𝜉1
𝐴2

+ 𝜉2
𝐴2

 ≤  1

−1 ≤  𝜉𝑖
𝐴  ≤ 1       (𝑖 = 1,… ,4) 

    (3.14) 

 

An identical set of expression can be obtained for the out-of-plane lamination 

parameters, maintaining the same formula of equation (3.14) and the same 

subscripts, but changing the superscripts (from 𝜉𝑖
𝐴 to 𝜉𝑖

𝐷). Furthermore, additional 

inequality constraints can be derived between certain sets of in-plane and out-of-

plane lamination parameters [18][19]: 

 

 
1

4
(𝜉𝑖

𝐴 + 1)3 − 1  ≤  𝜉𝑖
𝐷  ≤   

1

4
(𝜉𝑖

𝐴 + 1)3 + 1          (𝑖 = 1,… ,4)       (3.15) 

 

The feasible region of lamination parameters of the coupling laminate constitutive 

matrix can be obtained with the inverse of the relations that link the in-plane, 

coupling, and out-of-plane terms, as expressed in equation (3.16). The indices of 

the parameters in the formulas are the same for each term as reported below 

[18][19]: 

 

 4
(𝜉𝑖

𝐴 + 1)(𝜉𝑖
𝐷 + 1)   ≥   (𝜉𝑖

𝐴 + 1)4 + 3(𝜉𝑖
𝐵)2

4(𝜉𝑖
𝐴 − 1)(𝜉𝑖

𝐷 − 1)   ≥   (𝜉𝑖
𝐴 − 1)4 + 3(𝜉𝑖

𝐵)2    (𝑖 = 1,… , 4)    (3.16) 
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These constraints have to be verified for each set of lamination parameters 

describing the laminate. 

 

3.4   Latin Hypercube Sample (LHS) 
 

The Latin Hypercube Sample (LHS) strategy is implemented in order to introduce a 

rigorous method to sample properly the lamination parameters sets. 

The LHS is a statistical method with a stratified sampling approach that generates a 

near-random sets of values from a multidimensional space [24]. Stratified sampling 

ensures that all portions of a given partition are sampled. The algorithm consists in 

dividing the n-dimensions, each representing a design variable, in m equally 

probable intervals, where m is the number of sample points to be generated. The 

m points are chosen one by one in order to cover as much as possible the feasible 

design space. Therefore, only one point can belong to a single interval for all the 

dimensions, as can be observed for the highlighted point in Figure 6. 

 

 

Figure 6: LHS design with n=2, m=6 for X uniformly distributed on the unit square 

 

With this procedure, the possible combination of values that the sample points can 

assume reduces step by step. However, the advantage of this iteration step strategy 
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consists in generating a complete set, where in each interval of the design variables 

one point is certainly sampled. 

The Latin Hypercube Sampling method can provide sampling plans with very 

different performance in terms of uniformity, that differ by measured, for example, 

the minimum distance among design points. In the figure below the difference 

between two sampling plans can be observed: 

 

 

Figure 7: LHS design with differences in terms of uniformity 

 

It can be noted that the design of the LHS in Figure 7 (b) is better than the one 

reported in (a). In fact, the (b) distribution maps uniformly the design space, 

without generating clusters and too large holes. 

MATLAB® is used to sample the lamination parameters in the design space. The 

Latin Hypercube Sampling algorithm implemented in MATLAB® generates a 

continuous design space between 0 and 1. However, lamination parameters are 

defined between -1 and 1, as shown by the definition of section 3.1 and the 

constraints expressed in section 3.3. The sets sampled by the LHS must be scaled in 

order to fit the right design space. 

The MATLAB® implemented Latin Hypercube is not able to check if non-linear 

constraints existing between the lamination parameters terms are verified. 
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Therefore, to overcome this obstacle, a filtering process is done to reduce the 

sampled point only to the ones that verify the constraints listed in section 3.3. 

The scheme of the filtering process is reported in the figure below: 

 

 

Figure 8: Filtering process logic 

 

If assumptions are introduced in the considered problem, some terms could be 

neglected because will be null. Therefore, before the constraints are checked, the 

lamination parameter set has to be completed, reintroducing inside the set all the 

neglected terms, allowing it to enter the filtering process. 

The filtering process starts checking all the augmented LP sets. Only the sets that 

respect the constraints are retained, while the others are discarded. 

The full procedure of the sampling can be summarized in the following steps: 
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1) Define a 380 times larger number of points in respect to the desired one 

to be sampled in a twelve-dimensional space bounded between -1 and 1. 

2) Adding terms eventually neglected for problem simplifications or 

assumptions. 

3) Check if in every point needed to fully describe the laminate, the 

lamination parameters sets verify the constraints in equations (3.14 - 16). 

4) Collect and store only the sets of lamination parameters that respect 

point 3. 

 

In Figure 9 an example of sampling distribution is reported. The boundary reported 

in equation (3.14) and equation (3.15) are expressed with a solid line. The 

lamination parameters terms are indicated as Vi
k instead of 𝜉𝑖

𝑘 where i is linked to 

the terms (1, 2, 3 and 4) and k is related to the lamination constitutive matrix (A, B, 

or D). 
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Figure 9: Sample points distribution (Vi
k = 𝜉𝑖

𝑘) for second equation (3.14)(up), and for equation 
(3.15)(bottom) 
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Considering that a huge number of sampling points does not verify the constraints, 

because the lamination parameters sets are generated on all the space between -1 

and 1, the number m that has to be selected needs to be larger than the desired 

one. This can be observed in Figure 9, where the lamination parameters sets and 

the non-linear limit curves are reported. All the points inside the limit curves verify 

the constraints and are saved. Furthermore, not all the points that are inside one 

limit curve verify the constraints, because those points could be outside other limit 

curves referred to other constraints. In fact, between the 2500 points sampled by 

the LHS and reported in Figure 9, only 6 verify all the constraints. The number of 

starting points sampled with the LHS before the filtering process needs to be 380 

times larger than the number of desired points that are wanted as an output. 

With the filtering process, the spatial distribution of sets is not guaranteed to fill 

the design space uniformly, which may lead to a suboptimal mapping. This can be 

deducted also from the example reported in Figure 9, where the 2500 points map 

the entire space uniformly, but the resultants 6 points that are saved cannot 

describe the design space properly. 

 

3.5   Tsai-Wu failure criterion 
 

In this section a modified Tsai-Wu failure criterion is presented, where lamination 

parameters are used in place of orientation angles for checking the failure. As the 

classical failure analysis criterion, the modified Tsai-Wu criterion approaches the 

problem with the first-ply-failure strategy. The first ply failure is widely used in the 

analysis of composite structures [5][22][23]. 

The standard approach relies on the orientation angles for each ply or, for VSP, in 

all the points needed to describe the laminate. For both these kinds of structure, 

the analysis is executed in various points due to the possible non-homogeneous 

distribution of the stress field. 

When the problem is formulated in terms of lamination parameters, one first 

possibility consists in converting lamination parameters to orientation angles. 

However, this procedure is not free of computational errors. This is due to the fact 

that, unlike the conversion from angles to LP, the inverse transformation cannot be 

expressed in closed-form. It can be noted that, as the number of plies increases, the 

conversion error gets lower. This is due to the fact that more physical variables are 
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available to match the lamination parameters. However, when a relatively small 

number of plies is considered, the reconstruction error can be non-negligible. 

A more adequate approach for handling problems formulated in terms of LP 

consists in rephrasing the criterion in a more suitable way. Specifically, with the 

modified criterion, the failure can be studied knowing the material properties of 

the laminate, its strength properties, and the applied and internal strains. An 

advantage of the modified criterion over the classical one relies in considering all 

the possible orientation of the angles, generalizing the problem [5][23]. This does 

not need the explicit transformation of the lamination parameters, avoiding in this 

way the conversion errors, working directly on the parameters.  

The development of the modified criterion is presented, starting from the failure 

envelope of the classical Tsai-Wu failure criterion, which is given by [5][22]: 

 

𝐹11𝜎1
2 + 𝐹22𝜎2

2 + 𝐹66𝜏12
2 + 𝐹1𝜎1 + 𝐹2𝜎2 + 2𝐹12𝜎1𝜎2 = 1           (3.17) 

 

where 𝐹𝑖 and 𝐹𝑖𝑗 are the second- and fourth-order strength tensors, with 𝑖, 𝑗 =

1, 2, 6 as reported in equation below:  

 

      
𝐹11 = 

1

𝑋𝑡𝑋𝑐

𝐹2 = 
1

𝑌𝑡
−

1

𝑌𝑐

         
𝐹22 = 

1

𝑌𝑡𝑌𝑐

𝐹12 = 
−1

2√𝑋𝑡𝑋𝑐𝑌𝑡𝑌𝑐

      
𝐹1 = 

1

𝑋𝑡
−

1

𝑋𝑐

𝐹66 = 
1

𝑆2

            (3.18) 

 

where 𝑋𝑡, 𝑋𝑐, 𝑌𝑡, 𝑌𝑐, and S are the failure strength in compression, tension, and 

shear in the principal material direction. 

The failure criterion can be reformulated in terms of the components of the 

material strain tensor, expressed as: 

 

𝐺11𝜖1
2 + 𝐺22𝜖2

2 + 𝐺66𝜖12
2 + 𝐺1𝜖1 + 𝐺2𝜖2 + 2𝐺12𝜖1𝜖2 = 1            (3.19) 
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where 𝐺𝑖𝑗 are the strain coefficients, while the material strains (𝜖1, 𝜖2, 𝜖12) can 

subsequently be related to the laminate strains (𝜖𝑥 , 𝜖𝑦, 𝜖𝑥𝑦) using a transformation 

matrix. This matrix contains sine and cosine functions associated with the angles of 

the ply. The strain coefficients are defined as: 

 

𝐺11 = 𝑄11
2 𝐹11 + 𝑄12

2 𝐹22 + 2𝐹12𝑄11𝑄12  𝐺1 = 𝑄11𝐹1 + 𝑄12𝐹2

𝐺22 = 𝑄12
2 𝐹11 + 𝑄22

2 𝐹22 + 2𝐹12𝑄12𝑄22   𝐺2 = 𝑄12𝐹1 + 𝑄22𝐹2

𝐺!2 = 𝑄11𝑄12𝐹11 + 𝑄!2𝑄22𝐹22 + 𝐹12𝑄12
2 + 𝐹12𝑄11𝑄22

𝐺66 = 4𝑄66
2 𝐹66

      (3.20) 

 

where the 𝑄𝑖𝑗 are reduced stiffness indicated in equation (3.4 - 5). 

The transformation matrix (𝑹) used to convert the material strains into laminate 

strain is reported below [5][22][23]: 

 

𝑹 =  

[
 
 
 
 
1

2
(1 + c)

1

2
(1 − 𝑐) 𝑠

1

2
(1 − 𝑐)

1

2
(1 + 𝑐) −𝑠

−
1

2
𝑠

1

2
𝑠 𝑐 ]

 
 
 
 

                            (3.21) 

 

where 𝑠 = sin (2𝜗) and 𝑐 = cos (2𝜗). 

From equation (3.19) the geometric “envelope” is constructed. It is defined as the 

surface tangent to the family of failure surfaces, which depends on the laminate 

strains and the ply angles. However, parametrizing with the use of the ply angles, 

the geometric envelope can be defined regardless of the ply orientation. This 

parametrization is obtained eliminating all the sine and cosine terms introduced by 

the rotation matrix 𝑹, this is achieved by using Dixon’s resultant for the elimination 

of polynomial equations [23]. The resultant equations that represent the 

boundaries surfaces of the envelope of the failure criterion for all ply orientations 

are expressed in equations (3.22-23) [5][23]. 
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4𝑢6
2𝐼2

2 − 4𝑢6𝑢1𝐼2
2 + 4(1 − 𝑢2𝐼1 − 𝑢3𝐼1

2)(𝑢! − 𝑢6) + (𝑢4 + 𝑢5𝐼1)
2  = 0         
(3.22) 

 

𝑢1
2𝐼2

4 − 𝐼2
2(𝑢4 + 𝑢5𝐼1)

2 − 2𝑢1𝐼2
2(1 − 𝑢2𝐼1 − 𝑢3𝐼1

2) + (1 − 𝑢2𝐼1 − 𝑢3𝐼1
2)2  = 0                

(3.23) 

 

where 𝐼1 is the volumetric strain invariant and 𝐼2 is the maximum shear strain 

defined as: 

 

𝐼1 =  𝜖𝑥 + 𝜖𝑦            𝐼2 =  √(
𝜖𝑥−𝜖𝑦

2
)

2

+ 𝜖𝑥𝑦
2                      (3.24) 

 

The terms 𝑢𝑖  (𝑖 = 1,… , 6) are expressed in terms of the strain coefficients of the 

equation (3.20) as: 

 

𝑢1  = 𝐺11 + 𝐺22 − 2𝐺12   
𝑢3 = (𝐺11 + 𝐺22 + 2𝐺12)/4

𝑢5 = 𝐺11 − 𝐺22

 
          𝑢2  = (𝐺1 + 𝐺2) 2         ⁄  

𝑢4 = 𝐺1 − 𝐺2

𝑢6 = 𝐺66

   (3.25) 

 

The feasible space inside the two surfaces, drawn by the equations (3.22) and 

(3.23), is material dependent. In fact, the 𝑢𝑖 terms are in function of strain 

coefficients that are in turn a function of the reduced stiffness matrix and material 

strength coefficients. The envelope of equation (3.22) is defined by a second-order 

equation with respect the strains, while the second envelope expressed by the 

equation (3.23) is defined by a curve of the fourth-order. These two envelope 

equations do not intersect one another but may become tangent. The inner region 

enclosed within the two envelopes represents the region in which no failure occurs. 

Therefore, the laminate strains must fall inside the envelope to avoid failure 

(according to the first-ply failure criterion). 
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As a reference, two different envelopes referred to two different laminate are 

reported in Figure 10. The left one is referred to a Carbon-Epoxy (IM6) single ply, 

where on the right are reported the various curves associated with a Boron-Epoxy 

(B5.6) single ply plate [23]. The Tsai-Wu method that implements the lamination 

parameters and the classical one are compared, considering that 𝜀𝑥𝑦 is set to zero. 

Therefore, to show the generalization properties of the new method, a set of 

different orientation angles is considered. It can be observed that all of these lines 

are inside the envelope generated by the modified method. 

         

 

Figure 10: Modified Tsai-Wu criterion strain envelopes [23] 

 

The method illustrated herein can only predict if the laminate undergoes failure in 

a point of a ply in the stacking sequence for an applied load. 

A validation is done referring to the example reported in [22]. In the example a 

simply supported [02/±45]s Kevlar/Epoxy laminate is loaded by biaxial loads with 

ratio Ny/Nx = 0.5. The range of loads evaluated along the x-axis that is admitted for 

this kind of laminate is in between −161 ⋅ 103 N/m and 93.6 ⋅ 103 N/m. The 

modified failure criterion is used, and the results describe a new range of value for 

the load admitted along the x-axis. The load needs to be in between −60 ⋅ 103 N/m 

and 60 ⋅ 103 N/m. As expected by the theory expressed in the literature [5][23], 

this new criterion generalizes the failure analysis. The new admissible domain of 
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values is reduced. This is due to the fact that all the orientation angles are 

considered, introducing in the analysis also laminates with a worse response to this 

kind of loads configuration. 
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Chapter 4 
 

Artificial Neural Network (ANN) 
 

 

In this chapter the procedures required to build an artificial neural network (ANN) 

are presented. The neural network is implemented as a surrogate model in order 

to allow some benchmark problems to be solved with improved efficiency. The 

artificial neural network is coded in MATLAB®. 

