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Abstract

In the last decades, Brain Computer Interfaces (BCIs) appear to be promis-

ing for clinical applications in the neurorehabilitation field. BCIs decode

the electrical activity of the brain and converts it into commands to ex-

ert a control on assistive devices such as neural prostheses, wheelchairs or

speech synthesizer, in a way that subjects with severe motor disabilities or

with speech impairments are able to accomplish the desired action just by

thinking of performing it. The use of BCIs in real applications is nowadays

still limited: the process to decode the user’s intention is error-prone and

demands a high level of attention and fatigue to the user.

The Error Potential (ErrP) is an event-related potential detectable in EEG

recordings when the user perceives that an error has been committed, either

by himself or by an external device during an interaction with it. The ac-

tivity is localized in the medio-frontal areas of the brain, in particular in the

Anterior Cingulate Cortex, and its realization is characterized by a stereo-

typical shape with presentation of peaks at specific latencies.

The ErrP can provide additional information during the execution of a task

with a BCI device: it can be used ad as corrective signal, discarding those

BCI’s selected outputs that elicit in the user an ErrP or it can be used in re-

inforcement learning for an intelligent agent which takes low-level decisions.

The introduction of an error-correction system in a BCI system can improve
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its performances and makes the decision process faster but an efficient ErrP

classifier is needed in order to introduce an effective enhancement in the per-

formances.

Convolutional Neural Networks (CNNs) are a class of deep neural networks

widely used in many fields, especially in image recognition applications. They

have the main advantages to be able to detect spatial-independent features

from raw data and have a reduced number of parameters to be trained. This

type of architecture has already shown good results in EEG data classifica-

tion, allowing to reduce the preprocessing and feature extraction processes,

usually challenging phases because some biases may be added to the data.

However, when applied to error potential detection, the training of these

architectures have to face the problem that event-related potential datasets

are usually characterized by a scarcity of instances including the event: the

imbalance affects the classification performances and makes the detection of

the event difficult: a data balancing method is needed to overcome the bias

that may arise.

Eventually, CNNs are characterized by a high number of hyperparameters,

which are parameters not learnt during the training session and defined a-

priori. A search to identify the best hyperparameters values can improve the

network performances.

The Project

The aim of this project is to optimize the performances of a CNN already

present in literature, EEGNet, for Error Potential classification.

The work is mainly focused on finding the best method to balance the data,

since imbalance causes poor detection of the instances including the ErrP. A

novel ARX-based data augmentation method is proposed: ARX models are

fitted on data and used to generate new signals. Those new signals, being



different from the original ones but with the same characteristics that de-

fine the ErrP realization, are added to the dataset in order to have an equal

representation of ErrP and non-ErrP instances. Different techniques have

been identified to generate the new signals, thus different types of ARX-

based methods have been implemented. These methods are validated by

comparing their performances with traditional balancing methods present in

literature: oversampling, undersampling and class weights.

Another focusing area of the project is the hyperparameters optimization: a

search strategy to find the best configuration of hyperparameters is imple-

mented and the performances with the new configuration are evaluated.

Methods

The dataset used is constituted by EEG recordings from six subjects per-

forming an ErrP-specific experiment.

Data are preprocessed by spatial filtering with a Common Average Reference

(CAR) approach, band-pass filtering between 1 and 10 Hz and extracting the

epochs (either including the ErrP or not) in the interval [150, 650] ms after

the presentation of the feedback.

Data are randomized and the network is trained with a stratified 5-folds

cross-validation strategy, balancing the training set at each iteration with

the chosen technique.

The ARX-based data augmentation methods are implemented as follows: an

ARX model is generated for each raw ErrP epochs and then used to generate

new data through the distortion of the exogenous input which drives the the

ARX model. The distortions evaluated are change of amplitude, white noise

addition and warping of the signal and they are tested both separately, by

creating a dataset including new data obtained with a single technique, or

combined, by including new data obtained with different types of transfor-



mations.

Network performances are tested both with an inter-subjects analysis, by in-

cluding all subjects data, and with an intra-subject analysis, by using single

subjects datasets separately.

Classification results are evaluated in terms of F1-score, balanced accuracy

and Utility gain function. The latter metric quantifies the gain potentially

achievable in a BCI device by introducing an ErrP classifier.

The hyperparameters search is performed with a grid search approach iden-

tifying four cycles of optimization: hyperparameters with similar charac-

teristics are grouped in cycles and tested together. At each iteration the

configuration that results in the highest performances in terms of F1-score

for the validation set is chosen. The procedure is repeated until convergence

or, in case, after an elevated number of repetitions.

Results

In the inter-subjects analysis the best performances are obtained by the ARX

methods resulting for the test set in an F1-score of ∼ 78 % for the ARX am-

plitude and ARX amplitude+ noise techniques and in a balanced accuracy

of ∼ 87 % for the ARX amplitude + warping. The ARX methods lead to a

smaller gap between training and test scores and to a reduction of the num-

ber of False Positives respect to the traditional methods.

In the intra-subject analysis a distinction can be done in the results obtained

between two subjects groups: Subjects 1, 2 and 5 achieve high scores while

Subject 3, 4 and 6 low scores. The best performances are obtained for Sub-

ject 2 resulting for the test set in a F1-score of 87.9 % for the ARX mix and

in a balanced accuracy of 92.72 % for the ARX amplitude+warping tech-

nique. For the second group of subjects the performances are lower and the

traditional methods, especially class weights, result in the highest score.



The hyperparameter search leads to an improvement of 2.1 % in terms of

F1-score and of 3.7 % in terms of balanced accuracy in the test set. The final

hyperparameters configuration differs from the initial one mainly in terms of

a differentiation in the pooling, dropout and activation layers between the

two main blocks of the EEGNet architecture and in terms of an increment

of the number of convolution layers’ filters.

Conclusions

ARX methods achieve a better capability of generalization, lower number of

False Positives and higher performances respect to the traditional methods.

This was not verified for the data that result to be quite anomalous respect to

the others: for Subjects 3, 4 and 6 data traditional methods worked better.

The Utility gain functions show that a high gain could be obtained by adding

an ErrP-based correction system in a BCI device. Moreover, the comparison

with literature shows that EEGNet combined with the ARX-based data aug-

mentation technique outperforms the more similar studies taken in account.

Within these methods, the ARX warping technique is an exception, showing

low performances.

Eventually, the hyperparameters search shows an improvement in the per-

formances but needs optimization: as it was implemented, it is very time-

consuming and a specific search for the ARX-based methods is required.





Sommario

Negli ultimi decenni, la ricerca nel campo della neuro-riabilitazione ha por-

tato a considerare le Brain Computer Interfaces (BCI) come un potenziale ap-

proccio innovativo. Un dispositivo BCI ha l’obiettivo di decodificare l’azione

che un utente vuole eseguire, mediante l’acquizione e l’elaborazione della

sua attivitá cerebrale, e generare un segnale di comando per controllare dis-

positivi come protesi neurali, sedie a rotelle o sintetizzatori vocali. In questo

modo, soggetti con gravi disabilitá motorie o con problemi di linguaggio sono

in grado di eseguire l’azione desiderata solo focalizzandosi sull’intenzione di

compierla. Attualmente l’utilizzo delle BCI é ancora limitato: il processo di

decodifica é soggetto a frequenti errori e richiede un elevato livello di atten-

zione e fatica per il soggetto.

Il potenziale di errore (ErrP) é un potenziale evocato rilevabile nelle regis-

trazioni EEG quando l’utente avverte che é stato commesso un errore, sia da

sé stesso sia da un dispositivo con cui sta interagendo. L’attivitá é localizzata

nelle aree medio-frontali del cervello, in particolare nella corteccia cingolata

anteriore, e la sua realizzazione é caratterizzata da una forma d’onda con

picchi a latenze specifiche.

Il potenziale di errore puó fornire informazioni aggiuntive durante l’esecuzione

di un task con un dispositivo BCI: puó essere usato come segnale correttivo,

escludendo quei segnali di comando per cui un potenziale di errore viene ril-
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evato, oppure puó essere usato per reinforcement learning. L’introduzione di

un classificatore di ErrP in grado di identificare gli errori in una BCI puó

migliorare le sue prestazioni e rendere il processo decisionale piú veloce. Tut-

tavia, é necessario che il classificatore sia altamente performante per garantire

un effettivo miglioramento nelle prestazioni.

Le reti neurali convoluzionali (CNN) sono una classe di reti neurali ampia-

mente utilizzate in molti campi, specialmente in applicazioni per il riconosci-

mento di immagini. I principali vantaggi apportati da questa architettura

sono la capacitá di rilevare features spazio-indipendenti nei dati non proces-

sati e il numero ridotto di parametri da addestrare. Le CNN hanno mostrato

buone prestazioni nella classificazione dei dati EEG, permettendo di ridurre

le fasi di processing e di estrazione delle features, solitamente critici in quanto

potenziali bias possono essere introdotti.

La presenza di epoche contenti il potenziale evocato nei dataset é solitamente

limitata: lo sbilanciamento tra epoche contenenti l’evento e il non-evento ne

rende difficile l’individuazione. A tal proposito, un metodo di bilanciamento

dei dati é necessario per migliorare la detezione degli eventi.

Le CNN sono caratterizzate da un alto numero di iperparametri, i quali sono

parametri non appresi durante la sessione di training ma definiti a priori. Una

ricerca per l’identificazione della migliore configurazione di iperparametri puó

migliorare le prestazioni della rete.

Il Progetto

Lo scopo di questo progetto é stato quello di ottimizzare le prestazioni di una

CNN giá presente in letteratura, EEGNet, per la classificazione del poten-

ziale di errore.

Il lavoro si é concentrato principalmente sulla ricerca del metodo migliore per

bilanciare i dati, dal momento che lo sbilanciamento dei dati causa una scarsa



detezione delle epoche contententi l’ErrP. In particolare, un nuovo metodo

di data augmentation basato su modelli ARX viene proposto: un modello

ARX viene identificato per ogni instanza del dataset e in seguito utilizzato

per la generazione di nuovi segnali. I nuovi segnali, diversi da quelli origi-

nali ma con le stesse caratteristiche che definiscono il potenziale di errore,

vengono aggiunti al dataset in modo da avere uno stesso numero di epoche

contenenti l’ErrP e non. Sono state individuate diverse tecniche per generare

i nuovi segnali e, di conseguenza, sono state implementate diverse varianti

del metodo di data augmentation. Questi metodi sono stati validati con-

frontando le prestazioni con metodi di bilanciamento tradizionali presenti in

letteratura: oversampling, undersampling e class weights.

Un’altra area di interesse del progetto riguarda l’ottimizzazione degli iper-

parametri. É stata implementata una strategia di ricerca per trovare la

migliore configurazione di iperparametri e le prestazioni della rete con la

nuova configurazione sono state valutate e confrontate con quella originale.

Metodi

Il dataset utilizzato é costituito da registrazioni EEG di sei soggetti nel corso

di un esperimento specifico per la generazione di ErrP.

La fase di preprocessing dei dati consiste in un filtraggio spaziale CAR e in un

filtraggio passa banda tra 1 e 10 Hz. Le epoche sono poi ottenute estraendo

il segnale nell’intervallo [150, 650] ms dopo la presentazione del feedback.

I dati sono stati randomizzati e la rete é stata addestrata con un approc-

cio stratified 5-folds cross-validation, bilanciando ad ogni iterazione il set di

training con la tecnica selezionata.

I metodi di bilanciamento basati su ARX sono stati implementati seguendo

la seguente procedura: un modello ARX viene generato per ogni epoca con-

tenente ErrP e ogni modello viene poi utilizzato per generare nuovi dati at-



traverso la distorsione dell’input esogeno dato in ingresso al modello ARX. Le

distorsioni che sono state valutate sono la modifica dell’ampiezza, l’aggiunta

di rumore bianco e deformazione, mediante dilatazione o contrazione, del seg-

nale. Le tecniche sono state testate sia separatamente, creando un dataset

con dati ottenuti mediante una singola tecnica, sia combinate, includendo

dati ottenuti con diversi tipi di distorsione.

Le prestazioni della rete sono state testate con un’analisi inter-soggetto, inclu-

dendo tutti i dati, e con un’analisi intra-soggetto, utilizzando separatamente

i dataset dei singoli soggetti. I risultati della classificazione sono stati ripor-

tati in termini di F1-score, accuratezza bilanciata e Utilility gain function.

Quest’ultima metrica quantifica il guadagno che puó essere apportato in un

dispositivo BCI mediante l’introduzione di un classificatore di ErrP.

La ricerca degli iperparametri é stata eseguita con un approccio grid search

identificando quattro cicli di ottimizzazione: gli iperparametri con caratteris-

tiche simili sono stati raggruppati in cicli e testati insieme. Ad ogni iterazione

é stata scelta la configurazione che risultava nelle piú alte prestazioni in ter-

mini di F1-score per il set di validazione. I criteri scelti per terminare la

procedura sono il raggiungimento della convergenza o di un elevato numero

di ripetizione dei cicli.

Risultati

Nell’analisi inter-soggetto le migliori prestazioni sono state ottenute dai metodi

ARX. I risultati ottenuti per il set di test sono, in termini di F1-score, uguali

a ∼ 78 % per le tecniche ARX amplitude e ARX amplitude+ noise e, in

termini di accuratezza bilanciata, a ∼ 87 % per l’ARX amplitude+ warping.

Per i metodi ARX si é riscontrata una minore differenza nelle prestazioni tra

training e test e una riduzione del numero di Falsi Positivi rispetto ai metodi

tradizionali.



Nell’analisi intra-soggetto si nota una distinzione nei risultati ottenuti tra

due gruppi di soggetti: i soggetti 1, 2 e 5 hanno ottenuto buoni risultati a

differenza dei soggetti 3, 4 e 6. Le migliori prestazioni sono state ottenute con

i dati del soggetto 2 risultando in termini di F1-score uguali all’ 87.9 % per

il metodo ARX mix e in un’accuratezza bilanciata del 92.72 % per la tecnica

ARX amplitude+warping. Per il secondo gruppo di soggetti le prestazioni

sono risultate inferiori e i metodi tradizionali, specialmente la tecnica class

weights, ha portato ai risultati migliori.

La ricerca degli iperparametri ha apportato un miglioramento nelle prestazioni

sul set di test del 2,1 % in termini di F1-score e del 3,7 % in termini di ac-

curatezza bilanciata. La configurazione finale degli iperparametri differisce

da quella iniziale principalmente per due caratteristiche: si é verificata una

differenziazione nei layer di pooling, dropout e attivazione tra i due blocchi

principali dell’architettura EEGNet e il numero di filtri dei layer convoluzion-

ali ha subito un incremento.