The ANN is a very powerful instrument that can be used every time an 

interconnection between the inputs and the desired output exists. The type of 

interconnection could be different, including classification of data, physical 

phenomena, economical, personal flavours, and so on. For structural problems, the 

ANN aims at reproducing the mechanical behaviour by weighting and combining 

the inputs of the problem to output the desired quantities. 

The neural network tries to mimic the human brain. As the human brain processes 

the information obtained from the sensors (eyes, hears, skin, tongue, etc.), the ANN 

takes the information given in input, and with a mathematical reworking inside 

nodes, generates the output. The skeleton of the surrogate model is composed by 

nodes that work as neurons. The nodes are connected one with the others following 

certain schemes that can have large variation in terms of number of layers and 

neurons. 

The network needs to be trained to fulfil its task. The training part is the core of the 
procedure inasmuch a poor training leads to poor results. The training of the 
network is one of the most complex and time expensive part of the process. 
Different methods may be used to tune the internal parameters of the ANN. 
Furthermore, in order to reduce the time spent in the training process of the 
network, a transfer-learning strategy is briefly introduced. This training method can 
be used when more than one ANN is used, trying to connect the training procedures 
for all the network to the first trained one. 
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4.1   Artificial Neural Network 
 

The Artificial Neural Network is composed by different elements that characterise 

the network itself. Each one will be explained in this section, that it is structured as 

follow: 

 

1. ANN elements. 

2. Neurons distribution. 

3. Network architectures. 

4. Activation functions. 

  

4.1.1   ANN elements 
As a reference, the elements inside an artificial neural network are shown in the 

figure below [29][34][44]: 

 

 

Figure 11: Elements of an artificial neural network 

 

The elements that build an ANN are divided into weights, bias, inputs, output, and 

activation function. Some of the elements are inside neurons, others connect the 

neurons, as shown in Figure 11. 
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The flow of information enters in the left side and exits from the right side. 

Therefore, the inputs are weighted and summed with the bias; then the summation 

pass through the activation function generating the output of the neuron. The 

inputs can be outputs of other neurons, input data introduced from other 

computational procedure, or a combination of the two. The bias consists in a 

unitary input that is weighted as a normal input. 

The activation function and the nature of the input that enters inside a specific 

neuron are selected a priori ad remain fixed during the training procedure. There 

exist also many activation functions and each neuron could have its own function 

that differs from the other present in the network. 

Furthermore, the network can be organized with different architectures, varying 

the connection between the layers. The number of weights increases as the 

network become more complex, introducing more interconnection between 

different networks. The weights are determined with a tuning procedure, named 

training process. The training process can be based on different algorithms that 

have their advantages and disadvantages, granting different level of efficiency. 

 

4.1.2   Neurons distribution 
The network is characterized by assembling different layers composed by neurons 

that can be subdivided in three categories based on their characteristics [29][44]: 

 

a) Input layer: there is only one input layer in the network, and it is placed 

at the beginning of the information flow. The input layer contains all the 

inputs 𝑥𝑖 where 𝑖 ranges from 1 to n. It is important to underline that no 

upper bound exists for the value of n, although it should be noted that 

the complexity of the problem increases as n gets higher. Therefore, more 

and more complex networks are required to accurately predict the 

desired outputs. Note that the number of inputs is often given a-priori, 

i.e. it is not a design variable, unlike the number of neurons in the hidden 

layers. 

 

b) Hidden layer: this layer is the internal part of the network and can be 

considered the core of the ANN. The number of these layers can be 

different depending on the problem complexity, down to a minimum of 

a single layer. The hidden layers are composed by groups of neurons put 
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in parallel where their number could vary layer by layer. The type of 

interconnection between one hidden layer with the other ones 

determines the architecture of the network. The interconnection 

between hidden layers consists of considering as the input for a layer the 

output values that exit from the previous one. 

 

c) Output layer: this is the last layer that closes the network. This layer has 

as many neurons as the number of outputs, and each neuron returns one 

single value. The number of outputs is, in principle, not bounded. 

However, the complexity of the problem increases as the number of the 

desired outputs increase. 

 

A classical interconnection between the three different type of layers is shown: 

 

 

Figure 12: Interconnection between the three kinds of layers in the artificial neural network 

 

where ℎ𝑖 is the 𝑖-th neuron in the hidden layer and 𝑦𝑡 is the 𝑡-th output where 𝑡 

ranges from 1 to n. The circles represent the different neurons and the line are the 

interconnection between them, where each of them is associated with a weight. 
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4.1.3   Network architectures 
The topology of the interconnection of the hidden layers neurons defines the type 

of architecture of the artificial neural network. Several architectures exist, the most 

popular ones being the “feedforward network”, the “cascade network”, the “bridge 

network”, and the “radial basis function network” [33][35][36][43]: 

 

a) Feedforward network: this is one of the simplest topologies for an 

artificial neural network. Each hidden layer is connected with the 

previous and the following ones only. The feedforward type reduces the 

complexity of the network without dragging the input information 

through the process. Many problems in engineering applications can be 

solved with this kind of network considering as few as 2 hidden layers. A 

graphical representation of this architecture is shown in Figure 12. 

 

b) Cascade network: this topology connects each layer not only to the 

immediately following one but also to all subsequent layers. A graphical 

representation of this type of network is shown in the following figure 

where only one neuron is considered in each hidden layer in order to 

simplify the scheme: 

 

 

Figure 13: Interconnection scheme for a cascade network 
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In this way a cascade of information is built because inputs or even the 

results obtained by neurons are considered in each neuron, without 

“losing” such information. The cascade configuration implies a large 

number of weights, thus increasing the complexity of the network. For 

this reason, the training for this architecture is more time expensive. A 

problem that could be solved by a simple feedforward network can also 

be solved by a cascade network, although the vice versa is not 

guaranteed. 

It should be pointed out that the number of output neurons can be higher 

than one, as much as the that of the hidden layers. 

 

c) Bridge network: to build this architecture, the interconnection between 

neurons of different layers does not have follow a specific scheme, 

gaining the possibility to connect different layers in multiple ways. In the 

figure below a graphical representation of a bridge network is given for 

reference: 

 

 

Figure 14: Interconnection scheme for a bridge network 
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The network in the figure is just one of the possible topologies that can 

be achieved in the framework of bridge networks. Indeed, alternative 

interconnection schemes and number of the neurons could be 

considered for building other configurations. There are no limits to the 

possible configurations of the network with this topology starting every 

time with the same number of hidden layers, output layers and neurons. 

The bridge strategy slightly simplifies the network with respect to a 

cascade configuration, reducing the number of weights. On the other 

hand, it could be difficult to determine an automated procedure that 

build the interconnections, resulting in a task to be performed by hand. 

The reduction of complexity from a cascade network reflects in a reduced 

training time. As said for the cascade network, the bridge network can 

solve problems that are solved by feedforward network of analogous 

architecture, while the opposite is not granted to hold.  

 

d) Radial Basis Function network: this kind of network is made by one 

hidden layer only. It is named radial basis function network because the 

activation function inside the neurons in the hidden layer is, in most of 

the cases, a Gaussian function. The value of this particular type of 

function changes in relation to the distance from a central point. 

This topology is easy in design and can solve very complex problem. 

Furthermore, the RBF network work better than other architecture if the 

input is affected by noise [29][35][36]. There is also the possibility to 

introduce the position of the centres inside the set of variables that have 

to be tuned during the training phase of the neural network. However, 

the increase of the parameters inside the training procedure could 

increase the time consumption. 

 

Most of the problems can be solved with a neural network built with two hidden 

layers [2][6]-[8]. Generally, the neurons are equally distributed in every hidden 

layer, or are positioned in a decrescent way, where the first hidden layer has more 

neurons than the last one. If the ANN is too big, the network can work within a 

limited region of the space or with only a few sets, giving wrong results for other 

possible inputs. This is due to the generalization property of the artificial neural 

network that varies depending on the number of neurons and interconnection. In 

fact, as the number increases, the generalization decreases and vice versa. 

However, a minimum number can be found for both neurons and weight that 

allows the ANN to fulfil its task with an acceptable level of approximation. 
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The generalization property of an ANN depends also on the number of internal 

parameters linked to the number of neurons and on the architecture [34]. In fact, 

the right number of parameters is the one that balances the under-fitting and the 

over-fitting phenomena. In the figure below three different networks 

approximations are shown, where the value M is the number of hidden units 

(neurons per layer) inside the network: 

 

 

 

 

Figure 15: Two-layer fitting network with different hidden units [34] 

 

It can be observed that as the number of parameters increases the under-fitting 

phenomenon reduces in magnitude, increasing the generality of the ANN. 

 

4.1.4   Activation functions 
Each neuron embeds an activation function that elaborates the input information 

to generate an output, as shown in Figure 11. A vast amount of function can be 

considered for this scope. These functions are scalar-to-scalar and are named 

“threshold functions” or “transfer functions”. 

The most popular activation functions are “Uni-polar sigmoid”, “Bi-polar sigmoid”, 

“Tanh”, “Conic Section”, “Radial Basis Function” (RBF), and “Rectified Linear Unit 

function” (ReLU). Other types of functions such as the “identity function”, the “step 

function” or the “binary step function” could also be used but are not reported here 

for sake of conciseness. A brief description of the most popular alternatives is 

provided below [28][38][39]: 
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a) Uni-Polar Sigmoid function: this function maps the interval (−∞,∞) 

onto [0,1]. This kind of function is especially advantageous to be used in 

neural network trained by back-propagation algorithms because it can 

minimize the computational resources needed to compute the gradients. 

The function is expressed in equation: 

 

𝑔(𝑥) =
1

1+𝑒−𝑥                                     (4.1) 

 

As a reference the activation function shape is reported in the figure 

below: 

 

 

Figure 16: Uni-Polar Sigmoid function 

 

b) Bi-Polar Sigmoid function: this function is similar to the Uni-Polar Sigmoid 

function, the only difference is in the codomain that is in the range of 

[−1,1]. The mathematical formulation of this kind of function is 

expressed in the following equation: 

 

𝑔(𝑥) =
1−𝑒−𝑥

1+𝑒−𝑥                                     (4.2) 

 

The Bi-Polar Sigmoid function behaviour is shown in Figure 17. 



50 Artificial Neural Network (ANN) 

 
 

 

Figure 17: Bi-Polar Sigmoid function 

 

c) Hyperbolic Tangent function: this function is defined as the ratio 

between the hyperbolic sine and the hyperbolic cosine functions as: 

 

𝑡𝑎𝑛ℎ(𝑥) =
sinh (𝑥)

cosh (𝑥)
=

𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥                           (4.3) 

 

The Tanh is similar to the sigmoid function since its output ranges 

between -1 and 1, where the shape of the Tanh function is reported 

below: 

 

 

Figure 18: Hyperbolic Tangent function 
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d) Conic Section function: this kind of function is based on a section of a 

cone that is sliced by a plane. The parameters inside the function change 

the orientation of the plane that intersects the cone, modifying the shape 

of the cone section. In the following equation the formula of the conic 

section function is expressed: 

 

𝑓(𝑥) =  ∑ (𝑎𝑖 − 𝑐𝑖)𝑤𝑖 − 𝑐𝑜𝑠𝜔(‖𝑎𝑖 − 𝑐𝑖‖)𝑁+1 
𝑖=1             (4.4) 

 

where 𝑎𝑖 is input coefficient, 𝑐𝑖  is the centre, 𝑤𝑖 is the weight linked with 

the neuron and 𝜔 is the opening angle which can be any value in the 

range of [−𝜋 2⁄ ,  𝜋 2⁄ ]. 

In the figure below a parabolic conic section is shown: 

 

 

Figure 19: Conic Section function (parabola) 

 

e) Radial Basis function: the RBF is based on Gaussian curves and takes 

parameters that determines the center (mean) value of the function used 

as desired value. This kind of activation function is a real-valued function 

whose value depends only on the distance from the origin, or 

alternatively on the distance from other point 𝑐 (centre), as reported in 

equations: 

 

𝑔(𝑥) = 𝑔(‖𝑥‖)                                  (4.5) 
 

𝑔(𝑥) = 𝑔(‖𝑥 − 𝑐‖)                               (4.6) 
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Sums of radial basis function are typically used to construct function 

approximations of the form shown: 

 

𝑦(𝑥) = ∑ 𝑤𝑖
𝑁
𝑖=1 𝑔(‖𝑥 − 𝑐𝑖‖)                         (4.7) 

 

where the approximation function 𝑦(𝑥) is represented as a sum of 𝑁 

radial basis functions, each associated with a different centre 𝑐𝑖  for each 

weight 𝑤𝑖 coming from the neural network. As a reference in the 

following figure is reported a radial basis function with two centres 

collocated at 𝑐1 = 0.75 and 𝑐2 = 3.25 that generate the two 

unnormalized Gaussian radial basis function. 

 

 

Figure 20: Radial basis function (with two centers collocated at c1=0.75 and c2=3.25) 

 

The two curves are multiplied with different weights (𝑤1 = 0.8 and 𝑤2 =

1.2). The dashed line is the function 𝑦(𝑥) of equation (4.7), referred to 

the summation of the two Gaussian curves. 

 

f) Rectified Linear Unit function: the ReLU function is characterized by two 

different behaviours. For 𝑥 < 0 the output of the function is zero for 

ReLU, while it is a linear function of the input in the case of parametrized 

ReLU functions. If 𝑥 ≥ 0 the function work as the identity function. These 

two types of function are expressed in equations (4.8 - 9), where the first 

is the ReLU function and the second is the parametrized one. 
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𝑓(𝑥) =  {
𝑥         𝑖𝑓 𝑥 ≥ 0
0         𝑖𝑓 𝑥 < 0

                               (4.8) 

 

𝑓(𝑥) =  {
𝑥         𝑖𝑓 𝑥 ≥ 0
𝑎𝑥      𝑖𝑓 𝑥 < 0

                               (4.9) 

 

where 𝑎 could be assigned a-priori or it can be used as a parameter of the 

problem; in both the cases the coefficient 𝑎 has to be positive, usually 

lower than 1. As a reference the two different kind of ReLU are shown in 

figure: 

 

 

Figure 21: ReLU (left), and parameterized ReLU (right) 

 

To avoid numerical problems, generally in the output layer the inputs of 

the neurons are passed through a linear activation function [6][29], i.e. 

identity function, or ReLU function. Therefore, the neuron maintains as 

output the weighted summation, or part of that. 

 

4.2   ANN training 
 

In this section, the general procedures of the training algorithm are reported. After 

presenting an overview, the following topics are briefly reviewed: 
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1. Overview. 