Conclusioni

I metodi ARX hanno mostrato una migliore capacitá di generalizzazione,

generando un numero inferiore di Falsi Positivi e ottenendo migliori prestazioni

rispetto ai metodi tradizionali. Tuttavia, é da notare che ció non si é verifi-

cato per quei dati che sono risultati anomali rispetto agli altri: per i dati dei

soggetti 3, 4 e 6 i metodi tradizionali hanno performato meglio.

Un potenziale miglioramento nelle prestazioni di un dispositivo BCI con

l’introduzione di un classificatore ErrP bilanciato con i metodi ARX é stato

evidenziato dalle Utility gain functions. Inoltre, dal confronto fatto con alcuni

studi presenti in letteratura, é risultato che l’uso di EEGNet combinato al

metodo di data augmentation basato su ARX ha piú alte prestazioni rispetto

a tutti gli studi con approcchi simili considerati.



Tra i metodi proposti, la tecnica ARX warping risulta essere un’eccezione:

ha ottenuto, infatti, prestazioni inferiori rispetto agli altri.

Infine, la ricerca degli iperparametri ha confermato che un miglioramento

delle prestazioni puó essere raggiunto mediante l’ottimizzazione di essi. Tut-

tavia, necessita di miglioramenti: la ricerca, cosí come é stata implementata,

richiede un elevato tempo computazionale e una ricerca specifica per i metodi

basati su ARX deve essere implementata.
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Introduction

Chronic conditions such as amyothrophic lateral sclerosis, spinal cord injuries

or stroke lead to a total miscommunication between the nervous system and

the voluntary muscles, resulting in severe motor disabilities [1].

Historically, for patients suffering from those neurological pathologies, the

prognosis for recovery has been poor [2]: the consequences are the loss of

autonomy and difficulty in accomplishing their daily activities.

Research in the last decades had evaluated several ways to both improve

their quality of life and reduce the cost of intensive care: one of them is the

design of Brain Computer Interfaces (BCIs) [3].

BCI are devices that create a non-muscular channel between the brain and

an external device, allowing to bypass the lesion and to restore the function-

ality [2]. Its main objective is to interpret the user’s intention through the

elaboration of the acquired brain signal and to generate a correct output to

control tools like computers, wheelchairs, speech synthesizers, assistive appli-

ances and neural prostheses, which in turn will carry out the desired action

[3].

Even though those interfaces are very promising and have a variety of appli-

1
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cations, their use is nowadays limited: BCIs are error-prone and the decision-

making system requires a lot of repetitions to decode the subject’s will.

Therefore, a high level of fatigue and attention are required for the user

and if the BCI’s output is incorrect the device is controlled in a wrong way

being potentially dangerous.

By adding an additional block that validates or rejects the BCI’s output it

would be possible to improve the performance and the reliability of the over-

all system. This block should not require additional fatigue for the patient

and should be easily implementable.

The Error Potential (ErrP) is a specific brain activity, spontaneously gen-

erated when humans make or perceive an error. It can be observed in the

electroencephalogram (EEG) with a certain latency after the awareness of

the error as a signal with a stereotypical shape.

An Error Potential classification system can potentially overcome current

BCIs limitations: by identifying the presence (or not) of an ErrP in the ac-

quired signal it is possible to discern if the decision taken by the BCI system

agrees with the user’s expectations, therefore with his intention.

1.1 The ErrP: neurophysiology and applications

1.1.1 Neurophysiology

The Central Nervous system (CNS) is constituted by the brain and the spinal

cord. The brain is the main processing unit: its function is to elaborate,

integrate and respond to the sensory information.

The outer part of the brain is the cerebral cortex. Anatomically, it can be

divided in two hemispheres which can be subdivided in four lobes: frontal,
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parietal, occipital and temporal lobe (figure 1.1).

Figure 1.1: Cerebral cortex’s lobes

For each lobe, it is possible to identify specific functions.

The frontal lobe is involved in the control of skeletal muscular activity, the

parietal lobe is involved in the tactile, pressure, vibrations, pain and temper-

ature perception, the occipital lobe in the visual stimuli processing and the

temporal one mainly in the auditory and olfactory stimuli processing [4].

Neurons, the unit cells of the nervous system, are arranged in the cerebral

cortex in structures called columns and layers. A very complex network of

communication between neurons is obtained through specialized structures

called synapses.

By studying neurons architecture in the cerebral cortex, in 1909 Korbinian

Brodmann identified 47 different brain areas, each one involved in a differ-

ent function. Nowadays 52 Brodmann areas have been identified [5]. By

studying the connectivity between brain regions and between neurons, it is

possible to identify specific networks devoted to specific cognitive processes.

The Error Potential is generated by a high-level, generic, error processing

system [6]. Error-processing concerns the fact that the system is involved in
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detecting an error; with high-level it is intended that the system is associ-

ated with the executive processes mediated by the frontal areas of the brain.

Eventually, generic refers to the high flexibility of the system, capable of

identifying errors in a wide variety of contexts.

As it will be further discussed, the Error Potential is generated in a variety of

different tasks: it can be elicited by a response to a negative feedback, by the

awareness of a self-committed error or just by looking another device making

an error. Furthermore, it can be elicited by a negative feedback presented in

different sensory areas such auditory, visual or somatosensory modalities [7].

This suggests that the system generating the response is independent from

the stimulus origin and it is flexible to very different tasks.

Several studies [6], [8] suggested that the region in which the ErrP is gener-

ated is the frontomedian wall, in particular the anterior cingulate cortex

(ACC) (figure 1.2). By analyzing functional magnetic resonance images

(fMRI), the ACC was identified as the activation brain area during erro-

neous trials [9].

Figure 1.2: Anterior cingulate cortex

Frontal areas of the brain, including the prefrontal cortex, the anterior cin-
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gulate system and the basal ganglia contribute to the executive control. This

system is involved in planning actions, decision making and plays a role when

a subject faces a new or difficult task [10]. Executive control also concerns

response monitoring, therefore ensuring that the consequences of an action

are consistent with the intent. In [6] it has been suggested that this mech-

anism is consistent with the error-processing system, confirming the role of

the anterior cingulate cortex in the generation of the Error Potential.

1.1.2 The Electroencephalography

The Electroencephalography is a technique used to acquire the electrical ac-

tivity of the brain. The main source of the signal is the synchronized activity

of a population of neurons, whose electrical activity sums up and therefore

can be recorded from the scalp as a significant and localized signal.

Neurons are excitable cells, they transmit information through ionic cur-

rents that generate a measurable electric field. It is possible to distinguish

two types of neuronal activation: the action potential, generated when the

membrane potential reaches a certain threshold, characterized by a rapid de-

polarization (1 or 2 ms) and a return to the rest condition (repolarization)

and the post-synaptic potential. The latter one is caused by a synaptic activa-

tion, which is mediated by neurotransmitters, and consists in a ionic current

that in case of an excitatory potential (EPSP) is carried by positive ions and

in case of inhibitory potential (IPSP) is carried by negative ions. This acti-

vation is slower (10 ms), allowing the temporal summation of post-synaptic

currents from many neurons.

For this reason, it constitutes the main contribution to the EEG signal (fig-

ure 1.3).
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Neurons’ ionic current can be modelled as a current dipole oriented along the

dendrite: to measure a net current it is required that neurons are aligned with

each other to sum up the single contributions. The pyramidal neurons have

such organization along the cortex and are characterized by an open-field

potential: they are the main source for the EEG [11].

Figure 1.3: a) Post-synaptic potential and action potential of a single pyramidal neuron.

b) Neurons with synchronized activity. Temporal summation of the single post-synaptic

potentials leads to a measurable electric signal. [12].

EEG signal is measured at the level of the scalp: it consists in a set of

measurements of the voltage difference between pairs of electrodes. The

electrodes can be placed directly on the skin (dry electrodes) or with a con-

ductive gel (gel-based). They can be placed singularly on the scalp or fitted

to an elastic cap, such that their positions are fixed. Standard montages

for the electrodes location have been defined: the 10-20 International system

[13] establishes that the electrodes are placed at distances in percentage of

the 10-20 range between Nasion and Inion. Depending on the position, elec-

trodes are marked as: Fp for Frontal Pole, C for Central, P for parietal, O
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for Occipital and T For temporal. Electrodes placed along the central line

are marked with z, while electrodes on the left with an odd number and on

the right with an even number (figure 1.4 ).

Figure 1.4: The 10-20 International system for EEG electrodes placement [3].

Standard numbers of electrodes employed are 32, 64, 128, 256: by increasing

the number of electrodes, the spatial resolution increases.

The main problem with the EEG signal is its poor spatial resolution: the

signal recorded on the scalp results from the propagation of the neurons ac-

tivity trough conductive tissues and it is strongly attenuated by the skull

due to its high resistivity. For this reason it is difficult both to localize the

source of the activity, given the EEG measurements at the scalp (inverse

problem), both to determine the potential at each electrode given the brain

source (forward problem) [14].

Moreover, EEG signal is quite noisy, also because of disturbances introduced

by the measurement system.
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However, it is characterized by a very good temporal resolution, making it

optimal to follow brain’s activity during time and capture its dynamic.

As a matter of fact, EEG is employed in a variety of different tasks and ex-

perimental paradigms, being a very flexible technique, non-invasive, recorded

with non-bulky, silent and non-expensive instrumentation.

1.1.3 Event-related potential

EEG signal resembles the activity of a conglomeration of different neural

sources, making it difficult to isolate individual neuro-cognitive processes.

From a statistical point of view, it is a stochastic non-stationary signal.

It is possible to elicit a certain brain response by providing a specific external

stimulus: the voltage change, specifically related to the stimulus and time-

locked to it, is called event-related potential (ERP) [15].

The segment of the EEG in which the realization is detected is called epoch.

This signal can be considered transient and deterministic since it has a finite

duration in time and it has a stereotypical shape.

The ERP is localized in the brain’s regions where the stimulus is processed,

so that its realization is mainly localized in specific electrodes. Usually it has

a small magnitude respect to the background EEG, so that it is necessary to

employ signal processing to extract it.

As mentioned before, the EEG is a stochastic signal while the ERP is de-

terministic, so by averaging many epochs in which the ERP is expected it is

possible to separate the ERP from the noise, i.e. the background EEG. The

waveform obtained is called grand average ERP.

Visual, auditory, somatosensory stimuli with specific patterns and paradigms

are provided: the ERP, depending on the type of stimulus, will present spe-

cific peaks at specific latencies and will be localized in different brain areas,
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therefore detected in different electrodes.

A typical paradigm which is used to extract the ERP is the oddball paradigm

[16]. The subject performs a task in which some visual stimuli are presented:

a sequence of 80% Xs and 20 % Os with a blank inter-stimulus interval. After

the session the ERPs elicited by the Xs and Os are extracted, by isolating

the epochs after the presentation of the stimuli and they are averaged. The

ERP waveforms are obtained for the X and for the O for each electrode: they

are characterized by different and specific features. (figure 1.5).

1.1.4 The Error Potential

The Error Potential (ErrP) is an event-related potential occurring in the

EEG when a subject recognizes that an error has been committed, either by

himself or in an action that he is observing [17].

It was first studied by two independent groups [18], [19] in 1990s and de-

scribed as a negative peak (Ne) and later a positive (Pe) deflection in the

event-related potential of incorrect choice reactions.

Nowadays the concept of ErrP has been extended to a variety of different

tasks when the resulting action, executed by the subject himself or by an

external system, is in disagree with the subject’s expected output.

As mentioned before, the Error Potential is an event-related potential, there-

fore it is a deterministic part of the EEG signal that occurs with a certain

latency after the presentation of the stimulus, therefore the error.

By averaging together several epochs of EEG signals associated with an erro-

neous response, it is possible to identify the characteristic shape of the ErrP.

It has been shown that, depending on the task, four types of ErrP can be

distinguished.
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Figure 1.5: Example of an ERP experiment. The user looks at a screen in which

frequent Xs and infrequent Os are presented. The EEG is recorded, the EEG segments

are isolated and marked with ’X’ or ’O’ depending on the stimulus. Then the ERP is

obtained by averaging the single epochs. It’s possible to notice the specific peaks for

the two averages [16].

The response ErrP is elicited when the subject who is performing the task

recognizes his own error. The main component of the signal is a negative

potential showing up 80 ms after the incorrect response followed by a larger

positive peak showing up between 200 and 500 ms [20].
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When the error is made aware by a feedback presented to the subject, the

generated response is named feedback ErrP. The main component here is a

negative deflection occurring 250 ms after the presentation of the feedback

indicating an incorrect performance [6].

The observation ErrP is elicited while the subject observes an erroneous ac-

tion of another person or device. In this case the negative deflection shows

up 250 ms after the incorrect response of the operator [21].

Finally, the interaction ErrP is evoked when an error occurs in the interac-

tion between an user and a machine. It is characterized by a negative peak

250 ms after the error, a positive peak at 320 ms and a negative peak 450 ms

after [21].

The former two types of ErrP are elicited by the incorrect action of the sub-

ject himself performing the task and recognizing his own error. The latter

ones are instead elicited by an error made by another device, being the sub-

ject just looking at the result of the task. Those two types are the one of

our interest, since they could be elicited during a BCI experiment when the

subject’s intention is misclassified by the BCI system, so that the resulted

action is not the one desired and the ErrP is evoked.

A typical realization of the interaction ErrP can be seen in figure 1.6.

1.1.5 Application in BCI

"A BCI is a computer-based system that acquires brain signals, analyzes

them, and translates them into commands that are relayed to an output

device to carry out a desired action." [23]

BCI devices allow patients with severe motor disabilities to interact with

their surroundings through the control of an external device.

A typical BCI device is constituted by: an acquisition system, a preprocessing
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Figure 1.6: Average of error-correct EEG trials (thick line) for the channel FCz [22].

system, a feature extraction system, a classification algorithm and an external

device. The brain signal is recorded, it is preprocessed to amplify, remove

artefacts and digitized it. The preprocessed signal is further analysed to

extract the features: structured data needed for the classification algorithm

to decode the user’s intent. Once the classification algorithm provides its

output, the corresponding control signal is sent to the external device to

execute the desired action.

Nowadays, the use of BCI in real life is still limited because of some problems:

BCIs are frequently prone to errors in the recognition of the subject’s intent

[24] and the training period necessary to build the classification algorithm is

usually long and tedious for the patient [25].

Moreover, in applications such as the P300 speller, the identification of a
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character requires many repetitions. The subject has to look at a matrix

of characters and directs his gaze to a target character while each row and

column, in turn, is randomly flashed. Detecting the P300, i.e. the evoked

potential elicited by the flash, in a single trial is very difficult so that the

intensification sequence has to be repeated several times to identify a single

character [26]. This requires a lot of attention for the subject and the system

performs very slow.

A way to increase the speed and the reliability of the BCI classifier is to use

the Error Potential as a corrective signal.