2. Backpropagation algorithm (gBP). 

3. Levenberg-Marquardt backpropagation algorithm (LMb). 

4. Other kinds of training algorithms. 

 

4.2.1   Overview 
The artificial neural network has to be trained in order to perform its task. In fact, 

without a training procedure, the ANN is only an empty shell with nodes and 

interconnection between them without any useful usage. The training procedure is 

a tuning process in which all the weights and in general all the trainable parameters 

are updated several times. The weights are updated such as to minimize the error 

between the network output and the desired output. The training procedure is 

assumed to be completed when the error drops below a certain threshold. 

There exists a huge number of different strategies to train a neural network. Some 

of this strategies are based on mathematical algorithms such as the gradient 

backpropagation (gBP) [34][40]-[42], or the Levenberg-Marquardt backpropagation 

(LMb) [34][43][44], other are based on hybrid algorithms that mix approach of the 

first order with others of the second order [34][45]; also some optimization 

algorithms as the PSO (particle swarm optimization) [26] or the GA (genetic 

algorithm) could be used to train the ANN. Every method differs from the others in 

terms of accuracy, time spent and reliability of the results. 

All the training strategies have as aim the reduction of the error function that could 

be expressed in different ways. The most common error function is the mean 

square error [34][43]-[45]: 

 

𝐸 =  
1

2(𝑛𝑝⋅𝑛𝑜)
∑ ∑ 𝑒𝑝,𝑚

2𝑛𝑜
𝑚=1

𝑛𝑝
𝑝=1                             (4.10) 

 

where 𝑝 is the number of input-output sets, ranging from 1 to 𝑛𝑝, 𝑚 is the number 

of output of the network that ranges from 1 to 𝑛𝑜, and 𝑒𝑝,𝑚 is the error at output 

𝑚 defined as reported in equation (4.11). 
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   𝑒𝑝,𝑚 = 𝑜𝑝,𝑚 − 𝑑𝑝,𝑚                                   (4.11) 

 

where 𝑑𝑝,𝑚 and 𝑜𝑝,𝑚 are desired output and actual output respectively, at network 

output 𝑚 for training set 𝑝. 

In all training algorithms the same computations are repeated for one set of input-

output at a time. Therefore, in order to simplify notations, the index 𝑝 for sets will 

be omitted hereinafter, unless otherwise stated. 

 

4.2.2   Backpropagation algorithm (gBP) 
In the gradient backpropagation training strategy, the updated weights, that 

substitute the old ones in order to reduce the error shown in equation (4.10), are 

evaluated with the help of the gradient, as expressed in equation [34][41][44]: 

 

𝑤𝑛+1 = 𝑤𝑛 − 𝛼𝑔𝑛                                      (4.12) 

 

where 𝑛 is the index of iterations, 𝑤 is the weight vector, 𝛼 is the learning constant, 

and 𝑔𝑛 is the gradient vector that is evaluated as: 

 

𝑔𝑗,𝑖 = 
𝜕𝐸

𝜕𝑤𝑗,𝑖
= 𝑦𝑗,𝑖𝛿𝑗                                    (4.13) 

 

where 𝑗 is the index of the neuron that ranges from 1 to 𝑛𝑛, 𝑖 is the index of neuron 

input that ranges from 1 to 𝑛𝑖 (this value can vary for different neurons), while 𝛿𝑗  is 

a parameters obtained from the output error, reported in the equation below: 

 

𝛿𝑗 = 𝑠𝑗 ∑ 𝐹𝑚,𝑗
′ 𝑒𝑚

𝑛𝑜
𝑚=1                                   (4.14) 

 



56 Artificial Neural Network (ANN) 

 
 
where 𝑠𝑗  is the slope of activation function 𝑓𝑗 , and 𝐹𝑚,𝑗

′  is the derivative of a complex 

nonlinear function that connect neuron 𝑗 with output 𝑚. The complexity of the 

nonlinear relation depends on how many neurons are between the neuron 

considered and the output. If the neuron 𝑗 is at network output 𝑚, then 𝐹𝑚,𝑗
′ = 1 

[44]. 

The 𝑠𝑗  term is determine as reported in equation: 

 

𝑠𝑗 = 
𝜕𝑦𝑗

𝜕𝑛𝑒𝑡𝑗
= 

𝜕𝑓𝑗(𝑛𝑒𝑡𝑗)

𝜕𝑛𝑒𝑡𝑗
                                    (4.15) 

 

where the 𝑛𝑒𝑡𝑗  is the summation between the weighted inputs and the bias error 

just before the value is passed through the activation function, and 𝑦𝑗  is the output 

of the node, i.e. the value obtained by passing the 𝑛𝑒𝑡𝑗 through the activation 

function. 

 

4.2.3   Levenberg-Marquardt backpropagation algorithm 

(LMb) 
In the Levenberg-Marquardt backpropagation algorithm, a Jacobian matrix is 

introduced to evaluate the updated weight vector, as shown in equation [34][44]: 

 

𝑤𝑛+1 = 𝑤𝑛 − (𝐽𝑛
𝑇𝐽𝑛 + 𝜇𝐼)−1𝑔𝑛                             (4.16) 

 

where 𝜇 is the combination coefficient, 𝐼 is the identity matrix, and 𝐽𝑛 is the 

Jacobian matrix shown in Figure 22. 
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Figure 22: Structure of Jacobian matrix [44] 

 

The number of columns of the Jacobian matrix is equal to the number of weights, 

while each row corresponds to a specified training set 𝑝 and output 𝑚. The 

elements of the matrix are computed as reported: 

 

𝜕𝑒𝑝,𝑚

𝜕𝑤𝑗,𝑖
= 𝑦𝑗,𝑖𝛿𝑚,𝑗 = 𝑦𝑗,𝑖𝑠𝑗𝐹𝑚,𝑗

′                              (4.17) 

 

where the parameter 𝛿𝑚,𝑗 is the same evaluated in equation (4.14) with the only 

difference that this method is a second order algorithm and these parameters have 

to be calculated for each neuron 𝑗 and each output 𝑚 separately. 

The gradient vector 𝑔𝑛 in equation (4.16) can be obtained from partial results of 

the Jacobian calculations, as expressed below: 

 

𝑔𝑗,𝑖 = 𝑦𝑗,𝑖 ∑ 𝛿𝑚,𝑗𝑒𝑚
𝑛𝑜
𝑚=1                                  (4.18) 
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The LMb algorithm uses a significantly higher number of parameters, as it can be 

deduced from the introduction of the Jacobian matrix that could be very large. The 

dimension of the matrix increases as the number of neurons, output and sets 

increase, inducing an increment in the time needed for the training [44]. On the 

other hand, the LMb can train artificial neural network for which the gBP algorithm 

has difficulty in converging. However, this method is suitable for small and medium 

size ANN. 

In second order algorithms the starting point could be affect the final result [44], 

needing strategies focused on finding the initial values of the weights or heuristic 

approaches that remove this dependence. This latter strategy trains the ANN 

several times, without working directly on the initial values of the starting weights. 

 

4.2.4   Other kinds of training algorithms 
The hybrid algorithms mix in one strategy the time performance of the first order 

algorithms with the accuracy and the convergence capacity of second order 

algorithms. This kind of strategy needs a huge set of parameters to tune all the 

internal formulas in order to grant the convergence [45]. 

For what concerns the training procedures based on optimization algorithms such 

as PSO or GA the weights are the design variables. These parameters are obtained 

minimizing the objective function made by the error between the network output 

and the desired one [26]. In this case the design variables do not have any kind of 

upper or lower boundary that limit their values, without the needs of introducing 

some penalty terms inside the objective function. 

 

4.3 Training and Testing sets 
 

All the training procedures explained in section 4.2 need a training set containing a 

certain number of input-output pairs. The dimension of the set determines the 

accuracy of the final neural network. In fact, the more sets are available, the better 

performances are expected from the trained ANN. 

The training sets are obtained with numerical analysis, i.e. FEM or Ritz, or with 

direct observations and measurements. The outputs of the training set represent 
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the desired values that the network has to approximate, tuning the internal 

weights. 

After the training procedure is completed, the network must be tested to verify if 

there are possible lack of generalization, as introduced in section 4.1.3. This 

verification process could be done with other sets of inputs-outputs pairs, named 

testing set. This kind of sets are built without particular attention on their 

distribution inside the feasible design space, aiming only on the verification of the 

constrains by the lamination parameters. Therefore, the LHS strategy implemented 

in Chapter 3 can be substituted with a simple random determination of the values, 

checking if the LP sets obtained verify the constraints. The testing points are passed 

as inputs to the trained ANN, whose outputs are then compared to the exact ones 

and the generalization errors are computed. 

The difference between the training error and the testing error behaviour is shown 

in Figure 23. The generalization error is the testing error, while the capacity is 

referred to the number of weights inside the network. 

 

 

Figure 23: Training error and testing error behaviour as the number of parameters increases 
[34] 

 

As explained in section 4.1.3, the under-fitting problem can be solved increasing 

the number of internal parameters. However, as shown in Figure 23, as the number 

of these parameters increases, the training error decreases, while the testing one 

increases. This behaviour is due to the fact that the network starts to over-fit the 

data used in the training process. Therefore, the ANN cannot be able to predict the 
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values of the points that are not used. In this case, it is said that the network 

“memorizes” the data, but not “learns” from them [34]. 

The “Optimal Capacity” reported in Figure 23 is referred to as the most efficient 

point, where the testing error reaches its minimum value. This condition is obtained 

with a precise number of neurons and weights. In order to achieve the optimal 

capacity situation, the number of training sets has to be 50 or even 100 times the 

number of weights present in the ANN [34]. 

 

4.4   Transfer-learning 
 

This section focuses on a main question: is it possible to reduce the time spent to 

train two different neural networks, training only one ANN and using that as the 

starting point to tune the parameters of the other one? The answer to this question 

is to be found in using the transfer-learning strategy. 

The transfer-learning is more efficient if it is used a reduced number of input-output 

sets for the training process. The advantage of using a reduced set consists in a 

smaller time consumptions for the training for the second ANN and also for the time 

spent to obtain the input-output pairs itself (if obtained with numerical iteration 

methods). The transfer learning works in two steps: the first step consists of training 

an ANN, and the second one consists in taking all the internal parameters of the 

first neural network and using them as the starting points for the training of the 

second ANN. As a reference, the scheme of the transfer learning procedure is 

reported in Figure 24. 
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Figure 24: Procedure scheme for the transfer-learning strategy 

 

One first point to be clarified regards the ability of transfer-learning to guarantee 

accurate prediction for both the problem considered. Note, in this framework the 

same network architecture should be considered for both the analysis. Therefore, 

the second problem could use an ANN that is not one of the most efficient for the 

resolution of the problem considered. 

If the second problem network is trained with a “full” training sample set, the 

transfer-learning strategy could only reduce the training time. In fact, there are no 

differences between the classical training method and the transfer-learning 

method, except for the desirable proximity of the set of parameters to the 

convergence conditions. Instead, with a reduced set, also the time spent in the 

parts before the training can benefit with this kind of strategy. 
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4.5   ANN implementation in MATLAB® 
 

Inside the software MATLAB® are already be implemented the code to build the 

ANN, and to train the network. An input files that contains all the information about 

the neural network and the training and testing input-output pairs has to be 

implemented. 

The ANN can be built with the functions “feedforwardnet” or “cascadeforwardnet”, 

where the input is a vector containing the numbers of neurons in each hidden layer. 

Furthermore, in the input file can be implemented a series of Boolean matrices that 

contains all the information about the interconnections between the various layers, 

modifying the classical scheme. Inside the input files it can be decided also if a bias 

has to be applied to a hidden layer or not, and in addition, which activation function 

is presented in each neuron. 

The training algorithm must be selected introducing the relative string name inside 

the input file, i.e. “traingdx” for a classical backpropagation, “trainlm” for a LMb, 

and “traincgf” for a hybrid training algorithm. 

Inside MATLAB®, however, the testing phase is not implemented, needing to write 

the codes for it. In order to accomplish this task, a function containing the trained 

ANN has to be generated. This can be done by hand or using the already 

implemented “genFunction”. After that, a for loop is needed in order to evaluate 

all the testing errors for the input-output pairs: the input is introduced inside the 

function generated, and the output is compared with the desired one. Generally, 

the errors computed are the maximum and the average ones. 

Both for the training and the testing errors evaluation, a for loop has to be coded. 

This can be also useful if a heuristic strategy is chosen to train the network, iterating 

the training process several times. In fact, these errors can be used inside an 

objective function to determine which one of the trained configurations is the best 

one. 

For what concerns the transfer-learning implementation, one input file is needed 

which contains not only the input-output pairs for the first problem, but also for 

the second one. The training procedure and the definition of the network have to 

be put in sequence, starting with the training of the first ANN as implemented 

before and followed with the definition of the second one. At this point, the weights 

of the network should be extrapolated and introduced as starting points inside the 
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training algorithm of the second network, and the second network is trained. The 

second training process can be the same used for the training of the first ANN or 

can be even different from the previous one. It has to be underlined that the 

weights that connect the inputs with other neurons are not accepted by MATLAB® 

as starting points for the training. In fact, the only weights that can be transported 

from the first network to the training of the second one are the bias and the weights 

that connect the different neurons in the network. 
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Chapter 5 
 

Particle Swarm Optimization (PSO) 
 

 

In this chapter the optimization algorithm is exposed. After the definition of the 

problem with a surrogate model, the next part of the study is focused in showing 

how to reach the optimum value, i.e. maximum stiffness with minimum weight, 

maximum first buckling load or maximum first natural frequency. 

Between all the possible strategies, the algorithm chosen is the Particle Swarm 

Optimization (PSO). The PSO is a stochastic process that possesses a natural-based 

algorithm, whose purpose is to mimic the bee’s behaviour in mapping and finding 

the best spot where to collect food. 

The artificial neural network is transformed into the objective functions, whose 

values are the ones that the PSO algorithm tries to maximize. 

The Particle Swarm Optimization algorithm used in this work is the one 

implemented in MATLAB®, where some modifications are implemented in order to 

allow a verification of complex constraints. In particular, the constraints considered 

are referred to the lamination parameters that are implemented as design 

variables. 

 

5.1   PSO Algorithm 
 

The Particle Swarm Optimization algorithm is composed by a swarm of particles 

(bees) that represents various combination of deign variables with the relative 

solution value. The swarm of particles moves in the design space, searching for the 

maximum value, changing the velocity and the direction of the movement of every 

particle in order to find the optimum. 

The use of PSO is well established in the literature [26][46][50]. For composite 

structural problems, the study reported in literature [46][50] demonstrated the PSO 

efficiency, showing that the performance obtained with this strategy can be better 
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respect to the ones obtained with other kinds of evolutionary optimization 

algorithms. 

The PSO algorithm has its advantages and disadvantages. On one hand the time 

needed to reach the maximum is very small, on the other hand the convergence to 

the global maximum is not granted. To avoid being trapped in local optima, the 

internal parameters need to change during the process in order to modify the kind 

of search, i.e. from the global search to the local one. Therefore, some internal 

parameters have to be tuned [11]. 

The particles in the algorithm are placed in a multidimensional space that 

correspond to the feasible design space of the problem. Each particle can move in 

this hypervolume where the coordinates that describe its position are the values 

associated with each design variables. Every particle is associated also with the 

value that has to be optimized. This is done in to ensure that the swarm converge 

to the best spot (the maximum searched value). 

The distribution of the swarm inside the design space does not affect the 

convergence property of the optimization algorithm. However, the dimension of 

the starting swarm could change the performance of the optimization process [46]. 