As mentioned before, the Error Potential is generated not only when the

subject himself commits an error, but also when an erroneous feedback from

an external device is presented or when there is an error during the interaction

with it. Once the BCI classifier provides its output, the selected command

can be sent to the user as a feedback: if no Error Potential is detected the

action is executed, otherwise the decision is discarded and the trial repeated

(figure 1.7).

This would not require any additional fatigue for the subject since the ErrP

is generated implicitly just for error awareness without need of training or

asking him to actively generate it [27]. Moreover, it would increase the speed

of the decision system because a lower number of repetitions could be carried

out.

Another highlighted problem is that the BCI’s classifier does not require just

an initial training, but the procedure must be repeated since the EEG signal

naturally changes over time, both between different sessions and within a

single session [28].

Therefore, another use of the Error-potential is in error-driven learning: the

parameters of the task’s classifier can be updated whenever an Error Po-
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Figure 1.7: Application of the ErrP detection in a brain-controlled robot. The subject

receives a feedback indicating the classifier’s decision. If the feedback generates an ErrP

(left) the command is discarded, is no ErrP is detected (right) the action is executed

[24].

tential is detected to learn from misclassification [29] or it can be used for

reinforcement learning [30]. In this case the user monitors the performance of

an an autonomous agent which has learning capabilities and takes low-level

decisions. Each time an Error Potential is detected, a negative reward value

is given to it in order to prevent in the future the erroneous action.

With those approaches, any intermediate training session could be avoided

since the classifier is able to learn and adapt to changes.

1.2 Deep learning

Deep learning (DL) is a sub-field of Machine learning, which includes a set

of methods that can learn from raw data.

While most Machine learning techniques require the design of a feature ex-

tractor to transform the raw data into a suitable feature vector for the classi-

fier, Deep learning classifiers can be fed with raw data and are automatically
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able to discover the most appropriate representation needed for detection

[31]. This has many positive implications: a domain expertise is not re-

quired to structure data and no bias can be introduced by handling data in

a non-optimal way. Moreover, the pipeline of the model is simplified letting

the "machine" to learn how to learn from data.

A Deep learning architecture takes as inputs the raw data and through mul-

tiple layers which perform non-linear transformations results in a higher and

more abstract level of representation of the data. During the process irrele-

vant features for the classification task are discarded while aspects that are

important for discrimination are amplified [31].

This approach has been widely used in many fields such as image and speech

recognition, natural language understanding showing successful results.

Focusing on the use of Deep Learning methods for EEG, a review of current

applications is presented [32]. Within the studies reported, 86% focused on

classification of EEG data for sleep staging, seizure detection and prediction

and BCI, 9% on the improvement of processing tools such as learning fea-

tures from EEG or handling artefacts and 5% on generating new data for

data augmentation purposes.

1.2.1 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a class of deep neural networks

characterized by the employment of the mathematical operation called con-

volution [31]: the layers of the networks are constituted by filters, whose

parameters are learned during the training process, that are applied to the

input data through convolution.

They are one of most prominent Deep Learning architectures employed typ-
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ically for image detection and classification purposes. The most beneficial

aspects of CNNs are the reduction of the number of parameters that the

network has to learn and the spatial-independent features [33].

For instance, in a face detection application, it is not important where the

face is located in the image, it will detect it regardless its position.

Moreover, the features going into deeper layers become more and more ab-

stract: in a image classification at first edges are detected, then contrasts

between regions, shapes and then higher level features. This allows to cap-

ture in data some aspects that are spatial-independent, because the network

is not designed to look at spatial properties but instead to look at common

features in the image.

In [32] the Authors reported that CNN is the most often used DL architec-

ture for EEG data classification showing that it performs well also with time

series data.

The main building blocks of a CNN are:

• convolution layer

• pooling layer

• fully connected layer

In a convolution layer each input data, presented as a multi-dimensional

vector, is convoluted with a filter.

Using a convolution kernel respect to a classic node of an artificial neural

network (ANN) implicates much less parameters [33]. Suppose to have an

input data of dimension 12 x 12 x 3: to connect this input with a neuron of

a standard ANN we would need 12 x 12 x 3 weighted connections, therefore

12 x 12 x 3 parameters to train.

With a CNN, instead of having a full connection, a filter which covers a
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sub-region of the matrix is convoluted with it and shifted along the matrix.

Suppose to choice a filter of dimension 3x3: the number of parameters to be

trained is 3x3x3.

The main idea is that the parameters are shared between different regions

of the matrix, since the same filter shifts all along the matrix and there is

sparsity of connections: in each layer each output value depends only on a

small number of inputs.

A pooling layer operates a downsampling of the input matrix: it divides

the data matrix in sub-matrices, substituting them with a single value that

summarizes the magnitude of the local region. This is done to reduce the

dimension of the data compacting it. An important aspect of pooling layers

is that they do not include any parameter to be trained.

Finally, a fully connected layer is a layer in which each node is connected

with all the inputs, as in a regular ANN.

The main advantage to have less trainable parameters is that the training

session requires less time and deep learning approaches are usually very time

consuming.

Further description of the components of a CNN will be presented in Chapter

2.

1.2.2 Data imbalance

An imbalance dataset is a dataset in which there’s no equal occurrence of

examples belonging to different classes. The most prevalent class is called

the majority class, while the rarest class is called the minority class [34].

Usually, especially in ERP datasets, the rare events are the ones of interest

but the scarcity of examples makes very complex and challenging their iden-

tification. In fact, because of the imbalance, a bias in favor of the majority
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class is usually introduced [35].

The main strategies to deal with an imbalance dataset are [34]:

• Resampling techniques

• Cost-sensitive learning

With resampling techniques it is intended a modification of the input data

which is done before training the model. The main idea is to rebalance the

data either by creating new instances of the minority class in case of oversam-

pling or by removing instances of the majority class in case of undersampling.

In case of oversampling it is possible to randomly replicate instances of the

minority class or to apply data augmentation techniques to generate new

data.

The main problem with the oversampling approach is that, since the train-

ing set is constituted by repeated instances, it may lose in generalization and

cause overfitting. Instead, with an undersampling approach, depending on

the degree of deleted samples, the dataset could lose valuable information

[35].

In cost-sensitive learning some costs are assigned to the instances in a way

that a higher cost for the misclassification of minority class with respect to

the majority class samples is provided. This method is less popular [34] since

cost matrices have to be identified and usually the misclassification cost is

unknown from the data. Moreover, if it is not done by experts, some biases

can be introduced in the learning model.

In [36] it is reported that both undersampling and oversampling approaches

have been applied to classical EEG classification tasks, such as epileptic

seizures or transitional sleep stages identification.

In literature many methods of data augmentation have been proposed: some
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distortions may be operated on the data for instance by adding noise, usually

Gaussian noise [37] or new data can be generated by generative algorithms,

such as the use of Generative Adversarial Network (GAN) [38].

Class imbalance affects also performance evaluation: the metric to quantify

the classifier performances has to be chosen wisely. Accuracy results to be

affected by the imbalance, being biased toward the majority class: while the

majority class instances are correctly classified, a lack of identification of the

minority class samples is verified [34]. Other metrics, such as balanced ac-

curacy, F1-score and ROC AUC, are robust to the imbalance present in the

dataset [36].

1.2.3 Hyperparameters optimization

One of the main features of a CNN is that it is characterized by a high number

of hyperparameters [39]. Hyperparameters are a-priori parameters of the

learning model which are not learned during the training session, in contrast

to the others parameters of a network. They include both parameters that

define the geometry and size of the layers in a network architecture and

variables that define the learning process.

Hyperparameters values affect the performance of the model, so they have to

be adapted to the specific learning problem: a hyperparameter optimization

process can be defined.

The two classical approaches for optimization [40] are:

• Grid search

• Random search

Hyperparameters to be optimized have to be chosen and for all of them a

range of possible values have to be identified.
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With the grid search technique all the combinations between values of the

hyperparameters are evaluated while with the random search a random sam-

ple of possible configurations is chosen and tested. The learning process is

then executed with the different configuration sets and the one resulting with

the highest performance is chosen.

Grid search requires more time but it guarantees to reach the optimal set,

while with random search this is not ensured. The main advantage to use

random search is the reduction of optimization time, in particular when im-

portant hyperparameters are tested against less influential ones and testing

all the possible values of the latter does not affect too much the performances

(figure 1.8).

Figure 1.8: Grid layout (left) requires the definition of a set of equally distributed values

for the hyperparameters tested. With a random layout (right) random combinations of

hyperparameters are chosen. It is better to choose the latter approach when important

parameters are tested against less important ones to reach an optimal time cost [40].

It has to be noticed that nowadays new methods for hyperparameters opti-

mization have been designed, such as Bayesian optimization [41].
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1.3 State of the art

1.3.1 Current Error Potential applications

In 2014 a review of the applications of Error potential in BCI was presented

[27]. The Authors identified two main uses of the ErrP in BCI: ErrP can be

used as a corrective signal to reject those task-classification decisions who

elicit an error awareness by the user or in a error-driven learning.

In the latter case the ErrP signal was used in adaptive BCIs to update the

parameters of the task classifier in order to track the non-stationarities of

the EEG signal without requiring any intermediate training sessions [29] or

it was applied for reinforcement learning purposes to provide a feedback to

an autonomous agent [30].

Regarding the last years of publications, the use of ErrP as a corrective signal

was employed in a variety of applications.

In [42] the ErrP is used to verify the incorrect classification of steady state

visually evoked potentials (SSVEP): a flashing light generates an electrical

activity in the occipital region at the same frequency of the light stimulus.

The main objective to use ErrP in this case is to improve the performance

of such interfaces in real world applications, in which the lighting conditions

are not optimal and many external disturbances would decrease the user’s

attention.

ErrP in the motor imagery field was considered in [43] and [44]. "Motor

imagery is a method of identifying a user’s intention through the EEG char-

acteristic that appears when the user imagines a certain movement" [44].

The classification accuracy of such signals is low so that they are usually

combined with other signals like SSVEP or ERP: the Error Potential could

be used as a corrective signal to prevent the execution of wrong commands.
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In [45] the application is the P300 speller: a flashed matrix of letters is shown

and the target letter the user wants to pronounce is detected by identifying

the P300 wave. The contribution of this study is the introduction of a double

ErrP detector: if an ErrP is detected after the feedback, the symbol shown

is deleted and replaced by another one, which is the second most possible.

If also the second feedback elicits an ErrP, the first selected symbol is re-

selected.

The application of ErrP in reinforcement learning is present in publications

as [46]. A human-robot interface is developed, in which the robot is con-

trolled by human actions. The human executes different gestures and the

robot chooses the actions depending on the gesture type. The robot learns

the meaning of the gesture by receiving a human feedback: the feedback is

obtained through the ErrP detection from the recorded EEG. If an ErrP is

recognized, a negative feedback is transferred to the robot’s learning algo-

rithm to "discourage" that action next time, while if no ErrP is detected

a positive feedback is sent. The main reason to use the ErrP as feedback

is that generating an explicit feedback for each action for the user is very

demanding and tiresome while the ErrP is generated implicitly.

Regarding the classification methods used in those studies, traditional ap-

proaches were chosen. Random forest was found as the most performing for

[42], in [44] Linear discriminant analysis is used while in [46] a Support vector

machine is applied for ErrP classification.

None of them used a Deep Learning approach. In the next section some

articles notably using Deep learning techniques, in particular Convolutional

Neural Network architectures, are presented.
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1.3.2 Related works

CNN architectures applied for the detection of the Error Potential are pre-

sented in this section in order to provide a practical framework of the current

state of the art for this application.

a) deep ConvNets [47]

This CNN architecture is fed by EEG data which are preprocessed by spatial

filtering using common average reference (CAR) and by isolating the band of

the signal between 1 Hz and 10 Hz. The activity related with ErrP is verified

for each electrode to select the most activated ones: 2 electrodes (FCz and

Cz) out of 64 are held.

In order to overcome the data imbalance due to the fact that ErrP epochs

are much less than non-ErrP ones, the Authors opt for an oversampling

technique: data belonging to the minority class are randomly chosen and

replicated.

The CNN architecture implemented is composed by five layers each one con-

taining a convolution layer, a pooling layer and a ReLU activation function.

To deal with a possible overfitting problem that may arise from the oversam-

pling, batch normalization and dropout layers are added.

Performances of the network are tested both with a single-subject approach

and with a cross-subjects one. The results in terms of average accuracy on

the test set are for the single-subject analysis equal to 80.15 % ± 4.14 %

while equal to 79.79 % ± 2.96 % in the cross-subjects one.

It is reported that the network benefits from the addition of batch normal-

ization and dropout layers with an accuracy improvement of 4 % .

b) ConvNet-based pipeline [48]

In this case the CNN is not fed by raw data or by data minimally pre-

processed. Instead, specific preprocessing steps are defined to extract ErrP
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features, including: artefact removal, whitening and cropping. In the artefact

removal step the activity of bad channels is substituted by inferring a new

one through interpolation between close electrodes. Eye blinking, movement

artefacts and trial-specific artefacts are identified through ICA inspection

and removed. The feature set is normalized through a whitening process and

then it is randomly cropped for each training iteration. It is reported that

this latter step prevents the identification of false local minima.

No methods to deal with data imbalance are reported.

The CNN designed is constituted by two layers, each one including a convo-

lution and a pooling layer.

The network is tested with a cross-subjects approach comparing the perfor-

mance by using just FCz and Cz channels data and by using all channels.

The CNN performs better with all the channels, yielding to an average ac-

curacy on the test set of 77.45 % ± 2.35 % for error trials and of 84.10 % ±

0.30 % for correct trials.

The designed network is compared with other literature approaches: a Gaus-

sian classifier, a linear Support Vector Machine, a Dynamic Bayesian Net-

work and a majority-vote strategy. The proposed CNN outperforms all those

methods.

c) EEGNet [49]

The CNN presented in this section is the one which will be analysed in this

thesis.

The Authors’ objective is to build a CNN able to classify EEG signals from

different BCI paradigms: they test EEGNet on P300 visual-evoked poten-

tial, ErrP, movement-related cortical potential (MRCP) and sensory motor

rhythms (SMR). The network is constituted by four main blocks including

convolution, pooling, batch normalization and dropout layers.
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Some particular convolution layers are used: Separable and Depthwise con-

volution layers. They are usually used for image classification algorithms and

have less parameters to be trained.

Data are preprocessed by downsampling at 128 Hz and band-pass filtering

between 1 and 40 Hz. All the channels data are used.

To overcome the problem of data imbalance a class weights approach is cho-

sen: weights are assigned to data depending on their belonging class, in a

way that minority class epochs weight more during the training session.

The performance of EEGNet is compared both with other DL architectures

present in literature and with other traditional approaches in a within and

cross-subjects analysis.

In the within-subject classification EEGNet outperforms the other approaches

for MRCP and ErrP while is not significantly better for P300 and for SMR.

In the cross-subject analysis there is not a net improvement respect to the

literature.