A larger number of particles allows to explore more space with a smaller number 

of iterations, but on the other hand this increase the time spent for the evaluation 

of the function value. 

The ideal number of the swarm of particles is between 2n and 10n where n is the 

number of input variables [11][46]. If the number of particles of the swarm is less 

than 2n, the optimization process does not work and the convergence is not 

obtained, because particles move almost randomly along the design space. On the 

other hand, if the number of particles exceed ten times the number of the input 

design variables, the number of function evaluation becomes larger with no 

additional benefits on the ability of the method to reach the optimum. 

 The scheme of a basic PSO algorithm is shown in Figure 25. 
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Figure 25: PSO algorithm scheme 

 

The PSO algorithm consists of an iterative procedure, where at each iteration the 

position of each particle in the swarm is updated. The equation describing the 

change of position of a particle reads [11][27][46]: 

 

𝑥𝑘+1
𝑖 = 𝑥𝑘

𝑖 + 𝑣𝑘+1
𝑖 Δ𝑡                                    (5.1) 

 

where 𝑥𝑘+1
𝑖  is the position of the particle 𝑖 at iteration 𝑘 + 1 and 𝑣𝑘+1

𝑖  is the 

corresponding velocity vector; Δ𝑡 is a time step that generally is considered unitary. 

There exist different ways to update the velocity vector referred to each particle, 

depending on the PSO algorithm under consideration. A commonly used scheme is 

expressed in equation: 

 

𝑣𝑘+1
𝑖 =  𝜔𝑣𝑘

𝑖 + 𝑐1𝑟1
(𝑝𝑖−𝑥𝑘

𝑖 )

Δ𝑡
+ 𝑐2𝑟2

(𝑝𝑘
𝑔
−𝑥𝑘

𝑖 )

Δ𝑡
                      (5.2) 
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where 𝑟1 and 𝑟2 are independent random numbers between 0 and 1, 𝑝𝑖 is the best 

position found by particle 𝑖 and 𝑝𝑘
𝑔

 is the best position in the swarm until iteration 

𝑘. The inertia of the particle 𝜔 and the two “trust” parameters 𝑐1 and 𝑐2 could 

change during the iterative procedure to try to find the global maximum and 

avoiding that the optimization algorithm will be trapped in a local optimum 

[11][46]. Both the inertia of the particles and the trust parameters are non-

dimensional values. 

The inertia controls the exploration properties of the algorithm. When the inertia 

has large values a more global behaviour is enhanced, while with smaller values the 

analysis is more local. In the first part of the process many regions are explored, 

while during the final phase the particles move less and less around their positions. 

Therefore, the more promising spots are found in the first phase, while in the 

second one, the particles adjust the final optimal configuration without the risk to 

jump away from that spot [11][46]. 

The trust parameters indicate how much confidence the current particle has in itself 

(𝑐1), and how much confidence it has in the swarm (𝑐2). Furthermore, also the trust 

parameters can change during the iteration process in order to optimize the 

convergence [11][46]. 

After all the positions are updated, any constraints on the design variables are 

checked. Different strategies can be used to consider possible violation of the 

constraints, i.e. modifying the velocity vector [11] or changing directly the objective 

function value associated with the particle [21]. 

At each iteration, the value associated to a particle is compared with the others, 

and the best one of the swarm is saved. The last saved value is the optimal solution 

when the stop criterion ends the iteration process. Therefore, the design variable 

combination associated to that particle is the optimal combination of design 

parameters. 

There exist different ways to stop the optimization procedure, i.e. maximum 

number of iterations, maximum time consumption allowed, the best value is below 

the limit imposed, or the best value does not change within a “stall maximum” 

amount of iterations. 

The maximum number of iterations is the most adopted stopping criterion for the 

PSO algorithm. Furthermore, this criterion can be placed side by side with the stall 

maximum iteration stop criterion. However, it may happen that the objective 
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function stays stationary for a certain number of iterations and then starts to 

change its value again, reason why the former criterion is often preferred. 

The scheme of the algorithm is reported below: 

 

1) Start with an initial set of particles, randomly distributed throughout the 

feasible design space. 

2) Choose the inertia of the particles, depending on the number of the 

current iteration, to modify the type of search (more local or more 

global). 

3) Calculate the velocity vector for each particle in the swarm. 

4) Update the position of each particles using previous position and the 

velocity calculated in point 3. 

5) Store the best position of the swarm and the best position of each particle 

obtained so far, for the iteration that follows. 

6) Go to step 2 and repeat until the stop criteria end the process. 

 

5.2   Artificial neural network in the optimization process 
 

Within the present framework, the objective function is determined using an 

artificial neural network. The ANN can be converted into a function where the 

inputs are the coordinates of the particles and the output is the value of the 

objective function.  In this way the optimization algorithm uses the ANN inside the 

iteration process. A scheme of the entire optimization process is shown in Figure 

26. 
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Figure 26: Optimization process scheme, including the numerical analysis done with a Ritz's 
method and the training of the ANN 

 

The optimization algorithm treats the ANN as a Blackbox, providing inputs to the 

net which in turns generates the corresponding output. The optimization algorithm 

operates on the output provided by the ANN, applying penalty terms enforce the 

constraints. The advantage of using neural networks consists of an almost 

immediate evaluation of the objective function.  

Errors can be affecting the optimization process due to the presence of the ANN. In 

fact, the percentual error on the testing sets, explained in Chapter 4, remains also 

in the optimization process. 

 

5.3   Constraints application 
 

The PSO algorithm needs strategies to check any constraints that can be applied to 

the design variables. Several strategies are available for preventing the particle to 

fall outside the feasible domain. Therefore, the updated positions of the particles 
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are ensured to be always inside the design domain. The constraints applied to the 

problem could be physical, parametrical or made by design choice. 

The most popular strategies are “absorption”, “reflection”, and “damping”, 

reported as a reference in the figure below [11]: 

 

 

Figure 27: The three most popular boundary condition method in PSO 

 

These three methods with their relative implementation are listed below: 

 

a) Absorption: this method assigns to the degrees of freedom of the 

particles that violate the constraints the limit bound value. This imply that 

the particle is brought on the boundary limit of the violated degrees of 

freedom ad absorbing their velocity, reducing those to zero. The 

absorption method fits better the problem that try to find solution near 

the boundary limits because the particles that try to escape the feasible 

domain trend to remain stacked on the boundary limit line, analysing 

better those regions rather than the internal ones. The algorithm could 

be expressed in a mathematical way as reported in equation: 

 

𝑖𝑓 (𝑥𝑛𝑖 > 𝑥max  
𝑛 )          →          𝑥𝑛𝑖 = 𝑥max  

𝑛  

𝑖𝑓 (𝑥𝑛𝑖 < 𝑥min  
𝑛 )          →          𝑥𝑛𝑖 = 𝑥min  

𝑛  
             (5.3) 
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b) Reflection: this method is similar to the absorption one, in fact the 

particles is bought on the boundary that was about to be violated. The 

main difference is on the velocity vector that the particles has after the 

repositioning; the velocity is not absorbed but reflected. The components 

of the velocity vector referred to the violated degrees of freedom are not 

set to zero, but their magnitude is maintained while their sign is reversed. 

The reflection method works like if the particles was elastically bounced 

back from the boundary limit expressed as: 

 

𝑖𝑓 (𝑥𝑛𝑖 > 𝑥max  
𝑛 )          →          𝑥𝑛𝑖 = 𝑥max  

𝑛 − 𝑐𝑣𝑛𝑖  

𝑖𝑓 (𝑥𝑛𝑖 < 𝑥min  
𝑛 )          →          𝑥𝑛𝑖 = 𝑥min  

𝑛  − 𝑐𝑣𝑛𝑖        (5.4) 

 

where 𝑐 is a scalar number that is unitary in the classical case (perfect 

elastic bouncing) that in most of the cases gives problem to the 

convergence because the particles that are replaced tend keep violating 

the constraints. For this reason, the value of the scalar 𝑐 tends to assume 

different values accordingly to the problem. 

 

c) Damping: this method conceptually coincides with the method of 

reflection with the adding of a random damping between 0 and 1 to the 

“bouncing” velocity as shown in the equation below: 

 

𝑖𝑓 (𝑥𝑛𝑖 > 𝑥max  
𝑛 )        →        𝑥𝑛𝑖 = 𝑥max  

𝑛 − (𝑟𝑎𝑛𝑑)𝑐𝑣𝑛𝑖  

𝑖𝑓 (𝑥𝑛𝑖 < 𝑥min  
𝑛 )        →        𝑥𝑛𝑖 = 𝑥min  

𝑛  − (𝑟𝑎𝑛𝑑)𝑐𝑣𝑛𝑖    (5.5) 

 

In this method a randomness component is introduced by the rand term. 

Both the reflection and the damping methods fits better problem that try 

to reach optimal point away from the boundary limits, analysing more 

thoroughly the internal regions of the feasible design space. 

 

Another approach to enforce constraints consists in introducing a penalty term in 

the objective function [21]. Furthermore, this strategy allows to introduce a large 

set of constraints, even complex or nonlinear ones. 
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The easiest way to introduce a penalty term is to use a flag that becomes true ( = 1) 

if the constraints are violated, and false ( = 0) if they are not. A penalty value is 

multiplied by this flag terms, increasing or decreasing the value of the objective 

function. The mathematical formulation of this concept is expressed as: 

 

𝐹(𝒙, 𝜆)  =  𝑓(𝒙)  ±  𝑀𝜆                                    (5.6) 

 

where 𝐹(𝒙, 𝜆) is the penalized objective function that depends on the vector 𝒙 of 

the project variables and 𝜆 that is the flag: 𝜆 = 0 if the constrains are verified by 𝒙 

and 𝜆 = 1 if 𝒙 violates the constraints. The value of 𝑀 is large enough to bring the 

value of the objective function 𝑓(𝒙) out of the set of possible results. 

Another option to introduce the penalty term inside the objective function is to 

consider not a flag that multiplies a large number 𝑀, but an error computed from 

the constraints itself. This allows also to analyse the outer space near the 

boundaries, in order to better understand the behaviour of the problem itself. The 

mathematical formulation of this strategy is expressed in the equation below: 

 

𝐹(𝒙, 𝑒)  =  𝑓(𝒙)  ±  𝑀𝑒                                    (5.7) 

 

where 𝑒 is the maximum error obtained in the checking phase of the constraints. 

The equations (5.6) and (5.7) can be combined when several constraints are 

considered. Furthermore, these applied constraints could be of different nature, 

e.g. errors and Booleans. For the penalty term reported in equations (5.6) and (5.7), 

the value 𝑀 can be considered proportional to the value obtained from the 

objective function: 

 

𝑀(𝒙) = 𝑎 ⋅ |𝑓(𝒙)|                                       (5.8) 
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where 𝑎 is a scalar that have to be chosen in order to modify significantly the value 

of the objective function. Therefore, the value 𝑎 has to have an appropriate order 

of magnitude: if it is too small the particle that violates the constraints can be 

considered anyway; on the other hand is meaningless that it is too large, enlarging 

the objective function value beyond what is necessary. 

The implementation of the constraints with the use of a penalty terms could 

introduce errors inside the optimization process. Considering this point, the total 

error present in the procedure is a combination of the one produced by the 

constraints and the one intrinsic in the ANN. 

 

5.4   PSO implementation in MATLAB® 
 

Inside MATLAB® is already implemented the basic code for the particle swarm 

optimization (“particleswarm” function). However, in MATLAB® the method 

implemented to check if the constraints are verified is the absorption one. 

Therefore, the implementation of penalty terms inside the objective function is 

needed. 

The ANN is used as objective function inside the PSO algorithm, generating a 

function as done in Chapter 4 to evaluate the testing errors. If the constraints 

present are only upper and lower boundaries, the objective function consists 

directly of the function generated with the ANN. However, if this is not the case, 

after the ANN a checking phase and an evaluation of the errors need to be 

introduced. 

The value outcoming from the ANN and the penalty terms generated by the 

checking of the constraints are summed together and the final value is the one 

associated to the particle during the iteration process. 

The inertia of the particles, the trust parameters (𝑐1 and 𝑐2), the swarm size, and 

the maximum number of iteration (stop criterion) are parameters that can be 

modified using the string “options”. 

The range given by default in MATLAB® for the inertia parameter is between 0.1 

and 1.1. Therefore, it is proved in literature that this interval can grant the 

convergence [11]. For what concerns the trust parameters, in literature is 
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demonstrated [11][46] that if their value change during the iteration, the 

convergence is faster. However, in MATLAB® the trust parameters do not change 

during the iteration process and by default they start with value of 1.49. 

The number of particles and their coordinates (design variables values) for the 

initial swarm can be defined. It has to be noticed that if particular constraints exist, 

also the particles of the initial swarm have to verify them. 

The PSO algorithm implemented in MATLAB® is coded to find only the minimum 

optimal value. However, if the maximum value is the desired ones, the dual 

problem has to be considered. In fact, the dual problem transforms the 

optimization search from the minimum value to the maximum one or vice versa, 

introducing some transformation on the variables and unknowns involved. 

 

5.5   Validation of the PSO process implemented 
 

In this section the validation of the PSO algorithm used in the optimization process 

is presented. This validation checks if the convergence is obtained even if the 

objective function is built with an ANN and penalty terms are introduced. 

To validate the algorithm implemented, a specific problem is considered. The 

mechanical properties of a simply supported rectangular plate with dimension of 

1200x1000 mm and made by Carbon Fiber are reported in the table below: 

 

 Values 

E11 163000 MPa 
E22 6800 MPa 
G12 3400 MPa 
𝜈12  0.28 
𝜌 1.35E-9 t/mm3 

 

Table 6: Composite material engineering properties 
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The Plate considered is made by 3 plies with a constant distribution of the 

orientation of the angles in each layer, where the thickness is fixed to be equal to 

0.127 mm for each ply. No particular assumptions, like symmetry or balancing, are 

imposed to the plate. 

The optimal value for the free vibration problem is evaluated with two distinct 

methods: the PSO algorithm with ANN as objective function and penalty terms, and 

a numerical iteration considering all the possible different orientation angles 

combination to have a reference benchmark. 

The two methods use different design variables. In fact, the PSO optimum value is 

reached using lamination parameters, while the one obtained with the numerical 

iteration uses the orientation angles of the fibres. In this latter case, the angle of 

one ply at each step is increased by 5° because the difference in properties can be 

considered constant in that interval [22]. Therefore, 46656 different laminates are 

considered and are introduced in a Ritz’s analysis to evaluate the respective 

frequencies. 

The ANN used to validate the results is composed by 2 hidden layers with 12 

neurons each with a feedforward architecture. It is trained with a heuristic method, 

composed by 20 iteration of LMb training algorithm. 

The training points are obtained with the same procedures expressed in Chapter 3, 

and the training set used is composed by 796 points. In particular, the number of 

terms needed to fully describe the laminate is 12 (one set only). 

For what concerns the PSO, the size of the swarm is about 2n, where n is the 

dimension of the design variable set. The trust parameters c1 and c2 are 1.86 and 

1.61, respectively. Finally, the stop criteria are imposed to be 5000 iteration and a 

maximum stall iteration of about 20% of the maximum number of iterations. 

The values of the first natural frequencies obtained with the two different method 

are reported in table: 

 

LP + ANN + PSO [Hz] 𝜗 + Numerical Iteration [Hz] 

4.4119 4.4135 

 

Table 7: Optimal results obtained from the PSO algorithm and the numerical iteration 
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It can be observed that the difference between the two values in Table 7 is in the 

order of 0.04%. However, the particle swarm algorithm that uses the ANN as 

objective function, is affected by errors. The first natural frequency is obtained from 

a Ritz’s analysis starting from the lamination parameters obtained by the PSO. 

Therefore, the actual value is 4.3947 Hz, generating in this case a percentage error 

in the order of 0.43%. 

The optimization process that use the PSO algorithm with ANN as objective function 

and lamination parameters as design variables that introduce complex constraints, 

can achieve good approximation of the actual optimal value. Furthermore, less time 

is spent in the PSO optimization process respect to the one spent in the numerical 

iteration. The time needed to find the optimal value with a numerical iteration is 

about 23 hours, while the PSO spent is less than 3 hours. This means that in half of 

the time, the optimal solution is found with a small error. 
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Chapter 6 
 

Post-processing 
 

 

In this chapter is explained and validated the post-processing procedure to 

transform lamination parameters into orientation angles. Due to the nature of the 

lamination parameters, the conversion is performed numerically. In fact, different 

configurations of angles per ply could be obtained, depending on the number of 

layers and their thickness. Furthermore, the number of possibilities increase if the 

laminate is made by variable stiffness composite layers. 

Different strategies can be implemented to solve the final transformation problem. 

The PSO algorithm is chosen to perform the conversion. However, the weights 

inside the objective function has to be linked with the physics of the structure, like 

the strain energy, in order to build a laminate as similar as possible to the starting 

one. The transformation executed in the post-processing part is mandatory if the 

laminate would be manufactured. 

Constraints can be implemented in the conversion process in order to obtain 

stacking sequences that follow some design requirements. 

 

6.1   From lamination parameters to orientation angles 
 

The transformation of the angles in lamination parameters is unique, while 

opposite is not true. A numerical method is required to successfully convert the 

lamination parameters into the set of orientation angles. In literature different 

strategies have been developed for this scope. Friswell et al. [21] used an 

optimization algorithm, while Setoodeh et al. [4] introduced a stream function. In 

this work the optimization algorithm is implemented to convert the lamination 

parameters. 

The PSO algorithm is used in order to convert the lamination parameters in 

orientation angles. The design variables are the angles that are converted in 

lamination parameters and then transformed again to compare their values with 
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the target ones [21]. As a reference, a scheme of the optimization process to 

determine the configuration of the orientation angles is reported below: 

 

 

Figure 28: Scheme of the post-processing procedure 

 

The objective function is composed by all the quadratic weighted error differences. 

Furthermore, there is the possibility to introduce a various set of constraints in the 

conversion procedure. However, in this work the simplest post-processing 

transformation is implemented, without the introduction of penalty terms. 

The objective function proposed by Friswell et al. [21] is composed by linear error 

differences. However, if there are errors in the process that generates the optimal 
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set of lamination parameters, a quadratic error should be chosen in order to reduce 

possible errors that will be introduced by the conversion. The objective function is 

of the form reported in equation: 

 

𝐹(𝝃) =
1

12⋅𝑛𝑝
[∑𝑤𝑎(𝜉𝐴 − 𝜉𝑡

𝐴)2 + ∑𝑤𝑏(𝜉
𝐵 − 𝜉𝑡

𝐵)2 + ∑𝑤𝑑(𝜉𝐷 − 𝜉𝑡
𝐷)2]      (6.1) 

 

where 𝜉𝑡
𝑘 is the target lamination parameter associated to the k laminate 

constitutive matrix, while 𝑤𝑎, 𝑤𝑏, and 𝑤𝑑 are the weights associated to the 

different components of the lamination parameters. Each term of the objective 

function is a quadratic error, evaluated component per component, subdividing the 

three different behaviour of the laminate structure. The 𝑛𝑝 value is referred to the 

number of sets that are used to describe the laminate. Therefore, for a constant 

stiffness laminate 𝑛𝑝 = 1, while for a variable stiffness plate 𝑛𝑝 could increase 

significantly in function of the complexity of the fibres in-plane variation pattern. 

The outline of the post-processing conversion is as follows: 

 

1) Defining the target lamination parameters. 

2) Evaluating the internal parameters of the PSO (objective function 

weights). 

3) Generating a starting swarm of orientation angles. 

4) Updating of position and velocity of the particles, as expressed in section 

5.1. 

5) Converting the angles in lamination parameters. 

6) Evaluating the objective function value through the errors. 

7) Repeat from point 4 until stop criteria end the process. 

 

When the process is ended by the stop criterion, the set of project variables, that 

gave the minimum value of 𝐹(𝝃), expresses the angle distribution in each ply. It has 

to be observed that in equation (6.1) nor constraints or particular restriction are 

considered. In fact, as introduced before, inside the objective function 𝐹(𝝃) could 

be introduced penalty terms, i.e. the maximum difference between the angles in 

two consecutive plies or avoiding certain angle configuration in certain plies. 
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6.2   Weights of the objective function 
 

The weights reported in equation (6.1) give more importance to certain type of 

lamination parameters components that have a larger influence on the structural 

behaviours. In order to assign the right level of importance, the weights cannot be 

assigned randomly but have to be referred to some sort of physical quantities. 

The strain energy is chosen to extract the weights because it rates the contribution 

of the in-plane, coupling, and out-of-plane laminate constitutive matrices influence 

on the structure [22][51]. If the energy associated with a laminate constitutive 

matrix is null, the relative weight will be zero, neglecting all the errors on the 

associated lamination parameters terms. Therefore, these weights have to be 

modified to consider the conversion errors of the associated terms, otherwise the 

obtained laminate will be different from the starting one. 

The strain energy is defined as reported in the following equation [22][51]: 

 

𝑈 =  ∫
1

2

 

𝑉
 {

𝜀𝑥

𝜀𝑦

𝛾𝑥𝑦

}

𝑇

{

𝜎𝑥

𝜎𝑦

𝜏𝑥𝑦

} 𝑑𝑉 =  ∫
1

2
{𝜀

0

𝑘
}
𝑇

{
𝑁
𝑀

}𝑑𝜁
 

𝜁
                  (6.2) 

 

where 𝜁 is the surface area of the midplane of the laminate, 𝑈 is the strain energy, 

and 𝜀0 is the mid-plane strain vector, while 𝑘 is the plate curvature vector; N and 

M are the membrane loads vector and the out-of-plane moments vector resultants, 

respectively. From equation (6.2) the strain energy can be decomposed in terms 

referred to the relative laminate constitutive matrix. The decomposition is reported 

[51]: 

 

𝑈 = ∫
1

2
{𝜀

0

𝑘
}
𝑇

[
𝐴 𝐵
𝐵 𝐷

] {𝜀
0

𝑘
} 𝑑𝜁 =  ∫

1

2
(𝜀0𝐴𝜀0 + 𝜀0𝐵𝑘 + 𝑘𝐵𝜀0 + 𝑘𝐷𝑘) 𝑑𝜁 =

 

𝜁

 

𝜁

 

= 𝑈𝐴 + 𝑈𝐵 + 𝑈𝐷                                                                                   (6.3) 
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where each term  𝑈𝑘, with 𝑘 = 𝐴,𝐵, 𝐷, are expressed below: 

 

𝑈𝐴 = ∫
1

2
𝜀0𝐴𝜀0 𝑑𝜁

 

𝜁

𝑈𝐵 = ∫
1

2
(𝜀0𝐵𝑘 + 𝑘𝐵𝜀0) 𝑑𝜁

 

𝜁

𝑈𝐷 = ∫
1

2
𝑘𝐷𝑘 𝑑𝜁

 

𝜁

                                 (6.4) 

 

where 𝑈𝐴, 𝑈𝐵, and 𝑈𝐷 are the three components referred to the different laminate 

constitutive matrices A, B, and D, respectively. 

In practice, the integrals involved in equation (6.4) are computed numerically. From 

the three terms of the strain energy, the relative weights are evaluated. All the 

terms that are different from zero are reduced to be less than 10. For what concerns 

all the possible terms of the energy that are zero, the value of the relative weight is 

evaluated from the maximum value of the strain energy of the other terms. 

Therefore, they are scaled until the weight reaches a value between 0.5 and 1 in 

order to reduce their influence inside the optimization procedure, but still 

considering the error produced by those terms. 

 

6.3   Post-processing implementation in MATLAB® 
 

The post-processing process is implemented in MATLAB® in order to obtain the 

orientation angle configuration and the error between the target lamination 

parameters and the ones obtained converting the angle set. Therefore, a function 

that converts the angles into lamination parameters is needed to check the final 

errors. Furthermore, the PSO algorithm use the orientation angle as design 

variables, thus the conversion to lamination parameters is needed also inside the 

objective function. However, the “particleswarm” function admits as inputs only 

the objective function and “options”. This implies that some data has to be written 

by hand inside the objective function code, i.e. the lamination parameters set, the 

weights obtained from the strain energy, the number of layers, and the total 

thickness of the plate. 
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If symmetric laminates are considered, the code can be only use as design variable 

half of the total number of angles. For what concerns other kind of laminate 

structure, such as balanced ones, the implementation could be more complicated. 

 

6.4   Validation of the post-processing procedure 
 

The post-processing has to be validated. Therefore, some laminates with fixed 

orientation angles are considered, converting these angles in lamination 

parameters and then converted again in angles with the PSO algorithm. 

Furthermore, to evaluate the capability of the algorithm implemented, constant 

stiffness laminate and variables stiffness laminate are considered in the validation 

phase. 

All the laminates considered are symmetric and balanced. For this procedure, the 

trust parameters are fixed both to the value of 2.05 [11], while the weights of the 

objective function are computed from the strain energy for each laminate. The 

swarm is composed by 500n particles and the maximum iterations are 3000, where 

10% of this is the maximum “stall iterations”. 

The laminates considered and the maximum error on the lamination parameters 

obtained in the validation process are reported in the following table: 

 

Laminate stacking sequence LP maximum error 

[0/90]s 0 

[±45/∓60/±30]s 4.81E-5 
[±45.75/±15.62/∓78.11]s 1.32E-5 

[(0 − 90)2]s 0 
[±45 − 0/0 − ±45/±45 − 0]s 5.83E-4 

[±73.25 − 90/±32.12 − ±53.82]s 1.44E-4 

 

Table 8: Validation laminates with the relative maximum errors on the lamination parameters 
due to the conversion 
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For the VSP laminates, the [𝜗1 − 𝜗2] notation is used, where 𝜗1 is the angle in the 

center of the plate, while 𝜗2 is the one on the edge. From the errors reported in 

Table 8, the error on the lamination parameters are negligible. Considering this 

observation, the method implemented it is reliable and can built the laminate 

starting from the lamination parameters. However, another validation test is 

studied. 

The laminates considered in the previous validation test are used also for this study. 

However, for this analysis, the number of layers of the laminate does not match the 

starting one. In fact, in one case the number of plies is halved, while in the second 

one the number is doubled. 

This analysis focus on the performance of the implemented code to find 

combination of angles, where the starting configuration cannot be obtained. The 

laminates considered for this study are reported in the table below: 

 

Laminate stacking sequence LP maximum error 
(half plies) 

LP maximum error 
(double plies) 

[0/90]s 1 6.54E-5 
[±45/∓60/±30]s 0.3471 5.17E-4 

[±45.75/±15.62/∓78.11]s 0.2953 2.07E-4 

[(0 − 90)2]s 0 0 
[±45 − 0/0 − ±45/±45 − 0]s 0.3542 0.0045 

[±73.25 − 90/±32.12 − ±53.82]s 0.3953 0.0030 

 

Table 9: Validation laminates with the relative maximum errors on the lamination parameters 
due to the conversion for the case with half plies and the one with twice plies 

 

From the data reported in Table 9 one can observe that the maximum error 

increase  significantly  when the number of plies is less than the original one. For 

what concern the case with more plies, the maximum error increases but remains 

negligible.  Only the first VSP laminate considered has not changes in the error level, 

because the same lamination parameters set can be obtained repeating the top 

two layers an even number of times. These observations have to be considered in 

future problems, implying that large errors are principally related with a not 

sufficient number of layers. 
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Chapter 7 
 

Numerical simulations 
 

 

In this chapter all the numerical analysis based on two example problems are 

reported. The example problems considered are the free vibration and buckling 

one. Therefore, the first natural frequency and the first buckling load are the values 

to be maximized. 

All the tuning process of the various parameters involved in the problems are 

reported, i.e. number of lamination parameters sets, weights of the ANN, inertia of 

the particle of the PSO, and so on. Furthermore, some assumptions and 

simplifications done during the analysis are reported in order to fully describe the 

work. 

 

7.1   Assumptions and data for the example problems 
 

The example problems consist in finding the maximum first natural frequency and 

the first buckling load for a simply supported rectangular variable stiffness plate. 

In this work the simplest VSP configuration is considered, i.e. linear variation of the 

orientation angles through the plate. The orientation angles of the fibres in the 

center and on one edge are selected to fully describe the fibre pattern. 

As a reference, the variation of the fibres inside each ply and the constraints applied 

to the edges are reported in Figure 29. 
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Figure 29: Curvilinear fibre path that varies linearly along the x-axis (left), and representation 
of the constraints with the fibres behaviour (right) 

 

The mathematical description of the fibre variation behaviour in a single ply is 

reported in equation below [2]: 

 

𝜗(𝑥) =  
2(𝑇1−𝑇0)

𝑎
|𝑥| + 𝑇0                                   (7.1) 

 

where 𝜗 represents the fibre orientation, 𝑎 denotes the plate width, 𝑇0 and 𝑇1 are 

the fibres angles at the plate centre (𝑥 = 0) and the plate edges (𝑥 =  ±𝑎/2). 

The plate is considered symmetric and balanced, composed by 16 plies. The 

symmetry of layers stacking sequence implies that the first 8 plies orientation 

angles patterns are repeated in an inverse order in the other 8, nullifying all the 

terms that couple the in-plane loads with the out-of-plane bending moments. A 

laminate is considered balanced if it has a layer with a negative 𝜗 orientation for 

every layer with a positive 𝜗. This last assumption considered introduces a null 

shear-extension coupling terms. 
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The plate has the longer edge aligned along the x-axis. The dimension of the plate 

are 1200 mm and 1000 mm with a thickness of 0.125 mm per ply, made by 

IM7/8552 graphite-epoxy [55]. The material selected is widely implemented in 

aeronautical structures and all the engineering properties are reported in Table 10 

and Table 11. 

 

 Values 

E11 150000 MPa 
E22 9080 MPa 
G12 5290 MPa 
𝜈12  0.32 
𝛼1  -5.5E-6 1/C° 
𝛼2 25.8E-6 1/C° 
𝜌 1.55E-9 t/mm3 

 

Table 10: Composite material engineering properties 

 

 Single ply Double or outer ply 

Xt 2323 2323 
Xc 1200 1200 
Yt 160.2 101.4 
Yc 199.8 199.8 
S 130.2 107.0 

 

Table 11: Composite material ply strength properties expressed in MPa 

 

The example optimization problems are solved with the implementation in 

MATLAB® of the various parts, i.e. the sampling of the lamination parameters, the 

evaluation of the input-output pairs with a Ritz’s analysis, the built and the training 

process of the ANN, the optimization with the PSO algorithm and the post-

processing conversion. 