The performance for the ErrP dataset is ∼ 0.81 in terms of AUC (Area un-

der the ROC curve) in the within-subject analysis, obtained as the average

between all subjects and all folds of the 4-folds cross-validation, while in the

cross-subjects analysis the AUC is ∼ 0.74, averaged across 30 folds.

d) DCNN with GAN [38]

A modified version of EEGNet is proposed, where some additional convolu-

tion layers are added to make the network deeper.

The Authors overcome the data imbalance problem by designing a Generative

Adversarial Network (GAN): a Deep Learning data augmentation approach

that generates a new set of data from the existing ones.

Data are downsampled to 128 Hz and band-pass filtered between 1 Hz and

10 Hz. Bad epochs are rejected and muscular and eye artefact are removed
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through ICA. Eventually, data are re-referenced by computing the average

reference.

The performance of the network is evaluated both in single and cross-subjects

sessions by comparing different degrees of addition of the new generated data.

Overall the best result is achieved with a double stage of augmentation (2

part of the dataset out of 3 are new signals) resulting in an average accuracy

of 87.94 % on the test set.

Also in this case the network is compared with other literature methods,

both DL and traditional approaches, outperforming all of them.

1.4 Aim of this work

BCIs have a large room for improvement: the use of the ErrP as a feedback

respect to the decision taken by the classifier is very promising. It would

speed up the classifier decision process and improve the device performances

in terms of user’s intent detection.

For this purpose it is necessary to develop an ErrP classifier that has high

performances in order to achieve a gain by its addition to a BCI device [50].

Nowadays, Deep learning techniques have provided a high-level of perfor-

mances in image, audio and speech recognition tasks. By being fed with a

large amount of raw data, a DL network is able to identify the most useful

features to classify samples.

Among different architectures, Convolutional Neural Networks are the most

prominent ones, being adaptable in a variety of field. Such technique has al-

ready been tested on time-series data and in particular on EEG classification

tasks, achieving good results.

The aim of this work is to model a Convolutional Neural Network for the
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classification of the Error Potential. In particular, starting from an architec-

ture already present in literature [49], EEGNet, this thesis is focused on its

optimization.

When an ERP detection is considered, it is worth remembering that the

number of instances including the event, the ErrP in this case, is much less

than the remaining ones. The first focusing area is to study different ways

to address with data imbalance which, as already mentioned, significantly

affects the network performances. Different methods to balance data have

been compared: oversampling, undersampling and class weights.

In this thesis, a novel method for data augmentation is hypothesized and

studied: new data have been generated through an ARX model. Taking

the instances with ErrP, an ARX model is fitted on each of them and then

used to generate new data through the modification of the exogenous input.

This new approach is compared with the classical ones to validate its perfor-

mances.

The second focusing area is the hyperparameters optimization: the building

blocks of EEGNet, the number and size of the filters, the parameters defin-

ing the learning process are evaluated. Through an optimization strategy the

optimal set of hyperparameters specific for the application and the dataset

used is identified.

The work is organized as follows: in Chapter 2 the dataset and the software

used are presented. EEGNet is described and the data classification strategy

is reported, including the adopted cross-validation approach and the metrics

chosen. The methods used for balancing data are described and the newly-

introduced ARX data augmentation method is presented. Eventually, the

hyperparameter search implemented is described.

In Chapter 3 the ARX generated data are inspected to verify the similari-
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ties with the original data. The results of the ErrP classification are reported

both in terms of intra and inter-subject analysis, comparing the performances

of the different balancing techniques. The hyperparameters search results are

then presented: performances before and after the optimization are reported.

Finally, in Chapter 4 a discussion regarding the obtained results is provided

and possible future developments are identified.





Chapter 2

Material and Methods

2.1 Dataset

The dataset used in this thesis for the evaluation and optimization of the

proposed EEGNet is published by [30] and it is available as an open-access

BCI dataset of BNCI Horizon 2020: Monitoring error-related potentials [51].

It is constituted by EEG recordings during an ErrP-specific experiment per-

formed by 6 subjects (mean age 27.83 ± 2.23) in two recording sessions.

The experiment paradigm consists of reaching a target location, i.e. a coloured

square, through a moving cursor. The working area is constituted by 20 pos-

sible horizontal positions where the cursor and the target square may be

located. At each time step the cursor moves by a step toward the location of

the target. Once the target is reached, the cursor remains in place and the

target appears on the screen in a new location. A graphical representation

of the experiment is presented in figure 2.1.

Subjects are asked to monitor the movement of the cursor, knowing that its

objective is to reach the target, but without having any control over the cur-

sor itself, i.e. they are observing the machine working. In order to elicit the

30
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Figure 2.1: Illustration of the experiment protocol: 1) target is on the left of the cursor,

2) cursor moves towards the target 3) cursor moves in the opposite direction 5) cursor

reaches the target and 6) the target is moved in another location. Figure taken from

[21].

ErrP, at each time step it may happen that the cursor moves in the wrong

direction with 20% of probability. The cursor is moved with a rate of 0.5 Hz

(every 2s) and each movement represents one trial of the experiment. A ses-

sion is constituted by 10 blocks, each one of approximately 50 trials. Subject

performed two sessions with a gap of several weeks.

EEG signal is recorded with 64 electrodes at a sampling frequency of 512 Hz

using a BioSemi ActiveTwo system. Electrodes are placed according to the

10-20 International System.

Globally, the dataset is constituted by 6437 epochs of which 1322 include

the ErrP. A summary of the epochs for each of the 6 subjects is presented in

table 2.1.
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Subject ErrP epochs non-ErrP epochs ErrP occurrence (%)

Subject 1 235 809 22.51 %

Subject 2 242 838 22.41 %

Subject 3 188 848 18.15 &

Subject 4 211 841 20.06 %

Subject 5 241 882 21.46 %

Subject 6 205 897 18.60 %

Total 1322 5115 20.54 %

Table 2.1: Number of epochs distinguished in ErrP and non-ErrP is presented for each

subject of the dataset. The percentage of trials including the ErrP is reported in the

last column.

2.2 Software

Code is implemented with Python 3.8 in Jupyter Notebook environment.

Preprocessing is done on MNE [52], an open-source Python package for vi-

sualization and analysis of neurophysiological data.

The CNN implementation is performed with Tensorflow 2.3 [53] using Keras

API [54]. Tensorflow is a machine learning open-source library that supports

large-scale training: it is used in a wide variety of applications, being mainly

focused on training deep neural networks for large datasets [53].

In order to optimize time requirements, the model is trained on a NVIDIA

GeForce GT 730 GPU.

Scikit-learn [55] package is used to implement the hyperparameters search

and the cross-validation strategy.
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2.3 Data preprocessing

A preprocessing pipeline has been defined to extract from the EEG the

epochs, i.e. the segments of the signal localized just after the movement

of the cursor in which the ErrP may be present.

Preprocessing allows to "clean" data, by removing noise and isolate the com-

ponents of the signal inherent with the brain activity under study, and to

downsize, by extracting from each signal a smaller but representative vec-

tor. A smaller size of the data allows to reduce the time needed to train the

model, but conversely, a procedure that requires many preprocessing steps is

time consuming. As discussed before, Deep Learning architectures are able

to learn from raw data and they extract themselves the features: for this

reason, it was chosen to simplify the preprocessing, not including any proce-

dures like artefact, eye blinking or eyes movements potential removal.

A pipeline of the preprocessing is presented in figure 2.2.

Figure 2.2: Data preprocessing pipeline. From raw data common average is subtracted

(CAR), then a FIR filter is applied to extract the band between 1 and 10 Hz, data are

downsampled to 64 Hz and finally epochs are extracted.

Raw EEG data are spatially filtered with a Common Average Reference

(CAR) approach: the average potential over all the 64 electrodes is com-

puted and subtracted from each electrode signal. By spatial filtering the

noise present globally over the electrodes can be reduced, making the detec-
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tion of low amplitude signals in the EEG easier. Data are then band-pass

filtered between 1 and 10 Hz with a FIR filter: the Authors in [21] suggested

to consider this band since ErrP is a relatively slow cortical potential. Data

are downsampled to 64 Hz and the epochs are extracted between 150 ms and

650 ms after the presentation of the feedback. This range is chosen according

to the expected latency of the ErrP signal [24].

Filtering allows to extract the specific range of frequencies expected in EEG

when cerebral activity related to error-processing is present, while downsam-

pling is executed mainly for size reduction.

The parameters of the preprocessing steps have been defined according to

literature [21], [24], [30], [28].

Most of the works in literature [28], [21], [30] use data of FCz and Cz channels

for the classification: in this study we opted to analyze all the EEG channels

in order to exploit all the information contained in the recorded data.

Each epoch results in a matrix of dimension (64, 37) which is then given as

input to the network.

2.4 EEGNet

EEGNet is a Convolutional Neural Network architecture presented in [49].

The code is available on GitHub at [56].

It has been chosen for this study because it is a very flexible and generalizable

tool, as demonstrated by the good performances on different types of BCI

paradigms, including ErrP classification [49].

Moreover, the Authors reported that it can be trained with very limited data.

This is crucial in EEG applications since recording a big dataset requires

many sessions, so high cost, time and fatigue for the users.
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2.4.1 Architecture

A graphical representation of EEGNet architecture and a summary of the

filters’ size, number of parameters and outputs are presented in figure 2.3

and table 2.2, respectively.

Each building block is now presented.

Figure 2.3: Overall architecture of EEGNet. The network is constituted mainly by three

blocks: Block 1 includes a Convolution Layer and a Depthwise Convolution layer, Block

2 a Depthwise Separable Convolution Layer and the Fully Connected layer includes a

flatten, a dense layers and the classification activation function.
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Block Layer # filters Size #params Output Options

1 Input (C, T, 1)

Conv 2D F1 (1, 32) 32* F1 (C, T, F1) padding= "same", stride= 1

BatchNorm 2* F1 (C, T, F1)

Depht Conv 2D D* F1 (C, 1) C* F1* D (1, T, F1* D) padding= "valid", stride= 1

BatchNorm 2* F1* D (1, T, F1* D)

Activation (1, T, F1* D) ELU

AvgPool (1, 2) (1, T//2, F1* D) stride= 1

Dropout (1, T//2, F1* D) p= 0.5

2 Sep Conv2D F2 (1, 8) F2*(D* F1)+ 8* D* F1 (1, T//2, F2) padding ="same", stride= 1

BatchNorm 2*F2 (1, T//2, F2)

Activation (1, T//2, F2) ELU

AvgPool (1,4) (1, T//8, F2) stride=1

Dropout (1, T//8, F2) p=0.5

FC Flatten (1* T//8 * F2)

Dense T//8* F2 1

Activation 1 Sigmoid

Table 2.2: EEGNet architecture is presented. It is a modified version of [49]. The

three blocks of EEGNet are described (FC stands for fully connected layer) in terms

of number of filters, size, parameters and data output size. Values reported are C=

number of electrodes, T= time points, F1= 8, D=2, F2= 16.

INPUT

Data are presented as a 4D matrix of dimension (samples, channels, time

points, kernels).

Samples is the number of data in input: size depends on the set given in

input.

Channels is the number of electrodes: 64

Time Points is the number of data points for each electrode: it is equal to

37.

Kernel dimension for the input is equal to 1. It is the dimension on which

the CNN works by concatenating at each layer the results of the operations

computed by the filters.
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BLOCK 1

Conv 2D

Conv 2D is a convolution layer, characterized by filters that operate through

convolution.

A convolution filter slides over the input matrix and for each position the sum

of the element-wise multiplication between the filter and the input sub-matrix

is computed: this results in a single element of the output matrix (figure 2.4).

Figure 2.4: Convolution layer: the input matrix is convoluted with the filter. Each

new value of the output matrix is obtained by a convolution between the filter and an

equal-size part of the input matrix

The convolution layer may have some additional features:

• stride: number of steps by which the filter is moved each time it slides

• padding : number of values added at the borders of the input matrix.

This is done to address the fact that edges of the matrix are multiplied

fewer times respect to the central values. Two options are available:

"same" and "valid". "Same" padding means that the addition to the
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borders leads to an output matrix with the same size of the input while

"valid" means that no padding is computed.

This layer is constituted by F1 convolution filters of size (1, 32, 1). F1 is the

number of filters and it is set at 8, "same" padding and stride equal to 1 are

applied according to [49].

The first dimension of the filter is set at 1 in order to not perform any convo-

lution respect to the channels dimension, while the second dimension is set

at half the sampling rate (64 Hz) in order to extract frequency information

from 2 Hz above [49]. The third dimension must always agree with the in-

put’s one to compute the convolution: for this, reason it is equal to 1 .

This layer, by processing just the time points dimension, operates a temporal

filtering of data for each electrode outputting F1 feature maps containing the

EEG signal at different band-pass frequencies [49].

BatchNorm

Batch normalization is a layer that helps stabilizing the training session by

setting the distribution of the inputs at zero mean and unit variance. This

allows to remedy for the so-called internal covariant shift [57], resulting in

an acceleration of the training session.

It is called batch normalization because normalization is made not over the

entire input dataset, but on the single batches, i.e. the subsets of the dataset

that one at time feed the network.

Depth Conv 2D

This layer is constituted by depthwise convolution filters.

This kind of convolution differs from the standard one by computing the con-

volution separately at each kernel level. As mentioned before, in standard

convolution the filter’s kernel dimension must agree with the input’s one be-

cause the operation is computed over the volume. A convolution between



Chapter 2 39

an input of dimension (4, 4, 3) with a kernel of dimension (2, 2, 3) results

in an output of dimension (3, 3). Conversely, with a depthwise convolution

layer the filter is applied singularly to each volume layer so that is possible to

decouple the convolution between different matrix’s kernels [58]. The result

of a depthwise convolution between an input of size (4, 4, 3) and a filter of

size (2, 2, 3) is a (3, 3, 3) matrix (figure 2.5).

Figure 2.5: Standard convolution (top) and Depthwise convolution (bottom). In the

standard one the convolution is made over the volume resulting in a 2D matrix, while

in the depthwise each volume is treated separately and the resulting kernels are con-

catenated in a 3D matrix.

By having the same filter’s size, therefore the same number of parameters to

train, it can be noticed that the output matrix obtained with the depthwise

convolution is 3D while the one obtained with a standard convolution filter

is 2D. This can be considered as a reduction of parameters: to obtain the

same output a standard convolution layer would have required three more

filters.

This layer is constituted by D*F1 filters with size (64, 1). D is set at 2,

stride is equal to 1 and no padding is applied. The filter size is (64, 1): the
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convolution is computed just on channels dimension. This results in a spatial

filtering computed between the electrodes for each time point and separately

for each bands obtained by the Conv 2D layer.

For this reason, each spatial filter can be optimally fitted on the specific

band.

Activation

Activation functions are either linear or non-linear functions that compute

the weighted sum of the node’s inputs establishing if each node of the net-

work is activated or not [59].

The most used ones are presented in figure 2.6.

Figure 2.6: Typical activation functions used in Deep Learning

Sigmoid provides an output between 0 and 1: for this reason it is usually ap-

plied in the output layer of the network, where samples have to be classified.

Tanh is better than sigmoid in the hidden layers since values lie between

-1 and +1: as mentioned before, optimization algorithm performs better if

samples distribution is centered around zero.
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The Rectified Linear Unit (ReLU) is a nearly linear function that forces neg-

ative values to zero. It guarantees faster computation since no exponential

or divisions operations are computed and results in a higher level of perfor-

mance and generalization than sigmoid and tanh [59].

Eventually, the Exponential Linear Unit (ELU) is usually applied to speed

up the training. Conversely to ReLU, it includes negative values so that the

output mean is closer to zero.

The activation function used in this layer is the ELU.

Pooling

Pooling layers have the main feature to reduce the size of the input by "sum-

marizing" the information with no need of parameters to be trained.

The two main types of pooling layers are Max pooling and Average pooling.

The output matrix is obtained by dividing the input into sub-matrices, ac-

cording to the size of the pooling filter, and taking the maximum of it in case

of Max pooling or the average in case of Average pooling (figure 2.7).

Figure 2.7: Pooling layer with filter’s size equal to (2, 2). Max pooling (top) and

Average pooling (bottom) are applied to the same input. The resulting matrices are

shown on the right side.
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In this layer, an Average pooling of dimension (1, 2) is applied to downsample

data to 32 Hz. Also for pooling layers stride value can be chosen: it is set at

1.

Dropout

A dropout layer performs the exclusion of random nodes at each training

iteration. It is characterized by a hyperparameter called dropout rate: it

defines the probability assigned to each node to be deleted.

Dropout layers, by randomly excluding nodes, simplify and add causality to

the network. This is useful both for the regularization of the network and

for reducing overfitting. As a matter of fact, if random nodes are eliminated,

the weights do not rely on single inputs but there’s a spread out of the rele-

vance of the nodes: this prevents outputs from becoming strongly correlated

between each other, which in turn leads to overfitting [60].

In a standard dropout layer, for each input, random elements can be deleted

or not, while with spatial dropout each input is either all maintained or all

deleted [60]. The latter one promotes higher independence between different

inputs.

A dropout layer with probability equal to 0.5 is included at the end of Block

1.

BLOCK 2

Sep Conv 2D

This layer is constituted by depthwise separable convolution filters. This

type of filter is a depthwise convolution filter followed by a pointwise one.

The pointwise convolution has dimension (1, 1, kernel) so that at first each

kernel is obtained separately through the depthwise filters and then they are

merged optimally through the the 1 x 1 convolution (figure 2.8).
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Figure 2.8: A pointwise convolution filter is a filter of dimension (1,1, volume size) so

that it combines the kernels in a 2D matrix

F2 depthwise separable convolution filters of dimension (1, 8) are included.

F2 is set at 16, stride is equal to 1 and "same" padding is applied.

Activation

Also in this block ELU function is applied.

Pooling

An Average pooling of dimension (1, 4) is applied for dimension reduction.

The stride is set at 1.

Dropout

A dropout layer with dropout rate of 0.5 is placed at the end of Block 2.

FULLY CONNECTED LAYER

Flatten + Dense

A flatten layer flattens the data in order to create a 1D vector and then the

dense layer connects every input with a weight.

This is a traditional ANN node in which each input is connected with each

output.

Activation

This is the last layer of the network: it classifies data assigning a class, i.e

ErrP or non-ErrP.

In this layer, sigmoid activation function is used.
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2.4.2 Training procedure

Training session consists of finding the parameters of the network that better

classify the data.

To do that a loss function and an iterative method must be defined: the

latter one will optimize the network’s parameters to minimize the loss.

The loss function used is the binary cross-entropy : the cross-entropy between

true and predicted labels is computed. The smaller is its value, the closer

are the probability distributions of the predicted classes to the real ones.

The most common iterative methods are: SGD, RMSprp and Adam.

SGD and RMSprop are characterized by one hyperparameter called momen-

tum while Adam has two hyperparameters, two momenta.

All of them need an additional hyperparameter: the learning rate which de-

termines the decay rate of the algorithm while reaching the minimum [61].

In EEGNet, Adam is used with learning rate equal to 0.001, 1st momentum

to 0.9 and 2nd momentum to 0.999. The hyperparameters’ values are defined

according to [61] in which Adam algorithm is introduced.

The network is trained in 300 epochs and the batch size is set at 16. The

former hyperparameter defines the number of times on which the algorithm

goes over the data during the training session, while the latter represents the

number of training samples that are used during training in order to make

one update of the network parameters [57].

2.5 Data classification

Performances of EEGNet are evaluated in both an intra-subject and an inter-

subjects analysis.

In the intra-subject analysis EEGNet is trained separately with each sub-
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ject’s data while in the inter-subjects analysis the entire dataset is used to

train the network.

A pipeline of the strategy applied to classify and evaluate the performances

of EEGNet is presented in figure 2.9.

Figure 2.9: Data classification pipeline. Partition in training and test sets is done.

5-folds cross-validation is performed: for each iteration 1 out 5 parts is used as the

validation set and the training set is balanced with the chosen data balancing method.

Each step of the procedure is now described.

2.5.1 Dataset partition

Training set is the part of the dataset that is used to train the model: the

network is fed with those data and learns from them the parameters that

better classify data.

Validation set is the part of the dataset that is unseen by the network during

the training session. This means that the parameters are not fitted on it,

therefore it is useful to test the performance of the model. The main objective

of the validation set is to do model selection, i.e. estimating the performances
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of different models on it to choose the best one [62]. For instance, in the

hyperparameters optimization process hyperparameters are chosen according

to the ones that result in a higher performance on the validation set.

Test set, similarly to the validation set, is the part of the dataset not used

for training, but just to evaluate performances. No decisions are taken on it

but it is considered at the end to test the ability of the network to predict

classes on independent data.

Data are divided in 80 % for training and validation and 20 % for test. The

partition between training and validation is done during cross-validation.

As it will be discussed in Chapter 3, there is a high variability between

subjects’ data: in order to obtain a heterogeneous distribution of data in the

three sets, it has been decided to shuffle data before partitioning them into

training and test sets.

2.5.2 Cross-validation

Cross-validation is a method for estimating the prediction error.

Due to scarcity of data, usually it is not possible to have a large set for val-

idation: by using a small part of the dataset to evaluate the performances,

the results may not represent the overall behaviour of the model and the

obtained results lose in generalization [62].

With K-fold cross-validation the dataset is divided in K parts: K iterations

are executed and in each one K-1 folds are used for training and 1 for vali-

dation. Typical values for K are 5 or 10.

It has been decided to use a Stratified 5-folds cross-validation: folds are cre-

ated in a way that the percentage of samples for each class are constant for

each fold. Since data are imbalanced, by stratifying it is ensured that the

minority class samples are included in all the folds.
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Therefore, in each iteration, 80 % of the training set is used for training while

20 % is used for validation.

2.5.3 Train balance

The dataset is highly imbalanced: ErrP epochs are much less than non-ErrP

ones so that the classification may be biased toward the majority class [35].

For this reason, a balancing technique is applied before feeding the network.

The different approaches will be discussed in Balancing methods section.

For each iteration of the cross-validation process the imbalance on the ex-

tracted training set is evaluated, by counting the number ErrP and non-ErrP

samples, and addressed according to the balancing strategy chosen. In par-

ticular, it may require either the addition or removal of samples from the

training set or the assignment of weights to the instances.

Data are shuffled and ready to feed the network.

No balancing is performed on validation and test sets.
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2.5.4 Performance evaluation

2.5.4.1 Metrics

The confusion matrix for the classification results is reported in table 2.3.

ErrP non-ErrP

1 TP FP

0 FN TN

Table 2.3: Confusion matrix for the classification. The first row reports the effective

presence of the Error Potential (ErrP or non-ErrP) while the first column represents

the network’s output (1 for positive classification, 0 for negative). Depending on the

agreement or not between real and predicted values the following indexes can be defined:

TP = True Positives, TN = True Negatives, FP= False Positives, FN= False Negatives,

The metrics chosen to evaluate performances are accuracy, F1-score and bal-

anced accuracy. It has to be noticed that the latter two are robust to data

imbalance [36] while the former is biased: it is reported in this study just to

compare it with literature results.

Accuracy is a measure of the samples correctly classified over the total num-

ber of samples:

Accuracy =
TP + TN

TP + TN + FP + FN
(2.1)

F1-score is calculated as follows:

F1 = 2 · precision · sensitivity
precision+ sensitivity

(2.2)
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where sensitivity = TP
TP+FN

and precision = TP
TP+FP

.

Balanced accuracy is the average between the sensitivity and specificity of

the classifier:

Balanced accuracy =
sensitivity + specificity

2
(2.3)

where specificity is defined as: specificity = TN
TN+FP

.

2.5.4.2 Utility metric

The above metrics quantify the performance of a classifier, but it would

be interesting also to evaluate if the improvement of ErrP detection would

generate a real benefit applied to a BCI system. To this purpose the Utility

metric is considered.

Utility is a metric introduced in [50] for the quantification of the performance

of a BCI system. In particular, its definition for a BCI device integrating an

error-correction system is as it follows:

U =
log2(N − 1)(prC + (1− p)rE + p− 1)

c
(2.4)

where N , p and c are parameters of the BCI classifier itself, being the number

of possible classifier’s outputs, the accuracy of the classifier and the duration

of a single trial, respectively. rC and rE are, instead, referred to the error-

correction system, being the recall for correct trials and the recall for errors:

rC =
TN

TN + FP
rE =

TP

TP + FN
(2.5)
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In particular, what it is evaluated in this thesis is the Utility gain, thus the

the gain that can be introduced in the performances of a BCI system by

adding an Error Potential-based correction system. It is defined as the ratio

of the Utilities, as it follows:

g =
prC + (1− p)rE + p− 1

2p− 1
(2.6)

A gain > 1 means that an improvement in the performances can be obtained

by adding the error-correction system, while a gain < 1 highlights that its

addition is counterproductive.

Utility gain, as a function of the BCI system’s accuracy p, is compared be-

tween the different balancing method classifiers proposed, to identify which

one can provide a higher gain, thus a higher improvement in a BCI system

performances.

2.5.4.3 Overall score

With 5-folds cross-validation five different models are obtained by training

with different subsets of the training set. It results in a score for each iteration

for both the three sets.

Final scores on training and validation sets are calculated by averaging the

five single scores, while a majority vote approach is used for the test set.

Majority vote strategy is applied to combine classifiers outputs to assign a

class to labels. If the classifiers make independent errors, the majority vote

outperforms the best classifier [63]. Five predictions are obtained on the test

set: majority vote counts the votes for each class for each sample and selects

for each one the class with higher occurrence. Metrics are calculated on this

final resulting vector.
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2.6 Balancing methods

2.6.1 Data augmentation with ARX

A novel method for data augmentation is introduced in this section.

ARX has already shown good performances in modelling ERPs such as event-

related auditory potentials [64] and somatosensory evoked potentials [65].

Here, ARX models are used for data augmentation purposes: new instances

including the ErrP are generated by fitting an ARX model on each ErrP

epoch of the original dataset and then using the model with modified input

to simulate new data.

During the classification process the new data are included in the training

set to overcome the imbalance between ErrP and non-ErrP epochs. In the

intra-subject analysis, only ErrP pattern (and models) obtained from the

specific subject dataset are included, while in the inter-subjects analysis new

epochs are randomly picked.

2.6.1.1 ARX modelling

ARX is a a linear parametric approach to model time series. In particular,

it is defined as the sum of an autoregressive (AR) process driven by white

noise and of the contribution of an exogenous input, a signal with a specific

shape. A mathematical notation for the ARX model structure is as follows:

yi(t) =

p∑
j=1

ajyi(t− j) +
q+d−1∑
k=d

bku(t− k) + ei(t) (2.7)

The acquired signal yi(t) can be modelled as a linear combination between

an AR model of order p, taking in account the previous samples of the signal

multiplied by the coefficients aj and the contribution of white noise ei(t), and

an exogenous part of order q which includes previous samples delayed by d
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of the exogenous input u(t) multiplied by coefficients bk.

The autoregressive part of the formula models the background EEG, there-

fore the brain activity not related with error-processing. It is a non-stationary

stochastic signal, already modelled in literature [65] through an AR system.

The exogenous input, instead, models the deterministic part of the signal,

i.e. the ErrP itself.

Non-preprocessed signals are considered: ErrP epochs extraction is per-

formed by selecting the portion between [−1.5, 2] s, in which 0 s is the

instant of presentation of the incorrect feedback (the incorrect movement of

the cursor).

An ARX model is identified for each single epoch. The three main steps for

generating the models are: exogenous input computation, ARX model iden-

tification and ARX model validation (figure 2.10). .

Figure 2.10: ARX modelling scheme: Exogenous input u(t) is computed from the raw

ErrP epochs. For each epoch y(t) an ARX model is identified and validated. The

results of the procedure are the coefficients of ARX model and the white noise e(t)

which drives the model.
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Exogenous input computation

The exogenous input is generated by averaging the raw ErrP epochs.

With averaging it is possible to decrease the effects of the stochastic part

of the signal and enhancing the deterministic features. By doing so, the

waveform obtained represents the realization of the Error Potential.

Epochs are excluded from averaging if one of the following criteria is fullfilled

[64]:

• the root mean squared (RMS) difference from the average of all epochs

is greater than two times the standard deviation of the RMS difference

of all epochs

• the maximum slope of the epoch is greater than two times the standard

deviation of the maximum slopes of all epochs

The computed average, excluding those epochs, is used as the exogenous in-

put u(t) for the generation of all the models.

ARX model identification

This step includes the identification of the coefficients aj and bk, the orders

p, q and the delay d of the model.

An ARX model is fitted on each ErrP epoch of the dataset, generating a

model for each time series of each electrode.

The identification of the coefficients is performed through a least square ap-

proach, minimizing the following figure of merit [64]:

yi(t) =
1

N

N∑
j=1

(yi(t)− ŷi(t))2 (2.8)

where N is the number of time samples, yi(t) is the signal itself and ŷi(t) is

the model’s prediction.

A search for the optimal orders of the model is performed. In particular,
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the orders which result in the minimum value for the Akaike Information

Criterion (AIC) are chosen [64].

Tested values for p, q and d are presented in table 2.4.

Parameter Values

p [1,7]

q [1,7]

d [0,4]

Table 2.4: Range of values tested for the orders p, q and the delay d of the ARX model

are reported.

ARX model validation

The models generated are tested to verify their suitability to describe the

epochs. Anderson test [66] with confidence interval of 95% is performed to

check for residuals whiteness. If the model is able to adequately fit signals,

no information is contained in the residuals, therefore they follow a normal

distribution, otherwise it is rejected.