It has to be highlighted that all the operations in the work are done with an Intel® 

Core™ i7-6500U CPU @ 2.50 GHz with RAM of 12 GB DDR3 at 1600 MHz. 
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7.2   Bounds and sampling in the lamination parameters 

space 
 

In this work, the lamination parameters are used directly as design variables. This 

is possible because the parametrization condenses the orientation angles 

information inside the lamination parameters sets. As already mentioned, a single 

set of LPs is not enough to characterize a VSP structure. 

For the plate considered, the minimum number of sampling points is 2, generally 

taken at in the center and on one of the edges [2]. The linear fibres distribution, in 

fact, can be fully described by these two points, as reported in equation (7.1). As a 

reference, in the figure below where the points are sampled on the plate is shown: 

 

 

 

Figure 30: Sampling point on the laminate plate (red dots) 

 

The minimum number of lamination parameters, considering the two-sampling 

point strategy for a VSP, is equal to 24. However, assuming a symmetric and a 

balanced plate the number of parameters is reduced. For symmetric plates 
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characterized by null membrane anisotropy, the lamination parameters simplify as 

𝜉𝑖
𝐵 = 0 (𝑖 = 1,… , 4) and  𝜉2

𝐴 =  𝜉4
𝐴 = 0 [16][22]. Therefore, due to the symmetry, 

the number of lamination parameters is reduced from 24 to 16, while due to the 

balance, other 4 lamination parameters should be neglected, obtaining a final 

number of 12 lamination parameters. Considering all the aforementioned 

assumptions, the lamination parameters set is composed by: 

 

𝐿𝑃 =  [𝜉1
𝐴

1
𝜉3

𝐴
1

𝜉1
𝐷

1
𝜉2

𝐷
1

𝜉3
𝐷

1
𝜉4

𝐷
1

𝜉1
𝐴

2
𝜉3

𝐴
2

𝜉1
𝐷

2
𝜉2

𝐷
2

𝜉3
𝐷

2
𝜉4

𝐷
2]      

(7.2) 

 

where for each 𝜉𝑖
𝑘
𝑗
 the subscript j is referred to the point of the laminate, where 1 

is for the center point and 2 for the edge point. The values of the lamination 

parameters in between the two sampling points are computed by interpolation. In 

this work the interpolation is done inside the Ritz’s analysis code by a series of 

Legendre’s polynomials. 

The sampling of the lamination parameters is executed to generate sets that can be 

used for the training of the ANN. Therefore, a uniform distribution inside the design 

space is required to generate an appropriate training set for the ANN. The sampled 

sets of lamination parameters are passed through the Ritz’s analysis code in order 

to obtain the input-output pairs needed. 

The sampling procedure follows the method reported in Chapter 4, starting with an 

LHS, filtering, and saving only the sets that verify the constraints. The distributions 

of lamination parameters for three different starting number of points inside the 

design space are shown from Figure 31 to Figure 33. In all these figures, the 

lamination parameters are expressed with the notation 𝑉𝑖
𝑘  where the subscript 𝑖 

indicates the component, while the superscript 𝑘 is related with the lamination 

constitutive matrices (A, B or D). 
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Figure 31: Distribution of first and second lamination parameters (up); distribution of 
lamination parameters accordingly with the constraints in equation (3.15)(bottom) (CASE 1) 
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Figure 32: Distribution of first and second lamination parameters (up); distribution of 
lamination parameter accordingly with the constraints in equation (3.15)(bottom) (CASE 2) 
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Figure 33: Distribution of first and second lamination parameters (up); distribution of 
lamination parameter accordingly with the constraints in equation (3.15)(bottom) (CASE 3) 
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The number of starting points and the final number of points are reported in Table 

12. The starting point number refers to the initial number of sampled points in the 

LHS, while final point number refers to the final number of sets that verify the 

constraints in both points of the laminate. 

 

 Starting point # Final point # Sample time 
[min] 

Case 1 500000 1351 210.07 
Case 2 350000 937 114.11 
Case 3 200000 555 35.94 

 

Table 12: Initial number of sampling points Vs final number of sampling points and time spent 
for the sampling procedure 

 

The time spent to perform the sampling procedure increases more than linearly as 

the number of starting points increase. This happens because the twelve-

dimensional space have to be subdivided in smaller intervals, increasing the 

possible combination and the number of points that have to be sampled. 

The “Case 1” corresponds to the points shown in Figure 31, while “Case 2” is 

associated with Figure 32, and Figure 33 is linked with “Case 3”. From these figures, 

one can observe that the central region is more densely populated and become 

denser as the number of sampled points is increased. The lamination parameters 

referred to the in-plane lamination constitutive matrix are more evenly distributed 

in space with respect to the out-of-plane matrix. This behaviour is due to the 

simplification done. In fact, the 𝜉2
𝐴 (V2 in the figures) have to be zero to generate a 

balanced laminate, placing all these lamination parameters on a horizontal line. This 

observation could be done also referring to the data reported in the bottom plots 

of Figure 31, Figure 32, and Figure 33 where 𝜉2
𝐴 and 𝜉4

𝐴 (V2 and V4, respectively) 

generate a vertical line and not a cloud of values. 

Looking at the graphical representation of the data in figures from Figure 31 to 

Figure 33, most of the design space is well mapped, while the space near the 

boundaries have only a low number of points but is not unsampled. 

The same procedure use to obtain the three cases in Table 12 is also used to sample 

three reduced sets. These sample sets are studied to be smaller in number of points 
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with a reduced time consumption. This second sets group is generated to perform 

the transfer-learning strategy. Therefore, this new training strategy improves the 

performance of the training in terms of time consumptions only if a small training 

set is used. In fact, with a set of the dimension reported in Table 12, the time saved 

is only during the training process, minimizing the improvements. The sampling 

data of the reduced sets are reported in the table below: 

 

 Starting point # Final point # Sample time 
[min] 

Reduced set 1 100000 271 7.74 
Reduced set 2 50000 131 2.00 
Reduced set 3 25000 72 0.45 

 

Table 13: Initial number of sampling points Vs final number of sampling points and time spent 
for the reduced sets 

 

In addition to the training sets, the testing sets has to be determined. The testing 

set is obtained by generating a random distributed set of lamination parameters 

inside the design space, checking that each one verifies the constraints. The 

dimension of the sets is fixed to be equal of the 20% of the relative training sets 

[34]. The relative number of testing and training sets are reported in Table 14. 

 

 Training point Testing point 

Case 1 1351 270 
Case 2 937 187 
Case 3 555 111 

Reduced set 1 271 54 
Reduced set 2 131 26 
Reduced set 3 72 14 

 

Table 14: Number of training sets and number of the relative testing sets 
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The testing sets are sampled in the order of few seconds, making those times 

negligible, compared with the other time consumptions involved. 

As anticipated, the training and the testing sets are put inside the Ritz’s code in 

order to obtain the input-output pairs required. The time spent to execute the Ritz’s 

analysis for the six sets differs on the nature of the example problem considered, 

and on the number of sets to evaluate. The time spent to obtain the input-output 

sets are reported in Table 15. It has to highlighted that the time reported is the sum 

of the ones spent to the training and the testing sets. 

 

 Free Vibration - CPU time 
[min] 

Buckling – CPU time 
[min] 

Case 1 187.78 36.13 
Case 2 136.94 27.56 
Case 3 75.69 15.91 

Reduced set 1 36.87 8.93 
Reduced set 2 18.56 4.75 
Reduced set 3 10.43 2.26 

 

Table 15: CPU time for the generating input-output sets for both the training and the testing 

 

From the data reported in Table 15, it can be observed that the reduced sets is not 

only less time consuming for what concerns the sampling process, but also for the 

numerical analysis via Ritz’s method. 

With the input-output pairs, the ANN can be trained and tested.  

 

7.3   Design of the ANN 
 

In this section are reported the procedures used in this work to obtain the input-

output training and testing sets, and the tuning procedures to obtain the most 

efficient ANN. In fact, different aspects influence the efficiency of the neural 

network, needing a study of the number and configurations of the various parts. 
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In this work, two different artificial neural networks have to be designed to solve 

the example problems considered. MATLAB® is used both to build and train the 

artificial neural networks, allowing to build different architectures of ANN, choosing 

activation function, learning algorithm, and so on. The ANN features have been 

extended in the context of this thesis by developing new functions and capabilities. 

Specifically, the following features have been implemented: the testing process, the 

input file needed to start the built of the ANN and their training, and the heuristic 

training method. The design decisions are made both by studies done in this work 

and by relying on the literature. 

The activation function is fixed, and the one selected is the Tanh. In fact, it is 

demonstrated that this function is one of the best solutions for and activation 

function that involves an optimization process with the use of an artificial neural 

network [38]. However, the output layer neuron is built with a linear activation 

function. Furthermore, on the base on the nature of the input points, the activation 

function selected is the identity one. 

Another assumption that is done regards the number of hidden layers in the neural 

network. Most of the problem can be solved with an ANN built with only two hidden 

layers, varying the number of neurons inside them [6][7][33]. Finally, the biases are 

assumed to be present in each layer in order to simplify the network. In fact, 

MATLAB® allows to select in which layers introduce the bias and where do not. 

The scheme of the ANN considered is reported in the figure below: 

 

 

Figure 34: Simplified scheme of the ANN considered 
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In Figure 34 the dashed lines represent the interconnection between the different 

neurons in layers. These interconnections define the architecture of the ANN and 

determined yet. In order to simplify the work, the number of neurons inside hidden 

layers is considered equal. A study will be conducted to determine which is the 

number that maximizes the efficiency of the neural network. A neural network is 

more efficient than another if the percentual testing error is smaller and the 

training procedure consumes a comparable amount of time. 

The number of neurons inside hidden layers is chosen by an iteration process. To 

avoid that the network become too heavy, the number of neurons considered 

ranges from 1 to 20. Therefore, the number of neurons inside the network, without 

considering the one inside the output layer, ranges from 2 to 40. Furthermore, two 

different kinds of topologies are considered to better analyse the performance of 

the network. The interconnection schemes chosen to be analysed are the 

feedforward topology and the cascade one. With all the aforementioned 

assumptions a set of different networks is build and all the ANN inside are trained 

in order to estimate which one gives the minimum percentual error on the results. 

Another aspect to be established is the learning algorithm considered. In this work 

the LMb strategy is chosen because the dimension falls in size inside the feasible 

training domain for this kind of training algorithm. Furthermore, this strategy avoids 

possible lack of convergence due to the complexity of the example problems 

considered [44]. As reported in section 4.2.3, the second order algorithms are 

dependent on the starting points of the parameters. MATLAB® in the “train” 

function, used to the training procedure of the network, select randomly the 

starting initial values unless their values are introduced manually. To avoid complex 

analysis that determine the most efficient starting point, a heuristic strategy is 

considered. 

The process is composed by different training phases built in series. In each 

iteration step, the training is executed in standard way using the LMb algorithm, 

and the relative testing and training percentual errors are evaluated. At the end of 

the numerical iteration, the configuration of weights that minimises the testing 

percentage errors (average and maximum) is saved. Thus, the heuristic strategy 

does not select the most efficient starting points but selects each time different 

initial positions of the weights and evaluate the errors associated with. Therefore, 

a large number of starting values are considered avoiding lack of convergence. The 

procedure is outlined in Figure 35. 
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Figure 35: Procedure scheme for the ANN training 

 

This procedure allows to obtain the same order of error every time, making the 

training procedure accurate and reliable. However, the number of iterations has to 

be determined in order to achieve convergence in a reasonable amount of time. 

Discrete values for the number of iterations are considered, i.e. 5, 10, and 20, where 

for each ones the code is executed five times in order to investigate on the 

convergence. From the data obtained by the iteration process, 20 iterations grant 

a level of convergence that is acceptable. In fact, every time that the training of the 

ANN is processed, the final testing percentage errors are always in the same ranges 

of values, with a small gap between the end values. 

All the analysis for the number of neurons and architecture are executed, 

considering the three sampled sets of input-output pairs reported in Table 12. 
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7.3.1   Training error 
The maximum and the average training percentage error for the free vibration 

problem are reported in the figures below, distinguishing the one obtained with a 

feedforward network and the ones obtained with the cascade one: 

 

 

 

Figure 36: Average percentage error in the training process (up), and Maximum percentage 
error in the training process (bottom) for the free vibration problem with a feedforward 
network 
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Figure 37: Average percentage error in the training process (up), and Maximum percentage 
error in the training process (bottom) for the free vibration problem with a cascade network 

 

From Figure 36 and Figure 37, it can be observed that for both the topologies, as 

the number of neurons increases, the percentual error decreases. 

For what concerns the buckling problem, the maximum and the average training 

percentage error are reported in Figure 38 and Figure 39. 



Numerical simulations  103 
 
 
 

 

 

Figure 38: Average percentage error in the training process (up), and Maximum percentage 
error in the training process (bottom) for the buckling problem with a feedforward network 
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Figure 39: Average percentage error in the training process (up), and Maximum percentage 
error in the training process (bottom) for the buckling problem with a cascade network 

 

Also for the buckling problem the behaviour of the training error follow the same 

trend. Therefore, the percentual error tends to zero as the number of neurons per 

layer increases. However, the over-fitting phenomenon has to be avoided, needing 

an investigation also for the percentage error on the testing sets. 
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7.3.2   Testing error 
The average and the maximum percentage testing errors are evaluated. These 

errors are used to select the best architecture between the selected ones. The 

percentage testing error for the free vibration problem in function of the number 

of neurons per layer is shown in the figures below, reporting both the ones obtained 

with a feedforward architecture and a cascade one: 

 

 

 

Figure 40: Average testing percentage error (up), and Maximum testing percentage error 
(bottom) for the free vibration problem with a feedforward network 
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Figure 41: Average testing percentage error (up), and Maximum testing percentage error 
(bottom) for the free vibration problem with a cascade network 

 

The behaviour shown in Figure 40 and Figure 41 is comparable with the one shown 

in the reference Figure 23. In fact, from 11 neurons the behaviour shown an over-

fitting problem, with the loss of generality. Same trend can be observed in the 
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following figures reporting the average and the maximum testing percentage error 

for the ANN associated with the buckling problem: 

 

 

 

Figure 42: Average testing percentage error (up), and Maximum testing percentage error 
(bottom) for the buckling problem with a feedforward network 
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Figure 43: Average testing percentage error (up), and Maximum testing percentage error 
(bottom) for the buckling problem with a cascade network 

 

In these cases, an increase of error can be noticed for a number of neurons higher 

than 8. It is believed that this behaviour is due to an overfitting issue. 

The time spent on the training phase is also a focal point that has to be taken into 

consideration and moves the decision on one ANN configuration rather than 

another. The different time consumption depending on the number of neurons, the 
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example problem of reference, and the architecture of the network are reported in 

the following figures: 

 

 

 

Figure 44: Time consumption with a feedforward network (up), and with a cascade network 
(bottom) for the free vibration problem 
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Figure 45: Time consumption with a feedforward network (up), and with a cascade network 
(bottom) for the buckling problem 

 

7.3.3   Selection of the ANN 
The foremost choice to make is related to the network topology. For what concerns 

the free vibration problem, the network with the feedforward strategy is clearly 

more performing both in terms of time spent for the training phase, and the testing 
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percentage errors. Therefore, the feedforward topology is selected for the free 

vibration example problem. 

On the other hand, the accuracy in predicting the buckling load is similar for the 

two architectures, with relevant differences regarding the training time. The testing 

percentage errors related to the average for the cascade network is slightly better 

than the one referred to the feedforward one. On the contrary, the maximum 

testing error is lower for a feedforward topology. Considering that the difference in 

time is relevant only for a large number of neurons per layer, the factors that 

determine the selection are restricted only on the testing percentual errors. The 

cascade network has smaller error until the 11 neurons, presenting over-fitting 

problem with a larger number of neurons. The feedforward network, instead, 

presents larger errors until the 11 neurons, obtaining the appearance of the over-

fitting phenomenon only from 14 neurons. 

Starting from the assumptions that the network has to be built with the smaller 

number of neurons possible, the cascade network topology is chosen for the 

buckling problem. Therefore, it grants an acceptable level of accuracy with a small 

number of neurons. 

In order to evaluate the performance of the ANN, an upper limit has to be imposed 

both on time and on the percentage errors. The maximum error allowed is about 

5%, while the consumption of time is preferable that is under 50 minutes. From 

these considerations the number of neurons per layer is determined. Therefore, a 

weighted function is introduced where the two types of errors and the time spent 

for the training are summed up. The weights in this function tend to increase in 

dependence of the value of the errors and the time spent. The weight related to 

the errors is unitary until the value of the error overcome the 5%, becoming five 

times itself; the one referred to the time consumption is fixed to unitary value if the 

time is more than 50 minutes, otherwise it is thousand times smaller. The code of 

the functions that determine the value of the weights is reported below: 

  

𝐼𝑓 𝑀𝑎𝑥𝑇𝑒𝑠𝑡𝐸𝑟𝑟 ≥ 5                        
𝑤𝑎 = 5;                            

𝑒𝑙𝑠𝑒                                                       
𝑤𝑎 = 1;                            

𝑒𝑛𝑑                                                       

𝐼𝑓 𝑡𝑖𝑚𝑒 > 50              
𝑤𝑡 = 1;           

𝑒𝑙𝑠𝑒                                  
𝑤𝑡 = 0.0001;

𝑒𝑛𝑑                                  
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The most promising number of neurons per layer for the three different sets 

considered for the free vibration problem is reported in the following table: 

 

 # Neurons AVERAGE % error MAX % error Time [min] 

Case 1 11 0.2908 1.6833 33.71 
Case 2 14 0.0137 0.0721 46.55 
Case 3 12 0.0439 0.2184 27.27 

 

Table 16: Neural network that minimize the weighted function and the relative parameters 
(errors and time) for the free vibration problem 

 

The highest errors are obtained for “Case 1”, followed in order by “Case 2” and 

“Case 3”. Neglecting “Case 1” because of the higher errors, the other two are 

compared. The most efficient network is the one built with the data referred on 

“Case 3”. In fact, in “Case 3” the time spent is about 27 minutes, against 46 minutes, 

saving half of the time. For what concerns the percentage errors, “Case 3” and Case 

2” are in the same order of magnitude. These differences do not justify the possible 

choice of the “Case 2” network, that wastes time to have an imperceptible 

improvement. 

The results obtained for the buckling problem ANN that have to be considered are: 

 

 # Neurons AVERAGE % error MAX % error Time [min] 

Case 1 9 0.2801 2.0374 39.11 
Case 2 6 0.4851 3.3391 21.98 
Case 3 3 1.4631 4.5376 15.89 

 

Table 17: Neural network that minimize the weighted function and the relative parameters 
(errors and time) for the buckling problem 

 

The errors for “Case 3” are close to the threshold of 5%, whilst the advantages of 

“Case 2” against “Case 1” are clear by comparison of the errors and the total time. 
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The topology, the number of neurons per layer, the training sets dimension, and 

the time spent that were selected, are reported in Table 18. The “Total time” refers 

to the sum of training, sampling, and numerical Ritz’s evaluation times, reported in 

Table 16 and Table 17, in Table 12, and in Table 15, respectively. 

 

 Topology # 
Hidden 
layers 

# 
Neuron 

per layer 

Training set 
dimension 

Total 
time 
[min] 

Free Vib. Feedforward 2 12 555 (Case 3) 138.90 
Buckling Cascade 2 6 937 (Case 2) 163.65 

 

Table 18: Neural network characteristics for the free vibration problem and for the buckling 
problem 

 

The generalization characteristics that the ANN shows with the small percentage 

testing error, grants that analytical analysis or numerical ones can be replaced with 

ANN at the cost of a small error increment. 

 

7.3.4   Transfer-learning results 
The strategy adopted consists in a transfer-learning from the ANN associated to the 

free vibration problem to the one associated with the buckling problem and vice 

versa. This implies that the network that is the most efficient in one case is used 

also for the other kind of problem. 

The data obtained from a transfer-learning procedure are reported in Table 19. The 

expression “F → B” and “B → F” are referred to the two different starting point of 

the transfer learning process. The first one is associated with an ANN trained and 

built to solve the free vibration problem where its weights are taken and used as 

starting point for the training of the buckling problem ANN. The second one uses 

the weights of the ANN associated to the buckling problem as starting point for the 

training of the ANN built to solve the free vibration problem. The data needed to 

execute a comparison with the Most Efficient ANN (ME) are reported. These errors 

are associated with the second ANN, the one trained with the transfer-learning 

(second letter in the notation used). 
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  F → B B → F 

 (ME) MAX % err 3.3391 0.2184 
(ME) AVG % err 0.4851 0.0439 

RS1 Max % error 13.4184 2.2523 
Average % error 3.0044 0.3582 

RS2 Max % error 17.0612 2.7182 
Average % error 4.5657 0.6404 

RS3 Max % error 23.0982 9.2736 
Average % error 5.7002 2.6962 

 

Table 19: Maximum and Average testing error with different reduced sets and different 
strategy for the transfer-learning procedure 

 

where “RS1”, “RS2”, and “RS3” are the number of reduced training sets as reported 

in Table 13. 

From the data reported in Table 19 one can observe that the performances of the 

transfer-learned ANN are lower respect the one built with the characteristic 

expressed in Table 18. However, the percentual errors referred to an artificial 

neural network trained with the weights coming from an ANN built to solve the 

buckling problem (B → F), are acceptable. The ANN associated to the free vibration 

problem is the one with the smaller testing errors. For this reason, even if the 

training algorithm is the transfer-learning one, the level of error tends to remain 

below the one obtained by the “buckling ANN”. Therefore, the ANN trained so far 

could be used in substitution of the one trained with standard strategies. 

The time spent in the transfer-learning training process are reported in Table 20. 

The time difference is computed as expressed in the following equation: 

 

𝑇𝑖𝑚𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = 𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑀𝐸 − 𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑅𝑆             (7.3) 
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  F → B B → F 

 
Time difference 

[min] 

RS1 21.49 12.92 
RS2 21.84 27.12 
RS3 21.87 27.18 

 

Table 20: Difference in training time between the classical training procedure and the 
transfer-learning one 

 

From the data expressed in Table 19 and Table 20, it can be observe the differences 

between the standard training procedure and the transfer-learning one. In fact, for 

the transfer-learning strategy, the percentual errors are larger, but the time spent 

for the training is lower. 

Comparing the percentual errors and the time consumption the best solution 

between the proposed ones is the strategy that employs the “RS2” reduced 

sampling set. 

The shortcoming of this strategy is an increase of the maximum and average testing 

percentage errors of about 2.5% and 0.31%, respectively. The advantage is a net 

time saving in the order of 61.06 minutes, considering not only the difference in 

time between the training phases, but also the spared sampling time, which is 

about 33.94 minutes, as reported in Table 12 and Table 13. The time consumption 

becomes more relevant as the complexity of the problem increases. 

It shall be underlined that in the following parts where the free vibration problem 

is considered, the artificial neural network used is always referred to an ANN 

trained with transfer-learning. 

 

7.4   PSO internal parameters tuning 
 

The PSO algorithm is implemented in the process in order to find the optimal value 

for the two example problems. The ANN obtained in the previous section (7.3) are 

transformed into a MATLAB® function that works as objective function for the 

particleswarm algorithm. Furthermore, the penalty terms shown in equation (5.7) 

is implemented to find the optimal combination that maximizes the first natural 

frequency and the first buckling load. The penalty value 𝑀 are assumed to be in the 
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form reported in equation (5.8), with the scalar 𝑎 that assumes a value of 100 in 

order to bring the error 𝑒 to a magnitude that can significantly modify the value of 

the objective function 𝑓(𝒙).  

The error 𝑒 is the maximum error obtained checking the lamination parameters 

constraints reported in Chapter 3. In order to verify properly the constraints, the 

code that fully rebuilt the lamination parameters set is implemented in the 

objective function, introducing the terms omitted by the simplifications done in 

section 7.1. 

The trust parameters, the number of particles in the swarm, and the maximum 

number of iterations (stop criterion) are studied. 

 

7.4.1   Trust parameters 
A particular iteration is done to identify the set of trust parameters that gives as an 

output the best results. In this part of the study the opposite dual problem is used. 

The best configuration of trust parameters for the two different example problems 

are chosen as the ones that grant the smallest negative values. 

It has to be highlighted that in this study, the maximum number of iterations is fixed 

to 3000 and the initial swarm is composed by two times the dimension of the design 

variables set, that in this particular case is 12. 

During the optimization of the trust parameters, a square discrete domain [1.49 

2.05]2 is considered, containing 100 elements in it. The optimal values obtained 

with different configurations of trust parameters for the first natural frequency and 

the first buckling load are reported in Figure 46 and Figure 47, respectively. 
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Figure 46: Variation of the value of the objective function as the trust parameters change for 
the free vibration problem 

 

 

Figure 47: Variation of the value of the objective function as the trust parameters change for 
the buckling problem 

 

The combination that produces the best results are highlighted in Figure 46 and 

Figure 47, where the corresponding values are reported in Table 21. 
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 Free Vibration Buckling 

C1 1.5522 1.9878 
C2 1.5522 1.8633 

 

Table 21: Trust parameters reported in equation (4.2) for the free vibration problem and for 
the buckling problem 

 

Fixing the values of the trust parameters implies that each particle does not change 

the behaviour of its movements in the feasible design space. Therefore, each 

particle weights the knowledge of the swarm and itself confidence in the same way 

during the entire optimization process. 

 

7.4.2   Dimension of the swarm 
The initial swarm is chosen as done for the testing set for the artificial neural 

network, as reported in Chapter 4. Therefore, the starting design variables values 

of the particles are selected randomly inside the feasible design space. 

For this part of the study, the number of iterations remains 3000, while the trust 

coefficients are the ones obtained in section 7.4.1. The optimal number for the 

swarm dimension is obtained implementing a weighted function, where the time 

spent to the optimization searching procedure is added to the standard deviation. 

This is done to consider the time spent for the optimization process that increases 

as the number of particles increases. The standard deviation is chosen as a core 

parameter to try to identify the smallest swarm that grant the desired level of 

convergence. The standard deviation is evaluated on a set of 10 optimal results 

obtained fixing all the parameters, including the initial swarm, evaluating in this way 

as the results oscillate. 

The swarm is created with the biggest number of particles (10n). This allows that at 

each iteration of the study process, the swarm is not generated from zero. 

Therefore, the number of particles in the swarm increases respect to the previous 

iteration block, adding new points to verify better the performance of the 

dimension of the swarm and not of the swarm itself. With this strategy the swarm 

is every time the same with only the adding of new particles. 
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Two different iteration processes are performed to determine the most efficient 

number of particles that build up the swarm for the free vibration and buckling 

problems. The results of the two iteration processes are shown in the following 

figure: 

 

 
 

 

Figure 48: Variation of the value of the modified objective function as the number of the 
particles in the swarm increases for the two problem (free vibration up, buckling bottom) 
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In Figure 48, the more efficient number of particles inside the swarm is highlighted. 

It can be observed that for the buckling problem the optimal dimension of the 

swarm correspond to the minimum one (2n = 24), while for the free vibration 

problem the optimal value is three times the number of input variables (3n = 36). 

 

7.4.3   Maximum number of iterations 
In MATLAB® the particleswarm function starts with a default value of 1000 

maximum iterations but it will be demonstrated not sufficient to reach the 

minimum value in the free vibration problem as in the buckling problem. Therefore, 

the analysis of section 7.4.1-2 have 3000 maximum iterations. 

The number of iterations is augmented to 5000 and at this point, although the 

convergence is not yet ensured, the trend seems stable. For what concerns the trust 

parameters and the dimension of the swarm, the best solution obtained in the 

studies of this section are implemented in this analysis. 

The behaviour of the optimal values through the iteration process of the PSO 

algorithm are reported in Figure 49 and in Figure 50, for the free vibration problem 

and for the buckling one, respectively. 

 

 

Figure 49: Variation of the optimization function value in function of the number of the number 
of iterations in the free vibration problem 
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Figure 50: Variation of the optimization function value in function of the number of the 
iterations in the buckling problem 

 

In Figure 50 is shown that the behaviour of the optimum value, after 3000 

iterations, displays negligible improvements. Lowering the value from 5000 to 3000 

could help sparing some computational time, that for 5000 iteration is about 190 

seconds. Different consideration could be done for the free vibration problem, as 

shown in Figure 49. In fact, after 2750 iteration the value of the optimal solution 

tends to remain stable stopping the algorithm, hypothesizing that the convergence 

is reached. In this last problem the time spent for the optimization procedure is 

equal to 78.08 seconds. 

All considered, the maximum number of iterations is fixed to 5000 as the algorithm 

performs rather fast compared to the other blocks of the procedure. For PSO 

computation the time spent is in the order of a few minutes, while for the 

determination of the inputs set and for the training of the artificial neural network 

the time consumption is in the order of several minutes or even hours. 

 

7.4.4   Selection of the dual problem strategy 
In this subsection, a comparison analysis is done on the output of the neural 

network. In fact, the dual problem has to be generated in order to find the 

maximum. The aim of this procedure is to evaluate if there exist significantly 
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changes in the performance of the PSO if the inverse is implemented in the code 

instead of the opposite. 

Ten iteration are done for each of the two example problems, where each iteration 

compares the optimal results found by the PSO using an opposite objective function 

value or an inverse objective function value. All the internal parameters of the PSO 

are the ones obtained in this section. 

The maximum difference using one strategy instead of the other one for a free 

vibration problem is in the order of 0.5%, while the average difference is under the 

0.02%. For what concerns the buckling problem, the maximum and the average 

difference in values are 0.2% and under the 0.03%, respectively. It can be observed 

that the use of the opposite or the inverse is irrelevant in terms of efficiency, using 

one or the other without noteworthy losses. However, the opposite strategy is 

implemented in the code to avoid possible numerical errors making the inverse of 

small values, as for the first buckling load. 