2.6.1.2 New signals generation

A graphical representation summarizing how new signals are generated is

presented in figure 2.11.
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Figure 2.11: New signals generation scheme: the exogenous input is distorted with

the selected transformation. The ARX models obtained are used to simulate the new

signals through the distorted exogenous inputs.

Once the ARX models have been identified, by applying 2.7, it is possible to

simulate the epochs.

New signals can be generated by using the same formula but operating some

modifications. In particular, some distortions of the exogenous signal u(t)

have been evaluated:

• amplitude: the amplitude of the waveform is modified

• noise: white noise is added to the exogenous input

• warping : the exogenous signal’s waveform is shrank

Due to the high imbalance a large new dataset is needed: different new ver-

sions of the exogenous signal are generated in order to generate multiple

new signals by using the same ARX models driven with different inputs.

When the newly generated data are added to the training set to balance, the

different types of distortions are either treated separately, by considering a
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dataset of new signals obtained with the same transformation with different

values, or they are combined, by considering a dataset including new signals

obtained with different types of transformations.

A summary of all the combinations and the related ranges of values tested

for each transformation is presented in table 2.5.

Type of distortion Range of values Transformation

ARX amplitude a ∈ [0.5, 1.5] unew(t) = a · u(t)

ARX noise µ = 0, σ ∈ [0.1, 0.9] unew(t) = u(t) +WN(µ, σ)

ARX warp shrink ∈ [75, 125]% unew(t) = shrink(u(t))

ARX amplitude +

noise

a ∈ [0.5, 1.5]

µ = 0, σ ∈ [0.1, 0.9]

unew(t) = a · u(t)

unew(t) = u(t) +WN(µ, σ)

ARX amplitude +

warp

a ∈ [0.5, 1.5]

shrink ∈ [75, 125]%

unew(t) = a · u(t)

unew(t) = shrink(u(t))

ARX noise +

warp

µ = 0, σ ∈ [0.1, 0.9]

shrink ∈ [75, 125]%

unew(t) = u(t) +WN(µ, σ)

unew(t) = shrink(u(t))

ARX amplitude +

noise +

warp

a ∈ [0.5, 1.5]

shrink ∈ [75, 125]%

µ = 0, σ ∈ [0.1, 0.9]

unew(t) = a · u(t)

unew(t) = u(t) +WN(µ, σ)

unew(t) = shrink(u(t))

Table 2.5: All the combinations and the related range of values for the distortions

applied at the exogenous input are reported. In the last column the formula by which

the distortion is calculated are specified.

Finally, the newly generated data are preprocessed with the same steps pre-

sented in the Data preprocessing section.

A graphical inspection is done to verify that the signals generated are not

too different from the original ones.
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2.6.2 Other balancing methods

Resampling methods includes those methods that operate by adding or re-

moving samples from the training set.

The two implemented in this study are:

• oversampling

• undersampling

Oversampling takes the training set and randomly duplicates samples of the

minority class until balance is reached.

Undersampling takes the training set and randomly removes samples of the

majority class until balance is reached.

Besides these two methods, also the class weights approach used in [49],

where EEGNet is introduced, is considered. It does not modify the training

set but assigns a weight to each sample depending on the class in a way that

minority class samples "weights" more during training.

In particular, class weights are calculated according to the following formula:

weighti =

1, if i in majority class

#majority
#minority

, if i in minority class
(2.9)

where #majority is the size of the majority class samples and #minority is

the size of the minority class ones.

2.7 Hyperparameters search

Hyperparameters of EEGNet are optimized in order to improve classification

performances.
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Both hyperparameters related with EEGNet architecture and with the train-

ing algorithm are considered.

Search has been divided in four cycles so that for each one different groups

of hyperparameters are tested. The hyperparameters that are more related

to each other are grouped together: for instance, the ones regarding the it-

erative method or the ones regarding the number of filters of the layers are

included in the same cycle to be tested together. The cycles are ordered in a

way that, at first, the most important hyperparameters, thus the ones that

affect most the performances, are optimized and then the search continues

with the cycles including the less relevant ones.

In cycles in which important hyperparameters are tested a grid search ap-

proach is applied, while in those cycles in which less relevant hyperparame-

ters are tested or in which the possible ranges of values are unknown a-priori

are tested with random search. Once random search is performed, a smaller

range of values for the hyperparameters is identified and for those grid search

is performed.

For each cycle the configuration that results in the highest metric score on

the validation set is identified: the metric optimized during the search cycles

is the F1-score. The hyperparameter configuration is modified according to

the results and the next cycle is started. The procedure is repeated until

convergence is reached, i.e. the hyperparameters set does not change, or

when a given high number of repetitions is reached.

The cycles now presented are the ultimate ones: they are all performed with

grid search. A random search was initially performed to verify which hyper-

parameters affect the most the results and what ranges consider.

This is the best configuration for each cycle that has been obtained.
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2.7.1 1st cycle

In the first cycle the hyperparameters related with the optimization algorithm

are tested: learning rate, batch size and iterative method. They define how

fast and with which algorithm the minimum of the loss function is reached.

In literature it is reported that those are the ones that most affect the net-

work’s performances, especially the learning rate [40].

Learning rate is typically defined in range [0, 1] and greater than 10−6 while

batch size is defined as a power of two value between 1 and a few hundreds

[67].

The tested values and the EEGNet default values are presented in table 2.6.

Hyperparameter Tested values Default value

learning rate 0.0001, 0.001, 0.01, 0.1, 1 0.001

iterative method Adam, RMSprop, SGD Adam

batch size 16, 32, 64, 128, 256 16

Table 2.6: 1st cycle of hyperparameter search. The hyperparameters and the related

tested and default values are specified.

2.7.2 2nd cycle

In the second cycle different types of layers and activation functions are

tested. The layers considered are the pooling, dropout and activation ones.

In EEGNet in both Block 1 and 2 an activation, a pooling and a dropout

layers are present and defined in the same way.

Here a differentiation between Block 1 and Block 2 is opted.

The activation function in the last layer is not modified, since, to make the

classification, the sigmoid is the most appropriate function.

The default and search values are reported in table 2.7.
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Hyperparameter Layer Tested values Default value

pooling layer
poolingType1

poolingType2

Average Pooling, Max Pooling

Average Pooling, Max Pooling

Average Pooling

Average Pooling

dropout layer
dropoutType1

dropoutType2

Dropout, Spatial Dropout

Dropout, Spatial Dropout

Dropout

Dropout

activation layer
activationType1

activationType2

ELU, ReLU

ELU, ReLU

ELU

ELU

Table 2.7: 2nd cycle of hyperparameter search. The hyperparameters and the related

tested and default values are specified.

2.7.3 3rd cycle

In the third cycle the number of filters of the three convolution layers are

evaluated: F1, D and F2.

Starting from the values defined in [49], a range [value − 2, value + 2] is

considered for both F1 and D.

F2 in [49] is defined as the product of F1 and D, here it is tried also to

decouple its definition from the two other values.

A summary of the search is reported in table 2.8.

Hyperparameter Tested values Default value

F1 6, 8, 10 8

D 1, 2, 4 2

F2 6, 8, 10, 12 14, 16, 18, 20, 22, 24, 26, 32, 36, 40, 44 16

Table 2.8: 3rd cycle of hyperparameter search. The hyperparameters and the related

tested and default values are specified.
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2.7.4 4th cycle

In this cycle the dropout rate of the dropout layers, the momenta of the

iterative method, and the learning decay are tested.If the iterative method is

Adam two momenta have to be tested, otherwise just one.The learning decay

is a technique in which the learning rate is not constant but it is initialized

with a large value and then it decays during the iterations. It should prevent

to end in local minima and helps the optimization [68]. Learning decay is

not applied in EEGNet originally, here its addition is evaluated.

A summary of the tested values is presented in table 2.9.

Hyperparameter Tested values Default value

dropout rate 0.3, 0.5, 0.7 0.5

momentum
beta 1= 0.9, 0,99, 0.999

beta 2= 0.99, 0.995, 0.999

0.9

0.999

learning decay True, False False

Table 2.9: 4th cycle of hyperparameter search. The hyperparameters and the related

tested and default values are specified. If the iterative method is SGD or RMSprop the

momentum considered is just beta 1, otherwise both of them have to be optimized.
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Results

The Chapter presents the main results of the thesis and it is organized as

following. At first a graphical validation of the data, both the original data

and the generated ones, is performed. Grand average ErrP is plotted to iden-

tify the characteristic shape of the event-related potential. For the original

dataset the differences between the subjects curves are inspected, while for

the ARX generated data an evaluation on the goodness of the data augmen-

tation method is done.

Then EEGNet results are presented in terms of inter-subjects and intra-

subject analysis. The performances obtained with the ARX-based data

augmentation methods are compared with the other approaches, i.e. class

weights, oversampling and undersampling. Results are reported in terms of

accuracy, F1-score and balanced accuracy. Finally, a discussion on the im-

pact of these methods in terms of improvement of the Utility gain metric is

also provided.

Eventually, the hyperparameters search process is presented, reporting the

final configuration of the network and its performance after the optimization.

62
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3.1 Preprocessed data: graphical inspection

At first all the subjects’ data are considered: the grand average ErrP, com-

puted over all the epochs of all the subjects, is presented in figure 3.1 for

channel FCz and Cz. It is obtained by computing the difference between

the averaged ErrP epochs and the non-ErrP ones. As discussed before, the

error-processing activity is detected mainly in the FCz and Cz electrodes:

for this reason, the waveforms are reported for these channels.

Figure 3.1: Grand average ErrP over all subjects’ data: averaged ErrP epochs mi-

nus averaged non-ErrP epochs for channel FCz (left) and Cz (right). The curves are

characterized by three main peaks indicated in the figures: N1, P1 and P2.

The curves obtained are characterized by an amplitude belonging in the

[−3, 4] µV range and by three main peaks: a negative peak occurring at

0.266s, a first positive peak at 0.344s and a secondary positive peak at 0.422s.

After 0.55s the signals lie under the baseline activity.

By considering these time instants the topographical maps are plotted in

order to verify which are the electrodes, and consequently the brain areas,

showing more intense electrical activity at the peaks occurrences. The maps
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are reported in figure 3.2.

Figure 3.2: Topographical maps showing brain areas activations. In particular, the

maps refer to the time instants of the ErrP waveforms’ peaks: 0.266 s, 0.344 s, 0.422

s, 0.550 s. The pink circle highlights the FCz electrode localization, while the green one

the Cz electrode. The colors of the maps identify the electrical activity range between

−4µV and+ 4µV .

An effective decrease of the activation at the negative peak and an increase

of the electrical activity at the positive peaks latencies can be noticed in the

medio-frontal areas of the brain.

Following, a distinction between subjects’ data is made to evaluate the intra-

patient differences in activations: the grand average ErrP curves for each

subject are plotted and compared to the one constituted by all subjects’

data (figure 3.3). In particular, it can be noticed that the latencies of the

peaks are almost the same for all the subjects while there are differences

in the amplitude of the peaks: in FCz channel Subject 1 and Subject 3

present higher peaks, while Subject 2 and 5 have comparable amplitudes in

respect to the average; for the Cz electrode, Subject 1 and Subject 2 show

higher amplitude, while Subject 3 and Subject 5 present lower peaks. It

can be noticed also that the second positive peak is less pronounced in some

subjects.

Subject 4 and Subject 6 have a different behaviour respect to the others

(figure 3.3): in particular, by evaluating the signals from the Cz electrode,
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it is possible to observe that the two positive peaks are not distinguishable,

but a wider unique positive peak occurs. For Subject 6, neither the negative

peak is noticeable.

Figure 3.3: On top: single subjects’ grand average ErrP curves compared to the average

one (dashed line) for FCz (left) and Cz (right) electrodes. On bottom: ErrP waveforms

for Cz electrode respect to the average one (dashed line) for Subject 4 (left) and Subject

6 (right).

3.2 ARX-based data augmentation

The results regarding the ARX-based data augmentation approach are now

presented. At first results about the models generation process and then

about the new signals are reported.
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To generate the models, the exogenous input is computed, following the cri-

teria presented in Chapter 2: the generated waveform is shown in figure 3.4.

In particular, the signal plotted refers to the FCz channel, used as a repre-

sentative example.

Figure 3.4: Computed exogenous input for ARX’s models generation

It is characterized by an amplitude ranging from [−4, 8] µV .

To generate the models, a model identification is performed on each ErrP

epoch of the dataset: overall the models which are validated by the Ander-

son test result to be 367.

The new data are generated by using those models and computing a distor-

tion on the exogenous input. As mentioned before, the distortions operated

concern the change of amplitude, addition of white noise and shrinking of

the curve.

The dataset consists of 6437 epochs, of which 1322 are ErrP epochs. After the

partition in training, validation and test sets the imbalance on the training

set is at its maximum of 4119 epochs. To generate enough new signals with

367 models, a series of distortions for the exogenous signal are necessary: the

range of values within the distortion has to be computed is defined and then

a set of equally distributed values within the range is chosen to generate the
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new exogenous signals. The ranges applied for each transformation are the

ones reported in Chapter 2.

In figure 3.5 the resulted exogenous inputs obtained through the changes of

amplitude, noise addition and warping techniques are reported. Also in this

case the FCz channel signal is plotted.

Figure 3.5: Exogenous signal distortions: change in amplitude (left), white noise addi-

tion (center) and warping (right)

The new generated datasets, obtained both by considering new signals ob-

tained with a single distortion technique and by grouping signals obtained

with different techniques, are then inspected to verify if they have the same

characteristics of the original dataset: the grand average ErrP curves are

compared to the overall original one.

Since the ARX new data are just ErrP epochs, the non-ErrP epochs, needed

to generate the waveforms, are extracted from the original dataset. The

results for all the ARX methods are reported in figure 3.6 and 3.7.
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Figure 3.6: Grand averaged ErrP for the ARX’s new data compared to the original one

(dashed line). The waveforms are reported for channel FCz (left) and Cz (right).

Figure 3.7: Grand averaged ErrP obtained by considering the ARX warping data respect

to the original one (dashed line). The waveforms are reported for channel FCz (left)

and Cz (right).

As expected, all the ARX techniques, except for the ARX warping, generate

new data that are very similar to the original ones. The waveforms present

the same peaks latencies and amplitudes (figure 3.6). Conversely, the ARX

warping technique introduces some noticeable changes to the shape of the

curve: the amplitude range is smaller and the peaks latencies are not re-

spected. In particular, it can be observed that the positive peaks for the Cz
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channel occur with a significant delay respect to the original grand average

ErrP.

3.3 Inter-subjects analysis

In the inter-subjects analysis EEGNet performances are evaluated on the

whole dataset, without making any distinction on the single subjects’ data.

The results obtained are presented for the traditional balancing methods

(class weights, oversampling and undersampling) and for the introduced

ARX-based data augmentation approaches. In the following figures the bar-

graphs, showing the results obtained on the test set through majority vote

approach, are reported for accuracy (figure 3.8), F1-score (figure 3.9) and

balanced accuracy (figure 3.9).

Regarding the traditional methods, it can be noticed that class weights and

oversampling have comparable results while undersampling results show the

lowest performances for all the three metrics.

The performances by applying the ARX-based methods outperform the tra-

ditional ones in all the cases. A particular case is the ARX warping technique

which results in a low value for the F1-score but a high value for balanced

accuracy and accuracy. The scores obtained by the methods which establish

the addition of data obtained with a single distortion of the exogenous input

(ARX amplitude, ARX noise and ARX warping) are not so different from

the ones in which data obtained with different distortions are grouped.

Overall, the methods which result in the highest scores are the ARX ampli-

tude, ARX amplitude + noise, ARX amplitude + warp and the ARX mix.
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Figure 3.8: Inter-subjects accuracy for the test set for each balancing method. The

green bars indicate EEGNet results with the traditional balancing methods, the orange

bars with the ARX-methods by using just one distortion technique on the exogenous

input, while the red ones with combined distortions techniques.

Figure 3.9: Inter-subjects F1-score for the test set for each balancing method.
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Figure 3.9: Inter-subjects balanced accuracy for the test set for each balancing method.

For the sake of comparison, the performances on training and validation sets

are reported in figure 3.10 together with the already presented results on the

test set.

In this thesis the majority vote approach has been chosen to evaluate the

performances on the test set: in the following graphs the results on the test

set obtained by averaging the results of each iteration of the cross-validation

process, are also shown just to report the different behaviours of the two ap-

proaches. Further mentions about test set results, if not explicitly reported,

concern the results obtained with the majority vote strategy. By comparing

them, it can be observed that averaged test results are more similar to the

validation set results. The majority vote scores are always higher except for

the traditional techniques when balanced accuracy is considered.

Overall, there is a difference between training and test results: in terms of

F1-score the difference is high while for the balanced accuracy the gap is

reduced. This is verified for all the balancing methods excluding the class
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Figure 3.10: Training, validation and test sets performances in terms of F1-score (top)

and balanced accuracy (bottom). The test results are reported both in terms of majority

vote results (green line) and averaged on the iterations of the cross-validation (orange

line).

weights approach in which the performances are comparable for the three

sets.

For both the metrics, the highest difference is obtained with the undersam-
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pling approach being equal to ∼ 19% for the F1-score and ∼ 9% for the

balanced accuracy. A reduction of the gap between training and test sets

can be observed for the ARX amplitude, ARX amplitude + noise and the

ARX mix approaches.

The results on the training set for the ARX warping technique confirm the

discrepancy observed in the test set results between F1-score and balanced

accuracy: the gap occurring between training and test performances is high

if considering the F1-score, while it is smaller if considering the balanced ac-

curacy. However, it can be noticed that the gap is high also for the balanced

accuracy if the averaged test and the validation set scores are considered.

To have an additional point of view on the results some confusion matrices

are presented in table 2.3 : the ones obtained with the traditional methods

(top row of table 2.3) and the ARX amplitude, ARX warping and ARX mix

(bottom row of tabel 2.3) are shown.

Class weights

ErrP non-ErrP

1 211 115

0 47 915

Oversampling

ErrP non-ErrP

1 212 112

0 46 918

Undersampling

ErrP non-ErrP

1 203 140

0 55 890

ARX amplitude

ErrP non-ErrP

1 199 54

0 59 976

ARX warping

ErrP non-ErrP

1 153 26

0 105 1004

ARX mix

ErrP non-ErrP

1 197 57

0 61 973

Table 3.1: Confusion matrices of the classification for traditional methods (on top) and

ARX-based data augmentation approaches (bottom).

Class weights and oversampling have similar confusion matrices: it was ex-

pected by the similar test performances. Conversely, with the undersampling
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method both the number of False Positives and False Negatives increase. The

confusion matrices of the ARX methods show that the number of False Pos-

itives is significantly decreased by those approaches. The number of False

Negatives, instead, is a little higher for the ARX amplitude and the ARX

mix while it is doubled for the ARX warping, which again is the method with

the poorest performances.

Finally, Utility gains g(p) are reported in figure 3.11 for each balancing

method. The curves represent the potential gain that can be introduced

in a BCI system by adding an ErrP-based correction system: higher is the

gain, higher is the benefit. The curves are in function of the BCI classifier

accuracy p, thus the gains for the different balancing methods can be com-

pared and the best one can be identified by fixing a value for p and verifying

which curve shows the biggest value on the y-axis. As discussed in Chapter

2, if gain <1 the addition of an error-correction system is counterproductive:

the unitary gain is reported in the figures as a black line: when the functions

go under that line any improvement is gained by adding the ErrP classifier.

Traditional methods provide an improvement until the BCI classifier has ac-

curacy p =∼ 88 % while the ARX-based methods range from ∼ 91 % to

∼ 96 %.

Overall, it can be noticed that the ARX-based methods provide a higher

gain: the combined techniques and the ARX amplitude are the ones with

higher values.
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Figure 3.11: Inter-subjects Utility gain functions: on top, traditional methods and ARX-

based with a single techniques are reported, on bottom the ARX combined techniques

compared to the ARX amplitude. The curve of the gain is in function of p, i.e the

accuracy of the BCI classifier.
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3.4 Intra-subject analysis

EEGNet performances on the single subjects’ data are now reported.

In general, the results present high variability between subjects: Subject 1,

2 and 5 data show higher performances respect to Subjects 3, 4, and 6. The

averaged results for the two groups in terms of F1-score and balanced accu-

racy are presented in figure 3.12 and figure 3.14.

By considering the first group, i.e. Subject 1, 2 and 5, it can be noticed that

the results obtained with the ARX-methods are higher respect to the tra-

ditional methods. It can be observed from the black segments, representing

the standard deviations of the distributions, that there is a high variability

of the scores between the subjects, especially for the F1-score.
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Figure 3.12: Subjects 1, 2 and 5 averaged results are reported in terms of F1-score

(top) and balanced accuracy (bottom) for each balancing method. Colors identify

the different class of methods: green represents the traditional methods, orange the

ARX with a single technique and red ARX with combination of techniques. The black

segments define the standard deviation of the distribution over the subjects.

Subject 2 data are the one performing better, resulting in a balanced accu-

racy 92.72 % for the ARX amplitude + warping technique and 87.9 % in

terms of F1-score for the ARX mix. The results for both training and test

sets are reported in figure 3.13. It can be noticed that the ARX methods lead

to an improvement of the performances and a reduction of the gap that is

present between the training and test sets performances. The highest perfor-

mances are obtained with the ARX amplitude, ARX amplitude + warping

and ARX mix.
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Figure 3.13: Subject 2: results in terms of F1-score (top) and balanced accuracy

(bottom) are reported for each balancing method.

The results for the second group, i.e. Subjects 3, 4 and 6, are reported in

figure 3.14. These subjects’ data have lower performances respect to the first

group, especially in terms of F1-score. The method that performs better is

class weights, resulting in a score of 72.72 % for the F1-score and 81.74 %

for the balanced accuracy for the Subject 6. It can be observed that, ARX

mix and ARX amplitude + warping show comparable scores if the balanced
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accuracy is considered.

Figure 3.14: The results of Subjects 3, 4 and 6 averaged are reported in terms of

F1-score (top) and balanced accuracy (bottom) for each balancing method.
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Scores for training and test sets of Subject 6, which results in the lowest

performances, are reported in figure 3.15.

Figure 3.15: Subject 6: results in terms of F1-score (top) and balanced accuracy

(bottom) are reported for each balancing method.

It can be observed that, in terms of F1-score, class weights and oversampling

have significant higher results, having also the class weight score on the test

set very close to the training one. Regarding the balanced accuracy, ARX
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amplitude + warping shows comparable results to the class weights one. For

both the metrics the gap between training and test performances is high,

reaching a maximum of ∼ 40 % in terms of F1-score for the ARX amplitude

method.

The confusion matrices for Subject 2 and 6 are reported in table 3.2: the

one referring to class weights, ARX amplitude+ warping and ARX mix are

selected.

Class weights

ErrP non-ErrP

1 39 13

0 5 159

ARX amp+ warp

ErrP non-ErrP

1 36 4

0 8 36

ARX mix

ErrP non-ErrP

1 40 7

0 4 165

Class weights

ErrP non-ErrP

1 36 15

0 12 158

ARX amp+ warp

ErrP non-ErrP

1 23 7

0 25 166

ARX mix

ErrP non-ErrP

1 24 9

0 24 164

Table 3.2: Confusion matrices of the classification for Subject 2 (top) and Subject 6

(bottom) for class weights, ARX amplitude + warping and ARX mix methods.

In all the cases the ARX methods result in a lower number of False Positives

than the class weights approach. The number of False Negatives is compa-

rable between class weights and the ARX methods for Subject 2 while it is

doubled in case of Subject 6.

Eventually, the Utility gain functions are reported for each subject: for each

one just the functions related to the balancing methods that provide the

higher gains are shown (figure 3.16).
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Figure 3.16: Intra-subject Utility gain functions for each subject.

They confirm the results previously presented: higher gain is obtained for

Subject 1,2 and 5 for the ARX-methods approach while class weights and

oversampling provide better results for Subjects 3,4 and 6. Within the ARX

methods the combined techniques and in particular, the ARX mix, provide
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higher scores.

3.5 Hyperparameters optimization

3.5.1 Default hyperparameters

The default EEGNet hyperparameters configuration is reported in table 3.3.

Hyperparameter Value

Optimization

algorithm

batch size 16

learning rate 0.001

iterative method Adam

beta 1 0.9

beta 2 0.999

learning decay False

EEGNet Block 1 Pooling Type 1 Average Pooling

Dropout Type 1 Dropout

Activation Type 1 ELU

F1 8

D 2

dropout rate 0.5

EEGNet Block 2 Pooling Type 2 Average Pooling

Dropout Type 2 Dropout

Activation Type 2 ELU

F2 16

dropout rate 0.5

Table 3.3: EEGNet’s default hyperparameters configuration

As discussed before, the hyperparameters evaluated are related both to the

optimization algorithm and to the EEGNet’s architecture itself. The EEG-

Net default architecture is presented in detail in figure 3.17, specifying the
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number of trainable parameters and the types of hyperparameters for each

layer.

Figure 3.17: EEGNet default architecture: for each layer the data output shape is

specified, the number of parameters and the relative hyperparameters (specified in

orange).

The total number of trainable parameters of the network is 1889, of which

80 are hyperparameters.

A hyperparameter related with the optimization algorithm but not included

in the search is the number of epochs. It defines the number of times that

the algorithm goes through the entire dataset during training. It has been

decided to not search the value for it: as shown by figure 3.18, which refer to

the trend of the metrics over the epochs, the performances are stable around

300 epochs. The training curve, in fact, present an initial steep increment

for the first epochs and then it stabilizes around the 200th epoch for all the
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three metrics. For this reason, the epoch hyperparameter is maintained at

its default value of 300.

Figure 3.18: Accuracy, F1-score and balanced accuracy trend over the epochs during

training session.

3.5.2 Hyperparameters optimization

A search for the optimal configuration of the hyperparameters of the network

is executed. It is performed with a grid search approach through the four

cycles defined in Chapter 2. The validation set performances are evaluated

at each cycle and the F1-score metric is optimized.

Regarding the balancing method applied on the data, since the search was

performed before the development of the ARX-based data augmentation

methods, the oversampling approach has been used.

As discussed before, the criteria to stop the search are the convergence or, in

alternative, a significant number of repetitions. Convergence was not reached

so that the procedure was repeated three times, resulting in three steps each
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one constituted by the same four cycles.

The final configuration of the hyperparameters obtained is shown in table

3.4.

Hyperparameter Value

Optimization

algorithm

batch size 64

learning rate 0.001

iterative method Adam

beta 1 0.999

beta 2 0.99

learning decay False

EEGNet Block 1 Pooling Type 1 Max Pooling

Dropout Type 1 Dropout

Activation Type 1 ELU

F1 12

D 4

dropout rate 0.3

EEGNet Block 2 Pooling Type 2 Average Pooling

Dropout Type 2 Spatial dropout

Activation Type 2 ReLU

F2 26

dropout rate 0.3

Table 3.4: EEGNet’s default hyperparameters configuration

Regarding the optimization algorithm hyperparameters, batch size is in-

creased and the two momenta of Adam’s algorithm are modified. Regarding

EEGNet architecture, pooling, dropout and activation layers are differenti-

ated between Block 1 and Block 2. The number of filters F1, D, F2 of the

convolution layers are increased respect to the default ones. Dropout rate

is reduced. With the new configuration, the total number of parameters is

equal to 5537, of which 172 are hyperparameters.
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The F1-score trend over each cycle of the search for the validation set is

presented in figure 3.19.

Figure 3.19: Validation set’s F1-score trend over each cycle of each step of the hyper-

parameters search.

The initial F1-score value is of 69 %, at the end of the optimization steps it

reaches a value of 72.45%. It can be noticed that until the second step the

metric value increases while during the third step it starts decreasing: the

maximum is reached at the 4th cycle of the second step when the F1-score

is equal to 73.9 %.

3.5.3 Performance evaluation

The accuracy, F1-score and balanced accuracy for training, validation and

test sets, before and after the search, are presented in figure 3.20.
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Figure 3.20: EEGNet performances before and after the hyperparameters optimization

for training, validation and test sets. All the three metrics are reported: accuracy (top

left), F1-score (top right) and balanced accuracy (bottom).

The performances are improved for the training and test sets for all the

three metrics. Validation set results are improved if considering accuracy

and F1-score but not in terms of balanced accuracy, in which a reduction is
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observed.

By looking at the confusion matrices (table 3.5), it is possible to observe

that the number of False Positives is reduced after the optimization, while

the number of False Negatives increases.

Before optimization

ErrP non-ErrP

1 212 112

0 46 918

After optimization

ErrP non-ErrP

1 196 69

0 62 961

Table 3.5: Confusion matrices of the classification before and after the optimization

Utility gain function before and after the hyperparameters search is presented

in figure 3.21.

Figure 3.21: Utility gain function before and after the hyperparameters optimization.

A higher gain can be noticed in the function after the optimization, in par-

ticular when the BCI classifier accuracy p is greater than 70 %. The network
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before the optimization provides an improvement in the performances of the

system if p is less than ∼ 87 %, while after the optimization p can have

∼ 91 % of accuracy.
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Discussion

4.1 Inter-subjects analysis

The results in the inter-subjects analysis reveal that the main problem to ad-

dress by balancing the training set is the loss of generalization of the model.

As discussed before, ERP classification is challenging mostly because of the

scarcity of representation of the events: in the dataset used the imbalance

between ErrP and non-ErrP epochs is of 3793 samples, being the ErrP epochs

just 1322.