 

7.5   PSO results 
 

In this section the results obtained from the PSO are reported. Furthermore, the 

optimal configuration lamination parameters obtained with the PSO are introduced 

inside a code that performs a Ritz’s analysis. The configuration sets of the two 

example problems obtained from the PSO are reported in Table 22. 
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 Free Vibration Buckling 

 centre edge centre edge 

𝜉1
𝐴 -0.5969 -0.4912 -0.0284 -0.2574 

𝜉2
𝐴 0 0 0 0 

𝜉3
𝐴 -0.2874 -0.5174 -0.2131 -0.8675 

𝜉4
𝐴 0 0 0 0 

𝜉1
𝐵 0 0 0 0 

𝜉2
𝐵 0 0 0 0 

𝜉3
𝐵 0 0 0 0 

𝜉4
𝐵 0 0 0 0 

𝜉1
𝐷 -0.4723 -0.0858 -0.1901 0.0846 

𝜉2
𝐷 -0.1512 0.1751 0.0328 -0.0438 

𝜉3
𝐷 -0.5481 -0.9719 -0.8781 -0.9856 

𝜉4
𝐷 0.2359 -0.1898 0.2874 -0.0194 

 

Table 22: Lamination parameters sets coming from the PSO optimization process 

 

The values obtained from the optimization process and the ones obtained from a 

numerical analysis, with the percentual difference between the two, are reported 

in Table 23. 

 

 PSO Ritz % error 

Free Vibration 11.94 Hz 11.87 Hz 0.5545 
Buckling 2.39 N/mm 2.37 N/mm 0.8368 

 

Table 23: Comparison between the PSO results and the results obtained from a Ritz's 
analysis, reporting the percentual errors between the two 

 

From the data reported in Table 23, it can be observed that the PSO procedure gives 

results very similar to the ones obtained from a Ritz analysis. The errors are 

introduced by the approximation executed by the ANN. The percentual error in the 

free vibration problem (first natural frequency), as for the one of the buckling 

problem (first buckling load) is less than 1%. The small difference between the 

values obtained in the two type of analysis make the whole optimization process 

reliable. 
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7.6   Post-processing internal parameters and results 
 

The objective function is built in order to ensure the symmetry of the laminate, 

obtaining null errors on the lamination parameters referred to the coupling 

laminate constitutive matrix (B).  

The weights of the objective function are obtained using the Ritz’s code, evaluating 

the strain energy. The value of the energy terms and their relative weights for the 

free vibration problem and the buckling one, are reported in Table 24. 

 

 Free Vibration Buckling 

𝑈𝐴 0 J 20982.51 J 
𝑈𝐵 0 J 0 J 
𝑈𝐷 3.1556 J 0 J 

𝑤𝑎  0.5 2.0983 
𝑤𝑏 0.5 0.5098 
𝑤𝑑  3.1556 0.5098 

 

Table 24: Strain energy terms (Joule), and weights for post-processing analysis referred to the 
laminate constitutive matrices 

 

The internal parameters of the PSO used for the post processing are the ones 

obtained in section 7.5. However, the most efficient swarm dimension is studied. 

The maximum dimension of the swarm is increased, because a swarm with 10 times 

the number if inputs does not grant a sufficient accuracy. Therefore, the largest 

number of particles in the swarm is fixed to be equal to 200n, while the minimum 

is set equal to 2n, where n is the number of design variables. 

The study is executed considering a weighted function, where the standard 

deviation and the time spent are summed. The standard deviation considered is the 

maximum one between the standard deviation of the three different terms of the 

lamination parameters set. In fact, the three standard deviation are computed 

separately in order to split the three structural behaviour of the laminate. 
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The values of the weighted function that implement the standard deviation and the 

time consumption in function of the number of particles inside the swarm, are 

shown in Figure 51. 

 

 

 

Figure 51: Variation of the value of the weighted function as the number of particles in the 
swarm increases for the two problems (free vibration up, and buckling bottom) 
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For the free vibration problem, the smaller number of particles in the swarm is 

computed to be 57 times the number of inputs. For what concerns the buckling 

problem, the swarm is composed by 167 times the number of inputs. 

It can be observed that the dimension of the swarm referred to the buckling 

problem is very large, but the value of the objective function is clearly lower with a 

small difference in time consumption (about 1 minute). Also, for swarm referred to 

the free vibration problem the number of particles that is defined as the most 

efficient one is over the 10 times the number of design variables. 

It has to be underlined that for example a value of 0.1 in the standard deviation for 

values that are in the range of [-1;1] is too large to be accepted. 

 

7.6.1   Post-processing results 
The lamination parameters expressed in Table 22 are the starting point for the 

transformation of the post-processing phase and are also the target lamination 

parameters present in equation (6.1). The angles obtained from the post-

processing conversion are reported in Table 25. 

 

PLY FREQUENCY BUCKLING 

centre [°] edge [°] centre [°] edge [°] 

1st & 16th 53.63 48.48 45.24 41.29 
2nd & 15th -59.66 -42.65 -55.76 -43.78 
3rd & 14th -58.73 49.28 37.60 50.25 
4th & 13th -57.18 -45.56 -53 -48.04 
5th & 12th 90 51.57 -28.68 55.06 
6th & 11th 57.89 -55.88 2.73 -53.80 
7th & 10th 57.44 83.01 68.31 57.37 
8th & 9th -89.99 -78.82 90 -58.36 

 

Table 25: Orientation angles of the plies of the laminate evaluated in the center of the plate 
and on the edge for the free vibration problem and the buckling problem 

 

The orientation angles obtained generate sets of laminate parameters that differ 

from the target ones. The errors are not percentual errors, because the lamination 
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parameters values are small, and a different kind of representation could generate 

meaningless or incomprehensible data. The errors of every terms of the lamination 

parameter sets for each kind of problem are reported in Table 26.  

 

 FREQUENCY BUCKLING 

 centre edge centre edge 

𝜉1
𝐴 − 𝜉1𝑡

𝐴  0.0325 0.1536 0.0451 0.0536 

𝜉2
𝐴 − 𝜉2𝑡

𝐴  0.0115 0.0136 0.0019 0.0022 

𝜉3
𝐴 − 𝜉3𝑡

𝐴  0.0566 0.0249 0.0155 0.0300 

𝜉4
𝐴 − 𝜉4𝑡

𝐴  0.0389 0.0223 0.0035 3.97E-4 

𝜉1
𝐵 − 𝜉1𝑡

𝐵  0 0 0 0 

𝜉2
𝐵 − 𝜉2𝑡

𝐵  0 0 0 0 

𝜉3
𝐵 − 𝜉3𝑡

𝐵  0 0 0 0 

𝜉4
𝐵 − 𝜉4𝑡

𝐵  0 0 0 0 

𝜉1
𝐷 − 𝜉1𝑡

𝐷  0.0257 0.0079 0.1729 0.1191 

𝜉2
𝐷 − 𝜉2𝑡

𝐷  0.0297 4.65E-4 0.0759 0.2227 

𝜉3
𝐷 − 𝜉3𝑡

𝐷  0.0086 0.0397 0.1202 0.0414 

𝜉4
𝐷 − 𝜉4𝑡

𝐷  0.0156 0.0108 0.0450 0.0102 

 

Table 26: Lamination parameters errors for the free vibration problem and for the buckling 
problem 

 

It can be observed that the errors inversely reflect the weights introduced with the 

use of the strain energy. In fact, for the free vibration problem the errors are larger 

for the in-plane terms, while for the buckling problem the out-of-plate are the 

largest ones. For what concerns the errors on the lamination parameters linked to 

the in-plane laminate constitutive matrix and observing the orientation angles 

reported in Table 25, it is clear that with the objective function implemented, the 

optimization process cannot built a balanced laminate: the orientation angles are 

not in a “balanced” form and the errors on 𝜉2
𝐴 and 𝜉4

𝐴 are not zero. 

The errors obtained from this conversion are comparable with the ones obtained 

in the validation process where the number of layers is not the correct one. This is 

due to the fact that the lamination parameters used in this conversion could not be 

represented by 16 layers with the same thickness. In fact, the lamination 
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parameters are obtained without knowing the exact configuration of layers and 

thicknesses. 

The variable stiffness composite plate that are obtained with the conversions 

differs in the properties reported in Table 23, as shown in Table 27. 

 

 Conversion 
Laminate 

PSO outputted 
Laminate 

% error 

Free Vibration 11.83 Hz 11.87 Hz 0.3381 
Buckling 2.25 N/mm 2.37 N/mm 5.0633 

 

Table 27: Comparison between the conversion laminate and the "optimized" laminate 

 

From Table 27, it can be observed that the percentual error on the first natural 

frequency is under the 0.5%, while for the first buckling load the error reaches the 

7%. Starting from these data, it could be said that the difference between the 

laminate designed and the one that will be manufactured for the free vibration 

problem is negligible, but the same thing cannot be said for the buckling one. 

 

7.7   Time consumptions of the process 
 

The time spent for the process is the sum of all the time consumptions for the five 

different parts: the lamination parameters sampling, the extrapolation of the input-

output training sets from a Ritz’s analysis, the artificial neural network training 

phase, the particle swarm optimization phase, and the final conversion from the 

lamination parameters into orientation angles. All the time consumptions are 

reported in Errore. L'origine riferimento non è stata trovata.. The “TR (B → F)” row i

s associated with the transfer-learning strategy, considering in each columns the 

sum of the time spent both for the buckling and for the free vibration problem. 
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 LP 
sampling 

[min] 

Ritz’s 
Analysis 

[min] 

ANN 
Training 

[min] 

PSO 
 

[min] 

Post-
processing 

[min] 

TOTAL 
 

[min] 

Free 
Vibration 

35.94 75.69 27.27 1.66 11.41 151.97 

Buckling 114.11 27.56 21.98 3.12 13.84 180.61 

TR  
(B → F) 

116.11 46.12 49.1 4.42 25.25 241 

 

Table 28: Time spent in every process phase for the free vibration problem, for the buckling 
problem, and for the transfer-learning strategy(TR) 

 

It can be observed that to solve the two example problems the transfer-learning 

strategy is preferable. In fact, a small increment of the level of error on the first 

natural frequency is obtained, but the time spent is largely reduced. With a 

standard procedure, the total time spent is about 332.58 minutes, while with a 

transfer-learning strategy is about 241 minutes. Therefore, using this latter strategy 

91.58 minutes are saved. The part associated with the input-output pairs evaluation 

with the Ritz’s analysis, and the lamination parameters sets sampling is the 

bottleneck of the process. In fact, most of the time spent is in these initial phases. 
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Chapter 8 
 

Conclusions 
 

 

In this work the optimization procedure using an artificial neural network and the 

particle swarm optimization algorithm was presented. The lamination parameters 

were implemented in the process in order to simplify the optimization procedures 

and reduce the number of the variables considered. This method is used to solve a 

free vibrational problem and a buckling problem for a rectangular simple supported 

variable stiffness plate, obtaining the maximum first natural frequency and the 

maximum first buckling load values. Finally, a method to obtain the orientation 

angles from the parameters used in the optimization was reported, allowing the 

manufacturability of the laminate. 

In this analysis the errors are present in three different parts that are referred to 

the ANN accuracy, the PSO accuracy, and the conversion from lamination 

parameters to orientation angles.  For what concerns the ANN, the maximum 

percentual errors are in the order of 3%, while the average percentual errors are in 

the range of 0.6% - 0.5%. This grants a good approximation for the values that are 

searched, with a minimum accuracy of 97%. The errors obtained from the results 

of the optimization process are in the order of 1%, that is in the prediction range 

(3%). From this level of error, it can be deduced that the penalty terms 

implemented did not introduce errors. The post-optimization phase produces a 

maximum error in the order of 0.2. The conversion modifies the properties of the 

plate, but the percentual errors between the laminate expressed with the 

lamination parameters and the one obtained with the conversion in orientation 

angles are under the 5%. Furthermore, the final laminates that can be 

manufactured violate the balanced assumption. 

The level of error obtained both after the optimization process and after the post-

processing process, demonstrate that this method is accurate enough and reliable 

to be implemented in design phase of composite structures. 

The total time spent for the analysis is 332.58 minutes for the standard procedure 

(free vibration + buckling), and 241 minutes with a transfer-learning strategy 

(buckling + TR free vibration). If the ANN is substituted directly by a Ritz’s analysis, 
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the post-processing time consumptions do not change. However, the lamination 

parameters sampling, the initial Ritz’s analysis to determine the input-output pairs, 

and the ANN training are not involved in the process. The time consumption is only 

referred to the PSO. Therefore, if the dimension of the swarm is considered equal 

to the ones used in this work, and the PSO stops at the same number of iteration, 

the times spent for a PSO with a Ritz’s analysis embedded are about 11880 minutes 

for the free vibration problem and 1440 minutes for the buckling one. However, the 

convergence can be reached before the number of iterations considered. 

Therefore, the number of iterations needed to spent the same time is evaluated, 

obtaining that for the free vibration problem the PSO has to converge in 36 

iterations, while for what concerns the buckling problem this number is equal to 

377. 

From the data reported, it can be observed that with the same amount of iteration 

of the PSO, the method implemented in this work is better than the one that 

implements a Ritz’s analysis inside the PSO. The number of iterations of this latter 

method for the free vibration problem is too small to grant the convergence, the 

one associated with the buckling problem, instead, could be enough to obtain the 

convergence. It has to be highlighted that over these numbers, the time 

consumption increases, in particular, for each iteration the time spent is equal to 

4.32 minutes for the free vibration problem, and 0.48 minutes for the buckling one. 

Furthermore, for more complex structures, the time saved could be larger. On the 

other hand, more lamination parameters sets have to be sampled and more time 

will be spent also on the evaluation of the input-output pairs. However, the 

sampled sets can be reused for problems that involved the same number of 

lamination parameters set to fully describe the structure. 

From the data reported, both about errors and time consumption, the 

implemented method can be implemented, in particular the one that involved the 

transfer-learning strategy. In fact, with this training method, the time consumption 

is reduced significantly with a small increment on the error. Furthermore, the time 

spent for the entire process is less respect the one obtained with classical numerical 

analysis [6] or the one aforementioned. 
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8.1   Future innovations 
 

The sample strategy used could be modified in order to improve the sampling 

distribution in the design space, trying to fill in a better way the space near the 

boundaries, and reducing the time consumption. The method used to obtain the 

input-output training sets could be substituted with other equivalent ones in order 

to check which one is the most performing. The Ritz’s analysis can be substituted 

with FEM analysis or other types of numerical methods. 

In the process could be considered different materials, that have to be insert in the 

input set in order to determine not only the more efficient fibres distribution, but 

also the better performing material in each layer. 

More topologies of the ANN, different distributions of neurons through the layers, 

and other kind of training algorithms could be analysed to increase the 

performance of the surrogate model itself, aiming in an increment of the accuracy 

in a reduced amount of time. A single ANN with two or more different output could 

be built in order to compare the result obtained between that kind of network and 

the one used in this work. 

Different optimization algorithms could be implemented to compare the different 

methods and find the more accurate one. 

The thickness of each ply could be considered inside the post-processing process to 

increase the degrees of freedom. In this way it is allowed a better convergence 

between the lamination parameters and the ones relatives to the orientation angles 

obtained. Furthermore, other limitation could be introduced, i.e. the plies stacking 

sequence, the maximum angle difference between one ply and the following one, 

avoiding some configuration of angles for the more external plies, or the fibres 

distribution that voids some defected areas that would be possible location for 

failures [15].  
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