With undersampling a loss of information is verified: the exclusion of such

a high number of instances leads to a significant reduction of the size of the

dataset. As a matter of fact, the performances with this approach are the

lowest considering all the metrics.

With oversampling the results are better but the difference in performances

between training and test set is still high: a gap of ∼ 14 % is present by

considering the F1-score. It can be an evidence of the arise of overfitting:

the ErrP epochs are added multiple times to address the high imbalance so

that the performances on training are high but the model is not versatile in

91
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the classification of independent data.

Class weights performances are similar to the oversampling ones. However,

it can be noticed that the gap between training and test performances is

reduced: it confirms the fact that with oversampling loss of generalization

arises. As a matter of fact, the score for oversampling in training, especially

considering the F1-score, is much higher than class weights one, even if per-

formances on test set are comparable. Class weights approach perform well

on the test set but it presents the lowest performances in the training set:

it highlights the fact that there is a room of improvement for this method

and that the assignment of different weights can influence the results. As

discussed before, the choice of class weights must be executed by experts in

order to not incur in biased performances.

On the other hand, the introduced ARX-based methods result in the highest

performances in test. An improvement of ∼ 5 % for the F1-score can be

observed for the ARX amplitude and ARX amplitude+ noise and of ∼ 7 %

in terms of balanced accuracy for the ARX amplitude+ warping method re-

spect to oversampling.

An exception can be observed in the ARX warping technique: it results in a

very low value in terms of F1-score while the highest value for the balanced

accuracy. It can be explained by the fact that with this technique the highest

number of True Negatives is reached, thus improving the specificity included

in the balanced accuracy definition, but the lowest number of True Positives

is also obtained, thus affecting the F1-score value.

The improvements in terms of True Negatives can be noticed for all the ARX

techniques: the False Positives number is halved respect to the traditional

methods. As highlighted in [69], it is crucial for an error-correction system to

have the lowest possible value for the False Positives: the rejection of correct
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outputs generate frustration for the user, lowering motivation and leading to

worse performances in the successive trials.

Another improvement introduced by the ARX-based methods is the reduc-

tion of the gap occurring between training and test sets performances: the

difference for the ARX amplitude method is of 9.32 % in terms of F1-score

and of ∼ 0.89 % for the balanced accuracy. It is possible to conclude that

these approaches have a higher capability of generalization.

Overall, the ARX-based methods which result to be more successful are the

ARX amplitude method and the combined ARX techniques. The scores for

the ARX amplitude are equal to 91.23 % for accuracy, 77.88 % for F1-score

and 86.48 % for the balanced accuracy.

4.2 Intra-subject analysis

With the intra-subject analysis the differences between subjects data have

been highlighted.

The first group (Subjects 1, 2 and 5) results confirm what it has just been

discussed: the ARX methods result in the highest performances, decreasing

the gap between training and test sets scores and reducing the number of

False Positives. The scores, however, show high intra-subjects variability:

the standard deviations for the averaged results reach ∼ 13 % for the ARX

amplitude in the F1-score.

The results for the second group (Subjects 3, 4 and 6) are low. F1-score

reaches a minimum of 53.84 % for the Subject 6 for the ARX amplitude+noise

technique. These results can be related to the fact that Subject 4 and Sub-

ject 6 data are quite anomalous respect to the others: as reported in the
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graphical inspection of the data in Chapter 3, the grand average ErrP curves

obtained for these two subjects are very different from the others showing

just a positive peak with a different latency. It has to be noticed that in this

case traditional approaches perform better: it is made also evident by the

fact that in the confusion matrices for the ARX-based methods the number

of False Negatives is the half of the total number of ErrP epochs, thus half

of the instances are misclassified. This is not observed for the class weights

approach. A possible explanation is reported in figure 4.1, where the aver-

aged ErrP epochs and the averaged non-ErrP ones are shown for Subject 1

and Subject 6.

Figure 4.1: Averaged ErrP and non-ErrP epochs for Subject 1 (left) and Subject 6

(right) for FCz channel.

It can be noticed that there’s a high difference in amplitude between ErrP

epochs and non-ErrP epochs for Subject 1. This difference is not highlighted

for Subject 6. In particular, before ∼ 0.35s, the two epochs are on the same

amplitude range, with very close peaks. It may be possible that through

ARX modelling and then signal generation process, in which the distortions

cause changes in amplitude, the difference between events and non-events

has become less clear, leading to a higher misclassification rate.
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However, in the intra-subject analysis, at least for the first group of subjects,

comparable and higher results respect to the inter-subjects analysis are ob-

tained: for Subject 2, the one resulting in the highest performances, the

classification scores are equal to 94, 91 % for accuracy, 87.91 % for F1-score

and 91.10 % for balanced accuracy for the ARX mix technique. It is possible

to infer that EEGNet is able to perform well even with a small dataset.

4.3 Data classification strategy

From the reported results some considerations may arise concerning the clas-

sification strategy applied.

In the inter-subjects analysis shuffling data before the partition in training

and test set is necessary to not affect just a set out of three with anomalous

data: a model trained only with Subjects 1, 2 and 5 data would have not

classified well Subjects 3,4 and 6 data.

The majority vote approach, as made clear in the plots in the inter-subjects

analysis, outperforms the averaged score strategy for the test set. The scores

for the test set obtained with the majority vote approach are higher than the

ones obtained by averaging the results of each iteration of the cross-validation

process and are also higher than the validation set ones: the network benefits

from this technique in the evaluation of the test performances.

The accuracy, as it was already expected, it is not a good metric to deal with

imbalanced datasets: the scores obtained in the inter-subjects analysis are

all similar making the difference between the performances of the balancing

methods not clear.
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4.4 Hyperparameters search

The hyperparameters search highlights that the hyperparameters of a CNN

affect the performances of the network. The improvement obtained on the

test set by optimizing the hyperparameters configuration is of 2.1 % for

accuracy and F1-score and of 3.7 % for the balanced accuracy.

The F1-score on the validation set does not monotonically increase during

the cycles: it is due to the fact that, even with the same configuration, the

performances of the network could vary by repeating the training.

The resulting configuration highlights that a differentiation between Block 1

and Block 2, in terms of pooling, dropout and activation layers, can improve

the performances of the network. The increment obtained in the D, F1, F2

values, i.e. the number of filters of the convolution layers, suggests that a

bigger network can perform better. The Utility gain function is improved

by the optimization: a higher gain can be reached by optimally fitting the

hyperparameters to the dataset used.

Some considerations concerning the hyperparameters search have to be done:

the search was not performed by using the ARX-based methods to balance

the training set and, as discussed so far, the balancing method chosen affects

importantly the network performances.

The search, as it was implemented, is very time-consuming: grid search

tests all the possible combinations between the hyperparameters increasing

exponentially the time required to execute a cycle of search if a high number

of hyperparameters is tested together.

The resulting network has 5365 trainable parameters compared to the initial

1809 ones: it has to be clarified if this increment lowers the performances if

a small dataset is used.
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4.5 Comparison with literature results

The performances of the proposed EEGNet with the ARX-based methods for

data augmentation are now compared with the literature. The studies pre-

sented in the State of the art, except for EEGNet, refer to the same dataset

used in this thesis: hence, the results are directly comparable. The metric

used in all the papers is the accuracy: for this reason, in this thesis, the

scores have also been presented in these terms.

In table 4.1 the performances on the test set are reported both in terms of

intra-subject and inter-subjects analysis. It has been chosen to compare the

literature results with the ARX-based approaches both with a single and

combined techniques: ARX amplitude and ARX mix are selected.

deep ConvNets[47] DCNN with GAN [38] EEGNet+ARX amp EEGNet+ARX mix

s1 86.49%± 1.13% 86.90 % 89.47% 89.00 %

s2 81.45 %± 1.32 % 92.11 % 93.98 % 94.91 %

s3 79.71%± 0.30% 91.41 % 87.50 % 89.90 %

s4 80.87%± 2.41% 82.14 % 85.78 % 86.73 %

s5 74.76 %± 3.84 % 86.90 % 84.49 % 89.33 %

s6 78.61 %± 1.15 % 89.41 % 80.87 % 85.07 %

inter subj 79.94 %± 2.08 % 87.94 % 91.23 % 90.84 %

Table 4.1: Accuracy for each subject and for inter-subjects analysis compared with

literature studies [47] and [38]. The ARX amplitude and ARX mix results are reported

in the light blue columns.

The results of deep ConvNets are reported in terms of mean and standard

deviation, since for each analysis two scores are presented. In the intra-

subject analysis the performance of the network are evaluated at first by

using session 1 data for test and then session 2 data. In the inter-subjects

analysis the performances are first tested by using Subjects 1, 2, 3 data for
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test and then Subjects 4, 5, 6 data. The results highlight that both ARX

amplitude and ARX mix outperform deep ConvNets in all the cases. In the

inter-subjects analysis the improvement is of ∼ 10 %.

In [38] a modification of EEGNet is presented and a GAN data augmentation

method is applied: the performances are more comparable with the ones

reported in this thesis. The ARX-based methods have higher scores both

in the intra-subject and in the inter-subjects analysis: the ARX amplitude

technique leads to an improvement of 3.29 % and the ARX mix of 2.90 % in

terms of inter-subjects performances. In the intra-subject analysis just the

results of Subjects 3 and 6 have higher results with the GAN approach: this

is coherent with the discussion presented earlier about the second group’s

performances.

Eventually, the results are not directly comparable with the paper in which

EEGNet is defined [49], since a different dataset was used. It has been chosen

to not use that dataset in this thesis since a first analysis on it showed that

the grand average ErrP is quite different from the typical characteristics

described in Error Potential studies. The curve obtained for the EEGNet

dataset for the FCz channel is presented in figure 4.2.

Figure 4.2: Grand average ErrP curve for channel FCz obtained for the dataset used in

EEGNet
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A much smaller amplitude range can be noticed: the signal is in the [1,−1] µV

range. A much wider unique positive peak is present at ∼ 0.55s and also the

negative peak presents a different latency.
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Conclusions

In this study a CNN for Error Potential classification has been validated:

starting from EEGNet, an architecture present in literature, the work has

been focused on its optimization. Two directions are followed: a novel data-

augmentation technique and a hyperparameter search.

Modelling EEG signals which include event-related potentials trough ARX

models was already demonstrated to be successful in literature [64], [65] and

in this thesis the results have shown that using them to generate new data is

a valid strategy. The signals obtained don’t lose the information contained

in the ErrP: the grand average curves obtained with the ARX new signals

present the same stereotypical shape and latencies of the original data.

The performances obtained by the ARX-based data augmentation methods

proposed are always higher than the traditional methods used for balanc-

ing (oversampling, undersampling and class weights): a higher capability of

generalization is highlighted, reducing the difference in the performances be-

tween training and test sets. Moreover, a reduction of the False Positives is

observed. This is crucial for the application of an error-correction system in

a BCI device: it could improve the user’s motivation, allowing to perform

100
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the desired action with less incorrect rejections.

The Utility gain functions reported show that the ARX methods would be

able to contribute to the overall performances of a BCI system with a higher

gain respect to the other balancing methods. The gain in the performances

would be relevant for BCI devices that have a classification accuracy at its

maximum of ∼ 96 %.

Within the presented ARX methods there is not one that outperforms the

others. In the inter-subjects analysis the ARX amplitude and the ARX com-

bined techniques show better results and a lower difference between training

and test scores while in the intra-subject analysis, by considering just the

group of subjects with good results, also ARX noise shows comparable re-

sults.

The exception within these methods is the ARX warping: the grand average

curve does not present the same characteristics of the original one and its

performances, especially by looking at the F1-score, are lower than the other

methods. Even if it provides the lowest number of False Positives, the False

Negatives value show a high increase if compared with the others methods.

Worse performances can be noticed in the classification of those data which

are anomalous respect to the others: for Subject 3, 4 and 6 the traditional

balancing methods, especially class weights, result in higher scores.

By the comparison made with the literature studies taken in account in this

thesis, it has been observed that the presented EEGNet with the ARX-based

data augmentation methods outperform the other strategies.

Eventually, an evaluation on the hyperparameters relevance has been carried

out by implementing a search strategy: the results show that the perfor-

mances of the network can be improved by identifying the optimal hyper-

parameters configuration. This search has been done in parallel with the
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implementation of the ARX methods, so that it was not computed specif-

ically for these approaches. The main changes highlighted by the results

obtained are the differentiation of pooling, dropout and activation layers be-

tween the two blocks of the architecture and the increase of the number of

filters for the convolution layers.

5.1 Future works

There is room for improvement for the work so far presented: the main future

developments are now presented.

Regarding the CNN architecture:

• Evaluate EEGNet blocks: an analysis on the single EEGNet blocks

may be carried out to identify which are the layers mainly contributing

in the performances. In particular, it could be verified if, by further

differentiating the characteristics of Block 1 and Block 2, the perfor-

mances can be improved, as it was suggested by the hyperparameters

search results.

• Implement a novel CNN: starting from EEGNet, a novel CNN could

be designed by adding new types of layers or, in case, making it deeper

by increasing the number of blocks. In general, a personalized archi-

tecture could be thought, based on the evaluation about each layer

features and its degree of influence in the performances.

• Improve hyperparameters search: grid search was performed in

this thesis and it has been proven to be very time consuming. Random

search does not ensure to find the optimal configuration so it is not sug-

gested in the optimization of important hyperparameters. Other strate-
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gies for hyperparameters search can be tried: for instance, Bayesian

optimization could improve time requirements ensuring to find the op-

timal configuration. Eventually, hyperparameters search can be carried

out on the network specifically balanced with an ARX-based method.

• Improve time cost: training a network is time consuming and a long

training session for the user can be stressful. Methods to speed up

the training can be hypothesized: for instance, it can be evaluated if

the use of just FCz and Cz channels (the electrodes in which the ErrP

activity in mainly localized) results anyway in high performances. The

dataset size would be reduced, resulting in a faster training session.

The ARX-based data augmentation method is novel so a lot of research for

its optimization can be done:

• Evaluate new type of distortions: change of amplitude, noise addi-

tion and warping have been evaluated. Warping did not show compara-

ble results respect the others but presented the lowest number of False

Positives: it could be tried to evaluate if a smaller range of shrinking

can improve the results. New types of distortions can be thought: it

has to be noticed that, in the first stages, also a shift in time of the

exogenous input was tried and it did not perform well.

• Compare ARX-methods with other data augmentation tech-

niques: in this thesis ARX was compared with resampling techniques

and class weights assignment. Its performances could be compared

with other data augmentation approaches to further validate it. The

implementation of a GAN could be thought.

Eventually, the proposed EEGNet with the ARX-based data augmentation

method can be tested experimentally: an ErrP-specific experiment could be
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set up and the performances of the network can be evaluated directly in an

online application.
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